Pokročilé asistenční systémy (ADAS) ve vozidlech Škoda auto
z pohledu řidičů

Advanced driver assistance systems (ADAS) in vehicles Škoda car from the driver's perspective

Magisterská diplomová práce

Autor: Bc. Martin Nevřela
Vedoucí práce: PhDr. Matúš Šucha, PhD.

Olomouc
2016
Prohlášení
Místopřízežně prohlašuji, že jsem magisterskou diplomovou prací na téma: „Pokročilé asistenční systémy ve vozidlech Škoda auto z pohledu řidičů“ vypracoval samostatně pod odborným dohledem vedoucího magisterské diplomové práce a uvedl jsem všechny použité podklady a literaturu.

„Ochrana informací v souladu s ustanovením §47b zákona o vysokých školách, autorským zákonem a směrnicí rektora k zadání tématu, odevzdávání a evidenci údajů o bakalářské, diplomové, disertační práci a rigorózní práci a způsobu jejich zveřejnění. Student odpovídá za to, že veřejná část zavěrečné práce je koncipována a strukturována tak, aby podávala úplné informace o cílech zavěrečné práce a dosažených výsledech. Student nebude zveřejňovat v elektronické verzi zavěrečné práce plné znění standardizovaných psychodiagnostických metod chráněných autorským zákonem (záznamový arch, test/dotazník, manuál). Plné znění psychodiagnostických metod může být přílohou pouze tištěné verze zavěrečné práce. Zveřejnění je možné pouze po dohodě s autorem nebo vydavatelem.“

V……………….. dne ………………….. Podpis…………………………
Mé poděkování patří celému výzkumnému týmu ve ŠA, který mi pomáhal nejen při sběru dat, ale také s případným brainstormingem a vymýšlením těch nejjednodušších cest k dosažení cíle. Velké díky patří PhDr. Šuchovi, PhD., který se zasadil o vznik tématu, navázání spolupráce a výrazně přispěl svými nápady a osobní angažovaností k dokončení celé studie. Mě velké poděkování patří Mgr. Lucii Viktorové, která byla vždy přítomnou oporou v řešení metodologických a statistických otázek. Dále děkuji PhDr. Janu Šmahajovi PhD. za jeho gentlemanš ký přístup, trpělivost a ochotu projevenou při řešení technických problémů online dotazníku. Chci vyjádřit své díky Bc. Aleně Hrbáčové a Mgr. Barboře Halfarové za jejich pečlivou češtinářskou Korekturu. V neposlední řadě děkuji všem respondentům za jejich účast a mé rodině za podporu a zázemí při závěrečném dopisování.
Úvod..7

1. Systémy ADAS obecně ..8
 1.1 Přínos ADAS systémů ..8
 1.2 Modely hodnocení systémů ADAS9
 1.2.1 Mikroskopický a makroskopický model10
 1.2.2 Mikro simulační model11
 1.3 Výsledky modelu ..11
 1.4 Rizika a limity ve vztahu řidič X ADAS systémy12
 1.5 Autonomní a spolupracující přístup14

2 Akceptace ADAS systémů ..16
 2.1 Kritická míra interakce ..16
 2.2 Důvěra ve vztahu člověk X stroj16
 2.3 Změna chování řidiče při užití ADAS systémů18
 2.4 Vliv systémů na bezpečnost a distrakci řidiče19
 2.5 Falešné poplachy ...21
 2.6 Varování kritického charakteru22

3 Specifické ADAS systémy ..23
 3.1 Adaptive cruise control ..23
 3.2 Front light assistant ..26
 3.3 Driver activity assistant ..27
 3.3.1 Systémy pro určení stavu rozrušení a ospalosti28
 3.4 Lane assistant ...29
 3.5 Front assistant ...31

4 Kapitola Human machine interface v kontextu ADAS systémů33
 4.1 Způsoby poskytování informací řidičům41
 4.2 Emočně interakční design ...45

5 Psychofyziolodické aspekty různých věkových skupin a ADAS systémy46
5.1 Řidičská dědičnost .. 46
5.2 Starší skupina řidičů .. 46
5.3 Mladší skupina řidičů ... 50
6 Metodologie .. 52
 6.1 Cíle a výzkumné otázky ... 52
 6.2 Hlavní cíle výzkumu ... 52
 6.3 Hlavní výzkumné otázky .. 52
 6.4 Výzkumný soubor .. 53
 6.5 Použité metody ... 55
 6.6 Polostrukturovaná ohnisková skupina (OS) ... 56
 6.7 Sběr dat .. 56
 6.8 Způsob zpracování dat .. 57
7 Deskriptivní statistika .. 58
8 Etika ... 59
9 Diskuze ... 60
10 Závěr .. 60
11 Souhrn ... 60
12 Literatura .. 61
Poznámkový aparát .. 70
Přílohy ... 71
1 Úvod
Byly doby, kdy pro nás jako společnost byl pojem automobil neznámý výraz. Postupem času se z automobilu stalo téměř denně používané slovo každého z nás, bez kterého si mnohdy neumíme představit naše fungování v běžném životě, např. při přesunu do zaměstnání či na dovolenou. Každá doba si nese své požadavky na úroveň zpracování vozidla a na vzájemnou interakci mezi vozidlem a řidičem. Již za dob Laurina & Klementa (výrobci jízdních kol na přelomu 19./20. století a pozdější zakladatelé akciové společnosti zaměřující se na výrobu automobilů v Mladé Boleslavi) byly parametry pro komfort, bezpečnost vozu i nároky na řidiče na nějaké základní vývojové úrovni. Dneska se ovšem automobilový průmysl posunul především v technologickém vývoji milovými kroky vpřed. Když pomineme vývoj karoserie, motorů a čalounění, dostaneme se k jedné z nejdůležitějších kapitol, která se týká bezpečnosti jízdy a jejího zvýšení. Počet vyrobených automobilů rok od roku stoupá, a tak se čím dál častěji setkáváme již se dvěma vozidly na jednu rodinu. Jako jedna z otázek proto zní, jak udělat automobily bezpečnější a zároveň uživatelsky atraktivnější? Na tuto otázku automobilové společnosti nenechaly dlouho čekat a vytvořily tzv. bezpečnostní asistenty, které mají za úkol hlídat, upozorňovat, předvídat a reagovat v situacích, kdy řidič během řízení vozidla ztrácí svou pozornost nebo z nějakého jiného důvodu není schopen zareagovat dostatečně rychle, aby zabránil případné kolizi. Důležitým faktorem je zjistit, jakým způsobem můžeme udělat systémy bezpečnější a uživatelsky komfortnější. Abychom se dopátrali klíčové odpovědi, musíme si utřít, zda řidič informacím a systémům samotným dostatečně rozumí. Zda se v nich orientuje, popřípadě si uvědomuje, že je v automobilu má nainstalované. Všechny tyto informace a spousta dalších mohou být totiž faktorem přispívajícím k lepší akceptaci systémů řidičem. Větší pravděpodobnost akceptace systémů má řidič, který dostane správné a především dostatek informací. Tímto se dostáváme k samotnému cíli diplomové práce, která si klade za úkol zjistit odpovědi na tři hlavní otázky: Ověření míry akceptace ADAS systémů řadu řízatele, množství informací, které uživatel má o daných systémech a v neposlední řadě o stanovení nejefektivnějšího způsobu předávání informací a komunikace se zákazníkem. Diplomová práce je rozdělena do pěti hlavních teoretických kapitol popisujících ADAS systémy obecně, interakci člověk X stroj, popis specifických ADAS systémů, dále z akceptace systémů a psychofyzických aspektů u mladší a starší skupiny řidičů ve vztahu k ADAS systémům. V další metodologické části si podíváme na výzkumný design, deskripci výsledků a podrobný popis výzkumných otázek.
1. Systémy ADAS obecně

V 1. kapitole se na úvod dozvíme, co to jsou systémy ADAS, co vedlo automobilové společnosti k jejich rozvoji a jak mohou pomoci řidičům. Dále se podíváme na různé modely a hodnocení systémů, existující limity a rizika ve vztahu řidič X ADAS systémy a na konci kapitoly si popíšeme tzv. autonomní a spolupracující přístup.

1.1 Přínos ADAS systémů

Řízení automobilu v současné době patří mezi téměř každodenní záležitost. Řidič během jízdy věnuje svou pozornost mnoha činnostem, mezi které spadá kontrola dopravní situace, překážek na silnicích a dalších sekundárních úkolů jako je nastavování teploty nebo rádia. Komplexnost všech úkonů vedla k rostoucím požadavkům na výrobce automobilů ke zvýšení bezpečnosti (Ghahroudi, Sarshar, & Sabzevari, 2008). V této oblasti se stávají stále populárnějšími mezi uživateli vozidel tzv. pokročilé asistenční bezpečnostní systémy (dále jen ADAS systémy), s nimiž se při vývoji automobilů setkáváme čím dál častěji (Golias, Antoniou, & Yannis, 2002; Koplin & Elmenreich, 2012; Landau, 2002). Získávání širších znalostí o ADAS systémech a vyvíjení metod sloužících k měření jejich reálného dopadu hraje svou nepostradatelnou roli při jejich představování veřejnosti (Yuhara & Tajima, 2006). V obecné rovině systémy pomáhají řidičům s asistencí v různých dopravních situacích a to buď převzetím kontroly nad jednotlivými funkcemi vozidla nebo poskytnutím varování, při zachování plné kontroly vozidla na řidiči (Yuhara & Tajima, 2006; Golias, Antoniou, & Yannis, 2002; Martin & Elefteriadou 2010). Rozšíření těchto systémů značně ovlivní i dynamiku silničního provozu, která nejspíše příjemce různá opatření projevující se v oblastech spotřeby paliva, průměrné rychlosti, ochrany životního prostředí a snížení dopravních kapacit (Yuhara & Tajima, 2006; Golias, Antoniou, & Yannis, 2002; Martin & Elefteriadou 2010; Piao & Mcdonald, 2008). Důvodem vývoje je podpora řidičů při redukci vystavení se riziku varovnými signály, zautomatizováním určitých úkonů, které by v opačném případě řidič musel provádět manuálně (Piao & Mcdonald, 2008) a také poskytnutí silniční bezpečnosti a vyššího komfortu (Martin & Elefteriadou, 2010; Abe & Richardson, 2006). ADAS systémy mohou u osobních aut a způsobu jízdy zvýšit jejich efektivitu, dokází lépe podat informace v reálném čase vhodné pro ovlivnění volby informací jak v osobních autech, tak informace, které dostává řidič během cesty (Golias, Antoniou, & Yannis, 2002). Dalšími výhodami je lepší kontrola vozidla a řidičský styl jízdy vylepšený akcelerátorem a řadící pákou (Martin & Elefteriadou, 2010). ADAS systémy jsou

1.2 Modely hodnocení systémů ADAS
ADAS systémy se ještě stále nedostaly na takovou úroveň, abychom byli schopni přímo pozorovat vliv systému pro validaci různých módů chování. V současné době se nejvíce posuzuje dopad systémů na základě mikroskopických a makroskopických modelů simulací. Tyto simulace vyžadují dobrou znalost chování řidičů ve výchozích i v různých dopravních podmínkách, což stále přetrvává jako jedna z hlavních výzev (Piao & Mcdonald, 2008). Systémy dělíme podle jejich hlavních rysů na taktické a operační (akceschopné). U taktických systémů dochází k přímému zásahu do řízení vozidla a manévrování, jemuž se auto podřizuje. Naopak operační systémy jsou spojené spíše s asistencí, ovlivňováním jízdní rychlosti a vedením vozidla skrz jeden nebo více senzorů sledující daný objekt. Abychom byli schopni určit vliv ADAS systémů, je potřeba aplikovat model nastavující

1.2.1 Mikroskopický a makroskopický model

1.2.2 Mikro simulační model

1.3 Výsledky modelu

Model srovnává simulovanou dopravu a informace z životního prostředí u automobilů s užitím a bez užití ADAS systémů. Z hlediska navrhovaného modelu vychází dva možné výstupy a) kategorie zahrnující dopravní indikátory popisující vliv ADAS na dopravní podmínky. Při těchto podmínkách Mikroskopický model popisuje dopravní podmínky a rozdělení časových rozestupů u systémů, dále popisuje Makroskopický model, jehož výstupy jsou data o průměrné rychlosti celé sítě a možných zpožděních, b) kategorie zabývající se vlivem ADAS na životní prostředí, takže je konkrétně o spotřebu paliva a množství emisí, které automobil produkuje (Golias, Antoniou, & Yannis, 2002). Mikroskopický dopravní model produkuje mimo jiné kapacitní informace a údaje o zatáčkách, které využívá makroskopický dopravní model spolu s rychlostními daty, jež jsou dáležitě pro environmentální model. Mikroskopický environmentální model bere
v potaz také emise a spotřebu paliva za jedno vozidlo. Tyto informace vyžaduje makroskopický environmentální model vytvářející informace o průměrné jízdě jak pro jednotlivé spojení, tak pro celou síť. U výše uvedené metodologie bylo provedeno testování i ověřování platnosti skrů indikativní aplikaci, která se zabývala odhadem vlivu Adaptive cruise control systému na dopravu. Podle testů se ukázalo, že metodologie se jeví jako flexibilní a realistická. Adaptive cruise control control nám potvrdil, že jeho vliv na dopravní podmínky je zřetelný. I přes potřebu dalších testů a analýz můžeme tvrdit, že ovlivňuje dopravní situaci. Tato metodologie se snažila zachytit vliv na dopravní a ekologickou stránku z pohledu ADAS, avšak má své limity, konkrétně nedořešení dalších důležitých aspektů jako je např. otázka bezpečnosti (Golias, Antoniou, & Yannis, 2002). Většina nejmodernějších systémů může jen stěží garantovat, že viděnou aktuální situaci zprostředkovává opravdu v daném časovém intervalu, jelikož tyto objekty jsou ukazovány nekontrolovanými senzory a přenášeny nedeterministickou systémovou sběrnicí. Moderní ADAS systémy již dokáží využít deterministické systémové sběrnice založené na nejmodernějších a časově spouštějících se ADAS systémech založených na mnoho senzorových objektech a jejich porovnávání, jež berou ohled na jejich průměrnou výkonnost (Koplin & Elmenreich, 2012).

1.4 Rizika a limity ve vztahu řidič X ADAS systémy

V oblasti bezpečnosti a rizik je nutné v případě ADAS systémů vnímat i riziko nesprávných reakcí jednotlivých funkcí, které mohou naopak vytvořit nebezpečnou situaci z důvodu neschopnosti rychlé reakce na nepředviditelné situace, do kterých se řidič mohou dostávat. Tato rychlá schopnost reakce je pro systém stále omezená. Aby systémy pracovaly správně, je nutné získávat co nejpřesnější data z okolního prostředí, a to hlavně v reálném čase, dále schopnost systému sledovat všechny relevantní objekty a objekty, jejichž odchylka nepřekračuje horní hranici přesné stanoveného specifického požadavku přesnosti. Vyhodnocování dat o přesnosti objektu z jednoho senzoru může podléhat výkyvům, jelikož senzory jsou omezeny většinou na konkrétní požadavky. Způsob, kterým se dá omezení vyřešit je, stálá aktualizace jednotlivých obrazů v reálném čase získaných pomocí heterogenních systémů. Heterogenní systém funguje na základě více senzorů, které využívají sběrnicový systém propojující senzory s objektem sledující subsystémy oproti single senzoru, který běžně propojuje od bodu k bodu mezi senzorem a objektem sledujícím subsystém. Jelikož čidlo sníma i další dopravní data z provozu, dochází tím pádem k nepředpověditelnému přenosovému zpoždění, což má za následek neschopnost garantovat předem nedefinovaný časový interval pozorování stavů jednotlivých objektů (Koplin & Elmenreich, 2012). Tento nedostatek se vyřešil posunem paradigmatu k zabudování časového spouštěče do ADAS systémů spolu s více senzory, které vytvoří celkovou časovou základnu a synchronizaci umožňující přenos plánovat, měřit a vše zpracovávat, což vede k zaručení přesnosti intervalů. Rizika se ovšem mohou vyskytnout na více úrovních,
např. technická, právní, organizační nebo behaviorální úroveň. Některé z téhoto rizik jsou nepříznivé pro všechny oblasti. Jiná rizika mohou být pro některé oblasti nepříznivé a zároveň pro druhé napomáhající. Při posuzování závažnosti rizik, používáme analýzu rizik (identifikace potenciálního nebezpečí a odhad jejich velikosti) a vyhodnocení snášenlivosti rizika. Tato rizika jsou potencionálními překážky k realizaci ADAS, proto je nutné je prozkoumat, vyhodnotit a následně neutralizovat nebo přinejmenším je co nejvíce minimalizovat (Bekiaris & Stevens, 2005). Abychom mohli určit závažnost rizika, je potřeba mít vydefinované úrovni rizika i jejich podrobný popis. Pro každou kategorii rizik jsou vytvořeny speciální posuzovací škály, proto zmínime pouze škály pro rizika týkající se úrovní rizika pro pokročilé asistenční systémy technických chyb. Definice úrovní rizika pro technické selhání se skládá z pěti úrovní. 1. úroveň: Extrémně přísná technická závada je příliš vážná, takže ji není možné tolerovat, protože hrozí riziko vážného zranění, jednoznačného poškození vozidla nebo okolí. Automobil již nevykazuje známky jednoznačné bezpečnosti. 2. úroveň přísná: V tomhle případě dochází ke ztrátě dostupnosti vozidla, což způsobí výraznou nespokojenost zákazníka. Technické selhání je nežádoucí a tolerované pouze v případě, že snížení rizika je nepraktické nebo cena ztrát je příliš vysoká v porovnání s získaným zlepšením. 3. úroveň mírná: Dochází k částečné ztrátě funkce, která vyvolává zákazníkovo nespokojení. Další 4. úroveň lehká: Definuje technické selhání ADAS jako možnost způsobení nespokojenosti zákazníka, avšak bez možného zranění nebo poškození vozidla popřípadě jeho okolí. Poslední 5. úroveň bezvýznamná: Definuje technické selhání jako velmi nepravděpodobné a v případě, že by k němu došlo, považovalo by se za bezvýznamné (Bekiaris & Stevens, 2005).

1.5 Autonomní a spolupracující přístup

Mezi autonomní ADAS systémy řadíme např. Adaptive cruise Control, Front assistant nebo Lane assistant. Autonomie je zajištěna komunikací s palubním zařízením a senzory detekujícími okolní prostředí, které nejsou závislé na jiných částech a zároveň se dají využít na současné silniční infrastrukturu. Klíč k udržení bezpečnosti vozidel je přesnost a spolehlivost. Aby se tyto systémy osvědčily jak u vlády, tak u samotných uživatelů, musí prokázat svou spolehlivost za každého počasí, a to v průběhu celého dne. Většina systémů funguje na základě palubních senzorů, avšak stále je u některých systémů potřeba zvýšit úsilí v technologické oblasti, týkající se přesnosti a spolehlivosti hardwaru i softwaru (Piao & Mcdonald, 2008). Systémy založené na spolupráci, nikoliv na autonomii, zajišťují

14
výhodu, kterou postrádají autonomní systémy založené na palubních čidlech, které mohou operovat pouze v úrovni viditelnosti senzorů. Tato výhoda spočívá ve sběru dat z komunikace vozidlo-vozidlo nebo vozidlo-infrastruktura, což jim připsuje velký potenciál při zdokonalování dopravní bezpečnosti a efektivnosti. Mnoho vědců v oblasti dopravy se snaží přijít na vliv ADAS systémů vzhledem k okolnímu prostředí, jelikož silniční provoz patří mezi hlavní faktory znečištění vzduchu. Konkrétní systémy jako jsou Adaptive cruise control (dále jen ACC) nebo Stop & go jsou přesnější a rychlejší než manuální řízení. V důsledku vytvářejí stabilnější a plynulejší dopravu, což se projevuje i v redukci spotřeby a znečištění. Tahle oblast má ovšem stále dost prostoru k probádání a tvorbě nových studií (Piao & Mcdonald, 2008).
2 Akceptace ADAS systémů

2.1 Kritická míra interakce

2.2 Důvěra ve vztahu člověk X stroj

v pořádku, 4. dimenze účelu zabývající se motivy a záměry. Vhodným příkladem 4. dimenze je řidičův přístup, kdy nerozumí, proč automobil provádí všechny úkony, ale pravděpodobně by měl nejspíš vědět, co je nezbytné a vhodné, přece nám nechce ublížit. Jako vhodnou důvěru ve stroj můžeme považovat tehdy, když všechny dimenze budeme hodnotit správně a korektně. V případě, že nějaká dimenze bude hodnocena příliš vysoko, pak vnímaná důvěra je posuzována jako přespřílišná důvěra (Lee & Moray, 1992). Systematickým zkoumáním se můžeme dopátrat odpovědi na otázku, zda přespřílišnou důvěru řidiče v systémy můžeme zmírnit lepším manuálem, zlepšením řidičových schopností, zvýšením povědomí a znalostí týkajícího se systémů nebo celkově propracovanějšího vztahu mezi člověkem a automolem. Avšak přespřílišná důvěra a spoléhání se řidiče na účinnost ADAS systémů zajisté souvisí s otázkou odpovědnosti a pravomoci, proto se řidič poskytuje více možností zahrnující a) řidičovo porozumění a rozpoznání situace, ve které se nachází a které slouží pro lepší situační rozhodnutí a rozhodnutí o výběru akce, b) ADAS systémy sledují jak chování řidiče, tak dopravní situaci. Pokud rozpozná odchylku od běžného chování řidiče naznačující přespřílišnou důvěru nebo spoléhání se na systém, pak vyšle výstrahu řidiči, aby vše vrátil do běžného stavu, c) v případě, že odchylka chování bude přetrvávat a řidiči už bude zbývat málo času na reakci, pak se s danou situací vypořádá samotný systém, který jedná dynamicky tak, aby řešení bylo v jednotě se záměrem řidiče, dopravními podmínkami a hlavně podmínkami fyzikologickými a psychologickými (Inagaki & Itoh, 2013). „Kontrolní akce na straně řidiče může být hodnocena do tří kategorií: a) akce, která musí být vykonána v dané situaci, b) akce, která je připustná v situaci, a proto provedena být může nebo nemusí, c) akce, která je nevhodná, a proto nesmí být provedena v dané situaci (Inagaki & Itoh, 2013, 6).“ ADAS systémy rozlišují během kontrolní akce dva stavy, a) zjištěný stav, který vypovídá o zaregistrování dané situace řidičem a jeho následným zpracováváním, b) nezjištěný stav, kdy počítač nezjistil reakci řidiče, tudíž považuje stav za nezjištěný. V případě A se jedná o řidičovo opomenutí, při kterém vybírá úkon, který hodlá provést. V případě B se jedná o okolnost, kdy řidič vybírá akci a hned ji realizuje. Neshody při výběru řidičovy reakce na danou situaci se stávají, když řidič přespříliš důvěřuje systému. V těchto momentech vyvstávají otázky typu, co je rozumné a efektivní protiopatření pro ADAS systémy za těchto okolností? Je to dostatek, aby se spustila výstraha a dala tak vědět řidiči, aby vyřešil neshodu nebo je pro ADAS systémy lepší vyrovnat se s automatickou kontrolou akce a ihned ji vyřeší (Inagaki & Itoh, 2013)? Podle Inagakiho & Itoha (2013) by tato starost měla být přenechána ADAS systémům v případě, kdy reakce řidiče je nedostatečná.
2.3 Změna chování řidiče při užití ADAS systémů

Martin & Elefteriadou (2010) se zabývali interakcí mezi vozidlem a možnými změnami chování u řidiče. Systémy mohou ovšem měnit chování řidiče v dopravní situaci, které zmírňuje zátěž a zlepšuje celý dopravní provoz. Testovány byly dva systémy a to ACC a Lane assistant, které mají prokazatelné vliv na změnu chování u všech zkoumaných typů řidičů rozdělených podle věku, sklonu k agresivnímu chování a pohlaví. Ovlivnění mohou být zejména průměrná a konservativní řidiči, kteří preferují kratší vzdálenosti a vyšší rychlost v případě, že jsou systémy v provozu. Použité ADAS systémy jsou zařízení, které pomáhají řidiči s jednotlivými úkony jako je držení automobilu v pruzích, kontrola rychlosti, poskytování varovných upozornění nebo samotný zásah do řízení. Všechnu svou činnost provádí na základě údajů provedených v reálném čase. Samotné systémy mají vliv na řidičovo chování, které u řidiče může zvyšovat reakční čas a situační pozornost.

Data sebrané z reálné dopravy dokazují očekávané výsledky, které otvřuji danou teorii. Nicméně stále je komplikované přesně a obsáhle modelovat chování řidiče, a to z důvodů velké variability ať už dopravních podmínek, osobnostních charakteristik řidiče nebo současných stavů, ve kterých se řidič nachází. Z tohoto důvodu zůstává stále mnoho otázek pro vytvoření specifického algoritmu chování, např. jak by algoritmus mohl pojmut různé prostředí, tak variabilitu počasí (děšť, sníh, vítr), které chování řidiče ovlivňuje. Jedno z možných navrhovaných řešení zahrnuje instalaci senzorů, které budou schopny detekovat alespoň změnu povětrnostních podmínek a stavu silnice, které se poté přidají jako parametry.
do modelu simulujícího řidičovo chování a dané faktory poté budeme moct reflektovat. Pro výzkum základních řidičských vlastností a sestavení relevantní databáze údajů byli řidiči požádáni, aby jeli podle vlastních zvyků a svým stylem. Během toho se sbírala data v reálném provozu a zaznamenávala se data zahrnující údaje o rychlosti vozidla, tlaku vytvořeného při brzdění na pedál i při zvýšení rychlosti, dále údaje o akceleraci a relativní vzdálenost (Wang, Zhang, Zhang, & Li, 2013).

2.4 Vliv systémů na bezpečnost a distrakci řidiče

a) Na straně řidiče
 - Informovanost řidiče (navigace, dopravní informace v reálném čase)
 - Vnímání řidiče (elektronická zrcátka)
 - Monitorování řidiče (kontrola pozornosti a zdravotního stavu)

a) Na straně podpůrných systémů
 - Podélná a boční kontrola (kontrola rychlosti, ACC kontrola)
 - Vyhnutí se kolizí (rozpoznání chodců a překážek)

Bezpečností se zabývali také Haupt, Kahvežic-Seljubac, & Risser (2015). Tito autoři se snažili zjistit, jak různé zkušenosti s ADAS systémy (věk, pohlaví a úroveň vyhledávání zážitků) ovlivňují postoje řidičů související s bezpečností. Celkem bylo hodnoceno 29 systémů, tedy všechny systémy, které byly v době studie dostupné na trhu. Rozdíly v hodnocení systémů ve vztahu k postojům k bezpečnosti byly rozdílné. Různilo se od pozitivního po negativní hodnocení. Systémy byly rozděleny do dvou skupin a) varovné systémy, b) aktivně zasahující systémy. Řidiči hodnotili upozorňovací systémy jako bezpečnější oproti systémům, které aktivně zasahují do řízení. Tato informace potvrzuje hypotézu, že vnímání užitečnosti systémů řidičem ovlivňuje jeho postoj k těmto systémům. Další důvody nedůvěry v systémy může být fakt, že sobě jako řidičům důvěřují více oproti
automatickým systémům. Věkové skupiny respondentů se také lišily ve svém vnímání systémů, kdy starší řidiči hodnotí tyto systémy jako bezpečnější oproti mladším řidičům. Obecně můžeme říci, že čím více zkušeností řidiči se systémy měli, tím více je hodnotili jako bezpečnější. Větši dostupnost a možnost si tyto systémy zakoupit, může vzbudit více zájmu u veřejné populace, a tím i přinést pozitivnější pohled na ADAS systémy (Haupt, Kahvežić-Seljubac, & Risser, 2015). Nicméně některé doplňující informace, které jsou také poskytovány mohou způsobit i bezpečnostní problémy jakými jsou a) dlouhé sledování displeje, které může způsobit distrakci pozornosti, kterou by měl řidič věnovat spíše cestě, b) zobrazování komplexních informací, během kterých musí řidič složitě rozdělovat svou pozornost při úpravě displeje, což ho opět odvádí od řízení a zhoršuje jeho výkon. Mezi zkoumané systémy patří především navigační systém a podporující systémy jako je např. systém kontrolující vzdálenost. Takže ačkoliv mohou systémy jistý stres snižovat, na druhou stranu vznikají nové stresové situace, které mohou řidiče přetěžovat. Abychom mohli předejít následně vznikajícím stresorům je potřebné se zaměřit ze všeho nejdříve na rozhraní člověk X stroj (dále jen HMI), což znamená, že hardware i software by měly být založené na jednotném úspořádání. I přesto, že jednotlivé ovládací prvky byly optimalizovány, stále chybí jednotný koncept. Jeden z hlavních úkolů, který se od ADAS očekává, je pomoc řidiči od rutinních úkolů. Aby bylo možné něčeho takového dosáhnout, musíme nejdříve stanovit kritéria komfortu a kompatibilitu, které omezí vznikání přetíženosti. Mezi hlavní kritéria odvozená z ergonomického výzkumu, patří: poskytování dobré zpětné vazby řidiči, nepřetěžování řidiče množstvím informací, dostatečná sofistikovanost pro vykonání požadovaných úkonů, schopnost pomoci tam, kde to je potřeba, zůstat pořád pod kontrolou řidiče, být jednoduchý k naučení a zároveň nebýt náchynný k chybám. Především výroky jako „úleva od běžných úkonů“ a „pomoc, kde bylo potřeba pomoci“ byla považována za kritéria, jež zlepšovala výkon řidiče a omezovala jeho napětí. Auta bez asistenčních systémů kladla důraz na velké vytížení zrakového smyslu a ne tolik na taktilní, kinestetickou nebo auditivní stránku. V dnešní době ovšem stoupá zájem a poptávka jak po auditivních, tak taktilních funkcích. Důraz na zrakové požadavky se bude snižovat, a to z důvodu mnoha požadavků, které při nich musí řidič vykonávat (Landau, 2002). Úroveň obecných funkcí vysvětluje základní funkce poskytování upozornění, rad a informování řidiče. Fyzické funkce nám říkají, že řidič by měl být informován přes sluchový nebo vizuální kanál, který se odvíjí od typu obecných funkcí. Vizuální funkce jsou vhodné v oblasti informování řidiče nebo poskytnutí upozornění před nebezpečím, protože je méně rušivý oproti zvukovým signálům. Na fyzické úrovni se, pro podání bezprostředních informací sloužících
k upozornění řidiče, používají sluchové informace. Vizuální signály se využívají spíše pro poradenské a informační případy jako preventivní řešení (Mendoza, Angelilli, & Lindgren, 2011). Aby mohla spolupráce mezi ADAS systémy a řidičem dobře fungovat, je důležité, aby řidiči byly předány všechny potřebné informace o aktuálním stavu a automobilu, což mu následně umožní jednoduché a včasné rozhodnutí při vykonání potřebného manévrů. Základem je tedy schopnost rozeznat očekávání řidiče a záměr týkající se kontroly vozidla v reálném čase (Yuhara & Tajima, 2006), což je zkoušeno v simulačním systému počítačového softwaru, který simuluje chování řidiče pomocí čidel, která získávají informace ze svého okoli. Tito agenti mají naprogramované určité vlastnosti pro simulaci řízení jak osobních, nákladních, tak jednostopých vozidel. Systém zahrnuje simulaci značek, chodců, statických objektů a jiných automobilů. Výsledkem jsou data ohledně interakce řidiče agenta, vozidla a prostředí (Golias, Antoniou, & Yannis, 2002).

2.5 Falešné poplachy

Efektivnost systémů spočívá na stálém vyhodnocování záměrů, rozrušení a způsobu jízdy řidiče. Z těchto údajů systém dokáže posoudit pravděpodobnost vzniku nehody díky náhradnímu bezpečnostnímu měření a včasným varováním řidiče. Tato studie se snáží poukázat a vyřešit problém týkající se falešných poplachů, které vznikají ať už roztržitou jízdou, nebo samotnými záměry řidiče. Přibývá stále více studií popisujících nespokojenost řidičů s falešnými zásahy. Z výše uvedeného důvodu došlo k vytvoření nového náhradního bezpečnostního opatření (surrogate safety measure, dále jen SM model). Užitečných dat, které přicházejí přímo z dopravních nehod není takové množství, jaké je potřeba k detailnímu analyzování příčin těchto nehod, proto se osvědčuje integrace bezpečnostního náhradního měření a jeho zavádění do ADAS systémů. Do budoucna v oblasti navrhování ADAS systémů se vyskytuje velká výzva zabývající se rozrušením řidiče a jeho záměry, které mohou být řešeny využitím systémem havárie (crash warning system) přizpůsobujícího se a zároveň zvyšujícího přijetí uživatele, čímž sniží falešné poplachy, a tím i redukuje počet dopravních nehod. Rozptylení i záměry řidiče mohou být pomocí systému havárie varováni rozpoznány tak, aby předpovídaly chování řidičů. Tyto faktory jsou velmi náročné aspekty asistenční konstrukce s vysokým potenciálem ke snížení kolizí a zároveň získání uživatelského přijetí kvůli nižší úrovni falešných poplachů. Jízdní podmínky a výkon řidiče se nedá hodnotit v rámci uzavřených kategorii, proto byl vyvinut systém, který dokáže samostatně kalibrovat podmínky, jako jsou pravděpodobnost

2.6 Varování kritického charakteru
Lindrgen, Angelelli, Mendoza, & Chen (2009) se ve své studii zabývali porovnáváním úkonů řidiče používajícího poradenský systém ADAS založený na kombinaci ekologického designu s kritickým varováním se systémy s varováním pouze kritického charakteru. Podle výsledků řidiči drží bezpečněji vzdálenost od v předu jedoucího vozidla, pokud obdrží dva signály: a) kritické, b) poradenské varování oproti obdržení pouze kritického varování. Dále udržují vozidlo správně v jízdním pruhu při obou podmínkách (kritické i poradenské varování) ve srovnání s výchozím řízením. Řidiči uvádějí, že kombinovaná výstraha je pro ně účinnější oproti samostatnému kritickému varování. Jako užitečné vnímají také zobrazování na displeji, které upozorňuje na hrozící potencionální nebezpečí. Výsledky naznačují, že poskytnutí kombinace upozornění může být vhodným doplňkem a při jejich správném navržení budou k prospěchu úkonů, i akceptace řidičů (Lindrgen, Angelelli, Mendoza, & Chen, 2009).
3 Specifické ADAS systémy

Ve třetí kapitole budeme podrobněji rozebírat jednotlivé systémy z celého balíčku ADAS systémů, které nás zajímaly i v tomhle výzkumu. Konkrétně se jedná o systémy Lane assistant, Front assistant, Adaptive Cruise control (ACC), Front light assistant a Driver activity assistant. V neposlední řadě si také přibližíme systém pro určení stavu rozrušení a únavy.

3.1 Adaptive cruise control

přednastavená vzdálenost mezi nimi není konstantní, ale může se zvyšovat tzv. časovými konstantami, které jsou nastavitelné do pěti časových intervalů. Adaptivní tempomat má své různé funkční omezení, např. dosah radarového snímače je 120 metrů a nastavitelná rychlost je 30km/h při spodní hranici a 160km/h při horní hranici. I když radar vidi všechny objekty ve svém zorném poli, pak na stojící objekty nereaguje (ŠA, 2015). Před použitím nebo během využívání ACC si řidiči mohou vytvořit neúplné nebo chybné představy a reprezentace týkající se užívání a fungování systému, což je své důsledku může vést k nevhodnému použití, negativnímu ovlivnění interakce mezi automobilem a řidičem nebo narušení vzájemné spolupráce. V celkovém důsledku si řidič může vytvořit tzv. negativní behaviorální adaptaci na systém, která povede ke snížení až neutralizaci pozitivního a žádoucího dopadu na celkovou bezpečnost silničního provozu (Piccinini, Simoes, Rodrigues, & Leitao, 2012). V případě, že dojde ke kritické situaci, jako je např. nouzové brzdění u jiného vozidla a systém ACC je aktivní, může řidič kdykoliv aktivně zasáhnout do řízení a přebrat plnou kontrolu hned několika způsoby, a) sešlápnutím rychlostního pedálu, b) stlačením brzdného pedálu, c) deaktivací systému pomocí spínače aktivace/deaktivace. Běžný systém ACC v posledních letech prošel technologickým vývojem vpřed, který můžeme pozorovat např. u rozšíření systému „Stop & go“, kdy automobil pomocí systému dokáže zpomáhat až do úplného zastavení, což vyžaduje schopnost rozpoznat další účastníky silničního provozu i se stacionárními objekty na detailnější úrovni než běžné ACC (Piccinini, Simoes, Rodrigues, & Leitao, 2012). Komunikace ACC s ostatními systémy nebyla vždy samozřejmostí, protože byly od sebe odděleny, což podle Kauer, Franz & Schreiber (2012) vedlo ke snaze kombinovat funkčnost všech systémů jako podporu řidičům. Ve své studii se zabývají přístupem tzv. drátového provedení (conduct by wire), se kterým se můžeme setkat např. při řízení založeném na kooperativním manévrování, což znamená, že systém automaticky vykoná požadovaný úkon na základě řidičova manévrů. Studie ukazuje přijetí tohoto paradigmatu, o kterém můžeme tvrdit, že přijetí záleží na odbornostech a celkové dopravní situaci. Převážná většina účastníků projevila zájem o používání výše zmíněného postupu pro rutinní situace, jako je např. dojíždění vozidla. Přijetím systému řidičem se zabývali také Rajaonah, Anceaux & Vienne (2006), kteří se zkoumali důvěra řidiče v ACC v rizikantních situacích. Při analýze byli řidiči rozdělení do dvou skupin a) řidiči s manuálním řízením, b) řidiči využívající ACC v situaci, kdy se před jejich vozidlo náhle dostalo jiné auto a zařadilo se těsně před jejich automobil. Řidiči s manuálním řízením začali brzdit dříve, než se aktivovalo brzdění systémem ACC a udržovali tak větší vzdálenost mezi vlastním
automobilem a tím druhým. Řidiči, co spoléhali na ACC začali brzdit až po aktivaci ACC a tím drželi menší vzdálenost mezi vozidly. Z těchto výsledků nám vyplývá, že řidiči spoléhající se na ACC nemají tak rozevinutou schopnost předvídat, což vychází ze dvou dobře zdokumentovaných fenoménů v oblasti HMI, a to jsou důvěra a přílišné spoléhání se na automatické systémy. V další studii vytvořené pro Českou republiku byly potvrzeny tři hypotézy pro systém ACC. Výsledky ukázaly, že řidiči, kteří systém používali, jezdit častěji proto oproti řidičům, kteří systém neaktivovali. Druhá hypotéza říká, že při dodržování silničních pravidel a zároveň při aktivovaném systému ACC řidiči dělají více chyb než při deaktivovánoj systému. Řidiči dělají také více chyb ve vztahu k ostatním silničním uživatelům při aktivním ACC. Nepotvrdila se ovšem hypotéza, že řidiči při aktivním systému používají kratší vzdálenosti od vpředu jedoucího vozidla než při deaktivováném systému (Deliverable 6- Impact of IVT use on drivers's behaviour and individual differences, 2008). Autoři Hajek, Gaponova, Fleischeer, & Krems (2013) ve svém výzkumu zkoumali rozdíl mezi aktivním tempomatem ACC a tzv. adaptivním tempomatem v přetížujících situacích (WACC) z důvodu zvýšení vzdálenosti od vpředu jedoucího vozidla. Ve výzkumu se autoři snažili v situaci vysokého přetížení simulovat kompenzační strategie u řidičů, které následně v podobných situacích snížují rychlost, což má za následek aktivní brzdění systému a následné zvýšení rozestupu od vpředu jedoucího vozidla. Tento jev působí jako ekvivalent k vyššímu bezpečnostnímu rozestupu zajišťující více času pro vhodnou a potřebnou reakci řidiče v případě, že nastane kritická situace na silnici. Z výsledků vyplynulo, že se účastníci nelišili v odpovědích v dotazníku po zkušenostech s oběma systémy, což znamená, že neměli žádné informace navíc než instruktážní příručku pro ACC, kde se dočetli, že systém nereaguje na statické předměty. Tento podmínka byla stanovená z důvodu, aby participanti nevěděli, že jeden ze systémů je adaptivní a je schopen řidiči asistovat ve vysoce přetížených podmínkách. Poté, když byl jedincům objasněn režim provozu obou systémů, byli požádáni o zpětnou vazbu týkající se užitečnosti, nápomocnosti, míry pohodlí, subjektivně vnímaného stresu a vzdálenosti od vpředu jedoucího automobilu. Výsledky ukazují na to, že WACC byl preferovanější oproti ACC. Zjištění, že řidiči neměli preferenci ani jednoho z obou systémů a neviděli v nich praktické rozdíly, si autoři vysvětluji povědomím o těchto systémech. Znamená to, že po vysvětlení rozdílů a funkcí každého systému se řidiči přiklonili k WACC. Na otázku, zda zaznamenali nějaké změny u systémů před obdržením dalších informací o fungování, si pouze 7 řidičů uvědomilo nějakou změnu, což dělá 14,9 % z celkového počtu 47 dotázaných. Jedna z výzkumných otázek se týkala přijetí systému, které bylo
signifikantně vyšší po obdržení informací o obou systémech. Nejzajímavější zjištění se týkalo povědomí respondentů o daném systému. Výsledky ukazují, že respondenti neměli povědomí o schopnosti systému být adaptivní a také, že daný systém zvyšuje míru bezpečnosti v automobilu, což je způsob, kterým by ADAS měl řidiče podporovat (Hajek, Gaponova, Fleischeer, & Krems, 2013).

3.2 Front light assistant

Front light assistant (dále jen FLA) zvyšuje bezpečnost a pohodlí řidiče především za ztížených podmínek viditelnosti automatickým vypínáním a zapínáním dálkových světel podle aktuální dopravní situace. I při zapnutém asistentovi má řidič možnost stále manuálně přepínat mezi potkávacími a dálkovými světly. Jak již název FLA napovídá, jde o asistenta, tedy povinnost řidiče stále kontrolovat přepínání světelných režimů je aktuální (ŠA, 2015).

Ve špatně viditelných podmínkách je jedním z nejdůležitějších faktorů přispívajícím k bezpečné silniční dopravě právě dobré silniční osvětlení. Každé světlo v automobilu produkuje různou intenzitu paprsku, která je kontrolována řidičem a závisí na silničních podmínkách. Systém se skládá z jednotlivých nepostradatelných částí, jako je snímací kamera snímající prostor před vozidlem pod úhlem 30°, centrální procesorová jednotka a ovládací jednotka (Paolo & Zlatan, 2011). Snímací kamera je umístěna ve středu vnitřní strany čelního skla, odkud získává informace z prostředí (Kopecký, 2009). Centrální procesorová jednotka je osobní počítač získávající a zpracovávající obraz. Tyto obrazy jsou převedeny z RGB (červená, zelená a modrá barva) do různých stupňů šedi (Paolo & Zlatan, 2011). Podle Piskoř (2004) FLA systém podle vyskytujících se světelných podmínek v prostředí před vozidlem automaticky aktivuje a deaktivuje dálková světla. Světelné podmínky jsou rozlišovány a snímány optickým senzorem, který neustále snímá světelné podmínky a informace posílá k vyhodnocení do řídící jednotky. V případě, že jsou senzorem zaznamenána světla protijedoucího vozidla nebo světla koncových světel, dojde k automatickému přepnutí na tlumená světla, aby se zabránilo oslnění druhého řidiče. Asistent má také své vzdálenostní minima, kterými jsou 1 km v případě protijedoucího vozidla a 400 metrů pro vozidlo jedoucí stejným směrem. FLA lze přepínat mezi dvěma režimy: a) aktivní režim, kdy se dálková světla automaticky zapínají a vypínají, b) pasivní režim, kdy funkce automatického přepínání není aktivní, ale funkce FLA je stále zachována. Přepínání režimů je závislé na rychlosti vozidla, kdy se systém FLA zaktivizuje při překročení rychlosti 60 km/h a do pasivního režimu přejde systém při poklesu pod
30km/h. V případě, že se rychlost sníží pod 30 km/h a jsou aktivní dálková světla, s přechodem do pasivního režimu FLA se i dálková světla vypnou. Přepínání mezi aktivním a pasivním režimem ovlivňuje také snížená viditelnost, např. jízda v noci. Existují případy, kdy je doporučováno přejít na manuální ovládání dálkových světel, např. při nepříznivých povětrnostních podmínkách (silný děšť, sněžení), v ostrých zatáčkách, při prudkém klesání/stoupání nebo při jízdě ve špatně osvětlených obcích (ŠA, 2015). Fungování systému si ukážeme na konkrétní modelové situaci: „Na dálnici při nočním provozu dojíždíme pomalejší vůz, kamera FLA zaznamená červená světla ze zadních svítilen tohoto vozu, řidiči jednotka FLA vyhodnotí světelné spektrum jako vozidlo, které se pohybuje stejným směrem a v dostatečně vzdálenosti tak, aby nedošlo k oslnění řidiče pomalejšího vozu, přepne dálková světla do potkávacího režimu poté co se dostane před pomalejší vůz, asistent FLA opět aktivuje dálková světla. Při sjezdu z dálnice vozidlo zpomalíme natolik, že rychlost klesne pod 30 km/h, funkce asistenta FLA přejde do pasivního režimu a dálková světla se automaticky sklopnou v závislosti na rychlostní podmínce (ŠA, 2015, 5).“ Efektivitu světlometů při porovnání běžných a adaptivních světlometů zkoumal Havel (2008) ve své studii, kde zjistil, že při jízdě zatáčkou o poloměru 190 m běžné nepohyblivé světlomety dokáží osvětlit vozovku ve vzdálenosti 30 m, v případě adaptivního světlometu se vzdálenost zvyšuje o 20-50 m. Tento rozdíl se zajistí projevím v oblasti bezpečnosti, a to konkrétně jak ve zvýšení doby potřebné k reakci řidiče v době nebezpečí, tak zvýšením psychické pohody při noční jízdě. Světlomety nové generace používané ve vozech Škoda byly nezávisle testovány na několika řidičích, kteří měli za úkol rozpoznávat objekty po obou stranách vozovky v různých vzdálenostech. Výsledky prokázaly zlepšení po všech stránkách. Objekty byly řidičem identifikovány s 30 % zlepšením a dovednost rozpoznávat předměty se zvýšila o 20 %.

3.3 Driver activity assistant

Při jízdě, kdy je řidič pod zvýšenou únavou, může docházet k ohrožení bezpečnosti jízdy. Aby se předcházelo takovým situacím, byl do auta nainstalován Driver activity assistant (dále jen Asistent rozpoznání únavy). Tento systém analyzuje chování řidiče v době prvních 15 minut jízdy. Konkrétně je způsobu ovládání volantu porovnávajícího s aktuálním způsobem řízení. Mezi unaveným a neunaveným řidičem lze rozoznat rozdíly v zásazích do volantu, kdy u unaveného řidiče detekujeme více nechtěných zásahů, strnulé řízení a následné rychlé zásahy s velkou amplitudou. Všechny výše zmíněné indikce nám

3.3.1 Systémy pro určení stavu rozrušení a ospalosti
snímané z horní poloviny obličeje. Rotace hlavy je příznak rozptýlení extrahované z čelní oblasti. Únava se rozpoznává z procentuálního množství zavírání očí a vzdálenosti očních víček s ohledem na jejich normální stav. Rychlost zavření oka se využívá pro odhalení rozrušení (Sigari, Fathy, & Soryani, 2012). Jo, Lee, Jung, Park, & Kim (2011) se nezabývali jen jedním z faktorů (ospalost nebo rozrušení), tedy faktory, které jsou zkoumány monitorovacími systémy při řešení prevence dopravních nehod, ale ve svém výzkumu se zaměřili na obě proměnné zároveň a snažili se vymyslet nový model. Celý model se skládá z detekce tváře, orientace hlavy, detekce očí, ospalosti a rozrušení. Autoři navrhli algoritmus, který automaticky lokalizuje oči. Tento algoritmus rozlišuje, zda jsou oči otevřené nebo zavřené a dále zda je řidič ospalý nebo rozrušený, což představuje nevtíravý přístup k detekci nepozornosti za dne i v noci. Celý rámec se skládá ze tří kroků, a) detekce a sledování očí (detekce dosáhla výborných výsledků u 12 participantů, a to jak ve dne, tak v noci), b) rozpoznání, zda jsou oči otevřené nebo zavřené (výsledky ukázaly, že chybné rozpoznání bylo menší než 3 %, opět ve dne i v noci a také v případě, že dotyčný měl/neměl sluneční nebo dioptrické brýle), c) měření ospalosti a úrovně rozptýlení řidiče, kde byly prokázány opět uspokojivé výsledky. Experimentální výsledky ukazují, že detekce přesnosti stavu oka byla 97 %. Řidičská ospalost i rozptýlení byla určena s úspěšností 98 % (Jo, Lee, Jung, Park, & Kim, 2011).

3.4 Lane assistant

Tento systém se považuje za aktivní bezpečnostní systém, který se snaží snížit množství nechtěných přejezdů automobilů přes středový pruh a preventivně tak zabránit následujícím nehodám. Navržený je tak, aby zůstal po většinu doby bez povšimnutí řidiče a zasáhne až v případě, kdy řidič špatně koordinuje řízení (Pohl & Ekmark, 2001). Systém byl navržen pro jízdu na dálnicích a silnicích vyšší třídy s dobrou kvalitou vodorovného značení. Funkčnost automatického vedení vozidla v jízdním pruhu je zajištěna multifunkční kamerou a dalšími podmínkami, jako je minimální rychlost vozidla 65km/h a rozpoznání silničního značení. Systém je schopný rozpoznat plnou i přerušovanou čáru. U systému Lane assistant rozlišujeme dva základní systémy, a to je a) zabránění vyjetí vozidla z jízdního pruhu (Lane assistant), b) Adaptivní vedení vozidla v jízdním pruhu. Režim zabránění vyjetí vozidla z jízdního pruhu se vyznačuje svým mírným zásahem do pohybu volantu v případě, že se vozidlo dostane do těsné blízkosti vymezovací čáry a směřuje vozidlo od vymezovací čáry dále. Jak silný bude tento zásah, si může nastavit řidič na svém palubním počítači.
3.5 Front assistant

V nebezpečných situacích řidiči mnohdy reagují příliš pozdě nebo špatným způsobem, obzvláště v takových případech, kdy je kolize už nevyvratitelná (Henriksson, 2011). Pro zabránění nehod je zapotřebí spojení nouzového systému s brzdovým pedálem, který se využívá např. v situacích špatné viditelnosti, slepých zatáčkách nebo neočekávaného brzdění (Milanés, Onieva, Peréz, Simó, González, & Pedro, 2011). Tento systém je schopný rozpoznat překážky na silnici díky svým senzorům, mezi které řadíme radar a kameru. Principem fungování je určení vzdálenosti mezi překážkou a automobilem, relativní rychlostí vozidla a stavu brzd. V případě že řidič, udělá riskantní manévr a vznikne velká pravděpodobnost havárie (Yuhara & Tajima, 2006), pak je nejlepší způsob začít brzdit co největší silou, aby se minimalizovala rizika nehody. K tomu slouží systém automatického nouzového brzdění AEB (adapting emergency brake), který umožňuje brzdění bez vlivu řidiče, aby došlo k co největšímu snížení následků nehody. AEB si prošlo svým vývojem, a to ve čtyřech generacích, kdy první generace AEB měla za úkol reagovat na dobře známé překážky, již někdy dříve detekované. Oproti tomu 4. generace už byla schopná se vyhnout nehodě jak vykonáním automatického brzdění, tak posílením řízení (Henriksson, 2011). Front assistant se snaží zabránit kolizi nebo alespoň snížit její následky, a to od minimální rychlosti automobilu 5km/h. Úkolem systému je rozpoznat kritickou situaci a zkrátit brzdnou dráhu vozidla, buď od všech jedoucích objektu nebo od statických překážek. Jestliže začne řidič brzdit, přejde fází podpory řidiče, což znamená zvýšení brzdění. Systém varuje řidiče nejdříve optickým zobrazením na displeji, které je posléze doplněno zvukovým signálem. V nabídce na palubním počítači lze Front assistant vypnout jako celkový systém, popřípadě lze manuálně vypnout pouze akustické/optické varování nebo varování odstupu (ŠA, 2015). Způsobem, jakým lze řidičům prezentovat vizuální upozornění před kolizí (forward collision warning) v křižovatce řidičům, se ve své studii zabývali (Werneke & Vollrath, 2013). Podle autorů k největšímu počtu havárií v tzv. T křižovatkách dojde z důvodu přehlédnutí nebo pozdního zaregistrování dalšího řidiče při dávání přednosti, a tím pádem nedojde k včasné reakci. Autoři se domnívají, že vhodné vizuální upozornění by mohlo řidičům zvýšit rychlost reakce. Při simulované studii se zjistilo, že jsou dvě možnosti, jak zobrazit vizuální znamení, zatímco se řidič při kritické křižovatce. Jako první možnost je upozornění shora dolů během toho, co se bliží ke kritické křižovatce a jako druhá možnost je upozornění zdola nahoře přímo před kritickým incidentem. V případě upozornění zdola nahoře byly zkoumané objektivní data i subjektivní hodnocení

V případě, že reakce systému je vnímána řidičem jako špatně načasovaná, důvěra v systém se zmenšuje a další reakce řidiče může být spíše nevhodná. Ve studii se zkoumala reakce neadaptivního a adaptivního varování předních kolizí. Všichni řidiči vnímali, že systém přispívá k jejich bezpečnosti, avšak neagresivní řidiči, kteří neměli takovou potřebu hledání vzrušení a drželi si dlouhé odstupy od automobilů, nevnímali rozdíl mezi neadaptivními a adaptivními systémy. Agresivní řidiči oba systémy hodnotili slaběji než jejich neagresivní kolegové, avšak adaptivní systém hodnotili o něco lépe, protože ho považovali za méně rušivý a stres nevyvolávající (Jamson, Lai, & Carsten, 2008). Otázkou důvěry se ve své studii zabývali Avery & Weekes (2008), jejichž výsledky ukazují na tendenci řidičů, že by svou jízdu nepřizpůsobili bezpečnostnímu systému a dovolili tak, aby za ně systém zabrzdil. Celých 78% řidičů chtělo potřebu zabrzdit, když se přibližovali na překážce, 95% řidičů se vyjádřilo, že by nespoléhali na brzdný systém za normálních okolností, proto se řidičská adaptace na systém zdál být nepravděpodobná. Pouze 37% řidičů po shlédnutí použití systému u jiného řidiče věřilo, že by systém zabrzdil automaticky a 59% řidičů věřilo, že by systém zabrzdil automaticky i bez předchozí zkušenosti (Avery & Weekes, 2008).
Kapitola Human machine interface v kontextu ADAS systémů

V následující kapitole se budeme blíže zabývat smyslem HMI ve vztahu k ADAS systémů. Konkrétně nás bude zajímat fungování interakce řidiče s různými zobrazovacími zařízeními, které se ve vozidle nachází. Kapitola odkrývá odpověď na otázku, jak moc tyto zobrazovací zařízení zatěžují řidiče při jízdě a nabízí pohled do současného stavu i budoucnosti vzhledem k vývoji těchto zařízení. Dále se v kapitole dozvíme něco o kognitivní zátěži z pohledu zkušených a nezkušených řidičů, způsobů předávání informací řidičům a emočně interaktivním designu.

Moderní lidská společnost je založena na dopravě, a to jak lodní, letecké tak automobilové. V minulosti měli operátoři za úkol kontrolovat dopravu a automobily. Dnes ovšem mluvíme o příchodu pokročilých autonomních systémů vedoucích k souhře konceptu člověk X stroj, který mnohdy vede k novým lidským chybám, incidentům a nehodám. Zjistilo se, že samotná automatická technologie nemůže vyřešit základní problém a že je nutné přijít na vhodný způsob, jak adekvátně rozdělit spolupráci v konceptu člověk X stroj (A.Lüdtke, Javaux, Tango et al., 2012). Koncept rozhraní člověk X stroj přeloženo z anglického human machine interface (dále jen HMI) je někdy nazýváno také jako rozhraní člověk X počítač (HCI). Toto rozhraní se používá všude tam, kde přichází člověk do interakce s jakýmkoliv strojem (Davison, 2011; Johannsen & Gunnar, 2007). Výzkum v této oblasti započal před více než 50 lety a získal si své místo jak v automobilovém a medicínském trhu, tak v zábavním průmyslu. V této interakci je hlavním úkolem člověka kontrolovat aktivity stroje a řešit vzniklé problémy typické pro vyšší kognitivní chybový management a plánování (Johannsen & Gunnar, 2007). V případě, že dojde k podání nesprávných informací mezi systémem a řidičovým mentálním stavem, pak tento stav může vést k nehodě během sekundy. Z tohoto důvodu je nutné pochopit řidičovo fyzikální i zamýšlené omezení při navrhování HMI u systémů ADAS. Tradiční způsoby, jakými jsou ADAS systémy designované, např. předešlo uvažovanými směrnicemi nebo použitím výsledků z uživatelských a scenérických studií, jsou neocenitelné, ale všechny tyto způsoby se zdají být odtržené od přirozeného kontextu užívání, oproti metodě užívání přírodního řidičského filmu, která vede k diskusi v ohniskové skupině a odhalení řidičských potřeb. Výsledky poskytly detailní informace o řidičských potřebách v různých dopravních situacích, v různých dopravních podmínkách a způsobu prezentace těchto informací. Z výsledků vidíme výhody užití přírodního řidičského filmu jakožto prostředku pro zlepšení diskuse a pochopení silniční dynamiky skrz
kterou designéři získají větší vzhled o jízdě a potřebné prezentaci informací. Tyto informace jsou důležité pro podrobnou analýzu dopravních událostí. Uživatelé mají hned možnost během analýzy hned připojit své zkušenosti, takže se cítí být součástí designu a vzniká zde větší pocit vlastnictví, což má pozitivní dopad na HMI design. Ve skupině má kadží stejný pohled na danou experimentální situaci, takže jim to pomůže lépe pochopit interakci mezi experimentálním automobilem a ostatními účastníky provozu v opravdovém prostředí. Svými vlastními zkušenostmi a názory poté přinášejí nové možné scénáře a použitelné případy pro navrhovaný systém. Když designéři dostatečně nepochoptí potřeby uživatele, jednají na základě svého nejlepšího odhadu, což vede k chudému designu v koncepci HMI.

Při zahrnutí přirozeného řidičského filmu je potřeba zvážit několik záležitostí, a) výběr filmu, který by měl být vybrán na základě otázek a zájmu studie, kde by se měla následná diskuse zaměřit na důležité momenty ve filmu, což poskytne dobré reference pro analýzu, b) důvěryhodnost konceptu celého designu, kdy pozornost by měla být zaměřena na pochopení uživatelských potřeb ve vztahu k environmentálnímu omezení, c) výběr participantů, kdy je lepší mít v diskusi HMI experty pro lepší výtěžnost informací, i když to může být zároveň rizikem kvůli výsledkům, které se mohou lišit od běžných řidičů. Jako hlavní výhoda této metodologie je cenné pochopení omezení řidiče environmentálním prostředím a jeho potřeb. Jedná se o intuitivní model pro participany, kteří shledávají tento způsob jako kreativní a zajímavý. Skrz prototyp lépe vizualizují své nápady, poskytují prostor pro lepší sondování a diskusi. Jako hlavní nevýhody modelu můžeme uvést velké množství investovaného času, který si vezme vývoj prototypu a jeho velký vliv na diskusi (Wang, Sun, & Chen, 2012). HMI je v dnešní době považováno za základ pro dopravní bezpečnost, kvalitu a účinnost, protože přináší interaktivní a komunikační data pocházející ze stroje i od uživatele a převádí je do společného rozhraní. Slovo stroj v tomto spojení představuje jakékoliv technické zařízení nebo aplikaci spolu s jeho automatickou podporou softwaru. Stále stoupající automatizace se nesnaží nahradit lidského uživatele v interakci, ale posouvá jejich vzájemné rozhraní. Přístroje jsou stále sofistikovanější, což přináší kvalitnější kooperaci a komunikaci mezi strojem a člověkem a zároveň posouvá lidskou úlohu z kontrolora na supervizora. Snaha o automatizaci plus začlenění lidských faktorů povede k novému přístupu automatizace orientované na člověka (human-centred automation). HMI je orientované na 4 základní cíle: a) cíle orientované na produkci zahrnující ekonomické a produktové cíle, b) bezpečnostní cíle dominující všem ostatním cílům u většiny systémů, zejména v rizikových systémech, c) humanizační cíle obsahující týmovou a pracovní organizaci, pracovní uspokojení, vhodnou kognitivní a ergonomickou
přiléhavost. Jako vedlejší cíle můžeme uvést transparentnost a správné pochopení uživatele, d) tzv. environmentální kompatibilita zahrnující spotřebu energie, materiálů, vody, vzduchu a půdy. Další cíle byly stanoveny pro výzkum v oblasti multidisciplinárního přístupu v oblasti HMI a HMS (Human machine systems) (Johannsen & Gunnar, 2007), což je odvětví, kde spolupracuje více disciplín zároveň, např. disciplíny HMI, HCI, kognitivní vědy, pracovní a organizační psychologie apod. I přes spolupráci všech těchto oborů dle expertních analýz není možné zaručit vysoké uživatelské přijetí (Johannsen G., 1997). Nicméně hlavními cíli tohoto přístupu jsou: a) kognitivní a ergonomická věda, b) automatizace a systémově inženýrství a c) informační a komunikační inženýrství. Lidský operátor v práci s technickými systémami může flexibilněji manévrovat na rozdíl od plně automatického systému, nicméně v zátěžových a kritických situacích může dojít k jistému narušení nebo přetížení lidského operátora. Toto stanovisko vede k tzv. efektu ironie automatizace. Tento efekt vystihuje situaci, kdy při běžné jízdě s automatickými systémy může dojít ke ztrátě pozornosti, malému uspokojení nebo lidské chybě (Johannsen & Gunnar, 2007). Aby se snížil počet možných chyb, tak se autoři Cacciabue & Marinetto (2006) ve své práci zaměřili na projekt s názvem EUCLIDE, což znamená zlepšení konceptu HMI v automobilu s integrovaným podporujícím systémem, zaměřujícím se na vývoj a řidičskou podporu při vyhýbání se nehodám za snížené viditelnosti. Při vymýšlení strategie, jak poskytnout vhodné systémově varování se nejdříve snažili získat co největší rovnováhu mezi absolutní systémovou podporou a zároveň co nejméně rušivým přístupem, poté proběhly dvě nastavení pro vyřešení designu HMI konceptu. V prvním nastavení proběhlo testování na statickém řídícím simulátoru, při druhém nastavení se před implementací do finálního designu testovalo na dynamickém simulátoru. Konečný design byl zasazen do třech automobilů a testován v reálné dopravě. Pro jasnou definici cílů, funkcí kontrolního systému a měření bezpečnosti je potřeba, aby designeři nebo bezpečnostní analytici zkombinovali potřeby a cíle uživatele. Je nutné vše zkombinovat co nejjednodušším způsobem, aby zároveň dokázali dovednosti systému předpovídat a navracet možné chyby způsobené lidským faktorem. Pro správně nadesignované HMI musí být brány v potaz tři principy a propojit je vyrovnáním a efektivním způsobem. Mezi ty hlavní principy řadíme design zaměřený na uživatele, užitečnost systému a supervizní řízení. Pro vytvoření EUCLIDE systému je nutné brát v potaz také lidský faktor, u kterého připadají jako relevantní 3 body. Hlavními body jsou: a) výběr teoretického stanoviska, kde se jedná o model řidiče a interakci s prostředím a vozidlem pod kontrolou, b) výběr nástroje a strategie upozornění, kdy v dnešním automobilovém průmyslu jsou důležité faktory, jako
jsou odborné znalosti řidiče, jeho věk, prostředí a komplexnost uvažování, c) definice potřeb uživatele, což je základní aspekt, který by měl provázet celý designový proces od prvního kroku. Výsledky týkající se potřeb uživatelů ukazují na jejich pozitivní přístup k systému a vi jak dobře ho využívá. Hlavní výsledky v první fázi práce zabývající se vlastnostmi systému a uživatelskými potřebami byly takové, že systém by neměl působit jako intervenční varovný systém, ale spíše poskytovat dvouúrovňové varování, např. výstražné upozornění a bezprostřední upozornění, aby šlo rozlišit potenciální a vysoké nebezpečí. Jako nejlepší způsob rozhraní HMI se ukázalo virtuální zobrazování obrazu a průhledový displej (head up display) (Cacciabue & Marinetto, 2006), který je spolu s dalšími třemi naprogramovatelnými obrazovkami a haptickou odezvou považován za vhodné řešení interakce (Bengler, Dietmaye & C. Stiller, 2014). Jako způsob prezentace varování je zvolený vizuální výstup se zvukovým varováním a možnou hlasovou zprávou. Ve druhé fázi, popisující detailní design, experimenty a scénáře, se ukázalo, že vlastnosti a rysy upozorňovacího systému byly vybrány zejména pro režim zobrazení symbolů a zvuků kvůli implementaci nové technologie. Tato technologie má zabránit vyhnutí se kolizi na palubní desce tak, aby se co nejvíce snížilo přetížení řidiče a respektovaly se jeho potřeby. Ve třetí fázi měli řidiči vyjádřit své subjektivní hodnocení. Výsledky ukázaly, že obecně jsou řidiči s fungováním a nastavením systému spokojeni. Věří, že systém je užitečný na dálnicích i na mimoměstských silnicích jak v noci, tak za špatného počasí. Řidiči jsou také přesvědčeni, že systém hodně přispívá k redukci dopravních nehod a je poměrně důvěryhodný. Celkově se projevilo zlepšení řidičských reakcí v situaci bezprostřední kolize a adaptaci na nižší rychlost (Cacciabue & Marinetto, 2006). Jedním z důležitých bodů, které je potřeba rozvíjet oproti současnému statu quo, je potřeba individualizace funkčních parametrů DAS (driver activity systém) a HMI, aby se mohly adaptovat na individuální potřeby a žádosti. Na jednu stranu to vyžaduje investování mnoho pozornosti a času pro speciální vývoj určitých skupin uživatelů, konkrétně seniorů, kteří chtějí být mobilní tak dlouho, jak to je jen možné a pro mladé řidiče, kteří často bývají zahrnuti do dopravních nehod. Na druhou stranu pro dostatečné adaptování se a individualizaci je potřeba optimalizovat interakci v konceptu člověk X stroj. Této optimalizace můžeme docílit redukci nedostatků existujících funkcí, mírou kvality zkušeností a transparentnosti systémů pro uživatele, které mohou zvýšit přijetí a rozšíření systémů do společnosti. Jedná se především o systémy, které jsou náročnější na rozdíl od klasického tempomatu a Lane assistantu, u kterých bude interaktivní koncept nezbytný (Bengler, Dietmaye & C. Stiller, 2014). Pro zlepšení interakce a kooperace byl vytvořen kooperační systém D3COS zahrnující stroje
a lidské operátory komunikující navzájem, címž vytváří společnou komunikační síť. V této síti jsou jednotlivé úkoly přiřazené jednotlivým operátorům a každý z nich má přístup ke specifickým zdrojům, které jsou ve většině případů omezené. Systém pracuje s jedním nebo více kontrolovanými objekty, a to buď řídících vozidel, nebo u dopravy, což znamená, že kooperativní systém spolu s objekty, které ovládá, je ponořený do prostředí kolem sebe, jako je např. komunikace, infrastruktura nebo počasí. Operátoři kooperativního systému můžeme rozdělit na statické a dynamické, kdy se mohou měnit a mají různou kapacitu, např. změna způsobu práce u člověka při práci ve stresu. Tato metodologie se skládá ze čtyř základních metodologických kroků: a) kompozice, b) interakce, c) společné rozhraní a d) průmyslová fáze zahrnující požadavky na zachycení, specifikaci, vývoj a hodnocení. Tyto kroky zajistí a kontrolovaly pro různé funkce. Důležité je vytvořit rozhraní, které bude intuitivní a do kterého se řidič naprosto ponoří, čímž bude zajištěna kontrola záměrů řidiče. Tato vzájemná spolupráce bude měla být intuitivní a spolehlivá. Pro trh i dopraví bezpečnost je individuální a měla být řešena mezinárodně, aby mohla brát v potaz požadavky různých společností a ekonomik (Bengler, Dietmayr & C. Stiller, 2014). Jeden z dalších zajímavých přístupů využitých k řešení problémů lidské automatické interakce je návrh tzv. sdíleného oprávnění, což znamená, že inteligentní systém průběžně sdílí kontrolní oprávnění s řidičem, ať už řidič nevímá o aktivitě, ani nevím, co si představuje. Hlavní idea tohoto systému je, aby člověk zůstal stále u přímé manuální kontroly, zatímco bude dostávat průběžnou podporu od automatického systému, jehož cílem je vyhnout se kritickým situacím. Existují dva základní typy sdílené kontroly. Je to a) vstupní sdílená kontrola, kdy řidič nemůže přemoci systém a mnohdy ani neví o jeho aktivitě, b) dotykový typ sdílené kontroly umožňující vyvíjet sílu na kontrolní rozhraní řidiče i systému, a to jak výstupu zústane přímý vstup do vozidla, který řidič může vnímat jako průběžnou sílu automatického systému. Jako příklad haptické sdílené kontroly můžeme uvést Lane assistant, kde motor reaguje na točení volantem a přidává otáčecí momenty. V tomto momentě se řidič může rozhodnout, zda řízení převezme (Mulder, Abbink, & Boer, 2012). Automatické a adaptivní systémy jsou navrhované softwarovými inženýry na základě svých znalostí o způsobu práce lidského. Nicméně v důsledku se zapojili také

1. Setkávací fáze
Probíhá v prvních 6 hodinách řízení nového automobilu do vzdálenosti 50 km. Řidič se v této fázi seznamuje se systémem a způsobem, jak vůz funguje, popřípadě jak ho může zvládat během řízení, kdy může narušovat řidičovu pozornost, což může negativně působit na jeho důvěru. Potencionální negativní účinky a fáze adaptace se především odvíjejí od interakce systémů s člověkem, při které systémy reagují intuitivně a řidiči pomáhají nebo
naopak řidiče konfrontují různými problémy a výzvami. Toto chování dále rozhoduje o délce první fáze.

2. Učící se fáze
Navazuje na první fázi, trvá zhruba 3-4 týdny, což koresponduje s ujetým jedním tisícem kilometrů. Základní myšlenka pro tuto fázi je dovednost řidiče získat kontrolu nad systémem. Řidič získává také větší sebedůvěru a seznámme se s limity systémů. I tady hodně záleží na designu HMI, kdy může být řidič daným systémem stále rozrušován.

3. Fáze důvěry
Tato fáze přichází běžně po jednom měsíci řízení a končí někdy kolem půl roku, kdy chování řidiče začíná být poměrně stabilní. Jádrem této fáze je řidičova důvěra a kontrola plnění úkolů systému, ke kterým byl určen, což může vést k přílišnému spoléhání se řidiče na systém a následnému snížení pozornosti spolu s nástupem pasivnějšího přístupu k řízení. Ke kontrole se vyjadřuji ve své studii také Weyer, Fink, & Adelt (2015), kteří se snažili zjistit, zda moderní systémy v automobilách zvyšují složitost nebo nekontrolovatelnost vozidla do takové míry, že by respondenti hodnotili systémy jako negativní, popřípadě by měli pocit ztráty kontroly nad vozidlem. Snažili se zjistit, jak řidiči vnímají současné rozdělení rolí v moderních automobilách a jaké mají očekávání v budoucím vývoji. Na otázku, jak velké množství selhání vnímají ve spojení s ADAS systémy odpověděli, že množství je nízké, dokonce nižší, než se uvádí jinde v literatuře. Celkově se dá říci, že řidiči mají v systémy velkou důvěru, i když stále zůstávají některé vážné problémy týkající se splehlivoslosti a zmatenosti, jelikož 1/3 respondentů udává, že nemají dostatečnou kontrolu nad vozidlem. Ve výzkumu byla u první hypotézy potvrzena pozitivní korelace mezi množstvím manévrovacích systémů (Cruise control, automated light assistant a Lane assistant) a vnímáním kontroly. U druhé hypotézy data ukázala, že lidé s vyšším počtem systémů vnímají vyšší míru kontroly než ti, kteří mají méně nainstalovaných systémů. Poslední zkoumaná hypotéza nám potvrzuje pozitivní korelaci mezi obecnými postoji k technologii a jejímu následnému vnímání (Weyer, Fink, & Adelt, 2015).

4. Přizpůsobovací/nastavovací fáze
V této fázi se řidič více adaptuje na důvěru získanou ve 3. fázi, což trvá tak 1 rok a odvíjí se od množství zkušeností, které během té doby zažije. Během této doby si řidič vyzkouší jízdu v každém ročním období a na všech typech silnic. Řidič u systému pozná všechny
typické a relevantní situace, které mohou odhalit doposud neobjevené limity systému. Tyto neodhalené limity mohou způsobit nevraživost vůči systému a snižovat tak důvěru. V takovém případě dochází ke znovu adaptaci a potřebě začlenit zkušenost do řízení. Řidič nemusí zákonitě ztratit potřebné dovednosti, ale už bude fungci systému celou dobu pozorovat.

5. Přenastavovací fáze

Pro tuhé fázi je především typické, že se řidič ze svých zkušeností naučí ovládat systém i s jeho limity, takže předchozí vzniklá zášť přechází v nedůvěru v konkrétní situace. Řidič již dokáže rozpoznat, kdy systému může věřit a kdy musí zůstat v pohotovosti kvůli nutnosti svému aktivnímu zásahu. Problémem se v této fázi může stát ztráta řidičských dovedností v důsledku nesnížení důvěry v přístup systému. Mezi rušivé distraktory v důsledku adaptace na systémy, ale i v průběhu celé doby jejich užívání, mohou patřit také samotné ADAS systémy a jejich komponenty. O ověření této hypotézy se pokoušeli Götze, Ruff, & Bengler (2015), kteří chtěli zjistit, zda existují významné rozdíly v přetížení řidiče při jízdě s ADAS systémy a bez nich. Během testování 38 řidičů nebyl nalezen žádný příměříčný rozdíl v mentálním přetížení, vyšším úsilí, výkonu ani ve frustraci řidiče při jízdě se systémy a bez systémů. Tato zjištění signalizují, že přidané vizuální a haptické stimuly nezpůsobují příliš velké rozrušení řidiče při řidičských úkolech. U nouzového brzdového asistenta, který byl měřen ve 4 situacích, a to v případě, kdy 1) vpředu jedoucí automobil začal náhle brzdit z důvodu zastavení před přechodem, 2) automobil začal náhle opouštět parkoviště před řidičem, 3) automobil začal náhle brzdit z důvodu objevení parkovacího místa a 4) vůz skrytý za dodávkou začal dávat přednost v jízdě. Výsledky ukázaly, že systém funguje jako prevence před nehodou, neprokázaly však žádný signifikantní rozdíl v reakčním čase mezi jízdou s asistencem a bez něho. Toto tvrzení můžeme vysvětlit užitečností funkce samotné, nikoliv to připisovat HMI konceptu. Celkově můžeme říci, že většina respondentů se po krátké době, kdy se seznámovala se systémem, z jeho instalace profitovala. I když přetížení řidiče je stejně, přesto existují určité výhody asistentů, mezi které řadíme např. omezení rychlostního limitu nebo ekonomičtější jízdu (Götze, Ruff, & Bengler, 2015). Dalšími příčinami nepozornosti a distractions je stejně, že se vyskytují během denního řízení. Řidičům byla do automobilu nainstalována kamera snímačí průběh jízdy. Z výsledků vyšlo najevo, že jako nejvíce rušivé činitele, které mohou být příčinou zapletení se do havárie...
v každodenním řízení, je příprava nebo konzumace jídla a pití, dále to jsou interní a externí rušivé podněty společně s kouřením. Méně z celkové doby bylo věnováno kontrole rádia, mobilního telefonu nebo pageru. Výsledky studie nejsou schopny poskytnout definitivní odpověď na to, které aktivity během řízení přinášejí největší riziko pro zapletení se do nehody. Nicméně studie poskytuje data ukazující, jaké všechny činnosti řidiči dělají během řízení a mohou tak zvýšit riziko nehody (Stutts, et al. 2005).

4.1 Způsoby poskytování informací řidičům

nevynutelnou vizuální zátěž až přetěžující situace, které mají vliv na bezpečnost, především při užívání automobilu. Nedávný vývoj v oblasti dotykových displejů umožnil poskytnutí zpětné vazby přes haptický kanál. Podle výsledků jsou řidiči ovlivňováni tak přítomností sekundárních úkolů, které musí provádět, tak typem zpětné vazby, kterou jim jsou úkoly prezentovány. V případě, že řidič má pouze vizuální pohled a chybí haptická odezva, např. z důvodu její deaktivace, pak celkový čas prvního pohledu při vykonávání úkolu se zvyšuje. V případě, že se vizuální vazba opozdí nebo chybí, může dojít ke zrakovému přetížení. Nicméně zavedení haptické odezvy tomuto efektu zabraňuje. Takže i když samotná haptická vazba nemá signifikantní účinek u rychlé a přesné vizuální vazby, tak v případě, že se vizuální zpětná vazba zpozdí nebo chybí, haptická zpětná vazba snižuje pohled o 19 %. Z výsledků také vyplývá, že v situaci, kdy řidiči měli haptickou odezvu ze systému, byli schopni dokončit více úkolů jediným prvním pohledem (Pitts, Burnett & Williams, et al., 2011). Účinností haptické taktilní odezvy u volantu a bezpečnostních pásů, jako bezpečnostního prvku pro varování v případě přední kolize vozidla, se zabývali Chun, Han & Choi, et al. (2012). Z jejich výsledků se ukázalo, že haptická odezva při hrozbě přední kolize vozů snižuje reakční dobu řidiče a naopak zvyšuje preventivní reakci před kolizí. Lepší výsledky pro se prokázaly u haptické reakce při kontaktu s volantem, než s pásy. Rozdíl ve věkových skupinách se projevil tím způsobem, že mladší řidiči měli obecně vyšší skóre než starší skupina. Tento jev si autoři vysvětlují větší výhodou mladších řidičů ve využití haptické zpětné vazby kvůli svým větším motoristickým zkušenostem a citlivosti na haptické reakce. Při celkovém hodnocení respondenti vyjádřili svou spokojenost k haptickému varování před přední kolizí a domnívají se, že systém je užitečný. Jako pozitivní fakt je také vnímáno rychlé přizpůsobení a obeznámení se systémem ze strany řidičů (Chun, Han & Choi, et al., 2012). Ve studii Grane & Bengtsson (2013) se zabývali vizuálním a hmatovým rozhraním v automobilu při jízdě s povinností plnit sekundární úkoly. Zkoumali rozhraní v podobě a) vizuální, b) vizuálně dotykové s částečnou hmatovou podporou, c) plnou hmatovou podporou a d) jen hmatovou podporu. Výsledky ukázaly, že vizuální upozornění s částečnou, plnou nebo žádnou podporou způsobovaly více přejezdů přes pruhy ve srovnání s žádným upozorněním. V případě použití pouze hmatové podpory docházelo k většímu náříží přehlížení dopravního značení v porovnání se žádným upozorněním. Nejmenší vliv na výkon řidiče mělo využití kombinace hmatového a vizuálního upozornění. Při kombinaci obou upozornění nedocházelo k přejíždění pruhů, ani k přehlížení značek při jízdě se zahrnutými sekundárními úkoly. Na závěr můžeme shrnout, že haptické upozornění dokáže snížit
manévr pro úspěšné se vyhnoutí překážce. Z toho důvodu se ve svém výzkumu zabývali potenciálním užíváním vibračních varovných signálů, které dále porovnávali s tradičními zvukovými a vizuálními varovnými upozorněními. Při shrnutí několika studií vyšlo najevo, že vibračně taktilní varování se jeví jako nejslibnější volba při nových varovných způsobech narozdíl od statických vibračně taktilních upozorněních (Meng & Spence, 2015). Teorii o účinnosti intuitivně vibračně taktilního zobrazení uvnitř automobilu potvrzuje také ve své studii Ho, Reed, & Spence (2006) zabývající se vibračně taktilním upozorněním vyvolaným při brzdění odezvě ze strany řidiče. Výsledky ukazují, že v 24,7 % došlo ke snížení doby latence v brzdění a v 33,7 % došlo ke zvýšení úplného zastavení v případě potencionálního střetu s vibračně taktilním zařízením než bez něho. Autoři věří, že vibračně taktilní displej může mít své reálné využití v dopravních situacích, především ve více komplikovaném prostředí, např. při špatné viditelnosti a jiných těžkých podmínkách (Ho, Reed, & Spence, 2006). Užitečností displejů se zabývali také autoři Götzte, Schweiger, Bengler & et al. (2015) popisující způsoby rozdělení současných průhledových displejů podle a) rychlostí, b) navigace a c) různých asistenčních systémů. Nový design by měl být více obecnější a orientovaný na schopnost akce a pozornost řidiče. Porovnával se starý a nový design displeje a výsledky neukázaly žádný signifikantní rozdíl v barevném rozlišení, celkové přesnosti nebo specifických přesností v různých prezentovaných časech. Ani jeden design není nadřazený tomu druhému. Nicméně můžeme sledovat rozdíly v celkovém i individuálním reakčním čase. Lepší výsledky v odpovědi respondentů na varovné signály se projevily spíše pro novou obecnou verzi displeje i přesto, že znamení i font písma jsou na rozdíl od původní verze menší (Götze, Schweiger, Bengler & et al. 2015). Jako další možnost interakce s řidičem zkoumala možnost rozpoznání gest, kterým se zabývali Franz, Kauer, Blane et al. (2012) při kooperativním manévrování na základě řízení a srovnávání 29 respondentů na dvou výstupních zařízeních, kterými bylo rozpoznání gest a taktický dotykový displej. Výzkum ukázal, že řidiči nemusí displej sledovat často, ale může se plně koncentrovat na cestu před sebou. Sledování silnice by se mohlo zvýšit až o 4,6 %. V případě, že pohledy na průhledový displej (head up display) se počítají jako pohledy na silnici, pak by se frekvence sledování silnice mohla zvýšit až o 7,4 %. Nevýhodou systému jsou vstupní chyby, ke kterým docházelo během testovacích jízd, které nejsou typické pro taktický dotykový displej u nějž můžeme vidět signifikantně vyšší počet pohledů. Nevýhodou systému jsou vstupní chyby, ke kterým docházelo během testovacích jízd, které nejsou typické pro takový dotykový displej u nějž můžeme vidět signifikantně vyšší počet pohledů. Výhoda taktilního dotykového displeje je v jeho vysoké pragmatické kvalitě a téměř žádných vstupních chybách, (Franz, Kauer, Blane, Schreiber, Bruder, & Geyer, 2012).
4.2 Emočně interakční design

Aby byl jakýkoliv produkt použitelný, musí designový tým vnímat holisticky použitelnost a zobrazení interakce mezi uživatelem a produktem, včetně emocionálních aspektů, které někdy nazýváme emočně interakční design. Tohle tvrzení platí pro všechny výroby, včetně interakce HMI konceptu (Gkouskos & Chen). Pro rozvoj portfolia produktů a emočně interakčního designu je nutné pochopit, jaká diverzita u potřeb zákazníka panuje. Hlavní výzvu je tedy predikce zákazníkových přání a chování. Jedním takovým přístupem je pochopení emocí, citové stránky zákazníka a dovednosti predikovat úspěšný design, který bude na jeho potřeby nasedat. Při designování produktu je důležité myslet na lidskou rozmanitost, která nespočívá pouze v těch zřejmých rozdílech jako je rasa, pohlaví, věk a fyzické možnosti, ale je potřeba vnímat i životní styl, vzdělání, politickou a náboženskou příslušnost, popřípadě operátorské dovednosti (Khalid, 2006). Při položení otázky respondentům, co ví o příjemném designu, většina odpověděla, že to je velmi důležitý aspekt celého designového procesu. Jeden účastník prohlásil, že to je hlavní důvod, proč si produkt kupuje, protože spousta věcí si kupujeme nejen kvůli jejich funkcím, ale protože v nás vyvolávají pozitivní emoce. Toto tvrzení dokládá Gomez (2004), který potvrdil na základě několika výpovědí a fyziologických reakcí účastníků v oblasti automobilového průmyslu, že předchozi emoční stav a okolnosti, které ho doprovázely, mají efekt na řidiče při hodnocení zkušeností z řízení (Gomez, Popovic, & Bucolo, 2004). Na otázku, co si účastníci myslí, že je největší výzva, odpověděli, že v oblasti automobilového průmyslu to je vytvoření příjemného emocionálního zážitku, který je dnes až na druhém místě za bezpečností a implementací nových technologií (Gkouskos & Chen). Zkoumání pocitů se ve svém výzkumu věnovali také Wellings, Williams, & Pitts (2008), kteří se zabývali tím, jaký pocit má zákazník při dotyku na spínače. Autoři se domnívají, že pro neustálé zlepšování produktů je nutné dívat se na ně z pohledu zákazníka, a to nejen jak vypadá a kde je umístěn z hlediska konkurence, ale také pochopit jisté podprahové faktory, jež ovlivňují emocionální odpověď jako je preference, potěšení nebo naopak nespokojenost. Z výzkumu vyšla pozitivní korelace mezi afektivními faktory a oblíbenosti u řidičů, což podporuje hypotézu, že tyto faktory jsou důležité při rozlišování přepínačů a spokojenosti u zákazníka. Jako nejvýznamnější proměnné týkající se užitečných charakteristik byly identifikované proměnné jako velikost, rozložení a mezery mezi spínači. Z analýzy vyplynulo, že by se v potaz měla brát také šířka prstů zákazníka pro sestavení optimální velikosti, protože větší spínače neznamenají vždy lepší volbu (Wellings, Williams, & Pitts, 2008).
5 Psychofyzioologické aspekty různých věkových skupin a ADAS systémy

V následující kapitole se dočteme, jak je na tom s řízením mladší a starší skupina řidičů. Zodpovíme si otázku, zda je mezi nimi nějaký rozdíl, jaké jsou jejich rizikové faktory a kompenzační strategie. Dále se podíváme na otázku využitelnosti a akceptaci systémů ADAS u starší věkové skupiny a vývojové stránky u mladší skupiny řidičů.

5.1 Řidičská dědičnost

Způsob, jak bude vypadat dopravní charakter jedince ovlivňující dopravní chování je ovlivněn veškerým výchovným působením již od raného dětství. Tento fakt potvrzují výzkumy o tzv. řidičské dědičnosti, které říkají, že základy dopravního charakteru jsou postaveny již před úspěšným absolvováním autoškoly. Dopravní charakter se následně projevuje i v psychosomatických ryzech mladých řidičů, které se mohou projevovat negativně na jejich řidičském chování. Jejich sebejistota vzrůstá s počtem najetých kilometrů, což se projevuje na množství dopravních přestupků a následných pokut za nepríměřenou rychlost apod. (Havlík, 2005).

5.2 Starší skupina řidičů

kompenzovat své omezení ve výkonové oblasti vlastní vyrovnанostí a zkušenostmi pramenící z tzv. návykového bezpečnostního klíče zahrnující dovednosti, jako jsou předvidavost, zralost a sebekritické hodnocení vlastních schopností. Starší řidiči postrádají potřebu agresivního stylu jízdy, riskování, potřeby imponovat a kompenzaci méněcennosti (Havlík, 2005). Samotná optimalizace zahrnuje fyzické i duševní nároky, kde může být použito adaptivní chování při dosahování vytyčených cílů. Taková kompenzace může být např. přizpůsobení rychlosti a stylu řízení, jako je anticipace, čímž řidič může eliminovat nebezpečí nehody. tzv. strategická kompenzace se zaměřuje na volbu řidičských podmínek, jako je např. omezení jízd o víkendovém provozu, výběr konkrétních časů jízdy, volba známých tras, dostatečný odstup mezi vozidly, malý počet předjíždění a pořízení si vozu s aktivními i pasívními bezpečnostními prvky ve vozidle (Šucha, Rehnová, Kořán, & Černochová, 2013), jako jsou např. ADAS systémy, které poskytují osobní asistenci v dopravním prostředí starším řidičům. Výsledkem těchto systémů by mělo být rozšíření bezpečnější mobility pro starší řidiče. Na základě porovnání literatury se identifikovaly ADAS systémy s největším potenciálem redukovat množství dopravních nehod u starších řidičů. Většina studií ukazuje na to, že ADAS systémy budou schopné redukovat množství zapletení se do nehod, pokud se zaměří na slabiny řidičů, které byly potvrzené studiemi lidského fungování. Nicméně největší potenciál zvyšující dopravní bezpečnost u starších osob mají systémy ADAS, které budou a) poskytovat informace o bližící se dopravě, b) signalizovat řidičům ve slepém úhlu vozidla, c) směřovat přímo řidičův pozornost k relevantním informacím a d) poskytnout informace o dopravní situaci dříve, než se do ní řidič dostane. Jako nejvhodnější systémy se proto nabízejí Front assistant, Lane assistant, Adaptivní tempomat a systém poskytující kompletní informace o charakteru křižovatek, které jsou důležité pro jejich přejetí (Davidse, 2005). Akceptací a efektivností ADAS systémů v závislosti na věku, gendru a prostředí vozovky se ve své studii zabývali Son, Park, & Park, (2015). Zjistili, že nejnižší míra akceptace systémů se projevila u mladších řidičů a žen, zatímco vyšší přijetí bylo typičtější pro muže a střední věk řidičů. Za důležité autoři považuji posuzovat účinnost ADAS systémů podle pohlavlí i věku a zamezit tak negativním a neočekávaným dopadům (Son, Park, & Park, 2015). Autoři Preusser, Williams & et al, (1998) udávají, že jedna z nejvíce rizikových proměnných, která je spojena s dopravními nehodami, je věk řidiče. Velké riziko nehody je u mladých řidičů, poté klesá do 40.-50. roku života, poté opět stoupá do 65-70 let života a rychle akceleruje v ještě pozdějším věku. Podle studie byli řidiči v rozmězí 65-69 let 2,26 krát častěji v ohrožení nehody v křižovatce ve srovnání s rizikem nehody ve všech dalších situacích, které bylo činilo 1,29 násobek.

5.3 Mladší skupina řidičů

U mladých řidičů se setkáváme s nižší předvídavostí a sociální ohleduplností, vyšší mírou impulzivity a přeceňováním svých schopností. Způsob, kterým mladí řidiči jezdí vypovídá o jejich nižší míře odpovědnosti za jejich rozhodnutí a většinou pouze po experimentování, což znamená, že následnou příčinou dopravních nehod nemusí být nedostatek psychické výkonnosti, ale osobnostní charakteristiky jedince. Jako hlavní příčiny dopravních nehod se považují dva faktory: a) nezvládnutí řízení vozidla, kdy dochází ke ztrátě kontroly nad řízením, b) nedostatečný vhled na své psychické a fyzické aktuální dispozice, jako je např. únavu, vliv drog a alkoholu. Z výzkumu vyplývá, že nejčastější doba nehod je v nočních ranních hodinách, které jsou typické pro návraty ze zábavy. U mladých řidičů často dochází k nepřizpůsobení se dopravní situaci a podlehnutí efektu nebo vlivu spolusédicích, především, jde-li o vrstevníky (Šucha, Rehnová, Kořán, & Černochová, 2013). Podle Zhang, Fraser & et al. (1998) mezi nejčastější příčiny dopravních nehod u mladých řidičů je na prvním místě riskantní chování, např. jízda pod vlivem alkoholu nebo drog, dále rychlá jízda, ospalost, usnutí za volantem nebo nepoužití bezpečnostních pásů. Nehody se také stávají nejčastěji během léta, přes víkend a v noci. Nejčastěji to jsou nehody bez účasti dalšího vozidla nebo při předjíždějících manévrách. Z hlediska smyslových funkcí můžeme mladí přičíst dobré soustředění, paměť, pohotovost a rychlé reakce. Tyhle dovednosti však nemusí potvrzovat motorickou úspěšnost, a to z důvodu neoddělitelnosti...
duševních výkonových procesů, které nemůžeme oddělit od celkové osobnostní struktury. Můžeme říci, že většina mladých řidičů výrazně v období 5 let od získání řidičského oprávnění nebo po najetí 80 000 kilometrů. Rozhodující tedy není pouze praxe, ale také osobnostní vyzrálost, která je u každého jedince odlišná. Jedná se o vzájemnou rovnováhu mezi složkou výkonovou, osobnostní, sociální a mravní. Často se můžeme setkávat s impulzivním a bezohledným chováním, sklony k unáhlenosti, agresivitě, nerespektování autorit a úzkostlivosti. Vznik tohoto chování můžeme připsat nedozrálým osobnostním a morálním vlastnostem, u nichž čím je větší rozpor, tím větší je signalizace pro vyšší míru rizikového chování a následného způsobení dopravní havárie (Havlík, 2005).
6 Metodologie
V druhé části diplomové práce se budeme zabývat samotným výzkumem a způsobem, jakým jsme získávali data. Pro zpracování dat jsme se rozhodli použít smíšený typ výzkumu, který se skládá z kvantitativní části, ve které pracujeme s daty získanými z dotazníku a kvalitativní části doplněnou daty z ohniskové skupiny. Kapitola Metodologie se dělí do dvou částí, v 1. části popišeme použité výzkumné nástroje, postup při vytváření dotazníků, způsob oslovování respondentů, charakteristiku výzkumného vzorku, provedení pilotní studie a následného zakomponování nových postřehů do dotazníku. V 2. části si přibližíme postup při samotném sbírání dat, jejich následnou deskriptivní statistickou analýzu a popis výsledků. Podíváme se, jaké byly ve výzkumu stanovené cíle, výzkumné otázky a především jak se je podařilo zodpovědět. Dále se budeme zabývat ohniskovou skupinou uskutečněnou s účastníky výzkumu, která sloužila k ucelení si pohledu na sesbíraná data a doplnění informací.

6.1 Cíle a výzkumné otázky

6.2 Hlavní cíle výzkumu
1. Ověřit míru akceptace systémů ADAS
2. Ověřit míru znalostí o ADAS systémech
3. Definovat nejefektivnější způsoby sdělení informací

6.3 Hlavní výzkumné otázky

1. Jaká je míra povědomí řidičů o daných systémech?
V této výzkumné otázce jsme se řidičům dotávali na znalosti o daném systému. Konkrétně nás zajímal, kdy se dozvěděli, že mají systém nainstalovaný a odkud informace získali. Důležité bylo zjistit, zda měli informací dostatek a z jakého důvodu si systémy do automobilu pořizovali.

2. Jaká je míra povědomí o fungování ADAS systémech
Tato výzkumná otázka přímým způsobem zjišťuje spokojenost řidičů s fungováním jednotlivých systémů, popřípadě jejich spokojenost s ovládáním.
3. Jaké informace poskytovat řidičům pro zvýšení akceptace systémů?
Pro nalezení odpovědí jsme vycházeli z několika otázek. Jednalo se především o ověření, zda řidič ví o zabudovaném asistентovi, jestli ho využívá, popřípadě jak často. O akceptaci vypovídají také informace, zda řidič mění tovární nastavení systému, zda ho již systém někdy upozornil a jak při tomto upozornění reagoval.

4. Které faktory vnímají řidiči jako omezující?
Zde se zaměřujeme na faktory, které řidiči vnímají při užívání asistentů jako omezující. Přiblížíme si tedy jednotlivé výpovědi a popíšeme nejčastěji se vyskytující připomínky.

5. Jak můžeme předcházet faktorům, které řidiči vnímají jako omezující?
V této výzkumné otázce se budeme blíže prezentovat výsledky z oddílu komunikace s dealerem. Upřesníme si, zda zákazníci požadují více informací a jakým způsobem, respektive přes jaký komunikační kanál si je přejí dostávat.

6.4 Výzkumný soubor
Dříve, než začneme popisovat výzkumný soubor, stručně představíme spolupracující společnost, která se na celém výzkumu podílela. V průběhu dvou let, kdy výzkum probíhal se podnikaly společné konzultace s kolegy ve společnosti ŠKODA AUTO a.s. (dále jen ŠA). Společnost ŠA patří mezi jedny z největších automobilových společností v Evropě a své hlavní sídlo má v Mladé Boleslavi, avšak další závody jsou umístěné ve Vrchlabí a Kvasínách. K dnešnímu dni je společnost ve 100 % vlastnictví německé společnosti Volkswagen AG v čele se sedmi hlavními představiteli v poměru 6:1 ve prospěch německých představitelů, kteří rozhodují o dění ve společnosti, která podle Škoda výroční zpráva (2015) zaměstnávala k roku 2015 celkem 25 562 zaměstnanců. Na diplomové práci jsme spolupracovali s týmem odborníku z oddělení VDB (Výzkum dopravní bezpečnosti), se kterými jsme konzultovali průběh celé diplomové práce. Z tohoto oddělení s námi aktivně spolupracovali celkem 4 odborníci zajišťující medicínské, technické, psychologické a biomedicínské zázemí při posuzování dopravních nehod. Úkolem VDB je získávat informace z reálných dopravních nehod, což je důležitým faktorem při vývoji a výrobě vozů. Zajišťují preventivní programy a projekty v rámci společenské odpovědnosti, ve spolupráci s Policií ČR, Zdravotnickou záchrannou službou, Hasičským záchranným sborem a dalšími
institucemi a organizacemi, kde pořádají různé školení a zároveň dbají na šíření informací o tom, jak bezpečně cestovat.

Z důvodu utajení informací je plné znění diplomové práce k dispozici pouze v tištěné verzi na Katedře psychologie FF UP v Olomouci
6.5 Použité metody

V diplomové práci jsme jako stěžejní výzkumnou metodu použili dotazník, který jsme spolu s kolegy vytvořili speciálně pro tento výzkum. Aby byl dotazník správně konstruován, bylo zapotřebí mít vhled do systémů a trochu se s nimi seznámit, proto jsem odjel na týden do Mladé Boleslavi, kde jsem měl možnost vidět všechny systémy a zažít si jejich reakci. Během týdne jsem se také setkal s techniky, kteří se podíleli na jejich vývoji a sestavení, což mi dávalo nevšední přiležitost dostat odpovědi na všechny mé otázky přímo od zdroje. Po sesbírání všech odpovědí na mé otázky jsem mohl finální podobu otázek lépe zkonstruovat a odhalit tak prostor pro psychologickou interpretaci v rámci interakce člověka s danými systémy a zjistit efektivnější způsoby, jak komunikovat s řidiči. Po sestavení otázek probíhaly konzultace s PhDr. Matušem Šuchou, PhD. a kolegy ze ŠA. Celková příprava dotazníku trvala od ledna roku 2015 do května 2015. Než byla finální verze dotazníků spuštěna, provedli jsme pilotozní studii na třech řidičích ŠA v Ostravě, kteří celý dotazník vyplnili a upozornili nás na jisté nesrovnalosti v otázkách, kterým nerozuměli nebo jim přišly nerelevantní. Dotazník se skládal celkem z tří oddílů. Jednalo se o Oddíl A obecná část, Oddíl B specifická část (jednotlivé systémy) a Oddíl C komunikace s dealerem. Počet otázek pro jednotlivé kapitoly byl odlišný. V obecné části bylo celkem 9 otázek a jednalo se o otázky zjišťující demografické údaje a údaje o automobilu (frekvence využívání, počet najetých kilometrů apod.) V oddíle specifická část u systémů ACC bylo také 11 otázek. Front assistant měl 11 otázek, Rozpoznání únavy 11 otázek, Lane assistant 16 otázek, Front assistant 10 otázek a komunikace s dealerem 9 otázek. Otázky se ve všech pět systémech prolínaly, a to z toho důvodu, že ne každý respondent měl všechny systémy, takže v případě, že na první otázku „zda má systém v automobilu nainstalovaný, odpověděl negativně, automaticky ho online systém přesměroval na další systém. Tímto způsobem docházelo k tomu, že někteří respondenti vyplnili např. jen úvod a závěr, což byla pro nás ale také důležitá zpětná vazba, z hlediska našich zkoumaných cílů. Z tohoto důvodu jsme dané řidiče nechali ve výzkumu, což navýšilo počet odpovídajících v obecné části a v Oddíle komunikace s dealerem až o 100 řidičů. Jako přílohu přikládám screenshoty z online dotazníku, který byl zasílán respondentům. Ukázky najdete v kapitole přílohy, pod číslly 59-63.
6.6 Polostrukturovaná ohnisková skupina (OS)

6.7 Sběr dat

Data byla připravena ke sběru ve dvou podobách: a) verze tužka papír, která nebyla užita a b) online testování, které proběhlo přes platformu Survey monkey. Z technických důvodů musela být online verze poupravena, avšak neproběhly žádné výrazné změny ovlivňující testování. Na dokončení online verze jsme pracovali s PhDr. Janem Šmahajem, PhD. dva měsíce, v průběhu kterých jsme se pokoušeli eliminovat co nejvíce možných potíží, které by

56
mohly nastat po technické stránce, např. při odkazování respondentů na správné otázky. Jako velkou výhodu tohoto způsobu testování jsme považovali možnost automatického převádění respondenta přes otázky a systémy, které neměl v automobilu nainstalované. Samotné testování bylo spuštěno v červnu 2015 a ukončeno v prosinci 2015. Výzkum probíhal dlouho, jelikož se v první fázi testování nepodařilo získat potřebný počet řidičů, který jsme měli získávat přes autorizované prodejny vozů ŠA. Kontakt s respondenty probíhal tou formou, že jim byla do jejich emailových schránek adresada odkazující na vyplnění online dotazníku. Přímé kontaktování respondentů nebylo příliš možné, jelikož získání osobních údajů od dealerů a dalších prodejců podléhá zákonu o ochraně osobních údajů. V druhém kole testování jsme se rozhodli kontaktovat manažera pro prodej vozů ŠA pro oblast České republiky, který nám poskytl kontakty na 5 největších prodejcích, kteří byli úspěšní v prodeji vozů se zkoumanými asistenčními systémy. K těmto dealerům jsem na konci října 2015 osobně zajel a snažil se jim přiblížit význam výzkumu. Tento tah se jevil jako úspěšný, jelikož počet respondentů se zvýšil. Nicméně vzhledem ke stále nedostatečnému, proto jsme rozeslali dotazník i zaměstnancům ŠA. Zaměstnanci dostali jiný link pro odlišení se od ostatních zákazníků kvůli statistickému zpracování. Respondenti byli motivováni možnou účastí na skupinové diskusi, která zahrnovala také přednášku z oblasti VDB, následnou prohlídku vývojového centra, kde mohli shlédnout aktivaci air-bag systému a prohlédnout si zkoušecí kabinu na testování automobilů v extrémních teplotních podmínkách. Poté proběhla prohlídka muzea ŠA a výrobního závodu. K tomu všemu respondenti dostali originální trička ŠA, propisky, kalendáře a modely autíček.

6.8 Způsob zpracování dat
Všechna kvantitativní data sesbíraná přes platformu Survey monkey jsem mohli převézt do excelové tabulky a rozředit podle jednotlivých oddílů a otázek. Jako výhodu považujeme i snadné převedení dat jak do textové, tak číselné podoby. V programu Microsoft office excel jsme data následně vyčistili vymazáním nevhodných respondentů, poté přiřadili kódy k textovým komentářům a složitějším otázkám, kde program nebyl schopen otázku kódovat. Následně proběhla analýza všech dat dohromady a poté analýza pro obě dvě skupiny zvášť (zaměstnanci ŠA a zákazníci). Při zpracování se jednalo především o deskriptivně mapovací analýzu a metodou vytváření trsů. Pro zpracování ohniskové skupiny byl použit program Microsoft office word.
7 Deskriptivní statistika

Informace ze strany 58-106 jsou z důvodu utajení v plném znění diplomové práce k dispozici pouze v těšťné verzi na Katedře psychologie FF UP v Olomouci
8 Etika

Vědecký výzkum je oblast, kde se po celou dobu setkáváme s etikou, která se dotýká jak účastníka, tak výzkumníka samotného. Podle Nevřela (2014) hraje etika ve výzkumu nezastupitelnou roli od počátku až do konce výzkumu. Podle Miovský (2009) je stěžejním kamнем, tvořícím základní rámec pro etickou diskusi napříč různými obory tzv. Úmluva o ochraně lidských práv a lidských svobod. V psychologickém výzkumu se nachází z etického pohledu mnoho problémů, např. při snaze odlišit hranice komunikace, což není tak jednoduché jako např. u lékařů. V etice a jejích normách je nutné uvažovat nejméně ve třech bodech, konkrétně se jedná o vliv výzkumníka, ochranu účastníků a následně i výzkumníků samotných. Jako důležitá proměnná v oblasti je tzv. důvěryhodnost výzkumníka, od které se odvíjí celková kvalita kontaktu a následného poskytnutí validních informací. Jako nejdůležitější etická pravidla, která se snaží chránit účastníky se uvádí informovaný souhlas s účastí, ze kterého musí být patrné, že je účastník srozuměn s povahou výzkumu, jeho výhodami i nevýhodami. Dalším bodem je možnost nezbytného mezinárodní informovaného souhlasu s účastí. Úmluva o ochraně lidských práv a lidských svobod a Úmluva o ochraně lidských práv a lidských svobod.

V našem výzkumu bylo nutné dodržovat přísné etické a bezpečnostní pravidla z hlediska citlivosti dat, která jsou v plném vlastnictví společnosti ŠKODA AUTO a.s. Z tohoto důvodu bylo nezbytné zachovávat plnou mlčenlivost o povaze dat a kontaktů. Před vyplňováním výzkumu respondent obdržel e-mail s popisem výzkumu a linkem odkazujícím na online dotazník, kde si znovu přečetl povahu výzkumu, byl seznámen s dalšími etickými pravidly a poskytl svůj informovaný souhlas s účastí. Výzkum byl naprosto anónymní a nebylo možné zpětně dohledat jednotlivé respondenty. Z povahy očekávaného výzkumného vzorku jsme vytvořili dva různé link odkazy, které byly rozesílány zvláště pro zaměstnance ŠA a pro zákazníky nepracující pro společnost. Žádáme svěřené osoby, které se účastnili diskuse, o hlasové i písemné potvrzení souhlasu s účastí na diskusi a poskytnutí osobních údajů v následném demografickém dotazníku. Jejich individuální dohledatelnost nebyla možná.
Informace ze strany 109-123 jsou z důvodu utajení v plném znění diplomové práce k dispozici pouze v tištěné verzi na Katedře psychologie FF UP v Olomouci
12 Literatur

85. Sala, G., & Mussone, L. (2000). The potential impact on traffic safety of lateral support systems. *In proceedings of the 7th world Congress in ITS*.

Poznámkový aparát

ADAS (Advance driver activity system) Pokročilé bezpečnostní systémy
HMI (human machine interface) – interakce člověk X stroj
HCI (Human computer interface) – interakce člověk X počítač
ACC (Adaptive cruiser control) - Adaptivní tempomat
Front assistant – asistent zabraňující kolizi nebo snižující následky kolize
Lane assistant – adaptivní vedení vozidla v pruhu
Rozpoznání únavy- asistent upozorňující řidiče při únavě.
Front light assistant – adaptivní světlomety
ŠA- ŠKODA AUTO
Euro NCAP- New car assessment programme- program, vyhodnocující bezpečnost vozidla na základě pěti hvězdičkového hodnocení.
Přílohy

Příloha č. 1: Abstrakt Diplomové práce
Příloha č. 2: Abstract of diploma’s Thesis
Příloha č. 3: Zadání Diplomové práce
Příloha č. 4: Grafické znázornění mikroskopického a makroskopického modelu
Příloha č. 5: Grafické znázornění otázky č. 2 z oddílu Obecná komunikace
Příloha č. 6: Grafické znázornění otázky č. 4 z oddílu Obecná komunikace
Příloha č. 7: Grafické znázornění otázky č. 7 z oddílu Obecná komunikace
Příloha č. 8: Grafické znázornění otázky č. 8 z oddílu Obecná komunikace
Příloha č. 9: Grafické znázornění otázky č. 9 z oddílu Obecná komunikace
Příloha č. 10: Grafické znázornění otázky č. 2 z oddílu ACC 1. Cíl: Míra akceptace
Příloha č. 11: Grafické znázornění otázky č. 3 z oddílu ACC 1. Cíl: Míra akceptace
Příloha č. 12: Grafické znázornění otázky č. 4 z oddílu ACC 1. Cíl: Míra akceptace
Příloha č. 13: Grafické znázornění otázky č. 5 z oddílu ACC 1. Cíl: Míra akceptace
Příloha č. 14: Grafické znázornění otázky č. 7 z oddílu ACC 1. Cíl: Míra akceptace
Příloha č. 15: Grafické znázornění otázky č. 1 z oddílu ACC 2. Cíl: Míra znalostí
Příloha č. 16: Grafické znázornění otázky č. 2 z oddílu ACC 2. Cíl: Míra znalostí
Příloha č. 17: Grafické znázornění otázky č. 3 z oddílu ACC 2. Cíl: Míra znalostí
Příloha č. 18: Grafické znázornění otázky č. 2 z oddílu FLA 1. Cíl: Míra akceptace
Příloha č. 19: Grafické znázornění otázky č. 3 z oddílu FLA 1. Cíl: Míra akceptace
Příloha č. 20: Grafické znázornění otázky č. 4 z oddílu FLA 1. Cíl: Míra akceptace
Příloha č. 21: Grafické znázornění otázky č. 5 z oddílu FLA 1. Cíl: Míra akceptace
Příloha č. 22: Grafické znázornění otázky č. 1 z oddílu FLA 2. Cíl: Míra znalostí
Příloha č. 23: Grafické znázornění otázky č. 2 z oddílu FLA 2. Cíl: Míra znalostí
Příloha č. 24: Grafické znázornění otázky č. 3 z oddílu FLA 2. Cíl: Míra znalostí
Příloha č. 25: Grafické znázornění otázky č. 6 z oddílu FLA 2. Cíl: Míra znalostí
Příloha č. 26: Grafické znázornění otázky č. 2 z oddílu Roz. únavy 1. Cíl: Míra akceptace
Příloha č. 27: Grafické znázornění otázky č. 3 z oddílu Roz. únavy 1. Cíl: Míra akceptace
Příloha č. 28: Grafické znázornění otázky č. 5 z oddílu Roz. únavy 1. Cíl: Míra akceptace
Příloha č. 29: Grafické znázornění otázky č. 1 z oddílu Roz. únavy 2. Cíl: Míra znalostí
Příloha č. 30: Grafické znázornění otázky č. 2 z oddílu Roz. únavy 2. Cíl: Míra znalostí
Příloha č. 31: Grafické znázornění otázky č. 3 z oddílu Roz. únavy 2. Cíl: Míra znalostí
Příloha č. 32: Grafické znázornění otázky č. 2 z oddílu Lane assistant. 1. Cíl: Míra akceptace
Příloha č. 33: Grafické znázornění otázky č. 4 z oddílu- Lane assistant. 1. Cíl: Míra akceptace
Příloha č. 34: Grafické znázornění otázky č. 5 z oddílu- Lane assistant. 1. Cíl: Míra akceptace
Příloha č. 35: Grafické znázornění otázky č. 6 z oddílu- Lane assistant. 1. Cíl: Míra akceptace
Příloha č. 36: Grafické znázornění otázky č. 1 z oddílu- Lane assistant. 2. Cíl: Míra znalostí
Příloha č. 37: Grafické znázornění otázky č. 2 z oddílu- Lane assistant. 2. Cíl: Míra znalostí
Příloha č. 38: Grafické znázornění otázky č. 3 z oddílu- Lane assistant. 2. Cíl: Míra znalostí
Příloha č. 39: Grafické znázornění otázky č. 4 z oddílu- Lane assistant. 2. Cíl: Míra znalostí
Příloha č. 40: Grafické znázornění otázky č. 5 z oddílu- Lane assistant. 2. Cíl: Míra znalostí
Příloha č. 41: Grafické znázornění otázky č. 7 z oddílu- Lane assistant. 2. Cíl: Míra znalostí
Příloha č. 42: Grafické znázornění otázky č. 9 z oddílu- Lane assistant. 2. Cíl: Míra znalostí
Příloha č. 43: Grafické znázornění otázky č. 2 z oddílu- Front assistant. 1. Cíl: Míra akceptace
Příloha č. 44: Grafické znázornění otázky č. 3 z oddílu- Front assistant. 1. Cíl: Míra akceptace
Příloha č. 45: Grafické znázornění otázky č. 4 z oddílu- Front assistant. 1. Cíl: Míra akceptace
Příloha č. 46: Grafické znázornění otázky č. 1 z oddílu- Front assistant. 2. Cíl: Míra znalostí
Příloha č. 47: Grafické znázornění otázky č. 2 z oddílu- Front assistant. 2. Cíl: Míra znalostí
Příloha č. 48: Grafické znázornění otázky č. 3 z oddílu- Front assistant. 2. Cíl: Míra znalostí
Příloha č. 49: Grafické znázornění otázky č. 6 z oddílu- Front assistant. 2. Cíl: Míra znalostí
Příloha č. 50: Grafické znázornění otázky č. 1 z oddílu komunikace s dealerem
Příloha č. 51: Grafické znázornění otázky č. 2 z oddílu- komunikace s dealerem
Příloha č. 52: Grafické znázornění otázky č. 3 z oddílu- komunikace s dealerem
Příloha č. 53: Grafické znázornění otázky č. 4 z oddílu komunikace s dealerem
Příloha č. 54: Grafické znázornění otázky č. 5 z oddílu komunikace s dealerem
Příloha č. 55: Grafické znázornění otázky č. 6 z oddílu komunikace s dealerem
Příloha č. 56: Grafické znázornění otázky č. 7 z oddílu komunikace s dealerem
Příloha č. 57: Grafické znázornění otázky č. 8 z oddílu komunikace s dealerem
Příloha č. 58: Grafické znázornění otázky č. 9 z oddílu komunikace s dealerem
Příloha č. 59: Ukázka online dotazníku Úvodní části
Příloha č. 60: Ukázka online dotazníku Úvodní části
Příloha č. 61: Ukázka otázek z oddílu ACC
Příloha č. 62: Ukázka otázek z oddílu FLA
Příloha č. 63: Ukázka z oddílu- komunikace s dealerem
Příloha č. 64: Informovaný souhlas
Příloha č. 65: Ukázka časového harmonogramu
Příloha č. 66: Ukázka datové matice
Abstrakt (1190 zn.)

Klíčová slova: ADAS systémy, komunikace, spokojenost, informovanost

Cílem této deskriptivně mapovací studie bylo zanalyzovat bezpečnostní systémy ADAS z pohledu řidičů. Hlavním cílem bylo ověřit míru povědomí a míru akceptace systémů, spolu s definováním nejefektivnějších způsobů komunikace. V první části studie jsme čtenáře seznámili s pojmem ADAS, jeho přínosy a riziky. Dále popisujeme konkrétní systémy (Lane assistant, Front light assistant, Driver activity assistant, Front assistant a Adaptive cruise control assistant) spolu s vysvětlením HMI konceptu. Ve výzkumné části jsme při sběru dat vycházeli z vlastního online dotazníku, který jsme rozeslali dvěma skupinám řidičů, a to zaměstnancům společnosti ŠKODA AUTO a.s. a zákazníkům mimo společnost. Zvolili jsme kvantitativně-kvalitativní výzkum s účastí až 256 řidičů a pět řidičů na ohniskové skupině. Výsledek praktické části obsahuje odpovědi na pět výzkumných otázek. Analýza nám ukázala, že většina řidičů je spokojená s fungováním a ovládáním systémů, o kterých mají dostatek informací, které si hledají především na internetu a před nákupem vozu. Jako nejefektivnější způsob předávání informací je využití video v palubním počítači, zkrácená verze Návodu k obsluze a dealer.
The aim of this descriptive mapping study was to analyze ADAS systems from driver’s perspective. The main objective was to authenticate the level of awareness a level of acceptance concrete systems along with defining most effective ways of communication. Readers was in the first part of study introduced with concept of ADAS with benefits and risks. Further, we describe specific systems like (Lane assistant, Front light assistant, Driver activity assistant, Front assistant a Adaptive cruise control assistant) together with explanation HMI concept. In research part, we invented our own questionnaire, which was sent between two groups a) employees of ŠKODA AUTO a.s. and customers (drivers working out of company). We chose qualitative-quantitative reasearch with the participation till of 256 drivers and 5 drivers on focus group. The results of practical part answered 5 research questions. Analysis has shownen, that most driver are satisfied with operation and control systems, of which the havy enough informations, which were mostly find online and before purchasing car. Most effective way, how to pass further informations is the use of video on-board video, a shortened version of the driver’s manual and the dealer.
Příloha č. 3: Zadání Diplomové práce

Univerzita Palackého v Olomouci
Filozofická fakulta
Akademický rok: 2014/2015

Studijní program: Psychologie
Forma: Prezenční
Obor/komb.: Psychologie (PCHN)

Podklad pro zadání DIPLOMOVÉ práce studenta

<table>
<thead>
<tr>
<th>PŘEDKLÁDA:</th>
<th>ADRESA</th>
<th>OSOBNÍ ČÍSLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be. NEVŘELA Martin</td>
<td>21.dubna 22, Vřesina</td>
<td>F140352</td>
</tr>
</tbody>
</table>

TÉMA ČESKY:
Pokročilé asistenční systémy (ADAS) ve vozidlech Škoda auto z pohledu řidiče

TÉMA ANGLICKY:
Advanced driver assistance systems (ADAS) in vehicles Škoda car from the driver's perspective

VEDOUCÍ PRÁCE:
PhDr. Matěj Šucha, Ph.D. - PCH

ZÁSADY PRO VYPRACOVÁNÍ:
Mezi hlavní zásady mé diplomové práce bude dodržování jednoznačných etických pravidel mezi které patří například anonymita všech zúčastněných, možnost odstoupení od výzkumu, včasné poskytnutí všech informací o probíhajícím výzkumu, informace o dobrovolnosti účasti, ujištění o nezneužití dat a zároveň o jejich předání společnosti Škoda auto.

Diplomovou práci budu zpracovávat na základě důkladné referce všech pro mě dostupných literárních zdrojů. Literární zdroje budou poctivě citovány a neufašovány.

SEZNam doporučené literatury:
1. Affectively intelligent and adaptive car interfaces
2. Driver distraction trends and issues
3. Elderly and young drivers' reaction to an in-car enforcement and tutoring system
4. Characteristics of accidents involving elderly drivers at intersections/risk assessment of elderly drivers at intersections
5. Driving competence in older persons. Disability Rehabilitation
6. Driving competence in older persons. Disability Rehabilitation
7. Auto safety: From passive to active technology
8. SEMIC's DRIVE AUTO SAFETY AND CONTROL INNOVATION
9. Improving Auto Collision Safety
10. Psychology of Technology: Advanced systems save motorists from themselves
11. Sensors warn drivers of danger coming up from behind
12. The Assistant can improve brake training
15. REDUCING DRIVER WORKLOAD WITH HUMAN-MACHINE INTERFACE

Podpis studenta: .. Datum:

Podpis vedoucího práce: .. Datum:

(c) ISITAG, Patent - Podklad k výsledné práci, F140352, 05.04.2016 12:16
Příloha č. 4: Grafické znázornění mikroskopického a makroskopického modelu
Informace z příloh 5-58 jsou z důvodu utajení v plném znění diplomové práce k dispozici pouze v tištěné verzi na Katedře psychologie FF UP v Olomouci
Příloha č. 59: Ukázka online dotazníku Úvodní části

ŠKODA

ODDÍL A - obecná část dotazníku

V oddíle A Vás čeká osm obecných otázek týkajících se Vašeho auta a povědomí o asistenčních systémech (dále jen AS). Vyberte odpověď, která se Vám bude zdát nejvýhodnější.

* Pohlaví

- Muž
- Žena

* Věk:

- 18-25
- 26-35
- 36-45
- 46-60

Příloha č. 60: Ukázka online dotazníku Úvodní části

* Ještě je Vše řešeno správně?

- Dává
- Čas
- Zaměřenost SA
- Nezaměřený
- Zná

* Jezdí kromě Vašeho automobilu ještě něco jiný?

- Automaticky využívám jiný
- Automaticky využívám jiný rodiny
- Automaticky využívám jiného v rodině
- Zná

* Jak dlouho jste jen tento automobil vlastněn? (Časem hodnotu zaokrouhlete VŽDY v letech i měsících; např. pokud vás využíváte 6 měsíců hodnota v letech je 0, hodnota v měsících je 6)

- Prosím, uveďte

* Napíšte, kolik kilometrů jste automobilem přibližně nажívala
Příloha č. 61: Ukázka otázek z oddílu ACC

I. Adaptivní tempomat (dále jen ACC)

Tempomat je zařízení udržující přednastavenou rychlost. Funkce tempomatu je rozšířená o možnost přednastavení odstupu od výpědu jedoucího vozidla. Vzdálenost od vozidla lze nastavit na 4 úrovních.

* Máte systém ACC v automobilu nainstalovaný?

 - Ano
 - Ne

ŠKODA

* Vyberte frekvenci používání ACC.

 - Hodně využívaný
 - Místo využívání

Příloha č. 62: Ukázka otázek z oddílu ACC

* Jak jste spokojený s ovládáním asistenta dalších světél?

 - Větši spokojenost
 - Spíše spokojenost
 - Spíše nespokojenost
 - Větši nespokojenost, světlo, prosím, proč:

* Jste spokojený s fungováním systému?

 - Větši spokojenost
 - Spíše spokojenost
 - Spíše nespokojenost
 - Větši nespokojenost
Příloha č. 63: Ukázka z oddílu- komunikace s dealerem

<table>
<thead>
<tr>
<th>ŠKODA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODDÍL C - komunikace s dealerem</td>
</tr>
</tbody>
</table>

* Do jaké míry jste byli spokojený/lí s informacemi, které Vám dealer při koupi vozu podařil poskytl o AS? |

- Spokojení
- Spíše spokojení
- Spíše neспokojení
- Nespokojen ís (prosim upřesněte): []

* Měla jste zájem dozvědět se u dealera více informací o AS? |

- Měla jsem zájem
- Spíše jsem měla zájem
- Spíše jsem neměla zájem
- Neměla jsem zájem

Informovaný souhlas s účastí na výzkumu

Informovaný souhlas s účastí na výzkumu v rámci diplomové práce

Název práce: Analýza bezpečnostních systémů ADAS
Autor práce: Martin Nevřela
Vedoucí práce: PhDr. Matúš Šucha, PhD.
Termín realizace: 4.3.2016
Místo realizace: Mladá Boleslav ŠKODA AUTO a.s.

Prohlašuji, že jsem byl seznámen s podmínkami účasti na výzkumu Analýza bezpečnostních systémů ADAS a že se chci dobrovolně zúčastnit ohniskové skupiny.

Beru na vědomí, že údaje poskytnuté pro účely tohoto výzkumu nejsou anonymní, avšak budou použity pouze k interpretaci výsledků v rámci diplomové práce.
Rovněž beru na vědomí, že mohu z výzkumu kdykoli, podle svého vlastního uvážení, vystoupit.

Dne...
Jméno a příjmení..
Podpis..
Příloha č. 65: Ukázka časového harmonogramu
Příloha č. 66: Ukázka datové matice