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Image recognition with ML.NET 

Abstract 

This thesis is focused on developing software in order to make recycling 

easier, therefore more used. It will be implemented by using modern technologies 

such as Machine Learning, TensorFlow ML.NET, and others. 

These technologies will be explained in great detail in the first part of the 

thesis, what they are, how they work, what they are made of, and what is their 

purpose. The second part, which is a practical part, will be about the step-by-step 

implementation and realization of the idea. As a result, a functional model for waste 

separation will be created. The model, after inserting an image of a waste product, 

will predict which category it belongs to. 

Keywords: Deep learning, Machine learning, Image recognition, Image 
classification, TensorFlow, ML.NET 
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Klasifikace obrázků za pomocí ML.NET 

Abstrakt 

Tato práce se soustředí na zjednodušení recyklace, za použití strojového učení, 

TensorFlow, ML.NET, a dalších technologií. 

Detaily (např.: jak fungují, z čeho se skládají, a k čemu se používají) těchto 

technologií budou popsány v první části této práce. 

Druhá část, která je praktická, se bude týkat postupných kroků implementace 

zmíněných technologií do programu určeného ke třídění odpadu. 

Finální program za pomoci netrénovaného modelu dokáže z fotky rozeznat do jaké 

kategorie daný kus odpadu patří. 

Klíčová slova: Deep learning, Machine learning, Image recognition, Image 

classification, TensorFlow, ML.NET 
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1. Introduction 

Humanity is facing one of the greatest problems in our history - pollution. It is 

not only causing irreparable damage to our planet(especially oceans) but also to us 

and our health. Speaking numbers about 40% of human deaths are caused by air, 

water, and soil pollution. In order to prevent the death of everything alive, it is time to 

face the problem and act immediately. 

Unmanaged landfills have a severe impact on our climate. When organic 

waste products are decomposing they produce around 60% of methane, methane 

emissions are what causing global warming that can make our planet inhabitable. 

Alongside, landfills pollute oceans when water goes through them, it picks up lots of 

toxic substances. 

Not only do landfills pollute the oceans, but we also release waste into water 

bodies, by this, we make it unsafe not only for humans but it also depletes aquatic 

ecosystems and kills its inhabitants. 

Here are some of the benefits of garbage separation: 

• We create lots of waste and with every year the number is increasing rapidly, 

so there is a need for a place to bury it, but what if in a couple of hundred 

years there is no more place? Recycling prevents this from happening, 

therefore this land can be used for better purposes such as growing trees and 

helping our environment; 

• Waste decomposition is poisoning soil and water as well as causing global 

warming. Most part of the waste products can be reused, therefore 

decreasing the deadly impact; 

• Production is using lots of natural resources such as water, wood, etc. By 

recycling, we don't need as much of it. For example, metals can be reused an 

unlimited amount of times, paper - up to 6, and plastic - one or two; 



• Recycling and reusing are cheaper, considering the transportation, payments, 

electricity bills, etc. For example, aluminum cans when recycled, require 95% 

less energy than to produce new ones; 

Considering aforesaid I have decided to help to resolve this problem. 

We live in an era of technology and automation is a great benefit since we can not 

make everyone care. In this thesis, we will try to create a model that will be able to 

separate garbage into three categories: paper, glass, and plastic. We will explore 

what stands behind this, the logic of it, and the technologies used. 



2.Objectives and Methodology 

2.1. Objectives 

The objective of this bachelor thesis is to create an application for image recognition. 

The intelligent agent will be implemented by generating an ML.NET image 

classification model from a pre-trained TensorFlow model. The agent will be wrapped 

in a simple C# application. 

2.2. Methodology 

The methodology of the thesis is based on analysis of technical and scientific 

sources focusing on artificial intelligence, machine learning, and object 

recognition. Based on the synthesis of the knowledge gained, a prototype C# 

application will be implemented to recognize objects in an image. The 

TensorFlow Inception model's abilities are going to be used in an ML.NET 

image classifier. The performance of the application will be assessed in terms 

of detection precision and classification accuracy. 

http://ML.NET
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3. Literature Review 

3.1 Artificial Intelligence 

There is an eminent quote which I think is good to define Al - "It is the science 

and engineering of making intelligent machines, especially intelligent computer 

programs. It is related to the similar task of using computers to understand human 

intelligence, but Al does not have to confine itself to methods that are biologically 

observable." (McCarthy, 2004) 

In other words, Al is a field of computer science where machines are trying to 

simulate human intelligence for problem-solving purposes based on input data, also 

it is the most complex of human creations yet. 

There are two generalized types of Al nowadays, these are weak Al and 

strong A l . 

Weak Al or it can also be called Artificial Narrow Intelligence (ANI) is pretty 

much all the Al used around us, even the most complex ones created by now fall 

under ANI. Weak Al is used to solve some particular tasks by using human-like 

capabilities, but nothing more than it is programmed to do. It is used for example by 

Tesla, Amazon, Apple, etc. 

Strong Al is divided into two branches: Artificial General Intelligence (AGI) and 

Artificial Super Intelligence (ASI). 

AGI is an idea of Al having human intelligence with an ability to make its own 

decisions, multi-task, learn, build plans, have its own consciousness, and pretty 

much function like a human, whereas ASI is an idea of Al being superior to human 

beings. 

Artificial Intelligence has three sub-fields that are widely used: Machine 

Learning, Deep Learning and Neural Networks. ( IBM Cloud Education, 27 May 

2020) 



3.1.1 Types of Al 

• Reactive Machines - the oldest as well as the most primitive type of Al . 

These machines cannot create their own memories or use past experiences, 

which means they cannot "learn". Reactive Machines can only be used for 

responding to a set of inputs in other words they act to what they see. There 

is a well-known example of this type of machine, which is IBM's Deep Blue. 

• Limited memory - as distinct from reactive machines, this technology can 

look into the past. It means that it gets the knowledge from historical data, 

previously learned information, events, etc., and it analyzes its actions for 

making a better decision. This technology is used nearly everywhere where Al 

is: self-driving cars, chatbots, virtual voice assistants, etc. 

• Theory of mind - in psychology, it means understanding that other agents or 

entities in this world can have emotions, needs, thoughts, or beliefs that affect 

their behavior. Unlike previous technology, it is a work in progress and does 

not exist yet, but the essential idea of it is understanding humans as 

individuals with social interactions, motives, and expectations how to be 

treated - therefore act according to it. 

• Self-aware - this type of Al exists so far only hypothetically. An objective is to 

create a technology that will be self-aware or have consciousness. It means 

that it will have its own emotions, needs, and desires as well as possibly 

self-preservation ideas. 

3.1.2 Al in use 

Nowadays there are many for Al technology. The most common are following: 



• Automatic Speech Recognition (ASR) - is a technology that is using Natural 

Language Processing (NLP) to convert spoken language into text. Siri is a 

noteworthy example of it. 

• Computer Vision - using Convolutional Neural Networks (CNN) this 

technology allows a computer to derive meaningful information from images, 

videos, or some other inputs for further actions. For example, Tesla has 8 

cameras in their car that transform all the incoming data into one vector space 

for a full vision. 

• Customer Service - this technology came in handy, no need to hire more 

people since virtual agents or bots can do the job. Virtual agents are created 

to answer the most frequently asked questions. Telegram is famous for its 

bots. 

• Automated Stock Trading - there are server-based trading platforms that 

can perform trading without human intervention. 

• Recommendation Engines - using past behavioral data, this technology 

provides recommendations, for example in online shopping, when on 

checkout it offers a customer other products based on his interests or Netflix's 

recommendations. 

3.2 Machine Learning 

ML is a branch of Al which focuses on letting machines learn for themselves 

on some set of data or past experiences without being fully programmed. The main 

objective is that they perform the task with just an observation or instructions, which 

in a sense is an imitation of the way humans learn. 

Though training a model normally takes a long time since it is trained over 

vast quantities of data - results are generally more efficient and accurate. Also, there 

is an option of combining it with some other technologies - results can outgrow 



themselves. For example application of ML in loT has brought us to creating robotic 

vacuum cleaners, smart thermostat, etc. 

3.2.1 Machine Learning Methods 

Machine learning algorithms are normally distinguished into: 

• Supervised - these methods use a pre-labeled training dataset for future 

predictions. When data is fed to a model it is adjusting its weights to learn the 

situation, then it creates a mapping function that will make predictions about 

the output values. Furthermore, this model is able to compare its outcome to 

the right one and learn from it. The goal is to achieve an acceptable level of 

performance. 

• Unsupervised - it is called unsupervised since there is no human 

intervention, a model gets only an unlabeled input dataset. After that, it uses 

machine learning algorithms to find hidden patterns, differences, or similarities 

in order to learn more about the data. The model is left on its own, there is no 

right or wrong answer. 

• Semi-supervised - is a golden mean between supervised and unsupervised 

learning. Semi-supervised learning uses a small amount of labeled data 

besides unlabeled to guide the classification through the unlabeled dataset. 

Also this method can be used when there is not enough labeled data for 

supervised learning. In a way, it is more efficient to use semi-supervised 

learning since it is very time-consuming and expensive to label the data, 

whereas the unlabeled data can have free access. 

• Reinforcement - this machine learning method is similar to supervised 

learning, except there is no training dataset. The model is put in a game-like 

environment where the goal is to maximize achieved points. Without any 

guidance or hints, it must make a sequence of decisions in order to get a 

reward, otherwise there is a penalty. It is a trial-and-error process, but once 



it's done, the result is a very sophisticated tactic to solve the problem. A good 

example is IBM's Watson that used reinforced learning to win "Jeopardy!" in 

2011. ( "IBM Watson: the inside story of how the Jeopardy-winning 

supercomputer was born, and what it wants to do next", Jo Best, September 

9,2013) 

Here is a more detailed overview of what they can do: 

• Classification - predicts a category for an input variable, for example: "apple" 

or "pear", "disease" or "no disease" etc. 

• Regression - helps to predict a numerical output value such as money or 

price based on given data with similar properties. 

• Clustering - is when you need to find some inherent groupings in the data 

with similar characteristics, for example separating customers into groups just 

by their shopping behavior. In clustering, there is no output data used for 

training, instead the algorithm itself decides what is the output. 

• Association - this problem is to analyze a vast amount of data to find hidden 

patterns that describe the given data. For example, what group of people that 

buy product X, also tend to get product Y. 

• Dimensionality reduction - name defines itself, dimensionality reduction is 

used to remove least important data that can have thousands of features not 

needed for analysis. 

• Ensemble - this method is a merge of other methods in a way, it combines 

them. As a result, it can get higher-quality predictions than each one of them 

by itself. 

• Word embeddings - they capture the meaning of the word as well as find 

similarities between, and then allow us to do arithmetic with them. 



3.2.2 How it works 

We can estimate three main parts of a machine learning process: 

• A decision process - this step is about creating an estimate of patterns in a 

given dataset, no matter labeled or unlabeled. 

• An error function - this method estimates how good the prediction is by 

comparing it to already known examples (if such exist). 

• An updating or optimization process - at this stage the model learns and 

adjusts weights better to prevent the same mistake and improve overall. 

Following figure represents a more detailed overview of the steps in machine 

learning. 

MACHINE LEARNING PROCESS 
Clean, Prepare 

& Manipulate Data Test Data 

Figure 1. Machine Learning Process shown in the image (Adnan Sheikh, 

2021) 



3.2.3 Challenges of ML 

Al has not only brought us lots of help but also a lot of ethical concerns. And 

here is a detailed overview of some of them: 

• Technological Singularity - it is a very often discussed topic, should we use 

and trust autonomous systems such as self-driving cars or we must only 

create semi-autonomous vehicles and trust only ourselves with our lives? Can 

these cars fulfill their purpose, keep the driver safe and follow regulations 

designed for everyone or should we be more concerned about the human 

factor of the rest of the drivers and stay always aware? These and other 

similar questions haven't found an answer yet in our society. One can be said 

for sure, Al must earn our trust, but is it even going to happen? 

• Al Impact on Jobs - there is definitely a lot of noise around this topic. It only 

depends on the perspective you look at it. As with any other innovation, the 

demand will be shifted to some other area as well as new positions will be 

created. 

• Accountability - another big impact on the fear of Al is that there is no 

legislation for it. Yes, there are the three laws of robotics and ethicists are 

working aside with researchers, but can anyone guarantee safety? 

• Privacy - data collection has rapidly increased in the past decade, making 

people concerned about their personal information. Because of that, 

governments have invented new regulations for companies, such as G D P R in 

Europe that gives people more control over their data. 

• Bias and Discrimination - there are multiple questions regarding the ethics 

of Al , will there be discrimination? Amazon has tried it out and implemented Al 

in an attempt to simplify the hiring process. It has been called out immediately 

since the results were unacceptable, Al has biased job candidates by gender 

for any technical positions, which brings us to the point of making better 



choices when choosing what data should be used in the hiring process. And it 

is only one of the cases, more and more are coming before it will be made 

right. 

3.2.4. Limitations of ML 

Machine learning is a very powerful technology that can make a business 

grow with rocket speed. But before using it, it is always better to be aware of its 

limitations, which are following: 

• Insufficient, unknown, or excessive data - either one of these errors can 

occur during the training process since data is the most important qualifier. 

Predictive algorithms won't be able to learn in time, results can be far from 

being true, these problems may occur if unsuitable data is being fed to a 

model, or when excessive amounts are being added, so the model hasn't 

been trained to process that amount of new parameters simultaneously. Also, 

every single model must be trained differently and on a different dataset, since 

requirements are always various. 

• Training time - to get a reliable, and accurate model it is very important to 

train it well, try out different datasets, check and correct its predictions to 

improve the model. The software learns only after a certain period of time, 

and there are multiple training rounds, so the model must be corrected quite 

often in order to improve accuracy and keep the reliability score below what is 

permissible. 

• Approximation of results - after all these years, ML has improved, still, it 

cannot give a 100% accurate answer, and there is still a place for error or 

uncertainty. Anyways, it is still more beneficial to have at least some answer 

even if it is with an error than no answer at all. Therefore learn to work and 

understand these types of errors, for example, to prevent a model from being 

biased. 



• Data Interpretation - none of the algorithms available cannot make the right 

prediction due to one reason, it doesn't understand the meaning of the data 

and the task given. That is why there is still a need for humans to be involved. 

3.2.5 Use Cases for ML 

Machine learning is used in multiple areas and for different purposes. These are only 

some of them: 

• Customer service - this area is full of chatbots, which are more efficient to 

answer the most frequently asked questions (FAQ), such as troubleshooting, 

delivery, recommendations, etc. Examples are on most of the commercial 

websites, Facebook Messenger, Vkontakte, Telegram, and others. 

• Recommendation engines - Al that is using customers' previous 

consumption data to create personalized recommendations, for online 

shopping at the checkout, for example. 

• Computer vision - this Al technology is using visual inputs, analyzes them, 

and makes an action. For example, Tesla is using multiple cameras to 

recreate the surrounding to a dot map in vector space, for their self-driving 

cars. 

• Automatic speech recognition (ASR) - is the use of NLP to process human 

speech into a written text. Used in most modern devices not only for voice 

typing but also for simple tasks like voice search, setting an alarm, or calling 

someone. Siri, Cortana, and other virtual assistants use it. 



3.3 Neural Networks 

3.3.1 History 

Neural Networks were first created in the distant 1944 by Warren McCullough and 

Walter Pitts, who later became founding members of the so-called "first cognitive 

science department" at MIT. The research was going on and off for many years until 

the 1980s when it was fueled by a new increased power of graphical chips. 

When it was first created it was far from the way it is now, it had thresholds 

and weights with no layers and no training mechanism( specified by its creators). 

The idea behind this was that our brain could be like a computing device, since their 

model could compute any function as a computer could, which is indeed valuable for 

neuroscientific research, for example, to understand how the brain processes 

information. 

Perceptron is the first trainable NN presented in 1957 by a psychologist of 

Cornell University - Franc Rosenblatt. It was finally looking more or less like a 

modern NN except it has only one layer. 

"Of course, all of these limitations kind of disappear if you take machinery that 

is a little more complicated — like, two layers" - said Tomasso Poggio, professor of 

brain and cognitive science at MIT. 

And yes, by the 1980s, layers were added and NN has experienced a 

renaissance, but then another problem has appeared, how to understand it? Even 

nowadays we still don't know the answer, but we have adopted and deciphered 

some of its analytic strategies. 

Today, modern models can have up to 50 layers which is a nice improvement 

compared to day one, and it is considered the best performing system in almost all of 

the fields of Al . 

3.3.2 Artificial Neural Networks 

Neural networks are circuits of neurons, therefore exist in two types -

Biological Neural Networks and Artificial Neural Networks. Biological Neural 

Networks are made of biological neurons found in our brain, which brings us to 



Artificial Neural Networks that are inspired by them - made of artificial neurons or 

nodes in order to solve Al tasks, they imitate some of the basic functionalities of our 

brain but in a simplified way. Or else, it is a set of algorithms that is to find underlying 

connections in a dataset in a process that imitates a process in a human brain. 

Atypical Neural Network consists of input, output, and hidden layers. 

An input layer provides us with data that the network is going to learn from, 

and an output layer provides us with a result of the whole process, and hidden layers 

are where all the mathematical operations are happening. 

Connections between neurons in ANN are presented as weights between 

nodes(numerical value) and they are a representation of an axon in our brain. There 

are excitatory connections - for positive weights, and inhibitory connections - for 

negative weights. 

When the model learns, it changes these weights in order to solve a given 

task, it must get a certain weight for it to be done, but no one can predict what the 

value would be before it actually is done. Weights as datasets are different for each 

task and the model has to learn them. 

Given inputs are modified in weights and being summed, which creates a 

linear combination, then goes to an activation function and gives an output. The 

range of output can vary, from 0 to 1, or from -1 to 1. 

ANN can derive information and form a conclusion from information that is 

very complex and unrelated at a first glance. 

The flow of the information in NN can be of two types: 

• Feedforward propagation - data moves only forwards, so the activation 

function makes a "gate" in a way. 

• Backpropagation - in this case, weights of the connections are being 

adjusted, therefore we minimize the difference in the outcome of an obtained 

outcome vector and a desired one. 



Following image describes the architecture of an ANN. 

Figure 2. The basic ANN architecture by Akizur Rahman (2019) shows 

components of ANN 

3.3.3 How does the model learn? 

In the picture given above, we can see an input layer made, in our case, of 

two neurons(nodes) and is connected with nodes from the next layer using weights; 

these weights are assigned to each neuron according to the relative importance that 

these neurons have against other inputs. 

In the first step, all the nodes' values, as well as weights', are multiplied and 

summarized, they form values of the next layer, and based on this value, a 

predefined activation function will decide if the node is going to be activated in the 

next layer or not. Node being activated or not decides whether the node's input is 

important in the prediction process. 

After we get a prediction during the frontpropagation we then compare them 

to actual ones using the Loss Function. A smaller loss value means a more accurate 

prediction, so if we minimize the loss function we thereby improve our model. 



In order to minimize it, we must find a set of values of the weights for which 

the value is as small as possible. To achieve it, a different optimization function must 

be used, called - Gradient Descent. 

During this method a derivative of a loss function is used, the so-called 

"gradient", to adjust the weights according to the error they have caused. 

The weights are being repeatedly updated until they reach their optimal, 

needed value. 

After going through all these layers, calculations, and activations - the 

result is forwarded to an output layer and can finally be seen. 

3.3.4 Types of ANN 

ANNs are normally described by the number of layers that show their depth, 

hidden layers describe depth, it explains why the term neural networks is used as a 

synonym to deep learning. Else, it can be described by the number of inputs and 

outputs each node has or the number of hidden nodes. 

These are the types that could be selected as most specific: 

• Feed-forward Neural Networks - in this model, in order to get to the output 

node, information is passed in one direction and might not have any hidden 

layers, therefore making it easier to interpret. It is one of the simplest types 

and is often used for computer vision or facial recognition. 

• Recurrent Neural Networks - a more complex type, here model is being 

refed with its previous results of the processing nodes to learn to predict the 

outcome of the layer. It starts the same, with frontpropagation, but then this 

memory node remembers the previous result and reuses it in case if the 

prediction is incorrect, therefore self-improves and moves towards the right 

result during the backpropagation. Most often this type of ANN is used in 

text-to-speech. 



• Convolutional Neural Networks - one of the most popular technologies 

nowadays, widely used in image recognition, facial recognition, NLP, text 

digitalization, etc. This model contains one or more convolutional layers that 

could be either pooled or connected and uses a variation of multilayer 

perceptrons. Convolutional layers pick the area of the picture with the biggest 

amount of broken rectangles and record it into feature maps, then send them 

out. 

• Deconvolutional Neural Networks - this model is to find lost features that 

were before considered unimportant therefore it reverses a CNN model 

process. It is used in image analysis. 

• Modular Neural Networks - it is a combination of neural networks 

independent from each other. It makes complex computational processes 

more efficient. 

3.3.5 Advantages and disadvantages of ANN 

Advantages of ANN include: 

• ANN's can predict an outcome of unseen data since it works to find these 

unseen relationships; 

• there is not just a database, information is being stored all over the network; 

• ANN's are able to learn from events and make their own decisions only based 

on observations; 

• a network is multi-tasking, meaning it can parallel process and do a few jobs 

at a time; 



• no restrictions are applied to an input data; 

• an ability to produce an outcome without having complete knowledge or with a 

loss of performance just based on the importance of the missing information; 

• it is fault-tolerant, which means that when some cells are corrupted - ANN will 

still provide an outcome. 

Disadvantages include: 

• it can be hardware dependant because the ability of parallel processing 

requires particular processors; 

• all the input data must be transformed into numerical in order to be fed to a 

model; 

• the lack of explanations of why and how; 

3.3.6 Types of Activation Functions 

The use of Activation Functions is to show a non-linearity in the network. 

Normally, all the hidden layers use the same Activation Function within the same 

network. 

The activation function defines the output that a node will generate, based upon its 

input: 

• Sigmoid Function - is widely used, very well results are shown when we 

have to predict probabilities since the probability range is the same as the 

range of the output value of the function, and is from 0 to 1. A limitation is the 



Vanishing Gradient problem, when more layers are used it makes the gradient 

too small to work effectively; 

Tanh Function - is similar to the previous function, except the range is from 

-1 to 1, it even has the same S-shape. The output of the function is zero 

centered, which means that we can separate the outcome values into 

positive, negative, or neutral, it is good for centering data and makes the 

learning process easier for further layers; has the same limitation as to the 

sigmoid function; Should not be used in hidden layers as well as Sigmoid 

Function due to a Vanishing Gradient problem; 

Rectified Linear Unit (ReLU) - is a derivative function that is more 

multi-tasking, it allows the backpropagation to work simultaneously; ReLU 

only deactivates nodes when the value goes below zero and does not activate 

them at once, it makes it more efficient than previous functions. A limitation 

faced by this function is called the "Dying ReLU Problem" - negative input 

values become zero instantly which decreases the ability to train well, by this -

dead neurons are created, that won't ever get activated; Should only be used 

in hidden layers; 

Leaky ReLU Function - an updated version that solves the dying ReLU 

problem. Is more time-consuming because of the modification, in which the 

gradient for a negative value is a small number. 

Softmax Function - is mostly used in the last layer for multi-classifications, 

and is described as a combination of multiple sigmoids. It calculates relative 

probabilities and after returns a probability for each of the classes; 

Swish - recognized to be an equal or even better than ReLU, this activation 

function was created by researchers at Google. Swish is recommended to use 

in networks with 40+ layers; 

Gaussian Error Linear Unit (GELU) - this activation function is well 

compatible with most NLP models. G E L U has a merged functionality of ReLU 



( multiplying inputs by 0 or 1, depending if the input value is positive or 

negative), dropout (sets input value to zero randomly at a rate, therefore 

prevents overfitting), and zoneout ( stochastically multiplies the inputs by 1); 

• Scaled Exponential Linear Unit (SELU) - this function has an internal 

normalization property that is adjusting mean and variance and preserves 

them from previous layers. 

3.4 Deep Learning 

What is Deep Learning? 

Deep learning is a more complex multi-layered structure of algorithms -

Neural Networks or also referred to as Deep Neural Networks. 

Deep Learning is a key technology nowadays and is attracting lots of attention 

because of its results. It has improved that much, so it can throw a shade on human 

performance. 

How? 

It finally has access to the amount of data needed to be extremely accurate, 

and do things that were impossible in the nearest past. 

Why is it better? 

Deep Learning models got their benefits over Machine learning models. In 

the case of Machine Learning, it is using so-called flat algorithms that could not be 

applied to raw data, so there is an extra step implemented - Feature Extraction. This 

step is done by humans and it prepares raw data to be used by Machine Learning 

algorithms. "Feature Extraction is usually quite complex and requires detailed 

knowledge of the problem domain. This preprocessing layer must be adapted, tested 

and refined over several iterations for optimal results." (Artem Opperman, 12 

November 2019). In the case of Deep Learning, this step is not needed since it 

already is a part of the process of Neural Networks and model will recognize unique 

features by itself. Except that, Deep Learning models keep improving themselves 

with an increase of the data unlike Machine Learning models, which stop improving 

after saturation point. 



"The analogy to deep learning is that the rocket engine is the deep learning 

models and the fuel is the huge amounts of data we can feed to these algorithms." -

Andrew Ng, chief scientist in Baidu and one of the leaders in Google Brain project. 

3.4.1 Deep Learning in use 

Deep Learning apps are used for multiple purposes, such as: 

• Medical Research - the healthcare industry is using deep learning for 

accurate and relatively fast results. For example, an advanced microscope 

was built in order to detect cancer cells, it works with high-dimensional 

datasets to train the machine and detect them. 

• Electronics - in electronics deep learning is widely used, smart houses, voice 

assistants - powered by deep learning. 

• Aerospace and defense - used in order to research a focus area from 

satellites, as well as check if the area is fitting for further exploring with troops. 

• Automated driving - detecting objects such as signs or people walking by 

became possible with this technology. 

• Industrial automation - in factories the automation process improves the 

safety within. It detects when workers are at a close unsafe distance, 

therefore, performs safety protocols. 

3.5 Al vs. Machine Learning vs. Deep Learning vs. Neural 
Networks 

Terms Artificial Intelligence, Deep Learning, Machine Learning, and Neural 

Networks are usually used interchangeably, but it is not the same thing, they relate 

but also they have a lot of differences. 



The best way to describe them is nesting. The following image describes it 

visually. 

Artificial Intelligence 

: Machine Learning 

: : Neural Networks 

Figure 3. Nesting of Al , ML, NN, DL shown in the image (Eda Kavlakoglu, 2020) 

Machine Learning is a subfield of Artificial Intelligence, Neural Networks - of Machine 

learning, and Deep Learning - of Neural Networks. 

When we compare Deep Learning to Neural Networks, it is the number of 

node layers that makes it "deep", since there must be at least three of them, 

otherwise, it is a single Neural Network. In case there are more than three depth 

layers it builds up into a Deep Learning algorithm. 

If we speak about the difference between Deep Learning and Machine 

Learning it is a question of a dataset given, how it learns, and human intervention. 

Deep Learning works with a vast amount of unstructured data, eliminates the need 

for humans to check after the outcome, and finds distinguishing features within the 

dataset by itself, instead, it needs more data to improve accuracy. In the case of 

Machine Learning, it requires more structured data to learn on, humans to look over, 

determine hierarchy, explain inputs, set up differences between them so-called 

"feature extraction", and so on. 

Last but not least is Artificial Intelligence, the most general term that covers 

them all - means machines that simulate human intelligence. 



3.6 ML.NET 

ML.NET is an open-source cross-platform machine learning framework for 

NET developers. It allows integrating custom-made ML models into .NET apps. 

Here are some examples of what can be done using ML.NET: 

• Sentiment analysis; 

• Sales spike detection; 

• Product recommendation; 

• Customer segmentation; 

• Object detection; 

• Image classification; 

• Fraud detection; 

• Sales forecasting; 

• Price prediction. 

ML.NET does allow to create own ML models without leaving a .NET 

environment using C# and F#. The platform is beginner-friendly, it provides Auto ML 

and other tools that allow easy to build and train ML models, and at the same time 

doesn't require any previous ML experience. 

Libraries such as lnfer.NET, ONNX, or TensorFlow could be used for 

additional scenarios making it versatile. 

It is said to be more accurate than other ML frameworks, as of the paper -

"Machine Learning at Microsoft with ML.NET", 15 May 2019. This paper compares 

the most popular ML frameworks using a 9GB Amazon dataset. 

The performance outcome is following: 
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Accuracy (AUC) Runtime: Training + Testing (minutes) 

93% 11 

Figure 4. Performance comparison of different ML frameworks by Microsoft (no date) 

.NET is an open-source, cross-platform, free development framework for 

creating multi-purpose applications. .NET supports languages such as C#, F#, or 

Visual Basic and offers its own libraries, editors and tools in order to build for web, 

desktop, mobile, games, and loT. 

Different implementations allow it to run easily on different OS. For example: 

• .NET - used for websites, servers, and console apps for macOS, Linux, and 

Windows; 

• .NET Framework - Windows-focused, supports websites, services, desktop 

apps, etc.; 

• Xamarin/Mono - this implementation is used for running apps on all mobile 

devices. 

3.7 .NET platform 

The platform has extensive libraries such as NuGet, which is built specifically 

for it with around 90,000 packages. 



3.8 TensorFlow 

TensorFlow is an end-to-end platform that makes it easy for you to build, deploy ML 

models, and solve real-life problems. 

"TensorFlow has always provided a direct path to production. Whether it's on 

servers, edge devices, or the web, TensorFlow lets you train and deploy your model 

easily, no matter what language or platform you use. 

Use TensorFlow Extended (TFX) if you need a full production ML pipeline. For 

running inference on mobile and edge devices, use TensorFlow Lite. Train and 

deploy models in JavaScript environments using TensorFlow.js. Build and train 

state-of-the-art models without sacrificing speed or performance. TensorFlow gives 

you the flexibility and control with features like the Keras Functional API and Model 

Subclassing API for creation of complex topologies. For easy prototyping and fast 

debugging, use eager execution. 

TensorFlow also supports an ecosystem of powerful add-on libraries and models to 

experiment with, including Ragged Tensors, TensorFlow Probability, Tensor2Tensor 

and BERT." - definition given by an official website TensorFlow.com. 

3.9 Inception Network 

Inception Network is a great achievement in the development on CNN 

classifiers. Unlike others it doesn't just stack convolutional layers, it adds new 

Inception modules in order to get faster and better performance as well higher 

accuracy. 

It was first mentioned in a paper "Going deeper with convolutions" (17 

September 2014), where it was defined as "...a deep convolutional neural network 

architecture codenamed Inception, which was responsible for setting the new state 

of the art for classification and detection in the ImageNet Large-Scale Visual 

Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is 

the improved utilization of the computing resources inside the network. This was 
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achieved by a carefully crafted design that allows for increasing the depth and width 

of the network while keeping the computational budget constant. To optimize quality 

the architectural decisions were based on the Hebbian principle and the intuition of 

multi-scale processing. One particular incarnation used in our submission for 

ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is 

assessed in the context of classification and detection." 

A proof of it's advantage over others is its outstanding breakthrough 

performance on the ImageNet Visual Recognition Challenge (2014), which is a 

platform for benchmarking image recognition and detection algorithms. 

In order to create a better deep learning model normally you would make it 

deeper, but this is causing other problems like overfitting(especially with small data) 

or a need to increase computational power, which is expensive. Paper suggests a 

solution for this, and solution is to replace fully connected layers to a sparsely 

connected architecture, meaning increasing not only depth but also width of the 

network. 

Inception v1 or GoogleLeNet was the first implementation of the idea. 
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Figure 5. GoogLeNet incarnation of the Inception architecture ("Going deeper with 

convolutions", 17 September 2014) 

Some layers are called "inception" and they are the core idea behind a 

sparsely connected architecture. "(Inception Layer) is a combination of all those 
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layers (namely, 1x1 Convolutional layer, 3x3 Convolutional layer, 5x5 Convolutional 

layer) with their output filter banks concatenated into a single output vector forming 

the input of the next stage." 

Inception layers allow internal layers to pick filter size according to the image 

therefore get the most relevant information, this explains its effectiveness. 

Fun fact, "codenamed Inception, which derives its name from the Network in 

network paper by Lin et al in conjunction with the famous "we need to go deeper" 

internet meme". ("Going deeper with convolutions", 17 September 2014) 

4. Practical Part 

4.1 Goal 

The practical part of the thesis will be focused on building and training a 

model that will be able to put any new unknown item of trash into the following 

categories: paper, glass, or plastic. The model will be utilised in a simple prototype 

console application. 



4.2 Prerequisites 

In order to fulfil this task, following tools and resources will be used: 

- Visual Studio 2019 running on Windows 10 as operating system; 

- The Inception V1 ML model, which is already pre-trained to classify images 

into thousand categories and has image processing features needed to build 

a custom image classifier; 

- Image files & C S V file, which pairs labels and images in two columns: 

"ImageData" and "Label". 
g l a s s l . j p g j g l a s s 
g l a s s 2 . jpg. ,g lass 
g l a s s 3 . j pg., g lass 
g l a s s 5 . jpg. ,g lass 
g l a s s 6 . jpg. ,g lass 
glass7. ; ipg. ,g lass 
g l a s s 8 . jpg. ,g lass 
g l a s s 9 . jpg. ,g lass 
g l a s s i e . j p g j g l a s s 
p a p e r l . j p g , p a p e r 
paper3. jpg., paper 
paper4 . jpg,paper 
papers, jpg., paper 
paper6.jpg., paper 
paper7.jpg., paper 
paper8.jpg., paper 
paper9.jpg., paper 
paper lB . jpg j paper 
p l a s t i c l . j p g j p l a s t i c 
p l a s t i c 2 . j p g j p l a s t i c 
p l a s t i c 3 . j p g j p l a s t i c 
p l a s t i c 4 . j p g . , p l a s t i c 
p l a s t i e s . j p g j p l a s t i c 
p l a s t i c 6 . j p g , p l a s t i c 
p l a s t i c 7 . j p g j p l a s t i c 
p l a s t i c 9 . j p g j p l a s t i c 
p l a s t i c i e . j p g j p l a s t i c 

Figure 7. Labeled image files in "labels.csv" 

Image files are stored in a folder "images", there are 40 for each category, total 120 

images. 21 of them are excluded from the C S V file (7 from each category), for 

example: "glass4.jpg", "paper2.jpg" and "plastic8" belonging to according categories. 

These and other files will be used for testing later on. 



Paper Plastic Glass 

Figure 8. Example of images used 

4.3 Workspace setup 

As a first step to create a C# application prototype, .NET Core Console 

Application is created in Visual Studio 2019. Second, following NuGet packages are 

installed: 

- Microsoft.ML; 

- Microsoft.ML. ImageAnalytics; 

- SciSharp.TensorFlow.Redist; 

- Microsoft.ML.TensorFlow. 

Third, moving "images" folder, "labels.csv" file and a "model" folder that 

contains files needed in order to use the Inception model.Next, in Visual Studio, 

Solution Explorer for all the added files we change the property of "Copy to Output 

Directory", value needs to be "Copy if newer". That's it, all set up, the environment is 

ready to be used. 



4.4 Creating an application 

4.4.1 Libraries 

To the top of the program the following "using" statements need to be added in order 

to use the libraries required. 

Figure 9. "using" statements 

4.4.2 Creating additional classes 

4.4.2.1 "ImageData" class 

The purpose of this class is to load the information from the "labels.csv" file. 

For this class an additional "using" statement is added : 

- using Microsoft.ML.Data; 

Two strings are created: 

• "ImagePath" - loads the name of an image file; 

• "Label" - loads a label value for images. 

Figure 10. "ImageData" class 



4.4.2.2 "ImagePrediction" class 

"ImagePrediction" class inherits properties of the "ImageData" class. It will be used 

after the model is trained and ready to use. 

For this class, following fields are created: 

• "Score" - will predict an accuracy or a confidence percentage; 

• "PredictedLabelValue" - contains a value of a label for a predicted image. 

Both of them are used to predict and evaluate an input image. 

public class ImagePrediction: ImageData 
{ 
! 2 references 

public f l o a t [ ] Score { get; set; } 

I 2 references 

! public s t r i n g PredictedLabelValue { get; set; } 

} 
Figure 11. "ImagePrediction" class 

4.4.2.3 "InceptionSettings" class 

Last one we create an "InceptionSettings" struct, since it only has value type 

semantics. Here we pass in the constant parameters needed in the Inception model. 

p u b l i c s t r u c t I n c e p t i o n S e t t i n g s 
{ 

p u b l i c const i n t ImageHeight = 224; 
p u b l i c const i n t IMageWidth = 224; 
p u b l i c const f l o a t Mean = 117; 
p u b l i c const f l o a t S c a l e = 1; 
p u b l i c const bool C h a n n e l s L i s t = t r u e ; 

> 

Figure 12. "InceptionSettings" class 



4.4.3 Initializing variables In Main 

1. First we must initialize a "context" variable with a new MLContext instance, by 

this a new ML.NET environment is created that is shared across all the 

objects of the model. Every single ML operation starts with creating an 

MLContext. It provides everything needed in order to build a pipeline, means 

it allows the creation of elements for loading data, feature extraction, training, 

predicting and evaluating. 

var context = new MLContext(); 

Figure 13. "context" variable 

2. Initializing a "data" variable, we specify a file which text data will be loaded 

from, using the previously created class "ImageData" and "LoadFromtextFile" 

method. Since data is loaded from a C S V file (Comma Separated Values) -

"separatorChar" is set to comma. 

var data = context.Data.LoadFromTextFile<ImageData>("./labels.csv"j separatorChar: ',' • 
Figure 14. "data" variable 

4.4.3.1 Pipeline. 

Pipeline is a set of chained methods, no execution is happening at this step, 

until the Fit method is called. Data cannot be used raw , therefore it must be 

transformed, by using the "Transforms" property. Data transformation helps to 

convert data from a raw state into a ready for analysis state, making sure it is of 

maximum quality. 

First transformation happens to labels, since value is categorical, so it has to 

be transformed into numerical form. The images are loaded then, as input from the 

"images" folder, using "ImagePath" from the "ImageData" class. Next transformation 

is resizing them using "ImageHeight" and "ImageWidth" from the "InceptionSettings" 
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class, then stored as new input. After pixels are extracted, they are stored in the 

channel list, in a form of all values for one color for all pixels, then the same for 

another color and so on. 

After all the transformations TensorFlow is loaded from the "model" folder, 

SoftMax activation function is used, "addBatchDimensionlnput" is set to true, 

meaning, if data has unknown shape but model requires data to have batch 

dimension too. 

Next is a trainer of the classification model with a Limited-memory 

Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS), counting new label values. 

This is a popular optimization algorithm for parameter estimation that provides faster 

convergence towards the minimum. 

At last numerical "PredictedLabelValue" is counted and converted back to 

categorical as "PredictedLabel". 

v a r p i p e l i n e = context.Transforms.Conversion.MapValueToKey ("LabelKey", " L a b e l " ) 
.Append ( c o n t e x t .Transforms . Load Images (" i n p u t " , "images"., nameof (ImageData . ImagePath))) 

. A p p e n d ( c o n t e x t . T r a n s f o r m s . R e s i z e l m a g e s ( " i n p u t " , I n c e p t i o n S e t t i n g s . I M a g e W i d t h , 
I n c e p t i o n S e t t i n g s . I m a g e H e i g h t , " i n p u t " ) ) 

. A p p e n d ( c o n t e x t . T r a n s f o r m s . E x t r a c t P i x e l s ( " i n p u t ' \ i n t e r l e a v e P i x e l C o l o r s : 
I n c e p t i o n S e t t i n g s . C h a n n e l s L i s t j o f f s e t l m a g e : I n c e p t i o n S e t t i n g s . M e a n ) ) 

.Append(context.Model.LoadTensorFlowModel("./model/tensorflow_inception_graph.pb") 
.ScoreTensorFlowHodel ( n e w [ ] { " s o f t m a x 2 _ p r e _ a c t i v a t i o n " }., new[] { " i n p u t " } j 
addBatchDimensionlnput: t r u e ) ) 

. A p p e n d ( c o n t e x t . M u l t i c l a s s C l a s s i f i c a t i o n . T r a i n e r s . L b f g s M a x i m u m E n t r o p y ( " L a b e l K e y " , 
" s o f t m a x 2 _ p r e _ a c t i v a t i o n " ) ) 

.Append(context.Transforms.Conversion.MapKeyToValue("Predicted L a b e l V a l u e " j " P r e d i c t e d L a b e l " ) ) ; 

Figure 15. "pipeline" variable 

3. Model is created by fitting the data into the pipeline. 

var model = p i p e l i n e . F i t ( d a t a ) j 

Figure 16. "model" variable 



4. Now the data is being transformed. 

Console. WriteLine("\n Evaluate " ) ; 

var evaluatePredictions = model.Transform(data); 

Figure 17. "evaluatePredictions" variable 

5. By initializing the "metrics" variable, the performance of the model will be 

evaluated using the ".Evaluate()" method. It will return the performance 

metrics. 

Log Loss - is a metric that has a value that defines an accuracy of the 

prediction. The lesser the number(should be as close to zero as it can be) the 

more accurate the classifier is. Same thing will be done to each class 

accordingly. 

var Re t r i es = c o n t e x t . M u l t i c l a s s C l a s s i f i c a t i o n . E v a l u a t e f e v a l u a t e P r e d i c t i o n S j labelColumnName: "LabelKey"j 
predictedLabelColumnName: "Pred ic tedLabe l" ) ; 

Console.WriteLine($"Log Loss - {metr ics.LogLoss}") ; 
Console.WriteLine($"Per c lass Log Loss - {St .DoinCj'j |met r ics .PerClassLogLoss .Se lec t ( l => 1 .ToStr ing( ) ) ) } " ) ; 

Figure 18. "metrics" variable 

6. Next the ".CreatePredicitionEngine" method was used to create a prediction 

engine. Input data is defined by "ImageData" class, and the output by 

"ImagePredicition" class. 

v a r p r e d i c t i o n F u n c t i o n = c o n t e x t . M o d e l . C r e a t e P r e d i c t i o n E n g i n e < I m a g e D a t a J I m a g e P r e d i c t i o n > ( m o d e l ) j 

Figure 19. "predictionFunction" variable 

7. The performance of the model is assessed by trying to make a single 

prediction to an image that wasn't previously manually labeled - "glass4.jpg". 

Later on in Results will be done two more single predictions for items 

"plastic8.jpg" and "paper2.jpg" in order to try and check it a few more times. 



var s i n g l e P r e d i c t i o n = predictionFunction.Predict(new ImageData 
{ 

ImagePath = Path.Combine(Environment.CurrentDirectory, "images"j "glass4.jpg") 
}); 

Figure 20. "singlePrediction" variable 

8. In this step the outcome will be displayed. The model will predict which 

category the "glass4.jpg" belongs to and at what score. The closer score to 1 -

the better. 

C o n s o l e . W r i t e L i n e ( " \ n P r e d i c t i o n s f o r unknown items " ) ; 

Console .Wr i teL ine($" I tem {Path .GetF i leName(s ing lePred ic t ion . ImagePath) } belongs to a waste category - " + 
$" { s i n g l e P r e d i c t i o n . P r e d i c t e d L a b e l V a l u e } " + 
$"with a score of { s i n g l e P r e d i c t i o n . S c o r e . M a x ( ) } " ) ; 

Console.Read L i n e ( ) ; 

Figure 21. Displaying an outcome 

4.5 Performance assessment 

Application is complete, now it is time to run it in order to check its 

functionalities and predictions. There were no visible problems during the execution, 

fast loading and acceptable results. Let's take a closer look at the outcomes. 

4.5.1 Outcomes 

4.5.1.1 Log Loss 

Results of the total Log Loss and per class Log Loss are in the same range 

without any drastic difference. All of them are close to zero, meaning the model is 

acceptably accurate, though the dataset is relatively small. 



Evaluate 
Log Loss - 0.015946599797730176 
Per c l a s s Log Loss - 0.01412923412891971,0.014085109369320017,0.019625455894950808 

Figure 22. Results of the Log Loss and Log Loss per class 

4.5.1.2 Testing predictions for the unknown items 

15 items out of 21 were recognized correctly with a score 0,92+ which is a 

confident prediction. 

P r e d i c t i o n s f o r unknown items 
Item g l a s s 4 . j p g belongs t o a waste category - g l a s s with a score of 0.92434996 

Figure 23. Prediction for an unknown item "glass4.jpg" 

3 items out of 21 were recognized correctly with a score ranging from 0,71 to 

0,88 making it an average confidence. 

P r e d i c t i o n s f o r unknown items-
[tern p l a s t i c 3 6 . j p g belongs t o a waste category - paper with a score of 0.8555405 

Figure 24. Prediction for an unknown item " "plastic36.jpg" 

3 predictions out of 21 were wrong. 

P r e d i c t i o n s f o r unknown items 
[tern p l a s t i c 2 9 . j p g belongs t o a waste category - p l a s t i c with a score of 0.7191578 

Figure 25. Prediction for an unknown item "plastic29.jpg" 

Overall 86% samples from the training dataset were correctly predicted with a 

high recognition score. 



5. Results 

The result of this bachelor thesis is a fully functional program that has a 

relatively good success rate considering a small sample size. Model can definitely be 

improved by adding more data to it as well as other custom features or some parts of 

it can be used for other purposes. 

This thesis shows the use case of implementation of a pre-trained TensorFlow 

model, which can be helpful in such a sensitive topic like global pollution, where it 

can be used to improve the situation overall by automating the waste separation 

process. 

The work was done using a C# programming language, ML.NET libraries as 

well as a pre-trained TensorFlow model, source code is attached to the thesis. The 

main "Program.cs" file is used to run it. 

During the building process no major problems have occurred, the model 

works as intended with relatively good outcomes. For a practical application more 

data is needed in order to improve the model and to cover the variability in the image 

set. Although this model is not ready for a real-world application, it is indicative of 

possibilities CNN's can offer. 

6.Conclusion 

This thesis focused on a real implementation of an existing Machine Learning 

model with a full theoretical background for the technologies that are used or 

connected to the topic. The Literature Review part explains in great detail the history, 

purposes and functionalities, underlying and related technologies of fields such as 

Artificial Intelligence, Machine Learning, and Deep Learning. It also compares them 

in order to have a better understanding of their role. 

Object Recognition and Classification is described and performed in the 

practical part of this thesis on a case study of waste recognition application prototype 

with a step-by-step guidance through all the stages of implementation.All the 

http://ML.NET


features of the model and application are described and their purposes are 

explained. The model has been tested and is working as intended. 

We live in an era of Technologies and these technologies can be used for 

multiple purposes as described in this work. It allows us to improve the quality of our 

life relatively easily. Automation saves us not only from physical exhaustion but also 

harm, and enables us towards pursuing new fields and picking knowledge and 

self-improvement over hard physical work. 
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8. Appendix 

Files attached to the thesis: 

• images - folder with images used; 

• model - contains Inception model; 

• labels.csv - contains labeled files; 

• test-labels.csv - contains test labels for training; 

• program.cs - main script of the program; 

• bin, obj, transferLearning, ImageData.cs, lmagePrediction.es, 

lnceptionSettings.es, transferLearning.csproj, transferLearning.sin - files 

created by Visual Studio. 
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