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Abstract 
 

Land use and land cover changes at regional scales has become an important subject that urgently 

needs to be addressed in the study of global environmental change. The aim of this study is to 

produce maps of land use and land cover of the Rimov Reservoir and Surroundings on previous 

years to monitor the possible changes that may occur since the creation of the dam site and to 

assess the trends of land use and land cover change. LULC changes were investigated using remote 

sensing data with the help of Google Earth Engine and GIS software. Geographic information 

system and remote sensing technologies was used to identified land cover changes detection; 

remote sensing data, satellite imagery and image processing techniques was done within five dates 

of 1984,1990 ,2000, 2010 and 2019 using Land sat TM and Landsat OLI of 30 m resolution 

images. Google Earth Pro and Arc GIS 10.8 soft wares were used to identify the changes. The 

classification was done using five land cover classes (agricultural land, bare land, built-up areas, 

grassland, and water bodies). Rimov reservoir size was measured and calculated separately from 

the water bodies. Preprocessing and classification of the images were analyzed carefully, and 

accuracy assessment was tested separately using the kappa coefficient. A total of 125 accuracy 

sampling points were randomly selected making it 25 points for each class of the allocated year. 

The results showed that overall accuracy for all five selected years range from 79.2% to 88% and 

kappa coefficient ranged from 74% to 85%. This study indicated that in the last 35 years period, 

built-up areas significantly increased from 13% in 1984 to 25% in 2019, agricultural land from 

29% in 1984 to 38% in 2019 and bare land reduced from 27% in 1984 to 11% in 2019. Changes 

in the reservoir size ranged between 1.42km2 to 1.93km2 signifying a minimal change in reservoir 

size over the years. So, it is however important to conclude that GIS and Remote Sensing 

techniques could be used and recommend for LULC change studies.  

 

 

 

Keywords: Land Use and Land Cover, GIS, Accuracy Assessment, Detection Change, Remote 

Sensing, Satellite Image, Kappa coefficient, LULC classification.  
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Abstrakt 
 
Land Use a Land Cover v regionálním měřítku se staly důležitým tématem při studiu globálních 

změn životního prostředí, kterému je třeba naléhavě věnovat pozornost. Cílem této studie je 

analyzovat Land Use a Land Cover krajiny v okolí přehrady Římov s cílem sledovat možné změny, 

které mohou nastat od vytvoření přehrady. Změny LULC byly zkoumány pomocí dat dálkového 

průzkumu Země pomocí softwaru Google Earth Engine a Geografických informačních systémů. 

K identifikaci detekci změn krajinného pokryvu byl použit software GIS a technologie dálkového 

průzkumu Země; Data dálkového průzkumu Země, satelitní snímky byly z následujících časových 

úseků 1984, 1990, 2000, 2010 a 2019 získané z Land sat TM a Landsat OLI o rozlišení 30 m. K 

identifikaci změn byly použity Google Earth Pro a Arc GIS 10.8. Klasifikace byla provedena do 

pěti tříd krajinného pokryvu (zemědělská půda, holá půda (bez porostu), zastavěné plochy, louky 

a travní trvalé travní porosty a vodní útvary). 

Velikost nádrže Římov byla měřena a počítána odděleně od ostatních vodních útvarů. Zpracování 

a klasifikace snímků bylo pečlivě analyzováno a hodnocení přesnosti bylo testováno samostatně 

pomocí koeficientu kappa. Celkem bylo náhodně vybráno 125 vzorkovacích bodů, což představuje 

25 bodů pro každou kategorii v daném roce. Výsledky ukázaly, že celková přesnost se u všech pěti 

vybraných let pohybuje v rozmezí od 79.2 % do 88 % a koeficient kappa se pohybuje od 74 % do 

85 %. Tato studie naznačila, že za posledních 35 let se zastavěné plochy výrazně zvýšily z 13 % v 

roce 1984 na 25 % v roce 2019, zemědělská půda z 29 % v roce 1984 na 38 % v roce 2019 a holá 

půda se snížila z 27 % v roce 1984 na 11 % v roce 2019. Změny velikosti nádrže se pohybovaly 

mezi 1,42 km2 až 1,93 km2, což znamená minimální změnu velikosti nádrže v průběhu let. J Studie 

prokazuje, že lze použít techniky GIS a dálkového průzkumu Země a doporučit je pro studie 

zaměřené na změny LULC. 

 

 

 

 

Klíčová slova: Land Use, Land Cover, GIS, hodnocení přesnosti, detekce změny, dálkový 

průzkum země, satelitní snímky, Kappa koeficient, LULC klasifikace. 
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1. INTRODUCTION 
 
Understanding the dynamics of land-use and land-cover (LULC) is one of the key concepts in 

global environmental change research (Meyer et al., 1996; Alcamo et al. 1998; Lambin et al., 2001; 

Petit & Scudder 2001). LULC changes have direct influence on the vegetation morphology 

(Defries et al., 2002), biodiversity, land degradation and climatic conditions of an area. The 

landcover changes occur naturally in a progressive and gradual way, however sometimes it may 

be rapid and abrupt due to anthropogenic activities. LULC changes especially those caused by 

human activities is the most important component of global environmental change with impacts 

possibly greater than the other global changes (Turner et al., 1994; Jensen, 2005). Land cover 

change is occurring from the conversion of forests to agricultural lands and built-up lands (Delang 

2002; Duram et al., 2004; Shalaby & Tateishi 2007; Turner et al., 2007; Munoz-Villers & Lopez 

Blanco 2008). Land use and land cover analysis can be done from processed aerial photographs, 

Satellite images (Landsat image, Quick bird image) and Google Earth (Dash, 2005). Since remote 

sensed data from the earth orbit can be obtained repeatedly over the same area, they have been 

very useful to monitor and analyze LUCC in various regions of the earth and greatly contribute to 

planning and management of available resources, especially in the developing countries where 

other kinds of background data are often lacking (Dash, 2005; Fakeye et al., 2015).  LULC change 

is possibly the most obvious form of global environmental change visible at spatial and temporal 

scales having great relevance to our daily life (CCSP, 2003). Technically, LULC change is directly 

related with the mean quantitative changes in spatial extent (increase or decrease) for a specified 

type of land cover and land use respectively. Both anthropogenic and environmental forces largely 

affect the behavior of changes in land use and land cover (Liu et al., 2009). In the last five decades, 

agriculture and forested landscapes have been transformed by economic and social development 

(Gaughan, 2006; Lambin & Geist, 2003; Walker, 2004; Wright, 2005). These transformations are 

important components of land cover disturbance and global environmental change (Foley et al., 

2005; Moran, 2005; Rindfuss et al., 2004). The most rapid and significant include deforestation as 

a consequence of urbanization, agricultural expansion, logging and pastoral expansion (Boori & 

Ferraro, 2012; Lambin & Geist, 2003). Von Thunen model (Mather, 1986) explained the use of 

natural resources by the tourism industry. It explains that resource extraction increases with 
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decreasing urbanization distance due to transportation cost (Chaplin & Brabyn, 2013). This 

evidence is outdated for developed world (Sinclair, 1967) due to improved infrastructure. 

 

In most European countries including Czech Republic land use/land cover changes differ region 

by region. Changes in the landscape over the past 150 years (before 1999) in the Czech Republic, 

in particular the social forces, were analyzed recently (Bičík et al., 2001; Opršal et al., 2013), which 

revealed that social forces had a great effect on land-use changes during the period of the study. 

Lipský (2010) argues that the use of rural landscape is becoming more unequal both on local and 

regional levels. At the local level patches of abandoned arable and agricultural land emerge and 

these are again being inhabited by a number of species: a new “wilderness” comes into existence 

(Lipský 2010). On the other hand, the current agricultural subsidies channeled to 

less favored areas have a similar effect as subsidies under the centrally planned economy had in 

land use terms the existing structure (relatively high share of agricultural and arable land) is 

being conserved also in regions with less favorable natural conditions (Jančák, Bičík 2006). Due 

to this, the use of landscape moves towards large regional units with similar land use structure. In 

Czech Republic, this process is distinctive due to a strong concentration of agricultural businesses 

that had started already 50 years ago and that to a certain extent still exist till date. 

 

The changes in LULC have rapidly been increasing in Czech Republic. As in other Eastern 

European countries, the Czech Republic has encountered substantial land cover change and land-

use intensification over the past decades, resulting mainly from socio-political causes (Lorencová 

et al., 2013). The fastest growing landscape areas are urban regions. Therefore, it's important to 

own accurate and relevant information about the status and changes in LULC in these dynamically 

developing areas (Kasenko et al., 2006 & Feranec et al.,2007). After 1990, the new political 

conditions and economic transformation have led to substantial increase in urban fabric, industrial 

and commercial areas and grasslands (Bicík et al.,2001). These particular LULC changes are even 

more substantial within the European nation than in most of the Eastern European countries (EEA, 

2006, LEAC, 2014). There are several studies assessing Land Use and Landcover change within 

Czech Republic and this research is one of them which focuses on the surroundings around the 

Rimov Reservoir in South Bohemia. .  
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2. AIMS AND OBJECTIVES  
2.1 Aim  
 
This study aims to identify and analyze general trends in Land Use/Land Cover Change (LULCC) 

taking place in Rimov area over a period of 35 years using Landsat Satellite Imagery and GIS 

based technique. 

  

2.2 Objectives  
 
The following objectives will be pursued in order to achieve the aim of this study.  

• To create a Land use/Land cover classification blueprint,  

• To produce Land Use/Land Cover maps of Rimov reservoir and surroundings at different 

years to detect changes, 

• To determine the trend, magnitude, nature, and location of Land Use/Land Cover changes 

using Landsat satellite imagery and change detection technique.  

 

2.3 Research Questions  
 
To address the stated objectives, this study was focused on answering the following research 

questions: 

• To what extent and rate of LULC changes have occurred in Rimov area due to the creation 

of the dam between 1984,1990,2000, 2010 and 2019?  

• What is the nature of LULC changes that have taken place during the periods observed in 

this study within the years intervals?  

• Whether Landsat satellite imagery can be applied successfully to mapping LULC changes 

in the study area?  

• Whether classification accuracy plays an important part in LULC classification? 
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3.LITERATURE REVIEW  
 
3.1 Land Use and Land Cover Change  
 

3.1.1 Concepts and Framework of Landcover and Land Use  
 
The terms land use and land cover have been used interchangeably in many publications despite 

the difference between these two terms. In general land cover refers to natural biophysical covers 

such as forest, water bodies and barren land, while land use refers to the human utilization of land 

for different purposes like agriculture and settlements, which lead to altering biogeochemical, 

physiographical and hydrological conditions (Di Gregorio & Jansen, 2000). Land cover refers to 

the surface cover on the ground like vegetation, urban infrastructure, water, bare soil etc. 

Identification of land cover establishes the baseline information for activities like thematic 

mapping and change detection analysis. Land use refers to the purpose the land serves, for 

example, recreation, wildlife habitat, or agriculture. Mapping LULC is presently the standard 

method and most common approach to monitor land use changes and developments (Mancino et 

al., 2014). Land use/land cover (LULC) changes play an essential role in the studies of regional, 

local and global environmental change (Gupta & Munshi, 1985; Mas, 1999). Land cover refers to 

how the Earth’s surface is covered by forests, wetlands, impervious surfaces, agricultural, and 

other types of land and water (Prakasam, 2010). Land use refers to how humans use the landscape, 

whether for development, conservation, or mixed uses. Land use includes recreation areas, wildlife 

habitats, agricultural land, and built-up land (Reis, 2008). When the phrase Land Use / Land Cover 

(LULC) is used together ,it  generally refers to the categorization or classification of human 

activities and natural elements on the landscape within a specific time frame based on established 

scientific and statistical methods of analysis of appropriate source materials .Especially when 

LULC classes and their spatial and temporal changes are to be determined for categories of small 

geographic extent in vast areas, high-resolution satellite images are needed (Reed et al., 1996).  

 

LULC can be described as the most important environmental variable because involves all aspects 

and concepts of the environment such as Hydrology, Biodiversity, Sustainability, Climate, Natural 

disasters and so on. Information on these environmental variables is used worldwide by Research 



 
 
 

 
 
 
 

5 

bodies, NGO’s, the public as well as industrial purposes and development. LULC is recognized as 

one of the most important types of spatial data in two important European initiatives which are 

GMES (Global Monitoring for Environment and Security) and INSPIRE (Infrastructure for Spatial 

Information in the European Community). LULC is governed by as set of Policies and frameworks 

as seen in table 1. 

Table 1. The need for LULC data. (Source: EEA) 

 
 

3.1.2 What is Land?  

In understanding what landcover and land use is all about, it is important to be able to distinguish 

between the various characteristics that they are made up of. The first important concept is 

understanding what land is about. Land as a resource is fixed in supply with variable demand 

(Briassoulis, 2000). Land can be defined as the foundation of the resources required for human 

activities as well as a platform on which the activities are performed. The use of land and its 

resources by mankind gives rise to "land use" which differs with the purposes it serves, whether 

for production of food, provision of housing, leisure, mining and handling of materials including 

the bio-physical features of land itself. The need of mankind coupled with ecological features and 

processes are the two major forces that influence land use. 
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 Land can be described as a delineable area of the earth's terrestrial surface, embracing all attributes 

of the biosphere immediately above or below this surface. This includes 

• near surface climate, 

• soil and terrain forms, 

• surface hydrology including shallow lakes, rivers, marshes and swamps, 

• near-surface sedimentary layers and associated groundwater and geohydrological reserves, 

• plant and animal populations, 

• human settlement pattern and physical results of past and present human activity including 

terracing, water storage or drainage structures, roads, buildings and much more.  

3.1.3 Importance of LULC 

The growth of a society totally depends on its social and economic development. This is the basic 

reason why socio-economic surveys are carried out. This type of survey includes both spatial and 

non-spatial datasets. LULC maps play a significant and prime role in planning, management and 

monitoring programs at local, regional and national levels. This type of information, on one hand, 

provides a better understanding of land utilization aspects and on the other hand, it plays an 

important role in the formation of policies and programs required for development planning. For 

ensuring sustainable development, it is necessary to monitor the ongoing process on land use/land 

cover pattern over a period of time. In order to achieve sustainable urban development and to check 

the haphazard development of towns and cities, it is necessary that authorities associated with the 

urban development generate such planning models so that every bit of available land can be used 

in most rational and optimal way. This requires the present and past land use/land cover 

information of the area. LULC maps also help us to study the changes that are happening in our 

ecosystem and environment. If we have an inch-by-inch information about Land Use/Land Cover 

of the study unit we can make policies and launch programs to save our environment. 

3.1.4 Applications of LULC maps 

Land use and land cover maps are being used daily by millions of people. In the previous years, 

the maps were mostly analog but due to development and technology, most maps are now in 
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mobile phones in digital formats making its usage and demand quite high and important. The 

application of LULC maps include: 

• natural resource management, 

• wildlife habitat protection, 

• baseline mapping for GIS input, 

• urban expansion / encroachment, 

• routing and logistics planning for seismic / exploration/resource extraction activities, 

• damage delineation such as tornadoes, flooding, volcanic, seismic, fire, 

• legal boundaries for tax and property evaluation, 

• target detection - identification of landing strips, roads, clearings, bridges, land/water 

interface. 

3.2 Land Use and Land Cover Classification  
 
Land cover classification is one of the most important remote sensing applications in the interests 

of identifying features such as land use by employing commonly multispectral satellite imagery 

(Osei et al., 2012). The use of multitemporal data as inputs has been reported to assist in improving 

classification accuracy, particularly for vegetation, due to the unique phenological characters of 

various kinds of vegetation (Zhu & Woodcock, 2014).  However, using multitemporal data also 

may involve some problems when using conventional automated classification algorithms (Zhu & 

Woodcock, 2014). One of these problems is the difficulty in obtaining cloud-free images for some 

locations in particular years, especially when using data with a relatively low temporal frequency 

such as Landsat. Remote sensing is an attractive source of thematic maps such as those depicting 

land cover as it provides a map-like representation of the Earth’s surface that is spatially 

continuous and highly consistent, as well as available at a range of spatial and temporal scales. 

Thematic mapping from remotely sensed data is typically based on an image classification. This 

may be achieved by either visual or computer-aided analysis. The classification may be one that 

seeks to group together cases by their relative spectral similarity (unsupervised) or that aims to 

allocate cases on the basis of their similarity to a set of predefined classes that have been 

characterized spectrally (supervised). In each situation, the resulting classified image may be 

treated as a thematic map depicting the land cover of the region. 
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LULC classification is one of the most widely used applications in remote sensing. The most used 

approaches include: 

3.2.1 Unsupervised classification  
This is done by a software calculated by software. This type of classification is based on the 

software analysis of an image without the user provided sample classes. This involves grouping of 

pixels with common characteristics. The computer uses techniques to determine which pixels are 

related and groups them into classes. The user can specify which algorithm the software will use 

and the desired number of output classes but otherwise does not aid in the classification process. 

There are three primary advantages to using this approach to classification. First, extensive 

knowledge of the area being classified is not required for the initial separation of image pixels. 

Second, there is less opportunity for human error as the analyst is not required to make as many 

decisions during the classification process. Third, unique classes in the data will be recognized by 

unsupervised classification, whereas they may be overlooked in a supervised classification. 

However, the user must have knowledge of the area being classified such as wetlands, developed 

areas, coniferous forests, and a lot more. 

 

3.2.2 Supervised classification 
Classified by human guide.  Supervised classification involves the classification of pixels of 

unknown identity by means of a classification algorithm using the spectral characteristics of pixels 

of known informational class referred to as training areas identified by the analyst (Campbell, 

2002). This is based on the idea that a user can select sample pixels in an image that are 

representative of specific classes and then direct the image processing software to use these 

training sites as references for the classification of all other pixels in the image. Training sites also 

known as testing sets or input classes are selected based on the knowledge of the user. The user 

also sets the bounds for how similar other pixels must be to group them together. These bounds 

are often set based on the spectral characteristics of the training area, plus or minus a certain 

increment often based on "brightness" or strength of reflection in specific spectral bands.  The user 

also designates the number of classes that the image is classified into. Following are some of the 

LULC types and their respective classes. 
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Table 2: The land use classification system developed by Anderson et al., 1976. 

Urban or Built-up 
Land  

• Residential 
• Commercial and Services 
• Industrial 
• Communications and Utilities 
• Mixed Urban or Built-up Land 
• Other Urban or Built-up Land 

Agricultural Land 

• Cropland and Pasture 
• Orchards, Groves, Vineyards, Nurseries, and Ornamental 

Horticultural Areas 
• Confined Feeding Operations 

Rangeland  

• Herbaceous Rangeland 
• Shrub and Brush Rangeland 
• Mixed Rangeland 

Forest Land  

• Deciduous Forest Land 
• Evergreen Forest Land 
• Mixed Forest Land 

Water  

• Rivers  
• Streams and Canals 
• Lakes 
• Reservoirs 
• Bays and Estuaries 

Wetland  
• Forested Wetland 
• No forested Wetland 

Barren Land  

• Dry Salt Flats 
• Beaches 
• Sandy Areas Other than Beaches 
• Bare Exposed Rock 
• Strip Mines, Quarries, and Gravel Pits 
• Transitional Areas 
• Mixed Barren Land 

Perennial Snow or 
Ice  

• Perennial Snowfields 
• Glaciers 
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3.3 Land Use and Land Cover Change Detection 
 
The earth's surface is changing as a result of natural phenomena or human activity, for example, 

wildfires, lightning strikes, storms, pests, agro-forestry, agricultural expansion, social, economic, 

technological, historical factors and urban growth (Borak, Lambin & Strahler 2000). Generally, 

the earth’s surface changes are divided into two categories: land use and land cover (Barnsley, 

Moller-Jensen & Barr, 2001). If the change detection of the earth’s surface is done timely and 

accurately then the relationship and interaction between natural phenomena and humans can be 

better analyzed and understood as a result of which better management and use of resources can 

be done. Change detection involves the application of multi-temporal datasets to quantitatively 

analyze the changes of land cover classes. Lambin & Ehrlich (1997), suggest that there are three 

major causes of land use/land cover changes that happen, with differing rates and on different 

scales: biophysical factors, technological and economic considerations, and institutional and 

political arrangements. Besides these, there are changes resulting from military conflicts. In order 

to be able to plan and implement meaningful policies and effective schemes to sustain regional 

development, there is a crucial need to know the land use/land cover patterns in a particular region 

(Lillesand, Keifer 1994; Lillesand, Kiefer & Chipman 2004, Lu et al., 2004). 

 

Change detection has emerged as a significant process in managing and monitoring natural 

resources and urban development mainly due to provision of quantitative analysis of the spatial 

distribution of the population of interest. There are a lot of available techniques that serve purpose 

of detecting and recording differences and might also be attributable to change (Singh, 1989; Yuan 

et al., 1999). For detecting and analyzing the change on the earth’s surface, various techniques are 

employed. Before studying about various change detection techniques, it is necessary to know 

about the procedure of change detection. To detect the changes of the surface of the earth, six main 

steps are important as mentioned by Jensen which are as follows: 

1.Nature of change detection problems.  

2.Selection of remotely sensed data.  

3.Image preprocessing.  

4.Image processing or classification.  

5.Selection of change detection algorithm.  
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6.Evaluation of change detection results.  

 

There are various ways of approaching the use of satellite imagery for determining land use change 

in urban environments. Yuan, et al., (1998) divide the methods for change detection and 

classification into pre-classification and post-classification techniques. The pre-classification 

techniques apply various algorithms including image differencing and image rationing to single 

13 or multiple spectral bands, vegetation indices (NDVI) or principal components, directly to 

multiple dates of satellite imageries to generate “change” vs. “no-change” maps. These techniques 

locate changes but do not provide information on the nature of change (Ridd & Liu, 1998; Singh, 

1989; Yuan, et al., 1998). On the other hand, post classification comparison methods use separate 

classifications of images acquired at different times to produce difference maps from which “from-

to” change information can be generated (Jensen, 2004). 

The goal of change detection is to discern those areas on digital images that depict change in the 

feature of interest between two or more image dates. The reliability of the change detection process 

may be strongly influenced by various environmental factors that might change between image 

dates. Different change detection techniques which are commonly used are as follows: 

A. Pre-classification Techniques: 

Pre-Classification method analyses the change without classifying the image value. The most 

common and widely used pre-classification method is “Vegetation Index Differencing (NDVI)”. 

Many pre-classification techniques have been used and compared to assess and identify LULCC 

changes such as, Image Differencing (ID) (Hayes & Sader, 2001), Imp (Green, Kempka & Lackey, 

1994), Band Image Differencing (Chavez, MacKinnon,1994) (Wen, Yang, 2009, Geun-Won 

Yoon, Young Bo Yun & Jong-Hyun Park 2003), Spectral Change Vector Analysis (Wen, Yang, 

2009), Principal Component D (Chen et al., 2003) and others. 

B. Post Classification Techniques  
 
This method is also known as delta classification. The post classification method is proved to be 

the most popular approach in change detection analysis. It requires the comparison of 

independently produced classified image. The approach of this method is based on the rectification 
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of the classified images independently then the thematic maps are generated which is followed by 

the comparison of corresponding labels to identify the areas where change has occurred. The post-

classification comparison has been proven to be the most popular approach in change detection 

analysis (Foody, 2002). This approach is based on rectification of more than one classified image; 

where it involves the classification of each of the images independently, then the thematic maps 

are generated, followed by a comparison of the corresponding labels or themes to identify areas 

where change has occurred. The pixel-based classification process brings out small noisy appears 

in isolated pixel or small group of pixels of which classification process is different from its 

neighboring pixels (Huang, et al., 2004). The representation of classified map is usually a salt-and-

pepper appearance (Lillesand, 2004, pp. 584), for instance, there are some very small spots existing 

and they are not suitable for analyzing. The post-classification processing can generate a smoother 

image. In Erdas, the common ways of post-classifications are to clump, sieve, eliminate and 

recode.  

There are several advantages to this technique: it minimizes sensor, atmospheric, and 

environmental differences because data from two dates are separately classified, thereby 

minimizing the problem of normalizing for atmospheric and sensor differences between two dates 

and it provides a complete matrix of land cover change when using multiple images (Lu et al., 

2004; Jensen, 2005; Naumann & Siegmund 2004; Teng et al., 2008). 

3.3.1 Factors influencing Change Detection 
 
Generally speaking, to select a suitable method of detecting change is very significant because 

there is no single method that is can be efficiently applied to all study areas. Selection of an 

appropriate change-detection technique, in practice, often depends on the nature of the change 

detection problem under investigation, which considers a critical step in change detection studies, 

the requirement of information, application , the data sets availability and quality, time and cost 

constraints of the data sets, analysis skill and experience, and registration of multiple image data 

sets (Macleod, Congalton, 1998; Johnson, Kasischke, 1998; Nielsen, Conradsen & Simpson, 1998; 

Cracknell, 1998; Dai, Khorram, 1998). The appropriate technique for the change detection can be 

selected by determining the object of change detection study. Techniques like image differencing 
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and image ratioing can be used only when the change and no-change information is required. If a 

detailed matrix is required, techniques such as post classification will have to be adopted. The size 

of the study area and spatial resolution plays a vital role in the selection of a particular change 

detection technique. 

Regardless of the technique used, the success of change detection from imagery can be affected 

by many factors: the quality of image registration between multi-temporal images, the atmospheric 

conditions, acquisition times, illumination, viewing angles, soil moisture, noise, shadow present 

in the images (Singh, 1989a), vegetation phenological variability or differences (Lu et al., 2002; 

Rogan, Franklin & Roberts, 2002); sensor calibration (Lillesand, Keifer, 1994). In addition to the 

landscape and topography characteristics of the study areas, analyst’s skill and experience, 

selection of the change detection technique, besides, the different steps during the implementation 

of change detection procedure that can produce problems and errors and affect the success of 

change detection, for example, image pre-processing (Lu et al., 2004; Jensen, 2005). 

3.4 Remote Sensing and GIS in Land use and Land Cover Change  
 
Remote sensing is defined as the science and art of obtaining information about an object, area or 

phenomena through the analysis of data acquired by a device that is not in contact with the object, 

area, or phenomena under investigation. The term "remote sensing," first used in the United States 

in the 1950s by Ms. Evelyn Pruitt of the U.S. Office of Naval Research. Remote Sensing (RS) is 

now commonly used to describe the science and art of obtaining information about an object, area, 

or phenomenon under investigation by a device that records the spectral properties of surface 

materials on the earth from a distance (Singh, 1989a; Rogan & Chen, 2004). Remote sensing is of 

two types: active remote sensing and passive remote sensing. The active remote sensing emits their 

own electromagnetic radiation which interacts with the object or area for example RADAR and 

LIDAR. The passive remote sensing system uses the radiation from the sun for the illumination of 

object or area under observation. The energy which is radiated or emitted back from the surface or 

object is recorded by the sensors. These sensors can be air based or space based. Numerous 

methods have been developed by many researchers to review changes in the LULC (Jwan Al-

doski, 2013; Singh, 1989) including multi-temporal composite image change detection (Carmelo 
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et al., 2012; Eastman & Fulk, 1993). on-screen digitization of change (Sreedhar et al., 2016), 

vegetation index differencing (Shanmugam & Rajagopalan, 2013), and post-classification change 

detection (Belal & Moghanm, 2011; Courage et al., 2013; Kafi et al., 2014). 

Recently, multispectral and multi-temporal high-and medium-spatial-resolution satellite data have 

emerged as essential tools for estimating aspects such as the vegetation cover, forest degradation, 

and urban expansion (Mustafa et al., 2007). Remote sensing and GIS technology provide a 

platform for studying landscape transformations throughout the surface of the Earth (Estoque & 

Murayama, 2015). However, changes in land cover and in the way, people use the land have 

become recognized over the last 15 years as important global environmental changes in their own 

right (Turner, 2002). To understand how LULC change affects and interacts with global earth 

systems, information is needed on what changes occur, where and when they occur, the rates at 

which they occur, and the social and physical forces that drive those changes (Lambin, 1997) 

The data obtained from remote sensing system is in the form of aerial photographs, satellite image, 

spatial data set and other data. 
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Figure 1. Process of Remote Sensing (Source: CCRS, 2007) 
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Remote Sensing presents a useful tool for understanding and managing earth resources and LULC 

change detection (Matinfar et al., 2007). Enormous efforts have been made to delineate LULC on 

a local scale as well as global scale by applying different multi-temporal and multi-source remotely 

sensed data from both airborne and space borne sensors. Medium resolution satellite imagery such 

as Landsat satellite data, are the most widely used data types of monitoring and mapping land 

cover changes (Williams, Goward & Arvidson, 2006). They have been successfully utilized for 

monitoring LULC changes especially in the land that has been affected by human activity to 

various degrees, for example, Lu Junfeng et al., (2011) used Landsat Multi-Spectral System 

(MSS), Landsat TM and ETM+ remote-sensing data for land cover changes.   Remote sensing 

images can effectively record land use situations and provide an excellent source of data, from 

which updated LULC information and changes can be extracted, analyzed and simulated 

efficiently through certain means (Pradhan et al., 2008; Singh et al., 2017). Therefore, remote 

sensing is widely used in the detection and monitoring of land use at different scales (Hua et al., 

2017; Mishra et al., 2016). 

Lu et al., (2004) generalized the change detection methods into seven types, namely, arithmetic 

operation, transformation, classification comparison, advanced models, GIS integration, visual 

analysis and some other methods. Change information obtained may be either in the form of simple 

binary change (i.e., change vs. no change as in the case of image differencing, image rationing, 

etc) or detailed from-to change as in the case of using post-classification comparison (Im et al., 

2007).  

3.5 Accuracy Assessment in LULC 
 
Accuracy assessment is an important part of any classification project. It compares the classified 

image to another data source that is considered to be accurate or ground truth data. Ground truth 

can be collected in the field; however, this is time consuming and expensive.  Segmentation and 

classification are two steps to create objects in classification result (Hay, 2008). The segmentation 

gives an object a region of space (Carleer, 2005) and the classification gives the object the attribute 

(Castilla, 2008). Ground truth data can also be derived from interpreting high-resolution imagery, 

existing classified imagery, or GIS data layers. It is the final step in the analysis of remote sensing 
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data which help us to verify how accurate our results are. It is carried out once the 

interpretation/classification has been completed.  

 

In a statistical context, accuracy comprises bias and precision and the distinction between the two 

is sometimes important as one may be traded for the other (Campbell, 1996; Maling, 1989). In 

thematic mapping from remotely sensed data, the term accuracy is used typically to express the 

degree of ‘correctness’ of a map or classification. A thematic map derived with a classification 

may be considered accurate if it provides an unbiased representation of the land cover of the region 

it portrays. In essence, therefore, classification accuracy is typically taken to mean the degree to 

which the derived image classification agrees with reality or conforms to the ‘truth’ (Campbell, 

1996; Janssen & van der Wel, 1994; Maling, 1989; Smits et al., 1999). A classification error is, 

thus, some discrepancy between the situation depicted on the thematic map and reality. 

Accuracy of image classification is most often reported as a percentage correct and is represented 

in terms of consumer’s accuracy and producer’s accuracy. The consumer’s accuracy (CA) is 

computed using the number of correctly classified pixels to the total number of pixels assigned to 

a particular category. The Accuracy Assessment producer’s accuracy (PA) informs the image 

analyst of the number of pixels correctly classified in a particular category as a percentage of the 

total number of pixels actually belonging to that category in the image. Producer’s accuracy 

measures errors of omission. In other words, the term consumer’s accuracy is used when a 

classified image is examined from the user’s point of view. Producer’s accuracy is used when same 

is viewed from analyst’s perspective. 

The history of accuracy assessment outlined above, however, relates mainly to mapping 

investigations that have focused on local to regional scales. The methods used may not be 

transferable to coarser scales (Merchant et al., 1994). The confusion matrix is currently at the core 

of the accuracy assessment literature. As a simple cross-tabulation of the mapped class label 

against that observed in the ground or reference data for a sample of cases at specified locations, 

it provides an obvious foundation for accuracy assessment (Campbell, 1996; Canters, 1997). 
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3.5.1 Need for Accuracy Analysis  

Accuracy becomes a critical issue while working in a Geographical Information System (GIS) 

framework where you use several layers of remotely sensed data. In such cases, it would be very 

important to know the overall accuracy which is dependent upon knowing the accuracy of each of 

data layers. There are a number of reasons why assessment of accuracy is so important. Some of 

them are given below: 

• accuracy assessment allows self-evaluation and to learn from mistakes in the classification 

process, 

• it provides quantitative comparison of various methods, algorithms and analysts, 

• it also ensures greater reliability of the resulting maps/spatial information to use in 

decision-making process. 

A map using remotely sensed or other spatial data cannot be regarded as the final product without 

taking necessary steps towards assessing accuracy or validity of that map. A number of methods 

exist to investigate accuracy/error in spatial data including visual inspection, non-site-specific 

analysis, generating difference images, error budget analysis and quantitative accuracy assessment. 

3.5.2 Sources of Errors 
Classification error occurs when a pixel or feature belonging to one category is assigned to another 

category. Errors of omission occur when a feature is left out of the category being evaluated. Errors 

of commission occur when a feature is incorrectly included in the category being evaluated. For 

example, errors of omission are the allotment of errors of barren land on the ground to the 

agricultural land category on the map. This has caused the removal of an area of real barren land 

on the ground from the map. 

3.5.3 Calculation of Classification Accuracy  

First way of calculating the classification accuracy is considering the Error Matrix. 

A. Error Matrix 
 
Error matrix is a very effective way to calculate map accuracy. Overall accuracy is the sum of the 

major diagonal which is the number of correctly classified sample units divided by the total number 
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of sample units. Producer’s and user’s accuracy are computed for individual category accuracy by 

dividing the total number. A commission error represents an area in a category which it does not 

belong to that category. An omission error reveals the excluded area from the category to which it 

belongs to. Producer’s accuracy plus omission error equals 1and user's accuracy plus commission 

error equals 1(Conggalton, 2008). Once a classification exercise has been carried out, there is a 

need to determine the degree of error in the end product which includes identified categories on 

the map. Errors are the result of incorrect labeling of the pixels for a category. The most commonly 

used method of representing the degree of accuracy of a classification is to build a k×k array, 

where k represents the number of categories. Error matrix is a set array (rows and columns) that 

can be used to evaluate the degree of correctness of classified image. According to Campbell 

(1987), it is a method of reporting site-specific error. It is derived from a comparison of two types 

of maps such as a standard reference map and a classified map. 

For generation of the error matrix, you require two images namely, classified image which is image 

under evaluation and a standard or reference map derived from field survey. Sometimes, high 

resolution images are also used in the absence of a reference map. The classifier also keeps a count 

of the numbers of cells or pixels in each reference category as they are assigned to categories on 

the created image. 

• Interpretation of Errors  

Off-diagonal elements represent misclassified pixels or the classification errors, that is the number 

of ground truth pixels that ended up in another class during classification. The off-diagonal row 

elements represent ground truth pixels of a certain class which were excluded from that class 

during classification. Such errors are also known as errors of omission or exclusion.  The off-

diagonal column elements represent ground truth pixels of other classes that were included in a 

certain classification class. Such errors are also known as errors of commission or inclusion. 

• Producer’s Accuracy 

Producer’s accuracy is defined as the probability that any pixel in that category has been correctly 

classified. It is the values in column accuracy (producer’s accuracy) present the accuracies of the 

categories in the classified image 
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• User’s Accuracy 

User’s accuracy is defined as the probability that a pixel classified on the image actually represents 

that category on the ground. The figures in row reliability (user’s accuracy) present the reliability 

of classes in the classified image 

 
• Overall Accuracy 

It is also desirable to calculate a measure of accuracy for the entire image across all classes present 

in the classified image. The collective accuracy of map for all the classes can be described using 

overall accuracy, which calculates the proportion of pixels correctly classified. The overall 

accuracy is calculated as given below: 
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B. Kappa Analysis 
 
The Kappa coefficient is a measure of overall agreement of a matrix. In contrast to the overall 

accuracy — the ratio of the sum of diagonal values to total number of cells counts in the matrix — 

the Kappa coefficient takes also non-diagonal elements into account (Rosenfield & Fitzpatrick, 

1986). It is a discrete multivariate technique used to assess classification accuracy from an error 

matrix. Kappa analysis generates a kappa coefficient or Khat statistics, the values of which range 

between 0 and 1. Kappa coefficient (Khat) is a measure of the agreement between two maps taking 

into account all elements of error matrix.  The Kappa coefficient was introduced to the remote 

sensing community in the early 1980s (Congalton & Mead, 1983; Congalton et al., 1983) and has 

become a widely used measure for classification accuracy. It was recommended as a standard by 

Rosenfield & Fitzpatrick-Lins (1986). It is defined in terms of error matrix as given below: 

 

 
Where: 

Obs = Observed correct, it represents accuracy reported in error matrix (overall accuracy)  

Exp = Expected correct, it represents correct classification. 

 

Accuracy assessment is still relatively new and is an evolving area in remote sensing. The 

effectiveness of different methods and measurement are still being explored and debated. 

 

3.5.4 Sample Design for Accuracy Assessment  

Sample Design Assessing the accuracy of maps derived from remote sensing data is both time and 

money consuming. Due to the fact that it is not possible to check whole mapped areas, sampling 

becomes the means by which the accuracy of land-cover maps can be derived (Congalton, 1988a). 

As stated by Ginevan (1979) any sampling scheme should satisfy three criteria: 

1. It should have a low probability of accepting a map of low accuracy. 
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2. It should have a high probability of accepting a map of high accuracy. 

3. It should require a minimum number, N, of ground truth samples. 

 

Therefore, researchers have published formulas to calculate the numbers of sample plots which 

are dependent on the objectives of the project (van Genderen and Lock, 1977; Rosenfield, 

Fitzpatrick-Lins and Ling 1982; Rosenfield, 1982; Congalton, 1991). Common Sampling methods 

are: 

• Simple Random Sampling (SRS), 

• Stratified Random Sampling (STRAT), 

• Systematic Sampling (SYS), 

• Stratified Systematic Unaligned Sampling (SSUS), 

• Cluster Sampling (CLUSTER). 

 

These different sampling methods can be seen in the figure below  

 

 
Figure 2. Methods for collecting ground reference data, (Source 

http://www.forestry.oregonstate.edu) 
 

Congalton (1991) suggested a combination of stratified and random sampling. The stratified 

sampling can be done in conjunction with training data collection in an early phase of the project. 
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After the first classification results, stratified random sampling completes the data collection 

necessary for accuracy assessment. Fen Stermaker (1991) proposes a multistage sample approach 

for large area sampling. The number of samples is a compromise between the effort to minimize 

the costs of field sampling and the requirement of a minimum sample size to be representative and 

statistically sound. In general, the larger the sample size, the greater the confidence one can have 

in assessments based on that sample (Dicks & Lo, 1990). Depending on the goal of the accuracy 

assessment the number of sample plots can be calculated with different methods. 

Basic sampling designs, such as simple random sampling, can be appropriate if the sample size is 

large enough to ensure that all classes are adequately represented. The adoption of a simple 

sampling design is also valuable in helping to meet the requirements of a broad range of users 

(Stehman & Czaplewski, 1998) although the objectives of all users cannot be anticipated (Stehman 

et al., 2000).  
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3.6 LULC and Climate Change  
 
Climate and land-use changes are two major global ecological changes predicted for the future. 

Heretofore, causes and consequences of human-induced climate change and land-use activities 

have largely been examined independently (but see Turner et al., 1993). However, climate change 

and land use affect each other. It is widely believed that climate change and increased climatic 

variability will impact land use through affecting different economic sectors such as agriculture, 

housing, nature and ecosystems, and by changing the water resources system (Commissie 

Waterbeheer 21e eeuw, 2000; IPCC, 2001; Verbeek, 2003). Land-use activity contributes to 

climate change, and changes in land-cover patterns are one way in which the effects of climate 

change are expressed. Obviously, climate change is not the only factor driving land-use change. 

Socio-economic developments are another major driving force. In fact, these developments 

interact with climatic changes (Dale, 1997; Watson et al., 2000). For example, economic and 

population growth cause increased emission of greenhouse gasses, which influence the global 

climate. As a result, changes in annual regional rainfall patterns could impact agricultural 

production or cause the tourist industry to migrate to other regions.  

Land-use effects on climate change include both implications of land-use change on atmospheric 

flux of CO2 and its subsequent impact on climate and the alteration of climate change impacts 

through land management. Effects of climate change on land use refers to both how land use might 

be altered by climate change and what land management strategies would mitigate the negative 

effects of climate change. The largest climate sensitive sector is agriculture. Both natural science 

experiments and economic analyses suggest that crop yields have a hill-shaped relationship with 

temperature and precipitation. There is an ideal temperature and precipitation level for every crop. 

Locations that are either cooler or warmer than the ideal, or drier or wetter, have lower 

productivity. Some crops are more valuable than others. The temperature and precipitation levels 

that produce the most valuable crop will lead to the most net revenue. If a farm is either cooler or 

warmer than that ideal, or drier or wetter, it may be forced to grow a lower-valued crop. 

Consequently, net revenue also has a hill-shaped relationship with temperature and precipitation 

(Mendelsohn, Nordhaus & Shaw, 1994). 
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The ecological literature suggests that warming will increase plant productivity and lead to a 

widespread movement of ecosystems toward the poles (Mellilo et al., 1993, Neilson et al., 2005). 

Land uses, such as forestry and grazing, that depend on specific ecosystems will be affected. 

Productivity will change and the mix of land uses in different regions will change. This process is 

dynamic and progresses as climate changes. Climate change may also have an indirect effect as it 

changes hydrological systems, affecting flows of water available to landowners. Insect and disease 

vectors may change, thereby affecting farms and forests with new pest problems. Finally, sea-level 

rise will affect land uses along the coast. 

3.7 LULC and Human Influence 
 
There are basically a lot of human activities which have an influence of Land-use Cover and 

change (Table 1). Early analysts of climate impacts identified five sectors of the economy that are 

sensitive to climate change: agriculture, forestry, water, coastal, and energy (Pearce et al., 1996). 

Agriculture and forestry are key land uses. Water is important to land because its availability 

affects the viability of agriculture through irrigation. In the coastal sector, sea level rise might alter 

the land available along the coasts for urban and other uses.  

 

Table 3. Human Causes and Consequences of LULCC. Source; Turner et al., 1993 

 
 

Land use/cover (LULC) is the most prominent form of the global environmental change 

phenomenon occurring at spatial and temporal scales. Land cover is the physical and biological 

cover of the surface of the land, whereas land use is the indicator of complex human activities that 

alter land surface processes (Foley et al., 2005). The conversion of natural land to anthropogenic 

landscapes represents the form of human impact on the environment (McGranham et al., 2005). 
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Roughly 40 % of the earth’s land surface is under agriculture and 85 % has some level of 

anthropogenic influences (Sanderson et al., 2002). 

 

Urbanization is a process through which the productive agricultural land, forests and surface water 

bodies are being irretrievably decreasing. Rapid growth of cities has posed a threat to their Central 

Business District (CBD). This is evident from the growing eagerness of the people to seek 

accommodation in rural-urban fringe areas (Tali, 2012). For the period from 1990 to 2000, Angel 

et al., (2005: 56) estimated that the annual increase in built-up areas in developing countries was 

around 3.6%, whereas it amounted to only 2.9% on average in industrialized countries. In Europe, 

the annual growth of urban land is expected to range between a maximum of 2% in rapidly growing 

areas and nearly zero in remote rural regions (EEA, 2006).   As the surface physical, chemical, and 

biological characters vary greatly across regions, the climatic influences of urbanization and land-

use change vary correspondingly (Deng et al., 2013). Due to the lack of data and knowledge, it has 

been widely recognized that this issue is of great importance for further exploration and discussion 

(Feddema et al., 2005). 

 

3.8 LULC and Ecosystems  
 
Land use and land cover (LULC) changes alter structures and functions of ecosystems and 

influences the supply of ecosystem services (Hu, Liu & Min, 2008; Kreuter et al., 2001; Yirsaw et 

al., 2017). The ecosystem is directly affected by changes in land use/land cover (LULC). However, 

due to the development of society and the rapid increase in population, the speed, degree, and 

intensity of LULC changes are now faster compared to the past, and a large number of landscapes 

on Earth are getting disturbed (Lambin et al., 2011). For instance, in the tropics, more than 55% 

of new agricultural land was at the expense of intact forests, while 28% was associated with 

disturbed forests from 1980–2000 (Gibbs et al., 2010). Changes in LULC influence ecosystem 

services by increasing the availability of certain services while reducing other services that 

influence the ability of the biosystem to support human needs, further impacting ecological 

degradation (Polasky et al., 2011).  
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4. METHODOLOGY 
4.1 Study Area of Rimov, South Bohemia and Characteristics   
 
Rimov is a municipality and village in České Budějovice District in the South Bohemian Region 

of the Czech Republic. It has about 900 inhabitants and located on left bank of the Malše River 

about 14 km south of České Budějovice.  South Bohemia has a high landscape value as well due 

to the absence of large industrial facilities. Proof of this is the great number of protected areas. 

South Bohemia is a region of countless fishponds, pine forests and extensive peat bogs, enhanced 

by outlines of cities and rural churches that harmonize beautifully with the snow-white marshland 

farmsteads. This is the typical South Bohemian scenery around České Budějovice, Třeboň and 

Veselí nad Lužnicí. 

The South Bohemia Region has more than 627 000 inhabitants in 7 districts with a total of 623 

municipalities, 45 of which are towns. The largest town and the centre of the Region is České 

Budějovice with 95 000 inhabitants. The other big towns are Tábor, Písek, Strakonice, and 

Jindřichův Hradec. One-third of the South Bohemian inhabitants live in these five towns and only 

4.3% live in municipalities with up to 200 inhabitants. The South Bohemia Region is not rich in 

raw materials and raw material resources for energy are negligible. Its main raw material are sands, 

gravel sands, clay, gravel, and glass sands. The most important of the other resources is peat, and 

in some localities also limestone, diatomaceous earth, gneiss, granite, and graphite. The important 

natural resources include the vast coniferous, spruce, and pine forests, especially in the Šumava 

and Novohradské Mountains. Agriculture is focused on plant production, mainly cereals, 

oleipherous plants, and potatoes. Cattle and pig breeding are dominant in livestock production. 

The Region accounts for some 11% of the agricultural production of the Czech Republic and has 

a long tradition in fish farming. The total area of its ponds comprises around 25 000 hectares. 

The climate in South Bohemia is of a transitional Central European type. It is affected alternatively 

by an oceanic influence from the west, and a continental influence from the east. Therefore, the 

weather can be variable. Most of the South Bohemian region belongs to the mild, warm and wet 

zone and at altitudes above 750 m this passes to mild and cool. The warmest month is usually July, 

with temperatures averaging between 17 and 18 °C in valley areas. In higher localities (over 900 

m) the temperatures can drop below 14 °C. 
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Figure 3. Selected study area used in this research. a) Map of Czech Republic, b) Map of 

south Bohemia and c) Aerial photo of the selected study site showing the different Types of 
Land Use and Land Cover Classes 
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4.1.1 Reservoir Characteristics   

The Římov Reservoir (48○50’56” N, 14○29’26” E) is a dimictic, deep valley reservoir with a 

surface area of 2.06 km2. The total population in the area is 35 inhabitants per km2. It has the 

minimum altitude of 430 m a.s.l. and maximum altitude if 1111 m a.s.l. It was built in 1974–78 as 

a storage reservoir for drinking water supply by damming the River Malše, the main reservoir 

tributary accounting for 90% of the water inflow.The reservoir is filled by headwaters from a 

medium-sized hilly catchment (489 km2 ) covered mostly by forests and partly with arable land, 

pastures and meadows. The dam is 47m high and 290m long at its crest and is equipped with 

multilevel outlet and withdrawal structures. Water is discharged into the river via 

(i) a gated spillway (466.1m a.s.l.) 

(ii) two bottom outlets (430.5m a.s.l.)  

(iii) a small shaft outlet with adjustable spot height of intakes from 440.5 to 471m a.s.l. and a 

capacity of 3.6 m3 s−1, which is also used by a small hydropower plant with a maximum capacity 

of 1 MW. Raw water for the drinking water plant (approx. 7km downstream from the dam) is 

withdrawn at different elevations (444.5, 450.5, 457 and 463.5m a.s.l.) in a tower situated near the 

dam. Maximum and mean depths are 43 and 17 m, respectively, theoretical retention time is 92 

days, maximum volume 32 x 106m3, and watershed area 488 km2. 

 

The trophic state of the reservoir is mesotrophic to eutrophic with well-developed thermal 

stratification during the summer. Dominant fish are common bream (Abramis brama Linnaeus, 

1758), roach (Rutilus rutilus Linnaeus, 1758) and bleak (Alburnus alburnus Linnaeus, 1758). 

These species frequently occur in open water of the reservoir during the first year of life (Jůza et 

al., 2009, 2013).  
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4.2 Research Methodology 
 
This section gives a broad overview the data and methods that were applied in data acquisition, 

preprocessing, image classification, presentation which aims to achieve the designed objectives 

and the research questions posed. 

 

 
Figure 4. Overview of Research Methodology flowchart used in this study. 
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4.2.1 Data Acquisition  

To achieve the objective of the present study, Landsat satellite images are obtained from USGS 

database that is an online resource where satellite images are freely available. Landsat Thematic 

mapper (TM) and Landsat Operational Land Imager (OLI) data are used to identify and analyze 

the land use/land cover around the Rimov reservoir of Czech Republic. These datasets have multi-

temporal properties. The Landsat 4 and Landsat 5 images consist of seven spectral bands described 

in Table 4 with a spatial resolution of 30 meters from band 1 to 5 and 7. The Landsat 8 images 

consist of 11 bands with a spatial resolution of 30 meters from band 1 to 7 and 9 as described in 

Table 5.  

 

Table 4. Description of Spectral bands of Landsat TM 
Bands Wavelength  
Band 1 (Blue) 0.45 – 0.52 
Band 2 (Green) 0.52 – 0.60 
Band 3 (Red) 0.63 – 0.69 
Band 4 (Near Infrared) 0.76 – 0.90 
Band 5 (Shortwave infrared 1) 1.55 – 1.75 
Band 6 (Thermal) 10.40 – 12.50 
Band 7 (Shortwave Infrared 2) 2.08 – 2.35 

 
 

Table 5. Description of Spectral bands of Landsat OLI 
Bands Wavelength  
Band 1 (Aerosol) 0.43 – 0.45 
Band 2 (Blue) 0.45 – 0.51 
Band 3 (Green) 0.53 – 0.59 
Band 4 (Red) 0.64 – 0.67 
Band 5 (Near Infrared) 0.85 – 0.88 
Band 6 (Shortwave infrared 1) 1.57 – 1.65 
Band 7 (Shortwave Infrared 2) 2.11 – 2.29 
Band 8 (Panchromatic) 0.50 – 0.68 
Band 9 (Cirrus) 1.36 – 1.38 
Band 10 (TIRS 1) 10.6 – 11.19 
Band 11 (TIRS) 11.5 – 12.51 
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The images were taken for the time period of 35 years starting from 1984 to 2019 (Table 6). Images 

used in the study were chosen on the basis of data availability and suitability. Suitability in this 

case refers to the time series and image clarity. Images selected were between the months of July 

and September with less than 10% cloud cover. Landsat images for the year 1984, 1990,2000,2010 

and 2019 were acquired from USGS website (USGS Earth Explorer) under the following link 

http://earthexplorer.usgs.gov. 

 
Table 6. Landsat images used in this research.  

Acquired 
Date Spacecraft/Sensor Path/Row Pixel Size (m) 

Coordinate 
System/Datum 

1984-08-28 Landsat 5 191/026 30 UTM/WGS84 
1990-09-30 Landsat 5 191/026 30 UTM/WGS84 
2000-09-09 Landsat 5 191/026 30 UTM/WGS84 
2010-09-21 Landsat 5 191/026 30 UTM/WGS84 
2019-07-05 Landsat 8 191/026 30 UTM/WGS84 

     
4.2.2 Softwares Used  

The study utilized a number of software in analyzing the data above. These softwares included 

ArcGIS 10.8, Google Earth Pro, and Microsoft Excel. ArcGIS was used for both vector and raster 

analysis. Google Earth Pro complemented ArcGIS in the process of accuracy assessment for 

verifying of randomly generated points and creating KML files.   

 

 4.2.3 Image Pre-Processing  
In cartography, georeferencing processes follow the identification of homologous points in the 

coordinate systems of two documents of different origin: 

• the raster coordinates system of a digitized ancient map without geographic coordinates, 

and  

• the coordinates system of a support map or reference cartography (Dávila-Martínez; 

Camacho-Arranz, 2012). 

Typical pre-processing operations include applying the geometric correction technique that helps 

to bring the digital images into registration with the Earth’s surface which is georeferencing. 

Georeferencing involves image alignment in a coordinate system, and it is the stage at which the 
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image becomes a form of spatial data, since they are characterized by reference to a coordinate 

system defined by parameters such as projection and point of origin. A first step in the pre-

processing is to check all images any defects such as striping. Then, all images were clipped to 

focus on our study area. After that, all images were corrected geometrically and radiometrically. 

At last, all images were stacked and classified. 

 

4.2.4 Image Classification 

One of the prerequisite components in any LULC classification study is the selection of a 

classification system. The classification system is usually designed to cover the user’s requirement, 

availability of reference samples and classification algorithms, and reproducibility at various 

scales (Lu & Weng,2007). The method of image classification was used for change detection 

purposes. Its major advantage is the ability to create a series of maps for land cover and land use. 

The maximum likelihood classification method was used for the time series of Landsat images 

which is based on the likelihood of each pixel belonging to a particular class. The method consists 

of choosing training samples for each desired class from the composite image. The Land-cover 

and Land-use maps for the study area were developed by performing supervised classification of 

Landsat TM and OLI images. The five LULC classes that were used are described in detail in 

Table 7 below. 

Table 7: Types of LULC classes used in this study 
LULC Classes Description 

Built-up Area Consists of dense built-up like settlements and urban structures. The 
building materials for the built-up class include bricks, concrete, 
asphalt, cement, etc. 

Agricultural Land It consists of entire agricultural fields of that particular season. 

Bare Land Includes the area which lies barren year-round, this also includes 
the land cleared up for the construction projects for developing new 
housing societies and other construction activities. 

 

Water This class includes all the water bodies in the study area, from ponds 
and pools of identifiable sizes to canals. 

Grassland It includes the vegetative land cover like grasses, herbs, shrubs and 
trees 
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5. RESULTS   
 
5.1 Accuracy Assessment  
 
A classification is inadequate without assessing its accuracy and can be defined as the precision 

by which a classifier processes image classification with respect to the reference or truth ground 

data. Accuracy tables show the relationship between ground truth data and the corresponding 

classified data obtained through error matrix report. The overall classification accuracy = No. of 

correct points/total number of points. The accuracy assessment was carried out by taking 25 ground 

truth points for each class. The total ground truth points taken were 125 without any consideration 

of informational class was selected. The ground truth points were taken with the help of Google 

Earth Pro. These points were compared with the classification results in Arc Map software of 

ESRI. (Figure 5 & 6) 

 

In this study accuracy assessment was performed for the classified maps for all steps. Error 

matrices were used to assess classification accuracy using four measures of accuracy: overall 

accuracy, user’s accuracy, producer’s accuracy and Kappa statistic. Achieved results for the 

accuracy of all five years are summarized in the table above showing. For the accuracy assessment 

in this study, stratified random sampling was adopted, and the pixels were verified with using 

ancillary data. The Kappa Coefficient can range from -1 to 1. A value of 0 indicated that the 

classification is no better than a random classification. A negative number indicates the 

classification is significantly worse than random. A value close to 1 indicates that the classification 

is significantly better than random. 
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Figure 5. Simple Random Sampling for Accuracy Assessment in 1984 

 

 
 

Figure 6. Simple Random Sampling for Accuracy Assessment in 2019 
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Table 8. Accuracy Assessment table showing the Producers accuracy, users’ accuracy, 
overall accuracy, and kappa coefficients over the past years from 1984 – 2019. 

LANDUSE/ 
LANDCOVER 

 

1984 1990 2000 2010 2019 

Class Name 
Prod  
Acc 

User 
Acc 

Prod 
Acc 

User 
Acc 

Prod  
Acc 

User 
Acc 

Prod  
Acc 

User 
Acc 

Prod  
Acc 

User 
Acc 

Agricultural 
Land 75 84 79.17 76 80.77 84 76.92 80 78.26 72 

Bare Land 85.71 96 100 100 100 88 100 80 70.59 96 
Built-up 
Area 72 72 84 84 83.33 80 92 92 90.9 80 

Grassland 70.83 68 84 84 80.77 84 92 92 92 92 

Water 95 76 76.92 80 85.19 92 82.76 96 100 84 

Overall  79.2% 84.8% 85.6% 88% 85% 
Kappa 
Statistics  74% 81.8 % 82% 85% 81% 

 

 

The Kappa statistic was used to measure the agreement between two sets of categorizations of a 

dataset (Table 8). It is used to estimate the accuracy of predictive models by measuring the 

agreement between the predictive model and a set of field surveyed sample points (Moriasi et al., 

2007). The results showed that the overall accuracy of 1984 (Table 8) was 79% while the 

producer’s and user’s accuracy range from 72 to 95 % and 68 to 96% respectively. Kappa statistics 

had calculated from the error matrix, and the coefficient of the classification for 1984 was 0.74. 

Thus, according to the classification scale given by (Moriasi et al., 2007), the classification lies in 

a substantial or very good range.  1990 showed a slight difference in accuracy classification. The 

overall classification for 1990 was 85% while the producers and user’s accuracy range from 76.92 
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to 100% and 76 to 100% respectively. The Kappa Statistics after calculating the error matrices for 

1990 was 0.82. This falls on the Almost category from the Kappa Statistics table signifying that it 

was more accurate in comparison to 1984. In 2000, the overall accuracy resulted at 86% while the 

producer and user’s accuracy were between 80.77 to 100% and 80 to 92% respectively. With the 

use of the error matrices, the Kappa statistics test resulted at 0.82 and based on the criteria ratings, 

almost perfect. 2010 accuracy classification also resulted in an almost perfect criteria with the 

kappa statical test resulting at 0.85. The producer’s accuracy user’s accuracy ranges from 76.92 to 

100% and 80 to 96 % respectively. In 2019, both the producers and user’s accuracy ranges from 

70.59 to 100% and 72 to 96% respectively and the kappa statistical test resulted to 0.81 which is 

Almost Perfect and had an overall accuracy of 85%. In general, the closer the statistical results are 

to 100% or closer to 1 for the kappa statistical test, the more accurate the pixel images were 

classified. This means none of the images and points where below 50% or had a negative number 

result so its however possible to accept the how accurate the maps are. 

A Kappa coefficient equal to 1 means perfect agreement whereas a value close to 0 means that the 

agreement is no better than would be expected by chance. According to Landis & Koch (1977), 

categorization of Kappa statistic is widely referenced which is reproduced in Table 9 below 

 

Table 9. Kappa Statistical Reference Table. Source: ( Rwanga & Ndambuki : Accuracy 
Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS, 2017) 
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5.2 Land Use and Land cover Distribution  
 
The land use land cover classification of the area in 1984, showed that the majority of the study 

area is covered by Grassland which is 247.22 km2 and contributes to 30% of the total study area 

(Table 10). Agricultural land and bare land cover an aerial size of 237.64 km2 (29%) and 224.27 

km2 (27%) respectively. Built-up area covers 104.64 km2 (13%) and water bodies covered the least 

which is 6.60 km2 (1%). In1990, the recorded distribution of the total aerial sizes changed for some 

categories. The agricultural land decreased to 142.18 km2 (17%) while the Grassland size increased 

to 275.91 km2 (33%) as well as bare land to 275.70 km2 (33%) respectively. An increase in land 

cover can also be seen in the Built-up areas 124.84 km2 (15%) and water bodies size decreased a 

little to 5.57 km2 (1%) which is not very significant. From all indications, the greatest change in 

1990 was a loss in agricultural land from 29% in 1984 to 17% in 1990.  

In 2000, there was a significant increase Agricultural land 243.13 km2 (28%) and significant 

decrease in bare land 206.13 km2 (24%). The change in built up area was insignificant 134.78 km2 

and remained at 15%. The grassland aerial size dropped by 1% which is 280.44 km2 (32%) and 

water body size increased a little to 6.24 km2 (less than 1%). 2010 recorded some changes as well 

especially in the land class Grassland at 325.16 km2 (38%). There was a decrease in size of 

agricultural land and Bare land at 203.35 km2 (24%) and 171.51 km2 (20%) respectively. The 

recorded water bodies in. 2010 were seen to drop in size to 5.78 km2which is also less than 1%. 

2019 recorded some significant distribution different sizes as compared to 2010. Agricultural land 

and Built-up area greatly increased by 323.09 km2 (38%) and 206.37 km2 (25%) as compared to 

24% and 17% respectively in 2010. The decrease in Grassland area size was recorded at 210.70 

km2 (25%) and bare land drastically reduced to 91.90 km2 (11%). The water bodies increased a 

little to 8.53 km2 but however still under 1%. 
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Table 10. Area (km2) and percentages of different land cover types from the year 1984 to 
2019. 

LANDUSE/ 
LANDCOVE

R 
CATEGORY 

1984 1990 2000 2010 2019 

Class Name km2 % km2 % km2 % km2 % km2 % 

Agricultural 
Land 237.64 29 142.18 17 243.13 28 203.35 24 323.09 38 

Bare Land 224.27 27 275.7 33 206.13 24 171.51 20 91.9 11 

Built-up Area 104.64 13 124.84 15 134.78 15 141.21 17 206.37 25 

Grassland 247.22 30 275.91 33 280.44 32 325.16 38 210.7 25 

Water 6.6 1 5.57 1 6.24 1 5.78 1 8.53 1 

Total  820.37 100 824.2 100 870.72 100 847.01 100 840.59 100 
*Rimov   
Reservoir  1.93 0.23 1.60 0.19 1.62 0.19 1.42 0.17 1.68 0.20 

 

In general, the most significant change is the loss of bare land from 27% in 1984 to 11% in 2019 

and there was a great increase in Built up areas from 13% in 1984 to 25% in 2019.  
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Figure 7. Classified maps of the study area based on supervised classification of 1984, 

1990,2000, 2010, and 2019 Landsat imageries. 
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Figure 8. Percentage LULC from the total area in 1984,1990, 2000, 2010, and 2019 
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5.3 Land Use and Land cover Detection change  
 
The land use and land cover change detection based on remote sensing images have been widely 

applied in research for LUCC, natural resource management and environment monitoring & 

protection (Zhang et al., 2014). The percentage area of each land cover class had derived from 

supervised classified images for each year separately with Arc GIS. This explains how stable or 

unstable the total area has been changing.  From 1984-1990, the most unstable category was 

Agricultural land which we found reduced at 40% or -95.46 km2. Second most unstable category 

is water bodies which reduced at 16%, or -1.03 km2 while Bare land was found to increase at 23% 

or 51.43 km2. Built up areas and Grassland areas also increased by 19% (20.2 km2) and 12% (28.69 

km2). 

 

Table 11. LULC change in the selected study area in South Bohemia from 1984 to 2019. 
LAND 

USE/LAND 
COVER 

CATEGORY 

1984 - 1990 1990- 2000 2000 -2010 2010 - 2019 

Area Change Area Change Area Change Area Change 

Class Name  km2 %   km2 %   km2 %  km2 %  

Agricultural 
Land -95.46 -40 100.95 71 -39.78 -16 119.74 59 

Bare Land 51.43 23 -69.57 -25 -34.62 -17 -79.61 -46 

Built-up Area 20.2 19 9.94 8 6.43 5 65.16 46 

Grassland 28.69 12 4.53 2 44.72 16 -114.46 -35 

Water -1.03 -16 0.67 12 -0.46 -7 2.75 48 

*Rimov   
Reservoir -0.33 -17.18 0.03 1.84 -0.21 -12.91 0.26 18.54 
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Change from 1990-2000 was also measured and it was noted that Bare land had the most negative 

change by -25% (-69.57 km2) and Agricultural land had the most significant positive change with 

an increase by 71% (100.95 km2). Built up areas, Grasslands and water bodies all increased by 8% 

(9.94 km2),2% (4.53 km2) and 12% (0.67 km2) respectively. From 2000 to 2010, the most 

significant negative change was in bare land where there was a loss in 17% of the bare land from 

-69.57 km2 between 1990-2000 to -34.62 km2 between 2000-2010. There was a 16% (-39.78 km2) 

loss in Agricultural land 7%(-0.46km2) loss in Water bodies in the total study area. Positive 

changes in LULC between 2000-2010 resulted in Grassland and Built-up areas at 16% (44.72 km2) 

and 5% (6.43 km2) increase respectively. From 2010 to 2019, the most significant positive change 

was the increase in Agricultural land, water bodies and built-up areas by 59% (119.74 km2), 48% 

(2.75 km2) and 46% (65.16 km2) respectively. The bare land size was lost by 46% and Grassland 

by 35%.  

 
5.4 Trends of LULC Rimov Reservoir 
 
Over the years, the size of the reservoir has been changing with the highest recorded in 1984 at 

1.93 km2 and the lowest recorded in 2010 at 1.42 km2. The greatest change calculated seen in drop 

in reservoir when the total size reduced from 1.93 km2 in 1984 to 1.60km2 in 1990. From 1984 to 

1990, the reservoir lost 17.18% (-0.33 km2) of its total size as seen in the figure above. The changes 

from 1990 to 2000 were minimal with an increase in size by 1.84%(0.03km2). From 2000 to 2010, 

another significant loss in reservoir size by 12.91% (-0.21 km2) and recorded as the second highest 

change after the significant change between 1984 and 1990. From 2010 to 2019, the reservoir size 

increased by 18.54 %(0.26km2) and it is the most significant increase in the with regards to the 

reservoir change detection.  The table below shows how the changes in reservoir size over the past 

years and area measured in Km2 
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Figure 9. Trends and changes in Rimov Reservoir (km2) from 1984 to 2019 
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6. DISCUSSION  
6.1 Accuracy Analysis 
 
Accuracy assessment is quite important in LULC studies because it gives a clear analysis of how 

truth ground data can be represented on a map.  It gives detailed assessment of how effectively the 

pixels were sampled into the correct land cover classes. The results from accuracy assessment 

showed an overall accuracy obtained from the random sampling process for the images were 

79.2%, 84.8%, 85.6%, 88%, 85% for 1984, 1990, 2000, 2010 and 2019 respectively. According to 

(Anderson, 1976), the minimum accuracy value for reliable land cover classification is 85 %. On 

the other hand, accuracy levels are accepted by users may not be acceptable by other users for a 

certain task (Geremew, 2013). 

The accuracies for the individual classes were relatively high, ranging from 70.59% to 100% for 

the producer’s accuracy and 68% to 100% for the user’s accuracy which indicates a good 

agreement between thematic maps generated from images and the reference data. The water 

mapping accuracy of all five years for producer’s and user’s accuracies were ranging from 76% to 

100% due to better spectral differentiation from other classes. The producer’s and user’s accuracies 

of all five years for agricultural land and grassland ranged from 75% to 84% and 68% to 92% 

respectively. The reason for this low obtained accuracy is due to the fact that many agricultural 

lands have patches of shrubs and short trees which are characteristics of grasslands and grasslands 

are made up of grasses which look like cultivated crops.  The built-up areas had accuracies ranging 

from 72% to 92% for both the producer and users’ accuracies. This is because within the built-up 

areas, there are little zones characterized by trees and vegetation but not as much as between 

grasslands and agricultural lands.  The bare lands had relatively high accuracies with most of the 

accuracies at 100% but ranging from 70.59 to 100%. This is because the bare lands are exposed 

and covered with soil making it easier to identify the brown soil color and differentiate it from the 

green colors of grassland and agricultural land. Accuracies reflects the reliability of the 

classification based on the use, so grassland in 1984 was found to be most unreliable with 68 % of 

user accuracy while bare land in 2019 could was also the most unreliable with 70.59 % for the 

producer’s accuracy. Classification is not complete until its accuracy is assessed using the known 
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Kappa statistics (Forkuor & Cofie, 2011) and in this research, the Kappa statisitics was calculated 

for all five years.  

 
 
6.2 Classification and Distribution of LULC 
 
With the economic development and the influence of human activities, the regions land use has 

experienced substantial changes since the 1980s. In this study, Landsat5 TM and 

Landsat8 OLI image data were used to obtain land use maps for 1984, 1990,2000,2010 and 

2019. This is the most common approach to change detection (Jenson, 2004). The post 

classification approach provides “from-to” change information and the kind of landscape 

transformation that have occurred can be easily calculated and mapped. According to the results 

of the classification, the agricultural land, grassland and bare land coverage rate of the study area 

was high in 1984. The area was inhabited by fewer people because built up area had just 13% of 

the total study area and vast bare land. Six years later in 1990, the changes in distribution could be 

widely observed especially with agricultural land.12% the agricultural land was lost as compared 

to 1984 and distributed to grassland, bare land and built-up areas. 10 years later, the total built up 

areas and water bodies do not change and remain at 15% and 1% respectively. It could be observed 

that over the years, the inhabitants practiced agriculture and converted a large portion of the bare 

land to agricultural land. In 2010, both the agricultural land bare land reduced in size while 

grassland and built-up areas in increased at 38% and 17% respectively. Built up areas and 

agricultural lands significantly increased in 2019 at 25% and 38% respectively. Human activities 

which are mainly driven by socio-economic factors bring out changes in non-built-up and built-up 

land despite restrictions by physical conditions (Long et al. 2007). Land use change, including land 

transformation from one type to another and land cover modification through land use 

management, has altered a large proportion of the earth’s land surface. The bare land and 

grasslands reduced over the years. In General, the bare land witnessed the most significant loss 

from 224.27km2 in 1984 to 91.9km2 in 2019. Significant changes in bare land may also further 

contribute to an increase in mass movement and soil erosion (Yu et al.,2007; Qasim,et al; 

2011,Nandy et al.,2011) during the rainfall season around the reservoir area. 
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 Built up areas increased from 104.64km2 to 206.37 km2 in 1984 to 2019 respectively while 

agricultural land 237.64km2 to 323.09km2 in 2019. However, this analysis could not be 100% 

accurate because the data and satellite Images were obtained once in some cases 5 years and some 

cases after 10 years. The classified satellite images showed that there is a change in Land Use and 

Land cover. 

 

6.3 Trends and Changes in the Study area 
 
According to the results obtained, the changes were increasing and decreasing for all the LULC 

classes. The only class which had a steady increase was the Built-up area which did not experience 

a drop in size over the years from 1984 to 2019. To visualize the changes that occurred in that 

period, a simple technique (El-Hattab, 2015a) was used to create a final change image for each 

land cover class, representing the areas of change, either positive or negative, in addition to the 

areas that showed no change. The most significant negative change was within the grassland class 

between 2010 and 2019 with a loss of 114.46km2 of its size and the highest positives change was 

within the agricultural land class between 2010 and 2019 with an increase 119.74km2 of its 

previous size. In the Czech Republic, this has been mainly a result of changes in the system of 

agricultural subsidies (Bicík et al. 2015). However, it is important to note that 2010 to 2019 the 

most outstanding changes in total area for the various classes. The reservoir experienced its 

greatest change and loss in size from 1984 to 1990 where it lost 17.18% of its initial size. From 

2010 to 2019, it gained 18.54% of its size which makes the greatest increase over the years. From 

all indications and predictions, there is a high chance that the built-up areas and agricultural land 

will keep on increasing simultaneously because the more people that live in an area, the more 

agricultural activities that will be practiced. It is noted that over the years, the built-up area size 

was never greater than the agricultural land but due to urbanization, there is a possibility that in 

the next 30 to 50 years, the built-up area might be larger than the agricultural land due to its steady 

growth and increase in size. With the minimal precipitation rates, it is possible to say that the 

reservoir size will not experience a significant change in the future years as well as the water bodies 

in the region because from 1984 to 2019, the water bodies size did not exceed 1% of the total study 

area.  
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7. SUMMARY AND CONCLUSION 
 
Remote sensing is very important for the production of Land Use / Land Cover maps which can 

be done through a method called image classification. Images from Remote sensing are the most 

important data source for research in ES, and LULC is the most widely used variable for 

assessment in ESV (Song, 2018). However, the limitations of global land cover data arise from the 

product generation process, including satellite sensor characteristics such as spectral, temporal and 

spatial resolutions, definition and classification methods of land cover. This method had made 

huge improvements over the past decades. Sustainable assessment of LULC changes provide 

environmental, social, and economic dimensions. Based on the results from the study, it is possible 

to address the aims and objects and it is clearly evident that GIS and other softwares can be used 

to determine Land use Change and Land use Cover. 

 

In this thesis, two kinds of classification approaches and post classification was performed to 

generate reliable and accurate classified maps of land use and land cover in South Bohemia.  

The mean Kappa Coefficient from the study for all five years is 0.8076 and 84.44% for the Overall 

Accuracy which rated as substantial and hence the classified image found to be fit for further 

research. This indicates that the integration of visual interpretation with supervised classification 

of remote sensing data is useful to identify the changes of land use and land cover in this study. 

To be able to get the classification, the error matrix for each of the land use was randomly sampled 

and calculated. Obtaining a reliable confusion matrix is, therefore, a weak link in the accuracy 

assessment chain (Smits et al., 1999), yet it remains central to most accuracy assessment and 

reporting. The major drivers of land-use changes are human population, affluence, technology, 

political economics, political structure, attitudes, and values (Turner et al., 1993). The results and 

findings of this research show that the mean area of land use and land cover transition over the 

years around the Rimov area, south Bohemia was 840.58 km2, which included five investigated 

land-use types. The general pattern of LULC in this region included agricultural land, built-up 

land, bare land, Grassland and water bodies. The transition of Grassland and bare land to built-up 

and agricultural land have been the dominant LULC Change patterns over the past 35 years in the 

selected study site. Built-up is the dominant land-use type because it has been increasing over the 



 
 
 

 
 
 
 

49 

past years consistently from 1984 to 2019. This shows that most of the bare land from 1984 to 

2019 have been converted to either agricultural land or built-up areas.  On the other hand, the water 

bodies size does not experience a significant change as the total average recorded over the years 

were still below 1%. Within agricultural lands, there are some changes depending on the particular 

condition in each region, (Zomeni et al., 2008 & Mottet et al., 2006). In agricultural lands, 

improper farming management could have long-term effects on natural resources. Economic 

benefit is also a main factor to induce farmers to change the type of their farm. Consequently, 

further environmental conditions, especially ecological factors within the areas, are affected. 

However, green areas are still maintained as per the land use classification. 

 

So, in order to address, the Aim and objectives of the thesis report, our findings identified and 

analyze and the trends in Land Use/Land Cover Change (LULCC) taking place in Rimov area and 

can conclude that GIS and Landsat Imagery could be used as a good tool for Land use and 

Landcover analysis. The Land Use/Land Cover maps of Rimov reservoir and surroundings were 

produced, the LULC classification analyzed, and the trends and magnitude of change assessed in 

this region of south Bohemia, so it is suitable to say the Aims and Objectives of the thesis were 

met. To answer the research questions, it is evident that there have been some changes in study 

area and the rate of LULC changes has been significant for some classes (Built-up areas, 

agricultural land) and insignificant for some classes (water bodies) as explained and analyzed in 

the previous chapter. Landsat Satellite imagery can be successfully applied to mapping LULC 

changes in the area because it makes it possible to extract and calculate the actual changes which 

occur on the earth surface and in the case of the Rimov area and surroundings, it was possible to 

monitor these changes with the satellite imagery and information. The use of classification 

accuracy is very important in LULC research because it is able to categorize the data on the ground 

and makes this possible with the use of pixel sampling. For instance, in this research, it was 

possible to distinguish between agricultural land and bare land with the use of accuracy 

classification because they both have similar characteristics, but the accuracy assessment comes 

in with the error matrix to classify the pixel based on its allocated color. So, our findings conclude 

that Accuracy Classification is important in LULC studies. 
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9.APPENDIX  

The five tables show the accuracy statistics for the classified results from the classification of 

year 1984,1990, 2000 ,2010 and 2019. The accuracies of producer and user are given in 

percentage values.  

A. Accuracy Assessment with Error Matrices for year 1984 

  Grassland Water 
Built up 
Area 

Bare 
Land 

Agricultural 
Land Total 

User 
Acc 

Grassland 21 4 0 0 0 25 84 
Water 1 24 0 0 0 25 96 
Built up Area 0 0 18 7 0 25 72 
Bare Land 0 0 7 17 1 25 68 
Agricultural 
Land 6 0 0 0 19 25 76 
Total 28 28 25 24 20 125   
Producer Acc 75 85.71 72 70.83 95     

Overall Classification 
accuracy 79% 

Kappa Statistics 74% 
 
 

B. Accuracy Assessment with Error Matrices for year 1990 

  Grassland Water 
Built up 
Area 

Bare 
Land 

Agricultural 
Land Total 

User 
Acc 

Grassland 19 0 0 0 6 25 76 
Water 0 25 0 0 0 25 100 
Built up Area 0 0 21 4 0 25 84 
Bare Land 0 0 4 21 0 25 84 
Agricultural 
Land 5 0 0 0 20 25 80 
Total 24 25 25 25 26 125   
Producer Acc 79.16 100 84 84 76.92     

Overall Classification 
accuracy 85% 

Kappa Statistics 82% 
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C. Accuracy Assessment with Error Matrices for year 2000 

  Grassland Water 
Built up 
Area 

Bare 
land 

Agricultural 
Land Total 

User 
Acc 

Grassland 21 0 0 0 4 25 84 
Water 3 22 0 0 0 25 88 
Built up Area 0 0 20 5 0 25 80 
Bare land 0 0 4 21 0 25 84 
Agricultural 
Land 2 0 0 0 23 25 92 
Total 26 22 24 26 27 125   
Producer Acc 80.76 100 83.33 80.76 85.18     

Overall Classification 
accuracy 86% 

Kappa Statistics 82% 
 
 
 
 

D. Accuracy Assessment with Error Matrices for year 2010 

  Grassland Water 
Built up 
Area 

Bare 
land 

Agricultural 
Land Total 

User 
Acc 

Grassland 20 0 0 0 5 25 80 
Water 5 20 0 0 0 25 80 
Built up Area 0 0 23 2 0 25 92 
Bare land 0 0 2 23 0 25 92 
Agricultural 
Land 1 0 0 0 24 25 96 
Total 26 20 25 25 29 125   
Producer Acc 76.92 100 92 92 82.75     

Overall Classification 
accuracy 88% 

Kappa Statistics 85% 
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E. Accuracy Assessment with Error Matrices for year 2019 

  Grassland Water 

Built 
up 
Area 

Bare 
Land 

Agricultural 
Land Total User Acc. 

Grassland 18 7 0 0 0 25 72 
Water 1 24 0 0 0 25 96 
Built up Area 0 3 20 2 0 25 80 
Bare Land 0 0 2 23 0 25 92 
Agricultural 
Land 4 0 0 0 21 25 84 
Total 23 34 22 25 21 125   
Producer 
Acc. 78.26 70.58 90.9 92 100     

Overall Classification 
accuracy 85% 

Kappa Statistics 81.00% 
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G. The Římov Reservoir – construction of the dam, 1974–1975. (Source: Znachor, P et al 
2016). 

 
H. The Římov Reservoir – construction of the dam 1977 (Source: Znachor, P et al 2016). 
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I. The Římov Reservoir – present day aerial view of then reservoir from the dam  
(Source: Znachor, P et al 2016). 
 


