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ABSTRACT 
Th is bachelor's thesis focuses on the detection of D N A methylat ions and the develop­
ment of a methodology for typing bacterial strains. D N A methylat ions play a crucial 
role as a regulatory mechanism in the genome, inf luencing the final characterist ics of 
organisms. W e employed DeepSignal2 to detect methylat ion patterns in 10 strains of 
Klebsiella pneumoniae. Furthermore, we designed a typing method based on the iden­
tified methylat ions to categorize the bacterial strains. Th is thesis contr ibutes to the 
improvement of our understanding of regulatory mechanisms in bacterial genomes and 
presents a novel approach for typing strains using D N A methylat ion patterns. It provides 
valuable insights into the character izat ion and classif ication of bacterial strains based on 
their methylomes. 
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ABSTRAKT 
Táto bakalárska práca sa zameriava na detekciu metylácií D N A a vývoj metodiky typi­
zácie bakteriálnych kmeňov. D N A metylácie hrajú kľúčovú úlohu ako regulačný mecha­
nizmus v genóme, ktorý ovplyvňuje konečné vlastnosti organizmov. Použili sme Deep-
Signal2 na detekciu metylačných vzorov v 10 kmeňoch Klebsielly pneumoniae. Okrem 
toho sme navrhli metódu typizácie na základe identi f ikovaných metylácií pre kategorizá­
ciu bakteriálnych kmeňov. Tá to práca prispieva k zlepšeniu našeho chápania regulačných 
mechanizmov v bakteriálnych genómoch a predstavuje nový prístup k typizácii kmeňov 
pomocou vzorov metylácie D N A . Poskytuje cenné poznatky o charakterizácii a klasifikácii 
bakteriálnych kmeňov na základe ich metylómov. 

KĽÚČOVÉ SLOVÁ 

metylácia, D N A , genóm, sekvenovanie, detekcia, skladanie genómu 

Typeset by the thesis package, version 4.07; ht tp: / / la tex.feec.vutbr .cz 

http://latex.feec.vutbr.cz


ROZŠÍRENÝ ABSTRAKT 
Táto bakalárska práca sa zaoberá detekciou metylácií D N A a vývojom metodiky 

typizácie bakteriálnych kmeňov Klebsielly pneumoniae. D N A metylácie hrajú kľúčovú 
úlohu ako regulačný mechanizmus v genóme a majú potenciál dopomôcť k porozu­
meniu expresie génov. Ide o techniku známu niekoľko desaťročí, no až v poslednom 
období došlo k jej významnejšiemu skúmaniu a aplikácii. Téma ma zaujala jej po­
tenciálom využitia v nemocničnom prostredí, kde by mohla prispieť k efektívnejšej 
diagnostike pacientov a následnému nastaveniu liečby, čo ma viedlo k hlbšiemu skú­
maniu tejto oblasti. Cieľom je vytvorenie práce, ktorá by vystihovala podstatu prob­
lematiky spolu s praktickými ukážkami pre lepšie pochopenie praktického využitia 
detekcie metylácií. 

Práca pozostáva z dvoch hlavných častí. Prvá časť predstavuje teoretické pozadie, 
nevyhnutné pre pochopenie témy. Postupne prechádza k praktickej časti, kde sú 
opísané použité nástroje a ich porovnanie. Posledná časť popisuje samotný postup, 
návrh riešenia a dôvod výberu nástrojov použitých pre účely tejto práce za účelom 
vyhodnotiť podobnosti použitých bakteriálnych kmeňov. 

Na extrakciu barcodeov bol použitý nástroj guppy_barcoder . Primárnym 
cieľom tu bolo vygenerovať súbor barcodes_summary . t x t , ktorý obsahuje dôležité 
metadáta o barcodeoch pre každý kmeň. Ďalším krokom bolo basecallovanie, kde 
sa použil nástroj Guppy basecaller. Kombinácia Guppy a G P U priniesla vynikajúcu 
rýchlosť a efektivitu v porovnaní s inými nástrojmi, ktoré boli zvažované. Pre re-
squiggling bol zvolený nástroj Tombo. Výber Tomba bol podmienený skutočnosťou, 
že pre detekciu metylácií mal byť použitý nástroj DeepSignal2, ktorý vyžaduje pred­
spracovanie údajov pomocou nástroja Tombo. Toto predspracovanie je nevyhnutné 
na prípravu údajov pre presnú a spoľahlivú analýzu pomocou DeepSignal2. Posled­
ným krokom bola samotná detekcia metylácií pre ktorú bol použitý už spomínaný 
DeepSignal2. Na základe porovnania dostupných nástrojov bolo vidieť, že DeepSig-
nal2 poskytuje najlepšie výsledky v rámci kompatibilných nástrojov. 

Získané dáta bolo pre hlbšiu analýzu potrebné odfiltrovať. Ako kritériá pri pred­
spracovanú bolo použité pokrytie, frekvencia výskytu a pravdepodobnosť výskytu 
metylácie pre konkrétnu pozíciu. 

Odfiltrované dáta mohli byť ďalej použité pre analýzu. V tejto časti bola vytvorená 
matica pozostávajúca z jednotiek (prítomnosť metylácie) a núl (neprítomnosť metylá­
cie) pre každú pozíciu a kmeň. Táto matica vytvorila pozičné zarovnanie deteko­
vaných pozícií a pre presnejšie výsledky bola doplnená o hodnoty "None" na miesta, 
kde boli prítomné delécie. 

Posledným krokom analýzy bol výpočet dištančnej matice a vykreslenie den-
droframu. Metrika pre výpočet dištančnej matice, bola na základe charakteru dát 
zvolená ako Hamminogva vzdialenosť. Takto pripravená matica bola následne po-



mocou zhlukovacej metódy U P G M A vykreslená do dendrogramu. 
Zo získaných údajov je zjavné, že naprieč všetkými kmeňmi existuje trend medzi 

zvyšujúcou sa pravdepodobnosťou výskytu metylácie a ich počtom. Z tohto porov­
nania je navyše možné pozorovať, že počet detekovaných pozícií súvisí so spôsobom 
sekvenovania. U kmeňov ktoré boli sekvenované samostatne je vidieť vyšší počet 
detekovaných pozícií ako u kmeňov ktoré boli multiplexované. Kedže ide o ex­
perimentálnu tému, výsledky neboli vopred známe. Predpokladali sme však, že 
kmene s rovnakým sekvenčným typom by mali tvoriť jeden zhluk. Tento pred­
poklad sa potvrdil priradením kmeňov KP1179, KP1193 a KP1228, majúcich rov­
naký sekvenčný typ, do jedného zhluku. Na základe toho možno predpokladať, že 
metóda detekcie metylácií by sa mohla použiť na typizáciu. Priradenie kmeňov 
KP687 a KP387 do toho istého zhluku napriek rozdielnym sekvenčným typom zasa 
naznačuje, že typizácia na základe metylácií by mohla priniesť k ešte presnejšiemu 
porovnaniu podobnosti medzi kmeňmi. 

Snažila som sa túto prácu spracovať tak, aby bola zrozumiteľná a poskytla prak­
tické riešenie spôsobom, ktorý je čitateľ schopný zreprodukovať a zároveň porozumieť 
jednotlivým krokom. Ide o experimentálnu oblasť, ktorej potenciál je značný a preto 
verím, že táto práca bude inšpiráciou pre ďalších. 
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Introduction 
Methylation detection is a technique known for decades, but its contribution began 
to be more significantly investigated only recently. The topic intrigued me with 
its potential, for example, in a hospital setting where it could contribute to more 
effective diagnosis of patients and subsequent treatment settings, which led me to 
explore this area further. The aim is to produce a thesis that captures the subject's 
essence and practical demonstrations for a better understanding of the practical 
application of methylation detection. 

D N A methylations have a great potential to help us to understand the level of 
expression and, consequently, their function. Based on that, we could predict the 
behaviour of different bacterial strains, which is particularly important in today's 
rapidly mutating bacterial populations, especially in a hospital environment. Stan­
dard laboratory methods were often time-consuming and not consistently effective. 
This is where typing based on methylation site detection would help. This approach 
shows promise for faster and more accurate typing of bacterial populations. It serves 
as an example of how the combination of biology and informatics can replace time-
consuming methods and eliminate errors caused by human factors. 

This thesis aims to present the D N A methylation topic and everything important 
to understand it. It consists of two main parts. First, the theoretical background 
has the task of summarizing the necessary knowledge for understanding the topic. In 
this section are also presented the different tools that can be used for each step. The 
central part is the practical part, which describes the chosen procedure. It consists of 
a methodological approach describing the individual detection steps, preprocessing 
procedure and data analysis. 
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1 Bacterial DNA 
Deoxyribonucleic acid (DNA) is present in almost all living organisms and serves as 
the carrier of genetic information. It is the sole molecule responsible for storing and 
transmitting genetic information, making it an essential heredity component. [1] 

1.1 Structure 

Just like eucaryotic organisms, bacteria have encoded their genetic information in 
D N A . D N A represents a double helix with nucleotide bases. These bases are com­
plementary and pair conventionally: Adenine (A) pairs with Thymine (T) and Cy-
tosine (C) with Guanine (G). The bacterial chromosome consists of a single circular 
molecule which is part of the nucleoid. Nucleoid represents an irregularly shaped 
structure consisting of a chromosome, several proteins and R N A molecules placed 
in the cytoplasm of bacteria. [1] [2] 

Moreover, plasmids can be found within the chromosome called extrachromo-
somal genetic elements. Plasmids are small circular D N A molecules picked from 
another bacterial cell or the environment. They often determine bacteria functions 
such as antibiotic resistance. Only a few genes can be found within the plasmid, but 
they are not commonly used. However, plasmids play an important role in survival 
in stressful situations, and bacteria with those plasmids are more likely to survive. 
[2] [3] 

1.2 Replication 

Replication is the copying of D N A strands. This function is present in all the do­
mains of life, including bacteria. Despite many differences, we can find not a few 
similarities. For instance, in every organism, replication starts from a specific lo­
cation called the origin. It is the location with unique proteins that initiate the 
replication process. The difference is in the number of these origins. While eucary-
otes have many origins, in most bacteria, we meet only one origin. [4] 

Bacteria have well-defined origins with AT-rich areas. Along with the bound 
of initiator proteins (also called origin-binding proteins), the replication can begin. 
These proteins are composed of A A A + subunits. Specifically, it is DnaA, DnaB, 
DnaC and DnaG. DnaA binds with A T P and enables the opening of the double helix. 
The result of this opening is a single-stranded D N A (ssDNA) bubble, as shown in 
Figure 1.1. This bubble enables helicases to load onto D N A . DnaB represents the 
helicase but can be loaded only with the presence of DnaC. DnaC is a loader that 
opens the helicase ring, enables binding, and then is released. The replication can 

14 
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Fig. 1.1: The scheme of replication in bacteria: The replication process goes from 
the top to the bottom. The top shows the D N A strand followed by origin activation 
using each initiator protein. [4] 

continue in two directions thanks to the replication fork resulting in two daughter 
strands. These strands are different because of the replication direction. The first 
strand is called a leading strand, which synthesises at high speed, always in a 5 ' to 3 ' 
direction. Unfortunately, the second strand, also called a lagging strand, replicates 
in the opposite direction as numerous short Okazaki fragments. Here comes the 
DnaG. The DnaG carries the R N A polymerase necessary to initiate the synthesis 
on the lagging strand. After replication, these fragments rejoin with ligases. After 
successful synthesis, there are two D N A strands, each with one original and one 
daughter strand. [4] [5] 
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1.3 Genome 

The genome represents all the D N A in an organism. Understand the genes but 
also non-coding regions. It contains all the information we need for building and 
maintaining organisms. [6] 

The bacterial genome is small, supercoiled and tightly packed. Typically it is 
classified as a circular chromosome which contains nearly the entire genome. In 
contrast with the eucaryotic genome, there are no introns, and its organisation 
reflects functional or regulatory purposes. The next difference is in the coding 
regions. Bacterial chromosomes use 80-90% to encode proteins in contrast with the 
human genome, where 98% constitute non-coding regions.[7] Based on this fact, 
we assume a strong connection between the size of the genome and the number of 
genes. In addition, by knowing the size of the genome, we can predict the lifestyle of 
bacteria. Bacteria with small genomes are symbionts dependent on the host, while 
bacteria with large genomes are free-living or environmental isolates. A closer look 
at this evidence also explains why the bacterial genome is so compact. Based on the 
search, host-associated bacteria descend from free-living forms. Through the host, 
they get most of the nutrients they need, which leads to the reduction of functional 
genes. Over time these genes mutate and get removed. That is why bacteria have 
the genome such as they have. [1] [7] 

1.4 DNA methylations 

D N A methylation represents a process of adding methyl groups to D N A molecules. 
As it turned out, these methylations are crucial in the epigenetic field which deals 
with D N A changes without changes in the D N A sequence itself. They are essential 
not only in the human genome but the bacterial genome. They influence gene 
activities and affect many biological processes, such as transcription, regulation of 
gene expression (Fig. 1.2) or the interactions between DNA-binding proteins, and 
many more. [8] [9] 

1.4.1 Types of methylations and their function 

In the bacterial genome, three types of methylations occur. The 5-methylcytosine 
(5mC) and N6-methyladenine (6mA) are also in the eucaryotic genome. The third 
one, N4-methylcytosine (4mC), can be found only in bacteria. In contrast with 
eucaryotes, bacteria use mainly adenine methylation for signalisation. Based on 
the methyltransferase (MTase) type, adenine methylations regulate the cell cycle or 
transcription. Currently, there are two known MTases. D N A adenine methylase 
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Fig. 1.2: Example of methylation effect on transcription: Squares represent exons, 
grey circles methylated sites and white circles unmethylated sites. [10] 

(Dam) and cell cycle-regulated methylase (CcrM). Specifically, they manage gene 
regulation and cellular defence through the timing of D N A replication, distribution 
of newly created daughter chromosomes, repair of D N A . [9] [11] [12] 

Dam methylases N-6 of adenine position in G A T C sequence. This methylation 
can specifically alter interactions of regulatory proteins with D N A according to the 
affinity CcrM represents a global expression regulator. This MTase methylase N-6 
adenine in G A N T C sequences. The N stands for any nucleotide. Significant differ­
ences between these two MTases are their presence in cell and substrate preference. 
The difference in preferences is that the CcrM prefers hemimethylated D N A while 
Dam does not. That is why the CcrM is not processive. The second difference is 
that the CcrM can be found only in a specific period while Dam is always present. 
Except for specific effects, they participate in the regulation of virulence together. 
[9] [12] 

1.4.2 Formation of methylations 

D N A methylation means adding a methyl group to the D N A molecule. In the 5mC, 
for example, the methyl group is added to the 5' position of a cytosine residue 
(Fig. 1.3). The additions are possible only with specific D N A MTases, which catalyse 
the formation. A l l of the MTases use S-adenosyl methionine as a source of the methyl 
group, but there is more than one type of methylation based on the MTases, place 
of action and effect of the methylation. [9] [12] 

17 
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Fig. 1.3: Formation of m5C. [13] 

A l l of the mentioned functions above use the hemimethylated state as a signal. A 
hemimethylated state means that the D N A strand consists of a parental methylated 
and a daughter nonmethylated strand. After passing through the D N A replication 
fork, methylated G A T C sites are converted into two hemimethylated D N A duplexes. 
These duplexes are the opposite. The methylated strand of one is on top and 
nonmethylated on the bottom and the second duplex is the opposite. Most G A T C 
sites exist in a hemimethylated state only for a short fragment of the cell cycle. 
They remethylate by Dam. A n important note is that these hemimethylations can 
not be inherited. They occur only transiently in newly replicated D N A . [11] 

A n example of methylation is the inhibition of D N A replication. SeqA protein, 
one of the regulatory proteins, takes place here. It binds to the hemimethylated 
D N A in the G A T C sequence, clustered in the origin of replication. Thus the DnaA 
necessary for replication initiation is blocked. Since methylation is only transient, it 
is repaired over a certain period. Here comes the methyl-directed mismatch repair 
protein MutH. This protein can recognise the hemimethylated sites. To ensure the 
repair, it cuts the nonmethylated daughter D N A strand, so the methylated parental 
strand serves as a template for repair-associated D N A synthesis. This shows the 
importance of regulatory proteins, as they can control the onset of methylations. 
[11] [14] 
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2 DNA sequencing 
Obtaining information about our genome is essential, and sequencing plays a vital 
role in achieving this goal. By reading individual bases and determining the D N A 
sequence, we can gather valuable data that can be analyzed in various areas of life, 
including heredity information and biochemical properties. D N A sequencing has 
become more accessible in both the scientific and medical fields, being utilized for 
diagnostic and therapeutic purposes. [15] 

2.1 Shotgun vs. amplicon 

Before sequencing itself, it is necessary to create libraries because sequencers are 
not able to process the whole length of a D N A strand. This means creating a lot of 
D N A fragments which can be sequenced. There are two main principles based on 
the data. It is possible to create a library from the whole strand or from specific 
regions of interest. [16] 

The shotgun method is also known as shotgun sequencing. However, the shot­
gun method does not represent sequencing per se. This method is used in order to 
create a library of fragments which are subsequently sequenced. The first step in­
volves replication of D N A strands or even the entire genome using P C R (Polymerase 
Chain Reaction). P C R is a widely used molecular biology technique that allows re­
searchers to amplify D N A strands. Subsequently, these copies are randomly broken 
up into small fragments, which are then sequenced using high-throughput sequenc­
ing technologies. The sequencing results in many reads, which are then assembled 
into longer contigs using computational algorithms. [17] [18] 

The shotgun method allows sequencing the entire genome without requiring prior 
knowledge of the genome's structure or organization. However, sequencing such large 
areas comes with limitations, particularly when dealing with genomes containing 
repeated sequences or regions of low complexity. These regions can be difficult to 
assemble accurately and may result in gaps or errors in the final genome assembly. 
[17] 

Another method to create a library is through an amplicon. This method also 
refers to the amplification of specific regions by a PCR. Since amplicon primarily 
works with specific regions, it is necessary to mark them. For this purpose, short 
D N A primers that are complementary to the sequence are used. These primers en­
able selective amplification of the desired regions. The resulting amplicons typically 
range from a few hundred to a few thousand base pairs in length, which fall within 
the range of read length that sequencers are able to process. The length depends 
on the size of the target region and the number of amplification cycles. [19] 
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Amplicons are widely used in various applications, including genome sequencing, 
genotyping, and mutation analysis. For example, researchers may use amplicons to 
sequence a specific gene or region of interest in a genome, to genotype individuals 
for genetic markers, or to detect mutations associated with the disease. The use 
of amplicons in these applications is facilitated by the ability of P C R to selectively 
amplify specific regions of D N A with high accuracy and reproducibility. [19] 

2.2 Sequencer generations 

In recent years, advancements in sequencing technologies have led to the develop­
ment of three distinct generations of sequencers. The emergence of these sequencers 
was driven by a realization among scientists that older techniques were no longer 
sufficient for their research needs. With the ever-increasing importance of sequence 
knowledge in various fields, researchers needed more precise techniques to unlock 
the full potential of genomics research. [20] 

2.2.1 First-generation sequencing 

The first-generation D N A sequencing, which laid the foundations for upcoming plat­
forms, comes with the Sanger dideoxy and the Maxam-Gilbert method. Booth 
techniques use electrophoresis on a polyacrylamide gel which enables establishing 
the D N A sequence. Based on the negative charge, according to the fragment length, 
samples divide in parallel lanes into band patterns. We read these bands from 
the bottom to the top because the shortest fragments are on the bottom (they are 
faster), followed by longer ones. The difference is in the fragment preparation. [21] 

The Maxam-Gilbert method is more difficult since its technical implementation 
is more demanding and works with hazardous substances. In contrast with Sanger, 
the Maxam-Gilbert technique works directly with purified D N A without the previ­
ous requirement of ssDNA preparation. Maxam-Gilbert works with chemicals that 
cleavage the chain - the chemical cleavage technique. The basis of this method is 
a radioactively labelled chain. This chain is later aliquot into four samples, each 
with a different chemical that cleaves the chain into smaller fragments. Followed by 
electrophoresis, the D N A sequence is determined. Although this method was more 
popular than Sanger's at the time, over the years, Sanger replaced it. [20] [22] 

Sanger is nowadays used only for the sequencing of short genome regions we 
are interested in. These regions are denatured, amplified and labelled. Initially, 
radioactive labels were used, which were later replaced by fluorescent ones. This 
eliminated the need for 4 separate samples. The mixture containing a primer, D N A 
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polymerase, ddNTPs with a specific base (ddATP, ddCTP, ddGTP, ddTTP) flu-
orescently labelled and natural deoxyribonucleotides (dNTPs). The primer binds 
first, followed by dNTPs and ddNTPs using D N A polymerase. The ddNTP termi­
nate the elongations and the fluorescent label enables us to evaluate what nucleotide 
was bound. The binding process is random, resulting in ssDNA strands of different 
lengths. Electrophoresis then separates these strands, similar to the Maxam-Gilbert 
method. [22] [23] 

2.2.2 Second-generation sequencing 

The second-generation, also called the next-generation, came with five new plat­
forms, four commercially available: 454, Illumina, SOLID and Ion Torrent. A huge 
difference is in the massive parallelisation, which resulted in a reduction in the price 
and less time-consuming methods. These four platforms differ in chemistries, ca­
pabilities and specifications. Although each has its benefits, Illumina has been the 
most successful and represents the most significant contribution to this generation. 
[20] [22] 

Illumina enables high genome coverage making it suitable even for de novo as­
sembly (assembling without reference). The first step consists of D N A preparation 
- adding adapters to the D N A fragments, followed by denaturation. Those prepared 
strands are attached to the surface of a flow cell so the bridge amplification can 
begin. This amplification is a simultaneous process followed by sequencing. Dur­
ing sequencing, primers, D N A polymerase and four labelled reversible terminators 
incorporate. Labelling of terminators enables the capture of emitted fluorescence. 
By repeating this step, we can determine the nucleotide basis and eventually the 
sequence itself. [22] [24] 

2.2.3 Third-generation sequencing 

The most recent generation, known as the third-generation, offers superior results 
compared to previous generations. This generation encompasses several platforms, 
with the Single Molecule Real-Time (SMRT) platform from Pacific Biosiences and 
nanopore sequencing from Oxford Nanopore Technologies (ONT) being the most 
prominent. The main advantage of these platforms lies in their ability to perform 
single-molecule sequencing, which eliminates the need for D N A amplification that 
was required by previous generations. Additionally, the third generation surpasses 
the read length of next-generation sequencing and offers faster and more affordable 
sequencing. [20] [25] 

Oxford Nanopore Technologies brings a low-cost way to approach longer reads in 
less time with fever difficulties. The most significant advantage over other platforms 
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is real-time analysis in fully scalable formats and ultra-long reads. ONT even came 
with quite a large amount of nanopore sequencing devices. This variety enables us 
to choose the most suitable one for the projects. [26] 

This method's key is nanopores since the D N A strands have to come through 
them. ONT works specifically with protein nanopores because they can be found 
even in nature in cell membranes, making them more suitable. However, ONT 
works on solid-state nanopores fabricated from synthetic materials. These nanopores 
promise improvement in cost and, more importantly, the scale of nanopore analyses. 
[27] 

As mentioned, nanopores are the basis. They include absensors detecting changes 
in current as the D N A strand comes through. ONT consists of many nanopores 
embedded in a membrane (Fig. 2.1). The membrane has to be electro-resistant and 
nanopore electrically connected to a channel and sensor chip. This way, the current 
can be measured, and so the changes in it. Disruptions in current produce squiggles, 
characteristic for each base. Squiggles enable us to identify the nucleotide bases and 
determine the final sequence. [28] 

Fig. 2.1: Nanopore D N A sequencing: There are embedded nanopores on the left 
side. The right side shows a cross-section of nanopores with bonded DNA. The 
graph above shows squiggles with determined bases. [26] 
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2.3 Genome assembly 

Genome assembly (Fig. 2.2) is the process of piecing together the D N A sequences 
from a genome, which is the complete set of an organism's genetic material. This 
process involves taking millions to billions of short D N A fragments and aligning 
them to create contiguous stretches of D N A that represent the original genome. 
Genome assembly is a crucial step in genomics research as it provides a complete 
representation of an organism's genetic material, which can be used for a variety 
of applications, including understanding genetic variation and evolution, identifying 
disease-causing mutations, and designing new therapies or treatments. [29] 

The assembly process can be challenging because the genome is often very large, 
with many repeated sequences, and the sequencing data may contain errors or gaps. 
Various computational algorithms and tools have been developed to aid in the as­
sembly process, including de novo assembly, which involves assembling the genome 
without using a reference sequence, and reference-based assembly, which involves 
aligning the sequencing data to a known reference genome. If we are working with 
large genomes without deeper knowledge or when studying genetic variations within 
a species, it might be more appropriate to use de novo assembly. On the contrary, if 
working with a well-known genome, using reference-based assembly would be more 
accurate. A more detailed comparison is in the Table 2.1 below.[29] [30] [31] 

Tab. 2.1: De novo vs. reference-based assembly. 

Method Advantages Disadvantages 

De novo - no reference 
- variation in species 

- requires high-quality data 
- time-consuming 

Reference-
based 

- deals with gasps and repe­
titions 
-fast assembly 

- requires reference 

- read length limitation 

2.3.1 De novo assembly 

De novo assembly is a computational process used to reconstruct a complete genome 
sequence from short D N A fragments without the need for a reference genome. It is a 
crucial step in genome sequencing projects, especially when dealing with organisms 
whose reference genomes are not available or when studying genetic variations within 
a species. [30] [32] 

The de novo assembly involves several steps. First, the short D N A fragments 
are generated from the organism's DNA. These fragments may overlap with each 
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Fragmented DNA 
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Fig. 2.2: Process of genome assembly: The process of genome assembly from D N A 
strands, through creating libraries to the final assembled genome. [18] 

other, although in varying lengths and coverage depths. After this, the bioinfor-
matics algorithms and software are utilized to analyze the overlapping regions and 
assemble the fragments into contiguous sequences called contigs. By identifying 
regions of overlap and utilizing the consensus between overlapping fragments, the 
assembly algorithm attempts to reconstruct the original genomic sequence. The fi­
nal output of a de novo assembly is a set of contiguous sequences, representing the 
reconstructed genome. Although these can be enough, the contigs can be further 
refined by scaffolding, which involves ordering and orienting the contigs based on 
additional information. This process helps bridge gaps between contigs and provides 
insights into the relative positions and orientations of the contigs. [30] [32] 

However, due to various challenges like repetitive regions, sequencing errors, and 
variations in coverage depth, the assembly process can result in misassemblies. To 
manage this, additional computational tools and experimental techniques can be 
used to resolve ambiguities and improve assembly accuracy. [33] 

There are several tools for de novo assembly based on different algorithms. For 
example, the De Bruijn graph works with k-mers by splitting sequences. It takes 
sequences and divides them into smaller k-mers. Another graph-based algorithm 
is the overlap layout consensus, where similar sequences are overlapped, and the 
fragments of the graph are packed into contigs. In addition to these, we can also find 
string graphs and greedy or hybrid algorithms. The application of these algorithms 
has resulted in several tools such as Flye, Minimap2, Miniasm Velvet, Edena, etc. 
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[33] [34] 
Minimap2 and Miniasm are tools that are commonly used together. While Min-

imap2 functions as an aligner, Miniasm is a regular de novo assembler. Initially, 
Minimap2 aligns the reads, enabling subsequent assembly by Miniasm. Miniasm 
serves as the assembler and employs graph traversal algorithms to identify paths 
through the overlap graph, which represent potential contigs. The output comprises 
contigs consisting of continuous and non-repetitive sequences in the genome. [35] 
[36] 

Flye assembler is suitable for ONT long-reads and belongs to one of the most 
popular de novo assemblers. Flye utilizes a combination of overlap layout consensus 
and a repeat graph. Unlike other assemblers, Flye also provides polishing of the 
final consensus. As a result, the error rate has significantly decreased, making this 
assembler even more popular. Flye requires only raw base-called data, resulting 
in a consensus sequence in FASTA format. To achieve this, Flye employs multiple 
steps, starting with the detection of overlaps. Subsequently, the repeat graph is 
constructed, followed by error correction. The repetitive graph is then analyzed, 
enabling the resolution of repetitive regions and the generation of the final contigs. 
[37] [38] 

2.3.2 Reference-based assembly 

Reference-based assembly, also known as mapping-based assembly or alignment-
based assembly, is a computational approach used to reconstruct a genome sequence 
by mapping and aligning short D N A reads or fragments to a reference genome. [31] 

The reference genome is used as a guide to align the sequencing reads or frag­
ments meaning the assembly heavily relies on the quality and accuracy of the ref­
erence. In order to get the best results the reference has to be obtained from a 
closely related species or a well-characterized individual within the same species. 
Unless a sufficiently high-quality reference is used, the result might contain errors 
and mistakes. [31] [39] 

After the reads are aligned, the resulting alignments are analyzed to identify 
regions of the reference genome where the reads overlap. These overlapping re­
gions can be used to assemble the reads into contiguous sequences, called contigs, 
representing the target genome. [39] 

2.3.3 Practical implementation of genome assembly 

For a genome assembly the Flye (2.8.1, h t tps : / /g i thub.com/fenderglass /Flye / 
b lob / f lye/docs/USAGE.md) was used. Flye is a de novo assembler working without 
a reference sequence plus polishing the final genome to reduce the number of errors. 
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It needs only basecalled fastq files. According to the documentation, we adapted 
the code to be as efficient as possible. We specify the coverage length and size of 
the genome. The command for the coverage length setting is - a sm-cove rage . 
We set it to 40, which is typically enough for good results. The genome size use 
- g e n o m e - s i z e command, and we set it up to 3 million. These settings reduce 
memory consumption which is excellent for large genomes. 

The output provided several folders and files. Most importantly the final assem­
bly. Assembled genomes were stored in fasta format, consisting of several contigs. 
Their number varies from strain to strain and so do their length and coverage. More 
detailed information about each contig was in their statistic file. Overall assembly 
statistics could be found within logs: 

[2022-12-04 0 4 : 3 6 : 0 2 ] r o o t : INFO: Assembly s t a t i s t i c s : 
T o t a l l e n g t h : 5513573 
F ragmen t s : 3 
Fragments N50: 5232065 
L a r g e s t f r g : 5232065 
S c a f f o l d s : 0 
Mean c o v e r a g e : 982 
[2022-12-04 0 4 : 3 6 : 0 2 ] r o o t : INFO: F i n a l a s s e m b l y : 
p a t h / a s s e m b l y . f a s t a 

The final step involves polishing the assembled sequence. Although Flye performs 
some level of polishing on the final sequence, it may still contain rough areas which 
are necessary to be refined to reduce the error rate. For this purpose, we use Medaka 
(1.7.2), which represents the most recent and updated version. By using Medaka, we 
eliminate the need for Racon and enhance the overall effectiveness of the polishing 
process. Medaka requires only basecalled data to carry out the polishing step. The 
result of Medaka can be found in a file called c o n s e n s u s , f a s t a . 

The assembled sequences were not utilized for further analysis. Using the 
NTUHK2044 strain as a reference for all the strains was deemed to be a more 
suitable and efficient option. This well-defined reference genome is close to the used 
strains enabling direct alignment of the strains during re-squiggling. It removes 
the need to assemble the genomes in order to create references, align the data to 
its own reference and then align all the genomes together. This process would be 
very difficult since a de novo assembly was used. It may result in errors caused by 
individual aligning, which would affect the quality of the resulting alignment. 
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3 Methodology for methylation detection 
Finding methylation in genomes might be essential for further epigenetic analysis. 
However, to find these methylations it is necessary to follow a certain procedure. 
On the Internet today we can find many tools for individual steps, but the overall 
procedure is the same as shown in the Figure 3.1 (B) below. Most available tools 
are designed to operate with FAST5 files, which consist of raw electronic signals 
known as squiggles. However, squiggles cannot be directly processed and must first 
be converted into a text-based file format that represents nucleotides. This process 
is called base calling. Once the data has been base called, it must then be aligned 
to a reference sequence and re-squiggled before a detection tool can be applied. 
It's worth noting that multiple tools and versions are available for each step of the 
process, and the specific choices will depend on the data and the desired outcomes. 
[8] [40] [41] 

• Timeline for nanopore sequencing development 
Development of methylation-calling tools 2019.02 

NanoMod 

mCaller 
2017.04 

opolish 

Tombo/ 
Nanoraw 

signalAlign 

2019.04 

DeepSignal 

2019.06 

DeepMod 

2018.12 

Development in Oxford Nanopore devices 
2014 Spring 
MinlON 
released 

Development in Oxford Nanopore chemical pores 

C Guppy 

2019.09 

Megalodon 

2017.05 
GridlON 
released 

2018.05 
PromethlON 
released 

R6 R7 

2021.02 

methBERT 

2021.06 
METEORE 

DeepMP 

B 
2014 2015 2016 2017 2018 2019 2020 

Workflow for 5-methylcytosine (5mC) detection for nanopore sequencing 

Basecalling Alignment to the genome 

2021 

Methylation-calling and evaluation 

Raw Signals 
*.Fast5 

Guppy 
*.Fastq/*.Fast5 MiniMapž Guppy 
*.Fastq/*.Fast5 MiniMapž 

Reference 
Genome 

Fig. 3.1: Detection throughout the time and detection workflow. (A): Timeline of 
detection tools for nanopore. (B): Workflow for 5mC detection consisting of three 
steps. [41] 
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3.1 Demultiplexing 

In some cases, it is desired to sequence multiple samples in a single run to save 
time and money. This type of sequencing is known as multiplex sequencing. To do 
so, it is necessary to tag each sequence to differentiate the sequences that belong 
together. For this purpose, we use special barcode sequences. The barcodes enable 
us to assign which sequences belong together and sort them before any further steps. 
However, the number of barcodes used is limited. For example O N T provides 12 
barcodes. They are ligated on both ends of D N A strands, allowing simultaneous 
sequencing of 12 genomes. [42] [43] 

Demultiplexing means sorting reads into files based on barcodes. For this pur­
pose, the internet provides several tools. ONT comes with its own tools, which 
are the most suitable for data obtained from their sequencers. Some of them are 
preceded by base calling, another can be run right after sequencing. Besides the 
process, every tool should assign a sequencing read to the corresponding sample, 
resulting in files, each containing reads of one sample. After successful demultiplex­
ing, we can select a file with the desired sample based on the list of barcodes to 
which it should correspond. As mentioned before, ONT provides 12 barcodes, the 
number of files found at the end of demultiplexing. [43] 

Guppy 

Guppy is the official basecalling software provided by ONT. Despite basecalling, 
Guppy provides also demultiplexing with its built-in guppy_barcoder module. 
This module assigns reads to specific samples based on barcode information dur­
ing the basecalling process resulting in folders separated by barcodes and b a r ­
code s_summary . t x t . Simultaneous basecalling and demultiplexing using guppy 
_ b a r c o d e r is commonly employed for ONT sequencing data, providing conve­
nience, but it also has its drawbacks. The simultaneous process can increase com­
putational requirements, and it relies on accurate barcode information for successful 
demultiplexing. [44] 

Ont_fast5_api 

The o n t _ f a s t 5 _ a p i is a Python package from ONT. It provides several scripts 
that enable the manipulation of fast5 files. For the demultiplexing, there is d e -
mux_fas t5 command. It operates on the raw fast5 data in multi-fast5 format 
generated by the nanopore sequencer. The required input is raw data and barcod-
ing information. During demultiplexing, barcode information is extracted from the 
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fast5 files and assigned the reads to specific samples based on the barcodes. The 
process results in raw split data in the original multi-fast5 format. [45] 

Deepbinner 

Deepbinner is another ONT tool. It is a deep learning-based demultiplexing tool, 
which utilizes neural networks to predict sample assignments directly from the raw 
signal data. Thanks to the neural network, Deepbinner can handle demultiplexing 
tasks efficiently and accurately, even in cases where the barcodes might be challeng­
ing to differentiate due to sequencing errors or low-quality data. [43] 

3.2 Basecalling 

The third-generation sequencers result in electrical signals that we cannot process. 
It's necessary to convert these electrical signals into a text-based format with which 
we are able to work. This process is called basecalling and consists of translating 
the raw electrical signal into a nucleotide basis. [46] 

There are several tools available to perform this task based on different algo­
rithms. The oldest one works with Hidden Markov Models including Nanocall or 
Metrichor. Newer tools came up with the use of deep learning models such as neu­
ral networks. Currently, all modern tools utilize neural networks. The ones we are 
interested in are compatible with ONT sequencers output such as Guppy, Albacore, 
Scrappie or Flappie. A l l of these were developed by ONT, specifically for R9.4.1 
flowcells. [46] [47] 

Scrappie 

Scrappie is considered the first modern ONT basecaller and is often referred to as 
a "technology demonstrator." That is because it served as a platform for testing 
new approaches before they were incorporated into subsequent tools like Guppy and 
Albacore. Scrappie comprises two basecallers: Scrappie events and Scrappie raw. 
Initially, Scrappie events perform event segmentation, followed by Scrappie raw, 
which conducts basecalling on the raw data. However, Flappie eventually replaced 
this basecaller with improved read accuracy but not consensus accuracy. [46] 

Guppy 

In addition to the already mentioned demultiplexing, Guppy also supports basecal-
ing. Guppy basecaller relies on a neural network architecture to perform various 
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tasks such as filtering reads based on quality, clipping adapter sequences, and esti­
mating the probability of methylations. It is a bi-directional recurrent-based neural 
network, allowing data to flow back and forth between the network nodes. To use 
Guppy as a basecaller, fast5 files need to be provided as input. The output of the 
basecalling process consists of two folders, log files and a sequencing summary text 
file. Within these folders, the reads are segregated into two groups: high-quality 
reads are placed in the "pass" folder, while lower-quality reads are placed in the "fail" 
folder. In our specific case, only the files in the "pass" folder were considered for 
obtaining the most accurate results. To confirm the successful completion of the 
process, a similar text as shown below should be obtained either in the command 
line interface or in a log file: [40] 

0% 10 20 30 40 50 60 70 80 90 100% 
I — I — I — I — I — I — I — I — I — I — I 

* * * * * * * * * * * * * * * * * * * * * * * * * * * 
F i n i s h i n g up any open output f i l e s . 
B a s e c a l l i n g completed s u c c e s s f u l l y . 

Albacore 

Albacore is similar to Guppy in many aspects. However, the main difference lies in 
the utilization of the Graphics Processing Unit (GPU). Unlike Guppy, which lever­
ages G P U acceleration for faster processing, Albacore relies on a Central Processing 
Unit (CPU), making it comparatively slower in performance. In terms of accu­
racy, both tools were initially quite similar. However, the development of Albacore 
took a backseat in favour of Guppy, resulting in Guppy receiving more updates and 
improvements, leading to better accuracy over time. [46] 

3.3 Re-squiggling 

After basecalling, there are raw data and basecalled nucleotide bases with sufficient 
quality. However, these data do not have a connection. To do so they have to be 
re-squiggled to reconstruct the raw electrical signals with the corresponding base 
sequence. [48] 

Tombo 

Tombo re-squiggling is a process in nanopore sequencing data analysis that in­
volves improving the accuracy of basecalling by re-estimating the electrical signal 
levels associated with each base in the sequence. Tombo relies on fast5 files that 
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have been previously annotated with fastq files obtained through the base calling 
process. Fortunately, Tombo provides a convenient tombo p r e p r o c e s s anno-
t a t e _ r a w _ w i t h _ f a s t q s command that can be used to perform this step. Re-
squiggling can help refine the basecall assignments made by the initial basecaller 
and improve the overall quality of the sequencing data. [48] 

3.4 Methylation detection 

Final step to detect methylation is the methylation detection itself. There have 
been multiple tools for their detection, and new ones are still developing. Older 
ones used to combine next-generation sequencing and bisulfite conversion, but this 
combination has many disadvantages. D N A can damage due to bisulfite conversion, 
and next-generation sequencing results in short-range patterns. Third-generation 
sequencing overcomes this problem and enables direct methylation detection. Over 
time, several tools able to call these modifications were developed. Since the data 
used in this thesis were also obtained from the third-generation sequencer, tools 
compatible with this data are discussed in more detail. A n overview of these tools 
based on release time and flow cells they are compatible with can be seen in Figure 
3.1 (A). A more detailed overview of some of the tools is in the Table 3.1. [8] [41] 

These tools employ various methods for predicting methylation states. NanoMod 
and nanoraw belong to statistics-based methods that analyze two types of reads: na­
tive reads and reads from matched amplified DNA. By comparing these two groups, 
we can predict the methylated state using statistical tests such as the Mann-Whitney 
U test or Kolmogorov-Smirnov test. Although these methods do not require training, 
their accuracy is significantly lower compared to model-based methods. Model-based 
methods, such as Nanopolish, signalAlign, or mCaller, take a different approach. 
They initially predict the methylation state of individual reads and then aggregate 
the information to determine the methylation state at a genome level. These meth­
ods utilize the Hidden Markov model or its alternative extended by the hierarchical 
Dirichlet process. However, the most successful approach is the third method, which 
relies on deep learning. This method is widely used in current tools like DeepSig-
nal, Megalodon, Guppy, DeepMP, and others. With appropriate training, these deep 
learning-based tools can achieve high accuracy in predicting methylation states. [41] 
[8] 

Nanopolish 

Nanopolish is based on Hidden Markov Model, working with signal-level data. With 
other tools, Nanopolish belongs to one of the most used tools for methylation de-
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Tab. 3.1: Overview of methylation tools using neural network. [41] 

Tools DeepSignal Megalodon mCaller Guppy 

D N A modifica­
tions 

5mC, 6mA 5mC, 6mA 6mA 5mC, 6mA 

Support multi­
read fast5 
format 

NO Y E S NO Y E S 

Compatible flow 
cells 

R9, R9.4, 
R9.4.1 

R9.4.1,R10.3 R9, R9.4, 
R9.5 

R7.3, R9, 
R9.4, R9.4.1, 
R9.5, RIO, 
R10.3 

Required input Basecalled 
fast5 pro­
cessed by 
Tombo re-
squiggle 
module 

Raw fast 5 Basecaller 
fast 5 

Raw fast 5 

Accuracy 0.9 - 0.92 N / A 0.954 N / A 

tection. It has more modules, but only the call-methylation module can detect 
methylations. The whole detection consists of four steps. First of all, we have to de­
tect events. Events detections use raw signals and create segments which represent 
the events. This step is based on changes in the signal, followed by the alignment 
of these segments. We align them to a generic k-mer model signal. Alignment 
continues with the final calibration. Performing the calibration enables getting the 
best set of scaling parameters. As the last, we use Hidden Markov Model for the 
calculation of methylation scores. After all these steps, we get the likelihood of the 
unmethylated and methylated sequence so the methylations can be detected. [49] 

Megalodon 

Megalodon is a software tool used for analyzing nanopore sequencing data. It is 
specifically designed for basecalling and detecting D N A modification in data ob­
tained with ONT sequencing. Megalodon can detect D N A modifications, including 
D N A methylation, by analyzing the raw nanopore signal data. It utilizes machine 
learning algorithms to identify modified bases and generate methylation profiles 
along the D N A sequence. [41] [50] 
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DeepSignal2 

DeepSignal2 is one of the up-to-date tools for methylation detection. In contrast 
with previous methods, DeepSignal2 can achieve higher performance detecting 6mA 
and 5mC methylation, achieving accuracy rates of over 90% even with lower cover­
age. In contrast with signalAlign, DeepSginal2 requires only two sampled reads. The 
tool operates through two modules: a convolutional neural network and a bidirec­
tional recurrent neural network. The convolutional neural network creates a signal 
feature module by working with a raw electrical signal, while the bidirectional re­
current neural network creates a sequence feature module based on the sequence of 
signal information. The features produced by both modules are then sent into a 
fully connected neural network, which can predict the methylation state. [8] 
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4 Practical implementation of DNA methy-
lations detection 

4.1 Input genome data and sequencing parameters 

We are working with 10 different strains of Klebsiella pneumoniae. We decided to 
work with those considering the wide variability of sequencing types (4.1) and se­
quencing platform settings. Klebsiella pneumoniae is a bacteria, common in hospital 
environments and belongs to one of the most frequently sequenced bacteria, which is 
another reason to work with these strains. These data were sequenced with Oxford 
Nanopore Technologie (ONT) which is commonly used for direct methylation detec­
tion. As a reference for every strain, we use NTUH-K2044 [51], a reference sequence 
which is well-annotated and the most similar to used sequencing types. Based on 
similarity it provided a suitable template to which the methylation positions of other 
strains were assigned, which made it unnecessary to align individual strains. 

The reference genome of NTUH-K2044 was downloaded from the RefSeq database 
provided by National Center for Biotechnology Information known as NCBI 
(NC 012731.1, https: //www.ncbi .nlm.nih.gov/refseq/). These data are in fast a 
format which is text-based, representing nucleotides or amino acid sequences. The 
genome size is 5,472,672 bases and consists of 5,293 genes. Other stains were se­
quenced in collaboration with the Department of Internal Medicine, Hematology 
and Oncology at the University Hospital Brno. These data were sequenced with 
M i n l O N with R9.4.1 pores type from O N T which results in raw data in fast5 for­
mat. These files consist of a raw electrical signal, which had to be transformed for 
further processing. 

Tab. 4.1: Strains sequencing types. 

Strain Sequencing Strain Sequencing 
type type 

EB362 ST321 KP1236 ST397 

KP387 ST433 KP1228 ST551 

KP1179 ST551 KP1272 ST14 

KP1193 ST551 KP1209 ST70 

KP1231 ST405 KP687 ST11 
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4.2 Design of algorithmic workflow 

In order to detect methylations, the steps to modify the input data had to be done so 
that the methylations could be extracted. A description of these individual steps is 
in the following subsections. The code used for each step is included in the electronic 
attachments as a M e t h y l a t i o n D e t e c t i o n . sh script. 

The initial stage of the workflow focused on demultiplexing the raw data. Given 
that the barcodes for the multiplexed data were known, the demux_ f a s t 5 tool 
was the choice. This tool allowed us to segregate the different sequences based on 
their barcodes, which is essential for subsequent analysis. 

In order to extract the barcodes, the g u p p y _ b a r c o d e r tool was employed. 
The primary goal here was to generate the b a r c o d e s _ s u m m a r y . t x t file, which 
contains crucial metadata about the barcodes associated with each sequence. 

The next pivotal step was basecalling, where the Guppy basecaller saw used. A 
noteworthy aspect of this phase was the utilization of a G P U , which significantly 
boosted the performance of the Guppy tool. This combination of Guppy and G P U 
yielded superior speed and efficiency compared to other tools in our consideration 
set. 

For the re-squiggling step, we decided for the Tombo tool. The choice of Tombo 
was carefully conditioned by the fact that we were using DeepSignal2 for the detec­
tion phase. DeepSignal2, our tool of choice, requires data preprocessing performed 
by Tombo. This preprocessing is crucial to prepare the data for accurate and reliable 
analysis using DeepSignal2. 

Based on Table 3.1, unequivocally highlighted DeepSignal2 as the most appro­
priate option among the deep learning-based methods that were considered. Despite 
mCaller demonstrating the highest accuracy, it was regrettably deemed incompat­
ible with the specific flow cell that was used for sequencing. As a result, mCaller 
cant be utilized for this particular study. 

4.3 Demultiplexing using ont_fast5_api 

A l l the strains except EB362 and KP387 were sequenced in multiplexed form so 
they need to be demultiplexed first. To do so, it is necessary to obtain the in­
formation about barcodes, that were added to samples before sequencing. For 
this purpose, the Guppy(6.4.2, (https://help.nanoporetech.com/en/articles/ 
6628059-how-do-i-use-guppy-to-demultiplex-my-barcoded-reads)) was used. 
Initially, all multiplexed samples were basecalled with a Guppy basecaller. After 
that, the Guppy barcoder was used to get the b a r c o d e _ s u m m a r y . t x t , which is 
necessary for the subsequent step. 
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Fig. 4.1: Scheme of methylation detection workflow: (A): Workflow for the raw 
fast5. (B): Workflow for multiplexed data. 

After acquiring the barcodes, the demux_f a s t 5 tool can be utilized. This script 
is integrated into the ont_fast5 api (4.1.1, https://github.com/nanoporetech/ 
ont_f ast5_api) interface, which facilitates the extraction of sorted reads. Consid­
ering that ONT offers 12 barcodes, this process results in receiving 12 correspond­
ing files labelled as b a r code 01 to ba rcode 12. To determine the appropriate 
barcode for each genome, we referred to a predefined list that assigned specific bar­
codes to specific genomes. Each barcode file contained multiple fastq files, which 
were merged together to create a consolidated dataset ready for basecalling. This 
additional workflow for multiplexed samples is in Figure 4.1 (B). 

4.4 Basecalling using Guppy 

Prior to proceeding with any other task, the priority was to perform basecalling. 
Since the fast5 files were in multi-read format, it was essential to convert them 
into single-fast5 files first. To do so, the m u l t i _ t o _ s i n g l e _ f a s t 5 command 
was used. After that, the Guppy basecaller was used. It transformed the raw 
signal into a text-based format. In addition, this toolkit divided the basecalled 

36 

https://github.com/nanoporetech/


data according to quality. Except for folders containing data of various quality, 
also s e q u e n c i n g _ s u m m a r y . t x t and logs were received. Basecalling is a time-
intensive process that can take up to several hours. Therefore, utilizing a G P U was 
beneficial. 

To ensure the highest level of precision, the data stored in the "pass" folder 
were selected. This file contains only reads of adequate quality. These reads were 
then concentrated into a single fastq file using c a t command. Furthermore, the 
text file generated from this process was utilized in conjunction with the pycoQC 
(2.2.3, https://a-slide.github.io/pycoQC/) toolkit. Results are visible at table 
4.2 shows the quantity of all reads, as well as reads that met the necessary quality 
standards. A l l other data in the table pertains solely to the high-quality reads prom 
"pass" folder. 

Tab. 4.2: Strains information after base calling. 

Strain A l l reads Pass reads Output Median read 
length 

Median read 
quality 

EB362 1 560 612 1 274 650 4 337 Mbp 1 094 11.56 

KP387 734 097 629 295 9 615 Mbp 4 882 12.38 

KP1179 346 899 346 878 3 177 Mbp 5 230 12.507 

KP1193 555 212 555 180 3 370 Mbp 3 400 12.492 

KP1231 161 325 161 308 1 154 Mbp 3 600 12.422 

KP1236 497 324 497 308 2 394 Mbp 2 740 12.484 

KP1228 545 789 545 771 2 256 Mbp 2 270 12.468 

KP1272 486 849 486 832 2 055 Mbp 2 490 12.505 

KP1209 60 477 60 474 232 Mbp 1 300 12.044 

KP687 69 576 69 572 651 Mbp 1 520 12.042 

4.5 Preprocessing and re-squiggling using Tombo 

Preprocessing was performed with Tombo (1.5.1, https ://nanoporetech.github. 
io/tombo/resquiggle.html), which required three inputs: raw single fast5 files, a 
fastq file containing all of the "pass" reads, and a s e q u e n c i n g _ s u m m a r y . t x t . 
During preprocessing, the raw signals are annotated with all of the basecalled data. 
This process did not produce any output files. The only way to confirm that pre­
processing had occurred is to check the number of reads that had been assigned 
sequences in a log file. Following preprocessing, the re-squiggling process was initi­
ated using the annotated reads and a reference genome from NTUH-K2044. This 
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represents the final step before methylation detection, although once again no out­
put files were generated, and we only received information regarding the percent­
age of unsuccessfully processed reads. It is crucial to set the same filenames at 
- b a s e c a l l - g r o u p . Otherwise, the re-squiggling will result in: 

F l o a t i n g P o i n t E r r o r : u n d e r f l o w e n c o u n t e r e d i n exp. 

After re-squiggling was done, there were no files as output, but the successful 
execution of the program could be verified based on the logs. Logs provide infor­
mation about the percentage of unsuccessfully processed reads and the reasons why 
they weren't processed. If everything went right, there should be a text similar to 
this: 

Unexpected e r r o r s o c c u r e d . See f u l l e r r o r s t a c k t r a c e s f o r f i r s t 
(up to) 50 e r r o r s i n "unexpected_tombo_errors.7453.err" 
[11:13:34] F i n a l u n s u c c e s s f u l reads summary (13.8% reads u n s u c c e s s ­
f u l l y p r o c e s s e d ; 75522 t o t a l r e a d s ) : 

8.7% (47524 r e a d s ) : Alignment not produced 
2.9% (15641 r e a d s ) : Poor raw t o e x p e c t e d s i g n a l matching 
2.9% (15641 r e a d s ) : Poor raw t o e x p e c t e d s i g n a l matching 
1.6% (8609 r e a d s ) : Read event t o sequence a l i g n m e n t extends 
beyond bandwidth 
0.7% (3721 reads) : Base c a l l s not found i n FAST5 
0.0% (23 r e a d s ) : Fewer c h a n g e p o i n t s found than r e q u e s t e d 
0.0% (3 r e a d s ) : Unexpected e r r o r 
0.0% (1 r e a d s ) : Not enough raw s i g n a l around p o t e n t i a l genomic 
d e l e t i o n ( s ) 

[11:13:34] S a v i n g Tombo reads i n d e x t o f i l e . 

4.6 Methylation detection using DeepSignal2 

DeepSignal2 (0.1.3, https://github.com/PengNi/deepsignal2) was utilized to de­
tect methylations. The initial step involved extracting the methylation information 
from fast5 files that had been modified in previous steps by d e e p s i g n a l 2 e x ­
t r a c t . This command results in a Tab-separated values (TSV) file which was 
used in a subsequent calling of modifications. This final step was performed using 
d e e p s i g n a l 2 c a l l _ m o d s . This command utilizes the previous T S V file and 
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trained model in order to call desired methylations. DeepSignal2 provides a trained 
model m o d e l . d p 2 . C G . R 9 .4_1D . h u m a n _ h x l _ t 2 t . b o t h _ b i l s t m . b l 7 _ s l 6 _ 
epoch7 . c k p t , which can be used instead of training a new model. It is a model, 
that is available online without any restrictions. Using this model, the methylations 
could be obtained. Within the final m o d i f i c a t i o n _ c a l l . t s v file, several pieces 
of information can be found: chromosome name, name of the read and information 
if it is template or complement, probability of the predicted methylated or unmethy-
lated state, label of methylation itself and others. These files were huge, some were 
up to hundreds of gigabytes. To be able to work with them, it was crucial to filter 
the data first. 

Despite the modifications-calling command, DeepSignal2 comes with a script 
c a l l _ m o d i f i c a t i o n _ f r equency . py calculating the frequency of occurrence. 
This script counts the overall coverage for each position and the amount of methy­
lated and unmethylated sites. Based on these data the frequency of occurrence for 
each position is calculated which can be utilized in the process of data optimization. 
These files are marked as c a l l _ m o d s _ f r equency . t s v in the following sections. 

4.7 Optimization of the resulting data 

As already mentioned the resulting data are huge and needed to be optimized before 
the analysis. The first optimization step used throughout the whole process was 
saving all the files in T S V format. The main optimization in order to reduce the 
amount of data was filtering all the m o d i f i c a t i o n _ c a l l . t s v files based on 
the probability of occurrence of methylation. For the most accurate results, the 
threshold was set to 90%. For this step, the awk command was used. 

The commands utilized thus far have been executed through the utilization of 
P u T T Y , the terminal interface. The establishment of a secure connection with the 
school server was achieved via the implementation of SSH (Secure Shell). The sub­
sequent procedures were performed on a personal computer employing the Python 
programming language. 

Based on c a l l _ m o d s _ f r e q u e n c y . t s v files, data were filtered according to 
coverage and frequency of occurrence for each position. However, coverage varied 
considerably and therefore it was not possible to use a fixed threshold. In addition, 
the coverage did not have a symmetric distribution and therefore the use of the 
median proved to be the best choice. The median was calculated using the Me-
d i a n C o u n t e r . py script and then used in line 9 of the P r e p r o c e s s i n g . py to 
filter out positions from the c a l l _ m o d s _ f r equency . t s v files with too low cov­
erage. However, these positions had varying frequencies of methylation occurrence. 
Positions for which more reads without methylation than with methylation were 
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1. MedianCounter.py 
+ 
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+ 
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B 

R e f e r e n c e g e n o m e 

Coverage > Mean Frequency > 80% Probabil ity > 90% 

K P t = [1 None 1 1 D 1 1 0 1 0] 

K P A = [1 1 1 1 0 1 None 1 0 0] 

K P 3 = [1 1 1 1 0 0 1 1 0 1] 

Fig. 4.2: Process of optimization and data analysis: (A): Scripts used for each step. 
(B): Schematic workflow of optimization and data analysis. 

detected had a low frequency of occurrence and had to be removed. This threshold 
was set to 80%. 

The last data preprocessing step was to link the positions in the m o d i f i c a -
t i o n _ c a l l . t s v file, filtered by the probability of methylation occurrence, and 
the positions from the c a l l _ m o d s _ f r e q u e n c y . t sv file, filtered by coverage and 
frequency of occurrence. The output of this step was 10 files, one for each strain, 
containing positions meeting the above criteria. For ease of comparison, these po­
sitions were further sorted in ascending order using the MergeSort algorithm. A 
schematic drawing of the optimization procedure is shown in Figure 4.2 (B. l ) . The 
scripts used for this step can also be seen on the left side of Figure 4.2 (A. l ) . 
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Tab. 4.3: Maximal strains coverage and its median value. 

Strain Max. coverage Median value 

EB362 1 542 425 

KP387 1 441 906 

KP1179 540 253 

KP1193 821 271 

KP1231 192 85 

KP1236 654 194 

KP1228 503 191 

K P 1272 302 175 

KP1209 49 15 

KP687 52 10 
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Fig. 5.1: Number of methylation based on probability of occurrence 

5 Results 

5.1 Analysis of the resulting data 

Before any further analysis, the data were filtered based on different probabilities. 
The data obtained are shown in Figure 5.1. It is evident that there is a correlation 
between the probability of methylation occurrence and the number of methylations. 
As the probability that a position is methylated increases, the number of methyla­
tions decreases for all strains with approximately the same trend. 

The data obtained from the procedure described in Section 4.7 were processed 
into a matrix for more detailed analysis. For this purpose, all positions from the 
10 files were extracted and saved, creating a single vector of positions. This vector 
was then compared with the detected positions for each strain. If a position was 
present in a strain, a 1 was written to that position and vice versa. The result was 
an 11x531 matrix containing a vector of all positions and the presence or absence of 
methylation at that position for each strain (Fig.4.2(A.2, B.2)). 

For more objective results, deletions were also detected. For their detection, 
c a l l _ m o d s _ f r equency . t s v files were used, which contain a list of all positions 
for each strain. These files were compared with the positions from the A l l P o s i -
t i o n s _ s o r t e d . t s v file. If a position from A l l P o s i t i o n s _ s o r t e d . t s v was 
not present in c a l l _ m o d s _ f r equency . t s v , the position was written as a dele­
tion for the corresponding strain. These array positions were added to the matrix as 
the "None" value. Visualization of this matrix is in Figure 5.2 where only the zoomed 
area is shown for better readability. More detailed information on the number of 
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Fig. 5.2: Visualization of positions: White indicates deletions, yellow indicates 
methylations and purple indicates unmethylated positions. 

methylations is given in Table 5.1. In addition, the table provides a comparison 
with the number of positions in the case that if a deletion were present in at least 
one strain, the position would be completely removed. 

Tab. 5.1: Comparison of positions with and without deletions 

A l l posi­
tions 

Unique Common Other 

With deletions 531 328 2 201 

Without deletions 510 311 2 197 

To establish a meaningful distance matrix, a fitting metric was carefully selected. 
Considering the matrix's composition, which includes binary and sporadic "None" 
values, the Hamming distance appeared as the optimal choice. A Hamming function 
was created to calculate the distance between every pair of strains accurately. This 
function was used in populating a square matrix, initially filled with zeroes, with 
the computed distances based on the Hamming method. Figure 4.2 (B.3) shows an 
illustrative instance of this matrix, and the corresponding scripts are conveniently 
situated on the left (A.3). 

The final analytical step involved plotting a dendrogram to visualize the rela­
tionships. The U P G M A (Unweighted Pair Group Method with Arithmetic Mean) 
technique was employed, leveraging the previously derived distance matrix as its 
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Fig. 5.3: Dendrogram of strains with deletions: Dendrogram constructed from de­
tected methylations sites considering deletions. 

foundational precursor. U P G M A , a clustering method, enabled the creation of a 
hierarchical representation that encapsulates the genetic associations among the 
strains. 

To leverage the comprehensive functionality available within Python, the key 
libraries and functions were utilized, particularly s c i p y . c l u s t e r . h i e r a r c h y 
and m a t p l o t l i b , to achieve the most robust results in analysis. Two dendrograms 
were generated for the purpose of comparison. Figure 5.3 showcases a dendrogram 
produced from a matrix that includes "None" values, a scenario that adds complexity 
to the analysis. In contrast, Figure 5.4 illustrates a dendrogram derived from the 
same data but without a focus on deletions. This approach enables us to assess the 
impact of "None" values on the resulting dendrogram, emphasizing the importance 
of data completeness in such analyses. 

5.2 Discussion of results 

Figure 5.1 suggests a connection between the number of methylations based on the 
established threshold of probability of occurrence. The trend of decline is similar 
across all strains. Moreover, a correlation between the sequencing method and the 
number of detected positions can be observed here. Strains that were sequenced 
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Fig. 5.4: Dendrogram of strains without deletions: Dendrogram constructed from 
detected methylations sites irrespective deletions. 

alone have a higher number than strains that were multiplexed. 
However, a deeper comparison is only provided by the dendrogram for the cre­

ation of which the data were filtered on the basis of various criteria. According to 
the dendrogram in Figure 5.3 and sequencing types, it is clear that KP1193, KP1179 
and KP1228 are related. These three strains form a single cluster, confirming their 
belonging to the sequencing type ST551. This cluster stays the same even after con­
sidering the deletions (Fig. 5.4). In Figure 5.2 it can be seen that the deletions occur 
in these strains at mostly the same positions. The next cluster is formed by strains 
KP387 and KP687. Unlike the previous cluster, the strains in this one are not of 
the same sequencing type. While KP387 belongs to ST433, KP687 belongs to ST11. 
This would suggest that these species are functionally or otherwise similar, and thus 
could be compared. Just like with the previous cluster, strains within this cluster 
stay the same even without considering the deletions (Fig. 5.4). The difference is in 
the similarity of the clusters to each other. When considering the deletions, these 
clusters are more distant from each other; without considering them, they are, on 
the contrary, more similar. This shows that even a small change in the dataset can 
show differences that, in some cases, could be decisive. 
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Conclusion 
It is evident that methylations have a crucial role in epigenetics, and further 

research in this area is expected to have significant benefits across multiple fields. 
Methylations provide additional regulatory control, and their in-depth investigation 
can shed light on their significance. 

The theoretical background of the thesis was thoughtfully designed to ensure a 
comprehensive understanding. It successfully presented the necessary background 
information, making the practical part more accessible and understandable. Through­
out this part, various tools were discussed, and their principles were explained, pro­
viding the readers with a clear understanding of their functionalities. 

In the practical part of the thesis, the chosen tools, which were previously de­
scribed, were applied to the data to detect methylations. By utilizing the knowledge 
gained from the theoretical section and the understanding of the tool's principles, the 
methodology for methylation detection was designed. As shown later, this methodol­
ogy was able to implement the selected tools and successfully detect the methylations 
effectively. These data were then preprocessed for the most optimal results. The 
analytical part consisted of creating a distance matrix plotted into a dendrogram 
using U P G M A . This rendering made it relatively easy to evaluate the results based 
on the clusters created. 

The initial finding of this thesis is a certain trend between the strains in relation 
to the number of methylations and the probability of their occurrence. Moreover, 
from this comparison, it can be observed that the number of detected positions is 
related to the sequencing method. For strains sequenced alone, a higher number of 
detected positions is seen than for multiplexed strains. As this is an experimental 
topic, the results were not known in advance. However, we hypothesized that strains 
with the same sequencing type should form a single cluster. This assumption was 
confirmed by assigning strains KP1179, KP1193 and KP1228 to a single cluster. 
This assumption was confirmed by assigning strains KP1179, KP1193 and KP1228 
to a single cluster. On this basis, it can be assumed that methylation could be used 
for typing. The assignment of strains KP687 and KP387 to the same cluster despite 
different sequencing types suggests that typing based on methylation could yield 
even more accurate comparisons of similarities between strains. 

I tried to process the essence of this topic so that it is understandable and pro­
vided a practical solution so that the reader can reproduce it himself and understand 
the meaning of the individual step. By presenting these findings, the thesis estab­
lishes a foundation for further research exploring the similarity of bacterial strains 
based on methylations. 
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Symbols and abbreviations 
4 m C N4-methylcytosine 

5 m C 5-methylcytosine 

6 m A N6-methyladenine 

C c r M cell cycle-regulated methylase 

C G I CpG island 

C S V Comma-separated values 

D a m D N A adenine methylase 

D N A deoxyribonucleic acid 

d d N T P dideoxynucleotide triphosphate 

G P U Graphics Processing Unit 

MTase methyltransferase 

O N T Oxford Nanopore Technologies 

P C R polymerase chain reaction 

s s D N A single-stranded D N A 

T S V Tab-separated value 
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A Structure of the attached files 

Python 
OutputFiles 

A l l P o s i t i o n s _ s o r t e d . t s v 
.Deletions.tsv 
_Matrix.txt 
_ Matrix_NoneValues.tsx 

call_modification_frequency.py 
Deletions.py 
DistanceMatrixUPGMA.py 
Matrix.py 
MedianCounter.py 
MergeSort.py 
Preprocessing.py 

S h e l l S c r i p t 
GenomeAssembly.sh 
Demultiplexing.sh 
MethylationDetection.sh 
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