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Abstract 
This thesis proposes an algorithm for multi-exposure ghost-free H D R video acquisition for 
embedded devices. The Ghost-free H D R acquisition was evaluated on the state-of-the-art 
F P G A architecture and achieved more than real-time performance of 96FPS on FullHD 
resolution. The proposed Ghost-free algorithm produces output visually comparable to the 
state-of-the-art algorithms which are considerably more demanding or not implementable 
on embedded devices at all. 

Abstrakt 
Tato práce navrhuje algoritmus pro pořizování ghost-free H D R videa ze sekvence expozic, 
který je určený pro implementaci ve vestavěných zařízeních. Vlastnosti algoritmu byly 
ověřeny implementací ve state-of-the-art architektuře H D R kamery, kde je schopen zpra­
covávat H D R video s potlačením tzv. ghosting efektu rychlostí až 96 snímků za sekundu na 
FullHD rozlišení, což více než dostačuje pro zpracování v reálném čase. Navrhovaný ghost-
free algoritmus produkuje výstup vizuálně srovnatelný s nejmodernějšími algoritmy, které 
jsou výpočetně řádově složitější a často je nelze na embedded zařízeních ani implementovat. 
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Chapter 1 

Introduction 

In the real world, our human vision is capable of seeing and recognising objects in various 
light conditions, even when they mix in one scene, such as a view from dark room outside 
to the sunny street. In the contemporary digital world, we are also trying to get this real-
looking images into digital form as photography, video etc. One of the current problem 
in digital image acquisition is very limited dynamic contrast that can be captured from 
the scene, because the current camera sensors have only limited and linear response to the 
light, unlike the human eye. This often leads to photos with some white (overexposed) and 
black (underexposed) sections. 

A n effort still exists to remove this bottleneck and capture a high dynamic range image 
(HDR). The first possible way is to assemble a chip with a non-linear response to lightning. 
They are currently available, but they are still in the early age of development and suffers 
from some bugs, they have small resolutions, etc. Currently, most spread way how to obtain 
an H D R image is by merging a sequence of low dynamic range images (LDR) captured by 
the ordinary camera into one HDR. 

The algorithms that merge LDRs into H D R image are known for a quite long time, but 
they produce a good visual result only with static scenes. In case of any motion, either 
in the scene or by the camera itself, the ghosting artefacts occur in resulting H D R image. 
Quite many papers about deghosting techniques were proposed; however, it is still a chal­
lenge and a quite open problem, no universal method with reference „deghosted" result 
exists. 

This dissertation is motivated by a need of many surveillance, security, traffic monitor­
ing systems, and industrial applications that can benefit from H D R video capture. These 
applications are typically cost-sensitive and so multi-exposure H D R acquisition is often the 
only feasible option. In these use-cases, the motion in the scene is inevitable and „ghosting" 
in such systems, caused by the nature of image acquisition, troubles the applications. There­
fore, I decided to develop a method of fast de-ghosting for such applications. 

Applications in surveillance, security and industry require high performance in general 
- we cannot afford slow and demanding offline processing that the best state-of-the-art 
algorithms require. The essential goal is to capture H D R image fast, to be able to react to 
a certain situation very fast and or in a given time frame. 

Image acquisition systems of this type are still being built on P C based systems; however, 
this approach is on the decline, since the PCs are expensive, they have large dimensions, and 
they consume a lot of power. Nowadays, the interest is turning towards compact embedded 
systems, which are breaking such limits. They often contain low power CPUs accompa-
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nied by powerful, task tailored accelerators which require a fraction of power consumption 
comparing to C P U based systems, while they can deliver even much more performance. 

The most efficient circuits are generally considered to be ASICs, which means Application-
Specific Integrated Circuits. It is a collective name for single-purpose circuits/accelerators, 
tailored to provide specific functionality only. However, the manufacturing cost of such 
circuits is enormous; its manufacturing pays off only with high volumes of chips. The de­
velopment processes of ASICs are taking place on large F P G A s (Field-programmable Gate 
Array), which are a completely customisable array of logic gates and registers, which can be 
interconnected in any desired way; therefore, they offer quite the same flexibility in design 
as ASICs, but with diametrically lower cost. Nowadays, F P G A s are very popular even 
in consumer electronics for their computing power, reliability, reprogrammability, low cost, 
and also low power consumption. These benefits are outweighed by designing time, which is 
still quite high. Also, not every task is implementable or convenient to accelerate on F P G A . 

Some class of image processing algorithms are quite suitable for F P G A acceleration, at 
least when they uniformly process the image by pixels or blocks. For example, the H D R 
acquisition, as it was proposed by Debevec and Malik[5] is a typical example of a suitable 
algorithm. Unfortunately, this algorithm requires static images to produce a good-looking 
visual output. In case of motion in the scene, the ghost effects appear. As it is summarised 
later in this dissertation work, deghosting algorithms producing good visual output are very 
computationally demanding and quite often not even implementable on F P G A . The simpler 
algorithms are, on the other way, not very successful in deghosting and therefore, they are 
not suitable for applications in security, traffic monitoring, or industrial applications. 

These circumstances led me to set the scientific contribution of this thesis to prove that 
a multi-exposure ghost-free H D R acquisition algorithm comparable to the state-of-the-art 
algorithms in quality can be designed for an embedded hardware device and achieves a 
real-time performance at high resolution. 

The dissertation thesis begins with Chapter 2, which contains an overview of state-
of-the-art algorithms related to the H D R acquisition and tonemapping. Chapter 2 further 
contains an overview of state-of-the-art deghosting algorithms, followed by selected deghost­
ing algorithms feasible to be implemented in embedded devices. The thesis continues with 
Chapter 3 that contains an overview of hardware platforms suitable for implementation 
of deghosting algorithms, including an overview of embedded system-on-chip solutions. 
Chapter 3 is further focused on embedded platforms of for H D R acquisition, followed by 
an overview of existing embedded H D R deghosting solutions. 

The proposal of ghost-free merging algorithm, which I developed to fulfil the goal stated 
in this thesis, is located in Chapter 4, which also contains algorithm evaluation, comparison 
to related algorithms, and also to the state-of-the-art. The chapter contains an evaluation 
of performance and power consumption, which demonstrates the engineering contributions 
of the proposed solution. The chapter ends with an evaluation of scientific contribution 
and by a summary of possible applications of the proposed algorithm. 
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Chapter 2 

H D R acquisition and deghosting 

This chapter contains an overview of state-of-the-art algorithms related to H D R acquisition 
and tonemapping. The chapter further contains an overview of state-of-the-art deghosting 
algorithms and also an overview of selected deghosting algorithms feasible to be imple­
mented in embedded devices. 

2.1 H D R acquisition 

Standard video cameras are unable to capture the dynamic range of visual information the 
human eye is capable of. The dynamic range is the variation of luminance within a given 
scene and the obvious goal of image and video acquisition is to capture the whole luminance 
range of the scene into the captured image. The contemporary sensors are very limited and 
capable of capturing variations within two or three orders of luminance magnitude, while 
some scenes contain variations over the five orders. The video cameras are able to select 
which part of dynamic range is captured and which is lost as under/overexposed, e.g. by a 
selection of the aperture and shutter speed. 

Two main approaches to H D R (High Dynamic Range) image capture exist. First of 
them is to build special cameras with H D R sensor. Some commercial products start to be 
available, such as SpheroCam H D R 1 , or Panoscan M K 3 2 In the academic world, Sakakibara 
et al. [49] introduced a High-Sensitivity C M O S sensor with gain adaptive column ampli­
fiers and 14 bit analogue-digital converters. Zhao et al. [73] capture H D R using the modulo 
camera. A l l the above approaches require the availability of special H D R sensors or gener­
ally expensive and technologically demanding equipment. Regarding the H D R sensors, it 
is questionable whether some physical limit in a dynamic range will eventually be reached 
and what it will be. 

The second and more frequently used approach is based on standard sensors/cameras 
which captures the high luminance range in the scene sequentially, by the acquisition of 
multiple images typically with varying exposure times [5, 37, 48, 34]; such sequence is then 
merged into one H D R image. The individual images can be captured simultaneously, e.g. 
using a beam splitter with several C C D / C M O S sensors [58], or, more often are gathered 
sequentially using a single image sensor which causes ghost effects by a motion of objects 
during the sequence acquisition. This approach is technologically less demanding and results 
in cheaper systems. 

x

https: //www.spheron.com/  
2
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H D R acquisition algorithms 

Two main approaches how to merge differently exposed standard images into an H D R 
image exist, the first and more efficient approach involves a combination of pixels in the 
image domain (direct merging of pixels). As an example, a method presented by Mertens et 
al. [34] combines multiple exposures directly without any knowledge of the camera response 
function(CRF). In this approach, only the best parts of frames from each exposure are 
exploited. A resulting H D R image is obtained as a weighted average of pixel values across 
the exposures: 

N 
Ic = Y,w(Zk)Zk (2.1) 

k=l 
where Ic is a composite image, Zk is a pixel value and w (Zk) is a weight of a pixel. 

This approach produces the H D R images which can be directly displayed on L D R (Low 
Dynamic Range) monitors. 

The second approach is based on merging in the radiance domain, in the meaning of 
real illumination in the given scene. Algorithms using this approach are attempting to cal­
culate the exact value of luminance in the scene. These methods require knowledge of the 
camera response function [5, 48, 37], which is the response function of the camera sensor to 
the incident light (see Section 2.1). The inverse function of C R F is then applied to obtain 
an image with approximately linear response to light. The C C D and C M O S technology 
generally do have a linear response function, but the image results are often affected by 
postprocessing algorithms, for example, by gamma-correction or by white balance. In gen­
eral, R A W images are preferable for H D R composition because they contain data obtained 
directly from C C D / C M O S sensors without any postprocessing, and therefore it can be as­
sumed that they have a linear response function. Unlike the merging in the image domain, 
this class of algorithms produces an image with higher bit-depth, which is not directly 
displayable on standard L D R devices. The H D R images have to be post-processed by al­
gorithms commonly called tone mapping operators. The operators reduce the bit-depth of 
the H D R image while they preserve all important image details. 

The first and most straightforward approach is to select the pixels from the longest 
but still unsaturated exposure. The resulting pixel value in the H D R image is calculated 
according to equation: 

^ _ Zlongestp ^ 2) 
^longest 

where Lp is the resulting pixel value p from H D R image, the pixel value Ziongestp is the 
value of the pixel from image with longest exposure time where pixel is not saturated and 
tiongest is the exposition time of this image. 

Debevec and Malik [5] proposed an algorithm which can fuse multiple photographs into 
a high dynamic range radiance map whose pixel values are proportional to the true radiance 
values in the scene. The contribution of each pixel is determined from the weight function 
shown in Figure 2.1. Resulting pixel value p in H D R image is calculated as a weighted 
average of each pixel exposures: 

L p = P U (2.3) 

where Lp is the resulting pixel value p in H D R image, iV is the number of input images, 
Zip is the value of a pixel p in image number i, ti is the the exposure time of image i. 
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Pixel Value 

0 50 100 150 200 250 

Figure 2.1: Pixel weighting functions proposed by Debevec [5], Robertson [48] and plateau 
weighting function (from Luminance H D R software3). 

This algorithm can use various weighting functions. The weight function by Robertson 
(shown in Figure 2.1) is a Gaussian-like weight function. In the H D R processing applications 
(e.g. Luminance H D R 3 ) the "plateau" function is often used (Figure 2.1) which it is defined 
as follows: 

wz = l-(2z- l ) 1 2 (2.4) 

where z is a pixel value. In case of image captured with linear sensor, there is no need 
of assigning variable weights to pixels in the linear range, except the extreme pixel values, 
where the pixel value could be distorted. 

Obtaining camera response function 

The camera response curve important information for H D R image creation. C R F is a 
curve which indicates the conversion relationship between the brightness of the scene and 
the resulting values of the recorded image. This response is most influenced by the image 
post-processing in the camera. It's important to work around this process since composing 
of H D R images require the values with a linear transfer characteristic between the light in 
the scene and the values in the image. 

Analog data from the C C D / C M O S sensor are converted to digital using A / D converters 
and then further processed in the camera. Range of adjustments varies by camera and its 
settings. Common modifications include remapping of pixel values (change of contrast and 
brightness, gamma mapping curve, etc.), colour correction (e.g. increased colour satura­
tion), noise reduction, sharpening, and more. Some of the newer consumer cameras, for 
example, also carry out the reduction of the optical lens distortion. It is possible to get 
around these corrections by using the R A W format, supported by some cameras, where the 
data from the sensor are stored unchanged. R A W output is almost linear, only with a few 
exceptions: 

• The level of black - Because of the chip design, charge amplifiers, A / D converters 
and their noise, the level of black can be shifted from zero upwards. This means that 
black has a higher value than zero. To eliminate this effect, we have to determine this 
value and subtract it from the image data. 

• Quantization - Error in quantization arises during the conversion from analogue to 
digital values. The converter with a higher number of bits (10, 12, ...) can reduce 
the absolute error value. Quantization also causes higher inaccuracies in the dark 
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values of the image (during the short exposures, the higher range is mapped into a 
few values near to zero). 

• Saturation - Photodiodes on camera sensor have only limited charge capacity, which 
determines the level of saturation. Above the level of saturation, the camera gives 
the same numerical response for all values of the input luminance. These values are 
not applicable for H D R image composing and therefore have to be suppressed, e.g. 
by using a weighting function. 

300 r 

250 -

500 -

$ 
J I.MI 

Li 
100 -

51) 

o -
-T -6 -5 - 4 - 3 - 2 - 1 0 1 2 3 

log '! '^"l "S 

Figure 2.2: Response curve of the Canon EOS 350D (retrieved from http://cybertron.eg.tu­
ber lin.de/eitz /hdr/) . 

Several algorithms for calculation/estimation of response function exist if we don't have 
an opportunity to obtain the picture with a linear response to incident light. The basic 
method is using a standardized table composed of several fields in grayscale which are 
photographed and then compared with the camera output. The response function is created 
from the differences. However, the measurement is complicated because the table must be 
uniformly illuminated and shall not shine. 

Algorithm by Debevec 

This algorithm is described in the paper Recovering High Dynamic Range Radiance Maps 
from Photographs [5]. The initial assumption is that the scene is static and the shots are 
taken so quickly that we can ignore changes in scene illumination. Under these circum­
stances, we can assume that the intensity of illumination Ei is constant for each pixel. The 
values of each pixel will be marked Zij where i = 1 , N is a one-dimensional index speci­
fying the position of the pixel in the image and j = 1 , P is the index across the different 
exposure times A i j . The relationship that exists between the Ei and is defined as: 

Zij = f(Ei * Atj) (2.5) 

where / is an unknown camera response function which we assume to be monotonous. 
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Lets define a function g as the natural logarithm inverse to the function: g = Inf . 
We get an equation in the form: 

g(Zij) = InEi + Atj (2.6) 

The values of Zij and A t j are known, lighting E{ and function g are unknown. The 
advantage is that searching the function g implies the searching of finite number of values 
of g(z), where z =< zmin; z m a x > is a finite set of values that pixels can take. The problem 
is then reduced to a search of finite number of values of g(z) and N values of InEi, which 
are minimizing the value of the following quadratic optimization function: 

P -^max 1 

Other algorithms 

The method presented by Robertson [48] does not put any restrictions on the shape of 
the resulting response function. This method assumes a Gaussian weight function. Using 
the Gauss-Siedel iteration, the authors seek the solutions of the objective function which 
they defined. The method presented by Mitsunaga [37] approximates the camera response 
function by a polynomial of N-th degree. The authors are looking for coefficients of the 
polynomial by minimizing the error function, which they defined. The advantages of the 
method include the ability to determine the exact ratios of exposures. Also, many other 
methods exist, such as the histogram-based method or a method attempting to derive the 
response from a single image. 

2.2 H D R tone mapping 

H D R acquisition algorithms produce images which are not directly displayable by current 
display technologies. The dynamic range of the H D R image has to be compressed to be able 
to display such an image. Such a process is commonly called tone-mapping. Application 
of tone-mapping should compress only the range of values; however, the visual information 
should be preserved - this ability strongly depends on individual algorithms and their 
properties. This dissertation addresses tone-mapping only marginally; still, a short overview 
is convenient for the coherence of the topic. 

Displaying the H D R content is still a challenging topic, as standard displaying devices 
are able to represent only a limited dynamic range, typically 8 or 10 bits per channel. To 
display an image with higher bit-depth, the H D R images have to be post-processed by 
algorithms commonly called Tone Mapping Operator (TMO) which reduce the bit-depth 
of H D R image so it can be displayed using standard devices while preserving all important 
details. 

In general, two main approaches to displaying H D R content exist. The first approach 
is to use specialized H D R monitors that directly render the H D R content; such displays 
still have some limitations, they are expensive, and they often should be used in a very 
controlled environment. Thew second approach is based on the application of dynamic 
range scaling with an effort to reduce the dynamic range but to preserve local contrast in 
the scene details. This process, as mentioned above, is called Tonemapping (or applying 
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Tonemapping operators). Many operators exist [9, 47, 11, 6, 31, 7] and they are divided 
into two main categories - global and local operators. 

Global operators use the same mapping function for all pixels of the image. Parametriza-
tion of the function depends on global image characteristics, such as average, minimum, 
and maximum values of luminance. 

f hdr) 

Pre-processing 
(transform luminance 

to log domain) 

p, Edge-preserving 
filtering 

(bilateral filter) 

Tone-curve 
(exponential, sigmoid) 

Pre-processing 
(transform luminance 

to log domain) 

Edge-preserving 
filtering 

(bilateral filter) 

Tone-curve 
(exponential, sigmoid) 

Post-processing 

Base layer Intensity layer •'' ''-.Detail layer 

(restore colors, gamma) >w 

Figure 2.3: Illustration and principled scheme of local tone mapping algorithms (Image 
retrieved from dataset by Froehlich et al. [13]). 

Local operators generally preserve more details than the global ones as they use informa­
tion from neighbouring pixels to estimate local illumination and thus adapt compression to 
local luminance conditions. The most frequently used approach is separation of H D R image 
into base and detail layers (see Figure 2.3). The base layer contains large scale variations 
of luminance and the detail layer contains local differences, which holds the details of the 
scene. The base layer can be obtained from luminance in the logarithmic domain by using 
low-pass edge-aware filtering, e.g. by Bilateral filter (BF), as proposed by Durand [9], Edge-
avoiding wavelets [10], or by estimation from gradient domain (Gaussian pyramids [11]). 
The base layer, which is responsible for high dynamic range, can be compressed because 
fine details are preserved in detail layer. 

2.2.1 H D R compression 

High Dynamic Range (HDR) imaging technologies can provide high levels of immersion 
through a dynamic range that meets and even exceeds the instantaneous range of the Hu­
man Visual System (HVS). This increase in the level of immersion comes at the cost of 
significantly higher bit-rate requirements compared to those associated with conventional 
imaging technologies. As a result, efficient HDR-relevant coding solutions have to be de­
veloped. 

Backwards-compatible H D R compression methods are designed so that legacy decoders, 
which can manage only Low Dynamic Range (LDR) images, are still able to decode and dis­
play a tone-mapped version of the H D R image/video. HDR-capable decoders, if available, 
would be able to decode the full stream and deliver the H D R image experience. 

Figure 2.4 shows a block diagram of backward-compatible H D R image and video en­
coders. The base layer encodes a tone-mapped 8-bit L D R representation of the H D R input 
using a fully compatible legacy encoder and decoder. The enhancement layer contains the 
difference (residual) between the inverse tone-mapped base layer and the original H D R 
input, which is used for reconstructing of H D R content in the H D R devices. 
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Figure 2.4: General structure of backward-compatible H D R image and video encoders 
(retrieved from [72]). 

Backward compatible image compression 

At the first place, several methods for encoding H D R images were proposed. In 2004, 
Ward and Simmons[65] proposed a backwards-compatible H D R extension for J P E G , 

whereby the H D R image is tonemapped to an 8-bit L D R image which is then encoded by 
a legacy J P E G encoder. The ratio image between the original H D R image and the tone-
mapped version is down-sampled and stored as a tag in the header file. This ratio image can 
be used by HDR-capable decoders to reconstruct the H D R content, while all other legacy 
devices would simply ignore the tag and directly display the tone-mapped L D R image. 

Spaulding et al. [53] proposed layered coding for J P E G gamut extension. In the base 
layer, an image with a clipped colour gamut is encoded. In the enhancement layer, a residual 
image is formed in a sub-band. This residual image is defined as the arithmetic difference 
between an input E R I M M R G B colour space image and the encoded sRGB foreground 
image (limited to 8 bits). The main advantage of the approach proposed in [53] is that the 
format is backwards-compatible with existing J P E G image codecs. 

Backward compatible video compression 

Mantiuk et al. [32] were the first to propose layered coding for backwards-compatible H D R 
video compression. Their method was designed as an extension to the M P E G - 4 compression 
standard. The authors introduce a colour space transformation that facilitates comparisons 
between L D R and H D R pixels. A reconstruction function is then proposed which predicts 
the value of an H D R pixel based on the value of the corresponding L D R pixel. A non-linear 
function is used for encoding the H D R residual information. This is then added as side 
information to the bitstream and can be used by HDR-capable decoders to obtain the full 
range of visible luminance values. In order to facilitate a smooth transition from L D R to 
H D R in the decoder, tone-mapping and residual video stream calculation are performed 
as a preprocessing step before encoding. The novelty of this method is that it employs an 
advanced Human Visual System (HVS) model to achieve better compression performance. 
The H V S model selectively pre-filters the residual stream in order to remove imperceptible 
high spatial frequency information, thus reducing its bit-rate requirements after M P E G -
encoding. 
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Mai et al. [74] proposed a backwards-compatible method that aims to find an optimal 
tone-curve for mapping the input H D R image/video to a backwards-compatible 8-bit L D R 
image/video, which can then be compressed by a conventional video codec such as H.264. 
The reconstructed image/video can then be displayed on a conventional L D R display or 
can be inverse-tone mapped and augmented by an optional enhancement layer containing 
an H D R residual signal (also compressed by the codec) for display on an H D R display. The 
tone-curve optimization aims to minimize the quality loss due to tone-mapping, encoding, 
decoding and inverse tone-mapping of the original image/video. 

2.3 H D R deghosting 

The H D R merging algorithms [5, 37, 48, 34] summarized in Section 2.1 are suitable for static 
scenes only. Motion of objects during the image sequence capture causes adverse effects 
called ghosting. To reduce such effects, various methods to detect and remove ghosting 
from H D R images have been developed. 

Figure 2.5: Image on the left includes ghosting artifacts, that has to be removed or recon­
structed (right). Retrieved from http://www.flickr.com/photos/nuwomb/. 

The problem of removing motion artefacts for sequential H D R imaging has been the 
subject of extensive research and has led to two major type of approaches. The first type 
assumes that the images are mostly static and that only a small part of the scene contains 
motion. These de-ghosting algorithms use the input frames to determine whether a given 
pixel is static or has motion and then apply different merging algorithms in each case. For 
static pixels, the traditional H D R merge can be used. For motion pixels, many algorithms 
use only a subset of exposures (in many cases only one) to produce a deghosted H D R . The 
fundamental problem with these techniques is that they cannot handle scenes with large 
motion if the moving parts of the scene contain H D R content. 
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The second type of approaches attempts to align the input sources to a reference expo­
sure before merging them into an H D R image. The most successful algorithms use optical 
flow to register the images, but even these methods are still brittle in cases of large motion 
or complex occlusion/dis-occlusion. Since the aligned images produced by these algorithms 
often do not align to the reference very well, the resulting H D R still contain the ghost­
ing artefacts. For this purpose, the alignment algorithms for H D R often introduce special 
merging functions that reject the information from aligned exposures in locations where 
they do not match the reference. In such a case, the H D R content in these regions are not 
fully reconstructed. 

According to the goal of this dissertation, I focused on algorithms feasible of capturing 
ghost-free H D R images in real-time. Thus I further reviewed mostly simple, computation­
ally unpretentious methods, that could claim the real-time performance. I reviewed mostly 
the methods categorised by Tursun [59], Srikantha [54] and other authors as „motion ob­
ject selection" methods. Anyway, a short introduction into the demanding optical flow and 
patch-based algorithms is presented. 

2.4 Mot ion object selection methods 

This dissertation work focuses on embedded systems and real-time processing; therefore, 
only simple, computationally unpretentious methods, categorised by Tursun [59], Srikan­
tha [54] and other authors as „motion object selection" methods are reviewed in this sub­
section. The optical flow-based and patch-based algorithms are, due to their high com­
putational demands, reviewed only for the coherence of the topic. Also, the global image 
registration is not addressed, as we assume only static cameras. 

In the work of Sidibe et al. [51], the ghosting regions are detected based on the obser­
vation that the order relation is given by Equation 2.7 is satisfied for pixels which remain 
static between two images, and can be broke down for motion pixels. Therefore, they detect 
possible ghosting regions by checking the order relation between k consecutive images, and 
by marking pixels for which the relation breaks down at least once. 

ifAU > Atj, then Li > Lj. (2.7) 

Where Ati and Atj are exposure time of images Lj and Lj. This method does not verify 
the real increment of a pixel value which causes the ghost detection to fail relatively often. 
The order relation only works if the pixel is not under- or over-exposed. For instance, 
a white pixel in a shorter exposure will remain white in a longer exposure, and a black 
pixel in a longer exposure remains black in a shorter one. Therefore, the authors discard 
under and over-exposed pixels when checking the order relation between consecutive images. 
Concretely, they exclude pixels which are outside the range [20,..., 240] (for 8-bit pixel 
values). [51] 

Once ghost regions are detected, artefacts-free H D R can be created. For all pixels 
outside a ghosting region, H D R generation proceeds in a conventional manner, i.e. the 
pixel value in the H D R is a weighted average of the corresponding pixels in the differently 
exposed images, as proposed Debevec and Malik [5]. For a pixel inside a detected ghosting 
region, a common approach is to substitute the pixel value by the corresponding value in 
the best exposure image for that region. For each region, the best exposure is chosen as 
the one with the lowest number of under-or over-exposed pixels. Sidibe's method gives 
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goods results in some cases, it, unfortunately, reduces the dynamic range of the H D R by 
considering only one exposure. [51] 

Sidibe et al [51] claimed that according to experiments on various sequences, the order 
relation-based method and the predicted colour method give more precise results than the 
variance-based method. However, the measure of variance works well only if the colour of 
the moving object is clearly distinguishable from the background. 

Kao et al.[22] processes two images with ±1EV difference in exposition times. Since 
they know exposition time, the following relation between pixel values is expected: 

L2(p)/L1(p) = 2,At2 = 2* A i i (2.8) 

If this relation is not fulfilled, the pixel is marked as a ghost and is omitted from the merg­
ing algorithm. The saturated pixels, which are under or over a fixed threshold, are omitted 
from the ghost detection process too. Kao et al. uses the motion estimation for aligning 
the source images, which works over macroblocks of 16 x 16 pixels. 

Gallo et al. [14] assumes a linear dependency between couples of pixels when they „see" 
the same radiance levels, based on knowledge of exposure times. The following relation 
between the images is expected: 

Li = Lr

tj- (2.9) 

Any image spot violating this linear relation is considered as containing a motion. A l l 
images are registered to the reference image Lref, to suggest a good reference frame, they 
find the saturated pixels in each image of the stack, then they remove small saturated 
regions with morphological operators (erosion followed by dilation) because such area's 
neighbourhood usually contains enough information to avoid artefacts. Finally, they pick 
the exposure with the fewest remaining saturated pixels. [14] 

The reciprocity assumption states that if the radiance of the scene does not change, the 
exposure time and the irradiance are linearly related through the exposure time A t : 

X = E-At (2.10) 

Aside from over and under-saturated pixels, Equation 2.10 should only be violated when 
the scene changes. Therefore, the equation could be used to decide if the irradiance at a 
given pixel in the reference frame can be combined with the corresponding pixel in another 
image in the stack. In practice, however, a small misalignment or imprecise estimation of 
the camera response function can produce large deviations from this behaviour . [14] To in­
crease a robustness and prevent rising of such artifacts, the algorithm operates on relatively 
large rectangular patches (e.g. 40x40 pixels) rather than individual pixels. Patches with a 
large number of not corresponding pixels are omitted from merging, causing visible artefacts 
to occur at their boundaries; Gallo et al. [14] suggest their suppression by Poisson blending. 

Raman et al. [46] extended the work of Gallo et al. [14] so that it does not require any 
knowledge of the C R F or exposure settings. They introduced an intensity mapping function 
(IMF) obtained from the static part of the scene - they assume that upper 5-10 image lines 
are usually static. The authors assume the motion is mostly confined to the ground plane 
of the scene. This assumption may be very limiting, and it can work only for certain scene 
compositions. 
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Grosch [15] proposed a simple method based on the estimation of pixel value from the 
known exposure time and C R F . In opposite to the most of the algorithms that require a 
static scene and direct correspondence of pixels to obtain a C R F , Grosch uses the algorithm 
presented by Grossberg and Nayar [16] to recover a C R F from a non-aligned sequence 
with object motion. This algorithm calculates the response function based on cumulative 
histograms and is mostly unaffected by camera or object motion. [15] 

Wi th a known camera response function, they can predict the pixel colour from one 
image to another. For each pair of consecutive images, they test if the real colour in the 
second image is well approximated with the predicted colour from the first one. If the 
pixels at the certain position do not fit the estimation, the corresponding region is marked 
as ghosted into the error map. [15] To increase the robustness and eliminate the influence of 
the noise in the source images, the author uses a user-defined threshold for the pixel colour 
comparison. 

Wu et al. [66] algorithm estimate the C R F from regions where R G B vectors remain 
fixed with respect to the changes of exposure. The algorithm refines motion detection by a 
combination of pixel order relation from Sidibe et al. [51] and pixel value estimation from 
Grosch [15]. 

Wang et al. [63] proposed the motion region detection method, that is motivated by 
the inter-frame difference method for video sequence that does subtraction to compute the 
difference between adjacent frames on the intensity domain. To enable it, the algorithm 
normalises all images Lj according to the reference image Lref. For each pixel, if the 
corresponding difference value is bigger than a certain threshold, then the pixel is considered 
to be in a motion region. This method is commonly used on motion detection of video 
stream. [63] 

The threshold value is determined from median pixel value in each image and is adaptive 
to avoid certain artefacts - the threshold for the under and over-exposed areas is increasing, 
because the brightness changes only little in spite of adjusting the exposure levels because 
it has reached saturation. The bitmaps with detected motion are further strongly refined 
using morphological operations. The tolerance ratio should also be adjusted by the user to 
provide the best visual result. [63] 

The algorithm of Jacobs et al. [18] is calculating pixel variance over the exposures to 
detect the presence of motion. The Variance Image is created, storing pixel's variance over 
the exposures in a matrix with the same resolution as input images. Further, they ignore 
under and over-saturated pixels in Variance Image. The Variance Image is transformed into 
binary map (equivalent of ghostmap, see on Figure 2.6)), with movement clusters, which 
are formed by comparing the Variance Image with fixed threshold. The Variance Image is 
supplied by Uncertainty Image, which is calculated using the local variance, obtained from 
a histogram of a small 2D window; 5x5 pixels in size [18]. 

For each movement cluster, they substitute the irradiance values with the irradiance 
values from only one image. Substituting an entire region with irradiance values from 
one image introduces artefacts at that region's borders. To reduce these artefacts, they 
substitute pixel values with Variance and Uncertainty Image entry above a certain threshold 
(higher than the threshold used at the movement clusters) with a weighted average of the 
reference image and the irradiance value from in the selected image. [18] 

Pece et al. [44] algorithm extracts median threshold bitmap ( M T B [64], see Figure 2.7) 
from each of the input images. Any difference between the threshold maps of input im­
ages and the reference image, presented typically by the mid-exposure one, is marked as 
a motion-region. To remove the effects of the noise, the motion map is refined using mor-
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Figure 2.6: The Figure shows the results of variance based deghosting method by Jacobs et 
al. [18]. The variance map (bottom left) is obtained from the image sequence (upper row) 
and used to generate the H D R image (bottom right). Figure obtained from [18]. 

phological operations such as erosion and dilation. The pixels in the motion-regions are 
assigned smaller weights during the H D R construction. This method is strongly dependent 
on scene composition since its reliability is strongly dependent on the median image value. 
Additionally, the pixels with a value close to the threshold may be falsely detected as ghosts. 

Min et al. [35] improved method of Pece et al. [44] and introduced multi-level threshold 
map, where thresholds are selected to divide the image into multiple regions according to 
the pixel intensity, each region having the same number of pixels (see Figure 2.8). Any 
difference between the threshold maps of input images and the reference image, presented 
typically by the mid-exposure one, is marked as a motion-region. Introduction of multiple 
histogram regions, in opposite to Pece et al. [44], allows for the incorporation of a tolerance 
in which shifts of pixels within neighbouring regions are not evaluated as motion. The 
algorithm suffers from dependence on scene composition and image histogram layout. Min 
et al. [35] further improved the algorithm in a follow-up article [36] by employing a noise 
reduction phase, which incorporates an additional set of rules for spatially neighbouring 
pixels. Unfortunately, the algorithm needs to use a large, performance and memory de­
manding, spatio-temporal smoothing filter. The above methods by Pece et al. [44] and Min 
et al. [35, 36] are using coarse morphological operators, such as erosion and dilatation, to 
suppress false detection rising on edges or by noise. 

A n et al. [1] proposed a method for multi-exposure fusion without the ghosting effect. 
The method evaluates the photometric relation of images from sequence to the reference 
image, producing binary ghostmaps. This ghostmaps are refined using the Z N C C (Zero 
Mean Normalized Cross-Correlation), which evaluates the similarity of the ghostmap pat­
terns. By default, they use an 11 x 11 patch for photo-metric relation test and a 33 x 33 
patch for Z N C C calculation. 

Moon et al. [38] published a short article where they proposed H D R fusion method with 
ghost-free effect. The author claims that the method is intended for embedded devices and 
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(a) Original Exposures: +2 and -2 stops respectively. 

(b) Bitmaps generated by MTB. 

Figure 2.7: The Figure shows the two images and corresponding Median Threshold Bitmaps 
(MTB) , proposed by Pece et al. [44]. Figure obtained from [44]. 

Figure 2.8: The figure presents the intermediate step of deghosting algorithm by M i n et 
al. [35]. The source sequence is on the top, the bottom images shows the multi-level 
threshold maps for corresponding images on the top. Figure obtained from [35]. 

fast processing, since it does not require the demanding morphological operations, required 
by many other algorithms [44, 35, 1] for ghostmaps refinement. They introduced a simpler 
non-ghostness probability, which is combined with a conventional fusion weight [34] to 
yield a ghost-free fusion weight. A l l of the images are photometrically calibrated toward 
the reference image by an image transform from the result of histogram matching between 
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the reference image and their individual exposure images. Unlike in their previous work [1], 
they use „soft" assigned weights instead of binary ghostmaps. 

Srikantha et al. [54] propose a method which works on input images with linear C R F . 
Their work is based on the assumption that if the pixels from different exposures capture 
a static region of the scene, they must be linearly dependent since they are equal to the 
multiplication of sensor irradiance and exposure time. The pixels which do not follow the 
linearity and potentially cause ghosting are found using singular value decomposition (SVD) 
of a matrix containing pixel intensities from all exposures. This matrix is reconstructed 
using only the largest singular values, forcing the linearity between the corresponding pixel 
intensities of different exposures. The reconstructed pixel intensities are used to produce a 
ghost-free H D R image. [59] 

Bouderbane et al. [3] implemented simple ghost removing algorithm on F P G A based 
platform. They were inspired by the work of Sidibe et al. [51] and presented the algorithm 
based on the modification of Debevec [5] weighting function. The idea of the methods is 
to adjust pixel weights based on the deviation from the reference image [51]. The function 
gives a higher weight for pixels whose value are closed to the reference value and low weight 
for pixels whose value diverges considerably from a reference value. Consequently, they 
achieved the same performance as the Debevec and Malik [5] standard algorithm with a 
ghost removing in a radiance domain, right before H D R data generation. [3] 

2.5 Mot ion object registration methods 

The following algorithms are not suitable for real-time processing; however, I reviewed them 
for the coherence of the H D R deghosting topic and also because they are part of the state-
of-the-art in terms of deghosting quality. Achieving good visual results comparing to such 
algorithms is also one of my side-goals. 

Patch-based algorithms 

These approaches attempt to align the different L D R exposures before merging them into 
the final H D R image. Although the alignment of images has long been studied in image 
processing and vision communities (e.g. Zitova and Flusser [76]), its application to H D R 
imaging has special considerations. Here, the input images are not of equal exposure, so 
the colour constancy assumption of many algorithms is violated. Even if we map images 
to the same radiance space using the camera response curve (Debevec [5], Mitsunaga [37]), 
they will have regions that are too dark/light and therefore invalid during the alignment. 
This makes standard image registration techniques unsuitable for this application. [50] 

The quality of the H D R images produced by these techniques is fundamentally limited 
by the accuracy of the alignment. Even the state-of-the-art optical flow algorithms are 
brittle in cases with complex motion and occlusions, which is why many use special H D R 
merging steps to reject misaligned images (as in deghosting) and cannot use standard merg­
ing techniques. Furthermore, optical flow cannot typically synthesise new content and thus 
cannot handle disoccluded content that could be made visible when aligning one image to 
another. [50] 

The algorithm proposed by Sen et al. [50] is a patch-based energy minimisation formula. 
The algorithm produces an H D R image from a set of L D R images captured with different 
exposures which is aligned to the reference image Lref and which is also an L D R image that 
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contains the best-exposed pixels. The resulting H D R image contains as much information 
as possible from the well-exposed pixels from the Lref image (see Figure 2.9). In places 
where Lref is not well exposed, every patch in the image H at a given exposure should have 
a similar patch in one of the L D R images after exposure adjustment (coherence). Also, 
every exposure adjusted patch in all Lk images should be contained in H at exposure k 
(completeness). The iterative approach performs joint optimisation of image alignment and 
H D R merge process until all the exposures are correctly aligned to the reference exposure, 
and a good quality H D R result is produced. 

Input LDR sources Reconstmcted LDR images Final lonemapped HDR result 

Figure 2.9: The figure shows the source sequence, images reconstructed by patch-based 
algorithm by Sen et al. [50] and the resulting H D R image. Image obtained from [50]. 

Orozco et al. [43] presents a method which consists of both ghost detection and image 
registration steps. In the ghost detection step, the detection algorithms of Pece [44], Jacobs 
et al. [18], Sidibe et al. [51] and Grossberg et al. [16] are compared, and it was found that 
the I M F based ghost detection of Grossberg et al. is the most accurate. In the image 
registration phase, an intensity-based method without feature detection is employed. The 
image with the best exposure is selected as the reference image. A bounding box is fitted 
around the previously detected motion regions. Next, the region in each bounding box is 
registered by translation and rotation to the reference image. The Sum of Squared Distances 
(SSD), Normalized CrossCorrelation (NCC), Mutual Information (MI) and MedianBitmap 
Difference (MBD) are compared as a similarity measure for the registration. The authors 
state that N C C has the best computational cost and performance. In order to speed up the 
process, the registration is performed using the pyramid structure of the images, from coarse 
to fine resolution. However, since the registration applies only translational and rotational 
transformations, more complex motions caused by objects with deformable bodies are not 
handled. [59] 

Hu et al.'s more recent work [17] proposes a PatchMatch[2] based H D R reconstruction 
algorithm with energy minimization (see Figure 2.10). Among the input L D R images, the 
one with the largest number of well-exposed pixels is selected as Lref. In the next step, for 
each input L D R image Lj a latent image Tj is synthesised. Latent images are similar to 
Lref where it is well-exposed. In under- or over-exposed regions, a matching patch is found 
using the PatchMatch algorithm in other input images. Using the matching patches and 
the intensity mapping function obtained with the histogram-based method of Grossberg 
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Figure 2.10: The figure shows the source sequence (left column), images reconstructed by 
algorithm by Hu et al. [17] (middle column) and the resulting H D R image (right). Image 
obtained from [17]. 

and Nayar[16], the latent images are obtained by minimising the following energy function: 

e(T, T, u) = Cr(T, Lref, T) + Ct(L, T, u) (2.11) 

where L , T and u are the sets of input images, latent images and coordinate mappings 
to matching patches, respectively. The Cr and Ct terms measure the radiometric and the 
texture consistencies between the reference image and the input images, respectively. As 
opposed to Sen et al. [50], Hu et al. [17] does not require the CRFs of the input images 
to be linear. In certain comparison studies, it is observed that Hu et al. [17] was more 
successful at producing noise-free outputs whereas Sen et al. [50] was better at preserving 
texture details. [59] 

Optical flow-based algorithms 

The approaches in this group are mostly based on optical-flow estimation, which is a well-
studied problem, especially in stereo vision applications. In the H D R domain, optical-flow 
estimation must also take the exposure differences between the input images into account. 
The accuracy of the estimation is very critical for the quality of the outputs since any 
mismatch results in undesirable artefacts. In addition, the use of optical-flow presents other 
challenges such as handling the occlusion, noise, or large displacements in the scene. [59] 

Zimmer et al. [75] use state-of-the-art optical flow approach to register L D R expo­
sures before the merging process. They minimise their proposed energy function that uses 
a data term and smoothness term to reconstruct saturated and occluded areas. After 
alignment, the displacement fields obtained with subpixel precision are used to produce 
a super-resolved H D R image. The main advantage of the proposed strategy is that the 
resulting dense displacement fields can describe arbitrary complex motion patterns, which 
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is indispensable when dealing with complex camera motions or motion objects in the scene. 
Another attractive aspect is that they do not require knowledge of the camera response 
curve or the exposure times. Concerning efficiency, they were able to achieve reasonable 
run times on sequential C P U architectures, whereas parallel G P U implementations reduce 
the computation times to a few seconds. 

Ferradans et al. [12] find dense correspondence of input images in the radiance domain 
with respect to the reference image. In order to detect the mismatches in the estimated flow 
fields, the input images are warped using the estimated fields, and the absolute difference 
map of each pixel is calculated. Instead of applying a fixed threshold to the difference map, 
its histogram is modelled as a mixture of Gaussians. The pixel intensities corresponding to 
the flow vectors causing the mismatch are assigned zero weight in H D R reconstruction. The 
information from the remaining pixels in each input image is fused in the gradient domain. 
Jinno and Okuda [19] use a novel weighting function which has significantly smaller over­
lap between the contribution of input L D R images to the radiance domain. The proposed 
method assumes that the global alignment is already performed. Displacement, occlusion, 
and saturation regions are modelled as Markov Random Fields. The optimal parameters 
are found by minimising the energy function (see [19]). [59] 

C N N based algorithms 

The latest published algorithms are based on popular Convolution Neural Networks (CNN). 
Kalantari et al. [20] based their approach on optical flow from L i u et al. [28] and merges 
images into H D R using C N N . At first step, the source images are normalised to the same 
level of luminance as the reference (middle) image - similarly to Wang et al. [63] and many 
others. Then, the optical flow algorithm of L iu et al. [28] is used to align the images. 
Such aligned set is merged using C N N network trained on their dataset containing ground 
truth sequences. The C N N is responsible for removing the ghosting artefacts appearing on 
the edges of motion regions. Yan et al. [69] proposed a similar approach; however, their 
proposed C N N uses not only surrounding information of a pixel as Kalantari et al. [20], but 
also considers the information from other frames. 

Input LDR Aligned LDR Tonemapped HDR Image Simple Merging Proposed 

Figure 2.11: The figure presents the results achieved by Kalantari et al. [20]. From the left -
the source sequence, images aligned by optical flow by L iu et al [28], resulting tonemapped 
images and the details of marked region merged by „simple" merging (probably by Debevec 
and Malik [5]) and by proposed C N N based method by Kalantari et al. [20]. 
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Chapter 3 

Embedded H D R acquisition and 
deghosting 

This chapter contains an overview of the state-of-the-art embedded H D R acquisition so­
lutions. The chapter begins with an overview of existing hardware platforms, which are 
commonly used for the implementation of H D R acquisition, deghosting and tonemapping 
tasks, further followed with an overview of specialized hardware accelerators and embedded 
systems, aimed for high-performance processing. The chapter's last section is devoted to 
the description of state-of-the-art implementations of H D R acquisition and deghosting on 
embedded devices and description of theirs, mostly custom based embedded platforms. 

3.1 Embedded platforms and accelerators 

This section describes selected hardware platforms that are currently available and are 
related to the algorithms described in the Chapter 2. The H D R processing algorithms can 
be implemented and even hardware-accelerated on these platforms. Individual platforms 
are presented and their benefits and disadvantages for such tasks are summarized. The 
section begins with a definition of metrics used to enumerate the computing power of 
individual platforms. Subsequently, the platforms based on C P U , G P U and DSP processors 
are presented, followed by a description of F P G A circuits. To date, very popular are SoC 
platforms (System on Chip), where the C P U is located on one chip with the accelerator in 
the form of G P U (nVidia Tegra), F P G A (Xilinx Zynq) or DSP unit (Google P V C ) . 

Performance metrics 

Typical performance metrics of computing systems include: 

• Computing power 
• Memory capacity 
• Memory access time 
• Power consumption 
• Peripheral device support 
• Cost 

Very important parameters also include development time and overall cost. They are 
related to the selected platform and its available development, debugging or simulation 

21 



tools, the possibility of running an operating system and finally, availability of function 
libraries. 

Large memory and computing requirements are typical for image processing and com­
puter vision tasks. The algorithms are often performing several operations over each pixel. 
This could be an issue for real-time video processing. 

Mainly used metrics are MIPS and M F L O P S , both representing millions of executed 
instruction per seconds, MIPS is for fixed-point and M F L O P S for floating-point arithmetic 
instructions. 

Algorithms of image processing are often using only simple mathematical operations, 
such as addition or multiplication. They often do not need a high precision number rep­
resentation. A n 8-bit fixed point or 32-bit floating-point numbers are frequently used for 
pixel representation. Image processing algorithms are quite well parallelizable in general 
because the same operations are applied for each pixel/block of the image. This feature 
allows easy and efficient utilization of parallel computing platforms. It leads to easy com­
puting performance scaling and also to the reduction of cost and power consumption. Then 
one of the performance metrics could be a number of processor cores or number of parallel 
operations executed per clock cycle. 

Amount of available memory space is often not critical. In most of the cases, one 
version of the currently processing image have to be held in memory. Some algorithms are 
requiring more memory space for partition structures and tables storing. Memory capacity 
metric is a number of bits/bytes, that can be stored in memory. Some image processing 
algorithms can take advantage of block memory accesses, but on the other hand, some 
of them need random memory access (mostly algorithms using some partition structures). 
They have different demands on memory throughput and latency too. Memory throughput 
is measured on Gb/s . Memory latency shows the time between the start of a memory access 
request and its finishing. Latency is affected by memory cells speed and mostly by memory 
system hierarchy. Average memory latency is indicated in nanoseconds (ns). 

From the perspective of real system deployment, the overall device cost is one of the most 
important parameters. This is given by component price, production complexity, develop­
ment cost and appropriate licence fees. Price is normally expressed in dollars ($). Price is 
often related to other parameters, such as computing performance (MIPS/$, M F L O P S / $ ) 
or memory capacity (Gb/$) due to different platforms comparison. 

To compare with different platforms often price applies to other parameters such as 
computational performance ( M F L O P S per dollar) or memory capacity (GB per dollar). 

Development price is affected by the available development, debugging and simulation 
tools and by existing function libraries. It also depends on targeted technology and on 
knowledge and experiences among developers. 

Power consumption becomes an important metric today, specifying how long can device 
run on battery, the cost of annual traffic etc. Power consumption is primarily affected 
by integrated circuits parameters, such as manufacturing technology, the size on the chip, 
clock frequency and supply voltage. Many platforms have power-saving technology like a 
dynamic clock frequency/voltage scaling and clock-gating. Power consumption is measured 
in watts (W). Relative units are also used, such as computing power per watt (MIPS/W) . 

Another important parameter is the support of peripheral interfaces. Each image pro­
cessing device requires at minimum an input interface, which is used for retrieving image for 
processing, and output interface for the representation of the results. Additional interfaces 
are needed, for example, for communication with other devices. Data throughput is the 
critical parameter for the input interface, especially in real-time systems. Currently, there 
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are several commonly used and well-supported interfaces as a P C I Express, Thunderbolt, 
USB, Firewire and custom high-speed serial link/busses. 

A separate issue is a possibility of adapting the computing platform for a specific ap­
plication. One of the possible options is to use external processing units (e.g. for video 
decompressing). Another option is to use a self-designed computer system. A typical ex­
ample is application-specific integrated circuits (ASIC) or programmable gate arrays (PLD, 
F P G A ) . This technology allows creating an application-specific computing system to the 
specific application. Such systems have the best parameters relative to consumption, per­
formance and chip dimensions. Their main disadvantage is the very high development cost. 
System metrics vary depending on the technology used. Unit of equivalent gates was ap­
plied for comparison purposes, indicating the amount of A N D and OR gates that we can 
replace with a specific chip. 

C P U based platforms 

CPUs platforms are designed for general computing. The universal processor allows use 
in a wide range of applications. CPUs are used as computational units in PCs, servers 
or some embedded systems. Its main advantage is versatility but counterbalanced with 
resource requirements (time, power consumption, chip area) comparing to the specialized 
computing systems. The processor is a complex sequential engine executing algorithms 
expressed by machine code. The basic part of the processor is the arithmetic logic unit 
(ALU) , cache memory, control unit and 10 controller. 

Architecture specifics A L U performs operations on the data such as addition, multi­
plication, division and some logical functions, logical A N D , O R and many others. A L U 
is also driving the program execution, performing a conditional or branching code. A L U 
is designed to compute with fixed-point numbers only. Floating-point unit (FPU) have to 
be used for decimal number processing; it is located outside the A L U . Today, in order to 
reach maximum performance, processors have more A L U units and the F P U is designed 
for parallel data processing. Processor frequency is today clocked over 4GHz and they can 
reach the 300,000 MIPS with eight cores and 95W T D P ( A M D Ryzen7 1800X). Special 
server processors have up to 32 cores. 

The processor has a fast registry set, where the intermediate results are stored. They 
operate on A L U frequency and their quantity is limited. On the other side, main memory 
has huge capacity today, up to 512GB, but it operates on much lower frequencies and with 
thousand-times bigger latency. This problem is solved by a complex memory hierarchy, 
where cache memory is embedded to the processor in order to preload and store frequently 
used memory locations and thus improve memory access latency. The cache is divided to 
several levels, from L I , which is fastest (latency about 1-3 processor clock cycles) but has 
the smallest capacity, around 768kB, for L3 with capacity around 8MB (32MB in high-end 
processors), but with significantly slower access. 

Processor's controller unit manages the interaction of individual parts of a processor. 
Nowadays, it's a very complex and circuit which includes sophisticated algorithms to accel­
erate processors computing performance by out of order instruction executions, branching 
code prediction and more. 

Currently, there exist two main processor categories applicable to image processing. 
P C processor architecture is represented mostly by x86 standard compatible processors. 
Increasingly popular are the ARM-based processors located mostly in embedded systems, 
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such as mobile phones, tablets etc. The other architectures have a low computing power 
(embedded systems), minority presence in the market or are not advisable for image pro­
cessing (server processors). 

x86 architecture X86 processors are used primarily in personal computers, notebooks, 
special embedded systems and servers. They are called CISC processors since they have 
a lot of very complex instructions in its instruction set. They are based on Intel x86 
instruction set, which was first used in the Intel 386 processor and they are fully backwards 
compatible with this model. The instruction set originally supports only 32-bit operations, 
but today's processors take advantage of extended AMD64 instruction set with the support 
of 64-bit operations. 

Advantage of these processors is their backward compatibility as the basic instruction 
set is standardized. This brings an advantage for precompiled software, which is able to run 
on the newest hardware. On the other hand, backward compatibility is a great bottleneck 
not only for maximum performance but even to other parameters, like power consumption 
and even chip size. Overall, they are not quite effective. That's the main reason why there 
aren't suitable for small and efficiency embedded systems. 

A R M architecture A R M processors (Figure 3.1) becomes popular in small embedded 
systems. Unlike the x86 compatible processors, their instruction set is RISC and without 
backward compatibility. RISC means that only basic instructions are supported, which 
leads to small processor complexity. The A R M instruction set is variable, so only certain 
instructions could be supported. This leads to a small, effective processor with much lower 
power requirements compared to x86 processors. That's why their popularity is rising, 
especially in the embedded and mobile segment. A R M processors are sold by A R M holding 
as a design file, not as a physical chip. It's quite similar to IP cores for FPGAs(described 
below). Hence the manufacturer can build his own chip with custom peripherals based on 
the A R M processor core. 
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Figure 3.1: Scheme of Quad-core A R M processor A57. Image retrieved from 
https://www. androidauthority. com/ 
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Development software The C P U processors are long supported and widely used so that 
there exist a huge number of effective development tools in the form of operating systems 
and their APIs, compilers and libraries, development studios etc. C P U programming is 
then quite simple and fast, but this applies to one, not to multiple C P U programming. 
There can be a lot of work with CPU's synchronization. The Windows operating system is 
primarily designed for x86 processors. On the other hand, Unix based systems are adapted 
to run on both x86 and A R M architecture. 

Applications CPUs are quite suitable for most sequential image processing algorithms. 
It can effectively handle random memory access, needed by tree or list search algorithms, 
as well as block memory access. Although the C P U is quite effective in this way, overall 
computing power should be insufficient. Nowadays, the CPUs are equipped by more than 
sixteen cores in order to reach high computing performance. 

General purpose G P U 

G P G P U , i.e. General-purpose Computing on Graphics Processing Unit is the way of us­
ing graphic cards GPU's for general-purpose computing instead of their original purpose, 
performing graphics operations. G P G P U is supported since 2006 by G P U manufacturers. 

GPU's have a big computing potential. It is composed of several SMP (Streaming 
Multiprocessor), each containing a large number of C U D A cores, currently up to 64 per 
SMP, each running up to 1,5GHz (architecture Nvidia Pascal). Each core can provide 
basic F X arithmetics and memory access operations. Cores within S M P have access to 
shared memory, registry set and FP(Floating Point) computing units. Computing cores 
are simplest as possible, so they don't have their own controlling logic. Cores within S M P 
are divided into several warps, each with own program controller. Whole warp is then 
executing one source code, so S M P behaves like the multithreaded processor. 
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Figure 3.2: Schematics of S M P from nVidia Pascal G P U . Image retrieved from 
https://wccftech.com/nvidia-pascal-specs/. 

The graphic card usually contains a large amount of memory on board, currently up 
to 11GB. To provide as most data bandwidth as possible, multiple cache levels and tech­
niques are applied. A l l S M P processors share global memory and up to 4096kB L2 data 

25 

https://wccftech.com/nvidia-pascal-specs/


cache(Pascal). Every S M P have its L I cache (up to 64kB) shared between all Cuda cores. 
They also contain a small texture cache that can be used for some special operations. 

Architecture specifics In general, G P U has extreme computing power but extreme 
power consumption too. They can reach up to 10,6 T F L O P , currently with 300W TDP, 
but could be a serious problem to reach such a performance in a real application. Cores 
within S M P are further divided to warps which are driven by the common controller, so 
every core in warp is typically executing the same instruction. If a program contains some 
branching instructions, as „if-else" or „case" statements, the controller has to selectively 
enable or stop some threads to allow executing of the relevant part of code statement for 
each core. G P U is capable of running a lot of threads in parallel, so it can process a huge 
amount of data. The memory subsystem is designed for a high load, but the programmer 
has to take care of a proper global memory access attitude. Ideally, threads have to gather 
memory accesses, memory cells required by individual threads should be adjacent. Access 
with inappropriate stride can rapidly decrease memory throughput. For better performance, 
access to global memory should be aligned to 128B memory segment. 

Shared memory is divided into multiple banks to increase throughput. The proper 
attitude is to access memory cells by stride 1 or by the stride of the prime number. This 
results in 1:1 assignment within banks and threads of the warp. Different stride leads to 
worse ratio and in the worst case to serialize memory requests. In case of reading one 
memory cell by all threads, exists a built-in memory broadcast mode. 
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WM 
Shared Memory Banks Shared Memory Banks 

Figure 3.3: Shared memory bank access. On the left is the example of Linear addressing, 
causing no bank conflict. Two-way conflict is on the right, leads to two memory accesses 
instead of one in linear addressing. 

Development software Currently, there are two programming platforms for G P G P U , 
Nvidia C U D A and OpenCL. C U D A is developed and supported by Nvidia company, one 
of the graphic card manufacturers, therefore is available only for Nvidia Graphic cards. 
C U D A S D K contains large libraries for easier application development. OpenCL is a more 
general platform and supports G P U of any manufacturer. Moreover, OpenCL can utilize 
not only GPUs but even C P U for computation. Both platforms are based on C language 
with additional extensions. 

Applications Types of algorithms suitable for running on GPUs are clear from its specific 
architecture. High performance can be reached on per pixel or local image operations, such 
as image filters. On the other hand, it can be a problem to write effectively a tree search 
algorithms, algorithms with random memory access, algorithms with if-else statements etc. 
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D S P processors 

DSP is a shortcut for Digital Signal Processor. It is primarily designed for real-time signal 
processing. Currently, DSP processors are used for example, at mobile phones (GSM signal 
coding/decoding), D V D drives, cameras etc. 

DSP is based on Harvard architecture and thus has a separated instruction and data 
memory. This leads to better throughput because every memory has its own bus. To 
maximize computing power, DSP has several parallel processing units, so in every clock 
cycle can be executed more than one instruction. Typically, there are more A L U s , M A C 
Multipliers and data load/store units. DSP also has two or more D A G (Data Address 
Generator) and a lot of D M A units. D A G unit is capable of advanced memory addressing, 
such as a round buffer addressing, reverse addressing, stride memory access etc. There are 
two basic types of DSP, divided by used arithmetics. DSP's are either calculating with 
fixed or a mix of fixed/floating-point arithmetics. Fixed points performance of one DSP 
core is currently up to 8 MACS(multiple and accumulate) per clock cycle. Floating-point 
DSPs have approximately half of this performance, up to 4 FLOPS/c lock cycle. L2 cache 
memory is currently about 4 M B per core. T D P of one core is highly dependent on desired 
performance, from less than 0.1W up to 7W. Nowadays DSP processors can have up to 4 
cores and run above 1.2 GHz frequency. 

Architecture specifics Real-time signal processing is the main utilization of DSP pro­
cessors, so their architecture is adapted to meet such criteria. One of the great advantages is 
the presence of multiple computation units capable of parallel processing, which allows easy 
hardware loop unrolling. DSP is using a long instruction word (VLIW). One instruction 
is composed of several instructions, each for one processing unit. If a source code contains 
data-independent instructions, they can be executed simultaneously. This is solved by the 
compiler, which has to take into account the number of processing units, length of instruc­
tion execution and possible data dependencies. This implies that a compiled code is not 
compatible with different DSP processors. Not all of the processing units can be busy at 
the time, so the DSP long instruction can contain some N O P instructions. This can have 
a bad impact on DSP's performance. 

The bottleneck of DSP processors is conditional code executing, for example, if-else or 
case statement. It is solved by preliminary selection of branch code and incidental execution 
of recovery code. In this case, code cannot be effectively parallelized. 

Applications Primary DSP orientation is on real-time signal processing, it's design is 
quite customized for this purpose. Applications based on F F T , signal coding/decoding, 
signal compression tasks are very effective on DSP. Algorithms effective on DSP are com­
monly based on block or stream processing, loops etc. There can be easily achieved parallel 
execution, loop unrolling and D A G unit utilization. On the other hand, significantly ineffec­
tive could be algorithms based on random memory access and if-else and case statements, 
for example, tree searching algorithms. 

Development tools Typically, DSP BIOS is running on DSP chips. It is a kind of real­
time operating system (RTOS), which cares about low-level system events, task priorities 
and provides a simple A P I for a custom application. C or C+-1- compilers are available for 
DSP programming. 

27 



3.2 System-on-chip platforms 

SoC architectures, sometimes also known as an application services platform (ASP), are a 
combination of existing architectures described above. Typical hybrid systems are composed 
of several interconnected chips. Nowaday the C P U + G P U , C P U + F P G A and DSP + 
F P G A cooperation for signal processing is quite common. A Brand new way is to embed 
more computing architectures into one chip. Xil inx Zynq SoC and Nvidia Teg T3> sire ci typical 
example of a useful combination of the multi-core A R M processor and F P G A , respectively 
G P U . 

SoC F P G A - Xilinx Zynq 

Architecture specifics Xil inx Zynq is a combination of dual-core A R M processor core 
(and other peripherals, such as memory controllers etc.) with a standard F P G A chip. Both 
parts can run on different frequencies, so A R M can run on 677MHz and is not decelerated 
by the slow F P G A clock frequency. Both parts are interconnected through standard A X I 
bus and share R A M memory. Moreover, the F P G A can be directly connected even to the 
A R M cache memory. The A R M processor has a 64kB L I and 512kB L2 cache memory 
shared between cores. The standard way to communicate between A R M and F P G A is 
to make a memory-mapped device connected directly to the A X I bus. This device is then 
configured from the A R M processor and serves as a coprocessor or independent system with 
access to system memory, like a graphic card on P C . Zynq is an excellent combination of two 
totally different architectures. A R M C P U is quite suitable for any sequential algorithm. On 
the other hand, F P G A has a great parallel computing potential but executing of standard 
sequential code is almost impossible and have to be solved by IP cores processors. 

Development tools A big advantage of the Zynq platform is the capability of running 
a Linux operating system. So there exists a lot of development studios, standalone code 
compilers and development libraries just like for Linux desktop operating system. Xil inx 
Company provides support for F P G A part, including IP cores for easy A X I bus connection. 
They also developed a basic Linux distribution with several examples of interconnecting 
both parts of a chip. 

Applications Several ways how to utilize this platform for some image processing exists. 
A R M processor can run a complex algorithm using an F P G A part just only to accelerate 
some computing or graphic operations. This mode is suitable for algorithms, that needs 
some global information over image or needs random access to the image memory. Another 
way is to perform the whole algorithm inside the F P G A part. A R M processor can only serve 
as a driver of some peripheral interfaces, such as Ethernet or USB, whose implementation 
would be difficult to program in F P G A . A n application constraint results from the F P G A 
subsection above. 

SoC G P U - Nvidia Tegra 

Nvidia Tegra integrates an A R M C P U , graphics processing unit (GPU), northbridge, south-
bridge, and memory controller onto one package. The most recent Tegra SoC, Xavier, 
contains eight custom A R M v 8 cores, a Volta G P U with 512 C U D A cores, an open-sourced 
T P U (Tensor Processing Unit) called D L A (Deep Learning Accelerator). The G P U is ca-
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Figure 3.4: A generic example of an SoC F P G A , sometimes also known as an applica­
tion services platform (ASP), shows a dual-core hard processor system with its comple­
ment of hard peripherals on the same die with an F P G A fabric. Image retrieved from 
http://archive, rtcmagazine. com/. 

Figure 3.5: Module M _ Z X equipped with SoC Xil inx Zynq Z-7020. 

pable of encoding and decoding 8K Ultra H D video (7680 x 4320). Users can configure 
operating modes at 10W, 15W, and 30W T D P as needed. 

Development tools N V I D I A devices are supported by the Jetson N V I D I A software 
stack, enabling to develop once and deploy everywhere. JetPack S D K includes the latest 
Linux Driver Package (L4T) with Linux operating system and C U D A - X accelerated libraries 
and APIs for AI Edge application development. It also includes samples, documentation, 
and developer tools for both host computer and developer kit, and supports higher-level 
SDKs such as DeepStream for streaming video analytics and Isaac for robotics. 

NVIDIA JetPack S D K is the most comprehensive solution for building AI applications. 
It bundles Jetson platform software including TensorRT, cuDNN, C U D A Toolkit, Vision-
Works, GStreamer, and OpenCV, all built on top of L4T with LTS Linux kernel. 

NVIDIA L4T provides the Linux kernel, bootloader, N V I D I A drivers, flashing utilities, 
sample filesystem, and more for the Jetson platform. It is possible to customize L4T 
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Figure 3.6: Module Nvidia Tegra T X 2 . Image obtained from nvidia.com. 

software to fit the needs of the project. By following the platform adaptation and bring-up 
guide, it is possible to optimize the use of the complete Jetson product feature set. 

Applications Tegra G P U supports the applications written in Nvidia Cuda, so many 
of algorithm written for Nvidia GPUs (e.g. for desktop PCs) are feasible to run on it. 
Specifically, the Tegra modules are optimized to run deep neural networks. The devices 
based on the Tegra modules can create powerful edge nodes in the edge-computing scheme. 
At just 7.5 watts, the Xavier SoC claim to deliver 25 x more energy efficiency than a state-
of-the-art desktop-class C P U . This makes it ideal for real-time processing in applications 
where bandwidth and latency can be an issue. These include factory robots, commercial 
drones, enterprise collaboration devices, intelligent cameras for smart cities. 

After consideration, the features of target platforms from Section 3.1, the F P G A was 
selected as a target platform, namely the SoC Xil inx Zynq, which is a powerful combination 
of F P G A and dual-core A R M processor on the same chip. This SoC allows the application 
of hardware-software codesign technique. It brings together the performance benefits of 
F P G A with the possibility of sequential execution of code - e.g. for driving the F P G A 
processing or to perform complex calculations, which acceleration in F P G A would be very 
demanding or not reasonable. Several reasonable arguments for selection of F P G A follows: 

• Power consumption - F P G A s have very low power in general, and it depends mostly 
on the amount of programmable resources used. 

• Performance - Despite its quite low clocking frequency (max. 200MHz), F P G A 
benefits from parallel processing and achieves very high computational performance. 
The well parallelizable algorithms, which, e.g. applies the same fixed operations on 
each pixel/block of the image, are quite often parallelizable to the one result per 
clock. Thus it is possible to achieve processing speed up to 200MPix/s; of course, 
the whole pipeline could be extended/multiplied, providing multiplied performance. 
The increase of complexity usually increases the demands on F P G A resources, not 
the overall processing speed. 

• ASIC ready - F P G A implementation is one of the necessary steps during ASIC 
development. One of the main tasks was an implementation of an H D R compres­
sion algorithm (published within the same book[70]), where the possibility of ASIC 
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implementation" is necessary for successful standardization process, required for widespread 
commercial usage. 

• Low embedding effort - it is closely related to the ASIC implementability and also 
the fact that many, predominantly industrial cameras are already based on F P G A , 
since then the firmware could be easily extended and/or modified. In this case, the 
H D R acquisition component could fit into existing F P G A located in camera or bigger, 
quite often with the compatible layout. The implemented F P G A component could 
also extend the custom ASIC design as a standalone block. 

Nowadays, the platforms with powerful embedded G P U , such as Nvidia Tegra, are starting 
to be concurrent at certain parameters. On the other hand, DSP platforms are slowly 
getting to the margins of interest. 

3.3 State-of-the-art hardware solutions overview 

Many research publications were published regarding the acquisition of H D R images; how­
ever, only a few of them are oriented on embedded devices. H D R merging itself is not a 
complex algorithm, but for real-time acquisition, it requires a high memory throughput and 
external memory buffer, which is not available on many embedded platforms. 

F P G A based platforms are more than suitable for such type of applications. Several 
papers focused on F P G A acceleration and related to our work were published [25, 27, 61, 
62, 30, 45, 68, 56]. This section provides its overview and presents achieved properties. 

Realtime H D R video for eyetap wearable computer by Mann et al. 

Mann et al. [30] developed an F P G A based wearable H D R seeing aid designed for the electric 
arc welding (see Figure 3.7). The prototype consists of an EyeTap (electric glasses) welding 
helmet, with a wearable computer upon which are implemented a set of image processing 
algorithms that implement real-time H D R image processing together with applications such 
as mediated and augmented reality. The H D R video system runs in real-time and processes 
120 frames per second, in groups of three or four frames. The processing method, for imple­
mentation on F P G A s (Field Programmable Gate Arrays), achieves real-time performance 
for creating H D R video using the novel compositing methods, and runs on a miniature self-
contained battery-operated head-worn circuit board, without the need for a host computer. 
The result is an essentially self-contained miniaturize hardware H D R camera system that 
could be built into smaller eyeglass frames. [30] 

Mann's proposed method is adapted specifically for direct hardware implementation, 
as opposed to assuming the availability of a multi-core C P U or G P U . Additionally, they 
present how this method can be extended to three or more images in extreme dynamic 
range cases using simple binary operators. Mann proposed a novel computational method 
using LUTs (lookup tables) to compute the H D R (high dynamic range) video in real-time. 
For the case of compositing two images with 8-bit colour depth per channel, a simple size 
256 x 256 x 3 L U T can be derived for each camera. The L U T need only be computed once 
each time a new camera is plugged in for the first time. 

The H D R output values are precomputed for a full range of input pixel combinations 
and stored in lookup tables in B R A M s (see Figure 3.8). Even after certain optimizations of 
memory consumption, the B R A M demands are very high, especially when more than two 
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Figure 3.7: The "MannVis welding helmet" implements the Eye Tap principle which causes 
each eye to, in effect, function as if the eye itself were both a camera and display. Image 
obtained from [30]. 

L D R images are used. The system is implemented on Spartan-6 LX45 F P G A and produces 
720p video at 60 FPS while fusing two images. 

Mann's prototype have the camera configured to capture images that are four stops 
part (i.e., one image has an exposure time that is 2 4 = 16 times longer or shorter than the 
other). Once they estimated from the image set, we perform dynamic range compression 
(tone mapping) for L D R display. 

For the case of constructing H D R images from 3 or more images, they can compute 
an intermediate estimation of the photographic quantities, since the images only differ in 
exposures (i.e., four stops in proposed solution), the same L U T which precomputed quan­
tities can be applied to the image pairs at no additional computational cost. [30] 

Input Images Output Image 

h 

Figure 3.8: The figure illustrate the direct lookup method used by Mann et al [30]. The 
pixel values from the same pixel in the image addresses the precomputed resulting H D R 
values in the table (in the middle). Image obtained from [30]. 

In order for real-time H D R processing to be practical, a 45nm low-power Spartan-6 
LX45 F P G A device was selected for its low power consumption and portability. The board 
contains two input H D M I ports used to receiving the baseband H D video (720p@60 FPS) 
and two output H D M I ports used for transmitting the processed H D R video frames. It also 
contains 128MB of DDR2 S D R A M , used for storing video frames. It runs at 625MHz in 
order to meet the real-time processing requirements. Additionally, BlockRam ( B R A M ) is 
used as line buffers and to store the L U T . However, it is limited to a capacity of 2.1Mbits 
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(116 x 18,432). Due to its resource limitations, a focus on reducing complexity guided Mann 
et al. [30] to invent novel approaches to H D R video. Much of the processing is precalculated 
and stored in a lookup table to reduce complexity using the methods discussed in the Mann's 
Article [30] each pixel sample contains an 8-bit R G B colour component totalling 24-bits per 
pixel. Each lookup is addressed by a colour channel of two differently exposed frames. A 
total of 16-bits is used for addressing into the L U T totalling 65536-entries. For 8-bit wide 
sample output, B R A M can be configured as 8-bits wide x 2048-deep, which resulted in 32 
B R A M s utilized per colour channel for a total of 96 (out of 116) B R A M s utilized. Efficient 
on-chip memory utilization is the key to L U T implementation technique, as it directly 
limits scalability beyond two frames. The number of B R A M s required can be reduced by 
utilizing the fact that only half of the data in one square L U T is valid since each pair of 
frames has one's pixels always greater than the others. This technique is used in 3-frame 
implementation. [30] 

Realtime H D R Video Imaging on F P G A by Tao et al. 

Tao et al. [57] extended the work of Mann [30] by introducing a lookup table compressed 
using quadtree structure, which saves the amount of B l o c k R A M resources. Tao replaced 
the weighted sum approach with the new quadtree-based compositing for high-quality H D R 
video production. The proposed compositing circuits are generated by the software, with 
parameters given by the user. It compresses and implements a 2D Lookup Table (LUT) 
on an F P G A , by bounding the error and space of quadtree representation of the original 
L U T according to the expected usage, so that the L U T is compressed to fit within the 
total amount of the block R A M resource available in a mid-sized F P G A . They also add the 
support for 1080p video at 60 FPS . [57] 

HDR-like imaging using industrial digital cameras by Popadic et al. 

Popadic et al. [45] proposed a low complexity method for capturing high dynamic range 
scenes using standard industrial digital cameras. The goal of the proposed method is to 
improve the performance of the standard industrial digital cameras, without modifying 
the central processor unit (CPU) software. The most effective way from their point is to 
avoid depending on the camera software manufacturer (that do not allow changes in the 
software) is to use the F P G A to perform operations that extend the dynamic range of the 
images and output them in a format compatible the C P U . The F P G A unit is designed as 
independent and intended to be connected transparently between C P U and C M O S chip of 
camera. To keep the compatibility, the F P G A unit produces an HDR-like image instead 
of H D R . As opposed to H D R image format, which uses 32-bit floating-point precision for 
each colour channel, HDR-like image is stored in standard 8-bit R G B format. Overall, the 
performance of the system is much enhanced, while more details in the resulting image 
are shown. Moreover, the standard H D R image cannot be shown on standard displays or 
printed using standard printers; H D R has to be post-processed by tone-mapping operators. 
Such produced HDR-like image has not these shortcomings and may be processed in the 
existing image processing pipelines. [45] 

In the proposed architecture, sensor and F P G A together form a „smart sensor", which 
receives configuration data from the C P U . In order to provide an HDR-like image, three 
images are combined into one. In order to combine them in a suitable way, one has to 
determine weight coefficients. Communication between C P U and F P G A is realized by the 
same interface as the sensor does. C P U initially calculates auto-exposure time as part of its 
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Figure 3.9: Method for HDR-like imaging proposed by Popadic et al. [45], implemented on 
F P G A . Image obtained from [45]. 

auto-exposure algorithm. Structure of the method implemented is presented in Figure 3.9. 
The method is implemented on the F P G A embedded onboard, which represents a bridge 
between C P U and sensor. Image acquisition is triggered after setting the configuration 
parameters that are prepared for a certain image. HDR-like image, the output from the 
F P G A will be automatically accepted by C P U . It is represented in the same format (Bayer 
matrix format) as a R A W image from the image sensor. Image fusion pipeline implemented 
in the F P G A will be presented later. Since standard digital cameras are equipped with an 
auto-exposure function, the first step of the proposed method is to estimate the quality 
of a single image. When the camera process captures the auto-exposed image, image 
quality should be checked. If a single image quality is not acceptable according to the 
proposed criterion, auto-exposure time is not optimal. In order to improve image quality, 
the process continues to the HDR-like image generation by taking another two images. The 
second step of the proposed method is an algorithm which calculates exposure times of two 
additional images that will participate in the final image. The third step of the method is an 
algorithm which performs a fusion of three obtained images. Proposed algorithm for HDR-
like scene-mapped imaging performs calculations on the global image level. Smoothing is 
not necessary. This approach makes the algorithm simple and fast. [45] 
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H D W D R video surveillance system based on F P G A by Xie and Wang 

Xie and Wang [68] developed a high definition wide dynamic video (WDR) surveillance 
system, based on H D R camera kit accompanied by Lattice F P G A and sensor Panasonic 
MN34229. The W D R surveillance video is displayed through the H D M I port. They use 
the algorithm of exposure fusion, which introduced Mertens et al. [34] and fuses two images 
into a wide range image only. The whole W D R module can be divided into four parts: 
luminance value statistics, weight calculation, mean filter and pixel fusion, as shown in 
Figure 3.10. 

Frame L Frame S 

Luminance value 

s t a t i s t i c s 

Weights 

calculation 

I 
Mean filte Pixel fusion 

Figure 3.10: System block diagram of the method for W D R imaging proposed by Xie et 
al. [68]. Image obtained from [68]. 

The video image data is collected line by line. To ensure the real-time performance of 
the system, they calculate the fusion weight of the current frame for the multiple exposure 
image synthesis of the next frame. First, when the data of the nth frame arrives, it is 
divided into a number of image blocks in 32 x 32 size, and the brightness values are count 
from each image block. The sum of all the pixels' luminance values in each image block 
of long and short exposure image is stored in R A M . In this way, They can get each image 
block's sum of the luminance values in the nth frame at the end of the image. Further, they 
can calculate the fusion weights through the existing mathematical model, and the results 
are stored in the shift registers in turn to complete the mean filter operation. The function 
of a mean filter is to reduce the block effect. After the mean filter is completed, the final 
fusion weights are stored in R A M waiting for the pixel fusion. It's worth mentioning that 
weights calculation and mean filter is completed during the time between the nth frame to 
the next frame. When the data of the next frame arrives, the fusion weights we just got 
are used for pixel fusion and the W D R data is obtained. The system produces video of 
1920 x 1080 pixels at 30 FPS . [68] 

HDR-ARt iSt : an adaptive real-time H D R smart camera by Lapray et al. 

Lapray et al. [25, 26, 27] developed a complete FPGA-based smart camera architecture 
named HDR-ARt iS t (High Dynamic Range Adaptive Real-time Smart camera). This smart 
camera is able to provide a real-time H D R live video from multiple exposures captur­
ing to display through radiance maps and tone mapping. The main contribution of their 
work is the generation of a new F P G A embedded architecture producing an uncompressed 
Black&White 1280 x 1024-pixel H D R live video at 60 FPS . A n embedded D V I controller is 
also provided to display this H D R live video on a standard L C D monitor. The HDR-ARt iS t 
camera could obviously embed some complex image processing applications onto the F P G A 
or could be connected to a more standard P C managing the video stream. [27] 

35 



Figure 3.11: Xi l inx Virtex-5 ML507 F P G A board equipped with 1.3MPix C M O S , where 
Lapray et al. [25, 26, 27] implemented the H D R image acquisition and tone mapping. Image 
retrieved from [27]. 

To compute real-time H D R algorithms, a dedicated FPGA-based smart camera architec­
ture was designed to address the computation capacity and memory bandwidth requirement 
(see Figure 3.13). This architecture does not put any restriction on the number of frames 
used for H D R creating. They shortly call each architecture derived from the generic one as 
an HDR-P , where P is the number of frames. [27] 

According to the detailed description of these methodologies and the comparison of 
their real-time software implementations, they decided to use the Debevec's method [5] for 
H D R merging. The main advantage of this approach is that there is very little constraint 
about the response function (other than its invertibility). Moreover, the proposed algorithm 
proved to be quite robust and easy to use due to the simplicity of Debevec's equation (see 
Equation 2.3). The H D R creating pipeline for HDR-2 video is shown on Figure 3.12. [27] 

Regarding the tonemapping operators, Lapray et al. [25, 26, 27] implemented two the 
global tonemapping operators by Duan [8] and Reinhard [47]. Their implementations were 
published and described thorough their articles [25, 26, 27]. 

The HDR-ARt iS t platform [27] is a smart camera built around a Xil inx ML507 board, 
equipped with a Xi l inx Virtex-5 X C 5 V F X 7 0 T F P G A (see Figure 3.11). The motherboard 
includes a 256 M B DDR2 S D R A M memory used to buffer the multiple frames captured by 
the sensor. Several industry-standard peripheral interfaces are also provided to connect the 
system to the external world. Among these interfaces, the vision system implements a D V I 
controller to display the H D R video on an L C D monitor. It also implements an Ethernet 
controller to store frames on a host computer. [27] 

A custom-made P C B extension board has been designed and plugged into the F P G A 
board to support the Ev76c560 image sensor, a 1280 x 1024 pixel C M O S sensor from e2v 
company. It offers a 10-bit digital read-out speed at 60 FPS in full resolution. It also 
embeds some basic image processing functions such as image histograms, evaluation of the 
number of low and high saturated pixels. Each frame can be delivered with results of these 
functions encoded in the video data stream header. [27] 
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Figure 3.12: H D R creating pipeline using LUTs tree for merging two input images, imple­
menting the Debevec's algorithm [5]. Image retrieved from [27]. 

Multi-streaming memory management unit the M M U - P can capture and store the 
current stream of pixels from the sensor and delivers simultaneous P — 1 pixel streams 
previously stored to the H D R creating process. Wi th such memory management, they 
avoid waiting for the capturing of new P frames before computing any new H D R data. 
Once the initialization is done, the system is synchronized with the sensor frame rate (i.e., 
60 fps) and can produce a new H D R frame for each new capture. Moreover, in terms of 
memory, the M M U - P requires to store only P — 1 frames, because the oldest captured 
frame is read and overwritten by the current frame acquired by the sensor. For reasons of 
efficiency, the M M U - P reads and stores lines of pixels. 

3.3.1 Real-time H D R video compression using an F P G A by Zemcik et 
al. 

The architecture of the H D R camera proposed by Zemcik et al. [70] can capture 30 FPS 
FullHD with each frame formed from two exposures, or 20 fps FullHD video formed from 
three exposures. Wi th sharing the expositions, the output can eventually reach up to 
60FPS; however, the whole pipeline is limited by the capability of H.264 encoders, support­
ing 30FPS only. The main architecture highlight is the encoding of H D R video using two 
standard video codecs. 
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Figure 3.13: overview of the H D R - P video architecture, designed by Lapray et al. [27]. 
Image retrieved from [27]. 

This architecture uses standalone 2K Flare 1 camera (see Figure 3.14) connected over 
3G-SDI interface2 (commonly used in T V studios). This camera is producing high quality 
FullHD R A W image at up to 60FPS. 

Architecture by Zemcik et al. uses two or three images for H D R merging, depending on 
configuration, so there is implemented the equivalent number of framebuffers. The double 
buffering technique is used to avoid rising of image artefacts, which doubles the memory 
requirements but prevents rising of image artefacts. 

A l l three framebuffers are read synchronously by multiple D M A channels; here, the H D R 
merging takes place. The read-out is performed once the three images are captured, the 
output then has 1/3 of the input FPS . Unlike the Lapray [27], which is merging H D R from 
three last images and thus have the equal input and output framerate, the architectures 
presented in Zemcik's article [70] took advantage of the speed of the attached camera 
(capable of 60 FPS) and capture three images as fast as possible, trying to reduce the ghost 
artefact to the minimum. 

xhttp://www.ioindustries.com/  
2https://www.smpte.org/standards 

38 

http://www.ioindustries.com/
https://www.smpte.org/standards


Figure 3.14: Flare SDI Camera, image retrieved from http:/ /www.ioindustries.com 

Actual 
Intensity 

Histograms 

Figure 3.15: Scheme of H D R merging algorithm based on unsaturated pixel selection [70]. 

The primary demand for the H D R merging algorithm was the capturing of the as-high-
as-possible dynamic range, showing the benefits of H D R acquisition. Regarding that the 
architecture Zemcik et al. [70] use only a simple pixel selection algorithm (see Figure 3.15) 
because the exposition times are set so far from each other (by multiples of eight), that 
the particular pixel is exposed well only in one exposition. The others are often under on 
overexposed; thus their contribution to computed H D R value would be marginal. 
The image acquisition is typically made in a colour format where the intensity component 
is easy to process in H D R chain while the colour is preserved independently. In this case, 
the Y C b C r model is used. 
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H D R compression The standard dynamic range image and video are easy to compress 
and reduce their size dramatically, however many standard algorithms ( J P E G , M P E G , 
H.246, ...) are designed only for 8-10bit images. The straightforward solution they pro­
posed is to compress the image or video right after tonemapping, where the H D R image 
information is compressed to lower bit-width, keeping all important visual image details. 
Unfortunately, the tonemapping process necessarily means a loss of H D R information. 

log 
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bilateral 
filter exp 
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H.264 
Encoder 

off-chip 

H.264 
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Figure 3.16: H D R image compression scheme [70]. The bilateral filtering in logarithmic 
domain is performed on luminance channel of H D R image. The output of filtering (base 
layer) is formed into first image stream and the second stream is created as difference 
between filtered image and original HDR(detail layer). 

Compression of tonemapped image attempts to keep the important image details; how­
ever, compression necessarily means a loss of part of H D R information. Zemcik's proposed 
architecture for H D R compression [70] uses the bilateral filter (BF) for base and detail layer 
separation (which is also first step of Durand operator [9]). The bilateral filter is a very 
demanding operation with the quadratic dependency of computing operations on filter ker­
nel size. The original algorithm from book [70] requires kernel at least of 19x19 pixel size. 
This size of B F would be very demanding on F P G A resources, and then the kernel size 
was selected based on the demands to provide the highest filtering quality as possible while 
keeping reasonable computational complexity and also reasonable F P G A resource demands. 
The best choice for the desired implementation seemed to be the B F kernel size of 11x11 
pixels. Furthermore, the multiplication of pixels with coefficients was converted into simple 
addition of shifted operands, saving the resource of DSP blocks of F P G A . Moreover, the 
experiments proved, that number of additions can be limited, favouring the most significant 
bits, with marginal impact onto numerical precision, which is summarized in an article by 
Nosko et al. [42]. 

H D R camera demonstrator The H D R camera designed by Zemcik et al. [70] is shown 
in Figure 3.17. The block diagram in Figure 3.18 shows the main building blocks of the 
camera hardware, which heavily relies on programmable hardware, specifically the Xil inx 
Zynq architecture that combines the F P G A technology with a couple of A R M CPUs (see 
Section 3.2). This system core is accompanied with the H.264 video compression chips that 
accomplish the standard task of 8-bit video compression that is a part of the proposed 
compression scheme3. The complete H D R camera is completed with several electrical in-

3

http: //www.fuj i t su. com/us/products/devices/semi conduct or/H.264/mb86m01-2-3. html 
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terfaces, such as SDI, and while it can run from battery power, it is also accompanied by 
a battery power supply and charging blocks. 

The SDI and also many other high-speed video interfaces are based on high-frequency 
serial buses, which requires high-speed transceivers on the F P G A side. Even though its 
relatively high price, we chose the Xil inx ZC706 board, equipped by SoC Zynq XC7Z045 4 to 
build this H D R camera prototype. In the time of development, it was the only reasonable 
choice within the boards with high-speed G T X transceivers. 

Figure 3.17: A photography of the H D R camera prototype. Note, please, the F P G A 
development board, the compression modules, and also the Flare camera connected by SDI 
interface. Image retrieved from Zemcik et al. [70]. 
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Figure 3.18: Overall scheme of H D R Acquisition architecture published in [70]. 

3.4 Ghost avoiding/removing solutions 

The following section summarises the state-of-the-art H D R acquisition solutions, which 
either suppress and remove ghosting effect or prevent its occurrence. 

H D R camera based on dual-gain C M O S by Tang et al. 

Tang et al. [56] developed an H D R camera based on Altera F P G A and equipped with dual-
channel C M O S GSENSE400BSI, which is able to apply different analogue gain to the same 
captured data (see the prototype on Figure [56]). The H D R camera can capture the wide 
dynamic range image of the nature scene without ghosting phenomenon, by combining the 
two images with different gain to an H D R frame up to 95 dB. Additionally, the frames 
are captured at the same moment by two channels with different gain, which reduces the 

4

https: //www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html 
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interference between successive frames. However, the C M O S sensor has a rolling shutter, 
and the disruptive effects can still occur. [56] 

The dual-gain C M O S sensor uses two parallel gain amplifiers followed by A D C s to 
convert the input pixel into digital information (see Figure 3.20). In the H G (High gain) 
image, it clearly records the details of the dark region of the target scene but loses the 
details of the bright region. On the contrary, the details of the bright region of the target 
scene are recorded clearly, but the details of the dark region are lost in the L G (Low gain) 
image. To obtain more useful information of H G images and L G images at the same time, 
we can take advantage of the complementary relationship between H G images and L G 
images, especially when there is a large gap between the target brightness and background 
brightness in some scenes. [56] 

In such way of H D R acquisition avoids rising of ghosting effect caused by sequential 
image acquisition; however, the C M O S sensor has a rolling shutter, and then another kind 
of image artefacts still occurs. The maximum frame rate of the camera is 60 F P S at a 
resolution of 1920 x 1080. The camera uses a global tone mapping operator by Duan et 
al. [8]. 

Figure 3.19: The hardware platform of the camera by Tang et al. [56]. Image retrieved 
from [56]. 

High gain image 

Low gain image 

Figure 3.20: The system block diagram of the camera by Tang et al. [56]. P G A - Pro­
grammable Gain Amplifier. Image retrieved from [56]. 
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Real-time ghost-free H D R video using weight adaptation by Bouderbane et al. 

Bouderbane et al. [4] implemented a deghosting algorithm on the same platform as Lapray 
et al. [27]. Their method repose on the modulation of weights of the Debevec [5] algorithm, 
where they adjust pixel weights based on their deviation from pixels of the reference image 
using the weighting function given [3] (see Figure 3.21) which parameters are taken from 
Sidibe et al. [51]. 

To calculate final weighs (Figure 3.21 right) to be used in the high dynamic range 
reconstruction, they multiply the standard weights from Debevec [5] by the modulation 
factor (Figure 3.21 left). 

Figure 3.21: The weight modulation factor (left) and the final weight function(right) used 
in ghost removal H D R merging. Red curve is the factor for the closest radiance value of 
L D R images to the reference radiance value, the blue curve is the farthest value from the 
reference value and the green curve is for middle values. Image retrieved from [4]. 

The implemented F P G A design (including the pipeline of Lapray et al. [27]) uses 29% 
of the Xil inx Virtex-6 (xc6vlx240t) F P G A and the maximal clocking frequency is 114MHz. 

Figure 3.22: Results of deghosting method proposed and implemented by Bouderbane et 
al. [4]. Image retrieved from [4]. 

The camera is based on a Xil inx ML605 platform board. Wi th F P G A Xil inx Virtex-6 
(xc6vlx240t). The ML605 board integrates a 512 M B S D R A M used to buffer the sequence of 
three images, which are managed by the memory management unit of Lapray et al. [25, 26, 
27]. The attached P C B module integrates an E 2 V C M O S with a resolution of 1280 x 1024 
pixels. The Ethernet interface is used to stream the H D R images to a host computer with 
two modes, 32 bits images at 15 FPS (limited by 1Gbit Ethernet) or 8 bits tone mapped 
images at 60 FPS (limited by a sensor), both modes in full resolution. The D V I output 
interface is used to display tonemapped H D R frames on a monitor. 
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Figure 3.23: Xil inx Virtex-6 F P G A development board equipped with colour C M O S , where 
Bouderbane et al. [4] implemented the H D R image acquisition and deghosting algorithms. 
Image retrieved from [4]. 

True H D R camera with bilateral filter based tone mapping by Nosko et al. 

Nosko et al. [41] published the H D R architecture implemented on a custom camera platform 
based on SoC Xil inx Zynq XC7Z020 (see Figure 3.21). The platform is equipped by a low 
noise global shutter C M O S sensor Python2000 from O N Semiconductor, connected directly 
to F P G A through high-speed LVDS (Low Voltage Differential Lines) interface. The C M O S 
has a resolution of 1920 x 1280 pixels. The camera provides up to 30 FPS of grayscale 
H D R video with fixed f-stop range. However, the architecture itself is capable of processing 
up to 96 FPS . The architecture implements a high quality local tonemapping operator by 
Durand [9] based on the bilateral filter of 9 x 9 pixels. Resulting tonemapped image is 
streamed over the network in the form of M P E G 2 - T S stream. 

The H D R camera architecture published by Nosko et al. [41] is based on the method by 
Debevec [5]. The exposition weights for individual images are calculated as follows: Given 
the image with shortest exposition t\ time weight equal to one, the other images will be 
given the weights of where ti is exposition time of i th image in sequence. The H D R 
pixel value is computed as follows: 

V " Li • w(Li) • lt 
a= , V 11 (3.i) 

L i = i w(Li) 
where is the H D R pixel value, Lx is the x-th image in the sequence, ti exposition time 

of i-th image and w the weighting function 2.1). 
Unlike the algorithm by Debevec [5] they chose a plateau weighing function (see Fig­

ure 2.1) as the one leading to the best visual experience; however, it can be easily cus­
tomized. 

The exposition time of the middle image in the sequence is configurable, however, the 
mutual intervals between exposures are fixed to multiples of two, which leads to shift 
operations instead of multiplication. Only a middle exposition value is configurable [41]. 

The resulting H D R pixel is obtained by dividing the sum of pixels by sum of weights. 
The division is a time and resource-demanding operation, so Nosko et al. [41] decided to 
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Figure 3.24: Prototype of H D R camera by Nosko et al. [41, 42] 

convert it into multiplication by a tabulated fractional value. The sum of weights, according 
to bit-widths of intermediate results, needs to be represented by 11 bits (sum of three 9 bit 
values fits into 11 bits), so the fraction value is tabulated on 2048 entries. The resulting 
H D R pixel is in 10.8 fixed-point representation. 

H D R camera prototype 

The H D R camera developed by Nosko et al. [41, 42] (Figure 3.21) is based on Xil inx 
Zynq architecture that combines the F P G A technology with a couple of A R M CPUs (see 
Section 3.2). The camera is accompanied with the H.264 video compression chip 0 that 
accomplish the encoding of the video output in the form of H D R tonemapped video. 

The sensor is attached directly to the F P G A through high-speed multi-line LVDS in­
terface, which does not require the presence of high-speed serial G T X transmitters on the 
chip and therefore allows the use of low-cost Zynq XC7Z020. This F P G A has quite limited 
resources, but the experiments revealed that the resources are sufficient, even for imple­
mentation of advanced local H D R tonemapping. 

colour H D R video processing architecture for the smart camera by Nosko et 
al. 

This architecture further improves the architecture by Nosko et al. [41]. The architecture 
provides up to 30 FPS of colour H D R video with fully adjustable f-stops. However, the 
architecture itself is capable of processing up to 96 FPS . The architecture implements 
particularly a ghost removal algorithm and a high quality local tonemapping operator by 
Durand [9] based on the bilateral filter of 11 x 11 pixels. 

The architecture is further enhanced by a colour support. They process individual 
pixels of colour Filter Array (CFA), in this Bayer mask, in the same manner as 
the grayscale pixels [55]. The colourization of the H D R image is done later, during the 
tonemapping process. 

H D R merging with ghost-free extension The ghost-free H D R merging is based on 
the prediction of the pixel value. It is based on similar principles as the solutions of 
Grosch [15], Wu [66] and Wang [63]. 

http://www.fuj i t su. com/us/products/devices/semi conduct or/H.264/mb86m01-2-3. html 
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Since the exposure time of each image is known, individual pixel values in image i can 
be predicted using values from j. 

Li Lj - j- (3.2) 

where tx and ty are exposition times of images. This relation holds only for non-saturated 
patches, over/under-exposed patches must be handled differently. The ghost detection is 
performed before the H D R merging phase, resulting in ghost pixel mask (further called as 
ghostmap), where the marked positions are treated differently from the non-marked ones 
during the H D R merging. 

The function f2 tests the two images whether their pixels follows the prediction: 

Li • | / a > Lj 
n(Li,Lj)={0 Li-lf,-a<Li (3.3) 

else 

where a represents the tolerance, which must be taken into account, since the sensor noise, 
quantization errors and C R F precision may influence the predicted value and thus cause 
the false ghost detections. According to the experiments, they use the tolerance a = 1.2 as 
default, but this value can be adjusted based on the sensor features. In general, decreasing 
tolerance leads to more strict ghost detection, where more pixels are marked as ghosts, 
which eventually leads to worse dynamic range recovery. Increasing the ratio, on the other 
hand, decreases the chance of successful ghost detection. The ghostmap is defined as follows: 

N-l 
G=Y\ n(Li,Li+1) (3.4) 

i=l 

where non-zero value of G marks ghost pixels. The algorithm description is simplified 
by pixel range control - all of the under/over-exposed pixels are omitted from the value 
prediction; Still, they are tested for extreme luminance changes (dark to bright and vice 
versa). The algorithm works per-pixel and uses simple arithmetic operations, and thus it is 
suitable for implementation on F P G A . The follow-up H D R merging algorithm is modified 
and in the areas, where ghostmap indicates motion, incorporates the pixels from only one 
image, called reference image, which is generally the best exposed or middle exposed image 
in the sequence. 

Nosko et al. [42] implemented the H D R merging algorithm from Debevec [5] with mod­
ification for Ghost removal. Every pixel is assigned with the weight w, calculated using the 
triangle weight function by Debevec [5]. The function was modified for the shortest and the 
longest exposure since in the original algorithm, the saturated pixels are assigned a value 
darker than pixels not completely saturated. 

The H D R image H is a weighted sum of corresponding pixels in sequence of L: 

££=i * ( 0 - " ( L i ) ( 3 - 5 ) 

where n is number of images in the sequence, sorted by ascending time. The time ti is used 
to shift pixel values to the common time base. The function 9 incorporates the results of 
ghost detection, where 9 = 1 for reference image and 9 = 1 — G otherwise. 
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Chapter 4 

Proposal of ghost-free H D R 
algorithm 

This chapter contains the proposal of a novel ghost-free H D R merging algorithm, which 
is the core of my work during the pursuing of my Ph.D. The core of this chapter was 
published in Journal of Real-Time image processing as the article „De-Ghosted H D R Video 
Acquisition for Embedded Systems" [39]. 

The scientific contribution of this thesis is the proof that: 

A multi-exposure ghost-free HDR acquisition algorithm comparable to the state-of-the-
art algorithms in quality can be designed for an embedded hardware device and achieves a 
real-time performance at high resolution. 

The embedded hardware device should be based on F P G A technology with FullHD 
C M O S sensor onboard, at the same time be small in size and with low power demands to 
fit into the energy-efficient or battery-powered systems. 

In this chapter, a novel architecture implementing the above idea in F P G A is proposed 
and its functionality and quality of output are experimentally proved. The chapter consists 
of the quality comparison to the related implementations and even state-of-the-art methods, 
that are too computationally demanding and even not feasible to implement and/or accel­
erate on F P G A . The aim is to show that proposed solution is simple, yet very powerful and 
providing good visual results at the same time. The performance and power consumption 
of algorithm implemented on various platforms is summarized at the end of this chapter. 

The proposed novel ghost-free H D R acquisition method for stationary cameras is well 
implementable even in embedded systems in real-time with low resource requirements. 
While de-ghosting is being researched for a long time, the state-of-the-art methods that 
have good results are very computationally demanding and so they are not possible to 
implement in smart cameras and/or embedded systems attached to cameras. The novel 
H D R de-ghosting method proposed in this dissertation was designed with respect to real­
time processing in embedded hardware and the low demands reflects positively even to 
performance of C P U implementation. [39]. 
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Figure 4.1: Figure obtained from real application of proposed ghost-free algorithm - traffic 
monitoring system with licence plate detection, which demonstrates the contribution of 
proposed method. Top left - stripes of original images with a significant car motion. Top 
middle and top right - Images representing coefficients used for the H D R merging (certainty 
maps, see Section 4.1). Bottom left - ghosted H D R image. Bottom right - H D R image 
merged using proposed method. 

4.1 Ghost-free merging algorithm 

This section describes the proposal of a novel H D R merging method that produces ghost-
free results. This approach is based on pixel value matching, the idea being similar to the 
solutions proposed by Grosch [15], Wu [66], and Wang [63] but with quite different and 
improved processing. The exposure time of each image is known; therefore, it is possible 
to estimate and match pixel values in the adjacent images, except for the over or under­
exposed patches where the pixel values will obviously not match. Such estimation is not very 
precise, the captured image data is affected by factors such as noise, sensor quantization 
errors, C R F , etc. The reviewed methods generally use fixed or user-guided thresholds which 
must be employed in order to introduce user-defined tolerance to these factors. These fixed 
or user-defined thresholds often cause adverse effects in the final H D R images, such as 
visible transitions between static and motion areas etc. I propose a method to overcome 
such problems. [39] 

4.1.1 Certainty map 

In this approach, every image L j is assigned a Certainty map Ci related to the reference 
image Lref, which is generally considered to be the middle (exposure) image in the sequence. 
The Certainty map C contains values representing the estimated level of certainty that the 
individual pixels contain the same patch of the scene as the reference pixel, but obtained 
under a different exposure. Unlike ghostmaps, Certainty maps hold not only the patches 
containing motion, but rather all patches inappropriate for merging - such as under and 
over-exposed pixels. [39]. 

18 



The probability distribution of low level value pixels is Poisson [29] due to the discrete 
nature of the incoming photons. Wi th higher intensities, the distribution transforms into 
Normal (Gaussian). Therefore, I use the Gaussian function to derive the certainty (esti­
mated probability) that the two luminance levels, estimated and measured, match. The 
Certainty map Q (see Figure 4.2) replaces the binary ghostmap with soft assigned values, 
obtained using the information from the reference image Lref, the estimated image L j , 
the exposure times U and tref, as well as the C R F . Note, please, that in this paper the 
inverse C R F was implicitly applied to all images L j . Image L j is estimated by the following 
equation: 

Lref (A) (4.1) 
ref 

Consequently, the estimated value for image i is processed along with the actual value 
of Li to get the probability based Certainty map Ci as: 

(4.2) 

where a reflects the standard deviation of the pixel measurement (affecting the „softness" 
weight). The lower a is, the sharper or more strict the Certainty maps are, which results 
mainly in the dynamic range reduction. On the other hand, a high a causes „softer" 
Certainty maps, which may start to be ghosted. Ghost detection generally, and indeed 
inherently, cannot work well for the over and under-exposed spots of an image; thus the 
Certainty map algorithm contains a boundary condition: If the estimated value lies beyond 
the point of saturation, the Certainty is assigned at maximum value. [39]. 

Figure 4.2: Two Certainty maps (bottom) obtained from the sequence on the top. The 
Certainty map on the left was obtained from top left and top middle (reference) image, the 
Certainty map on the right was obtained from top middle (reference) and top right image. 

4.1.2 Multi-exposure merging algorithm 

Proposed modification of Debevec's [5] merging algorithm incorporates the weights from 
the Certainty map, obtained through Equation 4.2. The H D R image H is calculated as the 
weighted sum of pixels from n images using the following equation: 

Ci • w(Li) • Li • r ^ -
H ~ m IT w v 6> 

22i=1(Ci • w(Li)) 
The Ci for reference image certainty is considered to be 1. 
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Reference image 

Figure 4.3: A scheme illustrating the proposed ghost-free merging of according to Equa­
tion 4.3 on a sequence of three images. 

The w(Lref) is considered to be 1, as the reference image is a „pattern" with the desired 
object layout; it is not desirable to weight out the pixels, even if poorly exposed. A scheme 
illustrating the Equation 4.2 is shown in Figure 4.3. [39]. 

4.2 Implementation in H D R pipeline 

This section describe how the proposed algorithm was implemented, with goal to incorpo­
rate it into processing pipeline of architecture by Nosko et al. [42]. 

The proposed algorithm was designed, in line with the previous assessment, with respect 
to real-time processing using embedded hardware - we are considering mainly F P G A based 
platforms and SoC equipped with G P U (e.g. N V I D I A Tegra). The standard desktop C P U 
implementation is included mainly for comparison. 

The ghost-free merging unit consists of two components, Certainty map creation (Sec­
tion 4.1.1) and H D R merging (Section 4.1.2). The Certainty map is obtained by predicting 
and matching the luminance levels, thus it is necessary to provide luminance images. The 
R A W data from sensors, e.g. in embedded devices/cameras, should, therefore, to be con­
verted to luminance because if the individual R G B channels are processed separately, their 
saturation, which is independent for each channel, may lead to results of Certainty different 
for individual color channels and thus to adverse color shifts during H D R merging. 

The value of a should be adjusted based on the image sensor noise, including the 
quantisation noise, and the Exposure Value (EV) step (exposure time ratio) between the 
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individual images in the H D R sequence. In our reference implementation, we achieved the 
best results with a = 5 for the exposure step of 1EV and a = 11 for 2EV. 

The proposed merging algorithm (Section 4.1.2) is applicable on grayscale, R G B and 
also R A W image data. The R A W data can be merged in the original form before debayering 
and debayered afterwards, as proposed by Tamburrino et al. [55]; thus, this implementation 
can save approximately 2/3 of the operations comparing to merging in R G B space. 

The proposed ghost-free merging is applicable to an arbitrary number of images in the 
sequence of exposures. However, the following implementation and performance compar­
isons are related to merging of three images, unless stated otherwise. [39]. 

Figure 4.4: Ghosted HDRs (top line) and HDRs merged using proposed ghost-free method 
(bottom line) on sequences „Fast cars" [59] (left), „105" [60] (middle) and „117" [60] (right). 
Datasets contains 9 L D R (Low Dynamic Range) images. 

The proposed algorithm was implemented as a part of F P G A based H D R video acquisi­
tion pipeline [42]. The pipeline was implemented on platform equipped by SoC Xil inx Zynq 
XC7Z020 (see Figure 3.24). 

Computational optimizations 

The proposed algorithm performs per-pixel processing and requires a relatively small num­
ber of per-pixel operations. Some of its functionality is computationally demanding (e.g. 
division and Gauss function calculation), however, it can be optimised and/or tabulated. 
Inverse C R F and triangle weight functions can be tabulated thanks to the limited number 
of possible L D R (Low Dynamic Range) pixel values. The ratio between exposures U and 
tref in Equation 4.1 can be calculated once for each setting of L D R exposure times. The 
Gaussian function (Equation 4.2) can be convenient because the pixel values are discrete 
and only a finite combination of pixel values is possible, especially when considering only 
the differences between the captured and predicted values. The number of the Gaussian 
function results with relevant certainty, e.g. > 1% is limited, especially for a higher a. The 
evaluation in Section 4.3 is performed with a = 11.0, which leads only to 35 various results. 

The functions represented in the tables are pre-calculated using the processors present in 
the embedded acceleration platforms. If needed, they can be updated while the accelerator 
executes the main algorithm. 
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Figure 4.5: Output of the proposed ghost-free merging method on the sequence of Gallo [14] 
(top). Previews of the various algorithm results are shown at the bottom: Gallo et 
al. [14] (A), Jacobs et al. [18] (B), Pece et al. [44] (C), Zhang et al. [71] (D) and proposed 
algorithm (E). The previews A to D are published online at http://www.vsislab.com/ 
pro jects/IPM/HDR/pro ject.html. 

Evaluation of precision 

The C P U and G P U reference implementations are written in C++ and C U D A , using 
standard 32-bit floating point data type. The whole F P G A design is implemented using 
only fixed point data representation and arithmetic, which is natural and also efficient 
for F P G A hardware. The ranges of numerical values in the individual pipeline stages are 
known; therefore, it is feasible to adapt the bit width of the individual parts of the pipeline 
to achieve a sufficient range (and precision) without using the floating point representation, 
whose resource requirements are generally much higher. The F P G A implementation is fixed 
for merging three L D R images with up to 10 bit depth. The input of the ghost detection 
block consists in three corresponding pixels in 10.8 fixed point representation (10 bits for 
integer and 8 bits for decimal part). The fractional part can be used for the data after the 
linearisation process (application of C R F - Camera Response Function [5, 48, 37]). The 
resulting Certainty maps are in the 1.10 format and all further mathematical operations 
during the H D R merging are performed using 10.12 precision. The accuracy of fixed point 
arithmetic comparing to the software float implementation is evaluated using P S N R and 
MSSIM metrics. The ghost detection and merging achieved P S N R of 51.1 and 58, MSSIM 
is over 99% for both algorithms, using the above mentioned 12bit fractional bits. 

The Table 4.1 presents an F P G A resource consumption of proposed design. The abbre­
viations in the table describes the F P G A primitives: L U T - Look-up Table; F F - registers; 
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Table 4.1: F P G A Resource utilisation for merging 3 L D R images of 1920 x 1080 pixels. 
Design is routed for Xil inx Zynq Z-7020. 

L U T L U T R A M F F B R A M DSP 
Certainty maps 3532 - 3339 4 4 
H D R merging 893 - 2570 10 16 
Total (HLS) 4425 - 5909 14 20 
Total (Routing) 1057 252 2052 2 16 
available 53200 17400 106400 280 220 
utilisation [%] 1.99 1.45 1.93 0.72 7.27 

B R A M - Block R A M (36kbit block of distributed memory); DSP - Digital Signal Process­
ing block (used as a multiplier); L U T R A M - LUT-based small distributed memory. 

A line „Total (HLS)" indicates the amount of resources estimated by Xil inx High Level 
Synthesis (HLS) design tool 1 . Such resources are quite often overrated and the Place and 
Route process optimises out an unnecessary logic (see line „Total (Routing)") for the target 
F P G A . The Table 4.1 shows e.g. most of B R A M resources were conveniently converted into 
L U T R A M , probably due to only a few Gauss coefficients needed to store, as explained in 
Subsection 4.2. 

Table 4.2: Resource utilization of complete camera solution of Nosko et al. [42] enhanced 
by the proposed ghost-free merging block, comparing to Bouderbane [3]. 

L U T L U T R A M F F B R A M DSP 
Prop, pipeline 39145 3137 53592 51 58 
Bouderbane [3] 49193 - 50399 35 20 

The proposed algorithm was implemented into F P G A based H D R video acquisition 
pipeline proposed by Nosko et al. [42]. The proposed algorithm was designed to replace the 
original and very simple „Deghosting & merging" block (please refer to Nosko et al. [42]). 
The Table 4.2 compares the resources consumed by such pipeline with pipeline from Boud­
erbane et al. [3]; unfortunately, they do not provide more detailed statistics. For detailed 
description regarding pipeline, please refer to the article by Nosko et al. [42]. Please note 
that proposed design is built on Xil inx Zynq and Bouderbane camera on Virtex-6 and also 
that in Nosko's pipeline, more than 1/3 of L U T and Register resources and most of B R A M 
and DSPs are occupied by local tone-mapping operator [42]. 

4.3 State-of-the-art ghost removal evaluation 

This section is focused on evaluation of proposed ghost-free H D R merging and provides the 
comparison to the state-of-the-art algorithms. 

The proposed algorithm is evaluated on H D R datasets focused on evaluation of H D R 
deghosting methods [60, 59, 23], on the image sets retrieved from related articles [14, 50, 
21] and also on the image sets captured by camera prototype by Nosko et al. [42] (see 
Section 3.4). 

1 www.xilinx.com 
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Figure 4.6: Sample outputs of related deghosting algorithms by Pece et al. [44] (left) and 
Min et al. [35] (right) on the scene from Figure 4.1. Our experiments revealed that listed 
algorithms should be successful only on images with convenient histogram distribution. 

The results of the proposed ghost-free merging are presented in Figures 4.1, 4.4, 4.5, 
4.9, 4.8, 4.10 and 4.12. Our method is suitable for almost any application with stationary 
cameras. Besides the evaluation of various generic datasets, the ghost removing capability 
was evaluated on a traffic monitoring task, where the main goal was to preserve the greatest 
possible level of detail so that the images can serve as evidence, with the readability of the 
licence plates of the vehicles in motion playing the most important part. Figure 4.1 contains 
a car approaching camera at approximately 50km/h. Still, six exposures (~ 66ms at 90FPS) 
were intentionally omitted between the images to show the capability of the ghost removing 
for e.g. faster moving objects. 

According to presented results, the visual outputs are comparable to the state-of-the-art: 
however, the proposed algorithm is capable of running in real-time, while state-of-the-art 
algorithms require long offline processing in terms of seconds or even minutes per image. 

The experiments with the related and state-of-the-art algorithms discovered that most 
of the de-ghosting methods related to our approach are very dependent on scene composi­
tion, luminance distribution, or other assumptions. Proposed approach does not have such 
limitations, it is more robust, and does not require user-guided tuning of parameters, unlike 
algorithms with similar complexity. 

Probably only related work, which implements any ghost-free merging on embedded 
device, in this case on F P G A , was proposed by Bouderbane et al. [4]. They use method 
by Debevec and Malik [5], where they combined weighting function from Debevec with 
weight function proposed in their previous paper [3]; their method was inspired by the 
work of Sidibe et al. [51]. However, the ghost detection is based only on weak assump­
tion, as Bouderbane use the weight function, which gives a higher factor for pixels whose 
recovered radiance value are closed to the recovered radiance of reference values and low 
factor for pixels whose radiance values diverge considerably from pixels radiance value of 
the reference image. The evaluation of deghosting quality is rather limited, as source code 
of their reference solution is not available and they did not evaluate their algorithm on any 
third-party dataset. On the image data supplied within the article, the method suppress 
ghosting quite well(see Figure 4.7) but the slight ghosting effect is still present (see results 
in the article [3]), also the dynamic range is quite reduced, even in parts with static back­
ground. 
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Figure 4.7: Figure shows the ghost-free H D R outputs of Bouderbane [4] (left) and proposed 
method (right), both tonemapped by Duan [8] operator. Bouderbane result and source im­
ages are retrieved from [4]. Please mind the color shift in very bright patches of Bouderbane 
result. 

Algorithm by Gallo et al. [14] operates on relatively large rectangular patches (e.g. 
40x40 pixels [14]) instead of individual pixels. If the patch contains large number of pixels 
not corresponding to patch from the reference image, the patch is omitted from merging. As 
the patches used in the algorithm are quite large, visible artifacts occur at their boundaries: 
the authors suggest their suppression by Poisson blending. 

The methods based on histograms [44, 35] have a common issue, the scene has to be 
balanced from the point of histogram equalization. The method presented by Pece et 
al. [44] is marking pixels as ghosts based on decision, whether the pixel changes its relative 
position in histograms over all of the expositions. The position in histogram is acquired 
by comparison with median pixel value. If median is very low/high, for example if the 
scene has large large number of under/overexposed patches, the change of pixel position 
in histogram cannot be reliably detected. In the method proposed by Min et al. [35], one 
median threshold is replaced by eight percentiles and whole histogram is divided into nine 
segments with equal number of pixels, but it only mitigates the same issue. The example 
outputs of the Pece et al. [44] and Min et al. [35] algorithms on data obtained by Nosko's 
camera [42] are shown on Figure 4.6. 

In general, the existing methods are more or less using fixed or user-adjusted thresholds 
and binary ghost maps, which either includes the pixel into the merging process or omits 
it completely. Such approach negatively affects the merging process and appearance of 
the resulting H D R image, causes higher noise on the affected patches around the moving 
objects, and also on wrongly detected patches. 

4.3.1 Dataset evaluation and comparison 

I performed the evaluation on datasets [23, 59, 60], containing sequences of images of various 
scenes and different types of motion. The results provide a comparison of the proposed 
method with generally more precise and computationally demanding methods, commonly 
based on optical flow, which were not even included into the related work due to their 
complexity and high computational demands. 
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Figure 4.8: The source sequence (top left) is merged with (bottom) and without (top right) 
proposed ghost-free merging algorithm. Source images retrieved from Sing Bing Kang [21]. 

Figure 4.9: Output of the proposed H D R ghost-free merging method for Complex Scene 
1 of dataset [23] (left). Ghosted H D R image is shown on the right. Previews of various 
algorithm results are shown at the bottom. No de-ghosting (A), Silk et al. [52] (B), Sen et 
al. [50] (C), Photoshop (D), Photomatix (E) and proposed algorithm (F). The previews A 
to E are published as a part of a Karaduzovic dataset [23]. 

One of the datasets [23] contains multiple scenes with artificial objects movements. Its 
advantage consists in the existence of the ground truth image, which allows a comparison to 
the results as well as to many results of various published methods [17, 50, 52]. Figures 4.5 
and 4.9 show the capabilities of the proposed method, showing that it provides results 
visually comparable to optical flow based methods. 

Tursun et al. [59, 60] published two datasets and proposed metrics for evaluation of H D R 
de-ghosting quality. The evaluated samples from the datasets are shown in Figure 4.4 and 
the H D R quality metric [59] is evaluated in Table 4.3. The metric evaluates the dynamic 
range achieved inside the motion regions, considering also the correctness of the de-ghosting. 
The image sets, in which we got worse results than other algorithms, were successfully de-
ghosted anyway; however, the worse results were probably caused by losses in the dynamic 
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Table 4.3: Results of the „Dynamic Region Dynamic Range" metric proposed by Tursun [59] 
and evaluated on their dataset. The metric evaluates the resulting dynamic range within 
regions containing movement; the higher the value, the better. 

Metric „DR" [15] [50] [52] none This work 
Cafe 2.63 2.61 2.60 2.47 2.42 
FastCars 1.12 1.18 1.10 1.10 1.38 
Flag 1.40 1.50 1.49 1.45 1.59 
Galleryl 1.59 1.59 1.56 1.55 1.70 
Gallery2 2.41 2.56 2.14 2.29 2.05 
LibrarySide 1.78 1.93 1.60 1.76 3.20 
Shopl 2.20 2.39 2.00 2.10 2.42 
Shop2 2.68 2.72 2.89 2.55 2.42 
WalkingP. 1.94 2.07 1.83 2.05 1.58 

Table 4.4: Evaluation of the H D R - V D P 2 [33] metric on a „complex" scene from Karadu-
zovic's [23] dataset. 

scene 1 scene2 scene3 scene 4 
Q 73.24 76.20 82.83 71.58 

range. Evaluation of the proposed method on these datasets also proves that the proposed 
method is generally usable for sequences larger than two/three images, commonly used 
in cameras. In all the referenced datasets [23, 59, 60], the proposed algorithms achieved 
results visually comparable or even better than more complex algorithms (see Figure 4.10). 
However, the proposed method and also many H D R de-ghosting methods may yield artifacts 
in regions where the moving objects in the reference image are poorly-exposed, as Tursun 
et al. concluded [59]. 

Another metric that have been found useful is H D R - V D P 2 by Mantiuk et al. [33]. 
The metric evaluates the visibility and quality differences in image pairs and represents a 
probability that an average observer will notice a difference in the images in the pair (see 
Figure 4.11). The essential problem for the metric evaluation is the absence of ground truth 
images. Applying this metric on image sets without ground truth reference seems useless, 
as even the state-of-the-art algorithms may fail in ghost detection and/or changes in the 
image quality e.g. by bluring of motion regions (see top of Figure 4.10). As a result, the 
metric output obtained on such data does not have any meaningful value. 

Karaduzovic's [23] dataset contains ground truth images, because it contains scenes 
with artificial object motion. The metric was evaluated on „complex" scenes and used the 
H D R merged from the ground truth sequence as a reference. The ground truth sequence 
is processed also by our algorithm (with de-ghosting disabled) to eliminate the effect of 
unrelated image enhancements and enables the direct comparison of the resulting H D R 
images. Table 4.4 contains an overall „quality" metric of the produced ghost-free H D R 
output according to H D R - V D P 2 [33] metric. Figure 4.11 shows „scene 1" with highlighted 
differences between ground truth H D R and ghost-free HDR. 
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Figure 4.10: Figure shows scene „Cafe" from Tursun's [59] dataset processed with 
Sen [50] (top) and the proposed ghost-free algorithm(bottom). Sen [50] produce a heav­
ily blured image, which precludes the H D R - V D P metric [33]; moreover, the de-ghosting 
method fails (see marked areas, where objects are shadowed and blured). 

4.4 Performance summary 

The performance of the algorithm on the relevant platforms is summarised in Table 4.5. 
Only the core parts, the certainty map creation and H D R merging were benchmarked, 
without including any data preprocessing time - please assume that at least in the F P G A 
and G P U implementations, the images are transferred into the memory using D M A in the 
background, without any performance losses. Wi th the proposed optimisations, the algo­
rithm is single-pass only. Table 4.5 compares the performance of the proposed Ghost-free 
merging of three L D R images on F P G A , SoC G P U and C P U platforms. In the case of 
F P G A , the design achieves target frequency of 200MHz and is fully pipelined; therefore, it 
allows the production of result pixels every clock cycle. Unlike in the sequential C P U and 
G P U processing, increasing the amount of work that the F P G A pipeline performs leads to 
consumption of more resources and prolonging the processing pipeline, which has a negative 
influence on latency; however, the data throughput remains the same (see Table 4.5). 

Table 4.5: The table compares the performance of the proposed ghost-free merging of 3 
L D R images (Figure 1.2) with a resolution of 1920 x 1080 on following platforms: F P G A 
Xil inx Zynq, embedded C P U and G P U Nvidia Tegra T X 2 and C P U Intel Core i7-3770 
(single core). 

F P G A T X 2 G P U T X 2 C P U C P U 
Certainty map [ms] 10.3 1.59 45.9 16.6 
Merging [ms] 10.3 4.58 112.3 23.0 
Total [ms] 10.3 6.17 158.2 39.6 
Overall F P S 96.45 162.07 6.32 25.25 
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Figure 4.11: Figure shows „scene 1" from Karaduzovic's [23] dataset processed by the 
H D R - V D P 2 [33] metric. The colour bar reflects the probability that an average observer 
will notice a difference between ghost-free H D R and ground truth H D R . De-ghosted H D R 
visual quality, according to H D R - V D P 2 metric [33] is 73.24 (see Table 4.4). 

I chose the H D R camera prototype by Nosko et al. [42] for the integration of the proposed 
ghost-free method. I chose this camera prototype due to its compact size, presence of 
a FullHD resolution C M O S (and optionally with even higher resolution) and presence of 
Xil inx Zynq SoC. Moreover, I participated on the development of Nosko's prototype as well. 
The proposed method and its implementation into architecture Nosko et al. [42] have not 
been published yet; however, the performance parameters are already known. Moreover, 
I have designed the new ghost-free merging block as a 1 to 1 replacement of previously 
published H D R merging with ghost removal[42], then the overall design shares all other 
features, such as advanced local tonemapping. 

The proposed algorithm should also be easily integrated into existing solutions of H D R 
acquisition devices by Popadic et al. [45], Lapray [27], Nosko [41] and probably others which 
are all based on pixel weighting, similar to Debevec and Malik [5]. 

The implementation on Nosko's platform allowed direct comparison with other archi­
tectures, however, probably only related work, which implements multi-exposure ghost-free 
H D R acquisition on an embedded device, in this case on F P G A , was proposed by Bouder-
bane et al. [4]. The Table 4.6 provides an overall comparison to Bouderbane solution. 

As can be seen on Table 4.6, the design outperforms the Bouderbane architecture in 
all parameters. The design is fully pipelined, producing H D R pixel in every clock cycle. 
Target clocking frequency is 200MHz, which enables the acquisition of FullHD H D R im­
ages at up to 96FPS. The fixed point arithmetic has a positive contribution to clocking 
frequency, low resource requirement and low power consumption. At the same time, the 
calculations are still performed in high accuracy, which was summarized in Section 4.2. The 
platforms are both implemented in different F P G A family, where Zynq is part of 7th and 
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Figure 4.12: A car passing by the camera - ghosted H D R (left) and result of the proposed 
ghost-free merging algorithm (right). 

Table 4.6: Comparison of main parameters of proposed solution to Bouderbane et al. [4]. 

Proposed pipeline on [42] Bouderbane 
Platform Zynq 7020 Vir t ex 6 
Resolution 1920 x 1080 1280 x 1024 
T M O Durand (Local) Duan (Global) 
Arithmetic Fixed point Floating point 
Maximum speed 200Mhz lU.2Mhz 
Throughput 200Mpix/s 114.2Mpix/s 
Framerate 96FPS 60FPS 

Virtex part of 6th series from Xil inx. However, Virtex is a High end, while Zynq(Artix) 
only mid or low-end F P G A . The Table 4.2 shows the overall F P G A resource consumption 
for both complete camera solutions; Bouderbane does not provide separately the resources 
consumed by deghosting and H D R merging circuits. Please notice that local tonemapping 
operator with bilateral filter (on Nosko's platform) require more than 1/3 of overall L U T 
and Register resources and consumes most of B R A M and DSP resources. 

The following part of the evaluation aims to compare proposed algorithm performance to 
related state-of-the-art implementations. The essential problem is those relevant algorithms 
are not generally available in the form of code or executable; therefore the performance 
comparison is rather limited to algorithms, where I managed to get source codes to run or 
where I get required information from relevant articles. 

The comparison from Table 4.7 confirms that deghosting algorithms do not generally 
achieve real-time performance. Depending on the algorithm and desired deghosting quality 
(if available), the process can take from tens of seconds to more than ten minutes. Certain 
algorithms, such as Grosh [15] which have similar computation complexity as the proposed 
algorithm, do achieve relatively low processing time, however, the output is not deghosted 
very well, as shown in evaluation by Tursun et al. [59]. The Table 4.7 shows, that proposed 
algorithm is running much faster than any compared algorithm and is even twice faster 
than the algorithm by Grosch [15]. Please note, that average times from Table 4.7 are valid 
for sets of nine images with 4MPix resolution. 
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Table 4.7: Table results obtained from Tursun et al. [59]. The table shows the average 
processing time of deghosting algorithms on Tursun dataset [59]. Source image sets contain 
9 images with 4MPix resolution (Sen and Khan merges three images with 1024 x 683 only). 
Tursun achieved these results on C P U Intel i7-3770; however, it is not specified whether 
the algorithms utilized all C P U cores or not. Proposed method result is benchmarked as 
single-core. 

Proposed Grosch[15] Khan [24] Sen [50] Silk[52] Hu[17] Tursun[59] 
Avg. time[s] 0.48 1.04 616.45 209.78 14.33 230.36 7.09 

The Table 4.8 compares the performance of proposed algorithm and algorithms by Pece 
et al. [44] and Min et al. [35]. I chose these algorithms to compare due to its possible easy 
implementation on F P G A ; the author claims that the algorithm does not use the multi­
plication, division, and floating-point operations for object motion detection. Moreover, 
all operations, including the histogram calculation, are relatively easily implementable on 
F P G A . Also, the deghosting ability presented in the paper seemed to be very promising. 

Table 4.8: Table compares the performance of the proposed algorithm with algorithms by 
Pece et al. [44] and Min et al. [35]. Algorithms were benchmarked on C P U Intel i7-3770 
(single thread) on a scene from Figure 4.1. Source image set contains three images with 
FullHD resolution (1920 x 1080). 

Proposed Pece et al. [44] Min et al. [35] 
Avg. time [ms] 39.6 193 206 

I implemented the proposed algorithm and algorithms by Pece et al. [44] and M i n et 
al. [35] in C++, so the performance presented in Table 4.8 should be comparable. As could 
be observed, the proposed algorithm is almost five-times faster. Moreover, the deghosting 
results are also better, as can be observed in Figure 4.6. The explanation of why these 
methods do not achieve good deghosting results is in the Subsection 4.3. 

The Table 4.9 presents the performance results obtained by Yan et al. [69] and presented 
in their article. They compared a number of algorithms and benchmarked them on C P U 
Intel i7 and G P U N V I D I A GeForce G T X 1080Ti. As can be observed, the proposed 
algorithm achieved better performance on C P U architecture (single-core) than others on 
even high-end GPUs. Yan's [69] and Wu's [67] CNN-based merging are relatively fast: 
however, they run on high-end G P U , which consumes much more energy than C P U (up to 
280W). 

Table 4.9: Table results obtained from Yan et al. [69]. Table shows average processing time 
of deghosting algorithms on three images with resolution 1000 x 1500. C P U used is Intel 
i7 (not further specified by Yan), G P U used is N V I D I A GeForce G T X 1080Ti. 

Algorithm Proposed Yan [69] Wu [67] Kalantari [20] Sen [50] Wu [66] 
Platform C P U G P U G P U C P U + G P U C P U C P U 
Time [s] 0.022 0.31 0.24 29.14 61.81 79.77 
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4.4.1 Power consumption summary 

This subsection provides a brief comparison of the power consumption of selected algo­
rithms. The overall energy in Joules per one frame is estimated from processing time and 
T D P of a processor; alternatively, F P G A consumption is estimated by the design tools 
based on the amount of logic used. The Table 4.10 and Table 4.11 contains the energy 
requirements converted from performance summary in Table 4.7 and Table 4.8. 

Table 4.10 presents that the proposed algorithm has the lowest power consumption 
among all of the measured algorithms. The results were achieved on the dataset published 
by Tursun[59], which contains sequences of nine images with 4MPix resolution. It is not 
specified by Tursun [59] whether the algorithms utilize single or multiple cores; therefore, I 
assume only single-core implementation as a lower estimate of the possible power consump­
tion. Proposed method result is benchmarked as single-core. 

Table 4.10: Table of energy consumption per H D R frame, derived from Table 4.7. The table 
shows average energy consumption for processing one H D R frame of deghosting algorithms 
on Tursun dataset [59]. 

Proposed Grosch[15] Khan [24] Sen[50] Silk [52] Hu[17] Tursun [59] 
Avg. 

energy [J] 
12 26 15411 5244 358 5759 177 

Table 4.11: Table compares the energy consumption for processing one H D R frame by 
proposed algorithm with algorithms by Pece et al. [44] and M i n et al. [35]. Algorithms were 
benchmarked on C P U Intel i7-3770 (single thread) on scene from Figure 4.1. Source image 
set contains three images with FullHD resolution (1920 x 1080). 

Proposed Pece et al. [44] M i n et al. [35] 
Avg. energy [J] 0.99 4.82 5.15 

The average consumption is 12J per one H D R frame, which is 46% of the second least 
demanding algorithm by Grosh [15]. Moreover, proposed algorithm demands are measured 
for single-core processing only, whether the data provided by Tursun [59] are not specified 
whether were achieved on single-core only; however, the results in Table 4.7 and Table 4.10 
assumes they are. 

Table 4.12: The table compares the power consumption of the proposed algorithm on the 
C P U and F P G A platform and shows the estimated energy required for the ghost-free merge 
of the sequence of three FullHD images. Please note that consumption of Camera Nosko [42] 
includes camera as a whole. 

Consumption [W] Energy per frame [J] comp. to CPU[%] 
C P U Intel 17-3770 25W (single core) 0.99 — 

Camera Nosko [42] (30FPS) ~ 8 W 0.266 26.9 
Camera Nosko [42] (96 FPS) ~ 8 W 0.083 8.3 

Tegra T X 2 - G P U only 15W 0.093 9.3 
Proposed - F P G A only 1,1W 0.0115 1.16 
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Table 4.13: The table compares performance of proposed Ghost-free merging of three L D R 
images (Figure 4.2) of resolution 1920 x 1080 on F P G A and C P U platforms. Data are 
selected from Table 4.5. 

F P G A Xil inx Zynq C P U Intel Core 17-3770 
Ghost det. [ms] 10.3 16.6 

Merging [ms] 10.3 23.0 
Total [ms] 10.3 39.6 

Overall F P S 96.45 25.25 

The H D R camera by Zemcik et al. [70] achieved overall power consumption of 12W and 
the H D R cameras by Nosko et al. [41, 42] even less, total 8W. Based on the performance 
summarized in Table 4.5 and assuming the maximum speed of 96.4FPS, the camera Nosko 
et al. [42] with proposed algorithm consumes 0, 083J per frame. The power consumption 
of C P U Intel Core i7-3770 was measured in single-core load (running proposed algorithm) 
and achieved 25W. C P U achieved framerate of 25.25 FPS , which results in consumption 
approximately 0.99J per frame; note, please, that the difference between standby and the 
full load was power consumption measured, which shows only the desired dynamic part of 
power consumption. 

In summary, the H D R camera by Nosko et al [42] with proposed algorithm consumes 
only 8.4% comparing to the C P U implementation. Moreover, most of the power consump­
tion of H D R camera is spent on camera hardware, including C M O S chip and H.264 encoder, 
while the consumption of the F P G A itself consumes approx. 1,1W only (estimation by X i l ­
inx Vivado tool). This result is much more favourable for F P G A , but the comparison is 
fairer because it compares only the „computing" elements. The energy spent on one frame 
drops to approx. 0.011J, which is little above 1% of the energy consumed by C P U . 

4.5 Validation and scientific contribution 

at the beginning of this Chapter 4 it was stated that the scientific contribution of this thesis 
should be the proof of the following hypothesis: A multi-exposure ghost-free HDR acquisi­
tion algorithm comparable to the state-of-the-art algorithms in quality can be designed for 
an embedded hardware device and achieves a real-time performance at high resolution. 

In Section 4.1, I proposed a Ghost-free H D R acquisition algorithm implementable 
on F P G A . This method was implemented and its description is included in Section 4.2. 
The proposed Ghost-free algorithm produces a visual output comparable to the State-
of-the-art as evaluated in Section 4.3. Finally, the proposed design achieves more than 
real-time performance of 96FPS on fullHD resolution as summarized in Section 4.4. 
Therefore, I consider the hypotheses validated. 

In more detail, the proposed novel ghost-free H D R merging algorithm is suitable for 
real-time implementation in embedded devices. The algorithm is well suitable for imple­
mentation on many platforms, including the C P U and G P U based platforms. However, 
the aim of contribution was a successful implementation of such an algorithm into F P G A , 
which was experimentally proved in Section 4.2. Also, the target performance, which is 
real-time processing on FullHD resolution, was fulfilled, since the proposed solution is able 
to run on up to 96 F P S (Table 4.5). At the same time, the proposed solution outperforms 
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the F P G A solution of only state-of-the-art F P G A implementation of Bouderbane et al. [4], 
which achieved only 60 F P S on H D resolution (1280 x 1024). 

The performance comparison with most of the state-of-the-art algorithms requires a 
C P U reference implementation. The performance evaluation in Section 4.4 shows that the 
algorithm performs well even on C P U ; single-core implementation achieves up to 25.25FPS, 
as shown in Table 4.5, which is the best result. The second least demanding state-of-the-art 
algorithm, according to Table 4.7 is from Grosh [15]. Under the same conditions and on 
the same dataset[59], the proposed algorithm is faster by approx. 54%. Table 4.9 further 
compares the proposed algorithm with the latest and G P U accelerated state-of-the-art al­
gorithms. Finally, Table 4.11 compares the C P U performance of related algorithms which 
I reviewed to be suitable for F P G A implementation. The proposed algorithm achieved the 
best result and is 4.8 times faster than the fastest F P G A implementable algorithm. 

Table 4.7 and Table 4.11 compares the C P U power consumption to state-of-the-art 
algorithms and, linearly with performance, requires only 46% of power comparing to the 
second least demanding algorithm by Grosh [15]. 

The C P U implementation itself is so fast that almost accomplished the real-time require­
ment; however, the real benefits of the method stand out along with F P G A acceleration, 
which fundamentally affects the performance and power consumption. The Table 4.12 and 
Table 4.13 shows the effectiveness and benefits of F P G A acceleration of proposed algorithm. 
While the F P G A implementation offers almost 4-times higher performance comparing to 
C P U (25.25 FPS) and reaches the 96FPS, the energy consumption drops by 98,86% per 
frame. These parameters should be even much better in case of ASIC chip production 
(or integration into an existing chip, e.g. as an accelerator block), for which the F P G A 
reference implementation is necessary. However, I did not have such funding and contacts 
to ASIC manufacturing facility. 

The comparison to the state-of-the-art algorithms (Section 4.3) and evaluation of H D R 
datasets (Section 4.3.1) shows, that proposed algorithm is performing ghost-free H D R merg­
ing well and the ghost effect is removed, at the same time have better results and is much 
more robust than related algorithms. The results are even comparable to the state-of-the-
art optical flow-based algorithm, which belongs to the class of performance demanding, 
offline processing algorithms. 

4.6 Applications and future work 

The usability of proposed work is relatively broad and involves almost every scenario, 
where some camera is used and where it may appear difficult lightning conditions. From 
the possible applications, I focused mainly on surveillance, security and traffic monitoring 
systems where the H D R video capture significantly improves the reliability of systems 
under bad weather or light conditions. Here I present several applications, where the 
proposed algorithm and architecture for ghost-free H D R acquisition can take place and 
should improve the system utility value. 
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Figure 4.13: A H D R scene captured by H D R camera prototype by Nosko et al. [42]. 

Road and traffic monitoring 

During the day, the outdoor lighting conditions change a lot, and the traditional L D R 
cameras cannot capture the scene very well. Such bad conditions include shadows, flares, 
direct sunshine or night, etc. During the day, from the sunset to sunrise, the angle of 
sunshine changes and quite often disables the ability of the camera to expose a good looking 
image. During the night, the reflexive elements often over-expose a certain part of the scene, 
which is then unreadable. 

Another, however similar situation happens when we try to observe a scene, where the 
large luminance differences already are, for example, insight into/from tunnels, subways, 
building's entry and many other. The auto-exposure algorithm can adjust exposition time 
to improve the result; however, it is often driven by image statistics such as image histogram, 
which does not always take into account the desired/monitored part or objects in the scene. 

The proposed algorithm should help to capture, in the best case, all range of luminance 
in the scene and therefore provide much more image details for further processing or ev­
idence purposes. Figure 4.14 shows the output of the overview camera, where the H D R 
mode allowed to capture details, which would be lost with the standard camera (vertical 
road signs, the interior of the trucks etc). 

Section speed enforcement 

The section speed enforcement composes from two portals with road traffic cameras. The 
system monitors vehicles going through spots on the road and matches the records using 
license plate reading ( A N P R / A L P R ) software. This enables to determine the average speed 
in the entire road section measuring from hundreds of meters to tens of kilometres. Such 
systems are often deployed on the spot, where the lighting conditions are not ideal for 
standard cameras, e.g. at the entrance and the end of tunnels, on direct sunlight etc. 
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Figure 4.14: A Graphic output of H D R camera prototype from Nosko et al. [42]. The image 
is tonemapped by Reinhard et al. [47] operator. The source image sequence is shown in the 
right column. 

Figure 4.15: A scheme of section speed enforcement. Image obtained from www.camea.cz. 
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Figure 4.16: A real photos taken from section speed cameras (without H D R mode). The 
actual position of the sun makes the licence plate unreadable. Images obtained from Camea 
spol. s r.o. (www.camea.cz). 

A critical part of the system is a successful license plate detection on both portals and 
also capturing of evidence photo, where the essential is to capture visible license plate, a 
whole car with details and ideally even the driver. Typically, there are large differences in 
luminance, since the driver's face is often hidden in the shadow and license place is white, 
provided with a reflective layer. Also the actual lightning and weather condition may affect 
the license plate detection - Figure 4.16 shows the real photos from section speed cameras 
(see Figure 4.15). The actual position of the sun creates a shadow which disables the 
successful license plate reading. H D R mode with a proposed ghost-free extension would 
significantly improve the licence plate detection rate (as the cars are captured in motion). 

Inexpensive units for surveillance 

Proposed ghost-free H D R merging is embeddable into smart FPGA-based devices and there­
fore, can take place in small, embedded devices focused on surveillance. It can also extend 
existing devices, if they are based on F P G A s , due to its small resource requirements. More­
over, from F P G A implementation is only a small step to deploy H D R core into a specialized 
custom chip or as an accelerator into A R M processors. Figure 4.17 and Figure 4.18 illus­
trates the benefits of ghost-free H D R acquisition on car onboard cameras, which, besides 
the surveillance purposes, can play a significant role in autonomous vehicles. Moreover, 
with the H D R image compression published in Zemcik et al. [70] it is possible to record the 
H D R video using standard H.264 encoder. 
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Figure 4.17: Illustrative comparison of non-HDR mode (left) and H D R (right) on an au­
tomotive application. Image was taken by Hyperyon camera and obtained from https: 

//www.e-consystems.com. 

Surveillance systems and crowd analysis 

The surveillance systems can also profit from ghost-free H D R merging. Depending on the 
place of monitoring, the demands for such systems vary a lot. When monitoring outdoors, 
we can face the same weather problems as in road traffic monitoring task. The Figure 4.19 
contains an example situation in surveillance applications - the background is well-exposed: 
however, objects of interest are poorly visible. This is caused by a large difference of 
luminance in the background and of the people/objects. Standard L D R camera is able to 
capture background or the people, not both. The proposed ghost-free H D R merging is able 
to capture all details in the scene, even with object motion compensation. 

Figure 4.19: A n example situation in surveillance applications using L D R cameras. Only 
the background is well-exposed and the objects of the interest are poorly visible. Left -
L D R image, right - H D R image. 

Moreover, with the H D R image compression published in Zemcik et al. [70], it is possible 
to record, display or broadcast the H D R video in real-time, using standard H.264 encoding. 

Ghost-free merging in research projects 

During the pursuit of my Ph.D., I participated in a number of research projects funded 
by the Czech Technological Agency (shortly T A C R projects) and the European Union. 
The T A C R funded projects include V3C, C E P T I S and A I T I V projects, where the focus 
was put on embedded computing platforms for optical inspection in the industry, road 
traffic surveillance and, in general, to expand the possibilities of video systems for traffic 
monitoring and traffic detection. 
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Figure 4.18: Comparison of car camera output with and without H D R mode enabled. 
Image obtained from www.ovt.com. 

Figure 4.20: A real traffic situation captured by camera prototype by Nosko et al. [42] with 
embedded licence plate detector [40] (working on L D R images only); Image is obtained 
from presentation for projects E M C 2 and Almarvi. The dash type of rectangle marks, in 
which source exposition the licence plate was found. 
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The E U funded projects I participated include C R A F T E R S , Almarvi, E M C 2 and FitOp-
tiVis projects, which had quite a wide area of focus. The proposed ghost-free acquisition al­
gorithm has been applied within projects Almarvi and FitOptiVis in the applications aimed 
at surveillance, road traffic monitoring, intelligent cameras and in Industry 4.0. Within this 
projects, we focused on embedding „intelligence" into embedded camera systems; it also 
involved implementation of F P G A object detector [40] into H D R camera(see Figure 4.20), 
where the „standard" or ghost-free H D R acquisition significantly improved the ability to 
detect and detection accuracy comparing to standard L D R mode. 

Future work 

In the future work, I would like to also continue in this topic and work on the applicability 
of the proposed solution in practice and in the commercial field, which already started 
within research projects mentioned in this section. I want to experiment with the current 
algorithm version and further improve it, for example, extend it for use in non-stationary 
cameras. It may improve usability, e.g. in surveillance applications, such as automotive 
and small and inexpensive car cameras. 

A different way of development may involve the integration with tone-mapping oper­
ators. The information of motion in the form of Certainty maps may help to improve 
tonemapping quality, as the proposed algorithm should identify the motion regions and 
allow to handle the motion area differently than static part of images. The ghosted areas 
in the image may produce the adverse effects dependent on the motion of the objects, for 
example, they may influence the minimum/maximum pixel values or the image histogram 
and therefore cause flickering within individual tonemapped frames of H D R video. 
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Chapter 5 

Conclusion 

In this dissertation work, I focused on the H D R acquisition on embedded devices. The 
main goal of this thesis was the proof that a multi-exposure ghost-free H D R acquisition 
algorithm comparable to the state-of-the-art algorithms in quality can be designed for an 
embedded hardware device and achieves a real-time performance at high resolution. This 
hypothesis I considered as validated, which was stated in Section 4.5. 

I experimentally proved the hypothesis by the successful implementation of proposed 
ghost-free H D R merging algorithm (Section 4.1) on F P G A based embedded design (Sec­
tion 4.2). The proposed implementation achieved the expected parameters and is capable of 
running faster than real-time, up to 96FPS at FullHD resolution (Section 4.4). At the same 
time, the algorithm produces visual results comparable to the state-of-the-art, as evaluated 
in the Section 4.3. 

The performance evaluation in Section 4.4 shows, that the algorithm performs well 
even on C P U ; single core implementation achieves up to 25.25FPS, which is very fast 
and multicore C P U could achieve real-time performance as well. Achieved results shows, 
that even C P U implementation outperformed all the related algorithms.However, essential 
benefit of this method stand out along with F P G A implementation, which fundamentally 
affects the power consumption, which is only approx. 1,1% of power comparing to the C P U , 
as summarized in Section 4.4.1. 

The comparison to the state-of-the-art algorithms (Section 4.3) and evaluation of H D R 
datasets (Section 4.3.1) shows, that proposed algorithm is performing ghost-free H D R merg­
ing well and the ghost effect is removed, at the same time have better results and is much 
more robust than related algorithms. The results are even comparable to the state-of-the-
art optical flow-based algorithm, which belongs to the class of performance demanding, 
offline processing algorithms. 

In the future, I would like to continue in this topic and work on the applicability of 
the proposed solution in practice and in the commercial field, which already started within 
research projects mentioned in Section 4.6. 
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