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i

Prohlášeńı
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Abstract

In the decision making, which is a part of our everyday life, we often meet
a situation in which we need to merge several points of view to reach a single
decision. We usually have partial evaluations of the considered object and we need
the overall one. The aggregation of these partial evaluations can be performed
by various aggregation operators. The most widely applied one is the weighted
average, but it cannot handle interacting criteria. Problems with some of these
interacting criteria can be handled by the Choquet integral.

The data presented to us during a decision making problem are only rarely
precise and unambiguous. More often we deal with vague descriptions, uncertain
opinions and approximate values. The uncertainty burdening the input data
can be processed properly with help of fuzzy sets theory. Since the input data
can be transformed into fuzzy numbers, the aggregation operators, which are
supposed to aggregate those data, need to be adjusted to accommodate this, i.
e. they need to be fuzzified. In the thesis, the first and second level fuzzification
of several aggregation operators, with extra attention devoted to the Choquet
integral, is proposed. The first-level fuzzy Choquet integral handles partial fuzzy
evaluations, while the second-level fuzzy Choquet integral is able to process even
the uncertain weights of the sets of criteria modeled by fuzzy numbers. Together
with the definitions of fuzzified aggregation operators, some theorems, which
make the computation much easier, are presented.

The Choquet integral can be used only if the interactions among the criteria
are of a specific type. In the cases of overly complicated interactions, the aggre-
gation operators are recommended to be replaced by a base of fuzzy rules and a
suitable approximate reasoning algorithm. In the thesis, bases of fuzzy rules are
applied to a realistic issue arising in the field of clinical psychology. Two fuzzy
expert systems are modeled to help the evaluator in quantitative interpretation
of the results of MMPI-2 test.
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Chapter 1

Introduction

1.1 Decision making problem

Making the right decision is one of the most important skills a person may

have. In critical situations, the right decisions can save lives and prevent disasters,

but even in the everyday routine they mean the difference between making and

not making a profit, or winning and loosing a game. Making the right choices

is a skill, but it is a difficult skill to learn. It is therefore no surprise that a

considerable attention was devoted to formalize the decision making process and

apply mathematical methods to it in order to give powerful tools to the person

making the decision and improve her ability to make the right one.

The decision making problem can be simply defined as a problem with more

than one possible solution. Usually, the set of all these solutions is referred to

as a set of alternatives or a set of actions and it is denoted by X. The set of

alternatives may be finite and represented by X = {x1, x2, . . . , xn}, or it may be

described analytically by systems of constrains which need to be fulfilled. In the

latter case, the set of alternatives is usually infinite and the problem is solved by

mathematical programming. In the rest of the thesis we will be assuming a finite

set of alternatives.

Each alternative xi, i = 1, 2, . . . , n, is studied from one or, more often, from

several points of view, which are called criteria, goals, or attributes. Given

m criteria, the alternative xi can be described by m values xij referred to as

consequences, observations or performances of alternative xi, i = 1, 2, . . . , n,

with respect to criterion Cj, j = 1, 2, . . . ,m. Usually it is described as xi =

1



Introduction 2

(xi1, xi2, . . . , xim). The consequences can be expressed in various ways. They can

be real numbers, linguistic terms, or even fuzzy numbers, which will be in detail

explained in chapter 3. The specific form of the consequences depends on the

nature of criteria, but also on the decision making problem itself. Throughout

the thesis we will focus on set of criteria, which is finite with more than one

element.

In order to make a decision, the decision maker has to evaluate the alterna-

tives. The evaluation can be of two main types. The first one is referred to as the

ordinal type of the evaluation, which allows us to set a preference relation on the

set of alternatives, but the numerical value, according to which the alternatives

are ordered, bears no other significance. This kind of evaluation allows ordering

the alternatives from the best to the worst, but it does not provide any informa-

tion about the degree of difference between the consecutive alternatives. Given

two alternatives xp and xq, the ordinal evaluation can help the decision maker

to state that xp is as good as, better, or worse than alternative xq’, but nothing

else.

The second type of evaluation is called cardinal. Not only does it allow us

to order the alternatives, but it also provides information about the intensity of

the preference between them. The decision maker is therefore able to compare

these intensities and claim, for example, that ‘alternative xp is much better than

alternative xq’ or ‘alternative xp is slightly better than alternative xq’. Moreover,

if the cardinal evaluation is of the absolute character with respect to some pre-

viously established goal, then some boundaries are given (usually 0 and 1) and

the decision maker is able to measure how good the alternative is with respect

to the goal.

The process of evaluation is one of the main parts in the process of decision

making. Its output helps the decision maker to make a decision. In the presence of

more than one criterion or goal, we are talking about multiple criteria evaluation.

Decision making problem is a quite general notion covering wide range of

problems with wildly differing sets of alternatives, criteria, or even decision mak-

ers. From now on we will deal with a specific combination of these, focusing

on problems with a finite set of alternatives, a finite set of criteria and a single

decision maker. This kind of problem will be, in short, referred to as MCDM

(Multiple Criteria Decision Making) problem.
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1.2 MCDM methods and techniques

There are two basic approaches to solving MCDM problems. The aim of the

first one is to get the alternatives ordered and than pick the best one(s). The

main idea is based on pairwise comparison of the alternatives with respect to

each criterion separately. This provides the evaluator with m partial preference

relations (one for each criterion), which are then aggregated in order to achieve

the overall preference relation. Among the methods employing this approach,

which are called the outranking methods, the best known are ELECTRE meth-

ods presented by Roy in 1968 [71] or younger PROMETHEE method presented

in 1982 by Brans [11]. Both of the methods are still in active use and under

development. For example, one of the big disadvantage of ELECTRE methods

was overcome in 2009, when Figueira, Greco and Roy presented a modification

of ELECTRE, which allowed tackling MCDM problems with interacting criteria

[23]. For more detailed insight on outranking methods see, for example, [22], or

[12].

The second approach to MCDM problems is based on one simple principle.

Each alternative is assigned m different partial evaluations, one for each crite-

rion, which are then consolidated into a single overall evaluation by a process

called aggregation. Unlike the previous treatment, where we compared different

alternatives among themselves in order to find out the ordering, i. e. the ordinal

type of evaluation, here we to each alternative assign an evaluation, expressing

not just if one alternative is better than another one, but also by how much. This

is the, so called, cardinal type of evaluation.

There are many different and unconnected ways of actually assigning, aggre-

gating, and interpreting the partial evaluations. One of the main approaches is

the multiple attribute utility theory (MAUT) approach, the basic principle of

which was originally put forth in 1947 by Von Neumann and Morgenstern in

[88]. The first application of those principles to MCDM was presented in 1970

by Fishburn [24], but a concise theory came into wide acceptance only after it

was presented in the work of Keeney and Raiffa [48]. We kindly invite any reader

interested in more details on the MAUT approach to seek an exhaustive survey

by Dyer in [21]. Other than MAUT, some methods providing the cardinal type

of evaluation are, for example Saaty AHP [72] and its generalization, the ANP

method [73] (which can also handle interactions between the criteria) or Partial
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Goals Method (PGM) presented in [79].

In both the approaches usable to solve MCDM problems, the ordinal as well

as the cardinal, there is a mutual and very important step to be taken. It is

the aggregation of the partial elements. In the ordinal methods, the partial

preferences are aggregated in order to obtain the overall preference. In cardinal

methods, the overall evaluation of the alternative is a result of aggregating the

partial ones. The most widely used aggregation operator, and certainly the best

known, is weighted average. However, because of its limited applicability, some

other aggregation operators have found their way into the MCDM methods: fuzzy

integrals [45], [63], OWA operators [95], triangular norms [49], symmetric sums

[75], uninorms [27] or null-norms [14]. Since then, the application of different

aggregation operators in MCDM has been studied [15], [28], [30], [32], [38], [53],

[55], [56], [57], [83].

In 1965, Zadeh introduced fuzzy sets [97], which have soon became a new and

powerful tool for modeling vagueness and uncertainty. Soon after, the fuzzy sets

were also applied to MCDM. In 1970, Bellman and Zadeh, [10], formed a first

link between fuzzy sets and MCDM by proposing a, so called, fuzzy decision.

The fuzzy decision is in the form of intersection of fuzzy sets, which are modeling

the individual established goals on the set of alternatives. Others have employed

a more direct route. Instead of devising an entirely novel method, they sought to

adjust the existing aggregation operators in order to make them compatible with

the newly devised fuzzy numbers. These new, fuzzified operators, could then be

effectively applied even to problems exhibiting uncertainty.

The aggregation operator, which attracted the most attention, was the weighted

average. The first fuzzy weighted average was presented in 1977 [3], but others

soon followed [19], [40], [65]. The OWA operators were partially fuzzified later. In

2000 Mitchell and Schaefer [61] introduced OWA operator capable of aggregating

fuzzy numbers. However, it worked only with crisp weights and the computa-

tion was quite complicated. Not even the fuzzy integrals managed to avoid the

fuzzificaton, which lead to fuzzified fuzzy integrals. The fuzzified Sugeno integral

was proposed by Wu et al. in 1998 [93] and [94]. Later, the Choquet integral

was modified for fuzzy integrand by Meyer and Roubens (2006) [59], Yang et al.

(2005) [96] or Wang (2006) [91].

Apart from the aggregation operators, whole MCDM methods were fuzzified
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as well. For example, in 1983, fuzzy extension of Saaty’s AHP was introduced

[87], in 2000, the PROMETHEE method was extended to accommodate uncertain

input [29], and later, in 2007, fuzzy ELECTRE was presented [69].

Finally, there is another important tool brought to the MCDM field by fuzzy

sets theory. A linguistically defined function in the form of base of fuzzy rules,

together with approximate reasoning algorithms, allows to model any MCDM

problem burdened with uncertainty or interacting criteria. Some interesting ap-

plication of fuzzy rules can be found in [79] or [86].

1.3 Goals of the thesis

The theses aims to accomplish several goals.

We started, at the beginning of the introduction, by introducing the MCDM

problem. One of the most important steps encountered in the process of solving

this kind of a problem is the evaluation of alternatives performed by an aggrega-

tion operator. The first aim of the thesis is to study aggregation operators and

their utilization in the models of MCDM.

In reality, most of the MCDM problems are burdened by uncertainty arising

from imperfect data acquisition methods and vagueness of a human factor. In

the formal treatment of this uncertainty, partial evaluations are modeled by fuzzy

numbers and the aggregation operators should be able to handle them. Although

some of the aggregation operators were already fuzzified, most of them passed

only through the partial, so called, first-level fuzzification. The second aim of the

thesis is to fully fuzzify selected aggregation operators, specifically the Choquet

integral, and to propose a way of their effective calculation.

Finally, one of the amazing tools provided by fuzzy sets theory is a linguisti-

cally defined function. With help of several fairly simple “If-then” rules it is able

to describe any relationship, even a fairly complicated one, among the input and

output variables. Then, together with proper selection of an approximate reason-

ing algorithm, it can be used in the process of multiple criteria evaluation. The

third aim of the thesis is to study the influence of various aggregation operators

on the fuzzy rules base performance and to apply it on a real MCDM problem.
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1.4 Structure of the thesis

The structure of the thesis corresponds to the established goals. After a short

introduction, a main part of the thesis begins. In the chapter 2, aggregation

operators and their properties are described. We focus specifically on the special

forms of the Choquet integral and the problems with its application in multi-

ple criteria decision making. At the end of the chapter we take the first step

in generalization of the Partial Goals Method and present a new algorithm for

constructing fuzzy measures.

Next chapter, chapter 3, is devoted to fuzzification of aggregation operators

introduced in chapter 2. In the first part of the chapter we present basic notions

and theorems of fuzzy sets theory. The second part of the chapter then treats the

fuzzification of the aggregation operators. There are two levels of fuzzification.

The first-level fuzzification deals with uncertain partial evaluations and crisp

weights of criteria. Whilst in the second-level fuzzification both of them, partial

evaluations as well as the weights of criteria, are uncertain and modeled by fuzzy

numbers. The chapter ends with complete Generalized Partial Goals Method

and with a proposal of FNV-fuzzy measure construction method, including the

algorithmic description.

The final chapter 4 brings the application of the fuzzy sets approach to a real

MCDM problem. Two bases of fuzzy rules are created to solve a problem arising

in psychology - interpretation of the MMPI-2 tests.



Chapter 2

Aggregation operators and their

application in MCDM

One of the most important steps in the process of multi-criteria decision mak-

ing is the evaluation. During the evaluation, the n partial evaluations or n partial

preferences are replaced by one value, which then helps the decision maker to ar-

rive at the decision and thus solve the MCDM problem. This formidable task is

the responsibility of aggregation operators, which are going to be the main focus

of the following chapter.

At first we put forth the underlaying definitions and present some rudimentary

properties. After this general introduction we move towards and discuss behav-

ior of aggregation operators, which are seeing the most use in decision making

problems - weighted average, OWA operators and the Choquet integral. Of these

three, we are most interested in the Choquet integral. Apart from its usual appli-

cation we show how it can be joined with the generalized Partial Goals Method

(PGM). To complete the treatment, we finish the chapter by proposing a new

technique of constructing a fuzzy measure, which is a crucial part of the Choquet

integral approach.

7
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2.1 Aggregation operators - definition and pro-

perties

There are several definitions of aggregation operator. They differ author from

author [15], [20], [55], [70]. In the following text we will use the one below [70].

Since the partial evaluations are either from the interval [0, 1], or they can be

easily mapped on it, we will, in the rest of the thesis, restrict ourselves to the

interval [0, 1].

Definition 2.1 Aggregation operator A is a sequence {An}
∞
n=1 of mappings (called

aggregating mappings) An : [0, 1]n → [0, 1] such that

• A1(h) = h for each h ∈ [0, 1];

• An(0, 0, . . . , 0) = 0 and An(1, 1, . . . , 1) = 1 for every n = 2, 3, . . .;

• An(h1, . . . , hn) ≤ An(g1, . . . , gn) whenever hi ≤ gi, for each i = 1, 2, . . . , n

and every n = 2, 3, . . ..

The three conditions in Definition 2.1 represent three quite naturally arising

requirements. The first condition is called identity unary operation and it corre-

sponds to aggregation of a singleton. The second condition is known as boundary

condition. Simply put, any aggregation operator should give very bad output, if

all the input values are very bad, and, in complete analogy, if all the input values

are very good, the aggregated output should be very good as well.

The third condition guaranties the monotonicity with respect to each argu-

ment. If any part of the input improves, while the remaining input parameters

remain fixed, the output value produced by aggregation operator should not get

worse.

There is another property sometimes required from a definition of an aggre-

gation operator: continuity.

Definition 2.2 [70] Let A = {An}
∞
n=1 be an aggregation operator. The aggrega-

tion operator A is called continuous, if for each n ≥ 2 the aggregating mapping

An is a continuous function of n variables.
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We understand the continuity of n-ary aggregating mapping An as classical

continuity of any multivariate function. Continuity of n-ary aggregating map-

pings then guarantees that small changes in the input lead again only to small

changes in the output (and in the limit of zero change the output remains un-

changed).

There are, of course, other important properties, which can be extremely

useful in describing the behavior of particular aggregation operators. The two

most prominent are idempotence and symmetry, which are defined as follows:

Definition 2.3 [70] Let A = {An}
∞
n=1 be an aggregation operator. The aggrega-

tion operator A is called idempotent, if for each n ∈ N the aggregating mapping

An is idempotent, i. e.

An(h, . . . , h) = h for all h ∈ [0, 1]. (2.1)

Idempotence is a typical property of aggregation operators which represent

averages of various kinds. That is why the idempotent aggregation operators are

sometimes called averaging aggregation operators [15]. If an aggregation operator

is idempotent, then for all n ∈ N and for all h1, . . . , hn ∈ [0, 1] the following holds

min{h1, . . . , hn} ≤ A(h1, . . . , hn) ≤ max{h1, . . . , hn}. (2.2)

The last of the properties, which will be mentioned during the text of the

thesis, is symmetry.

Definition 2.4 [15] Let A = {An}
∞
n=1 be an aggregation operator. The aggrega-

tion operator A is called a symmetric aggregation operator, if for all n ∈ N and

for all h1, . . . , hn ∈ [0, 1], the following holds

An(h1, . . . , hn) = An(hα(1), . . . , hα(n)), (2.3)

for all permutations α = (α(1), . . . , α(n)) of (1, . . . , n)

In multiple criteria decision making, the symmetric aggregation operators are

usually used if all the criteria are of the same importance.
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2.2 Weighted average

Weighted average is one of the best known aggregation operators and it is

certainly the one most often applied.

Definition 2.5 Weighted average of real numbers h1, . . . , hn, hi ∈ [0, 1], i =

1, 2, . . . , n with weights w1, . . . , wn, wi ≥ 0, i = 1, 2, . . . , n, is a real number

y ∈ [0, 1] given by

y =

∑n

i=1 wihi∑n

i=1 wi

. (2.4)

If the weights are normalized, i.e.
∑n

i=1 wi = 1, then the formula 2.4 is

simplified to

y =
n∑

i=1

wihi. (2.5)

Let us analyze the formula 2.5 a little bit. From MCDM point of view, the

weights wi, i = 1, 2, . . . , n, enable us to express the various importance of the

given criteria. To each criterion Ci there is a weight wi ≥ 0 , i = 1, 2, . . . , n

assigned according to one basic rule: the more important the criterion is, the

bigger its weight should be. Values hi, i = 1, 2, . . . , n now stand for partial

evaluations of the object with respect to the particular criteria Ci, i = 1, 2, . . . , n.

Partial evaluations are supposed to be standardized: they have to refer to the

same scale (percentages, points, degrees of fulfillment, etc. ). Most often they

come from the unit interval and we shall keep this custom.

Weighted average is the most popular aggregation operator used in many

MCDM methods. As an example, we can name method of MAUT [48], [24],

Saaty AHP [72] or Partial Goals Method (PGM) [79]. According to [15] it is a

continuous and idempotent operator, which is not symmetric. Application of the

weighted average operator is straightforward, there are some limitations, however,

which must be observed.

First, it is safe to use weighted average only, when the criteria describing the

MCDM problem do not interact. The application of weighted average on the

problem with interacting criteria may lead to confusing and erroneous results.

Second, weighted average is suitable only for problems, where the weights of

the criteria are related solely to the criteria (evaluations with respect to these
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criteria) themselves, and they do not depend on the actual values of the evalua-

tions.

Finally, the weights of the criteria should differ. If they do not differ, then the

evaluator cares more about the actual highs of the partial evaluations than about

the particular criteria connected to them. In such the case, another aggregation

operator, for example the OWA operator, should be used.

Example 2.1 Let us consider two students A and B. Their teacher is reciting

the alphabet and students are supposed to write the letters down on the paper. Let

us suppose we want to evaluate a student’s ability to write down individual letters.

The alphabet consists of 26 letters, which represent 26 criteria in multi-criteria

evaluation problem. All the letters are of the same importance, therefore the

weights of the criteria are equal to 1
26

. The teacher evaluates each written letter

with value from [0, 1], where 0 represents the worst and 1 the best evaluation.

Student A knows all the letters, but her handwriting is poor. The symbols

are barely recognizable. Therefore, the partial evaluations of the student can be

expressed as (0.5, . . . , 0.5).

Student B knows only half of the letters, but she can write down the letters

she knows in perfect handwriting and is rewarded by evaluations of 1. The other

letters, the missing ones, are evaluated by 0. The vector of partial evaluations

can be then expressed as (1, . . . , 1, 0, . . . , 0).

If we use weighted average to aggregate students’ partial evaluations, both the

students will be evaluated equally by number 0.5. And yet, there is a big difference

between them. Student A can, even if imperfectly, write any text she needs, while

student B can’t!

This example demonstrates that weighted average is not always a good choice.

In the following, we shall look at another operator, which is better suited for this

kind of tasks. It is called the OWA operator.

2.3 OWA

Ordered weighted average operators have been introduced by Yager in 1988

[95]. They are usually referred to as OWA operators and we define them as

follows:
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Definition 2.6 Ordered weighted average (OWA) of real numbers h1, . . . , hn,

hi ∈ [0, 1], i = 1, 2, . . . , n, with normalized weights w1, . . . , wn, wi ≥ 0, i =

1, 2, . . . , n,
∑n

i=1 wi = 1, is a real number y ∈ [0, 1] given by

y =
n∑

i=1

wih
(i), (2.6)

where (1), . . . , (n) is a permutation of indices, such that h(1) ≥ h(2) ≥ · · · ≥ h(n).

Compared to the weighted average, there is one big difference. The aggregated

values are reordered before they enter the calculation. It can be seen, in the

formula 2.6, that while the values hi, i = 1, . . . , n, are reordered, the weights

wi, i = 1, . . . , n, stay in the same order. Here, the weights are not tied to the

particular criteria, but to the ordering of the partial evaluations. In other words,

the output given by the OWA operator depends only on the actual values of the

partial evaluations.

Because of the properties described in the previous paragraph, the OWA oper-

ators are suitable for situations in which the criteria are indifferent. If the criteria

are of the same importance, we can focus solely on the structure of the actual

partial evaluations, disregarding the connection between the partial evaluations

and the criteria.

OWA operators are commutative, monotonic, continuous and idempotent [25].

They belong to the family of the averaging aggregation operators.

OWA operators can take many forms. By changing the vector of weights we

can obtain a wide range of aggregation operators, some of which are well known

even to people not interested in the theory of aggregation operators. Perhaps the

best example of this are the operators minimum and maximum [28].

2.3.1 Maximum

Given a vector of normalized weights, such that w1 = 1 and wi = 0, i =

2, 3 . . . , n, the OWA operator becomes maximum operator, i. e.

OWA(h1, . . . , hn) = max(h1, . . . , hn). (2.7)
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In the formal logic, the maximum operator is used to model the logical operator

“or”. The truth degree of a logical disjunction corresponds to the maximum of

the truthfulness degrees of all particular operands. In multiple criteria decision

making, the maximum operator is applied when all of the criteria are interchange-

able and it does not matter which one of them is evaluated highly. If we want to

model the requirement “at least one criterion has to be fulfilled”, then we look

for the maximum.

When we apply the maximum operator, we should be aware that the al-

ternatives (1, 0, . . . , 0) and (1, 1, . . . , 1) will be evaluated equally. As a conse-

quence, the alternative (1, 0, . . . , 0) will be evaluated better than the alternative

(0.99, 0.99, . . . , 0.99) and we should be prepared to accept that.

2.3.2 Minimum

If a vector of normalized weights is given as wn = 1, wi = 0, i = 1, 2, . . . , n−1,

then OWA operator is equal to minimum operator, i. e.

OWA(h1, . . . , hn) = min(h1, . . . , hn). (2.8)

In the theory of logic, the minimum operator is used to model logical operator

“and”. Logical conjunction is true if and only if all of its operands are true.

Its truthfulness degree is equal to the minimum of truthfulness degrees of the

particular operands. In multiple criteria decision making, the minimum operator

serves well to model the requirement “All of the criteria should be fulfilled”.

Minimum expresses the following idea: An object is evaluated highly, only if all

of its partial evaluations are high.

The minimum operator does, similarly to maximum, exhibit some peculiar-

ities in it’s behavior and the evaluator should be ready to take them into an

account. When using minimum as an aggregation tool, we should expect the

same evaluation for the alternative (0, 1, . . . , 1) as for the alternative (0, 0, . . . , 0).

As another example, if we compare two alternatives (0.01, 0.01, . . . , 0.01) and

(0, 1, . . . , 1) using minimum, the first option will be preferred to the alternative.

Maximum and minimum operators are only two extremal forms of the OWA

operators. The particular forms depend on the weighting vector. According to

[70], by appropriate choice of the weighting vector, OWA operators can also find
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and bring into the forefront any k-th smallest partial evaluation, i.e. it can, for

example, also turn into median. The application of OWA operators in MCDM

was studied thoroughly in [28].

The popularity of OWA operators can be demonstrated by an example of

their practical application. Today, the overall evaluation of a figure skater is

computed by OWA. At first, the performance of the figure skater is evaluated by

nine experts. Each expert evaluates the performance with one mark. Then, two of

the marks are eliminated and only seven marks are used to determine the overall

evaluation. The marks, which are eliminated, are the smallest and the highest

partial evaluations. The overall evaluation is calculated as an average of the rest

of the marks. This procedure ensures that large variation of the evaluations is

avoided.

Example 2.2 Let us imagine a swimming course, in which children are taught

four swimming styles: breaststroke, front crawl, butterfly and backstroke. At

the end of the course, the children are evaluated with respect to each particular

swimming style, i.e. four particular evaluations are assigned to each child. Two

different questions can now arise:

1. Did the child learn to swim?

2. Is the child talented enough to participate in the swimming competition,

where all four swimming styles are needed?

As for the first question, if we want to find out if the child can swim or not, we

usually do not care which swimming style is the child’s preferred one. The child

does not need to manage all four swimming styles to avoid drowning. In such the

case we will be happy, if the child manages one style, not mattering which, and

the right aggregation operator would then be maximum.

The situation changes with the second question. Now we are not satisfied with

a child who can only swim in one style. Now we want more. We are looking for a

child who can compete in all four swimming styles. Since the child must be good

at all four styles, we choose minimum to evaluate child’s performance.
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2.4 Fuzzy integrals - Choquet and Sugeno inte-

grals

The concept of fuzzy integrals was first introduced in 1953 by Gustave Cho-

quet in his Theory of capacities [18]. The contemporary concept of the fuzzy

integral, as integral with respect to fuzzy measure, was initially proposed by

Höhle in [45] and later expanded upon by Murofushi and Sugeno [63].

Important role in definition of the fuzzy integral is played by fuzzy measure,

which was introduced by Sugeno in 1974 [77] as a non-additive monotonous set

function.

Definition 2.7 A fuzzy measure on a finite nonempty set Ω, Ω = {C1, . . . , Cn},is

a set function µ : ℘(Ω) → [0, 1], where ℘(Ω) is a power set of Ω, satisfying the

following conditions:

• µ(∅) = 0, µ(Ω) = 1

• A ⊆ B implies µ(A) ≤ µ(B) for any A,B ∈ ℘(Ω).

Clearly, the fuzzy measure is a generalized measure, where the condition of

additivity was replaced by weaker condition of monotonicity. This simple mod-

ification enabled us to define two of the so called fuzzy integrals, the Choquet

integral and the Sugeno integral:

Definition 2.8 Let Ω = {C1, . . . , Cn} be a finite nonempty set, µ be a fuzzy

measure on Ω, and f : Ω → [0, 1], the discrete Choquet integral of f is then

defined as follows:

(C)

∫

Ω

f dµ =
n∑

i=1

[f(C(i)) − f(C(i−1))]µ(B(i)), (2.9)

where (1), (2), . . . , (n) is a permutation of indices 1, 2, . . . , n such that f(C(1)) ≤

f(C(2)) ≤ · · · ≤ f(C(n)), B(i) = {C(i), C(i+1), . . . , C(n)} and for f(C(0)) = 0 by

convention.

Definition 2.9 Let Ω = {C1, . . . , Cn} be a finite nonempty set, µ be a fuzzy

measure on Ω, and f : Ω → [0, 1], the discrete Sugeno integral of f is then
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defined as follows:

(S)

∫

Ω

f dµ = max{min{f(C(i)), µ(B(i))}|i = 1, 2, . . . , n}, (2.10)

where (1), (2), . . . , (n) is a permutation of indices 1, 2, . . . , n such that f(C(1)) ≤

f(C(2)) ≤ · · · ≤ f(C(n)), B(i) = {C(i), C(i+1), . . . , C(n)}.

Both the definitions 2.8 and 2.9 work with function f , the values of which are

real numbers from the interval [0, 1]. The fuzzy integrals can be defined for any

real function as in, for example, [58]. Nevertheless, because of the theme of the

thesis, we restrict ourselves to partial evaluations with values from the interval

[0, 1]. The connection between the functional values and the partial evaluations

will be explained later.

Remark 2.1 Comparing the definitions of the Choquet and Sugeno integrals,

we can see that while the Choquet integral is defined with help of linear operators

addition and multiplication, the Sugeno integral is defined by non-linear operators

maximum and minimum.

The definition of the Choquet integral can be also rewritten in equivalent

form [17], which might be suitable for certain applications. This alternative form

arises from our ability to transform fuzzy measures into the form of multilinear

polynomials:

Definition 2.10 [35] Let µ be a fuzzy measure on Ω, Ω = {C1, . . . , Cn}. The

Möbius transform of µ, denoted by mµ, is the unique solution of the equation

µ(A) =
∑

B⊆A

mµ(B), ∀A ⊆ Ω, (2.11)

given by

mµ(A) =
∑

B⊆A

(−1)Card(A\B)µ(B). (2.12)

The alternative form of the Choquet integral then looks as:

Theorem 2.1 Let Ω = {C1, . . . , Cn} be a finite nonempty set, µ be a fuzzy mea-

sure on Ω, and f : Ω → [0, 1]. Any Choquet integral of f can be then written
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as

(C)

∫

Ω

f dµ = Cµ(f(C1), . . . , f(Ci)) =
∑

A⊆Ω

mµ(A) · min{f(Ci) | Ci ∈ A}, (2.13)

where mµ is the Möbius transform of µ.

Proof: See [57].

When the fuzzy measure is additive, the Choquet integral becomes Lebesgue

integral. In [30] Grabisch has proved the property formulated in the following

theorem 2.2. The theorem guarantees that Sugeno and Choqet integrals always

satisfy the condition 2.2.

Theorem 2.2 The Sugeno and Choquet integrals are idempotent, continuous,

monotonically nondecreasing operators.

Proof: See [30].

Fuzzy integrals have become very popular aggregation operators. Among

the applications of Sugeno integral we can find prediction of wood strength [47],

computer vision [78], or human reliability analysis [92]. In [84] the connection

between the Hirsh index and Sugeno integral has been noted.

The Choquet integral has also been applied to many various areas [52]. It has

found its use in pattern recognition [31], speech recognition [16], hand writing

recognition [68], classification [37], evaluation of color images [82], design of audio

speakers [46], or root dispersal models [64]. Aside of that, the Choquet integral

has been successfully applied in multiple criteria decision making and multiple

criteria evaluation [38], which is the main application studied in this thesis.

Let us look over the Definition 2.8 again and describe the formula 2.9 with

respect to MCDM. In decision making, Ω represents the set of all partial goals or

criteria, µ(A), A ∈ ℘(Ω), is interpreted as the weight of the set of partial goals

(criteria) A, the values f(Ci) = hi represent partial evaluations with respect

to the i-th criterion, and the value of the integral is interpreted as the overall

evaluation.

Remark 2.2 Because of its wide use in MCDM as an aggregation operator for

partial evaluations f(Ci) = hi, i = 1, 2, . . . , n, the symbol (C)
∫

Ω
f dµ is often

replaced by Cµ(h1, . . . , hn).
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With help of the new notation, the Choquet integral Cµ can be rewritten in

another, for MCDM applications more illustrative, form:

Cµ(h1, . . . , hn) = h(n)µ(B(n)) +
n−1∑

i=1

h(i)

[
µ(B(i)) − µ(B(i+1))

]
, (2.14)

where (1), (2), . . . , (n) is a permutation of indices 1, 2, . . . , n such that f(C(1)) ≤

f(C(2)) ≤ · · · ≤ f(C(n)), B(i) = {C(i), . . . , C(n)}, i = 1, . . . , n.

There are two main reasons for the popularity of the Choquet integral. First,

Choquet integral is capable of handling interactions among the criteria. Since in

the real world almost everything is, to a certain extent, connected to anything,

complete independence is always a theoretical abstraction. An approach, which

allows us to model at least some interactions and thus move towards realistic

description is therefore imminently useful. The second important property of

the Choquet integral is that all of the commonly used aggregation operators

presented in the previous sections can be obtained from it by a specific choice of

parameters. Let us now look at the two features in greater detail.

2.4.1 Interactions among criteria

The Choquet integral can help the evaluator model two main kinds of inter-

actions among the criteria: redundancy and synergy. In case of redundancy, the

partial goals overlap and the corresponding criteria act as substitutes for each one

to some extent. When redundancy appears, achieving just few selected partial

goals is often enough to evaluate the alternative quite highly. The interactions

among the criteria are described by a fuzzy measure.

Given two criteria, Ci and Cj, and fuzzy measure µ, then relation µ({Ci, Cj}) <

µ(Ci) + µ(Cj) suggests the criteria are redundant.

The fuzzy measure with property

µ(A ∪ B) ≤ µ(A) + µ(B) ∀A,B ∈ ℘(Ω), A ∩ B = ∅. (2.15)

is called a subadditive fuzzy measure. The subadditive fuzzy measure implies

redundancy.

The second type of interactions we consider is synergy. Synergy occurs, when
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fulfillment of some combination of partial goals from the given set of partial goals

brings some additional value to the overall evaluation. If any partial goal from

the combination is not fulfilled, then the overall evaluation of the alternative is

reduced by more than just by the weight of the unfulfilled partial goal.

The synergy between the criteria can also be identified with help of a fuzzy

measure. When, for a pair of criteria Ci and Cj and fuzzy measure µ, the in-

equality µ({Ci, Cj}) > µ(Ci)+µ(Cj) holds, then there is a synergy between these

criteria.

The synergy is implied by a supperaditive fuzzy measure [32]. This is a fuzzy

measure fulfilling the following condition:

µ(A ∪ B) ≥ µ(A) + µ(B) ∀A,B ∈ ℘(Ω), A ∩ B = ∅. (2.16)

Definition 2.11 [62] Let µ be a fuzzy measure on Ω = {C1, . . . , Cn}. The inter-

action index between two criteria Ci and Cj is

Iµ(Ci, Cj) =
∑

A⊆Ω\{Ci,Cj}

(Card(A))!(n − Card(A) − 2)!

(n − 1)!
· (∆ijµ)(A), (2.17)

where

(∆ijµ)(A) = (µ(A ∪ {Ci, Cj}) + µ(A) − µ(A ∪ {Ci}) − µ(A ∪ {Cj})). (2.18)

The interaction index describes not only the intensity of the interaction be-

tween two criteria, but also the type of the interaction. The values of the inter-

action index ranges in [−1, 1]. For a pair of redundant criteria the interaction

index is negative. Analogically, for a couple of synergic criteria the interaction

index is calculated as positive. If the interaction index is equal to zero, then there

are no interactions between the particular pair of criteria. The interaction index

between two criteria has been extended by Grabisch to the interaction index for

any set of criteria [33].

Definition 2.12 Let µ be a fuzzy measure on Ω = {C1, . . . , Cn}. The interaction
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index for any A ⊂ Ω is given by

Iµ(A) =
∑

B⊂Ω\A

(n − Card(B) − Card(A))!(Card(B))!

(n − Card(A) + 1)!

∑

K⊂A

(−1)Card(A\K)µ(B∪K)

(2.19)

Because of the interactions allowed among the criteria, the overall importance

of particular criterion Ci can not be simply given by fuzzy measure of {Ci} alone.

The full information about the criterion Ci is hidden in the values of all µ(A)

such that Ci ⊆ A.

Definition 2.13 Let µ be a fuzzy measure on Ω = {C1, . . . , Cn}. The importance

index or Shapley value Φ of criterion Ci with respect to µ is defined by [74]

Φ(Ci) =
∑

A⊆Ω\{Ci}

(Card(A))!(n − Card(A) − 1)!

n!
[µ(A ∪ {Ci}) − µ(A)] . (2.20)

Moreover, the Choquet integral is able to model the veto and favor effects

[32].

Definition 2.14 Suppose Cµ is a Choquet integral being used for a multiple cri-

teria decision making problem.

• A criterion Ci is a veto for Cµ, if for any (h1, . . . , hi, . . . , hn) ∈ [0, 1]n holds

Cµ(h1, . . . , hn) ≤ hi. (2.21)

• A criterion Ci is a favor for Cµ, if for any (h1, . . . , hi, . . . , hn) ∈ [0, 1]n

holds

Cµ(h1, . . . , hn) ≥ hi. (2.22)

In other words, if the partial evaluation with respect to the veto criterion is

high, then it does not influence the overall evaluation. On the other hand, if the

partial evaluation with respect to the veto criterion is low, then also the overall

evaluation will be low regardless of the rest of the partial evaluations.

Analogically, the low partial evaluation with respect to favor criterion has no

effect on the overall evaluation. The favor criterion becomes important only if the
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partial evaluation with respect to it is high. Then the overall evaluation should

be high as well and the rest of partial evaluations are not considered.

Criterion which is veto and favor at the same time is called a dictator. If

criterion Ci is a dictator for Cµ, then Cµ(h1, . . . , hi, . . . , hn) = hi for any n-tuple

(h1, . . . , hi, . . . , hn) ∈ [0, 1]n.

According to [32] veto and favor effect can be modelled by the Choquet in-

tegral with special choice of fuzzy measure µ. If Ci is supposed to be veto for

the decision making problem, then we can take the fuzzy measure µ with the

property µ(A) = 0 for any A such that Ci /∈ A. Similarly, if Ci is considered as

favor criterion for given decision making problem, then it suffices to choose the

fuzzy measure µ such that µ(A) = 1 for all sets A containing criterion Ci.

In 1998 Marichal [55] has defined veto and favor indices. They allow us to

measure how much any given criterion can act as veto or favor criterion.

Definition 2.15 Let µ be a fuzzy measure on Ω = {C1, . . . , Cn}.

• The veto index for a Choquet integral Cµ and criterion Ci ∈ Ω is given by

veto(Cµ, Ci) = 1 −
1

n − 1

∑

K⊂Ω\{Ci}

(n − Card(K) − 1)!(Card(K))!

(n − 1)!
µ(K).

(2.23)

• The favor index for a Choquet integral Cµ and criterion Ci ∈ Ω is given by

favor(Cµ, Ci) =

=
1

n − 1

∑

K⊂Ω\{Ci}

(n − Card(K) − 1)!(Card(K))!

(n − 1)!
µ(K ∪ {Ci}) −

1

n − 1
.

(2.24)

Example 2.3 Let us suppose we want to evaluate high school graduates’ aptitude

for study of science. The evaluation can be based on their results of mathematics

(M), physics (Ph) and Chemistry (Ch) tests. Although these three disciplines

differ from each other, they have a lot in common. Because of this overlap the

evaluation obtained by the weighted average can be misleading. Fortunately, we

can use the aggregation by Choquet integral instead.

The overlap of the subjects can be observed by looking at the respective weights

assigned to particular tests and groups of tests: wM = 0.5, wPh = 0.45, wCh = 0.4,
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wM,Ph = 0.8, wPh,Ch = 0.7, wM,Ch = 0.75, wM,Ph,Ch = 1 (see Fig.3.8). The

weight of each subject is determined as the evaluation of a student with perfect

score from this subject and zeroes from the rest of subjects.

The tests’ results are given by percentage of successfully answered questions.

Then the overall evaluation Y can be obtained with help of the Choquet integral.

For example, a student who achieved partial evaluations of the tests in the form

hM = 0.9, hPh = 0.5 and hCh = 0.2, is then evaluated as follows

Y = hCh[1 − wM,Ph] + hPh[wM,Ph − wM ] + hMwM . (2.25)

Considering the weights and the tests’ results, we evaluate the student by number

Y = 0.64.

Figure 2.1: Fuzzy measure defined on the set of particular tests M,Ph,Ch.

Remark 2.3 The Choquet integral can not be used, if the interactions among

the criteria depend on particular values of the given criteria. As an example,

we can present the problem of meal evaluation. A meal could be evaluated with

respect to two criteria: “Meat” and “Side-dish”. Note, that there are no global

interactions among the criteria “Meat” and “Side-dish”, but the evaluation of

every meal depends on the combination of their values, e.g. we like fish with

chips, but not fish with rice. Here, the type of the interaction between the two

criteria has changed from synergy to redundancy.

2.4.2 Transformations of the Choquet integral

In addition to its ability to handle the interactions among the criteria, the

Choquet integral is known for its other property. The Choquet integral is a

natural generalization of all the aggregation operators mentioned in the previous
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sections. By proper choice of fuzzy measure the Choquet integral can be reduced

to minimum, maximum, OWA operators, or weighted average ([26], [70]).

In the case of the extreme synergy, the Choquet integral corresponds to the

minimum operator. Here, the fulfillment of any partial goal does not affect the

overall evaluation, unless all of the partial goals are achieved. The fuzzy measure,

which turns the Choquet integral into minimum operator, has the property that

µ(Ω) = 1, while µ(C) = 0 for any other C ∈ ℘(Ω).

In the limit case of full redundancy, the Choquet integral corresponds to the

maximum operator. In such the case, µ(∅) = 0 and µ(C) = 1 for any C ∈ ℘(Ω).

The Choquet integral can also turn into weighted average. Whenever the fuzzy

measure is additive, the Choquet integral takes the form of Lebesgue integral and,

consequently, of the weighted average with µ(Ci) as the weights wi, i = 1, 2, . . . , n.

The Choquet integral becomes the OWA operator, if the fuzzy measure of

any A ∈ ℘(Ω) depends only on its cardinality, i.e. the fuzzy measure of the sets

with the same cardinality is the same. The weighting vector for such the OWA

operator is then given by wi = µ(Ai) − µ(Ai−1), where Ai are subsets of Ω with

property Card(Ai) = i, i = 1, 2, . . . , n.

Remark 2.4 The Sugeno integral can be transformed into some of the well known

aggregation operators as well. The Sugeno integral can change into the maximum

operator, if the fuzzy measure µ on Ω fulfills the conditions: µ(∅) = 0, µ(C) = 1

for any C ∈ ℘(Ω) \ {∅}. Analogically, the Sugeno integral can transform into the

minimum operator, the fuzzy measure µ on the set Ω just has to be as follows:

µ(Ω) = 1 and µ(C) = 0 for any C ∈ ℘(Ω) \ {Ω}.

2.4.3 Generalized Partial Goals Method - Step 1

Because of its properties, the Choquet integral can be used to overcome some

barriers, which do not allow the decision maker to use some of the MCDM meth-

ods based on a weighted average. In this section we will illustrate this approach

on Partial Goals Method (PGM) [79].

The fundamental principle of the partial goals method is the following one:

Let us suppose that the decision maker aims to achieve an overall goal G0. Let the

overall goal G0 be covered by partial goals G1, G2, G3. The partial evaluations

h1, h2, h3 ∈ [0, 1], represent the degree of fulfilment of particular partial goals
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G1, G2, G3. Furthermore, w1, w2, w3 ∈ [0, 1], express the proportions of the three

partial goals in the overall goal G0. We are now looking for the overall evaluation

of alternative x, which would express the degree of fulfillment of the overall goal

G0.

If {G1, G2, G3} form a partition of the overall goal (Fig. 2.2(a)), then the sum

of the weights w1, w2, w3 is equal to 1 (the weight of the overall goal) and also the

weight of every subset of partial goals is equal to the sum of the weights of the

particular goals in the subset, i.e. the measure on the power set of {G1, G2, G3}

is additive. The overall evaluation of the alternative x is given by the weighted

average of the partial evaluations, i.e.

h(x) =
3∑

j=1

hjwj. (2.26)

(a) (b)

Figure 2.2: (a) Partial goals G1, G2, G3 cover the overall goal G0 and do not over-
lap - they form the partition of the overall goal G0. (b) Partial goals G1, G2, G3

cover the overall goal G0, but they overlap - there is a redundance between criteria
corresponding to the partial goals.

Nevertheless, the weighted average can not be used when partial goals G1, G2, G3

overlap, as it is illustrated in Fig.2.2(b), where we can see that the proportions of

the particular partial goals in the overall goal are w1 = 0.5, w2 = 0.5, w3 = 0.6,

and that their sum is not equal to 1. Moreover, the weight of any subset of

partial goals {Gp, Gr}, p, r ∈ {1, 2, 3}, is not equal to the sum of the weights wp

and wr. In other words, the measure defined on the power set of {G1, G2, G3} is

subadditive. In this situation, the overall evaluation of the alternative x can be
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given by the value of the Choquet integral, i.e.

h(x) = h(1) + (h(2) − h(1))µ({G(2), G(3)}) + (h(3) − h(2))µ(G(3)), (2.27)

or, in other form,

h(x) = h(1)[1 − µ({G(2), G(3)})] + h(2)[µ({G(2), G(3)}) − µ(G(3))] + h(3)µ(G(3)),

(2.28)

where (1), . . . , (n) is a permutation of indices 1, . . . , n such that h(1) ≤ h(2) ≤ h(3).

The replacement of weighted average with Choquet integral represents the

first step in the process of generalization of PGM method. After the first step is

taken, PGM is able to handle at least some of the interactions among the partial

goals.

Unfortunately, in comparison with the weighted average the application of

the Choquet integral requires much more information from the decision maker.

Generally, the decision maker, who is modeling the interactions between the

criteria (or overlaps of the goals), needs to set 2n − 2 values to describe the

fuzzy measure properly. Note that determination of n weights in the case of the

weighted average is already difficult enough.

2.4.4 Fuzzy measure construction

The application of the Choquet integral to multiple criteria decision making

requires correct construction of the fuzzy measure. Given n criteria, the evaluator

needs to set the weight of each subset of the set of criteria, 2n − 2 values in total

(the weights of empty set and the whole set of criteria are given by the definition

of fuzzy measure). Moreover, the fuzzy measure should maintain monotonicity

arising due to inclusion and the evaluator should keep that in mind.

The construction of fuzzy measure can be much easier, if the sets of interacting

criteria in the model do not contain more than k criteria. These types of fuzzy

measures were presented in [33] as k-order or k-additive fuzzy measures.

Definition 2.16 Let µ be a fuzzy measure on Ω = {C1, . . . , Cn}. The fuzzy

measure µ is k-additive if its Möbius transform satisfies mµ = 0 for all A ⊂ Ω

such that Card(A) > k, and there exists A ⊂ Ω, Card(A) = k, such that mµ(A) 6=

0.
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In the case of k-additive fuzzy measure, the construction of fuzzy measure

requires to set only
∑k

i=1

(
n

i

)
values.

Various methods of constructing the fuzzy measure were already proposed.

Some of them will be described in the following text.

Direct approaches are based on the knowledge of an expert. The expert is

supposed to construct the fuzzy measure either by “assigning” the values of the

fuzzy measure directly to the various combinations of criteria or by describing the

relationship among the criteria with help of the Shapley values, the importance

indices or veto and favor criteria.

Another approaches involve the training data. Let us suppose, we have a set

of objects x1, . . . , xm. Each object xi, i = 1, . . . ,m, is characterized by n-tuple

of partial evaluations (hi1, . . . , hin) and one overall evaluation yi. Then the fuzzy

measure can be constructed with help of these objects, i.e. training data.

One of the methods based on training data is looking for fuzzy measure by

minimizing the total square error E2.

E2 =
m∑

i=1

(Cµ(hi1, . . . , hin) − yi)
2 (2.29)

In this case, by considering the properties of fuzzy measure (monotonicity, bound-

ary conditions) and some additional pieces of information from the expert (prefer-

ences between the criteria, synergy or redundancy effects, veto or favor criteria),

the construction of fuzzy measure can be transformed to a problem of quadratic

programming under constraints with 2n − 2 unknown values of fuzzy measure µ

[82]. The process of looking for solution requires a lot of training data and a big

amount of memory. Moreover, in general the problem does not have a unique

solution [60].

To eliminate some of the above mentioned drawbacks of the quadratic pro-

gram, several different methods of solution have been proposed: the Heuristic

Least Mean Squares method [31], the applications of genetic algorithms [50], [90]

or the neural networks [89].

In [58] the 2-order fuzzy measure is constructed with help of linear program-

ming using the set of prototype alternatives and the ability of the decision maker

to give some information about the ranking of the alternatives, the ranking of

the criteria and the nature of the interaction index between the pairs of criteria.
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The idea is to find the fuzzy measure, which maximizes the difference between

two differently evaluated alternatives.

In [51] Labreuche and Grabisch have proposed to apply the MACBETH ap-

proach [4] to construction of the fuzzy measure. The idea is based on pairwise

comparisons of criteria coalitions and an assumption that the decision maker is

able to set the intensity of differences between the various pairs of those coalitions.

A new method for a fuzzy measure construction

In the following text, a new approach of the fuzzy measure construction,

published in [5], will be presented.

Let us suppose that object x has to achieve n partial goals G1, . . . , Gn de-

scribing the overall goal G0. Let the object x fully achieve partial goal G1 and

totally fail with respect to the rest of the partial goals. Object x then can be

denoted as x = (1, 0, . . . , 0) and for its overall evaluation h(1,0,...,0) obtained by

Choquet integral it holds

h(1,0,...,0) = 0 ·µ({G1, . . . , Gn})+ · · ·+0 ·µ({G1, G2})+1 ·µ(G1) = µ(G1). (2.30)

Analogically, we can see that the evaluations of objects (1, 1, 0, . . . , 0) and (1, 1, 1,

0, . . . , 0) are equal to µ({G1, G2}) and µ({G1, G2, G3}), respectively, i.e.

h(1,1,0,...,0) = 0 · µ({G1, . . . , Gn}) + · · · + 1 · µ({G1, G2}) + 0 · µ(G1), (2.31)

h(1,1,1,0,...,0) = 0·µ({G1, . . . , Gn})+· · ·+0·µ({G1, G2, G3})+· · ·+0·µ(G1). (2.32)

All in all, the values of fuzzy measure of the sets of partial goals are equal to

the evaluations of the corresponding objects. As a consequence, the construction

of the fuzzy measure can be simplified by evaluation of 2n imaginary objects

x1 = (0, 0, . . . , 0), x2 = (1, 0, . . . , 0), x3 = (0, 1, . . . , 0), . . ., x2n

= (1, 1, . . . , 1).

The evaluation can be done in two steps:

1. We use the Pairwise Comparison Method and order all the imaginary ob-

jects.

2. We describe the intensity of the preferences between the subsequent classes

of indifferent objects with help of linguistic descriptors.
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In the first step, we order the objects decreasingly by comparing all pairs of

the given objects. During the process, we create a matrix A = {aij}
2n

i,j=1, where

aij = 1 if the object from the i-th row achieves the overall goal better than the

object from the j-th column, aij = 0.5 if the object from the i-th row is as good as

the object from the j-th column, and aij = 0 otherwise. To each object xi there

is assigned value
∑2n

j=1 aij, i = 1, 2, . . . , 2n, and all the imaginary objects are

arranged into several groups Π1 � Π2 � · · · � Πk, k ≤ 2n, such that objects in

each group are assigned the same value and the objects in group Πj are assigned

higher value than objects in group Πj+1, j = 1, 2, . . . , k − 1.

Using this approach, we need to set only the upper triangle of the matrix,

because aij = 1 − aji for any i, j ∈ {1, 2, . . . , 2n}. Moreover, some values are

not optional (they are fixed from the definition of fuzzy measure), therefore the

evaluator needs to set at most 22n−1 − 2n−1 − 1 values. During the process of

creating the matrix A, we can also employ the inclusion and transitivity properties

to reduce the number of needed elements even further. For example, for n = 3

the 27 required parameters can be reduced up to only 9. The real number of

reduced parameters will depend on the actual choice of values and the nature of

the problem and without that knowledge it can be only bounded from above and

from below.

In the second step, we use the ordering of the groups Π1 � Π2 � · · · � Πk, and

add information about the intensity of the relation between the groups Πj, Πj+1,

j = 1, 2, . . . , k− 2. The intensity of the relation rj, j = 1, 2, . . . , k− 2, can be de-

scribed linguistically, e.g. by terms ”as good as”,”slightly better”, ”quite better”,

”strongly better” or ”extremely better”, with numbers 1, t1, t2, t3, t4 quantifying

the relation. For example we may consider numbers 1, 2, 3, 4, 5. If rj = tj, it

means that objects in the group Πj are tj-times better than the objects in the

group Πj+1.

The evaluation hj of the objects from Πj is then given as follows, h1 = 1, hj =
1

r1···rj−1

, j = 2, 3, . . . , k − 1, hk = 0. For example, let us suppose (1, 1, . . . , 1) ∈

Π1 � (1, 1, . . . , 1, 0) ∈ Π2. If we describe the relation between the first and the

second object as ”slightly better”, then the evaluation of the object (1, 1, . . . , 1, 0)

is 1
t1

and µ({G1, G2, . . . , Gn−1}) = 1
t1

.

It is also possible to have the matrix A populated only by ones and zeros,

when aij = 1 if object from the i-th row is better or as good as the object from
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the j-th column, and aij = 0 otherwise. However, creating this matrix requires

more parameters to be set by the evaluator, for n criteria 22n − 3n parameters

are needed.

For ease of use to the evaluator it is very convenient to present the construction

of the fuzzy measure in a form of an algorithm:

Algorithm 2.1

Step 1: Generate imaginary objects xi, i = 1, 2, . . . , 2n, such that each object corre-

sponds to a different subset of the set of partial goals G1, G2, . . . , Gn, and it

absolutely satisfies the goals in the subset and totally fails in achieving all

the others.

Step 2: Create matrix A = {aij}
2n

i,j=1: For each j = 1, 2, . . . , 2n check if aij has

already been set. If yes, then aji = 1 − aij. Otherwise check following:

a. Inclusion: if the set of partial goals corresponding to the object xi is

a proper superset (equal to, proper subset) of the set of partial goals

corresponding to the object xj, then aij = 1 (aij = 0.5, aij = 0).

Proceed to the next element of matrix A.

b. Transitivity: if there exists an index z such that aiz = azj = 1 (aiz =

azj = 0, aiz = azj = 0.5), then aij = 1 (aij = 0, aij = 0.5). Proceed to

the next element of matrix A.

c. Goal fulfilment: compare object xi with object xj. If the object xi

fulfils the overall goal G0 better than the object xj, then aij = 1; if

both objects achieve the overall goal equally, then aij = 0.5; otherwise

aij = 0. Proceed to the next element of matrix A.

Step 3: For each i = 1, 2, . . . , 2n calculate preference index
∑2n

j=1 aij.

Step 4: Order the objects decreasingly according to their preference indexes and

bunch them into groups Πq, q = 1, 2, . . . , k, k ≤ 2n, such that all the mem-

bers of the group gave the same preference index.

Step 5: For q = 1, 2, . . . , k− 1 compare groups Πq, Πq+1 and quantify their relation-

ship by number rq, which can attain one of the five values {1, t1, t2, t3, t4},

where each value corresponds to one linguistic term of ”as good as”, ”slightly

better”, ”quite better”, ”strongly better” or ”extremely better”, respectively.
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Step 6: For q = 2, 3, . . . , k − 1 calculate the evaluation hq of the objects from group

Πq: hq = 1
r1···rq−1

. The remaining two evaluations are h1 = 1 and hk = 0.

Step 7: Fuzzy measure of each subset of the set of partial goals is then equal to the

evaluation hq of the corresponding object xi ∈ Πq.



Chapter 3

Fuzzification of aggregation

operators

In multiple criteria decision making we rarely make the decision while having

a complete knowledge of the parameters of the situation. The uncertainty is part

of the world and we can meet it in every element of a decision making problem.

There are two kinds of uncertainty. The first one comes from not knowing the

future. Any given scenario may or may not occur and we are not sure what the

future will be. This kind of uncertainty can be called stochastic uncertainty and it

is handled by probability theory. Another uncertainty comes from the vagueness

of human language and thinking. The future is not problem here. We are certain

about the occurrence of the event, but the words, which are describing the event,

are vague and therefore they represent the source of uncertainty - we lack the

knowledge what did the words exactly mean. This type of uncertainty is referred

to as lexical uncertainty [86] and that is what the fuzzy set theory is working

with.

Let us stay with the lexical uncertainty. In MCDM, the lexical uncertainty

can influence several inputs of the decision making problem. At first, in an

MCDM problem, we distinguish between quantitative and qualitative criteria.

The consequences of the former are measured and then evaluated with help of

expertly set evaluative functions. On the other hand, consequences of the latter

are, for each alternative, evaluated directly by an expert. Both the evaluations

can be uncertain. The measurements can be inaccurate or distorted by round

off errors. The expertly set evaluations are based on the expert’s opinion and

31
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experience, and therefore they can be uncertain as well. Sometimes some of the

data can be even missing. The measurement could not be made or the expert

was not able to evaluate the alternative. In such the scenario we should take into

the consideration that the evaluation can come from the whole evaluation scale,

i.e. we work with a very uncertain piece of information.

Second, most of the MCDM methods work with criteria of different impor-

tance. The importance of each criterion is expressed by its weight. Sometimes the

weights are calculated with help of previous data or a training set. But very often

the weights are set expertly. Both the processes produce the weights burdened

with uncertainty.

All the uncertainty and missing data can be well modeled by fuzzy numbers

[20]. Fuzzy numbers allow us to consider the uncertainty in the MCDM process

and to transfer it from the inputs to the output. Then, knowing the value of the

output is uncertain, the decision makers can adjust their verdict.

Working with fuzzy numbers requires modification of the classical aggrega-

tion operators in order to allow them to handle fuzzy inputs. The process of

modification is called fuzzification. In this chapter, the fuzzification of the main

aggregation operators described in the previous chapter will be presented.

3.1 Introduction to fuzzy sets

One can meet several different definitions of a set. The most widespread one

can be found [54] in the following form: A set is a well defined collection of

objects. Here, the words “well defined” are of great importance. They are saying

that for any given object it can be unambiguously determined whether the object

does or does not belong to the set. It means that the property, which is common

to all the objects from the set, is well defined and there are no doubts whether

the object has the property or not. Each two sets can be united, intersected or

subtracted. The sets and the whole set theory are one of main building stones of

mathematics.

However, sometimes the property, which is supposed to define a set, is not

described properly. Its meaning may differ from person to person and for some

objects it is difficult to decide whether they possess the property or not. This

kind of property is called vague, uncertain or fuzzy.
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The concept of fuzzy sets was introduced in 1965 by L. A. Zadeh, professor

of Systems Theory at the University of California, Berkeley. In his publication

“Fuzzy sets” [97] he generalized the classical set and laid the foundations of fuzzy

set theory.

Definition 3.1 Let U be a nonempty set. A fuzzy set C on U is defined by the

mapping C : U → [0, 1].

For each x ∈ U the value C(x) is called a membership degree of the element

x in the fuzzy set C and C(·) is a membership function of the fuzzy set C.

The system of all fuzzy sets on the set U is denoted by F(U).

Remark 3.1 Note that the membership function of a fuzzy set is really a gener-

alization of the characteristic function of a classical set.

The characteristic function of a set assigns to any object one of two numbers,

0 or 1, depending upon the object having the defining property or not. On the

other hand, the membership function of a fuzzy set assigns to any object the truth

degree of the statement: “The object has the defining property.” The truth degree

ranges continuously from zero to one and expresses to what extent the object

possesses the property.

Every fuzzy set can be described by its support, kernel, height and so called

α-cuts:

Definition 3.2 Let C be a fuzzy set on a nonempty set U and α ∈ [0, 1].

• The kernel of fuzzy set C is a set

Ker C = {x ∈ U | C(x) = 1}. (3.1)

• The α-cut of fuzzy set C is a set

Cα = {x ∈ U | C(x) ≥ α}. (3.2)

• The support of fuzzy set C is a set

Supp C = {x ∈ U | C(x) > 0}. (3.3)
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• The height hgt(C) of fuzzy set C is a number

hgt(C) = sup
x∈U

C(x). (3.4)

Fuzzy sets can be also intersected and united.

Definition 3.3 Let C and D be fuzzy sets on U .

• The intersection of fuzzy sets C and D is a fuzzy set C ∩ D on U with

membership function given for any x ∈ U by

(C ∩ D)(x) = min{C(x), D(x)}. (3.5)

• The union of fuzzy sets C and D is a fuzzy set C∪D on U with membership

function given for any x ∈ U by

(C ∪ D)(x) = max{C(x), D(x)}. (3.6)

Fuzzy sets are defined on some universal set U , which can be practically any

set of arbitrary objects: trees, people, cities, functions, etc. Nevertheless, we

usually work with a special type of fuzzy sets, which are defined on the set of real

numbers and fulfill some additional conditions. They are called fuzzy numbers

and their definition differs from author to author. The fuzzy numbers appearing

in the rest of the text are defined as follows:

Definition 3.4 A fuzzy number C is a fuzzy set on the set of real numbers R

with the following properties:

• The kernel of C is nonempty,

• for all α ∈ (0, 1] the α-cuts of C are closed intervals,

• the support of C is bounded.

The family of all fuzzy numbers will be denoted by FN(R).

Remark 3.2 If C is a fuzzy number and Supp C ⊆ [a, b], then C is referred to

as a fuzzy number on [a, b] and the set of all fuzzy numbers on [a, b] is denoted by

FN([a, b]).
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Remark 3.3 Real numbers are often called “crisp” numbers and they can be

modeled by fuzzy numbers. A real number c can be described by fuzzy number C

on R with membership function defined for any x ∈ R as

C(x) =

{
1, for x = c,

0, otherwise.
(3.7)

Analogically, closed intervals can also be represented by a special type of fuzzy

numbers. Interval [a, b] can be modeled as fuzzy number D on R such that:

∀x ∈ R : D(x) =

{
1, for x ∈ [a, b],

0, otherwise.
(3.8)

Remark 3.4 According to [20, 67] a fuzzy number C with a membership function

C(.) can be alternatively described by a couple of functions c : [0, 1] → R, c :

[0, 1] → R, such that [c(α), c(α)] = Cα, α ∈ (0, 1], [c(0), c(0)] = Cl(Supp(C)),

where Cl(·) stands for the closure of a set. Therefore each fuzzy number C can

be denoted by C = {[c(α), c(α)], α ∈ [0, 1]}.

In general, fuzzy numbers can take many forms. As the most simple fuzzy

number is considered a linear fuzzy number (see Definition 3.5), which can be

fully determined by only three or four points lying in its support.

Definition 3.5 A linear fuzzy number on the interval [a, b] that is determined by

four points (x1, 0), (x2, 1), (x3, 1), (x4, 0), a ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ b, is a fuzzy

number C with the membership function depending on parameters x1, x2, x3, x4,

as follows

∀x ∈ [a, b] : C(x, x1, x2, x3, x4) =





0, for x < x1;
x−x1

x2−x1

, for x1 ≤ x < x2;

1, for x2 ≤ x ≤ x3;
x4−x
x4−x3

, for x3 < x ≤ x4;

0, for x4 < x.

Remark 3.5 Linear fuzzy number C determined by four points (x1, 0), (x2, 1),

(x3, 1), (x4, 0) will be called a trapezoidal fuzzy number and denoted by C ∼

(x1, x2, x3, x4). If x2 = x3, then the linear fuzzy number C will be called a trian-

gular fuzzy number and denoted by C ∼ (x1, x2, x4).
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Similarly to crisp numbers, fuzzy numbers can be ordered, although there are

several ways how to order and compare them. In the rest of the text we will

employ the ordering described in Definition 3.6. It imposes only partial order,

because some pairs of fuzzy numbers are incomparable this way, but for the

purpose of the present work it is sufficient.

Definition 3.6 We say that a fuzzy number C = {[c(α), c(α)], α ∈ [0, 1]} is less

than or equal to a fuzzy number D = {[d(α), d(α)], α ∈ [0, 1]}, denoted by C ≤ D,

if c(α) ≤ d(α) and c(α) ≤ d(α) for any α ∈ [0, 1].

In the following text, we will quite often use the term: FNV-function. It is the

kind of function which to any element of a given set Ω assigns a fuzzy number. In

MCDM it is the function which describes the process of evaluation quite well. To

any evaluated object it assigns a fuzzy number expressing the uncertain (partial

or overall) evaluation of the object.

Definition 3.7 Let Ω be a nonempty set and FN(R) be a system of all fuzzy

numbers. A mapping F , F : Ω → FN(R), is called a fuzzy number-valued function

(FNV-function).

If partial evaluations of an alternative are modeled by fuzzy numbers they

can not be aggregated with help of a classical aggregation operator. Instead a

fuzzified aggregation operator, aggregating an n-tuple of fuzzy numbers into a

single one, has to be used.

The process of fuzzifying the aggregation operator takes advantage of the

following theorems based on the extension principle.

Definition 3.8 [Extension principle] Let U1, . . . , Un, V be nonempty sets. The

fuzzification of a mapping f : U1 × · · · × Un → V is defined as a mapping fF :

F(U1) × · · · × F(Un) → F(V ), which to any n-tuple of fuzzy sets Ci ∈ F(Ui),

i = 1, . . . , n, assigns a fuzzy set fF (C1, . . . , Cn) ∈ F(V ) with the membership

function given for any d ∈ V by

fF (C1, . . . , Cn)(d) =
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=





sup{min{C1(c1), . . . , Cn(cn)}|d = f(c1, . . . , cn), ci ∈ Ui, i = 1, . . . , n}

if f−1(d) 6= ∅;

0 otherwise.

(3.9)

Definition 3.8 is too general, it works with any mapping and any n-tupple

of fuzzy sets. In practice, however, we usually work with fuzzy numbers and

continuous functions. Under these circumstances the fuzzification can be done

more easily according to Theorem 3.1.

Theorem 3.1 Let f : [0, 1]n → [0, 1] be a real continuous function of n real

variables. Let fF be a fuzzification of the function f according to the extension

principle. Then for any n-tuple of fuzzy numbers C1, C2, . . . , Cn on [0, 1], D =

fF (C1, C2, . . . , Cn) is a fuzzy number on [0, 1], such that for any d ∈ [0, 1] the

following holds:

D(d) =





max{min{C1(c1), C2(c2), . . . , Cn(cn)}

|d = f(c1, c2, . . . , cn), ci ∈ [0, 1], i = 1, 2, . . . , n} if f−1(d) 6= ∅;

0 otherwise.

(3.10)

Moreover, for any α ∈ (0, 1] holds:

Dα = f(C1α, . . . , Cnα) =


 min

ci ∈ Ciα

i = 1, . . . , n

f(c1, . . . , cn), max
ci ∈ Ciα

i = 1, . . . , n

f(c1, . . . , cn)


 .

(3.11)

Proof: See [85].

In practice, we usually describe a fuzzy number D with help of two functions d

and d. If the fuzzy number D is a result of fuzzified function applied on n−tuple

of fuzzy numbers C1, . . . , Cn, then the shape of the functions d and d depends on

the look of the functions ci and ci, i = 1, . . . , n, and the function which has to

be fuzzified. The rule, which allows us to effectively find the shape of functions

d and d, is described in the theorem 3.2 proven in [67].

Theorem 3.2 Let a real continuous function f : [0, 1]n → [0, 1] be non-decreasing

in all of its variables. Let Ci = {[ci(α), ci(α)], α ∈ [0, 1]}, i = 1, . . . , n, be
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fuzzy numbers on [0, 1]. Then for a fuzzy number D = fF (C1, . . . , Cn), D =

{[d(α), d(α)], α ∈ [0, 1]}, the following holds for any α ∈ [0, 1]:

d(α) = f(c1(α), . . . , cn(α)), (3.12)

d(α) = f(c1(α), . . . , cn(α)). (3.13)

Proof: See [67].

A powerful property of fuzzy sets is their ability to capture a word with

vague meaning and describe it with help of mathematical language. Most of

the people prefer to describe an object or a principle by words rather than by

mathematics. The ability to transform the words into mathematical objects

is therefore very useful. The main role in the, so called, linguistical modeling

is played by linguistical variables (variables with words as values), which was

created by Zadeh [98].

Definition 3.9 A linguistic variable is a quintuple (X,T (X), U,G,M), where

X is the name of the variable, T (X) is the set of its linguistic values (linguistic

terms), U is the universe, which the mathematical meanings of the linguistic terms

are modeled on, G is the syntactical rule for generating the linguistic terms, and

M is the semantic rule, which to every linguistic term C assigns its meaning

C = M(C) as a fuzzy set on U .

Remark 3.6 If the set of linguistic terms is given explicitly, then the linguistic

variable is denoted by (X,T (X), U,M).

The introduction of linguistic variable allows us to present a linguistically

defined function (see Definition 3.10), which is able to take the linguistically

described relationship, rule, or dependence among various values of linguistic

variables, and express it with help of mathematical tools.

Definition 3.10 Let (Xj, T (Xj), Uj,Mj), j = 1, 2, . . . ,m, and (Y, T (Y ), V,M)

be linguistic variables and Uj, j = 1, . . . ,m, V be closed intervals. Let Cij ∈ T (Xj)

and Cij = Mj(Cij) ∈ FN(Uj), i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Let Di ∈ T (Y )

and Di = M(Di) ∈ FN(V ), i = 1, 2, . . . , n. Then the following scheme F
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If X1 is C11 and . . . and Xm is C1m, then Y is D1

If X1 is C21 and . . . and Xm is C2m, then Y is D2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If X1 is Cn1 and . . . and Xm is Cnm, then Y is Dn

(3.14)

is called a linguistically defined function (base of fuzzy rules).

The base of rules is a valuable tool for multiple criteria evaluation. It allows

us to describe the relationship between the partial evaluations of an alternative,

or even between its actual performances and overall evaluation, in any kind of

MCDM problem. It is therefore a suitable tool for tackling situations, in which

the interactions among the partial goals or the criteria are so complicated that

the application of any aggregation operators is difficult or even impossible.

The application of a base of rules follows a simple principle: to specific com-

binations of input values we assign a specific output value. The combinations

need to be chosen carefully, so each input vector of values satisfies at least one

of the rules. Of course, in the process of multiple criteria evaluation the partial

evaluations at our disposal only rarely match any of the rules perfectly. This

would be a problem if we used crisp numbers, but for a vector of fuzzy inputs a

fuzzy output can be always obtained by using one of the several algorithms of an

approximate reasoning. The most popular and the most widely used one is the

Assilian and Mamdani approach [2], which can be described as follows:

Let F be the base of rules looking as:

If X1 is C11 and . . . and Xm is C1m, then Y is D1

If X1 is C21 and . . . and Xm is C2m, then Y is D2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If X1 is Cn1 and . . . and Xm is Cnm, then Y is Dn

(3.15)

and let us assume the observed values to be

X1 is C ′
1 and X2 is C ′

2 and . . . and Xm is C ′
m. (3.16)

Then by entering the observed values into the base of rules F , according to the

Assilian-Mamdani algorithm, we obtain the output value

Y = D′, (3.17)
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where the D′ is the linguistic approximation of a fuzzy set DM . The membership

function of the fuzzy set DM is defined for all y ∈ V as follows:

DM(y) = max{DM
1 (y), . . . , DM

n (y)}, (3.18)

where

DM
i (y) = min{hi, Di(y)}, (3.19)

hi = min{hgt(Ci1 ∩ C ′
1), . . . , hgt(Cim ∩ C ′

m)}, for i = 1, . . . , n. (3.20)

In the description of Assilian-Mamdani algorithm we have mentioned the expres-

sion “linguistic approximation”. As it has been already said, fuzzy numbers are

capable of processing vague linguistic expressions. They allow us to model the

meaning of tall man, long waiting or big lunch. Considering the linguistical vari-

able age, we are now capable of modeling the meanings of young age, middle age

or old age by fuzzy numbers Y,M and O. However, what is now the meaning of

fuzzy number F , which lies somewhere in between the other values? According

to linguistic approximation, the linguistical term we are looking for is the term

corresponding to that of the fuzzy numbers Y,M,O, which is the most similar to

F . The exact meaning of linguistic approximation is given in Definition 3.11.

Definition 3.11 [79] Let (X,T (X), [a, b],M) be a linguistic variable, T (X) =

{T1, T2, . . . , Ts} and M(Ti) = Ti, i = 1, 2, . . . , s, are fuzzy numbers on the interval

[a, b]. Let C be a fuzzy set on interval [a, b] with Borel-measurable membership

function. Let for given C a fuzzy set PC be defined on set {T1, T2, . . . , Ts} by

following formula

PC(Ti) = 1 −

∫ b

a
|C(x) − Ti(x)|dx

∫ b

a
(C(x) + Ti(x))dx

, (3.21)

where i = 1, 2, . . . , s. Then a linguistic approximation of fuzzy set C by lin-

guistic variable X is a linguistic term Ti0, i0 ∈ {1, 2, . . . , s} such that

PC(Ti0) = max
i=1,...,s

PC(Ti). (3.22)
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3.2 First level fuzzification of aggregation ope-

rators

In the previous section, the basic notions of fuzzy set theory and their role

in MCDM were explained. Because of the uncertainty of the input data, the

usually applied MCDM methods have to be modified. It is usually convenient to

start this alteration by modification of the aggregation operators, namely their

fuzzification.

Complete fuzzification of the aggregation operators will be done in two steps.

In the first one, the partial evaluations of alternatives are modeled by fuzzy

numbers, while weights of the sets of criteria remain crisp. In the second step we

consider also the weights of the sets of criteria to be uncertain and therefore we

describe them by fuzzy numbers as well.

From now on we are going to focus on a single alternative x. This can be

done without loss of generality, as the aggregation operator treats all alternatives

equally, and it simplifies the notation and improves clarity. The evaluations of the

alternative with respect to a set of criteria Ω = {C1, C2, . . . , Cn} are modelled by

fuzzy numbers H1, H2, . . . , Hn, Hj = {[hj(α), hj(α)], α ∈ [0, 1]}, j = 1, 2, . . . , n.

3.2.1 First-level fuzzy weighted average

Weighted average of n real numbers is a linear function of n variables with

parameters wi, i = 1, 2, . . . , n, fulfilling the condition
∑n

i=1 wi = 1. It is a

continuous function, therefore its fuzzification can be done with help of Definition

3.8 and Theorem 3.1.

Definition 3.12 Let Hi, i = 1, 2, . . . , n be fuzzy numbers on [0, 1] and vi, i =

1, 2, . . . , n be normalized weights. First-level fuzzy weighted average of H1, H2, . . . , Hn

with normalized weights v1, v2, . . . , vn is a fuzzy number Y with a membership

function given for any y ∈ [0, 1] by

Y (y) = max
{

min
{
H1(h1), . . . , Hn(hn),

}
|

hi ∈ [0, 1], i = 1, . . . , n, y =
n∑

i=1

vihi

}
. (3.23)
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According to the definition 2.1, each n-ary aggregation operator is a non-

decreasing function in all of its n real variables. Moreover, weighted average is

continuous [15]. Therefore all the assumptions of Theorem 3.2 are fulfilled and

the first-level fuzzy weighted average of n fuzzy numbers from Definition 3.12 can

be expressed as the fuzzy number described in Theorem 3.3.

Theorem 3.3 Let Hi = {[hi(α), hi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n be fuzzy num-

bers on [0, 1] and vi, i = 1, 2, . . . , n be normalized weights. The first-level fuzzy

weighted average of H1, H2, . . . , Hn with normalized weights v1, v2, . . . , vn is a

fuzzy number Y , Y = {[y(α), y(α)], α ∈ [0, 1]}, given for any α ∈ [0, 1] by

y(α) =
n∑

i=1

vihi(α), (3.24)

y(α) =
n∑

i=1

vihi(α) (3.25)

Proof: Theorem is derived directly from Definition 3.8 and Theorem 3.1.

Remark 3.7 Although Definition 3.12 describes the first-level fuzzy weighted av-

erage properly, it is Theorem 3.3, which makes the calculation much more simple.

Moreover, according to Theorem 3.3, first-level fuzzy weighted average keeps the

linearity of fuzzy numbers, i.e. if the input fuzzy numbers are linear, the output

fuzzy number is going to be linear as well, because the functions y and y will be

calculated as a linear combination of n linear functions (See Figure 3.1).

Remark 3.8 The weighed average of the uncertain evaluations with crisp weights

is described in [79] in detail.

3.2.2 First-level fuzzy OWA

Because of the continuity of OWA operators, all the theorems and definitions

applied to fuzzification of the weighted average from the previous section can be

employed also in the fuzzification of the OWA operators.

Definition 3.13 Let Hi, i = 1, 2, . . . , n be fuzzy numbers on [0, 1] and vi, i =

1, 2, . . . , n be normalized weights. First-level fuzzy ordered weighted average of
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Figure 3.1: The linear fuzzy number Y as a first-level fuzzy weighted average of
fuzzy numbers H1, H2 and H3, where H1 ∼ (0.15, 0.3, 0.45), H2 ∼ (0.1, 0.4, 0.8),
H3 ∼ (0.4, 0.55, 0.65), v1 = 2/3, v2 = 1/3, v3 = 0.

H1, H2, . . . , Hn with normalized weights v1, v2, . . . , vn is a fuzzy number Y with a

membership function given for any y ∈ [0, 1] by

Y (y) = max
{

min
{
H1(h1), . . . , Hn(hn),

}
|

hi ∈ [0, 1], i = 1, . . . , n, y =
n∑

i=1

vih
(i)
}

(3.26)

where (1), . . . , (n) denotes a permutation of indices 1, . . . , n such that h(1) ≥

h(2) ≥ · · · ≥ h(n).

Theorem 3.4 Let Hi = {[hi(α), hi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n be fuzzy num-

bers on [0, 1] and vi, i = 1, 2, . . . , n be normalized weights. The first-level fuzzy

ordered weighted average of H1, H2, . . . , Hn with normalized weights v1, v2, . . . , vn

is a fuzzy number Y , Y = {[y(α), y(α)], α ∈ [0, 1]}, given for any α ∈ [0, 1] by

y(α) =
n∑

i=1

vih
(i)(α), (3.27)
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where h(1)(α) ≥ h(2)(α) ≥ · · · ≥ h(n)(α),

y(α) =
n∑

i=1

vih
(i)

(α) (3.28)

where h
(1)

(α) ≥ h
(2)

(α) ≥ · · · ≥ h
(n)

(α),

Proof: Theorem is derived directly from Definition 3.8 and Theorem 3.1.

Remark 3.9 Analogically to the first-level fuzzy weighted average, the first-level

fuzzy ordered weighted average of n fuzzy numbers is easier to calculate with help

of Theorem 3.4. Contrary to the first-level weighted average, the first-level OWA

operator does not preserve the linearity of the input fuzzy numbers. The Figure 3.2

illustrates that the output can be in the form of a piecewise linear fuzzy number,

even if the input fuzzy numbers were linear.

0 1
0   

1   

α 

α’ 

H
1
 H

2
 H

3
 Y 

h
3
(α)

h
3
(α’)

h
2
(α)

h
1
(α)

h
2
(α’) h

1
(α’)

Figure 3.2: The piecewise linear fuzzy number Y as a first-level fuzzy ordered
weighted average of fuzzy numbers H1, H2 and H3, where H1 ∼ (0.15, 0.3, 0.45),
H2 ∼ (0.1, 0.4, 0.8), H3 ∼ (0.4, 0.55, 0.65), v1 = 2/3, v2 = 1/3, v3 = 0.

The fuzzification of the special cases of OWA operators, maximum and mini-

mum operator, follows the same principle as the previous operators.

Definition 3.14 Let Hi = {[hi(α), hi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n be fuzzy

numbers on [0, 1]. First-level fuzzy maximum of H1, H2, . . . , Hn is a fuzzy number
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Y with a membership function given for any y ∈ [0, 1] by

Y (y) = max
{

min
{
H1(h1), . . . , Hn(hn),

}
|

hi ∈ [0, 1], i = 1, . . . , n, y = max{h1, . . . , hn}
}

(3.29)

Definition 3.15 Let Hi = {[hi(α), hi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n be fuzzy

numbers on [0, 1]. First-level fuzzy minimum of H1, H2, . . . , Hn is a fuzzy number

Y with a membership function given for any y ∈ [0, 1] by

Y (y) = max
{

min
{
H1(h1), . . . , Hn(hn),

}
|

hi ∈ [0, 1], i = 1, . . . , n, y = min{h1, . . . , hn}
}

(3.30)

Theorem 3.5 Let Hi = {[hi(α), hi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n be fuzzy num-

bers on [0, 1]. The first-level fuzzy maximum of H1, H2, . . . , Hn is a fuzzy number

Y , Y = {[y(α), y(α)], α ∈ [0, 1]}, given for any α ∈ [0, 1] by

y(α) = max{h1(α), . . . , hn(α)} (3.31)

y(α) = max{h1(α), . . . , hn(α)} (3.32)

Proof: As a one of the OWA operators, maximum is a continuous aggregation

operator. The theorem can be therefore derived directly from Definition 3.8 and

Theorem 3.1.

Theorem 3.6 Let Hi = {[hi(α), hi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n be fuzzy num-

bers on [0, 1]. The first-level fuzzy minimum of H1, H2, . . . , Hn is a fuzzy number

Y , Y = {[y(α), y(α)], α ∈ [0, 1]}, given for any α ∈ [0, 1] by

y(α) = min{h1(α), . . . , hn(α)} (3.33)

y(α) = min{h1(α), . . . , hn(α)} (3.34)

Proof: The proof is analogical to the proof of Theorem 3.5.

Again, the first-level fuzzy minimum and the first-level fuzzy maximum of

n linear fuzzy numbers do not have to be always linear fuzzy numbers. Figure

3.3 presents the result of the aggregation of three triangular fuzzy numbers as a

piecewise linear fuzzy number.
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Figure 3.3: The piecewise linear fuzzy numbers Y min and Y max as a first-level
fuzzy minimum and fuzzy maximum of fuzzy numbers H1, H2 and H3, where
H1 ∼ (0.15, 0.3, 0.45), H2 ∼ (0.1, 0.4, 0.8), H3 ∼ (0.4, 0.55, 0.65).

Remark 3.10 Note that similar to the crisp scenario, first-level fuzzy maximum

and first-level fuzzy minimum are special cases of first-level fuzzy OWA. The

weighting vectors which change first-level fuzzy OWA to first-level fuzzy maximum

and first-level fuzzy minimum are (1, 0, . . . , 0) and (0, . . . , 0, 1) respectively.

Remark 3.11 Another approach to fuzzification of the OWA operators based on

the extension principle can be seen, for example, in [61].

3.2.3 First-level fuzzy Choquet integral

Here, the weights of the sets of criteria are described by a fuzzy measure

µ : ℘(Ω) → [0, 1], i.e. by crisp values. According to the extension principle in

combination with Theorem 3.1 the first-level fuzzy Choquet integral required for

this type of aggregation is defined as follows:

Definition 3.16 Let Ω = {C1, . . . , Cn} be a nonempty finite set, µ be a fuzzy

measure on Ω, and F : Ω → FN([0, 1]), F (Ci) = Hi, i = 1, . . . , n, be a FNV-

function. The discrete Choquet integral of F with respect to the fuzzy measure µ is

defined as a fuzzy number Y with a membership function given for any y ∈ [0, 1]
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by

Y (y) = max
{

min {H1(h1), . . . , Hn(hn)} | hi ∈ [0, 1], i = 1, . . . , n,

y = h(n)µ(B(n)) +
n−1∑

i=1

h(i)

[
µ(B(i)) − µ(B(i+1))

]
,

B(i) = {C(i), . . . , C(n)}, i = 1, . . . , n
}

, (3.35)

where (1), . . . , (n) denotes a permutation of indices 1, . . . , n such that h(1) ≤

h(2) ≤ · · · ≤ h(n). The first-level fuzzy Choquet integral will be denoted by Y =

(C)
∫

Ω
Fdµ.

Remark 3.12 In reaction to [7], where Definition 3.16 was presented, there has

been proposed another form of definition of first-level fuzzy Choquet integral in

[101]:

Y (y) = max
{

min{H1(h1), . . . , Hn(hn)} | y = (C)

∫

Ω

fdµ,

where f : Ω → [0, 1] such that f(Ci) = hi, i = 1, . . . , n
}

. (3.36)

As the Choquet integral is continuous and monotonic [36], a simple way of

calculating the first-level fuzzy Choquet integral is given by the following theorem.

Theorem 3.7 Let Hi = {[hi(α), hi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n be fuzzy num-

bers on [0, 1]. The Choquet integral of FNV-function F from Definition 3.16 with

respect to the fuzzy measure µ, Y = (C)
∫

Ω
Fdµ, Y = {[y(α), y(α)], α ∈ [0, 1]}, is

given for any α ∈ [0, 1] by

y(α) =
n−1∑

i=1

h(i)(α)
[
µ(B(i)) − µ(B(i+1))

]
+ h(n)(α)µ(B(n)), (3.37)

where (1), . . . , (n) is a permutation of indices 1, . . . , n such that h(1)(α) ≤ · · · ≤

h(n)(α), B(i) = {C(i), . . . , C(n)}, i = 1, . . . , n, and

y(α) =
n−1∑

i=1

h(i)(α)
[
µ(B(i)) − µ(B(i+1))

]
+ h(n)(α)µ(B(n)) (3.38)

where (1), . . . , (n) is a permutation of indices 1, . . . , n such that h(1)(α) ≤ · · · ≤



Fuzzification of aggregation operators 48

h(n)(α), B(i) = {C(i), . . . , C(n)}, i = 1, . . . , n.

Proof: The theorem can be straightforwardly proven using Theorem 3.2.

Remark 3.13 Similarly to the notation (C)
∫

Ω
f dµ = Cµ(h1, . . . , hn), f(Ci) =

hi, i = 1, . . . , n, the first-level fuzzy Choquet integral Y = (C)
∫

Ω
Fdµ can be de-

noted by Cµ(H1, . . . , Hn), where F (Ci) = Hi, i = 1, . . . , n. If Hi = {[hi(α), hi(α)],

α ∈ [0, 1]}, i = 1, 2, . . . , n, then the equations 3.37 and 3.38 from Theorem 3.7

can be also rewritten in another form:

y(α) = Cµ(h1(α), h2(α), . . . , hn(α)) (3.39)

y(α) = Cµ(h1(α), h2(α), . . . , hn(α)) (3.40)

Remark 3.14 The first-level fuzzification of the Choquet integral can be also

done in another way. In [59], Meyer and Roubens used an alternative defini-

tion of the Choquet integral, described by Theorem 2.1, and applied the extension

principle on operations of addition, scalar multiplication and minimum. After

this they defined the fuzzy extension of the Choquet integral of FNV-function

F : Ω → FN([0, 1]) as

C̃µ(F (C1), . . . , F (Cn)) =
∑̃

A⊆Ω
mµ(A) ·̃ m̃in{F (Ci) | Ci ∈ A}, (3.41)

(
or by using the previously presented notation

C̃µ(H1, . . . , Hn) =
∑̃

A⊆{1,...,n}m
µ(A) ·̃ m̃in{Hi | i ∈ A},

)

where mµ is the Möbius transform of fuzzy measure µ and operators +̃, ·̃, m̃in are

extensions of the operators +, ·, min such that for given two fuzzy numbers C, D

and crisp number p ∈ R the following holds:

C+̃D(y) = sup {min{C(c), D(d)} | c + d = y} , (3.42)

(p ·̃ C)α = p · Cα,∀α ∈ [0, 1], (3.43)

m̃in{C,D}(y) = sup {min{C(c), D(d)} | min{c, d} = y} . (3.44)

By using the other form of the Choquet integral they avoided the tricky reordering

step in the process of calculation. Nevertheless, both the definitions are equivalent.
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Moreover, in [96], Yang et al. proposed the fuzzification of the Choquet integral

with respect to the, so called, signed fuzzy measure. That is a generalized fuzzy

measure, which can attain arbitrary real numbered values, even negative ones.

Finally, Wang. et al. [91] studied a way of using the Choquet integral to obtain

crisp output from fuzzy valued input.

3.2.4 Generalized Partial Goals Method - Step 2

The application of first-level fuzzy Choquet integral in MCDM will be demon-

strated on the next step of PGM generalization.

Let H1, H2, H3 be fuzzy numbers on [0, 1] modeling the partial evaluations

of the alternative x with respect to three partial goals G1, G2, G3. Each partial

fuzzy evaluation Hi is a triangular fuzzy number, i.e. it is described by a triplet

of real numbers - the first and the third determine the support of Hi, while the

second determines the kernel. In this particular example H1 ∼ (0.15, 0.3, 0.45),

H2 ∼ (0.1, 0.4, 0.8), and H3 ∼ (0.4, 0.55, .65), and they represent the fuzzy degrees

of fulfillment of particular partial goals. The partial goals G1, G2, G3 cover the

overall goal and the proportion of each one in the overall goal is set expertly as

a crisp number (see Fig. 3.4(b)): µ(G1) = 0.5, µ(G2) = 0.5 and µ(G3) = 0.6.

Moreover, the expert also sets the proportion of each couple of the partial goals

in the overall goal: µ({G1, G2}) = 0.8, µ({G2, G3}) = 0.8 and µ({G1, G3}) = 0.9.

Finally, µ({G1, G2, G3}) = 1.

Because sums of proportions of the partial goals are not equal to proportions of

the pairs (they are bigger), we can conclude there are some interactions between

the criteria corresponding to those goals (criteria are partially redundant). In

accordance with section 2.4.3 these interactions can be handled by the Choquet

integral. Nevertheless, the Choquet integral presented in Definition 2.8 is not

able to work with uncertain values and the aggregation needs to be performed

by the first-level fuzzy Choquet integral. The result calculated with the help of

the Theorem 3.7 can be seen in Fig. 3.4(a).

Remark 3.15 As Figure 3.4 shows, the result of aggregation of fuzzy numbers

is a fuzzy number of different type. While the fuzzy numbers on the input are

linear, the output fuzzy number is only piecewise linear fuzzy number.

The application of first-level fuzzy Choquet integral in PGM method repre-
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Figure 3.4: (a) Fuzzy numbers H1 ∼ (0.15, 0.3, 0.45), H2 ∼ (0.1, 0.4, 0.8) and
H3 ∼ (0.4, 0.55, .65), modelling the partial evaluations and fuzzy number Y mod-
elling the overall evaluation achieved by the first-level fuzzy Choquet integral.
(b) Fuzzy measure defined on the set of partial goals G1, G2, G3.

sents the second step in the process of PGM generalization. Now, the evaluator

may use PGM to solve the multiple criteria evaluation problem with interacting

criteria and uncertainty affecting the partial evaluations.

3.3 Second-level fuzzification of aggregation ope-

rators

So far the weights of the sets of criteria were considered to be crisp numbers.

However, as the weights are usually set expertly they are burdened by uncertainty,

and they should be modeled by fuzzy numbers as well.

During the second-level fuzzification, the aggregation operators are considered

functions of 2n variables: n partial evaluations and n weights describing the

importance of the criteria. This is different for the Choquet integral where,

because of nonadditivity of the fuzzy measure, the number of variables is equal

to n + 2n − 2. The definitions of second-level fuzzy aggregation operators adhere

to the extension principle with constraints given by the properties of classical

additive or generalized monotonous fuzzy measure. The theorems explaining

the calculation of the result of second-level fuzzy aggregation are derived from

Theorems 3.1 and 3.2.

In a crisp scenario, the weighted average and OWA operators take advantage
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of normalized weights, i.e. the weights whose sum is equal to one. If the uncer-

tainty occurs and the weights are replaced by fuzzy numbers, the condition of

normality should still hold, at least in some adjusted form. In [65], [66] a special

structure of normalized fuzzy weights was proposed.

Definition 3.17 (Normalized fuzzy weights) Fuzzy numbers V1, V2, . . ., Vn

defined on [0, 1] form an n−tuple of normalized fuzzy weights, if for all α ∈ (0, 1]

and for any i = {1, 2, . . . , n} the following holds: for any vi ∈ Viα there exist

vj ∈ Vjα, j = 1, 2, . . . , n, j 6= i, such that

vi +
n∑

j=1,j 6=i

vj = 1. (3.45)

Remark 3.16 Normalized fuzzy weights and a more general tool for modeling

uncertain weights - fuzzy vector of normalized weights, were studied in detail in

[67].

3.3.1 Second-level fuzzy weighted average

Weighted average is the most popular aggregation operator in MCDM and

it is therefore hardly surprising it was among the first aggregation operators to

be fuzzified. The first attempt, made by [3], was later followed by [19], [40] and

[65]. In the following we shall use the formalism and results originally presented

in [65].

Definition 3.18 Let Hi, i = 1, 2, . . . , n, be fuzzy numbers on [0, 1] and Vi, i =

1, 2, . . . , n, be normalized fuzzy weights. Second-level fuzzy weighted average of

H1, H2, . . . , Hn with normalized fuzzy weights V1, V2, . . . , Vn is defined as fuzzy

number Y with a membership function given for any y ∈ [0, 1] by

Y (y) = max
{

min
{
H1(h1), . . . , Hn(hn), V1(v1), . . . , Vn(vn)

}
|

hi ∈ [0, 1], i = 1, . . . , n, vj ≥ 0, j = 1, . . . , n,

n∑

j=1

vj = 1

y =
n∑

i=1

vihi

}
. (3.46)
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Theorem 3.8 Let Hi = {[hi(α), hi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n, be fuzzy num-

bers on [0, 1] and Vi = {[vi(α), vi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n, be normalized

fuzzy weights. Let Y , Y = {[y(α), y(α)], α ∈ [0, 1]}, be second-level fuzzy weighted

average of H1, H2, . . . , Hn with normalized fuzzy weights V1, V2, . . . , Vn. Then for

any α ∈ [0, 1] the following holds:

y(α) = min{
n∑

i=1

vihi(α)|vi ∈ [vi(α), vi(α)],
n∑

i=1

vi = 1, i = 1, . . . , n}, (3.47)

and

y(α) = max{
n∑

i=1

vihi(α)|vi ∈ [vi(α), vi(α)],
n∑

i=1

vi = 1, i = 1, . . . , n}, (3.48)

Proof: See [67]

Remark 3.17 According to the previous theorem, the functions y(α), y(α) can

be obtained by solving two linear programming problems for each α ∈ [0, 1]. Nev-

ertheless, in [65] and [66] another way for computing y(α), y(α) was proposed.

Importantly, the newly proposed algorithm can find the functions y(α), y(α) with-

out solving any mathematical programming problems.

Remark 3.18 Even if the input fuzzy numbers and fuzzy weights are linear fuzzy

numbers, the result of the aggregation by second-level fuzzy weighted average gen-

erally does not have to be a linear fuzzy number at all. Figure 3.5 shows an

example, when the output fuzzy number is piecewise quadratic.

3.3.2 Second-level fuzzy OWA

The second level fuzzification of the OWA operators can be performed using

the same principle as in the case of the weighted average.

Definition 3.19 Let Hi, i = 1, 2, . . . , n, be fuzzy numbers on [0, 1] and Vi,

i = 1, 2, . . . , n, be normalized fuzzy weights. Second-level fuzzy ordered weighted

average of H1, H2, . . . , Hn with normalized fuzzy weights V1, V2, . . . , Vn is defined
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Figure 3.5: Fuzzy numbers H1 ∼ (0.15, 0.3, 0.45), H2 ∼ (0.1, 0.4, 0.8) and H3 ∼
(0.4, 0.55, 0.65) modelling the partial evaluations and fuzzy number Y modelling
the overall evaluation achieved by the second-level fuzzy weighted average of
fuzzy numbers H1, H2, H3 with normalized fuzzy weights V1, V2, V3. V1 ∼
(1/2, 2/3, 5/6), V2 ∼ (1/6, 1/3, 1/2) and V3 ∼ (0, 0, 1/6).

as a fuzzy number Y with a membership function given for any y ∈ [0, 1] by

Y (y) = max
{

min
{
H1(h1), . . . , Hn(hn), V1(v1), . . . , Vn(vn)

}
|

hi ∈ [0, 1], i = 1, . . . , n, vj ≥ 0, j = 1, . . . , n,

n∑

j=1

vj = 1

y =
n∑

i=1

vih
(i)
}

(3.49)

where (1), . . . , (n) denotes a permutation of indices 1, . . . , n such that h(1) ≥

h(2) ≥ · · · ≥ h(n).

Theorem 3.9 Let Hi = {[hi(α), hi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n, be fuzzy num-

bers on [0, 1] and Vi = {[vi(α), vi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n, be normalized

fuzzy weights. Let Y , Y = {[y(α), y(α)], α ∈ [0, 1]}, be second-level fuzzy ordered

weighted average of H1, H2, . . . , Hn with normalized fuzzy weights V1, V2, . . . , Vn.

Then for any α the following holds:

y(α) = min{
n∑

i=1

vih
(i)(α)|vi ∈ [vi(α), vi(α)],

n∑

i=1

vi = 1, i = 1, . . . , n}, (3.50)
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and

y(α) = max{
n∑

i=1

vih
(i)

(α)|vi ∈ [vi(α), vi(α)],
n∑

i=1

vi = 1, i = 1, . . . , n}, (3.51)

Proof: The proof follows naturally from the continuity and monotonicity of

OWA operator and from the Theorem 3.1.

According to Theorem 3.9, for each α ∈ [0, 1] the values y(α), y(α) are calcu-

lated as minimum/maximum of ordered weighted averages of values hi(α), hi(α)

and some values vi ∈ [vi(α), vi(α)], i = 1, . . . , n. Nevertheless, once the val-

ues hi(α), hi(α) are ordered for given α ∈ [0, 1], the ordering is fixed and the

minimum/maximum is calculated from the weighted averages. To simplify the

practical computation, the following algorithm, as a modification of algorithm

for calculation of fuzzy weighted average published in [67], was proposed:

Algorithm 3.1

Step 1: Let for any α ∈ [0, 1], h(1)(α), h(2)(α), . . . , h(n)(α) and h
(1)

(α),h
(2)

(α), . . . ,

h
(n)

(α) be such permutations of values h1(α), h2(α), . . . , hn(α) and h1(α),

h2(α), . . ., hn(α) that following holds: h(1)(α) ≤ h(2)(α) ≤ . . . ,≤ h(n)(α)

and h
(1)

(α) ≥ h
(2)

(α) ≥ . . . ,≥ h
(n)

(α).

Step 2: Let for k ∈ {1, 2, . . . , n} values vL
k (α) and vP

k (α) be given by formulas

vL
k (α) = 1 −

n∑

i=k+1

vi(α) −
k−1∑

i=1

vi(α) (3.52)

vP
k (α) = 1 −

k−1∑

i=1

vi(α) −
n∑

i=k+1

vi(α) (3.53)

Step 3: Let k∗ and k∗∗ denote such indices that following holds:

vk∗(α) ≤ vL
k∗ ≤ vk∗ (3.54)

vk∗∗(α) ≤ vP
k∗∗ ≤ vk∗∗ (3.55)
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Step 4: Then

y(α) =
n−k∗∑

i=1

h(i)(α)vn−i+1(α) +hn−k∗+1(α)vL
k∗(α) +

n∑

i=n−k∗+2

h(i)(α)vn−i+1(α)

(3.56)

y(α) =
k∗∗−1∑

i=1

h
(i)

(α)vi(α) + h
k∗∗

(α)vP
k∗∗(α) +

n∑

i=k∗∗+1

h
(i)

(α)vi(α) (3.57)

Remark 3.19 Similarly to the second-level fuzzy weighted average, application

of the second-level fuzzy OWA with linear fuzzy weights on linear fuzzy numbers

does not have to produce a linear fuzzy number. The Figure 3.6 illustrates the

example, where the result of aggregation is a piecewise quadratic fuzzy number.
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Figure 3.6: Fuzzy numbers H1, H2, H3 modeling the partial evaluations and
fuzzy number Y modeling the overall evaluation achieved by the second-level
fuzzy ordered weighted average of fuzzy numbers H1, H2, H3 with normal-
ized fuzzy weights V1, V2, V3. H1 ∼ (0.15, 0.3, 0.45), H2 ∼ (0.1, 0.4, 0.8), H3 ∼
(0.4, 0.55, 0.65), V1 ∼ (1/2, 2/3, 5/6), V2 ∼ (1/6, 1/3, 1/2) and V3 ∼ (0, 0, 1/6).

Remark 3.20 Unlike in the case of the first-level fuzzification, there is no need

to define second-level fuzzy maximum and minimum. This is a consequence of

the nature of these two aggregation operators. Usually, if maximum or minimum

operator is applied, then the evaluator intends to find the biggest or the smallest

value, respectively. In such the scenario, the evaluator is sure about the weights

and looking for approximately biggest or smallest value does not make sense.

Remark 3.21 Simultaneously with Definition 3.19 and Theorem 3.9 being pub-

lished in [80], another approach to fuzzification of OWA appeared in [99]. The
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definition is equivalent, but our method of calculation is more transparent and

easier to use.

3.3.3 Second-level fuzzy Choquet integral

In the second level of the fuzzification process, the weights of the criteria or the

partial evaluations are considered to be uncertain and modeled by special system

of fuzzy numbers. However, the Choquet integral does not work with simple

weights. The original Choquet integral is defined as an integral with respect to

fuzzy measure, which describes the importance of the various combinations of

criteria or partial goals.

Despite its name, a fuzzy measure does not work with fuzzy numbers. Fuzzy

measure of any given set is a crisp number. Therefore, in order to proceed in

the fuzzification, the fuzzy measure, defined in the previous section, has to be

modified. The new kind of set function, the values of which are fuzzy numbers,

will be called a FNV-fuzzy measure.

Definition 3.20 A FNV-fuzzy measure on a finite set Ω, Ω = {C1, C2, . . . , Cn},

is a set function µ̂ : ℘(Ω) → FN([0, 1]) satisfying the following axioms:

• µ̂(∅) = 0, µ̂(Ω) = 1,

• C ⊆ D implies µ̂(C) ≤ µ̂(D) for any C,D ∈ ℘(Ω).

Remark 3.22 The notation µ̂(C) ≤ µ̂(D) in the second condition of Definition

3.20 expresses the ordering of fuzzy numbers defined in Definition 3.6.

Following this definition, the extension principle, and Theorem 3.1, the second-

level fuzzy Choquet integral can be defined as:

Definition 3.21 Let Ω = {C1, . . . , Cn} be a nonempty finite set, B1, . . . , B2n−1

be all its nonempty subsets, µ̂ be a FNV-fuzzy measure on Ω, and F : Ω →

FN([0, 1]), F (Ci) = Hi, i = 1, . . . , n, be a FNV-function. The discrete Choquet

integral of F with respect to FNV-fuzzy measure µ̂ is defined as a fuzzy number
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Y with a membership function given for any y ∈ [0, 1] by

Y (y) = max
{

min
{
H1(h1), . . . , Hn(hn), µ̂(B1)(µ1), . . . , µ̂(B2n−1)(µ2n−1)

}
|

hi ∈ [0, 1], i = 1, . . . , n, µj ∈ [0, 1], j = 1, . . . , 2n − 1,

y = h(n)βn +
n−1∑

i=1

h(i) [βi − βi+1] , βk − βk+1 ≥ 0, k = 1, . . . , n − 1,

and for i = 1, . . . , n, it holds that βi = µj,

where j ∈ {1, . . . , 2n − 1} such that Bj = {C(i), . . . , C(n)}
}

(3.58)

where (1), . . . , (n) denotes a permutation of indices 1, . . . , n such that h(1) ≤

h(2) ≤ · · · ≤ h(n). The second-level fuzzy Choquet integral will be denoted by

Y = (C)
∫
Ω

Fdµ̂.

Note that in Definition 3.21 we are looking for the minimum among (n +

2n − 1) membership degrees, even though there are only 2n variables (n partial

evaluations and n weights) in the formula for Choquet integral. The seemingly

large number (n + 2n − 1) is a consequence of the need to consider all possible

subsets of the set of partial goals, because for each n-tuple h1, . . . , hn a different

n-tuple of subsets Bi of the set Ω is relevant. The relevant n-tuple of subsets Bi

is given by the condition in Definition 3.21. The remaining membership degrees,

among which we are looking for the minimum but which are irrelevant for given

n-tuple h1, . . . , hn, can be considered equal to 1, and therefore do not influence

the minimum value.

Remark 3.23 As with Definition 3.16, Definition 3.21 can be rewritten in the

alternative form [101]:

Y (y) = max
{

min{H1(h1), . . . , Hn(hn), µF (B(1))(µ1), . . . , µF (B(n))(µn)} |

y = (C)

∫

Ω

fdµ, where f : Ω → [0, 1] such that f(Ci) = hi,

i = 1, . . . , n, and µ is a fuzzy measure on Ω such that µ(B(i)) = µi,

i = 1, . . . , n, where (i) is a permutation such that h(1) ≤ . . . ≤ h(n),

and B(i) = {C(i), . . . , C(n)}
}

. (3.59)

During the review process of [6], one of the unknown reviewers suggested yet

another form of the definition 3.21:
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Definition 3.22 Let Ω = {C1, . . . , Cn} be a nonempty finite set, µ̂ be a FNV-

fuzzy measure on Ω, and F : Ω → FN([0, 1]) be FNV-function. Let M and F

be the sets of all fuzzy measures µ : ℘(Ω) → [0, 1] and functions f : Ω → [0, 1],

respectively. Let for any y ∈ [0, 1] there be a relation Ry ⊆ M × F such that

(µ, f) ∈ Ry if and only if y = (C)
∫

Ω
f dµ. Then Choquet integral of FNV-

function F with respect to FNV-fuzzy measure µ̂ is defined as a fuzzy number Y

with a membership function given for any y ∈ [0, 1] by

Y (y) = max
(µ,f)∈Ry

min
i=1,...,n

min(F (Ci)(f(Ci)), µ̂(B(i))(µ(B(i)))),

where (1), . . . , (n) denotes a permutation of indices 1, . . . , n such that f(C(1)) ≤

f(C(2)) ≤ · · · ≤ f(C(n)) and B(i) = {C(i), C(i+1), . . . , C(n)}.

Because the Choquet integral is continuous and monotonic with respect to its

argument, we can use Theorem 3.1 and Theorem 3.2 again and lay down Theorem

3.10, which can be used to calculate the integral.

Theorem 3.10 Let Hi = {[hi(α), hi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n, be fuzzy

numbers on [0, 1]. The Choquet integral of FNV-function F from Definition 3.21

with respect to the FNV-fuzzy measure µ̂, Y = (C)
∫
Ω

Fdµ̂, Y = {[y(α), y(α)], α ∈

[0, 1]}, is given for any α ∈ [0, 1] by

y(α) = min
{ n−1∑

i=1

h(i)(α)
[
µ(i) − µ(i+1)

]
+ h(n)(α)µ(n) |

µ(i) ∈ [µ
(i)

(α), µ(i)(α)], B(i) = {C(i), . . . , C(n)}, i = 1, . . . , n,

µ(j) − µ(j+1) ≥ 0, j = 1, . . . , n − 1
}

, (3.60)

where (1), . . . , (n) denotes a permutation of indices 1, . . . , n such that h(1)(α) ≤

· · · ≤ h(n)(α), and µ
i
(α), µi(α) are functions such that (µ̂(Bi))α = [µ

i
(α), µi(α)];

and

y(α) = max
{ n−1∑

i=1

h(i)(α)
[
µ(i) − µ(i+1)

]
+ h(n)(α)µ(n) |

µ(i) ∈ [µ
(i)

(α), µ(i)(α)], B(i) = {C(i), . . . , C(n)}, i = 1, . . . , n,

µ(j) − µ(j+1) ≥ 0, j = 1, . . . , n − 1
}

(3.61)
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where (1), . . . , (n) is a permutation of indices 1, . . . , n such that h(1)(α) ≤ · · · ≤

h(n)(α) and µ
i
(α), µi(α) are again functions such that (µ̂(Bi))α = [µ

i
(α), µi(α)].

Proof: The proof follows from the monotonicity and continuity of the Choquet

integral in combination with Theorems 3.1 and 3.2.

However, arriving at the desired result with help of this theorem is unwieldy

as it requires multiple minimizations over varying sets of parameters. Fortunately

the calculation can be significantly simplified by employing the following theorem

published in [7]:

Theorem 3.11 Let Hi = {[hi(α), hi(α)], α ∈ [0, 1]}, i = 1, 2, . . . , n, be fuzzy

numbers on [0, 1]. The Choquet integral of FNV-function F from definition 3.21

with respect to the FNV-fuzzy measure µ̂, Y = (C)
∫
Ω

Fdµ̂, Y = {[y(α), y(α)], α ∈

[0, 1]}, is given for any α ∈ [0, 1] by

y(α) =
n−1∑

i=1

h(i)(α)
[
µ

(i)
(α) − µ

(i+1)
(α)
]

+ h(n)(α)µ
(n)

(α), (3.62)

where (1), . . . , (n) is a permutation of indices 1, . . . , n such that h(1)(α) ≤ · · · ≤

h(n)(α), µ̂(B(i)) = {[µ
(i)

(α), µ(i)(α)], α ∈ [0, 1]}, B(i) = {C(i), . . . , C(n)}, i =

1, . . . , n; and

y(α) =
n−1∑

i=1

h(i)(α)
[
µ(i)(α) − µ(i+1)(α)

]
+ h(n)(α)µ(n)(α), (3.63)

with (1), . . . , (n) as a permutation of indices 1, . . . , n such that h(1)(α) ≤ · · · ≤

h(n)(α), and µ̂(B(i)) = {[µ
(i)

(α), µ(i)(α)], α ∈ [0, 1]}, B(i) = {C(i), . . . , C(n)}, i =

1, . . . , n.

Proof:

According to Theorem 3.10, for any α ∈ [0, 1] the values y(α) are determined

by the solution of the following linear programming problem:

Minimize

f(µ(1), . . . , µ(n)) =
n−1∑

i=1

h(i)(α)
[
µ(i) − µ(i+1)

]
+ h(n)(α)µ(n) (3.64)
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under constraints

µ(j) − µ(j+1) ≥ 0, j = 1, . . . , n − 1,

µ(i) ∈ [µ
(i)

(α), µ(i)(α)], B(i) = {C(i), . . . , C(n)}, i = 1, . . . , n.
(3.65)

Let us define h0(α) = 0. The problem can be then rewritten into the following

form:

Minimize

f(µ(1), . . . , µ(n)) =
n∑

i=1

[
h(i)(α) − h(i−1)(α)

]
µ(i) (3.66)

under constraints

µ(j) − µ(j+1) ≥ 0, j = 1, . . . , n − 1,

µ
(i)

(α) ≤ µ(i) ≤ µ(i)(α), B(i) = {C(i), . . . , C(n)}, i = 1, . . . , n.
(3.67)

Fuzzy numbers µ̂(Bi) = {[µ
i
(α), µi(α)], α ∈ [0, 1]} are values of a FNV-fuzzy

measure and are therefore defined on the interval [0, 1]. As a consequence, the

convex polyhedron defined by the constraints is bounded and the solution exists.

Because the objective function f(µ(1), . . . , µ(n)) is linear, the solution will be at a

vertex of the polyhedron. Furthermore, the values (h(i)(α) − h(i−1)(α)) are non-

negative for any α ∈ [0, 1], i = 1, 2, . . . , n, thus the function f(µ(1), . . . , µ(n)) is

non-decreasing. It is apparent then that the minimum is attained at the point

(µ
(1)

(α), . . . , µ
(n)

(α)), which is one of the vertices of the polyhedron, where the

condition (3.67) is satisfied as per Definition 3.20. The minimum can be now

expressed as

y(α) =
n∑

i=1

[
h(i)(α) − h(i−1)(α)

]
µ

(i)
(α), (3.68)

which is equivalent to

y(α) =
n−1∑

i=1

h(i)(α)
[
µ

(i)
(α) − µ

(i+1)
(α)
]

+ h(n)(α)µ
(n)

(α). (3.69)

The second statement of the theorem can be proven analogically, searching for

maximum instead of minimum.
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Remark 3.24 Similarly to the first-level fuzzy Choquet integral, the second-level

fuzzy Choquet integral Y = (C)
∫

Ω
Fdµ̂ can be denoted also by Cbµ(H1, . . . , Hn).

Moreover, if F is a FNV-function from definition 3.21, Hi = {[hi(α), hi(α)], α ∈

[0, 1]}, i = 1 . . . , n, and µ̂ is a FNV-fuzzy measure on Ω such that µ̂(C) =

{[µ
C
(α), µC(α)], α ∈ [0, 1]} for any C ∈ ℘(Ω), then the equations 3.62 and 3.63

from Theorem 3.11 can be rewritten in another form:

y(α) = Cµ
α
(h1(α), . . . , hn(α)), (3.70)

where µ
α

is a fuzzy measure on Ω such that µ
α
(C) = µ

C
(α) for all C ∈ ℘(Ω);

y(α) = Cµα
(h1(α), . . . , hn(α)), (3.71)

where µα is a fuzzy measure on Ω such that µα(C) = µC(α) for all C ∈ ℘(Ω).

Remark 3.25 The Theorems 3.11 and 3.9 are being used for computation of se-

cond-level fuzzy OWA and second-level fuzzy Choquet integral by software FuzzME,

which was developed to model multiple criteria evaluation problems [81].

Remark 3.26 The Sugeno integral can be fuzzified as well. In [93] and [94] Wu

et. al extended the Sugeno integral to accommodate fuzzy-valued functions and

fuzzy number fuzzy measures. In order to fuzzify the Sugeno integral, an interval

number fuzzy measure and an interval number function were defined and applied

to representation theorem of fuzzy sets. In [41], a similar approach was applied

by Guo, Zhang and Wu to fuzzification of a generalized fuzzy integral. Later, in

[42], this general approach was used to define the fuzzified Choquet integral of

fuzzy-valued function with respect to fuzzy number fuzzy measures. The definition

employed the interval number fuzzy measures and interval number functions.

3.3.4 Generalized Partial Goals Method - Step 3

The incorporation of the second-level fuzzy Choquet integral into Partial

Goals Method is the third and final step of PGM generalization.

Let the decision making problem be the same as in Section 3.2.4, but with

some complexity added. Here, the proportions of the partial goals as well as the

proportions of all the subsets of the partial goals in the overall goal are now un-

certain. An expert described them by fuzzy numbers illustrated in Fig.3.7(b) and
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by doing that the FNV-fuzzy measure on set of partial goals was constructed. In

such the case, the aggregation of the partial evaluations H1, H2, H3 can not be

done by first-level fuzzy Choquet integral, but its second-level version has to be

employed instead. The overall evaluation of an alternative is then given by the

second-level fuzzy Choquet integral. The figure Fig.3.7(a) shows the partial eval-

uations H1, H2, H3 and the overall evaluation Y computed with help of Theorem

3.11.

The Generalized Partial Goals Method - Step 3 (GPGM) is a powerful tool.

Above the capability to handle multiple criteria evaluation problem with inter-

actions, it also deals with uncertainty. After the third step of generalization,

it is able to work with uncertain partial evaluations as well as with uncertain

significance of the partial goals and the subsets of partial goals.
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Figure 3.7: (a) Fuzzy numbers H1, H2, H3 describing the partial evaluations and
the overall evaluation Y . (b) Fuzzy numbers modeling the contribution of the
partial goals to the overall goal, i.e. FNV-fuzzy measure.

The comparison of the results of all three steps of PGM generalization is

demonstrated by the following example.

Example 3.1 Let us go back to the Example 2.3 from section 2.1. The graduates

of high schools are being evaluated with respect to their ability to study a science.

According to their tests’ results they are evaluated with respect to three criteria:

• mathematics (M),

• physics (Ph),
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• chemistry (Ch).

Those criteria corresponds to three partial goals

• A student of science needs to be able to apply the basic principals of math-

ematics (G1)

• A student of science needs to be able to apply the basic principals of physics

(G2)

• A student of science needs to be able to apply the basic principals of chem-

istry (G3)

In the Example 2.3 the partial evaluations were presented by percentages of

successfully answered questions. Given the partial evaluations hM = 0.9, hPh =

0.5 and hCh = 0.2 and fuzzy measure defined on the set of partial goals as described

by Figure 3.8(b), the crisp overall evaluation of a graduate was calculated with

help of Choquet integral as Y = 0.64.

(a)
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MPhCh Y

(b)

Figure 3.8: (a) Fuzzy numbers M,Ph,Ch describing uncertain partial evalua-
tions of a student and the overall evaluation Y . (b) Fuzzy measure defined on
the set of particular tests M,Ph,Ch.

However, the problem may become more complicated. The particular tests

are usually evaluated expertly. For example, in mathematics the evaluator must

consider what part of the problem did the student solve. It is therefore more

natural to express the test results by fuzzy numbers, which can, unlike the crisp

numbers, take into account the uncertainty of the evaluation. In such the case,

the overall evaluation Y can be computed with help of the first-level fuzzy Choquet

integral. For the partial evaluations HM ∼ (0.8, 0.9, 1), HPh ∼ (0.4, 0.5, 0.6) and
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HCh ∼ (0.1, 0.2, 0.3) and fuzzy measure described with help of Fig. 3.8(b) the

overall evaluation of a graduate is modeled by fuzzy number Y in Fig.3.8(a).
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Figure 3.9: (a) Fuzzy numbers M,Ph,Ch describing uncertain partial evalua-
tions of a student and the overall evaluation Y . (b) Fuzzy numbers modelling
the proportions of the particular tests and their groups in the overall evaluation,
i.e. FNV-fuzzy measure.

Moreover, the complexity of the problem may grow again. The weights of the

particular tests (their proportions in the overall evaluation) are also set expertly

and therefore uncertain. Then, it is convenient to model the uncertainty of the

weights by fuzzy numbers WM , WPh, WCh (see Fig.3.9(b)) and compute the overall

evaluation Y by the second-level fuzzy Choquet integral (Fig.3.9(a)).

Let us discuss the difference between the crisp and the fuzzy evaluation. The

first overall evaluation of the student, Y = 0.64, computed with crisp inputs,

is high enough to classify the student as ‘above-average’. But if we admit the

uncertainty of the partial evaluations, because they are ‘estimated’ expertly, the

overall evaluation stops looking so good. Moreover, if also the uncertainty of the

weights is taken into the consideration, the uncertainty of the output fuzzy number

grows and the original overall evaluation as ‘above-average’ is not so convincing

anymore. The result, which can be seen in Fig.3.9, reveals a distinct possibility

that the student is not reaching even the average evaluation, therefore his/her

aptitude for science may not be sufficient.



Fuzzification of aggregation operators 65

3.4 FNV-fuzzy measure construction

In the last section, we have defined a FNV-fuzzy measure. Similarly to the

original fuzzy measure, even this one is a set function, but its values are fuzzy

numbers expressing the contributions of the particular partial criteria and their

groupings to the overall evaluation. It is able to model the interactions among

the criteria together with the uncertainty which accompanies their weights.

To apply the FNV-fuzzy measure to multiple criteria evaluation methods,

namely the GPGM, the FNV-fuzzy measure has to be constructed properly.

Similarly to the fuzzy measure, the FNV-fuzzy measure can be also set directly,

nevertheless it is more difficult to check the monotonicity. A direct approach is

convenient only for a small number of criteria besides the evaluator needs some

experience with solving the given problems to be able to construct the FNV-fuzzy

measure directly.

Analogically to the crisp scenario, there is also the indirect way of constructing

the FNV-fuzzy measure published in [5]:

Similarly as in section 2.4.4, we can construct a set of imaginary alternatives

and group them into decreasingly ordered classes with help of Pairwise Compar-

ison Method. Then we describe the intensity of the preferences between each

successive classes of objects. This time the linguistic terms ‘as good as’, ‘slightly

better’, ‘quite better’, ‘strongly better’ or ‘extremely better’ are associated with

fuzzy numbers 1, T1, T2, T3, T4. After assigning the value Rj ∈ {1, T1, T2, T3, T4},

Rj = {[rj(α), rj(α)], α ∈ [0, 1]} to any pair of successive groups Πj, Πj+1,

j = 1, . . . , k − 2, we can evaluate the objects from Πj, j = 2, . . . , k − 1, by

fuzzy number Hj = {[hj(α), h
j
(α)], α ∈ [0, 1]}, where for all α ∈ [0, 1] holds

hj(α) =
1

r1(α) · · · rj−1(α)
, (3.72)

h
j
(α) =

1

r1(α) · · · rj−1(α)
. (3.73)

The objects from the group Π1 and Πk are evaluated by H1 = 1, Hk =

0, respectively. The evaluations of the objects are equal to the weights of the

corresponding sets of the partial goals and thus the FNV-fuzzy measure is set.

The construction of the FNV-fuzzy measure can be described also in the form
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of an algorithm:

Algorithm 3.2

Step 1: Generate imaginary objects xi, i = 1, 2, . . . , 2n, such that each object corre-

sponds to a different subset of the set of partial goals G1, G2, . . . , Gn, and it

absolutely satisfies the goals in the subset and totally fails in achieving all

the others.

Step 2: Create matrix A = {aij}
2n

i,j=1: For each j = 1, 2, . . . , 2n check if aij has

already been set. If yes, then aji = 1 − aij. Otherwise check the following:

a. Inclusion: if the set of partial goals corresponding to the object xi is

a proper superset (equal to, proper subset) of the set of partial goals

corresponding to the object xj, then aij = 1 (aij = 0.5, aij = 0).

Proceed to the next element of matrix A.

b. Transitivity: if there exists an index z such that aiz = azj = 1 (aiz =

azj = 0, aiz = azj = 0.5), then aij = 1 (aij = 0, aij = 0.5). Proceed to

the next element of matrix A.

c. Goal fulfilment: compare object xi with object xj. If the object xi

fulfils the overall goal G0 better than the object xj, then aij = 1; if

both objects achieve the overall goal equally, then aij = 0.5; otherwise

aij = 0. Proceed to the next element of matrix A.

Step 3: For each i = 1, 2, . . . , 2n calculate preference index
∑2n

j=1 aij.

Step 4: Order the objects decreasingly according to their preference indexes and

bunch them into groups Πq, q = 1, 2, . . . , k, k ≤ 2n, such that all the mem-

bers of the group gave the same preference index.

Step 5: For q = 1, 2, . . . , k− 1 compare groups Πq, Πq+1 and quantify their relation-

ship by fuzzy number Rq = {
[
rq(α), rq(α)

]
, α ∈ [0, 1]}, which can attain

one of the five values {1, T1, T2, T3, T4}, where each value corresponds to one

linguistic term of “as good as”, “slightly better”, “quite better”, “strongly

better” or “extremely better”, respectively.

Step 6: For q = 2, 3, . . . , k − 1 calculate the evaluation Hq = {
[
hq(α), hq(α)

]
, α ∈

[0, 1]} of the objects from group Πq in the following way: For all α ∈ [0, 1]
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calculate hq(α) = 1
r1(α)···rq−1(α)

and hq(α) = 1
r1(α)···rq−1(α)

. The remaining two

evaluations are H1 = 1 and Hk = 0.

Step 7: FNV-fuzzy measure of each subset of the set of partial goals is then equal

to the evaluation hq of the corresponding object xi ∈ Πq.

Because of the demanding construction of FNV- fuzzy measure, it may seem

that the implementation of fuzzified Choquet integral to multiple criteria evalu-

ation problem is too complicated for practical applications. But let us not step

ahead of ourselves and compare it to other methods. Any multiple criteria eval-

uation problem can be described by fuzzy rules base [2], which can deal with

any kind of interactions among the criteria, even if the partial evaluations are

uncertain and modeled by fuzzy numbers. However, the formulation of fuzzy

rules requires an experienced and patient expert. Considering n criteria, each of

which can attain m different values, the expert has to formulate mn fuzzy rules

to describe the problem properly. If we compare it to the number of parameters

the expert has to set during the direct construction of FNV-fuzzy measure, i.e.

2n fuzzy numbers, we can see that for m > 2 the construction of fuzzy rule base

is more demanding than direct construction of FNV-fuzzy measure. As it was

mentioned before, our technique for FNV-fuzzy measure construction requires

setting at most 22n−1 − 2n−1 − 1 parameters in the first and 2n − 2 parameters

in the second step, the exact number depending on the problem we are solving.

In total, that is at most 22n−1 + 2n−1 − 3 parameters, where 22n−1 − 2n−1 − 1 of

them are only zeroes or ones and, consequently, fairly easy to set. It can be seen

that for m > 3 the application of fuzzified Choquet integral with our technique

for FNV-fuzzy measure construction requires less parameters than construction

of the complete fuzzy rules base does. Of course, this can be expected, since the

base of rules, in comparison with the Choquet integral, can be applied to more

general problems. The same conclusion can be made for application of fuzzy

measure and original Choquet integral.

The following example demonstrates how the FNV-fuzzy measure can be con-

structed with help of the approach described by the algorithm above.

Example 3.2 Let us discuss the problem from the Example 3.1 once again. Last

time we have proposed how to solve the problem when the fuzzy measure and

FNV-fuzzy measure on the set of partial goals are set directly. In this example,
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we are assuming the same conditions, moreover we are focusing on two additional

problems:

• indirect fuzzy measure construction,

• indirect FNV-fuzzy measure construction.

At first, we construct fuzzy measure with help of the technique described in

section 2.4.4. We create the imaginary objects x1 = (0, 0, 0), x2 = (1, 0, 0), x3 =

(0, 1, 0), x4 = (0, 0, 1), x5 = (1, 1, 0), x6 = (0, 1, 1), x7 = (1, 0, 1), x8 = (1, 1, 1)

and order them decreasingly with help of pairwise comparison method and matrix

A. During the process we ask ourselves the following kinds of questions: “Is the

aptitude of a student, who is excellent in mathematics and physics and completely

fails in chemistry (x5) better than the aptitude of a student who excels only in

chemistry (x4)?” With regards to the school’s focus on mathematics, the answer

is YES and the element a54 of the matrix A is equal to 1. Analogically, we analyze

each pair of the imaginary objects and finally, following the algorithm described

above, we arrive to the ordering:

x8 � x5 � x7 � x6 � x2 � x3 � x4 � x1 (3.74)

Afterwards, we choose numbers t1 = 1.1, t2 = 1.2, t3 = 1.3 and t4 = 1.4

to describe the intensity of the relationship between each two consecutive objects

starting with x8 and x5. The alternative x8 = (1, 1, 1) with all three partial

goals fully achieved is for us quite better than the alternative x5 = (1, 1, 0) with

excellent knowledge of mathematics and physics but total failure in chemistry. The

linguistic term ‘quite better’ corresponds to the number t2, therefore r1 = t2 = 1.2

and the overall evaluation h1 of object x5 is given by

h1 =
1

1.2
= 0.83. (3.75)

Hence

µ(M,P ) = 0.83. (3.76)

Analogically we compare all remaining imaginary objects and we construct

the fuzzy measure: µ(M,Ph,Ch) = 1, µ(M,Ph) = 0.83, µ(M,Ch) = 0.76,

µ(Ph,Ch) = 0.69, µ(M) = 0.49, µ(Ph) = 0.45, µ(Ch) = 0.41.
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Then, given the partial evaluations HM ∼ (0.8, 0.9, 1), HPh ∼ (0.4, 0.5, 0.6)

and HCh ∼ (0.1, 0.2, 0.3), the overall evaluation of the student, as calculated by

first-level fuzzy Choquet integral with respect to our fuzzy measure, is equal to

triangular fuzzy number Y ∼ (0.545, 0.645, 0.745).

Figure 3.10: FNV-fuzzy measure.

Figure 3.11: Partial evaluations and the overall evaluation calculated by second-
level fuzzy Choquet integral.

Let us now calculate the overall evaluation using FNV-fuzzy measure. The

construction of FNV-fuzzy measure is analogical to the construction of fuzzy

measure in the previous paragraph with a single difference. To describe the in-

tensity of the relationship between each two successive objects we use triangu-

lar fuzzy numbers T1 = (1, 1.1, 1.2), T2 = (1.1, 1.2, 1.3), T3 = (1.2, 1.3, 1.4) and
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T4 = (1.3, 1.4, 1.5). Graphical representation of the resulting FNV-fuzzy measure

can be seen in Fig. 3.10.

The overall evaluation of the student together with the partial evaluations

is depicted in Fig. 3.11. As we can see, the evaluation is in the form of a

fuzzy number. Its center of gravity 0.65 corresponds the result from the previous

paragraph.

The calculations used in the example were implemented in a new software

that was created by Holeček [100] for this purpose. The software is capable of

modeling both the fuzzy measures and the partial evaluations by fuzzy numbers,

and employs the method presented in [7] for the actual calculations. Demo version

of the software can be found on [100].



Chapter 4

Fuzzy approach to quantitative

interpretation of MMPI-2

One of the most powerful tools applied to MCDM problems is a base of fuzzy

rules. It is a powerful tool with an extremely wide range of applicability. It can be

used for problems with unknown interactions, complicated relationships between

the possible values of all the criteria, or uncertain input data presented in linguis-

tic form. Base of fuzzy rules allows us to create a linguistically described multiple

criteria evaluation function, which in the process of multiple criteria evaluation

plays the same role as aggregation operator usually does - it consolidates the

partial evaluations into a single overal one.

This chapter is devoted to the example of applying a base of fuzzy rules to

an important problem arising in psychology - the interpretation of the MMPI-2

tests. The results presented in this chapter were published in [8] and [9].

4.1 Introduction to MMPI-2

MMPI-2 (Minnesota Multiphasic Personality Inventory) is one of the most

frequently used tests for characterization of personality features and psychic dis-

orders. The first version of the test, MMPI, was developed by psychologist S.

R. Hathaway and psychiatrist J. C. McKinley [43] of the Minnesota University.

Their goal was to develop an instrument to describe patient’s personality more

effectively than what was allowed by the psychiatric interview with the patient,

[1]. At the same time it was desirable to replace a great number of tests, fo-

71
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cusing on single features, by a single test capable of full characterization. The

fruit of their labor was an extensive testing method with applications far beyond

the clinical practice. Today, a revised version of the test, MMPI-2 [13], is used.

MMPI-2 is an important screening method for detecting pathological personality

features, which is used in clinical practice, as well as in entrance interviews for

universities, military, police, or leading positions [44].

Use of the MMPI-2 is very demanding. The examiner needs to possess knowl-

edge of theory and application of psychological tests; he/she should have a Master

degree in personal psychology and psychopathology, [44]. Furthermore, correct

interpretation of the test requires experience with the MMPI-2 and a special

training. For this reason, a software with transparent results providing solid

basis for the clinic deliberation would be an enormous asset.

4.1.1 Quantitative interpretation of MMPI-2

An important part of the testing process is quantitative interpretation of the

tests’ results, [39]. Answers to 567 questionnaire questions are used to saturate

a large number of scales (over 130). Their rough point values are then trans-

formed into linear T-scores. Based on values of these, a codetype of the patient

is determined.

The basis for the MMPI-2 interpretation is a determination of codetype, if pos-

sible. Each codetype is defined by T-scores of ten clinical scales (1-Hypochondri-

asis, 2-Depression, 3-Hysteria, 4-Psychopathic deviate, 5-Masculinity-Feminity,

6-Paranoia, 7-Psychasthenia, 8-Schizophrenia, 9-Hypomania, 0-Social introver-

sion). Value of each T-score comes from the interval [0, 120]. Values higher

than 65 are considered significantly elevated. According to number and type of

increased clinical scales we define 55 different codetypes. Codetypes with one sig-

nificantly elevated clinical scale are designated “Spike” (ten possible types), while

two significantly elevated scales represent a “Two Point” (45 possible types). For

a codetype to be well defined, there has to be at least five point difference be-

tween the T-scores of the highest scales and remaining T-scores. If this is not

satisfied, there is a possibility of triad, for example, and it is not possible to use

codetypes.

After finding the codetype, the agreement between patient’s data and the

respective prototypic profile is checked. In this testing, T-scores of all scales need
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to be considered. Each of 55 prototypic profiles is defined by specific values of

all scales. To have a perfect match between the patient and a given prototypic

profile, according to the instructions from the official MMPI manual [44], T-scores

of patient’s scales should not differ from T-scores of the profile by more than ten

points.

For finding the T-scores and determining the codetype, the MMPI-2 software

was developed [44]. This software finds the codetype only from the two highest

T-scores and rest of the data is not involved in the process. This leads to loss

of information and it is wasteful of the full MMPI-2 potential. Furthermore,

the software does not strictly adhere to the five-point-difference condition and

therefore may return an erroneous result.

In the following text, we present a mathematical model published in [8] and [9],

which can help to find several codetypes best fitting the patient. The codetypes

are determined in two steps. In the first step, the model searches for codetypes

using the MMPI methodology with fuzzified conditions. In the second step, the

additional suitable codetypes are found by comparing the patient’s data to the

prototypic profiles.

The Czech version of the MMPI-2 does not work with all of the scales. It

uses and saves values of only 79 of them. To keep with the Czech localization,

our mathematical model will consider this simplified version of the MMPI-2.

4.2 Designed mathematical model

The codetype determination requiring full satisfaction of all 79 conditions of

a prototypic profile is problematic. Classification based on such a crisp mathe-

matical model may not work, because only rarely a patient satisfies a prototypic

profile fully. It will be shown that in a situation like this, as well as in many areas

of social sciences and psychology, it is effective to use fuzzy approach described

in section 3.1.

The quantitative interpretation of MMPI-2 is performed in two steps. First,

based on the values of clinical scales, a patient’s codetype is determined. This

is followed by the verification, where the relevant prototypic profile is compared

with the patient’s data.

The proposed mathematical model respects this structure of MMPI-2. In
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the first step, the model finds the three clinical scales with the highest T-scores,

and with help of the linguistically described function decides on a codetype. In

the second step, the model works with values of all 79 scales and calculates the

overlap between the linear T-scores of the patient and the prototypic profile of

the codetype found in the previous step. Simultaneously the model searches for

other prototypic profiles, which agree well with the patient’s data.

4.2.1 Codetype determination

Two conditions are important for correct determination of the codetype. First,

T-scores of significantly elevated scales must be higher than 65. Second, values

of the highest scales must be at least five points higher than values of all the

remaining scales. In practice, it is often difficult to strictly fulfill this conditions.

It has shown to be more effective to use the fuzzy approach and define these con-

ditions linguistically. Furthermore, use of the fuzzy set theory was instrumental

in finding more variants of the codetype, which can be presented to the evaluator.

Prior to further processing, the scales need to be ordered from the highest T-

score to the lowest. Based on the above mentioned requirements, we then define

linguistic variables as:

1. (The First Scale Elevation,

{Insignificant, Significant}, [0, 120],M1),

2. (The Second Scale Elevation,

{Insignificant, Significant}, [0, 120],M1),

3. (The Third Scale Elevation,

{Insignificant, Significant}, [0, 120],M1),

4. (The Difference between the First Two Scales,

{Small, Big Enough}, [0, 120],M2),

5. (The Difference between the 2nd and the 3rd Scale,

{Small, Big Enough}, [0, 120],M2),

6. (Codetype Shape,

{Spike, Two Point, Potential Triad, Within-Normal-Limits},

{1, 2, 3, 4}, N),
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where

M1(Insignificant) = IE ∼ (0, 0, 63, 65), M1(Significant) = SE ∼ (63, 65, 120,

120), M2(Small) = SM ∼ (0, 0, 0, 5), M2(Big Enough) = BE ∼ (0, 5, 120, 120),

N(Spike) = S ∼ (1, 1, 1, 1), N(Two Point) = 2P ∼ (2, 2, 2, 2), N(Potential Tri-

ad)= PT ∼ (3, 3, 3, 3), N(Within-Normal-Limits) = WNL ∼ (4, 4, 4, 4). Some of

defined variables are illustrated in Fig. 4.1 and 4.2.

0 5 120
0

1

0 12063 65
0

1
SM BE SEIE

Figure 4.1: Input linguistic variables
Left: The Difference between the First Two Scales and its two linguistic values
Small and Big Enough modelled by fuzzy numbers SM and BE.
Right: The First Scale Elevation and its two linguistic values Insignificant and
Significant modelled by fuzzy numbers IE and SE.

1 2 3 4
0

1
S PT WNL2P

Figure 4.2: Output linguistic variable Codetype Shape and its four linguistic
values Spike, Two Point, Potential Triad and Within-normal-limits modelled by
fuzzy numbers S,2P,PT and WNL.

With help of these six linguistic variables and four rules we construct a base

of rules F :
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rule 1 If The First Scale Elevation is Significant and The Second Scale Elevation

is Insignificant and The Difference between the First Two Scales is Big

Enough, then the Codetype Shape is a Spike.

rule 2 If The First Scale Elevation is Significant and The Second Scale Elevation

is Significant and The Difference between the 2nd and the 3rd Scale is Big

Enough, then the Codetype Shape is Two Point.

rule 3 If The First Scale Elevation is Significant and The Second Scale Elevation

is Significant and The Third Scale Elevation is Significant and The Differ-

ence between the 2nd and the 3rd Scale is Small, then the Codetype Shape is

Potential Triad.

rule 4 If The First Scale Elevation is Insignificant, then the Codetype Shape is

Within-Normal-Limits.

The base of rules F has five input linguistic variables - the three highest T-

scores of clinical scales and the two differences between them - and one output

linguistic variable, which determines the shape of the codetype.

Together with the Assilian-Mamdani approximate reasoning algorithm (see

section 3.1), the linguistic function F forms an expert system for determination

of the codetype shape. With values of clinical scales as an input, the model

produces a fuzzy set DM that helps the evaluator to determine possible codetype

shapes. The membership degree of an element of the set {1, 2, 3, 4} in fuzzy set

DM , representing a particular codetype shape, equals to the degree of satisfaction

of the respective rule. See, for example, Fig. 4.3. To determine the complete

codetype of the patient, we need to combine the information about the codetype

shape with knowledge of the initial ordering of clinical scales. For example,

if the codetype shape is Spike and the designation of the highest scale is 8-

Schizophrenia, then the codetype is Spike 8.

4.2.2 Codetype verification

Each of all 55 codetypes is described in detail by a so called prototypic pro-

file. Codetype verification is based on the calculation of the degree of agreement
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Figure 4.3: The fuzzy set DM as obtained by entering input values (67, 64, 62, 3, 2)
into the designed expert system. The degrees of satisfaction express the possibil-
ity that the corresponding codetype shape is a Spike (possibility 50%) or a Two
Point (possibility 40%).

between the patient’s data and the prototypic profiles corresponding to the code-

types, which were determined in the first part of the model. Besides the verifi-

cation, the model also searches for other prototypic profiles with a good overlap.

Each profile is described by a vector of 79 real numbers representing values of

the 79 scales with the T-scores ranging from 0 to 120. For a patient’s profile to

match a prototypic profile, all the patient’s T-scores should be within 10 point

distance from the prototypic values.

In the second part of the mathematical model we replaced all crisp numbers

tij describing the prototypic profiles by linear fuzzy numbers Tij ∼ (tij − 20, tij −

10, tij + 10, tij + 20), i = 1, 2, . . . , 55, j = 1, 2, . . . , 79. The example is illustrated

in the Fig. 4.4. The kernel of the designed fuzzy number corresponds to the

requirements of the methodic, i.e. if the patient’s T-score is within 10 point

distance from the prescribed value, there is a perfect match and the membership

degree is equal to 1. The support of the fuzzy number was set at twice the length

of the kernel, i.e. if the distance of the patient’s T-score and the prototypic value

is bigger than 20 points, then there is no match at all and the membership degree

is zero.

Each i-th, i = 1, 2, . . . , 55, prototypic profile is then described by 79 of these

fuzzy numbers. Entering the patient’s T-scores t′1, t
′
2, . . . , t

′
79 into the designed

fuzzy numbers, we obtain 79 membership degrees Ti1(t
′
1), Ti2(t

′
2), . . . , Ti,79(t

′
79).

At this point we encountered a complication. According to Assilian-Mamdani
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Figure 4.4: Fuzzy number replacing the crisp prototypic value of a scale. The
membership degree corresponds to the degree of agreement between the patient’s
T-score and the prescribed value.

approach, the degree of agreement between the patient’s data and the i-th pro-

totypic profile should be calculated as minimum of these membership degrees, i.

e.

hi = min(Ti1(t
′
1), Ti2(t

′
2)), . . . , Ti79(t

′
79), i = 1, 2, . . . , 55. (4.1)

Minimum is a common aggregation operator used for modeling the operation of

logical conjunction, which should perfectly model the requirement:

“For a patient’s profile to match a prototypic profile, all the patient’s T-scores

must be within 10 point distance from the prototypic values.”

And yet, after several iterations of testing on real data, using the Matlab

fuzzy toolbox, the minimum operator proved unfeasible. The problem is, a real

patient rarely satisfies the full range of conditions. As a consequence, the overlap

between the patient’s and the prototypic profile was often determined as zero,

even if these profiles were very similar.

To circumvent this issue, we started looking for another aggregation operator

more suitable for this kind of problem. Finally, the arithmetic mean proved

itself to be the most convenient in this case and the calculation of the degree of

agreement was proposed as follows:

hi =
1

79

79∑

j=1

Tij(t
′
j), i = 1, 2, . . . , 55. (4.2)

The degree of agreement between the given data and the prototypic profile
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here represents the average satisfaction of all the 79 prescribed conditions. Com-

pared to minimum, the arithmetic mean provides better information about the

satisfaction of given conditions. This is illustrated in Figs. 4.5 and 4.6.
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Figure 4.5: The Assilian-Mamdani approximate reasoning mechanism applying
minimum.
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Figure 4.6: The modified Assilian-Mamdani approximate reasoning mechanism
applying arithmetic average.

Remark 4.1 In the future, the aggregation operator can be readjusted to the

requirements of the examiner and the arithmetic mean can be replaced by an

other aggregation operator: weighted mean, OWA, or, assuming the scales are

interacting, even the Choquet integral.

By applying the aforementioned approach we are able to test all the 55 pro-

totypic profiles. The result can be modeled by a fuzzy set H on the set U ,

U = {1, 2, . . . , 55}, where each integer between 1 and 55 corresponds to one pro-

totypic profile and the membership degrees H(i), i = 1, 2, . . . , 55, represent the
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overlap of the respective prototypic profiles with the profile of the patient. The

example is illustrated in Fig. 4.7.
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Figure 4.7: The fuzzy set H as obtained by comparing 79 given values with the
prescribed prototypic profiles. The degrees of satisfaction represent the overlap
between the prototypic profiles and the patient’s profile.

4.3 The implementation of the mathematical mo-

del in MATLAB

Both parts of the proposed mathematical model were realized in MATLAB.

At first, we used the Fuzzy Logic Toolbox to create the base of rules and to set the

proper approximate reasoning algorithm. Then to each one of the 55 prototypic

profiles we assigned a 79-tuple of fuzzy numbers, as was described in the previous

section.

An example of the output can be seen in Fig. 4.8. The output of the utility

is in the form of three figures and a linguistic description of the situation. The

first figure presents values of clinical scales as obtained from the patient - the

patient’s profile. The second figure presents possible codetypes, together with

their respective degrees of satisfaction. The third figure shows all the prototypic

profiles and their overlap with the patient’s profile. The evaluator can therefore

decide, whether the found codetypes are in good agreement with the patient’s

available data. The linguistic output presents possible codetypes and three pro-

totypic profiles with the best agreement. In addition it comments on a possibility

of a triad or scales within normal limits.
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Codetype 6−9: Satisfaction degree 1.00.
Verification: Degree of overlap 0.48.

Three the most satisfied protocoles:

Codetype 6886 with overlap 0.66.
Codetype 8998 with overlap 0.63.
Codetype 7887 with overlap 0.58.

Figure 4.8: Three figures and linguistic description as returned by the MATLAB
implementation of the model.

In Fig. 4.8 we demonstrate performance of the implementation. According to

clinical scales values, codetype 6-9 was determined. The result is in agreement

with the original software. However, during the prototypic profile analysis, the

codetype 6-9 didn’t show sufficient agreement, as the degree of overlap was only

0.48. The three most faithful profiles were those of codetypes 6-8/8-6, 8-9/9-8,

and 7-8/8-7, with 6-8/8-6 showing the best overlap. This suggests that for further

deliberation, codetypes 6-8/8-6 should be considered in addition to 6-9.



Chapter 5

Thesis results

In the chapter 2, the applications of aggregation operators, especially of the

Choquet integral, to multiple criteria decision making are studied. Based on the

principles explored in the chapter, the Partial Goals Method (PGM), originally

presented in [79], is generalized for multiple criteria evaluation problem with over-

lapping or complementary partial goals. This generalization, forming a content

of section 2.4.3 of this thesis, was published by as [5].

Chapter 3 is devoted to the fuzzification of OWA operators and the Choquet

integral. The first and second-level fuzzy OWA operators were defined and pub-

lished in 2008 [80] together with algorithm for their computation. Later, in 2010,

the fuzzified Choquet integral was defined and published in [7]. The definition

of the second-level fuzzy Choquet integral, based on the extension principle, was

accompanied by Theorem 3.10 and Theorem 3.11, which significiantly ease its

computation. Definitions 3.13, 3.19, 3.16, and 3.21, together with Theorems 3.4,

3.9, 3.7, 3.10, 3.11, and the proofs, represent one of the main results of the thesis.

The first and second-level fuzzy Choquet integrals were employed in order to

fully generalize the Partial Goals Method (PGM). This new Generalized PGM

(GPGM), published in 2011 in [5], is able to handle multiple criteria evaluation

problems with uncertain partial evaluations and significance on the set of inter-

acting partial goals described by fuzzy numbers. The PGM generalization for

fuzzy input was treated in sections 2.4.3, 3.2.4 and 3.3.4 and is another result of

the thesis.

In order to make the application of the second-level fuzzy Choquet integral

more easier, a new technique for fuzzy measure and FNV-fuzzy measure con-
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struction was developed and published in [5] and [6]. Both the techniques were

described also in the algorithmic way in sections 2.4.4, 3.4 and belong also among

the results of the thesis.

The list of thesis results ends with two fuzzy expert systems described in

Chapter 4. A real problem encountered in the field of the clinical psychology

was modeled by bases of fuzzy rules in order to help the examiner to process and

interpret the MMPI-2 test’s results. The systems published in [8] and [9] are still

being investigated, tuned and expanded upon with a possibility of obtaining a

realistic application.



Chapter 6

Conclusion

There are lots of different problems, which can be met in multiple criteria

decision making. In this thesis we focused on a single specific kind. It is a

multiple criteria decision making problem with a finite set of possible solutions

(alternatives) and a finite set of criteria, which is assessed by a single decision

maker.

One of the main problems arising during the process of decision making is to

evaluate the given alternatives in order to decide if they fulfill our requirements,

or, at lest, to determine which ones suit us the best. The process of multiple

criteria evaluation fully employs aggregation operators. There are many fami-

lies of aggregation operators studied with eye on their application to MCDM.

In chapter 2, the most popular aggregation operators, with special emphasis on

the Choquet integral, were treated. The unique properties of the Choquet inte-

gral allowed us to generalize PGM method for MCDM problems, in which the

interactions among the criteria made use of weighted average impossible. One

of the main drawbacks to proper application of the Choquet integral is its dire

need for huge amount of information in the form of a fuzzy measure for a given

set of criteria. This important problem has gathered a lot of attention in the

community and several approaches to fuzzy measure construction, based on, for

example, training data and linear or quadratic programming, were proposed. In

the thesis we proposed a new method of constructing a fuzzy measure, a method

based solely on the evaluator’s ability to compare two well defined objects given

to her.

For one reason or another, decision making problems are often burdened by
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uncertainty, which is integrated into the decision making models by employing

the fuzzy sets theory. As a result, the aggregation operators are being adjusted

to accommodate evaluations by fuzzy numbers in the process called ‘fuzzifica-

tion’. At the time the results of the thesis were formulated, fuzzified versions

of several aggregation operators were already available, but their calculation was

quite involved.

In chapter 3 we presented full fuzzification, up to the second level, of the Cho-

quet integral and its several different forms. In addition to fuzzified aggregation

operators we also proposed algorithms meant to ease their calculation. Those

algorithms were afterwards integrated into FuzzME software, a tool developed

for creating fuzzy models of multiple criteria evaluation and decision making.

The generalization of the Choquet integral to the second-level fuzzy Choquet

integral led to the GPGM - Generalized Partial Goals Method. GPGM is able

to help the evaluator with multiple criteria evaluation problem with interacting

criteria and uncertain partial evaluations even if the partitions of the partial goals

in the overall goal are set only vaguely.

For the second level fuzzification of the Choquet integral, the fuzzy measure,

which is used by the integral to steer the aggregation, needed to be replaced

by its generalization, the FNV-fuzzy measure. Unfortunately, the FNV fuzzy

measure contains more information than the fuzzy measure and its construction

is therefore much more demanding. To alleviate this issue and help the evaluator,

we devoted the last part of the chapter 3 to a technique for constructing a FNV-

fuzzy measure presented in a form of algorithm.

The applications of the particular aggregation operators are limited. In the

case of strange relationships among the partial and overall evaluations, the appli-

cation of fuzzy rules base and linguistically oriented modeling is recommended.

In the chapter 4, the base of fuzzy rules was applied to a real problem occurring

in the field of psychology. Two fuzzy expert systems were created to model the

problem of the quantitative interpretation of results given by the MMPI-2 test.

Moreover, the utilization of two different aggregation operators in the approxi-

mate reasoning algorithm was discussed.



Chapter 7

Resumé v českém jazyce

Dizertačńı práce se zabývá úlohou v́ıcekriteriálńıho rozhodováńı s konečnou

množinou variant a jedńım rozhodovatelem. Při řešeńı tohoto problému se připou-

štěj́ı r̊uzné typy interakćı mezi kritérii a neurčitost informaćı týkaj́ıćı se jak hodnot

kritéríı a d́ılč́ıch hodnoceńı vzhledem k těmto kritéríım, tak rozhodovatelových

preferenćı v množině kritéríı.

Základńım krokem v práci analyzovaného rozhodovaćıho procesu je v́ıcekrite-

riálńı hodnoceńı variant, při němž je využ́ıváno agregačńıch operátor̊u. Kapitola

2 se zabývá agregačńımi operátory, které jsou v úlohách v́ıcekriteriálńıho hod-

noceńı použ́ıvány nejčastěji. Jsou to předevš́ım vážený pr̊uměr, OWA operátory

a Choquet̊uv integrál. Důraz je kladen na Choquet̊uv integrál, který umožňuje

modelovat v́ıcekriteriálńı hodnoceńı i v př́ıpadech, kdy existuj́ı interakce mezi

kritérii, ať už ve smyslu synergie nebo redundance. Fakt, že Choquet̊uv integrál

je vhodný nástroj pro zobecněńı některých rozhodovaćıch metod pro př́ıpad vazeb

mezi kritérii, byl demonstrován v sekci 2.4.3 při zobecněńı metody d́ılč́ıch ćıl̊u

(PGM). Při využit́ı Choquetova integrálu muśı rozhodovatel poskytnout mno-

hem v́ıce informaćı o svých preferenćıch na množině kritéríı, než v př́ıpadě jiných

běžně využ́ıvaných agregačńıch operátor̊u, např́ıklad váženého pr̊uměru. Tyto

jeho preference jsou reprezentovány fuzzy mı́rou, kterou je potřeba definovat na

množině d́ılč́ıch ćıl̊u, či kritéríı. Problematikou zadáváńı fuzzy mı́ry se zabývali

již mnoźı autoři. Bylo navrženo několik r̊uzných zp̊usob̊u jej́ı konstrukce, často

se např́ıklad využ́ıvá množina trénovaćıch dat a matematické programováńı. V

této práci je navržena nová metoda pro expertńı zadáváńı fuzzy mı́ry, která je

založena na metodě párového porovnáváńı a schopnosti rozhodovatele vyjádřit
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intenzitu preference mezi dvěma uvažovanými objekty.

V praxi řešené rozhodovaćı problémy jsou často zat́ıženy neurčitosti, kterou

je možno matematicky popsat pomoćı nástroj̊u teorie fuzzy množin. Neurčitá

d́ılč́ı hodnoceńı, která mohou být modelována fuzzy č́ısly, je potřeba agregovat

pomoćı tomu přizp̊usobených, fuzzifikovaných, agregačńıch operátor̊u. V práci

jsou uvedeny odkazy na práce autor̊u zabývaj́ıćıch se problematikou fuzzifikace

agregačńıch operátor̊u a předevš́ım pak prezentovány výsledky publikované v této

oblasti autorkou dizertačńı práce. V kapitole 3 jsou představeny dva stupně fuzzi-

fikace Choquetova integrálu a jeho speciálńıch př́ıpad̊u. Prvńı úroveň fuzzifikace

v kontextu model̊u v́ıcekriteriálńıho hodnoceńı a rozhodováńı znamená, že d́ılč́ı

hodnoceńı jsou modelována fuzzy č́ısly, zat́ımco váhy skupin kritéríı jsou mode-

lovány fuzzy mı́rou popsanou na množině kritéríı ostrými č́ısly z intervalu [0, 1].

Při druhé úrovni fuzzifikace uvažujeme kromě neurčitých hodnoceńı i neurčité

váhy skupin kritéríı - tyto váhy jsou modelovány FNV-fuzzy mı́rou. V práci

byla dokázána d̊uležitá tvrzeńı týkaj́ıćı se vlastnost́ı fuzzifikovaných agregačńıch

operátor̊u a byly navrženy efektivńı výpočetńı algoritmy pro jejich výpočet. Plně

fuzzifikovaný Choquet̊uv integrál byl využit k daľśımu zobecněńı metody d́ılč́ıch

ćıl̊u (GPGM) pro př́ıpad, kdy významnosti d́ılč́ıch ćıl̊u jsou popsány FNV fuzzy

mı́rou. Zadáváńı FNV-fuzzy mı́ry je pochopitelně ještě složitěǰśı záležitost́ı než

v př́ıpadě fuzzy mı́ry s hodnotami zadanými reálnými č́ısly. Posledńı část kapi-

toly 3 obsahuje p̊uvodńı algoritmus pro zadáváńı FNV-fuzzy mı́ry na základě

expertńıch znalost́ı.

Choquet̊uv integrál je možno použ́ıt, pokud vztahy mezi kritérii jsou typu

synergie nebo redundance, či pokud chceme modelovat kritéria typu Veto, či

Favor. V př́ıpadě složitěǰśıch vztah̊u mezi d́ılč́ımi a celkovými hodnoceńımi je

vhodné použ́ıt bázi fuzzy pravidel a jazykově orientovaného programováńı. V

kapitole 4 je představena aplikace báze fuzzy pravidel na reálný problém z oblasti

klinické psychologie. Pomoćı dvou fuzzy expertńıch systémů je zde modelován

problém kvantitativńı interpretace výsledk̊u dotazńıku MMPI-2. Na výsledky

práce publikované v [8] and [9] navázal psychologický výzkum [76] a daľśı výzkum

v oblasti využit́ı báźı fuzzy pravidel v oblasti interpretace výsledk̊u dotazńıku

MMPI pokračuje.

Výsledky předložené práce byly publikovány v odborných časopisech a před-

neseny na řadě mezinárodńıch konferenćı. Algoritmy pro výpočet fuzzifikovaných
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OWA operátor̊u a Choquetova integrálu byly implementovány do softwaru FuzzME,

nástroje vhodného pro modelováńı problémů v́ıcekriteriálńıho hodnoceńı a roz-

hodováńı.
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[76] Škobrtal, P.: Possibility of fuzzy sets application in psychology. (In Czech).

PhD. thesis. Faculty of Philosophy, Palacký University, Olomouc 2009.
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[81] Talašová, J., Holeček, P.: Multiple-Criteria Fuzzy Evaluation:The FuzzME

Software Package. In Proceedings of the Joint 2009 International Fuzzy Sys-

tems Association World Congress and 2009 European Society of Fuzzy Logic

and Technology Conference, Lisbon, Portugal, July 20-24, 2009, pp. 681-686.

[82] Tanaka, K., Sugeno, M.:A study on subjective evaluation of color printing

images. Internat. J. Approx. Reason 5, 1991, pp. 213-222.

[83] Torra, V., Narukawa, Y.: Modeling decisions: Information fusion and ag-

gregation operators. Springer-Verlag, Berlin Heidelberg, 2007.

[84] Torra, V., Narukawa, Y.:The h-index and the number of citations: two fuzzy

integrals. IEEE Transactions on Fuzzy Systems, 2008, pp. 795-797.

[85] Viertl R.:Statistical methods for non-precise data. CRC Press, Boca Raton,

Florida, 1996.

[86] von Altrock, C.:Fuzzy logic and neurofuzzy applications explained. Prentice

Hall PTR, New Jersey, 1995.

[87] van Laarhoven, P.J.M., Pedrycs, W.:A fuzzy extension of Saaty’s priority

theory. Fuzzy Sets and Systems 11, 1983, 229-241.

[88] von Neumann, J., Morgenstern, O.:Theory of Games and Economic Behav-

ior. Princeton University Press, Princeton, NJ, 1947.

[89] Wang, J.:Determining fuzzy measures by using statistics and neural net-

works. Proc. IFSA’95, Sao Paulo, 1995, pp. 519–521.

[90] Wang, Z., Leung, K. S., Wang, J.:A genetic algorithm for determining non-

additive set functions in information fusion. Fuzzy Sets and Systems 102,

1999, pp. 462-469.

[91] Wang, Z. et al.:Real-valued Choquet integrals with fuzzy-valued integrand.

Fuzzy Sets and Systems 157, 2006, pp. 256-269.

[92] Washio, T., Takahashi, H., Kitamura, M.:A method for supporting decision

making on plant operation based on human reliability analysis with fuzzy

integral. Proc. of the IIZUKA’92: the Second Internat. Conf. on Fuzzy Logic

and Neural Neworks, vol. 2, 1992, pp. 841-845.



Bibliography 98

[93] Wu, C. et al.:Fuzzy number fuzzy measures and fuzzy integrals. (I) Fuzzy

integrals of functions with respect to fuzzy number fuzzy measures. Fuzzy

Sets and Systems 98, 1998, pp. 355-360.

[94] Wu, C. et al.:Fuzzy number fuzzy measures and fuzzy integrals. (II) Fuzzy in-

tegrals of fuzzy-valued functions with respect to fuzzy number fuzzy measures

on fuzzy sets. Fuzzy Sets and Systems 101, 1999, pp. 137-141.

[95] Yager, R. R.:On ordered weighted averaging aggregation operators in multi-

criteria decision making. IEEE Trans. Systems Man Cybernet. 18, 1988, pp.

183-190.

[96] Yang R., Wang Z., Heng P., Leung K.:Fuzzy numbers and fuzzification of the

Choquet integral. Fuzzy sets and systems 153, 2005, pp. 95-113.

[97] Zadeh, L. A.:Fuzzy sets. Inform. Control 8, 1965, pp. 338-353.

[98] Zadeh, L. A.:The concept of a linguistic variable and its application to ap-

proximate reasoning-I. Information Sciences 8, 1975, pp. 199-249.

[99] Zhou, S.-M.:Type-1 OWA operators for aggregating uncertain information

with uncertain weights induced by type-2 linguistic quantifiers. Fuzzy Sets

and Systems 159, 2008, pp. 3281-3296.
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