
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AUTOMATED SECURITY COMPLIANCE SCANNING
OF MS WINDOWS OPERATING SYSTEM
USING OPENSCAP PROJECT
AUTOMATIZOVANÉ OVĚŘOVÁNÍ KONFIGURACE OPERAČNÍHO SYSTÉMU

MS WINDOWS POMOCÍ PROJEKTU OPENSCAP

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. JAN ČERNÝ
AUTOR PRÁCE

SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2018

Zadaní diplomově práce/20842/2017/xcerny62

Vysoké učení technické v Brně - Fakulta informačních technologií

Ústav inteligentních systémů Akademický rok 2017/2018

Z a d á n í d i p l o m o v é p r á c e
Řešitel: Černý J a n , Bc .
Obor: Informační systémy

Téma 1 Automatizované ověřování k o n f i g u r a c e operačního systému MS
W i n d o w s p o m o c i p r o j e k t u O p e n S C A P
A u t o m a t e d S e c u r i t y C o m p l i a n c e S c a n n i n g of MS W i n d o w s O p e r a t i n g
S y s t e m U s i n g O p e n S C A P P r o j e c t

Kategorie: Operační systémy

Pokyny:
1. Nastudujte standard SCAP, který popisuje automatizované ověřování bezpečné

konfigurace systémů. Soustředte se na jazyk OVAL a jeho části specifické pro MS
Windows. Seznamte se s implementací OpenSCAP.

2. Navrhněte změny projektu OpenSCAP potřebné pro přidání plné podpory pro
operační systém MS Windows. Navrhněte způsob implementace objektů jazyka OVAL
specifických pro operační systém MS Windows.

3. Implementujte navržená řešení jako rozšíření projektu OpenSCAP.
4. Ověřte řešení na reálných bezpečnostních politikách pro operační systémy MS

Windows ve formátu SCAP.

Literatura:
• S. Quinn, D. Waltermire, C. Johnson, K. Scarfone, J. Banghart. 2009.The Technical

Specification for the Security Content Automation Protocol (SCAP): Scap Version 1.0.
NIST Speciál Publication 800-126. ISBN: 9781437934878

• Domovské stránky iniciativy SCAP, National Institute of Standards and Technology,
http://scap.nist.gov/

• Domovské stránky projektu OpenSCAP, http://www.open-scap.org/
Při obhajobě semestrální části projektu je požadováno:

• První dva body zadání.

Podrobné závazné pokyny pro vypracování diplomové práce naleznete na adrese
http://www.fit.vutbr.cz/info/szz/

Technická zpráva diplomové práce musí obsahovat formulaci cíle, charakteristiku současného stavu,
teoretická a odborná východiska řešených problémů a specifikaci etap, které byly vyřešeny v rámci dřívějších
projektů (30 až 40% celkového rozsahu technické zprávy).

Student odevzdá v jednom výtisku technickou zprávu a v elektronické podobě zdrojový text technické zprávy,
úplnou programovou dokumentaci a zdrojové texty programů. Informace v elektronické podobě budou uloženy
na standardním nepřepisovatelném paměťovém médiu (CD-R, DVD-R, apod.), které bude vloženo do písemné
zprávy tak, aby nemohlo dojít k jeho ztrátě při běžné manipulaci.

Vedoucí: Smrčka Aleš, I ng . , Ph.D. , UITS FIT VUT
Datum zadání: 1. listopadu 2017
Datum odevzdání: 23. května 2018

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
Fakulta intorm^ních.technols
Ustav intellgenintótí^šmů

doc. Dr. Ing. Petr Hanáček
vedoucí ústavu

http://scap.nist.gov/
http://www.open-scap.org/
http://www.fit.vutbr.cz/info/szz/

Abstract
This work deals with security compliance of computer systems, namely operating systems,
applications and system services. Concept of security policies, their evaluation and their
enforcement is described. Security compliance automation and the S C A P standard are
presented. OpenSCAP project, which is used as an S C A P scanner, is described together
with its tools and its usage. A n idea to add support of Microsoft Windows within Open­
SCAP, which was previously unsupported, is presented. The core part of the thesis is to
identify necessary changes of OpenSCAP and to design an extension of this project. A l l
these modifications are implemented. The solution is demonstrated on security policies for
Windows. The solution is evaluated and further improvements are discussed.

Abstrakt
Tato práce se zabývá problematikou bezpečné konfigurace výpočetních systémů, jako jsou
operační systémy, aplikace a služby. Seznamuje čtenáře s konceptem bezpečnostních poli­
tik a jejich ověřováním. Soustředí se na problematiku automatizace bezpečné konfigurace
s důrazem na standard SCAP. Popisuje projekt OpenSCAP, který se používá jako S C A P
scanner, jeho aplikace a jejich použití. Navrhuje rozšířit OpenSCAP i na operační sys­
tém Microsoft Windows, který doposud nebyl podporován. Těžištěm práce je identifikace
nutných změn projektu OpenSCAP a návrh jeho rozšíření. Všechny navržené úpravy jsou
implementovány. Implementované řešení je demonstrováno s využitím bezpečnostních poli­
tik pro Windows, vyhodnoceno a také jsou diskutovány možnosti jeho budoucího vylepšení.

Keywords
SCAP, OpenSCAP, O V A L , Windows, open-source, Security Audit, Security Compliance,
Configuration

Klíčová slova
SCAP, OpenSCAP, O V A L , Windows, open-source, bezpečnostní audit, ověřování bezpečné
konfigurace

Reference
C E R N Y , Jan. Automated Security Compliance Scanning of MS Windows Operating System
Using OpenSCAP Project. Brno, 2018. Master's thesis. Brno University of Technology,
Faculty of Information Technology. Supervisor Ing. Ales Smrcka, Ph.D.

Rozšířený abstrakt

Tato práce se týká počítačové bezpečnosti. Jedním z prvků počítačové bezpečnosti
je vhodné nastavení operačního systému a vhodná konfigurace běžících služeb a aplikací.
Takové nastavení by mělo například omezit otevřené porty, povolit pouze vybrané aplikace,
nastavit používané sady šifer nebo vyřešit přihlašování uživatelů a uživatelská práva.

Správná a bezpečná konfigurace může být popsána nějakou bezpečnostní politikou.
Příkladem mohou být politiky typu DISA STIG používané v USA. Pro zápis těchto politik
ve strojově zpracovatelné podobě lze využít standard S C A P (Security Content Automation
Protocol, protokol pro automatizaci bezpečnostního obsahu). Politika zapsaná ve S C A P
formátu poté popisuje konkrétní požadavky na stav systému formou jednoduchých pravidel.

Pro automatické ověření zda systém je v souladu s bezpečnostní politikou a vyhovuje
jejím požadavkům existují nástroje, jejichž vstupem je soubor ve formátu S C A P a výstupem
přehledná zpráva, která informuje o míře splnění těchto požadavků.

Příkladem nástroje, který implementuje standard SCAP, je projekt OpenSCAP. Jedná
se o software s otevřeným zdrojovým kódem (tzv. open source software). Tento produkt je
vyvíjen převážně ve společnosti Red Hat. Je to populární nástroj používaný na operačním
systému Linux. Bohužel, OpenSCAP nepodporuje Microsoft Windows nebo další oblíbené
operační systémy.

Cílem práce je rozšířit již existující projekt OpenSCAP o podporu operačního systému
Microsoft Windows. To znamená, že bude možné pomocí programu OpenSCAP ověřit,
zda konkrétní instance Windows vyhovuje pravidlům bezpečnostních politik zapsaných ve
formátu SCAP.

Jedním z důvodů vedoucích k této práci byly časté požadavky uživatelů. Uživatelé
hledali schopný nástroj pro vyhodnocování S C A P politik pro Windows. Je důležité si
uvědomit, že ostatní nástroje implementující S C A P jsou drahé komerční produkty. Dále je
nutné zmínit, že uživatelé grafického programu S C A P Workbench pro Windows si stěžovali,
že tento nástroj umí pracovat pouze se vzdálenými unixovými servery a nikoli s lokální
instancí Windows. Také se objevila potřeba oživení projektu a získání více přispěvatelů.

Nejtěžší částí práce bylo změnit silně Linuxově specifické záležitosti ve zdrojovém kódu
OpenSCAPu na multiplatformní kód a umožnit vývoj pod oběma systémy.

Pro snadnou konfiguraci, nalezení závislostí a sestavení na různých platformách byl
sestavovací systém přepsán s využitím programu CMake. To mimo jiné urychlilo kompilaci
a umožnilo programovat ve Visual Studiu 2017. Závislosti na Windows byly vyřešeny
pomocí Vcpkg, nového nástroje Microsoftu pro sestavení potřebných knihoven třetích stran.

Kód v jazyce C, který byl použitelný pouze v překladači G C C na Linuxu, byl upraven
tak, aby šel přeložit a spustit i na Windows pomocí Visual Studia 2017. To zahrnovalo
rozsáhlé změny v kódu, náhradu některých funkcí a maker jinými nebo dokonce pro­
gramování nových částí s využitím aplikačního programového rozhraní (API) Windows.

Dále byla provedena rozsáhlá změna v logice OpenSCAPu. Procesy, zvané sondy, které
doteď fungovaly jako oddělené procesy, byly sloučeny a vloženy do hlavního procesu. Open­
S C A P je nyní jednoprocesová aplikace, což umožnilo odstranit velmi složitý způsob mezipro-
cesové komunikace, který byl dosud používán. Tato změna přinesla větší přenositelnost,
snadnější ladění programu a teoreticky i menší chybovost a možnost zrychlení.

Těžištěm práce byla implementace Windows součástí jazyka O V A L (Open Vulnera-
bility and Assessment Language, otevřený jazyk pro hodnocení a zranitelnosti). Úkolem
bylo navrhnout implementaci některých vybraných testů jazyka O V A L . Tyto testy byly
implementovány jako nové moduly v rámci OpenSCAPu. Ačkoli se jedná o implementaci

standardu, konkrétní řešení je netriviální. Řešení využívá pokročilých volání aplikačního
programovaného rozhraní Windows.

Nakonec se úspěšně podařilo vytvořit spustitelný funkční program. Sestavený program
je zabalen jako instalační MSI balíček nesoucí všechny závislosti. Tento balíček se sám
vygeneruje z C Make.

Práce probíhala ve spolupráci s hlavním vývojovým proudem OpenSCAPu. Všechny
zmiňované změny byly podrobeny kontrole ze strany vývojářů tohoto produktu a všechny
byly začleněny do vývojové verze kódu.

Výsledkem práce je spustitelná verze OpenSCAPu běžící na Windows. Tato verze zvládá
většinu operací. Je schopná provádět skenování systému s využitím reálných bezpečnostních
politik zapsaných ve S C A P formátu. Bylo ověřeno, že OpenSCAP pro Windows dokáže
například pracovat s politikami DISA STIG a U S G C B na Windows 7 a 10. OpenSCAP
v současnosti umí vyhodnotit 69 % pravidel v DISA STIG pro Windows 10 a 80 % pravidel
v U S G C B pro Windows 7. Výsledky jsou prezentovány prostřednictvím H T M L reportu,
tedy způsobem obvyklým v OpenSCAPu.

Během práce byly implementovány pouze nejdůležitější testy definované ve Windows
části jazyka O V A L . Implementace dalších v budoucnosti je ale možná. Budoucí vývojáři
mohou postupovat podle popisu, který je obsažen v této práci.

Kromě možnosti přidání plné podpory O V A L má práce celou řadu možných budoucích
rozšíření. Zmiňme například možnost integrace s grafickou aplikací S C A P Workbench nebo
podporu pro tvorbu bezpečnostních politik pro Windows uvnitř projektu S C A P Security
Guide. Nej zajímavější se zdá být možnost integrace s nástroji pro hromadnou správu sys­
témů v heterogenních infrastrukturách.

Vzhledem k dosaženým výsledkům a možnostem budoucího rozšíření by práce mohla
být užitečná i v praxi.

Automated Security Compliance Scanning
of M S Windows Operating System
Using OpenSCAP Project

Declaration
Hereby I declare that this master's thesis was prepared as an original author's work under
the supervision of Ing. Ales Smrcka, Ph.D. A l l the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

Jan Černý
May 20, 2018

Acknowledgements
I would like to thank my advisor Ing. Ales Smrcka, Ph.D. for his professional advice and
my consultant Ing. Peter Vrabec for his great support. I would like to thank Mgr. Martin
Preisler and other people from OpenSCAP team for inspiring code reviews, useful feedback
and valuable pointers. I also thank my family and friends who supported me during my
studies.

Contents

1 Introduction 3

2 Security Compliance 5
2.1 Security Policies 5
2.2 Security Content Automation Protocol 8
2.3 Open Vulnerability and Assessment Language 9
2.4 Extensible Configuration Checklist Description Format 11

3 OpenSCAP Project 13
3.1 OpenSCAP 13

3.1.1 OpenSCAP Library 13
3.1.2 OpenSCAP Command Line Interface 14
3.1.3 S C A P Security Guide 14
3.1.4 S C A P Workbench 15
3.1.5 Other Tools from the OpenSCAP Ecosystem 15

3.2 Typical OpenSCAP Use Cases 16
3.3 OpenSCAP Alternatives 18
3.4 OpenSCAP Internal Implementation 18

4 Extending OpenSCAP to Windows 20
4.1 Requirements 20
4.2 Extension of an Existing Project 23
4.3 X M L Changes 23
4.4 Addressing Portability Issues 24

4.4.1 Moving to CMake Build System 24
4.4.2 Dependencies 27
4.4.3 Portable C Code 27

4.5 OpenSCAP Architecture Changes 30
4.5.1 Offline Mode Changes 33

4.6 Retrieving Windows Operating System Properties 34
4.6.1 Adding a New Probe in OpenSCAP 35
4.6.2 OpenSCAP System Info Probe 37
4.6.3 O V A L Independent Family Test 38
4.6.4 O V A L Windows Registry Test 38
4.6.5 O V A L Windows Access Token Test 41
4.6.6 O V A L W M I Test 42

4.7 Packaging 44

1

5 Testing, Verification, and Assessment of the Project 46
5.1 Scanning Windows Systems Using Real World Security Policies 46
5.2 Testing 47
5.3 Future Plans 50

5.3.1 Additional Probes 50
5.3.2 S C A P Workbench 51
5.3.3 PowerShell Remediation 52
5.3.4 Windows Support in S C A P Security Guide 52
5.3.5 Automatic Rights Elevation 53

5.3.6 Porting Test Suite 53

6 Conclusion 54

Bibliography 55

A OpenSCAP Upstream Pull Requests 58

B Contents of the Attached Media 60

2

Chapter 1

Introduction

Information technology has expanded to all areas of our lives. Computer systems control
critical processes and store sensitive data. Our civilization depends on them and we expect
them to be fast, safe, reliable, faultless and secure.

However, computer systems are prone to misuse and are targeted by attackers. People
and organizations are concerned about protection and security of their systems and data
privacy. They realize that breaking the systems or stealing valuable data has serious con­
sequences. In general, we can say that computer security has become a very important
topic.

A very important part of computer security is proper configuration of the systems,
namely operating systems, their services and applications. The industry has defined cer­
tain recommendations, rules, regulations and policies which set requirements on secure
configuration. In some organizations it is required that every device meets these require­
ments. For others it is very beneficial to follow these policies. The challenge is to deploy
a suitable policy and to continuously verify that systems comply with the policy. This area
is often denoted as security compliance.

To facilitate security compliance management, Security Content Automation Protocol
(SCAP) has been developed and standardized. S C A P enables verification of secure con­
figuration in an automated way. It also provides a way to express security policies in
a machine-readable form.

One of popular implementations of S C A P is OpenSCAP 1 . It is an open source project
which is used frequently to automate security audit on Linux machines. Unfortunately,
OpenSCAP works only on Unix systems and lacks support for other operating systems.
Currently, the most missing platform is Microsoft Windows, because OpenSCAP users fre­
quently have both machines running Linux and Windows in their infrastructure. Moreover,
there is no other open source tool that would manage compliance of the Microsoft Windows
operating system. It would be appreciated to use the same tool with same output formats
across different systems. Also, the support for other operating systems can be leveraged in
systems management tools that OpenSCAP integrates with.

The goal of this work is to enable scanning of Microsoft Windows operating system using
OpenSCAP. This goal has been achieved by contributing to the existing project, which
includes both adding new code and improving the existing parts. A Microsoft Windows
extension is important for the OpenSCAP project and helps with promoting the product.

x

https: //www.open-scap.org

3

http://www.open-scap.org

The thesis begins with a brief introduction to the area of security compliance. The text
mentions frequently used security policies and methods of computer security evaluation. It
describes the most common requirements and their reasoning. Then, it gives a rationale
to automate verification using scanners. Finally, the chapter focuses on S C A P which is
a standard used in this area. A description of formats within the S C A P standard will be
provided and their usage will be explained.

Chapter 3 illustrates OpenSCAP, an open source security compliance solution. Open-
S C A P provides both high-quality S C A P content and certified S C A P scanner. The chapter
gives an overview of the project and explains typical usage of the applications and tools
that are part of OpenSCAP. Due to the goal of this thesis, it also describes its internal
design and implementation. Moreover, a comparison of OpenSCAP and its competition
will be provided.

Chapter 4 describes the core part of this thesis where OpenSCAP support for Win­
dows is designed and implemented. Portability issues and other difficulties arising from
differences of the new platform are discussed. The problems with current design and imple­
mentation of the tool are identified and many changes are proposed. Then, the text shows
design and implementation of Windows specific parts of the S C A P standard, namely Open
Vulnerability and Assessment Language (OVAL) Windows Definition Schema. The chapter
describes how the thesis goal was achieved step-by-step. It focuses on various problems that
were encountered during the implementation and how they were solved.

In the last chapter, the solution is evaluated by using real world security policies for M i ­
crosoft Windows written in S C A P format available on the Internet, e.g. Security Technical
Implementation Guides (STIGs). The chapter also mentions how the changes in OpenSCAP
project were tested and accepted into the upstream. The text assesses achieved results and
evaluates the benefits of the project. Finally, further improvements of the created work are
suggested as well.

4

Chapter 2

Security Compliance

Computer security is a broad topic and is related to many areas including system adminis­
tration, cryptography, networking, even hardware, but also legal requirements and ethics.

Computer security can be improved by a large variety of measures. We can install se­
curity updates, use encryption, communicate using suitable network protocols, follow good
programming practices, detect malware, run access control systems, etc. The measures also
include establishing business processes, physical measures or prevention and user training.

A very important part of computer security is secure configuration of operating sys­
tem, its services and also installed applications. It is necessary to correctly configure user
authentication, set-up logging, forbid old protocols and broken ciphers, shut down unused
services, install various utilities and services that improve security, verify access rights, and
many other things.

In fact, correct and secure configuration is a complicated task that requires deep knowl­
edge and experience. It is not clear what exactly the secure configuration should look
like. It can differ depending on used technologies, business area or regulatory and legal
requirements.

To define the correct secure system configuration many security policies have been
developed. The policies provide a guidance on tasks that should be done to improve and
maintain effective configuration settings focusing primarily on security. These policies are
often published in a form of an official document.

2.1 Security Policies

In 1970s, U.S. military started to widely use mainframe computers to support their op­
erations. They faced problems of processing classified information securely. They started
a research of technical issues associated with securing computer systems and they defined
policies for the systems. In 1983, U.S. Department of Defense (DoD) published Trusted
Computer System Evaluation Criteria (TCSEC) , frequently referred as The Orange Book,
due to the colour of its cover [7].

The T C S E C was used to evaluate commercial products. The T C S E C defines four
divisions: D, C, B and A where division D has the lowest and division A has the highest
security. Each division puts more requirements on the trust we can place on the evaluated
system. Additionally, divisions C, B and A are broken into hierarchical classes: C l , C2,
B l , B2, B3 and A l .

5

The T C S E C was followed by other security standards which were also published in
books of different colours, therefore these publications are often referred as The Rainbow
Series. The impact of T C S E C was to motivate vendors to implement security controls into
their products and increase awareness of computer security in general.

Nowadays, the T C S E C is abandoned [], but to evaluate the security of information
technology products we may follow The Common Criteria for Information Technology Se­
curity Evaluation (CC) [16], which is an international standard (ISO/IEC 15408). There
are seven Evaluation Assurance Levels (EALs) that specifies level of meeting security func­
tional requirements. A list of C C certified products can be found on the Common Criteria
portal [16].

However, the C C does not provide a configuration guidance. It serves to evaluate
level of security of the product, but the product can be used in different ways in different
environments.

The requested configuration of computer systems is described in various other policies,
that are specific for type of organization or the character of data they work with. They
define a policy that the system should follow. We may think of these policies as of specific
implementations for the C C .

In some areas, for example government, military or financial sector it is obligatory to
follow these policies. A l l systems in an organization have to comply with the prescribed
policy in such case. Otherwise the system cannot be used. Therefore, security audits are
performed to verify compliance with the policies.

Let us mention a few examples of policies that are widely used and enforced.

• The United States Government Configuration Baseline (USGCB) creates security
configuration baselines for IT products deployed in government agencies in The United
States [26].

• The Security Technical Implementation Guides (STIGs) are configuration standards
published by Defense Information Systems Agency (DISA). These policies are used on
systems within U.S. Department of Defense [5]. There are STIGs for a large amount
of software products.

• The Payment Card Industry Data Security Standard (PCI DSS) is an information
security standard for organizations that handle credit card payments.

• The Health Insurance Portability and Accountability Act of 1996 (HIPAA) enforces
data protection for health care providers, health plans, payers, and similar in USA.

• The U.S. Government Approved Protection Profile—Protection Profile for General
Purpose Operating Systems, known as OSPP, describes the security functionality of
operating systems in terms of C C and defines functional and assurance requirements
for such products [2 i]. This is prepared by The National Information Assurance Part­
nership (NIAP), who is responsible for U.S. implementation of the Common Criteria.

• and many others.

Most of these policies are very detailed and contain a large amount of requirements. It
is difficult and costly to configure the systems in the required way. The policies frequently
put requirements on installed services, time synchronization, password length or expiration,
authentication, ciphers, etc.

6

Examples of configuration rules on Linux (adopted from Guide to Secure Configuration
of Red Hat Enterprise Linux 7):

• Ensure /var/log Located On Separate Partition.

• Verify Permissions on shadow File.

• Enable Randomized Layout of Virtual Address Space.

• Ensure Logrotate Runs Periodically.

• Set Password Hashing Algorithm in /etc/login.defs .

• Enable the N T P Daemon.

• Set SSH Idle Timeout Interval.

• Set Password Strength Minimum Uppercase Characters.

• Disable the selinuxuser_use_ssh_chroot SELinux Boolean.

• Record Events that Modify the System's Discretionary Access Controls.

• Enable G N O M E 3 Screensaver Lock After Idle Period.

Examples of configuration rules on Windows (adopted from Windows 10 DISA STIG):

• The T F T P Client must not be installed on the system.

• Windows 10 account lockout duration must be configured to 15 minutes or greater.

• Passwords must, at a minimum, be 14 characters.

• Indexing of encrypted files must be turned off.

• Kerberos encryption types must be configured to prevent the use of DES and RC4
encryption suites.

• PowerShell script block logging must be enabled.

• Windows 10 must be configured to disable Windows Game Recording and Broadcast­
ing.

• User Account Control must automatically deny elevation requests for standard users.

Organizations also need to verify if the given system is compliant with the policy to
pass the audits and fulfil legal constraints.

Although this verification might seem simple, it is a task that requires to check con­
tents of many configuration files, browse large file systems, check running processes, check
network interfaces, inspect access rights of all files, etc. This takes a few days of work of
a person. Moreover this verification or audit needs to be performed repeatedly, because
systems evolve, new applications are deployed, new software vulnerabilities are discovered
and requirements change.

Nowadays a typical IT infrastructure can consist of hundreds of servers and thousands
of virtual machines and workstations. It is obvious that it is not possible to perform security
audit manually in such an environment. Therefore, we need to automate the process. We

7

want to simply scan the given system and get a report which says which requirements are
fulfilled.

This can be achieved by a big set of scripts, or various proprietary systems that claim
to solve the security compliance problem. The problem of these solutions is that they are
not standardized and interoperable [30]. To address these problems the Security Content
Automation Protocol (SCAP) has been created.

2.2 Security Content Automation Protocol

Security Content Automation Protocol (SCAP) is a standard used in security automation,
configuration management and evaluation. It was published by National Institute of Stan­
dards and Technology (NIST) in the Special Publication 800-126 [35]. The current version
is S C A P 1.3 which was released in February 2018.

The standard includes a set of multiple components or more precisely languages and
Schemas. Each component is based on Extensible Markup Language (XML) and speci­
fies machine-readable documents that are used to express expected configuration, define
benchmarks and store results.

The S C A P components are:

1. Common Vulnerabilities and Exposures (CVE) .

2. Common Configuration Enumeration (CCE) .

3. Common Platform Enumeration (CPE) .

4. Common Weakness Enumeration (CWE) .

5. Common Vulnerability Scoring System (CVSS).

6. Extensible Configuration Checklist Description Format (X C C D F) .

7. Open Vulnerability and Assessment Language (OVAL).

8. Open Checklist Interactive Language (OCIL).

9. Asset Identification (AI).

10. Asset Reporting Format (ARF) .

11. Common Configuration Scoring System (CCSS).

12. Trust Model for Security Automation Data (TMSAD) .

13. Software Identification Tags (SWID).

The key components are X C C D F and O V A L . Typically, the policy is expressed in a form
of an X C C D F document (X C C D F benchmark). For a detailed description of the X C C D F ,
see Section 2.4.

Each rule references a check written in the O V A L language, called an O V A L definition.
The O V A L definition describes a specific state of a specific system object. For example,
an O V A L definition could define that configuration file /etc/selinux/config must exist
and must contain the string SELINUX=enf orcing. The O V A L definition must be satisfied
in order to fulfil the X C C D F rule requirements.

8

The X C C D F document can be passed to an S C A P scanner, which is a tool that inter­
prets the S C A P document, scans the system to get its current state, compares the current
state with state expected by O V A L definition, computes results and shows a report. A n
example of such an S C A P scanner is OpenSCAP, which will be described in Chapter 3.

The O V A L definitions are usually found in a separate file. To facilitate distribution, it
is possible to wrap multiple types of S C A P documents into a S C A P datastream, which is
a container that allows to store everything in a single file.

Some checklists can be downloaded from National Checklist Program Repository web­
site [25]. Another favourite resource is the S C A P Security Guide, which is described in
Subsection 3.1.3. Other checklists are developed by consultants or security organizations.

Nowadays S C A P is widely used, some organizations are even required to use S C A P . Most
important users are government organizations, but also army contractors, organizations that
work with U.S. public sector and financial sector. S C A P is started to be used worldwide.

On the other hand, many commercial businesses think S C A P is too complicated. Also
the tools providing S C A P for their platform are expensive. This group of users is afraid to
start using S C A P to automate their security.

One of the aims of this work is to bring S C A P to larger amount of users by introducing
free, open-source solution on a major platform, which Windows is. The users can benefit
from previous work on S C A P standard and existing experience of the OpenSCAP project.

2.3 Open Vulnerability and Assessment Language

Open Vulnerability and Assessment Language (OVAL) is a part of the S C A P standard.
O V A L is used to define the expected system state and report the actual state. O V A L
is a domain-specific language (DSL) designed exclusively for purpose of security audit,
therefore its abilities are limited. But it perfectly fits the use case of security compliance.

The language used to be maintained by M I T R E [31] and now it is preserved by Center
for Internet Security [2], that also keeps up a repository of O V A L definitions.

The specification is open and information security community can propose changes and
improvements. The current version is 5.11.1.

The language describes the three main steps of the assessment process []:

1. Representing configuration information of systems for testing.

2. Analysing the system for the presence of the specified machine state (vulnerability,
configuration, patch state, etc.).

3. Reporting the results of this assessment.

Similar to other S C A P components, the language is derived from X M L . O V A L consists
of three parts that correspond to the aforementioned steps.

1. O V A L Definition schema for expressing a specific machine state.

2. O V A L System Characteristics schema for representing system information.

3. O V A L Results schema for reporting the results of an assessment.

O V A L definitions describe desired configuration of a system. A definition is the most
high level logical unit of the O V A L language. A definition consists of one or more O V A L

9

Object

OVAL document
1-N

Definition

1-N

1-N
Test

1-N

State

Figure 2.1: Structure of O V A L elements in O V A L Definitions.

<objects>

<linux:systemdunitdependency_object id="oval:x:obj:1" comment="list of
dependencies of multi-user.target" version="l">

<linux:unit>multi-user.target</linux:unit>

</linux:systemdunitdependency_obj ect>

</objects>

<states>

<linux:systemdunitdependency_state id="oval:x:ste:1" comment="is chronyd
listed at least once in the dependencies" version="l">

<linux:dependency entity_check="at least one">

chronyd.service

</linux:dependency>

</linux:systemdunitdependency_state>

</states>

Listing 2.1: Responsibilities of O V A L objects and states.

tests that need to be passed to satisfy the definition. The O V A L test compares an O V A L
object with an O V A L state. Relation of O V A L elements is shown in Figure 2.1.

O V A L object is an X M L element describing particular object that exists on a system—
a file, a process, an environment variable, a kernel parameter, a value in a configuration
file, an entry in SQL database, an entry in Windows registry and many others. Each type
of object has a name (e.g. process_object or file_object) and a specific set of child
elements and attributes. The child elements and attributes differ depending on object type
and purpose. For example, a textf ilecontent_object serves to describe a text string in
a file.

O V A L state specifies features of an object that the object has to conform to fulfil the
requirements of respective test. For every type of O V A L object, there exists a corresponding
state with same prefix in O V A L definition schema. For example, a f ile_state corresponds
to a file_object. States are optional elements, in O V A L documents we can found a lot
of tests that do not contain any state, they only check whether a particular object exists
or does not exist. We can see an example of related O V A L object and state in Listing 2.1.

10

The basic concept of creating definition by combining a test, an object and a state can
be extended by more advanced constructions. For example, instead of using any test, a def­
inition can be extended by another definition within the same O V A L document. Another
important concept is using filters that more restrict the values of an O V A L object. O V A L
also provides some functions that convert data or compute basic arithmetic operations. In
fact, O V A L allows creating very complex logic. Therefore, O V A L definitions are usually
difficult to write [3].

2.4 Extensible Configuration Checklist Description Format

The Extensible Configuration Checklist Description Format (X C C D F) is a format to de­
fine configuration checklists. X C C D F documents are high-level X M L documents that add
additional data and metadata on the top of O V A L definitions.

A n X C C D F document is called a Benchmark. The X C C D F benchmark is a collection
of rules. Each rule has an unique identifier, description and various metadata. Rules can
also have severity, which means how a finding is important if the rule is violated. We can
see an example of an X C C D F rule in Listing 2.2.

The Benchmark can contain multiple profiles. A profile is a set of rules. These sets can
overlap, which means a rule is typically member of multiple profiles. The profiles specify
a policy and they have their own title and a description.

The O V A L checks are referenced using check-content-ref element which references
the concrete O V A L definition. It is possible to reference not only O V A L checks, but also
OCIL questionnaires, and checks in other formats as well. That means in theory the rule
can have multiple ways to evaluate, but in practice we prefer O V A L as a standard way.

Multiple X C C D F rules usually form an X C C D F group that groups together related
rules. Groups can be e.g. auditing, updating, permissions, services. Groups also can be
nested which means that a group can be inside a different group. A group can contain any
amount of groups and rules.

X C C D F rules can also include a remediation script, which is a short code snippet written
in any scripting language. This script modifies the system in order to be compliant with
the rule. Users can run remediation scripts from the whole X C C D F document at once,
which will lead to make their system compliant with the policy described in that X C C D F .

11

<Rule id="install_antivirus" selected="false" severity="high">

<title xmlns:xhtml="http://www.w3.org/1999/xhtml" xml:lang="en-US">

Install Virus Scanning Software

</title>

<description xmlns:xhtml="http://www.w3.org/1999/xhtml" xml:lang="en-US">

Install virus scanning software, which uses signatures to search for the

presence of viruses on the filesystem. Ensure virus definition f i l e s are

no older than 7 days, or their last release. Configure the virus scanning

software to perform scans dynamically on a l l accessed f i l e s . If this is

not possible, configure the system to scan a l l altered fi l e s on the system

on a daily basis. If the system processes inbound SMTP mail, configure the

virus scanner to scan a l l received mail.

</description

<reference href="http://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-53r4.pdf">SC-28</reference>

<rationale xmlns:xhtml="http://www.w3.org/1999/xhtml" xml:lang="en-US">

Virus scanning software can be used to detect i f a system has been

compromised by computer viruses, as well as to limit their spread

to other systems.

</rationale>

<platform idref="cpe:/a:machine"/>

<ident system="https://nvd.nist.gov/cce/index.cfm">CCE-27140-3</ident>

<check system="http://oval.mitre.org/XMLSenema/oval-definitions-5">

<check-content-ref name="oval:ssg-install_antivirus:def:1"

href="ssg-rhel7-oval.xml"/>

</check>

</Rule>

Listing 2.2: A n X C C D F Rule from S C A P Security Guide (shortened).

12

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
http://www.w3.org/1999/xhtml
https://nvd.nist.gov/cce/index.cfm%22%3eCCE-27140-3%3c/ident
http://oval.mitre.org/XMLSenema/oval-definitions-5

Chapter 3

OpenSCAP Project

OpenSCAP is a collection of open source tools for managing system security and configura­
tion compliance [20]. OpenSCAP implements S C A P standard and enables its enforcement.
The OpenSCAP ecosystem provides multiple tools to assist administrators and auditors
with assessment, measurement and enforcement of security policies and baselines. The
tools enable automated evaluation of security policies to reduce costs of performing secu­
rity audits. It this chapter, we will describe OpenSCAP, its components and its usage.

3.1 O p e n S C A P

OpenSCAP is an open source software project. The source code is available on Gi tHub 1 ,
where the development of the project happens and where bugs can be reported. The project
is released under open source licenses, most of the code is licensed by G N U Lesser General
Public License (GNU L G P L) .

The development was started in 2008 by Red Hat, Inc. Now people from other companies
and from the community contribute to the project, but Red Hat still has a leading position.
OpenSCAP 1.2.13 has been certified by NIST [7] in 2017, which is an important fact for
users that are required to use only certified scanners.

OpenSCAP is packaged in various Linux distributions, including Red Hat Enterprise
Linux, Debian, Fedora, Ubuntu, and OpenSUSE. There is also a limited availability on
legacy systems, e.g. Solaris.

OpenSCAP strictly follows the S C A P standard [20], and supports most of S C A P com­
ponents in all their versions. As of version 1.2.16, it can not evaluate OCIL questionnaires,
though.

OpenSCAP is not a single monolithic application. Instead, it is an ecosystem of multiple
tools, scripts, documentation and security policies in S C A P formats, that work together. It
is not required to use all of the tools. Some of the tools have a specific usage—they extend
S C A P capabilities or make their use easier.

3.1.1 OpenSCAP Library

The core part of the project is libopenscap, a shared library. The library implements ma­
jority of the OpenSCAP functionality, e.g. S C A P documents processing, system scanning,
evaluation and reporting.

^ t t p s : //github. com/OpenSCAP

13

The library provides stable and documented application programming interface (API),
which enables independent developers to create various applications working with S C A P
capabilities. The library also has bindings for Ruby, Python and Perl languages.

3.1.2 OpenSCAP Command Line Interface

The main tool that OpenSCAP offers is the command-line application oscap. It is an S C A P
scanner that runs in a terminal. It adds a text user interface on the top of the OpenSCAP
shared library.

The main purpose of the oscap tool is to perform scanning of a local machine on
which the tool is installed. Also, it can validate S C A P files, merge and split datastreams,
generate remediation scripts, generate H T M L guides and reports, evaluate separate O V A L
files, print metadata from S C A P content and other use cases. The tool offers a large number
of arguments and options. It is therefore a powerful tool, but from the author's experience,
most of the functions are rarely used by normal users.

The application is hard to get familiar with. It does not work interactively, at the same
time a lot of options must be provided by the user on the command line. The user experience
is complicated because the command-line interface strictly follows logic and terminology
of the S C A P specification. To illustrate this, the most frequent use case, scanning of the
system, is hidden under oscap xccdf eval command. Worse, to get a meaningful report
user has to add another 3 command line options. Therefore, the application is difficult for
beginners.

3.1.3 S C A P Security Guide

It is important to realize that the main input for the S C A P scanner are S C A P documents,
in other words security policies in S C A P format, often referred as SCAP content. They are
interpreted and evaluated by the scanner tool.

The S C A P documents, mostly X C C D F and O V A L , define what should be evaluated and
prescribe the expected state of the system. We can say that the result of scanning highly
depends on the S C A P content quality and the tools will not do anything useful without
appropriate inputs. Therefore, there was a need for an open source S C A P content, that
would allow users to fully consume it without paying a high price for third-party S C A P
content.

To offer an open source S C A P content, finally S C A P Security Guide (SSG) has been
created. SSG is a collection of S C A P documents. For Red Hat Enterprise Linux, it imple­
ments most of the policies mentioned in Chapter 2.1. It also offers policies for Debian and
other Linux distributions, for Firefox, Java Runtime Environment and other applications.
Unfortunately, SSG does not provide Windows content, but Windows is more covered by
S C A P content available on NIST website [25].

SSG uses S C A P standards in the following way: For every product (operating system or
application) there is an X C C D F checklist. A specific policy is only a profile in this X C C D F
checklist. A profile is a subset of rules contained in the X C C D F checklist. This approach
enables sharing of rules across multiple policies, which is convenient, because they often
overlap. The actual checks are written in OVAL—each rule references a check which is in
a form of O V A L definition.

As of version 0.1.39, S C A P Security Guide contains a lot of rules. The rules are struc­
tured and logically organized. Every rule is accompanied by a detailed description and

14

rationale. Rules are marked by identifiers and references directly to the specific require­
ments in the policy (policies) the rule implements.

The rule also contain short pieces of code, called "remediations", which can fix the
configuration of the system so that it satisfies the rule. They are usually written in Bash
or Ansible. The remediations for example edit the configuration files, disable a system
service or install a missing software package. Remediations can be run either during the
scan or any time later. It is also possible to extract the remediations from the S C A P files
to generate an Ansible playbook or a bash script. They can be run separately in order to
put the system in line with the given security policy. SSG is not only a S C A P resource.

It is of course possible to use different S C A P content than S C A P Security Guide in
OpenSCAP products.

3.1.4 S C A P Workbench

S C A P Workbench is a GUI application that allows users to scan the local system or remote
machines using SSH. It is implemented in C++ using Qt library and uses libopenscap. It
is a simple and intuitive application and is intended for inexperienced users [20]. However,
it provides only the most common functions, for advanced work it is necessary to use
command line. Also, many servers do not have graphical stack installed at all.

After S C A P Workbench is started, it automatically offers to select S C A P Security Guide
content and choose the appropriate profile. It can run the scan by clicking on a single button.
We can see the scan process in Figure 3.1. Then, it can show the result, run remediations or
generate a fix script. S C A P Workbench also allows to customize existing security policies
to the user's needs, e.g. to change minimal password length. The customization is called
tailoring.

It is important to mention that there exists a Windows version for S C A P Workbench.
However, as of version 1.1.6, S C A P Workbench for Windows can be used only to view
or customize S C A P content and to scan remote Linux servers via network using SSH. It
is practical for users who run Windows on their laptop and want to scan easily a Linux
server and see the H T M L report without copying the files back and forth. It is not possible
to scan Windows machines, the Local button is greyed out. That is because the under­
lying libopenscap library does not implement Windows scanning. Users who download
S C A P Workbench frequently report this as a bug and request Windows scanning to be
implemented. Their requests were one of the reasons to work on this thesis.

3.1.5 Other Tools from the OpenSCAP Ecosystem

The OpenSCAP project also provides other tools that improve the experience or add new
possibilities.

First of them, oscap-docker, can scan Linux containers and container images. The scan
is performed from outside of the container, it mounts the container system as read-only.
Therefore it isn't required to install anything in the container and its filesystem remains
untouched. A n utility to scan virtual machines, oscap-vm, works in a similar way.

A small wrapper script oscap-ssh can scan remote machines over network using SSH.
Unfortunately it requires OpenSCAP installed on the target machine, because OpenSCAP
does not have agent-less scanning.

A progressive tool is OpenSCAP Daemon, a system service that runs in background
and continuously verifies the state of the system. It also provides an easy and interactive
command line interface.

15

ssg-fedora-ds.xml - SCAP Workbench

File Help

Title Guide to the Secure Configuration of Fedora

Customization None selected

Profile Common Profile for General-Purpose Fedora Systems (74) » Customize

Target © Local Machine

Rules

O Remote Machine (over SSH)

Expand all

gpgcheck Enabled In Main Dnf Configuration

gpgcheck Enabled For All Dnf Package Repositories

Disable P relinking

Build and Test AIDE Database

pass gpgcheck Enabled In Main Dnf Configuration

gpgcheck Enabled For All Dnf Package Repositories

Disable P relinking

Build and Test AIDE Database

fail

gpgcheck Enabled In Main Dnf Configuration

gpgcheck Enabled For All Dnf Package Repositories

Disable P relinking

Build and Test AIDE Database

pass

gpgcheck Enabled In Main Dnf Configuration

gpgcheck Enabled For All Dnf Package Repositories

Disable P relinking

Build and Test AIDE Database fail

Verify and Correct File Permissions with RPM processing

• Verify File Hashes with RPM

• Disable Kernel Support for USB via Bootloader Configuration

• Verify that Shared Library Files Have Restrictive Permissions

• Verify that Shared Library Files Have Root Ownership

• Verify that System Executables Have Restrictive Permissions

• Verify that System Executables Have Root Ownership

• Direct root Logins Not Allowed

5% (4 results, 74 rules selected)

Processing...

Cancel

Figure 3.1: S C A P Workbench 1.1.6 running on Fedora.

The Red Hat Enterprise Linux installer, Anaconda, contains a plug-in, called O S C A P
Anaconda Addon [], which can install the operating system in a way it is compliant to
the given policy from the very first boot.

Another part of the ecosystem is Libswid. Libswid is a new library that allows inter­
acting with Software Identification (SWID) tags. SWID is a new component introduced in
S C A P 1.3 standard.

OpenSCAP is used in Project Atomic [1], a container management tool, to scan contain­
ers and container images. OpenSCAP is integrated in Red Hat Satellite [8] and ManagelQ,
tools for systems management.

3.2 Typical O p e n S C A P Use Cases

The most frequent use case is to scan in order to verify whether the given systems complies
with a selected security policy. In the following example we will scan R H E L 7 machine
against DISA STIG using S C A P Security Guide.

oscap xccdf eval \

— p r o f i l e xccdf_org.ssgproject.content_profile_stig-rhel7-disa \

—results-arf results.xml —oval-results —report report.html \

/usr/share/xml/scap/ssg/content/ssg-rhel7-ds.xml

16

The progress of scanning can be seen in the terminal, and a report is generated to
report.html. The H T M L report contains an overview of the evaluated rules. As can be
seen on Figure 3.2, for each rule H T M L report contains detailed information about the rule
and why it passes or fails.

Set Default f irewalld Zone for Incoming Packets

Rule ID

Result

Time

Severity

Identifiers and
References

Description

xccdf_org.ssgproject.contentjxile_set_firewalld_default_zone

2018-05-14T17:53:14

medium

5.10.1,3.1.3,3.4.7,3.13.6, CCI-000366, CM-6(b}, CM-7, SRG-OS-00D48D-GPOS-00227

To set the default zone to drop for the built-in default zone which processes incoming IPv4 and IPv6
packets, modify the following line in / e t c / f i r e w a i i d / f i r e w a i i d . c o n f to be:

DefaultZone=drop

Rationale In f i r e w a l l d the default zone is applied only after all the applicable rules in the table are examined for
a match. Setting the default zone to drop implements proper design for a firewall, i.e. any packets which
are not explicitly permitted should not be accepted.

Check /etc/firewalld/flrewalld.conf DefaultZone for drop • failed because these items were missing:

Object oval:ssg-obj firewalld input drop:obj:1 of type textfilecontent54_object

Filepath Pattern Instance

/etc'firewalld/firewalld.conf *DefaultZone=dropS 1

Figure 3.2: A result of a single rule evaluation in OpenSCAP H T M L report.

Machine readable rules are stored in A R F format in results .xml. We can use this
A R F for example to fix the system to put it in line with selected security policy.

oscap xccdf remediate results.xml

This command runs a remediation script for rules that were evaluated as fail during the
scan. If we run the scan in a same way as in previous example again, all the rules should
be evaluated as pass. In practice, this might not be completely true, because some rules
do not contain any remediation script. The reason of omitting the script might be that
the script is not possible to be written in a generic way. For example, a rule that requires
remote logging to be activated, it is necessary to configure a specific IP adress of the remote
log server, which obviously vary across organizations.

17

Before we run the remediate command it is recommended to check the scripts that are
going to be run. We can extract them from the A R F results file.

oscap xccdf generate fix —fix-type bash —output fix.sh results.xml

Those were the 3 most frequent use cases on a command line. Users can do the same
tasks using S C A P Workbench GUI application.

3.3 O p e n S C A P Alternatives

There are more products that implement S C A P or its subset. However, most of them are
not open source, majority of them are commercial software.

• Space and Naval Warfare Systems Command (SPAWAR) has developed S C A P Com­
pliance Checker (SCC) []. SPAWAR SCC can only be downloaded by employees of
U.S. government or its agencies, it is not available to the general public. It was used
to evaluate S C A P Security Guide by some users before OpenSCAP was certified.

• Joval [18] is a multi-platform configuration compliance scanner, implemented in Java.
It provides an agentless sensor. The problem of Joval is that it supports only the
latest version of O V A L .

• I B M BigFix Compliance [17] is a S C A P scanner by I B M .

We can clearly see that OpenSCAP is comparable with other products that implement
SCAP. The disadvantage of OpenSCAP is enormous complexity of the project from both
the user experience and inside implementation points of views.

3.4 O p e n S C A P Internal Implementation

As we have already explained in Subsection 3.1.1, most of the code creates a shared library.
The shared library is divided into modules that conform to logical structure of the S C A P
specification. There are modules for X C C D F , O V A L , etc.

The implementation of scanning follows algorithms specified in S C A P specification.
Retrieving data from the system is done using probes. Probes, in terms of OpenSCAP,

are small separated executable binaries. Although they run as separated processes, probes
are started and terminated by the library code and communicate with the library using
IPC mechanisms. Probes are strongly related to the O V A L language. Each probe imple­
ments a single O V A L object according to O V A L Definitions specification. They produce
O V A L items according to O V A L System Characteristics specification. That means each
probe takes care of a single type of object. Most used probes on Linux are f i l e probe,
textfilecontent54 probe, rpminfo probe and systemdunitdependency probe.

As we can see in Figure 3.3, the probes scan the operating system and applications and
they send their findings to the OpenSCAP shared library. The OpenSCAP shared library
used from S C A P Workbench, or oscap tool, or via Python bindings. The oscap tool can
be used either directly or via wrapper utilities, e.g. the oscap-docker utility. As an input,
they use S C A P Security Guide or any other S C A P content resource.

The probes were designed as a separated executable programs because there was a re­
quirement to cover each probe by a SELinux policy. Later, it turned out that writing
a SELinux policy for probes would be very complicated, so the requirement for separate

18

v
S C A P Security Guide

content

S C A P Workbench
GUI application

V

oscap
command line tool

/\

oscap-ssh oscap-docker Python, Ruby

file probe

process58_probe

textfilecontent54_probe)

Figure 3.3: OpenSCAP structure.

processes was dropped. There is no need to run probes as separated processes anymore.
Nevertheless, due to separation of probes there is a complicated mechanism for communi­
cation between probes and library. Data are serialized using a custom implementation of
Lisp serial expressions, which is called SEXP, are send through a socket and then decoded
again. The communication protocol is not documented anywhere.

In my opinion, the solution is over-engineered. For example, there are 4 distinct ways of
communication and both asynchronous and synchronous commands. Therefore this code is
big, hard to understand and debug, but that would not be necessary at all if probes were
not designed as separate processes.

A l l probes use a common interface, but each probe is implemented in a different way.
General rule is that they are forbidden to call external processes. For example, it is not
possible to get information about network interfaces by calling a network tool (such as ip)
and parsing its output. Instead the data are retrieved by using system calls, A P I of libraries
and very often reading from files or directories.

OpenSCAP library, probes and oscap tool are written in C language. The language
choice is now seen very inappropriate in regards of the implemented features. A lot of
code is dealing with X M L parsing and building, large data structures processing, searching
or regular expression matching. Some programming languages provide large facilities that
would be very useful for working on these tasks. Instead, a lot of code in OpenSCAP
is written from scratch. Also, using object oriented programming could be useful. From
OpenSCAP code review we can see it often tries to mimic object design. Due to C language
the development is slower, more complicated and more error prone. On the other hand, the
code might be faster sometimes and the libraries have smaller footprint.

The H T M L outputs are generated from X M L results (e.g. X C C D F result documents)
afterwards by extensible Stylesheet Language Transformations (XSLT). That causes some
information can never be displayed in H T M L report because they are not allowed in X M L
results by S C A P specification. On the other hand, this solution allows users to create their
custom designs and new formats of reports.

The OpenSCAP repository contains X M L schemas (XSD) of all versions of all sup­
ported S C A P documents. Users can validate their S C A P documents using OpenSCAP.
The validation is also performed implicitly each time an X C C D F or O V A L are processed.

19

Chapter 4

Extending OpenSCAP to Windows

OpenSCAP is available in most Linux distributions and is widely used to perform security
audits of Linux machines. OpenSCAP users and the community of auditors and system
administrators often request to add support for Microsoft Windows. They want to scan
their Windows machines for security compliance using OpenSCAP in the same way as their
Linux machines. The Windows version would help organizations where both Linux and
Windows are deployed. OpenSCAP could also be a good alternative to proprietary S C A P
scanners for Windows users.

Extending OpenSCAP to Windows will be also beneficial for the project itself. The new
features will improve visibility of the project and could attract new users. People looking for
a security compliance solution will have more reasons to choose OpenSCAP. Wi th a larger
community, bugs and feature requests are more likely to be reported. New contributors
might be interested in working on developing OpenSCAP. This work is also an opportunity
to refactor the code and to fix outstanding issues.

The goal of this work is to enable S C A P scanning of Microsoft Windows operating
systems using OpenSCAP. That means to port the existing parts and implement Windows
parts of the S C A P standard, namely the Windows tests defined in the O V A L specification.

In this chapter, we will define requirements on the solution and we will design changes
and extensions of the OpenSCAP project necessary to achieve the goal. We will describe
the way they have been implemented and which problems had to be solved.

4.1 Requirements

First we need to define features that should be present in the designed solution and identify
requirements on the final product.

Extension of an Existing Project The Windows part of OpenSCAP should not be
a new separate tool but rather a feature extending the existing program.

The implementation should not re-implement anything that is already done. Instead,
it should reuse as much existing code as possible. To be able to process real-world S C A P
content, we need an implementation of common O V A L parts, X C C D F and other S C A P
standards. It is a very huge task to implement these features from scratch, and all this is
already implemented in OpenSCAP and tried by many users. If some part of code cannot
be used, it should be refactored and common parts should be shared.

20

The user interface (GUI, H T M L reports and command line interface) needs to be kept
the same. People expect them to be used on all platforms in the same way. Therefore,
current documentation, website, tutorials and presentations should be applicable to the
Windows version as well.

At the same time, it is not preferred to fork OpenSCAP. The changes introduced by
this work should be public and should be merged into the upstream repository. Only this
way the project can benefit from the work done while preparing this thesis.

The patches should be submitted upstream using GitHub pull requests. They should be
reviewed by upstream developers and the feedback should be always reflected. Sharing the
work with upstream is much harder than working privately on its own fork, but OpenSCAP
already knows the author.

This requirement is set because this thesis is done in cooperation with Red Hat.

Portability OpenSCAP is written in C but it often calls POSIX-only functions or even
contains Linux specific code. This does not affect only Linux probes, where it is expected
and acceptable, but it is a problem of the whole code base. Certain parts of code have to
be changed in a more portable way. Both the shared library and the oscap tool should be
able to build natively on Windows. Therefore, the code should be made as much platform
independent as possible. At the same time it needs to build on various Linux systems, so
the build system should automatically configure the project based on the platform. The
OpenSCAP shared library A P I should be the same on Windows as on Linux.

Visual Studio Support There are multiple developer environment options on Windows.
For a project that comes from Unix world, we could try using Cygwin or M S Y S , which bring
Linux environment to Windows. They would made the transition easier at the first sight.
But it would cause problems in future, because these options provide only a limited subset
of Linux features, the programs are not native, do not provide convenient tools and are not
preferred by Windows community.

Rather, native Windows applications are often developed and built using Microsoft
Visual Studio. According to Stack Overflow Developer Survey 2017 [] responded by
64000 developers, 38.8% of developers use Microsoft Visual Studio, which makes it the most
popular Integrated Development Environment (IDE). Also, Visual Studio provides a lot of
convenient tools, debugger, documentation, etc. Using it as an developer environment
should make development easier. A full Visual Studio support will make it easier for new
people to start contributing, because it is a tool that most people are familiar with.

At the beginning of this work, it was not possible to configure and build the OpenSCAP
code in Visual Studio 2017. We need to enable importing the project into Visual Studio
and all the code must be compiled by Visual Studio 2017 compiler without any problems.
The procedure to develop on Windows should be straightforward and also documented for
future contributors.

Avoiding Software Regression A n obvious requirement is to not break existing use
cases and avoid introducing regressions. OpenSCAP has a test suite in the upstream
repository which will help us. The tests are run by Jenkins, a continuous integration
(CI) server. The tests are triggered periodically every week, on every change of upstream
code and on every pull request opened on GitHub. However, it will be necessary to verify
regression tests to the project before major changes. Later, we might also need to add
Windows node to the Jenkins server and create tests to test the new code.

21

O V A L Object Windows Windows Windows Windows Total %
7 U S G C B 10 STIG 7 STIG 2016

STIG

registry 208 175 288 141 812 74.22%
accesstoken 23 21 20 59 123 11.24%
fileeffectiverights53 0 12 0 23 35 3.20%
wmi57 0 8 6 14 28 2.56%
wmi 1 5 4 3 13 1.19%
file 3 3 5 1 12 1.10%
regkeyeffect i ver ight s 5 3 0 0 12 0 12 1.10%
passwordpolicy 6 1 1 1 9 0.82%
lockoutpolicy 5 1 1 2 9 0.82%
sid_sid 0 4 0 3 7 0.64%
sid 4 0 2 0 6 0.55%
user 4 0 2 0 6 0.55%
auditeventpolicysubc... 1 1 1 3 6 0.55%
family 2 1 1 1 5 0.46%
group 0 4 0 0 4 0.37%
variable 2 0 1 0 3 0.27%
user_sid55 0 2 0 1 3 0.27%
wuaupdatesearcher 1 0 0 0 1 0.09%

Table 4.1: Most used O V A L objects on Windows.

Partitioning O V A L Objects As we have discussed in Section 3.4, data from the system
are retrieved using probes. Each probe implements a single O V A L object according to the
O V A L specification.

The O V A L implementation needs to include not only the Windows specific O V A L ob­
jects, but also objects that are defined in O V A L Independent Definitions Schema. O V A L
5.11.1 specification defines 14 types of objects in Independent Definition Schema and 48
types of objects in the Windows Definitions Schema (including deprecated objects). A l l of
them are applicable on Windows.

In real-world policies some O V A L objects are used more often than others. From a data
set obtained by merging Windows 7 U S G C B [26] and STIGs (Windows 7 STIG version
1.35, Windows 10 STIG version 1.11, and Windows 2016 Server STIG version 1.5) [], we
can get the statistics in Table 4.1. The author has made a script that counts frequency of
occurrences of O V A L object types in those S C A P documents. The script can be found on
the attached C D .

We can see that from 62 total types only 18 were used and remaining 44 O V A L object
types are not used there at all.

The probes can be implemented one by one, because without probe the scan is still
possible, only rules that need the probe would be evaluated as "unknown". Therefore, the
design and implementation of probes should start with the most used O V A L object.

It should not be a problem if we implement only a few probes in this thesis. Much more
important would be that any contributor will be able to add new probes in future. They
should not solve any problems with the build system, the common part, the internal logic,

22

and other things unrelated to the probe implementation. Omitting the rarely used objects
will have lower impact and can be fixed later.

S C A P Scanning OpenSCAP on Windows should be able to process and evaluate S C A P
content, namely the real world policies in X C C D F and O V A L formats. It should be able
to generate the report and display the results. Most of the key features provided by oscap
interface have to work as expected.

4.2 Extension of an Exist ing Project

As we have discussed in Section 4.1, we have a requirement to extend the OpenSCAP and
include all the work into the OpenSCAP source code Git repository.

Due to nature of the work that changes existing and mature project, the Windows
support will be developed in small incremental steps. The changes will be done in a series
of small patches, which are commits in Git terms. Each commit has to have a proper
description. To make the code review and the inclusion of the code easier the set of patches
will be split into distinct pull requests, depending on the area changed or introduced. Each
pull request has to have a proper description, rationale, labels, milestone and particularly
it has to be reviewed and accepted by the OpenSCAP developers community.

The OpenSCAP project has 2 branches. The implementation can be based either on
master branch or on maint-1.2 branch. The maint-1.2 branch is a branch binary compatible
with OpenSCAP 1.2.0 release. It contains only small features and bug fixes. Major changes
are not accepted into this branch due to upstream versioning policy []. Since we plan to
introduce some major changes, the work has to be based on OpenSCAP master branch.

Although it seems we will not change the maint-1.2 branch, it is not true, because some
patches might fix bugs that are present in maint-1.2 branch, and so it is required to include
them in maint-1.2 first to follow the upstream versioning policy [21].

Even if this workflow means that the two branches will diverge a lot after this work will
be finished and it will be more difficult to fix bugs that appear in both branches, stability of
the stable branch must be preserved. Moreover, the development should be easier because
the versioning policy allows to change more things in master branch, namely to change the
application programming interface (API) and application binary interface (ABI), which will
be needed. This way is also in line with the requirement to keep all existing use cases.

It is not planned to change command line options or user interface. To work on Windows
most likely we will not need to add any new options that would be Windows specific.

4.3 X M L Changes

To evaluate Windows S C A P content we need to be able to validate the input files to make
sure all input data are valid and can be processed by OpenSCAP correctly and without
errors. But the O V A L Windows X M L schemes are already present in OpenSCAP, so it is
possible to validate the X M L documents with Windows specific content. It is possible to
validate the Windows content also on Linux, because OpenSCAP uses X S D schemes and
X M L schematrons imported from the official O V A L website and it does not perform any
additional checks.

However, we need to be able to determine if the checks are applicable on Windows. To do
that we should add new Common Platform Enumeration (CPE) definitions to OpenSCAP

23

C P E dictionary. That will enable OpenSCAP to recognize it runs on Windows and evaluate
X C C D F rules that are explicitly marked as applicable only to Windows.

The OpenSCAP C P E dictionary defines CPEs for many supported platforms and de­
scribes them using O V A L definitions.

4.4 Addressing Portability Issues

OpenSCAP was originally designed and developed only on Linux. Portability of the source
code to Windows has not been a priority for the project so far. At the beginning of the
work, it was not possible to build it natively on Windows or run it on Windows at all.
Although it was possible to build a limited subset of the code using Cygwin or using cross-
compilation, the process was very complicated and the resulting program was not able to
scan.

4.4.1 Moving to CMake Build System

First problem that we need to solve is to choose a build system that we will use to build
OpenSCAP on Windows. We need to be able to process the configure step smoothly. The
build system should automatically find dependencies, generate a Visual Studio 2017 project,
build and link the code and install the executables.

OpenSCAP uses G N U Automake as a build system now. It is used to build the library,
the oscap application and other utilities. The build system also provides test harness to
run the upstream test suite.

Nevertheless, the Automake build system is not used correctly in OpenSCAP. Currently,
it builds everything into static libraries and does much unnecessary linking. During the
build of probes it builds some parts multiple times. The result is that the probes, which are
supposed to have about 10 kB in size, have grown up to 1.5 M B , because the probe binaries
contain a lot of duplicated symbols and duplicate code sections from the shared library.
Due to these problems, the build is also quite slow, which is demonstrated in Table 4.2.

Moreover, Visual Studio 2017 does not support Automake. One can install the Cygwin
or M S Y S system to use Automake on Windows, but Visual Studio 2017 does not support
them as well.

OpenSCAP uses Automake from the very beginning. Makefiles are convoluted and do
not follow the build system development practices. In current shape it would be difficult to
adapt the build system to a different platform. Therefore, we need to investigate possibilities
to use a different, multi-platform and widely supported build system.

We have identified CMake build system [] as a suitable solution of the problem.
Its advantages are platform and compiler independent configuration files that are easy to
understand. CMake is widely used in large C or C++ projects. It provides a test framework
(CTest) and a packaging tool (CPack). It is relatively easy to find the dependencies and set
compiler options. CMake generates Unix Makefiles, Microsoft Visual Studio project files,
and other development environments. It works with multiple compilers, including M S V C .
Moreover, Visual Studio 2017 has direct support for CMake [], which means it is enough
to open a directory containing a CMake project and everything is processed automatically.

Some of the projects in OpenSCAP ecosystem already use CMake. CMake is used as
a build system in S C A P Workbench. S C A P Security Guide have been ported from Makefile
to CMake as well. The project has a good experience with it. The choice of CMake is logical
then.

24

Git branch Build system real [s] user [s] sys [s]
maint-1.2
master

Automake
CMake

107.13
38.68

97.09
32.29

13.09
7.46

Table 4.2: Speed of OpenSCAP build using old G N U Automake and new CMake.

67/84 Test #68: probes/rpmverify/all.sh Passed 8.02 sec

Start 69: probes/rpmverifyfile/all.sh

68/84 Test #69: probes/rpmverif yf i l e / a l l . sh ***Failed 7.43 sec

TEST: rpmverifyfile probe test with OVAL 5.11.1

Definition oval:x:def:1: true

Evaluation done.

Failed: expected count: 1, real count: 0, xpath: 'oval_results/results/

system/oval_system_characteristics/system_data/lin-sys:rpmverifyfile_

item/lin-sys:capabilities_differ[text()="not performed"]'

+ rpmverifyfile probe test with OVAL 5.11.1 [FAIL]

RESULT: FAILED

Listing 4.1: Example of a CTest fail.

However, it will be necessary to change Jenkins configuration when those changes will
be implemented, which is potentially risky, because we can introduce a regression in the
build project. We need to verify if CMake build system produces all expected artefacts by
comparing the build with the previous build system. After we are sure the build system is
able to build every target as the old one, we can reconfigure Jenkins.

Therefore, the implementation of OpenSCAP for Windows started by moving the project
from G N U Automake to CMake build system. This has been done on Linux.

It is important to mention that the project has many build targets—the shared library,
utilities, 40 separate probe executables, SWIG bindings, Doxygen documentation etc.

Some of build dependencies could not be covered by commonly shipped CMake modules,
so some new modules were either implemented or obtained from other projects and tailored
to find dependencies. For example, it was necessary to provide a module that checks for
P C R E library.

Also, the author has provided many CMake options to enable developers adjust the
build configuration. The options allow to disable or enable tests, probes, documentation
and SWIG bindings. It is also possible to turn off or on building of a specific probe or whole
group of probes. The options can be chosen on command line, and CMake also provides
an user-friendly GUI to customize the build, which can be seen in Figure 4.1.

Finally, the upstream test suite was converted to CMake, using CTest framework. The
CTest framework enables better test fail reporting, allows to select only particular tests,
and can be used on Windows as well. Moreover, the CTest testing is faster and its output
is better than the output of the old test suite. It is easier to find the failed test in the log,
as we can see in Listing 4.1. The move of the test suite to CTest could be used as a starting
point to improve the test suite of the OpenSCAP project, which now e.g. lacks unit tests.

The CMake Build System has been implemented successfully1 and has been merged into
upstream master branch. The new build commands were updated in upstream R E A D M E

x

https: //github.com/0penSCAP/openscap/pull/890

25

http://github.com/0penSCAP/

CMake 3.11.0 - /home/jcerny/openscap/build

File Tools Options Help

Where is the source code:

Where to build the binaries:

Search:

/h o m e/jcerny/o pe n s c a p Browse Source..

/home/jcerny/openscap/build Browse Build..

_ Grouped Advanced "5= Add Entry m Remove Entry

Name J Va lue

E N A B L E - P R O B E S - U N I X a
ENABLE_PROBES_WINDOWS D i
ENABLE_PTTHON2 a
E N A B L E - P Y T H O N 3 • I
E N A B L E - S C E • ENABLE_TESTS a
ENABLE-VALGRIND • OPENSCAP-PROBE- INDEPENDEPJT. .ENVIRONMENTVARIABLE a
OPEN S C A P - P R O B E - I N D E P E N D E N T . .ENVIRONM ENTVARIABLE58 • O P E N S C A P - P R O B E - I N D E P E N D E N T . .FAMILY a
OPENSCAP-PROBE- INDEPENDEIMT. .FILEHASH a

Press Configure to update and display new values in red, then press Generate to generate
selected build files.

Configure Generate Open Project Current Generator: Unix Makefiles

C o n f i g u r i n g done
G e n e r a t i n g done

Figure 4.1: Configuring the OpenSCAP master branch using CMake GUI on Fedora 27.

and in OpenSCAP User Manual. After a few small bug fixes2 it has started to be used
as the preferred build system. Finally, the old G N U Automake system has been removed
from the OpenSCAP master branch. It is very likely that OpenSCAP will start to use the
CMake build system to build Fedora packages once OpenSCAP version 1.3.0 is released.

The build is with CMake approximately 2-3 times faster than before. 10 measurements
have been made on a laptop. Average values can be seen in Table 4.2. Also the build can
be easily parallelized.

After the problems of CMake were resolved on Linux, the focus has moved to Windows,
and the author started to work on importing the project into Visual Studio 2017.

It turned out that even though Visual Studio 2017 has a direct support for CMake, it
has performance problems when using it on such a large project. Visual Studio 2017 was
not able to load the project from CMake and always froze.

Fortunately, CMake is able to generate a Visual Studio 2017 Solution which can be
easily opened by Visual Studio 2017. Then, it was able to regenerate the build if any string
changed in any CMakeLists.txt. This additional step is not considered a major problem
because Visual Studio versions older than 2017 have not supported CMake before. The
steps to generate and use a Visual Studio 2017 Solution have been documented3 in the
OpenSCAP User Manual in the Developer Operations Section [23].

2

https: //github.com/OpenSCAP/openscap/pull/915
3

https: //github.com/OpenSCAP/openscap/pull/926

26

4.4.2 Dependencies

OpenSCAP depends on other open-source libraries, namely libxml2, zlib, curl, pcre, libxslt
and libexslt [23]. Fortunately, all the libraries that are required to build OpenSCAP are
compatible with Windows.

In past, Windows developers usually downloaded the libraries and compiled them man­
ually or they downloaded compiled binaries. Then, they bundled the libraries into their
application. This is not convenient.

There is a new open source tool by Microsoft that helps developers to acquire and build
C or C++ libraries, called Vcpkg [15].

Vcpkg is similar to package managers known from Linux distributions, but it downloads
source code of libraries and compiles them on user's machine. We only need to ensure that
the CMake scripts in OpenSCAP can always find libraries obtained by Vcpkg on both
platforms.

After we have adopted Vcpkg, we can get all dependencies for OpenSCAP by issuing
these commands into the Windows command prompt:

git clone https://github.com/Microsoft/vcpkg.git

cd vcpkg

.\bootstrap-vcpkg.bat

.\vcpkg install curl libxml2 libxslt bzip2 pcre pthreads

.\vcpkg integrate install

Then, we add this option to cmake command:

-D CMAKE_TOOLCHAIN_FILE=c:/devel/vcpkg/scripts/buildsystems/vcpkg.cmake

These instructions have been added to the OpenSCAP User Manual [23].

4.4.3 Portable C Code

OpenSCAP is written in C. The problem with portability is that different compilers support
different C language features, different standard libraries, data types and they provide
a different set of functions. The adoption of standards also differs among C compilers.

So far OpenSCAP was compiled only by G C C on Linux and rarely with CLang. It has
not been tested regularly with different compilers or on different platforms. The conse­
quence is the code heavily uses G C C extensions and Linux specific features.

Due to the requirement to enable Visual Studio 2017 for our future contributors, we
need to be able to compile OpenSCAP on Windows using Microsoft Visual Studio 2017
C Compiler (MSVC) . Unfortunately, the M S V C 2017 compiler does not fully support C99
standard. It fully supports only C89.

The most painful point is a missing support for variable length arrays, because they
are used frequently in the code base. Variable length arrays are arrays on stack whose size
cannot be determined at the compile time. A n example is shown in Listing 4.2. It has been
necessary to replace variable length arrays by dynamic memory allocation using malloc.
Then, all this memory has to be freed, so we cannot replace all the occurrences of variable
length arrays automatically, but we have to think about their removal.

S E X P parser uses dynamically computed goto labels which are a special feature of the
G C C and Clang compiler []. It serves to get the address of a label defined in the current
function with the unary operator &&, as we can understand from Listing 4.3. S E X P parser
needs to be rewritten because S E X P is used at many places in OpenSCAP. It is a function

27

https://github.com/Microsoft/vcpkg.git
file:///bootstrap-vcpkg.bat
file:///vcpkg
file:///vcpkg

int do_something(char * s l , char *s2)

{

char buffer[strlen(sl) + strlen(s2) + 1];

Listing 4.2: C99 Variable Length Array.

const void *labels[] = {

&&L_BRACECLOSE,

&&L_CHAR,

&&L_INVALID,

}

L_BRACECLOSE:

goto labels[i];

L_CHAR:

if (x >= 1)

goto labels [x - 1];

Listing 4.3: Dynamically computed goto labels compilable by G C C .

that has 1049 lines. In order to solve the issue with dynamically computed goto labels, the
S E X P parser has been redesigned and changed4 to a deterministic finite automaton. The
jump labels have been replaced by states of this automaton.

OpenSCAP uses many functions and system calls that are not available in Microsoft
C Runtime. Windows uses the Win32 A P I instead of the usual A P I found on Linux.
Those functions that are not available on Windows have to be replaced by other functions
or by a custom implementation. We will try to use functions available on both systems
everywhere possible.

Another problem is that OpenSCAP sometimes uses memory alignment. Windows has
functions for memory aligned allocations, but memory allocated by these functions needs
to be freed by corresponding functions that perform aligned free [].

The memory alignment is used to achieve a memory saving strategy in S E X P module.
The S E X P can have 4 types, which are specified by flags. Normally, there would be a vari­
able that would store these flags. But that variable would take a few bytes from memory,
and since S E X P is used extensively in OpenSCAP, that could be megabytes in worst case.
Instead, OpenSCAP aligns memory, it makes sure the lowest 4 bits of the pointer to aligned
memory block are zeros. Then, it stores the flag to these lowest 4 bits using bitwise oper­
ations. Every time before such a pointer is dereferenced, those flags are masked out. The
masked 4 bits then serve to determine the type of value stored at the location the pointer
points to. That way it saves the memory. The drawback of this solution is that it is less
readable, harder to understand, and slow. Also, this is not the biggest memory problem of
OpenSCAP.

4

https: //github.com/OpenSCAP/openscap/pull/979

28

The problems with memory alignment have been successfully fixed by freeing the mem­
ory correctly.

Another portability issue is that OpenSCAP extensively uses macros with variable
amount of arguments, so-called variadic macros. Unfortunately, Microsoft Visual Studio
2017 does not fully support them. The problems with variadic macros have finally been
solved5 by removing them or replacing them by conventional code. As a side effect, some of
the checks and assertions that were performed only in debug mode will now be performed
always, also in the released builds of OpenSCAP.

Sometimes, there is no simple replacement for a Linux function on Windows. A n ex­
ample is strptime. To solve this the author has proposed to create a compatibility module
in OpenSCAP that will contain fallback code of some functions. This module is named
compat.h.

The code from the compatibility module will be compiled only if the function was not
found by CMake on the system. To avoid reinventing, functions can be copied from other
open source projects if their code is licensed under a license compatible with G N U L G P L
2.1. If no suitable implementation can be found it will be needed to implement it from
scratch, though.

Smaller differences between the platforms can be resolved using conditional compilation.
If CMake detects that some function or library is available on the system, it will add
a new macro into configure.h and the code will contain two options depending on this
macro. Sometimes a problematic function can be found at multiple places across the code.
For these cases we have proposed to always create a new function that has two different
implementations and put this function to the common.h header file. The advantage of this
approach is that the actual implementation is only at one place and all function calls are
simply replaced.

A big difference is the file path queries, because Windows uses different organization
that has no common root directory. We will define separate data structures and functions
to handle paths on Windows.

We need to create a multi-platform shared library [32], which means to build a Dynamic
Linked Library (DLL) on Windows. Wi th G C C , all symbols are automatically exported.
The private headers are marked using a pragma. On Windows or in Visual Studio 2017 we
have to mark every symbol that is going to be exported explicitly. Every symbol is private
by default. CMake has a variable that can make every symbol in a library public, but that
would expose also the symbols from private header files. We have a requirement to have
the A P I on Windows same as on Linux, which we have discussed in Section 4.1.

The A P I symbols have been all marked by the 0SCAP_API macro 6, which is defined
based on used compiler. This is a common approach [32]. In M S V C , if a shared library is
compiled, it means the symbol is exported to the library. In G C C , it means that the symbol
changes its visibility. As a result, we could remove the G C C visibility pushes and pops,
because they were replaced by this macro. Now, we can see from every function declaration
if the function is a member of public A P I , we do not have to search for pushes and pops.

Originally, the A P I conversion has been made automatically, but incorrectly, because
it put the macro to some places where it should not put it, namely in other macros or in
comments. Therefore, it is not a good idea to make this type of changes blindly automati­
cally.

5

https: //github.com/OpenSCAP/openscap/pull/984
6

https: //github.com/OpenSCAP/openscap/pull/934

29

To make the transition easier, we first have used cross compilation on Fedora using
M i n G W . M i n G W , a contraction of "Minimalist G N U for Windows", is a minimalist devel­
opment environment for native Microsoft Windows applications [G]. A l l the probes have
been disabled and we started with the core part, that should be multi-platform.

There were problems with functions that are not available in M i n G W runtime, which
means they are usually not available in Windows as well. For example stpcpyO, waitpidO,
realpathO. We have either used different, more common, functions or used Windows A P I
functions. Sometimes, a G N U library (gnulib) has been downloaded and adopted to the
compatibility module.

A wrapper function oscap_dirname has been introduced. This function wraps dirname
on Linux and splitpath_s on Windows. Additional logic has been added on Windows to
align the behaviour with its POSIX counterpart. For example, the returned string should
never end with a slash or a backslash.

Similar solution has been done in stpcpy, vasnprintf and basename
7

.

After the compatibility fixes have been done8 to enable a successful cross-compilation,
we have moved to Visual Studio 2017 support. This was more difficult, because this is
a different platform and a different, more restrictive compiler.

After some minor changes needed in the CMake build system, the code have been able
to be imported into Visual Studio 2017.

However most of the work included making the code building. The variable length arrays
have been completely replaced and removed9. Complicated variadic macros have been
completely replaced and removed as wel l 1 0 . These changes are very gigantic patches. Also,
small amendments to the CMakeLists.txt files have been made—e.g. checking for some
libraries that were available only on Linux or fixing quotes. Then, the probe subsystem has
been added to the build. That required other set of changes, including the aforementioned
S E X P parser rewriting.

Finally, we have been able to build OpenSCAP on Windows using Visual Studio 2017,
but without the O V A L part, which means it has not been useful at all. To make the O V A L
part work, we need more fundamental changes, which will be described in Section 4.5.

4.5 O p e n S C A P Architecture Changes

As we have mentioned in Section 3.4, data from the scanned system are retrieved by probes,
which are separate processes. Probes have to communicate with the shared library.

But probes communicate with the core library using a pair of AF_UNIX sockets which is
created by socketpair function. The socketpair is POSIX function and is not available on
Windows. And AF_UNIX sockets will be a new feature in Windows 10 [1]. Since we need to
support other versions, we need to find a different way of using probes and communicating
with them.

The easiest way would probably be to replace the AF_UNIX socket by a pipe or a named
pipe. Windows A P I provides functions for this (e.g. CreatePipe) and they could be used,
but they cannot check the state of processes they communicate with. Handling signals and
checking the probes process statuses would have to be done in a different way.

7

https: //github.com/OpenSCAP/openscap/pull/932
8

https: //github.com/OpenSCAP/openscap/pull/925
9

https: //github.com/OpenSCAP/openscap/pull/931
1 0

https: //github.com/OpenSCAP/openscap/pull/984

30

http://github.com/OpenSCAP/

Another option is to rework the communication with probes using a cross-platform IPC
library, for example Apache Portable Runtime (APR) . A P R is available both on Linux and
Windows, and can be obtained by Vcpkg tool for the Windows build as well. We could also
find many other cross-platform IPC libraries. However, the drawback is that it introduces
a new dependency also on Linux. It is not convenient in Linux distributions if a footprint
of a package is growing.

The third option is to try to not use separate processes at all, because we have mentioned
that the mechanism of separate processes is not needed anymore. It should be possible to
change the architecture and include the probe code into the main process. This way we
would avoid inter-process communication completely. The application without IPC is less
error prone and easier to debug.

This approach also enables us to get rid of S E X P and S E A P in the future. However, the
code contains useful type checks and data conversions. It also supports evaluating O V A L
variables, O V A L sets, O V A L filters and other advanced O V A L features. Therefore it is not
easy to remove the S E X P and S E A P completely, because we would have to do a completely
new implementation of all these O V A L features. Also, the current implementation is not
designed to be able to extract these from the code. Due to aforementioned reasons, we are
not going to remove S E X P and S E A P now.

We can do the change for all probes, including the Linux probes, since this is handled
by a common code shared by every probe. A l l the probes share a lot of common code. This
code implements communication with the base library, handling SEXP, input and output
caches, initialization and cleanup. The actual probe code that is different is smaller in
comparison with the common code.

As we have mentioned in previous section, communication between oscap process and
probe processes is encapsulated in S E A P protocol. S E A P protocol already has multiple
implementations in OpenSCAP source code. To solve the transition, we can add another
implementation of SEAP, that would not use pipes or socket operations, but rather would
be build around a shared queue.

The entry point main function is same for all the probes, and does not consume any
parameters. The main function of the probe process can easily be reused as a thread function
spawned from parent oscap process. OpenSCAP already uses threads for handling probe
inputs and caches, so it would not introduce a new dependency.

Nowadays, OpenSCAP uses AF_UNIX socket to send data between processes. When
we convert the processes into threads, they could use a different way of communication.
Threads can share a common variable. If this variable would be a structure containing
2 queues, first queue could be a queue of messages from the core to the probe, the second
one would be used for the opposite direction.

The parent thread needs to have a way to inform the probe thread that it added some
data into the queue and vice versa. The two threads need to be synchronized. We can
use two conditions, each for one queue, signalling that the queue is not empty. The reader
blocks until the writer puts some data into the queue. This will simulate the current
implementation.

To be able to convert the probes to threads, we need to rename the probe functions,
because now all the probes have a function called probe_main. We also need a table that
maps O V A L object types to probe functions.

The biggest change in terms of program logic was the designed shift from multiprocess
architecture to a single-process architecture. We have developed this on Linux, because
there are tests from the upstream test suite and it is easier to verify.

31

We have started by implementing a simple queue. Then, this queue was used as a base
for the new S E A P scheme, which was called simply a sch_queue.

Meanwhile, processes have been converted to threads. The fork, execve, signal calls
have been removed.

A new table that maps O V A L object to probe functions has been added. This table
replaced the old table that is not relevant any more. This table contains an O V A L test
the probe implements, a pointer to probe initialization function, a pointer to probe main
function, a pointer to probe clean up function and a pointer to the probe offline mode
function. The functions from this table have been used as callbacks in the shared probe
code.

The conversion of probes into the main process involved renaming all the probe functions
because they conflicted. Also, a new header file has been added for each probe C file,
because they had no header files. We had to rename the C files, because names like f i l e .h
or password.h can clash with header files from other projects or system libraries. A suffix
to each header file and C file in the same format has been added.

During these changes, some problems have occurred.
One of the problems was that the probes used global variables to pass some parameters

to their local functions. This was very often used in R P M and file probes. When OpenSCAP
evaluates an X C C D F that references multiple O V A L files, multiple instances of the same
probe can run at the same time. That was not a problem when probes were separate
processes, but threads share their global variables. Using global variables will lead to
crashes when multiple threads will run at the same time, namely double frees or data
inconsistency. Therefore, we have decided to get rid of global variables, and pass all the
data as function parameters.

This change also involved adapting CMake build system. The probe targets were re­
moved and their sources were added as new modules of the libopenscap shared library.
That means the build system produces much less artefacts than before.

The original implementation build only the probes for which all the dependencies (li­
braries, header files) were installed, because not all dependencies are available on every
operating system. We need to not even keep this behavior, but also improve it, because
a large amount of probes will not be built on Windows. OpenSCAP dynamically deter­
mined which probe binaries are build after its start. When the compiled probes are no
longer separated binary files, this has to be reworked. Dependencies have to be determined
at the compilation time. We have used the variables produced by CMake together with
C preprocessor directives to use only the probes that were build.

After the socket has been removed, it was no longer needed to convert data from S E X P
to a string and then back from string to S E X P . Instead, it is possible to save a pointer
to S E X P structure to queue directly. This removed time consuming S E X P parsing and
serialization, which was now an unnecessary overhead.

Also, the generic S E A P scheme has been replaced by the specific S E A P queue scheme.
Then, all the other implementations of the S E A P protocol have been removed. That allows
further refactoring.

The author expected performance improvements, because we removed a lot of overhead,
mainly we have removed inter-process communication and serializations, which are time
intensive algorithms. However, we have not seen any speed up. The author suggests
performing audit of existing threads and usage of synchronization primitives, because it
might turn out that mutexes and barriers were used at places where they are not needed
anymore.

32

The author at least discovered an existing performance problem caused by unneeded
extensive usage of getenv function when compiled with debugging symbols and reported
it to the upstream 1 1.

After this change 1 2, OpenSCAP still works in all its use cases and the change did not
introduce any major regression.

4.5.1 Offline Mode Changes

OpenSCAP probes can run in the so-called offline mode. The offline mode means that the
probe scans a different (guest) filesystem mounted in a host filesystem. This is used to scan
virtual machine images, Linux container images and containers without any need to install
OpenSCAP inside them. Users can easily scan virtual machines or containers from the
host, if they mount a container or an image in some directory on their host. OpenSCAP
provides convenient utilities like oscap-docker or oscap-vm that leverage offline mode.

The offline mode can be implemented either using chroot call or by consistently adding
a prefix to each file path that is manipulated by the probe.

Adding a prefix to paths is preferred solution over chroot, because on Linux user have
to be granted CAP_SYS_CHR00T capability, which is not usually granted to normal users.

The first option is very easy to implement and was used in all probes in past. However,
users have to have CAP_SYS_CHR00T capability granted to be able to call chroot. It leads
also to other problems like loading libraries from the mounted guest system. Limitation of
this approach is that some probes cannot work in offline mode, because they either depend
on library calls that do not support it, or their read from runtime environment which is not
present in mounted filesystem.

To access the virtual machine or container, their filesystem is mounted in a directory
on the host machine, usually in /tmp. Then OpenSCAP switches to offline mode. Offline
mode means that probes operate on the mounted filesystem, not on the host filesystem.

The second option is more complicated, but avoids the problems of the former, so
it is a preferred way. Some of the probes have already been migrated to this option in
past. But during work on this thesis, the author has discovered a serious bug 1 3 that the
probes mixes data from the host and guest operating system. A n example of this bug was
textfilecontent54 probe.

The offline mode is widely used by OpenSCAP users. After changes implemented in
Section 4.5 we have to make sure offline mode still works. We wanted to move to the second
option, which was successfully done by the author for many probes. This included fixing
the aforementioned bug.

However, at the same time, we have discovered it is not possible to not use chroot
in R P M probes, because there is a bug 1 ' 1 in R P M . Therefore the author has implemented
a mechanism to return back to original probe directory after the probe finishes the scan.
This is a temporary solution until the R P M bug is fixed.

The offline mode will not be supported on Windows at the time of writing this text.
Nevertheless, the fix of offline mode was necessary to get the architecture change described
in Section 4.5 accepted and merged by upstream.

n

https: //github.com/OpenSCAP/openscap/issues/995
1 2

https: //github.com/OpenSCAP/openscap/pull/981
1 3

https: //github.com/OpenSCAP/openscap/issues/1001
1 4

https: //bugzilla.redhat.com/show_bug.cgi?id= 1566985

33

E3B Administrator: Command Prompt

C:\>oscap i n f o c:\devel\scap_gov.nist_USGCB-Windows-7.xml
Document type: Source Data Stream
Imported: 2018-D3-D6TD7:20:38

Stream: scap_gov.nist_datastream_USGCB-Windows-7-2.9.5.1.zip
Generated: 2O15-04-B7T1B:BD:00
Ve r s i o n : 1.2
C h e c k l i s t s :

Ref-Id: scap_gov.nist_cref_USGCB-Windows-7-2.0.5.1-xccdf.xml
S t a t u s : accepted
Generated: 2015-04-07
Resolved: f a l s e
P r o f i l e s :

T i t l e : United S t a t e s Government C o n f i g u r a t i o n B a s e l i n e 2.O.E.I
Id : x c c d f g o v . n i s t p r o f i l e u n i t e d s t a t e s g o v e r n m e n t c o n f i g u r a t i o n

_ b a s e l i n e _ v e r s i o n _ 2 . 0 . 5 . 1
Referenced check f i l e s :

USGCB-Windows-7-2.O.5.1-oval.xml
system: http://oval.mitre.org/XMLSchema/oval-definitions-S

USGCB-Windows-7-2.0.5.1-OCIL.xml
system: http://scap.nist.gov/schema/ocil/2

USGCB-Windows-7-2.0.5.1-patches.xml
system: http://oval.mitre.org/XHLSchema/oval-definitions-5

Checks:
Ref-Id: scap_gov.nist_cref_USGCB-Windows-7-2.0.5.1-OCIL.xml
Ref-Id: scap_gov.nist_cref_USGCB-Windows-7-2.0.E.l-oval.xml
Ref-Id: scapgov.nist_cref_USGCB-Windows-7-2.0.5.1-patches.xml
Ref-Id: scapgov.nist_cref_USGCB-Windows-7-2.0.5.1-cpe-oval.xml

D i c t i o n a r i e s :
Ref-Id: scapgov.nist_cref_USGCB-Windows-7-2.0.5.1-cpe-dictionary.xml

C: \>

Figure 4.2: OpenSCAP oscap info running on Windows 10.

At this point, we are able to successfully build OpenSCAP in Visual Studio, and run
simple tasks, as we can see in Figure 4.2. However, no Windows probe is implemented
yet. That means no data can be retrieved from the system and therefore the results of
all X C C D F rules are "unknown" at this point. Their design and implementation will be
discussed in Section 4.6.

4.6 Retrieving Windows Operating System Properties

System objects and their properties in S C A P are described by the O V A L language. The
O V A L language specifies two groups of elements that we have to deal with in this work.

First group is group of independent objects, defined by O V A L Independent Defini­
tions Schema, and corresponding independent items, defined by O V A L Independent System
Characteristics Schema. Although they have the word independent in their name, they are
implemented in OpenSCAP using POSIX functions.

Second group is the Windows objects and Windows items defined by O V A L Windows
Definitions Schema and O V A L Windows System Characteristic schema. We need to create
new probes that will implement these objects. We will most likely use the basic Windows
A P I calls. Windows A P I provides a large amount of functions. The concept of configuration
files is not so often used on Windows, so we need to query the system registry. According
to Table 4.1, the registry probe is the most used and therefore it is preferred to be
implemented first.

34

file://c:/devel/scap_gov.nist_USGCB-Windows-7.xml
http://oval.mitre.org/XMLSchema/oval-definitions-S
http://scap.nist.gov/schema/ocil/2
http://oval.mitre.org/XHLSchema/oval-definitions-5

Another problem is that the Windows A P I uses different conventions. The A P I docu­
mentation uses a specific coding style, which is completely unalike from the Linux Kernel
coding style used in OpenSCAP. When adding patches with Windows A P I calls we need
to be careful to not break conventions used in OpenSCAP project.

OpenSCAP needs to work correctly in localized systems. That is a problem because
Windows A P I functions usually work with wide character strings (UTF-16), but whole
OpenSCAP code uses standard C strings, or multibyte strings in UTF-8 optionally. The
OpenSCAP A P I does not provide functions to work with wide character strings. To process
the data correctly, the strings have to be converted to wide character strings just before
passing them into any Windows A P I function. Similarly, the wide character strings returned
by Windows A P I functions have to be converted immediately to standard C strings [31].
To solve this, the author has added functions that easily convert the strings and should be
used everywhere in OpenSCAP source code.

In case of errors we also need to get the error codes of the Windows A P I calls and cor­
responding error messages. We would like to inform the user about the problem. Windows
has GetLastError and FormatMessage. They are difficult to use, so a wrapper function
has been created, has been put into the common module in OpenSCAP and it is going to
be used across all the code that cooperates with Windows A P I . The error messages need
to be converted to C strings and then used in various places in OpenSCAP, namely ver­
bose mode for informational and debug messages, O V A L message elements and of course
standard error output in case of serious errors.

4.6.1 Adding a New Probe in OpenSCAP

We will describe the process of developing and adding a new probe into OpenSCAP. We will
assume we develop a probe in master Git branch after the architecture changes described
in Section 4.5 have been done.

Each probe implements an O V A L test, its main input is an O V A L object and its output
is an O V A L item. We have to read the O V A L specification carefully, because the probe shall
strictly implement the O V A L specification and should not produce invalid results. First,
we need to understand the test, object, and state specification in O V A L Definition Schema
to realize what inputs we can have. Then, we need to study O V A L System Characteristics
Schema to understand which data should be collected from the system and what they mean.

After we have studied the O V A L specification, we need to find a suitable A P I or a good
library that can give us these data. Sometimes an option is to read data from some file
instead. On Linux, we can probably find a file where we can read the data from, because
there are many useful files in /proc, but on Windows this is less likely. It is forbidden to
call external commands or execute any other processes. The probe cannot be implemented
in a way that it calls some utility and then parses its output. This is a very important
concept of O V A L language that ensures the scan is always read only.

When we have found a suitable A P I we have to think about the algorithm and its
implementation. This is specific to each probe. As a general advice, we try to do everything
in low complexity, because the probes usually collect large data.

Important task is to prepare the infrastructure of the probe. Each probe has some
overhead that allows CMake to build the probe and OpenSCAP to communicate with the
probe and list it in various outputs, e.g. oscap -V.

35

cmake_dependent_option(OPENSCAP_PROBE_LINUX_RPMVERIFYPACKAGE

"Linux rpmverifypackage probe"

ON "ENABLE_PROBES_LINUX; RPM_F0UND" OFF)

cmake_dependent_option(OPENSCAP_PROBE_LINUX_SELINUXBOOLEAN

"Linux selinuxboolean probe"

ON "ENABLE_PROBES_LINUX; SELINUX_FOUND" OFF)

Listing 4.4: CMake Dependent Options in OpenSCAP.

First, we add CMake logic for libraries that the probe requires, if they are new depen­
dencies. Sometimes, this includes writing a new CMake module or looking for a suitable
module on the Internet.

Second, we add a CMake dependent option to root CMakeLists .txt that lets developer
to enable or disable building the probe. The dependent option is a special construction
that differs from a normal CMake option that it is a macro to provide an option dependent
on other options. This macro presents an option to the user and allows him to set the
option to true only if a set of other conditions are true. In our case, the option should be
dependent on finding all the libraries and on the operating system. This way we will easily
avoid building Windows code on Linux and vice versa. The dependent option is presented
in Listing 4.4. We need to add the same variable also to conf ig.h.in in order to access this
option from the C code. Each C file in OpenSCAP includes config.h, which is generated
by CMake from config.h.in.

Third, we create a header file and C file in a subdirectory under src/OVAL/probes,
depending on the schema the probe belongs to, e.g. windows or unix. We add both files
to the CMakeLists.txt in that directory. That must be guarded by the probe option.

The developer can be inspired by existing probes. The C file must contain at least one
function with main as a suffix of its name. This function must take a probe context and
a void argument as parameters.

Then, we add the probe functions as a new entry in the O V A L probe table, which is
located in src/OVAL/probes/probe-table. c. In this table, we map the O V A L type to
probe functions. Therefore, we need to include the probe header file in this file as well.
The probe functions could be: initialization, clean-up, main function and offline mode
function. The functions will be used as callbacks in common probe code. It is not needed
to implement all of them, in fact that would be rare. If some of them is not implemented,
we should insert a NULL to the probe table in place of callbacks instead of defining some
dummy functions in the probe.

Now we can start programming the probe logic itself. It is really inconvenient that the
probe has to work with SEXPs and serialize the data to and from this format. The input
data are obtained from the probe context.

To debug, it can be useful to use verbose mode and add messages of debug, infor­
mational, warning, and error level. If these messages provide valuable information, we
recommend to keep them in the code, so that users can run oscap in verbose mode. Users
can also include verbose output to the bug report if they encounter an issue. It will greatly
help engineers that investigate and fix this bug if the verbose messages are useful.

Thanks to changes described in Section 4.5, debugging of the probe is now easier,
particularly because the probes are now in the same process. In the old architecture,
developers had to capture the messages sent through the socket and inject them into the

36

probe standard input, which was complicated and annoying. Now, they can set a breakpoint
in the probe and run oscap in a debugger. It is very easy in Microsoft Visual Studio 2017
as well.

We highly recommended to create example O V A L definitions for testing the probe and
submit them into the upstream test suite, under tests/probes directory. It would be nice
to add unit tests, but at the time of writing this thesis, OpenSCAP does not have any unit
tests and does not use any unit test framework.

4.6.2 OpenSCAP System Info Probe

A l l O V A L Results documents produced by a S C A P scanner shall contain system_info
element. This element provides basic information about the evaluated system. The O V A L
specification requires this element to contain the operating system name, its version, proces­
sor architecture, primary host name of the machine and IP and physical (MAC) addresses
of all network interfaces of the machine.

For this purpose, OpenSCAP has a special probe, which we call system_info probe.
We had to implement a Windows version of this probe prior to implementation of other
probes, because it must be run during every system scan.

The O V A L specification [] is very vague and does not specify what data should be
exactly retrieved. We can use intensively all the data obtained by the A P I calls. The author
has decided to include both IPv4 and IPv6 addresses including the network mask. According
to specification, the interface element can only have one ip_address child element. That
means if some interface has both IPv4 and IPv6 addresses or more addresses, there will
be multiple interface elements in the output. This is consistent with the output that
OpenSCAP generates on Linux.

<system_info>

<os_name>Windows</os_name>

<os_version>10.0.16299</os_version>

<architecture>x64</architecture>

<primary_host_name>DESKTOP-VIRTUAL</primary_host_name>

<interfaces>

<interface>

<interface_name>Ethernet Connection K/interface_name>

<ip_address>fe80::bcae:e6bc:c42e:312a/64</ip_address>

<mac_address>08-00-27-34-Fl-AK/mac_address>

</interface>

Listing 4.5: O V A L System Info produced by OpenSCAP.

We have used Windows A P I calls to get these information from the system, and Win­
dows Sockets 2 library to get information about network interfaces. The implementation 1 5

might look easy, but it had various pitfalls.
First, the obvious function to get Windows version, GetVersionEx, does not return the

real Windows version. It lies to applications, because this function is meant to be used to
check compatibility of an application with the system. On the author's Windows 10 virtual
machine, it provided a version corresponding to the first release of Windows 7. Moreover,

1 5

https: //github.com/OpenSCAP/openscap/pull/1004

37

this function is deprecated. Microsoft recommends to use Version Helpers A P I instead, but
that allows the application to check if the operating system is compatible with a specific
version, and does not return the exact version string. The Windows version is stored in the
Windows registry, but the author wanted to know if there is some other A P I that could
retrieve the version. Fortunately, it is possible to load ntdll.dll dynamic library and
access symbol RtlGetVersion from there. This function gives us the result we need for our
purposes. The same approach is used in Glib.

Second, if we decide to use Windows A P I and conversion functions from Windows
Sockets 2 A P I we get many build conflicts, because windows.h includes winsock.h which
redefines symbols from winsock2.h, which we want to use. Fortunately, for the purpose of
this probe it has been enough to define WIN32_LEAN_AND_MEAN macro and the problem has
disappeared.

These A P I calls have been used: GetNativeSystemlnfo to get the processor architec­
ture, GetAdaptersAddresses to get the network adapters and their IP and M A C addresses
and WSAAddressToStringW to convert the IP addresses to strings.

As can we see from the Listing 4.5, the contents of the generated system_inf o element
is not exciting, but its purpose is to distinguish the reports from the different systems.
Even if host names in the organization's network are not set up correctly, we can identify
reports from different systems in the report by their IP and M A C addresses.

4.6.3 O V A L Independent Family Test

The O V A L Independent Family Test is used to check the family of the operating system—
whether it is Unix, Windows, OS X , etc. The implementation of the probe is extremely
trivial. The probe just returns a hard-coded string "Windows" and populates it into the
corresponding O V A L item. The purpose of this is to provide base building block for C P E
dictionaries. In this work it has been used as a simple input for integration testing of
OpenSCAP on Windows, specifically at the time no other probes have been implemented
yet.

4.6.4 O V A L Windows Registry Test

The Windows registry is a hierarchical database that stores low-level settings for the M i ­
crosoft Windows operating system and for applications that have chosen to use the Windows
registry [6]. The database entries are called keys, and one key consist of multiple named
values of different data types. The keys form a tree, in fact multiple trees, where each tree
root is called a hive. The key is a path in this tree.

Many applications, including Windows itself, prefer using the registry over text con­
figuration files. This is a big difference from Linux systems, where text configuration files
are traditionally preferred. That also means on Linux, a majority of the O V A L definitions
describe contents of text files, but on Windows, most of the O V A L definitions query registry
values.

The O V A L Windows registry test is used to check values and metadata associated with
Windows registry key. In O V A L Definitions document, the registry_object element can
be used to identify the registry key or specific values under the key. The object consists of
the following elements:

1. hive, a root registry key, which is limited to this set of options:

(a) HKEY_CLASSES_ROOT

38

(b) HKEY_CURRENT_CONFIG

(c) HKEY_CURRENT_USER

(d) HKEY_LOCAL_MACHINE

(e) HKEY_USERS

2. key, which specifies the key by its path. The hive part should not be included, which
is against convention, but that makes sense, because there is a dedicated element for
the hive. The key can be specified not only by an exact string, but also by using
a regular expression.

3. name, the name of the registry value, which can be also specified cts ct rc gular expres­
sion.

4. behaviors, an optional element, that can specify if the registry tree should be walked
recursively or not, in which direction, and maximal depth of recursion. It also specifies
a Windows View, which denotes if the registry should be viewed as a 32 bit application
or as a 64 bit application.

The features required by behaviors element complicate design and implementation of
the probe. We have to implement the probe by an in-order tree search algorithm.

The possibility of regular expressions in the key element implies that the O V A L object
could match multiple keys, including . * which matches all keys on all levels under the given
hive. Unfortunately, the author has discovered that OpenSCAP does not have any limits on
count of collected items, and could be possibly killed because it runs out of memory. This
happens often in Unix File probe, which can check all the files on the system, including
mounted remote filesystems. A good solution would be to enforce limits on counted objects,
and optimize the memory usage by writing the collected data to the output file continuously.
However, this should be solved for all OpenSCAP probes, which is closely related to how
OpenSCAP serializes data with libxml2, so this optimization is out of scope of this thesis.

Unfortunately, Windows A P I does not provide any function for recursive traversals of
registry. It also does not have any function that could match registry keys or values by
a regular expression. Therefore it is needed to implement these functions in OpenSCAP.

However, in practice, the registry key is usually specified exactly and the key operation
is equals. This fact can be leveraged in optimization—if the exact registry key is specified
the probe does not have to search whole registry tree, but it can directly open the given
registry key. A similar optimization can be used also for operation case insensitive equals,
because registry keys are not case sensitive, so it is sufficient to convert the key to lowercase.

O V A L specification also defines 2 special cases. First is that the key element is allowed
to set xsi :nil="true", which means the root hive should be collected only. This means
we can skip recursion, collect only data about the root, and make sure no key element
appears in collected O V A L item. Second special case is that name element is allowed to
set xsi :nil="true", which means the object is intended only to check the existence of
a particular key. This means the probe has to collect the key, but cannot collect any values
under that key. Therefore we need to check for those 2 possibilities each time an item is
going to be collected. We need to add a possibility to collect only the registry key without
its values, though.

The recursive implementation is quite time consuming, because in worst case it has to
search the whole registry including all the values. However, practical use cases restrict the
search on a very small subtree of the registry.

39

<win-sys:registry_item id="10229616" status="exists">

<win-sys:hive>HKEY_LOCAL_MACHINE</win-sys:hive>

<win-sys:key>

System\CurrentControlSet\Services\Netlogon\Parameters

</win-sys:key>

<win-sys:name>MaximumPasswordAge</win-sys:name>

<win-sys:last_write_time datatype="int">

131511664238376178

</win-sys:last_write_time>

<win-sys:type>reg_dword</win-sys:type>

<win-sys:value datatype="int">30</win-sys:value>

<win-sys:windows_view>64_bit</win-sys:windows_view>

</win-sys:registry_item>

Listing 4.6: Snippet from O V A L Results Document produced by OpenSCAP by evaluating
an O V A L Windows Registry Object.

The collected data are represented by O V A L registry_item element and should contain
hive, key, name, last_write_time, type, value, and windows_view child elements. A l l
these child elements are optional.

There is a problem with data representation and data type of the registry values. The
Windows A P I returns only a pointer to an untyped buffer. It is up to the application to
typecast and understand the data in the buffer correctly. The O V A L language also has
data types, which are different from the Windows registry types. Therefore it is needed
to implement in OpenSCAP all the conversions to C data structures, and then implement
a conversion to internal S E X P representation, so that the collected data elements have
a correct datatype according to O V A L specification, and also this type is in line with type
element of the collected item. Also, we should be careful because some types of strings
contain the terminating null character and others do not.

It is not clear from the O V A L specification how to process the REG_EXPAND_SZ type,
which is a null-terminated string that contains unexpanded references to environment vari­
ables. First possibility would be to replace the variables by their values, second possibility
would be to collect original unexpanded string. The author has chosen the second option,
because it is more clear where the string comes from.

New registry data types (e.g. REG_RESOURCE_LIST, REG_FULL_RESOURCE_DESCRIPTOR,
REG_RESOURCE_REQUIREMENTS_LIST) were added in O V A L 5.11.1, but they existed in Win­
dows registry before. It is not defined how a scanner shall process these types if it evaluates
content written in older versions of the O V A L language. The author has decided to treat
these data types as binary data and print them out in a hexadecimal form, because they
do not occur much often.

The implementation of the probe is built on the top of these A P I calls: RegEnumValueW,
RegOpenKeyExW, RegQuerylnf oKeyW. We prefer using wide character versions of the calls
to fully support localized values, although we have to use conversions everywhere.

During the testing of this probe, a problem with integer data representation has arose.
The NIST validation test suite tests if the boundary values of the unsigned 64-bit registry
REG_DW0RD data type are collected correctly. It turned out that the O V A L specification
requires the integers in O V A L shall have unlimited size. But OpenSCAP represents integers

40

<accesstoken_object xmlns="http://oval.mitre.org/XMLSenema/oval-definitions

-5#windows" id="oval:mil.disa.fso.windows:obj:437001" version="3"

comment="Gue st s">

<security_principle datatype="string" operation="equals">

Guests

</security_principle>

</accesstoken_object>

<accesstoken_obj ect xmlns="http://oval.mitre.org/XMLSenema/oval-definitions

-5#windows" id="oval:mil.disa.fso.windows:obj:437100" version="3"

comment="Domain Admins">

<security_principle datatype="string" operation="pattern match">

".*\\Domain Admins$|"Domain Admins$

</security_principle>

</accesstoken_object>

Listing 4.7: Examples of Access Token objects adopted from Windows 10 STIG.

by a signed 64-bit number internally. It is not an easy task to implement integers of
unlimited size in C, unless we use G M P library. It also requires large changes across
OpenSCAP codebase. Therefore the author decided to not solve this issue, keep the integers
as they are and do not support very large numbers. This hopefully will not affect typical
use cases.

Finally, the probe has been implemented completely 1 6 and is able to collect the registry
keys and their values, as can be seen in Listing 4.6. We might find the last_write_time
value suspicious, but the O V A L specification requires the date to be represented as 64 bit
unsigned integer.

4.6.5 O V A L Windows Access Token Test

The O V A L accesstoken_test is used to check the properties of a Windows access token
as well as individual privileges and rights associated with it. The accesstoken_object
contains only a single security principle that identifies user, group, or computer account
that is associated with the token. A n example of the accesstoken_object is shown in List­
ing 4.7. The trustee string has format computer_name\trustee_name or just trustee_name
for local accounts.

On the other hand, the corresponding O V A L item (accesstoken_item) has 45 child
elements. Each element represents rights or privileges which the trustee can get. For
example SeAuditPrivilege or SeBackupPrivilege. The values are boolean.

According to the O V A L specification, the O V A L Access Token Test has been deprecated
in O V A L 5.11, will be removed in O V A L 6.0 and has been replaced by User Rights Test.
However, in the specification, we can not find any definition of the User Rights Test. And
in Table 4.1 we can see that existing S C A P content widely uses it. Also, the S C A P scanners
should support every version of O V A L language due to backwards compatibility.

The important concept is a SID, which stands for Security Identifier. A SID is an unique
value of variable length used to identify a trustee [12]. We need to convert the value of

1 6

https: //github.com/OpenSCAP/openscap/pull/1007

41

http://oval.mitre.org/XMLSenema/oval-definitions
http://oval.mitre.org/XMLSenema/oval-definitions

security_principle element to a SID. Then, we can use the LsaEnumerateAccountRights
to get the privileges and rights granted for this SID.

The security principle can be specified by a regular expression, as demonstrated in the
second example in Listing 4.7. The regular expression is a problem, because Windows A P I
does not provide any function that accepts a regular expression as a parameter. To perform
the match, we first need to get a set of all possible values of the security_principle
element that this element could gain on the given operating system. Then, we have to
choose the items that match this regular expression. Again, there is no function for that.
To solve the problem, we have to obtain lists of all existing local users, local groups, global
users and global groups and merge those lists together. We also need to generate so-called
well-known SIDs, which are special SIDs that are built in each Windows system. We need
to add the list of well-known SIDs to the pattern match search as well.

It is clear that the possibility of a regular expression again makes the implementation
harder than expected. On the author's Windows 10 machine, which was not connected to
a domain, the list contained 114 items. And we have to implement many helper functions
to get all the members of this list.

To get the privileges the LsaEnumerateAccountRights was used. However, the privi­
leges can be inherited from parent group(s). Because of that, we also need to get names of
the parent group and get their privileges and merge them together.

The solution has been implemented 1 7 and is working properly on Windows 10 where
it has been tested. However, the O V A L specification says that the privileges may differ
among Windows versions and the documentation for that version of Windows should be
consulted for more information. Therefore to implement this probe properly we will have
to test it also on older versions of Windows and cover the possible differences in the probe
code.

4.6.6 O V A L W M I Test

Windows Management Instrumentation (WMI) is an infrastructure for management of
data and operations on Windows operating systems []. It can be used for automated
administration of remote computers.

The O V A L Windows Definition Schema defines 2 tests that are related to W M I —
a wmi_test and a wmi57_test. The former has been deprecated and replaced by the latter
in O V A L 5.7. Because the 5.7 version was released in 2010, we are going to focus on the
currently used wmi57_test, but the final product should implement both of them, because
both can appear in real-world S C A P policies.

The wmi57_object has only 2 elements: namespace and wql. The latter contains
a query in the W M I Query Language (WQL) format. W Q L is a subset of standard Struc­
tured Query Language (ANSI SQL) with minor semantic changes. This language lets users
to query specific fields from W M I tables. O V A L specification forbids to query all fields
(using SELECT * from). We can see two examples of wmi57_object in Listing 4.8.

Windows provides an A P I to interact with W M I via Component Object Model (COM).
C O M is an object-oriented system for creating binary software components that can inter­
act with each other [11]. It can be used from various languages, including C and C++.
OpenSCAP is written in C. Unfortunately, it is easier to use the C O M A P I from C++ than
from pure C, because C++ provide programming mechanisms that simplify the implemen­
tation of C O M objects, which are object-oriented. Their documentation is also in C++, so

1 7

https: //github.com/OpenSCAP/openscap/pull/1009

42

<wmi57_object xmlns="http://oval.mitre.org/XMLSenema/oval-definitions

-5#windows" id="oval:mil.disa.stig.windows:obj:3501" version="1">

<namespace datatype="string">root\cimv2</namespace>

<wql datatype="string" operation="equals">

SELECT installstate FROM win32_optionalfeature

WHERE name = 'IIS-HostableWebCore'

</wql>

</wmi57_object>

<wmi57_obj ect xmlns="http://oval.mitre.org/XMLSenema/oval-definitions

-5#windows" id="oval:mil.disa.stig.windows:obj:3800" version="6"

comment="McAfeeFramework State">

<namespace>root\cimv2</namespace>

<wql>

SELECT state FROM Win32_Service WHERE Name="McAfeeFramework"

</wql>

</wmi57_object>

Listing 4.8: Examples of W M I objects adopted from Windows 10 STIG.

C++: hr = service->ExecOuery(...);

C: hr = service->lpVtbl->ExecOuery(service, ...);

Listing 4.9: Using C O M methods from C++ in pure C.

we cannot blindly follow the documentation, but we need to translate classes and methods
in a way that is demonstrated in Listing 4.9.

Obtaining the data from W M I is very simple. First, we need to initialize the C O M
library for use by the calling thread using CoInitializeEx and initialize security attributes
using CoInitializeSecurity.

Second, we create an instance of IWbemLocator interface using CoCreatelnstance.
Then, we use the IWbemLocator interface to obtain the initial namespace pointer to the
IWbemServices interface for W M I by calling ConnectServer function. The namespace
pointer is specified by namespace element in the O V A L object.

Finally, we execute the W Q L query, defined by the wql element of the wmi57 O V A L
object using ExecQuery. It returns an enumerable list of IWbemClassObject interface,
which we then process and we then get the fields specified by the W Q L query. To be able
to identify the fields from the W Q L query string, we could write a small parser on our side,
but we can use the GetAnalysis function that parses the W Q L string. At the end, the
obtained data must be properly converted and populated to O V A L items.

This probe should produce O V A L record elements according to the O V A L specifica­
tion. It turned out that support for O V A L record elements was incomplete in OpenSCAP.
Therefore, the remaining part of the O V A L record element has been implemented 1 8 first.

1 8

https: //github.com/OpenSCAP/openscap/pull/1018

43

http://oval.mitre.org/XMLSenema/oval-definitions
http://oval.mitre.org/XMLSenema/oval-definitions

Comparison of O V A L records with O V A L states has been implemented as well . Finally,
the probe for O V A L Windows wmi57 test has been implemented 2 0 successfully.

4.7 Packaging

Back Next Cancel

Figure 4.3: Windows Installer.

The Windows applications are usually distributed as executable packages which provide
a graphical installer wizard. To make OpenSCAP for Windows easy to install, we have
decided to create a Windows Installer.

Making an installer has been easy thanks to CMake and CPack. CPack provides gen­
erators to create various types of packages, including D E B , R P M , and namely Windows
Installer. There are 2 options in CMake: Creating a standalone executable file (EXE) using
Nullsoft Scriptable Installation System (NSIS) or creating MSI packages using W i X toolset
(WIX). We have chosen the latter, because it is more customizable.

Since OpenSCAP is a command-line application, it would be useful to add to the system
PATH target directory where oscap.exe is located, to let the users run oscap any time
without having to remember and type the full path. Unfortunately, we cannot achieve this
by CMake directly, but fortunately we can create a W I X patch. The W I X patch is a simple
X M L file.

The main problem is to pack all the dependent libraries into the installer. CMake has
useful module BundleUtilities. This module analyses the installed target binary and
finds all the dependent libraries, including indirect recursive dependencies. The recursion
is very useful in case of OpenSCAP, because oscap.exe depends only on OPENSCAP.DLL,
but OPENSCAP.DLL depends on many other libraries, which also depend on other libraries,
e.g. curl depends on zlib.

1 9

https: //github.com/OpenSCAP/openscap/pull/1024
2 0

https: //github.com/OpenSCAP/openscap/pull/1019

44

When BundleUtilities identify all dependent DLLs , they copy all the DLLs from the
paths specified in the CMakeLists to the MSI package. We provide only the path to the
Vcpkg build directory, where all the libraries are located.

The MSI package is generated automatically when we run cpack command in the com­
mand line or when we build PACKAGE project in Microsoft Visual Studio 2017. The resulting
file is about 9 M B large, because it contains all X M L schemes. A file with SHA512 hash of
the installer is produced as well.

The Installer successfully installs OpenSCAP, including all the dependencies, X S D and
X S L T files and adds it to PATH for all users. We can see the OpenSCAP Windows Installer
running in Figure 4.3.

The changes in CMake have been submitted to upstream 2 1. The built installer package
has been published on OpenSCAP GitHub in Releases section and a link to download has
been added into Download page on the OpenSCAP Portal.

2 1

https: //github.com/OpenSCAP/openscap/pull/1020

45

Chapter 5

Testing, Verification, and
Assessment of the Project

In this chapter, we will demonstrate the results of the project. We will show that OpenSCAP
can scan Windows systems and we will discuss results of these scans. Furthermore, we will
focus on testing and evaluation. Finally, we will propose future improvements of this work.

Since OpenSCAP is an existing project and follows the specification, we need not to
evaluate its existing parts. Rather, we should demonstrate that we successfully provided
an extension of the project to enable Windows support, and we are able to scan Windows
machines using OpenSCAP, which was the goal of this thesis.

5.1 Scanning Windows Systems Using Real World Security
Policies

OpenSCAP evaluates security policies written in S C A P format, which are often referred
simply as S C A P content. We will demonstrate that S C A P content describing secure Win­
dows configuration can be consumed and evaluated by OpenSCAP.

A lot of S C A P content for Windows already exist. For example, DISA STIG for Win­
dows 10 [5] or U S G C B for Windows 7 [] can be used. These benchmarks are available to
download from the Internet.

The DISA STIG for Windows 10 version 1.35 contains multiple profiles. They define
different settings according to classification level of the system in question—mission critical,
mission administrative, mission support. Each of them has three subcategories: classified,
public and sensitive. We can see OpenSCAP scanning Windows with one of the DISA
STIG profiles in Figure 5.1.

The Windows 10 STIG version 1.35 consists of 222 X C C D F Rules. Wi th OpenSCAP, it
is possible to evaluate 154 of these rules, which is 69 %. The remaining 68 rules are evaluated
as "unknown" because the probes that could evaluate these rules are not implemented. Until
those probes are implemented, auditors will have to check these rules manually.

OpenSCAP is able to produce results in S C A P formats and human readable H T M L
report on Windows, as current users expect. We can see an example of H T M L report of
a scan of a Windows 10 machine in Figure 5.2.

OpenSCAP is able to evaluate DISA STIG in about 2 minutes on a standard laptop.
The slowest part is evaluation of Access token tests, which could be improved by adding

46

S B Administrator: C o m m a n d Prompt - oscap xccdf eval --profi le MAC-1_Classi f ied --results results.* in I --oval-results --report report.h... — • X

C:\>oscap x c c d f e v a l - - p r o - F i l e M A C - l _ C l a s s i f i e d - - r e s u l t s r e s u l t s . x m l - - o v a l - r e s u l t s - - r e p o r t r e p o r t . h t m l
c:\devel\U_Windows_10_VlRie_STIG_SCAP_l-2_Benchmark.xml
T i t l e Domain-joined systems must use Windows 1Q E n t e r p r i s e E d i t i o n 6 4 - b i t v e r s i o n .
Rule x . c c d f _ m i l . d i s a . s t i g r u l e S V - 7 7 8 0 9 r 3 _ r u l e
I d e n t CCI-000366
R e s u l t unknown

T i t l e Users must be pr e v e n t e d f r o m c h a n g i n g i n s t a l l a t i o n o p t i o n s .
Rule x . c c d f _ m i l . d i s a . s t i g r u l e S V - 7 7 S l l r l _ r u l e
I d e n t CCI-001312
R e s u l t f a i l

T i t l e The Windows I n s t a l l e r Always i n s t a l l w i t h e l e v a t e d p r i v i l e g e s must be d i s a b l e d .
R u l e x . c c d f _ m i l . d i s a . s t i g r u l e S V - 7 7 S 1 5 r l _ r u l e
I d e n t CCI-001812
R e s u l t f a i l

T i t l e Users must be n o t i f i e d i f a web-based program a t t e m p t s t o i n s t a l l s o f t w a r e .
R u l e x . c c d f _ m i l . d i s a . s t i g r u l e S V - 7 7 S 1 9 r l _ r u l e
I d e n t CCI-000366
R e s u l t pass

T i t l e A u t o m a t i c a l l y s i g n i n g i n t h e l a s t i n t e r a c t i v e user a f t e r a s y s t e m - i n i t i a t e d r e s t a r t must be d i s a b l
ed.
R u l e x . c c d f _ m i l . d i s a . s t i g r u l e S V - 7 7 S 2 3 r l _ r u l e
I d e n t CCI-000366
R e s u l t f a i l

[T i t l e The Windows Remote Management (WinRM) c l i e n t must not use B a s i c a u t h e n t i c a t i o n .

Figure 5.1: OpenSCAP evaluates a Windows 10 machine against Mission Critical Classified
profile from DISA S T I C

a global cache for the trustees SIDs, to prevent collecting them repeatedly. If we remove
these rules, the evaluation is shortened to approximately 10 seconds.

The detailed results can be seen after clicking on the rule title in H T M L report. It
will show us O V A L details. We can see an example of a rule result detail in Figure 5.4.
The report has the same format as on Linux. It contains the IP and M A C addresses to
distinguish reports from different systems. Example reports from various machines can be
found on the attached C D .

A similar case is U S G C B . To show you that we have not tested only Windows 10, but
also older Windows 7, we have successfully installed OpenSCAP on Windows 7 SP1 and
we have run U S G C B scan. OpenSCAP running on Windows 7 is shown on Figure 5.5. The
U S G C B for Microsoft Windows 7 contains only one profile, which consists of 258 rules.
Wi th OpenSCAP, it is possible to evaluate 207 of these rules, which is 80 %. Again, the
remaining rules could not be evaluated because some O V A L tests are not supported by
OpenSCAP so far.

5.2 Testing

OpenSCAP upstream contains a large test suite, which is run regularly. The Jenkins CI
server runs the tests automatically for every change in upstream code and also for every
pull request opened on GitHub.

Unfortunately, the test suite cannot be run on Windows because it is implemented in
Bash. The test suite lacks unit tests. Most of the tests could be categorized as feature or
integration tests.

47

file://c:/devel/U_Windows_10_VlRie_STIG_SCAP_l-2_Benchmark.xml

@ OpenSCAP Evaluation Report

Windows 10 Security Technical Implementation Guide

with profile I - Mission Critical Classified

The Windows 10 Security Technical Implementation Guide (STIG) is published as a tool to improve the security of Department of Defense (DoD) information systems. Comments or
proposed revisions to this document should be sent via e-mail to the following address: disa.stig_spt@mail.mil

Developed_by_DISA_for_tne_DoD

Evaluation Characteristics
Evaluation
target

VIRTUALPC

Benchmark
URL

cAU Windows 10 V1R10 STIG SCAP 1-2 Benchmarks

Benchmark
ID

xccdf_mil.disa.stig_benchmarh_Windows_10_STIG

Profile ID xccdf_mil.di5a.5tig_profile_MAC-1_Cla5sifed

Started at 2018-04-30T10:56:11

Finished at 2018-04-30T11:01:27

Performed Honzik

CPE Platforms

cp e: 1 o: m i cr os oftrw indow a _10

Addresses
* ^ g fe80:0:0:0:bcae:e6bc:c42e:312a%3
• 10.0.2.15
* ^ g 0:0:0:0:0:0:0:1
• 127.0.0.1
* ^ g 2001:0:9d3S:6abS:Sa4:321a:f5tT:fdfO
• ^ g fe80:0:0:0:8a4:321r3f5ff:fdfD%4
» 08-00-27-34-F1-A1
. C23 CO-00-OO-OO-OO-OO-OO-EO

Compliance and Scoring

The target system did not satisfy the conditions of 122 rules! Furthermore, the results of 68 rules were inconclusive. Please review rule results and consider applying
remediation.

Rule results

Severity of failed rules

Figure 5.2: OpenSCAP H T M L report presenting results of Windows 10 evaluation against
DISA STIG.

Rewriting the test suite is a large task, so it is out of scope of this thesis. But increasing
test coverage and introducing unit tests could be a task that the project will focus on.

For purposes of this work, we will only make sure we will not break tests and introduce
regressions on Linux. Then, we will introduce a few basic tests that will be runnable on
Windows.

To test Windows probes, we could use S C A P validation test suite [28] provided by NIST.
The validation test suite is used in process of S C A P certification. Their test suite provides
input O V A L files and expected results. Unfortunately, as of version 1-2.2.0.0 the test suite
is not automated and results have to be compared manually. But OpenSCAP received
certification in past, and some parts of this suite were automated by the OpenSCAP team
and include in OpenSCAP upstream in past. Based on that, it will be possible to extend
the upstream test suite by Windows tests form the NIST Validation Test Suite.

The author has provided exemplary content that tests the O V A L Windows probes.
Originally, we wanted to add a Windows node in Jenkins, to make sure the new pull

requests will not break the Windows builds or destroy the work done in this thesis. The

.1.8

mailto:disa.stig_spt@mail.mil

T WN10-SO-000040

Outgoing secure channel traffic must be encrypted when passible.

T WN10-CC-000145 Ctm

Users must be prompted lor a password on resume from sleep (an battery)

T WN10-SO-C00D46

Outgoing secure channel traffic must be signed when possible.

T WN10-CC-000150 tnffik
The user must be prompted for a password on resume trom sleep (plugged in).

' WN10-CC-000155 Ctm

Solicited Remote Assistance must not be allowed.

' WN10-SO-000D50

The computer account password must not be prevented from being reset

' WN10-CC-000165I

high

Unauthenticated RPC clients must be restricted from connecting to the RFC server.

T WN10-CC-000170 tnffik
The setting to allow Microsoft accounts to be optional for modern style apps must be enabled.

T WN10-SO-C00D5S

The maximum age for machine account passwords must be configured to 30 days or less.

T WN10-CC-rjQ0175<na^

The Application Compatibility Program Inventory must be prevented from collecting data and sending the information to Microsoft

T WN10-SO-000D60

The system must be configured to require a strong session hey.

T WN10-CC-000180

Autoplay must be turned off for non-volume devices

' WN1Q-SO-00Q070 i

'\ 2 '\

The machine inactivity limit must be set to 15 minutes, locking the system with the Screensaver.

Figure 5.3: Rule results in OpenSCAP H T M L report of evaluating Windows 10 machine
against DISA STIG.

Windows builds would be scheduled regularly on Jenkins and OpenSCAP maintainers would
be notified if build fails.

We have found it would be convenient to use AppVeyor for Windows builds instead
of Jenkins. AppVeyor is a CI solution oriented on Windows builds. AppVeyor provides
pre-defined images with Windows and Visual Studio 2017 and is fully integrated with
GitHub. At the time of writing this thesis, AppVeyor is free for open source projects. We
have configured AppVeyor 1 to build Windows version of OpenSCAP. AppVeyor runs the
Windows build on every upstream pull request on master branch and AppVeyor reports
the build status in the GitHub pull request.

The author has checked that evaluating of datastreams, composing datastreams and
decomposing datastreams works as expected. That means OpenSCAP can handle tempo­
rary files and directories on Windows, because these operations work due to a temporary
directory.

x

https: / / c i . appveyor.com/project/OpenSCAP/opens cap

49

http://appveyor.com/project/OpenSCAP/opens

Outgoing secure channel traffic must be encrypted when possible.

Rule ID

Result

Time

Severity

Identifiers and References

xccdf_mil.disa.stig_rule_SV-78133r1_rule

201 B-04-30T09IS1:1 6

medium

CGI 00?41B, GGI M?4?'

Description <VulnDiscussion>Requests sent on the secure channel are authenticated, and sensitive information (such as
passwords} is encrypted_ but not all information is encrypted. If this policy is enabled, outgoing secure channel traffic
will be encrypted.<A/ulnDiscussionxFalsePosit ives></FalsePosit ives><FalseNegatives></FalseNegatives>
<Documentable>false</Documentable><Mitigations></lvlitigations><SeverityOverrideGuidance>
</SeverityOverhdeGuidance><Potentiallmpacts></Potentiallmpacts><ThirdP3rtyTools></ThirdPartyTools>
<Mitig3tionControl></Mitig3tionControl><Responsibility></Responsibility><IAControls></IAControls>

'Domain member Digitally encrypt secure channel data [when possible) 1 is set to 'Enabled' • passed because of these items:

Hive Key Name Last write time Type Value
Windows
view

HKEY_LOCAL_MACHINE System\Cu rrentc ontrol Set\S ervices
\Netl og on\Pa ra m eters

SealSecureChannel 131511664236376178 reg_dword 1 64 bit

;cause of these items: 'Domain member: Digitally encrypt or sign secure channel data (always)'is set to'Enabled' | passed |J ;cause of these items:

Hive Key Name Last write time Type Value
Windows
view

HKEY_LOCAL_MACHINE 3ystem\Cu rrentc ontrol 3et\S ervices
\Netl og on\Pa ra m eters

RequireSignOrSeal 13151166423B376178 reg_dword 1 64 bit

5.3

Figure 5.4: Rule detail presented in OpenSCAP H T M L report.

Future Plans

This work can be extended in many ways. It can be improved or integrated with other
tools. We might want to port on Windows other tools from the OpenSCAP project. There
is a potential in the project to leverage the work done during this thesis. We will mention
a few possible future extensions that are enabled by this work.

5.3.1 Additional Probes

The O V A L Windows Definitions Schema defines 48 O V A L Tests. The author has not imple­
mented all the O V A L tests that are applicable to Microsoft Windows. But the implemented
part of O V A L language is enough to cover majority of the rules used in the practical use
cases on Windows, as we have described in Section 5.1. The remaining parts of O V A L can
be implemented later. The author suggests starting with the Windows file probe, because
properties of files can be interesting for the system audit.

Thanks to changes made during work on this thesis, it will be now easy to add imple­
mentations of remaining O V A L tests for Windows, because the infrastructure is ready. The
developers who will implement new probes should follow Subsection 4.6.1 and could get

50

file:///Netl
file:///Netl

Správce: Příkazový řádek

Enable indexing Lin cached Exchange folders
xccdf_gou.nist_rule_enable_indexing_uncached_excliange_folders
CCE-9866-S
f a i l

Prevent Windows anytime upgrade from running
xc c df _go u . n is t _ru le _pre u e n t _w in do ws _an y t ine _upgrade _f ro n_run n in g
CCE-10137-8
F a i l

Configure Microsoft SpyNet Reporting
xccdf_gou.nist_rule_conf igure_nicrosoft_spynet_reporting
CCE-9868-1

Disable Logging
xccdf __gou.n ist_rule_disable_logging
CCE-10157-6

Display Error Not i f i cat ion
xccdf_gou.nist_rule_disable_error_notif ications
CCE-10709-4
f a i l

Figure 5.5: OpenSCAP running on Windows 7 SP1 evaluating U S G C B .

inspired by existing code. Also, some of probes could reuse the existing code, e.g. probe
that will implement O V A L sid_test can share many code with the Access Token Probe.

Moreover, the O V A L Independent Definitions Schema specifies more tests that are ap­
plicable to any operating system, including Microsoft Windows. If we implement all of the
O V A L Windows tests and O V A L Independent tests, OpenSCAP could aim for the S C A P
Certification by NIST as a certified scanner on Windows.

The implementation should start by implementing probes for the most used O V A L
object according to Table 4.1. The implementation of independent probes should reuse the
platform independent parts of the existing code and only provide a Windows alternative to
Linux-specific code. It will be important to realize which parts of the code are generic.

5.3.2 S C A P Workbench

As we have discussed in Subsection 3.1.4, S C A P Workbench is a GUI application that wraps
OpenSCAP. We have already mentioned that S C A P Workbench can run on Windows, but
it can not scan the Windows machine, it can only scan remote Linux servers via SSH. As
of version 1.1.6, the local scan option is inactive on Windows, because OpenSCAP has not
been able to run on Windows before. After we have implemented OpenSCAP for Windows
we could enable this option.

Integrating the native OpenSCAP into S C A P Workbench for Windows would make
this work more accessible for users. We should not forget that the requests for Windows
support often came from S C A P Workbench Windows users who expected it to be able to
scan Windows machines.

The Windows scans will be enabled in the following way: We will bundle OpenSCAP for
Windows into the S C A P Workbench installer, fix the CMakeFiles to link S C A P Workbench
with the native OPENSCAP. DLL and enable the Local scan button in the GUI . We can also
generate the Windows installer on Windows using CPack the same way as we have done
for OpenSCAP. Then, we would not have to build the installer manually and we would be
able to update it with every OpenSCAP release.

51

We can also associate S C A P X M L files with S C A P Workbench, which would mean if
a user double-clicks on an S C A P file in Windows Explorer, it will automatically open S C A P
Workbench, and offer the user to scan his machine.

5.3.3 PowerShell Remediation

A Remediation is in S C A P terminology a short script, which purpose is to fix the system
to put it in compliance with a rule. These scripts are usually part of X C C D F Rules, they
are hard-coded inside X C C D F fix elements. Remediations are usually written in Python,
Bash, and Perl. It has been very popular to write them in Ansible recently.

On Linux, OpenSCAP is able to run those scripts automatically, during evaluation, to
fix rules that fail, if the user provides —remediate option. We could implement a similar
feature on Windows as well. OpenSCAP would check if an interpreter of the script language
is installed on the system, and then it would run it directly. The most useful thing will be
to run Microsoft PowerShell scripts directly from OpenSCAP.

5.3.4 Windows Support in S C A P Security Guide

S C A P Security Guide is a very popular project where the security policies are defined and
maintained. It already contains a lot of S C A P content for various platforms:

• Fedora Linux

• Red Hat Enterprise Linux 6 and 7

• Red Hat Enterprise OpenStack Platform 7

• CentOS 6 and 7

• Scientific Linux 6 and 7

• Debian 8

• Ubuntu 14.04 and 16.04

• Wind River Linux

• Chromium

• Firefox

• Java Runtime Environment

• Webmin

• JBoss Fuse

• SUSE Linux Enterprise and OpenSUSE

We can see that we could add Windows to the list. Regarding the possible Windows
support in this project, we can think about 2 different features:

First, we could enable building S C A P Security Guide on Windows. That will be possible
because the build system is a combination of CMake and Python, which are both available
on Windows. The S C A P Security Guide build system uses a small amount of Linux-specific

52

things, e.g. paths, which will be needed to be replaced by platform-independent alternatives.
The port will be much easier than OpenSCAP, because in Python most things are platform-
independent. This effort will make life easier for contributors who use Windows on their
workstations, but they develop S C A P content for Linux servers there.

Second, we could start developing Windows S C A P content in S C A P Security Guide.
That would mean to add a new product folder in the project and outline a structure. By
engaging with the community, we could make S C A P Security Guide the preferred resource
of S C A P policies, as we already do on Linux. A l l Windows S C A P content development
efforts across the industry could be concentrated in the repository, the same way it has
already happened for Linux S C A P content.

5.3.5 Automatic Rights Elevation

In order to perform a complete scan of a Windows machine, OpenSCAP needs to have
administrator privileges. Currently, the user must run the Administrator command prompt
and must make sure he has all the rights to run the scan. OpenSCAP does not check the
privileges. If it does not run as Administrator, the scan results are incomplete.

It would be better if OpenSCAP checked privileges before the scan, and if they are
not sufficient, it would automatically display the User Account Control (UAC) elevation
prompt. The U A C will require that the user provides valid administrator credentials. Then,
OpenSCAP would continue with an administrator access token.

5.3.6 Porting Test Suite

The upstream test suite is written in Bash. It would be useful to port it into some high-level
test framework, so that we could run the tests on any platform. This will be needed for
contributors working on Windows to test their work. If this is not done, they will have to
install Linux, e.g. using Vagrant, to run the tests or wait for Jenkins.

53

Chapter 6

Conclusion

This work described the problem of evaluating secure configuration of computer systems, in­
cluding various security policies. The concept of SCAP, the O V A L language and its objects
was studied. The OpenSCAP project was described in detail, including its implementation.
A goal to extend OpenSCAP on a currently unsupported platform, Microsoft Windows,
was presented.

The problematic parts in regards of portability to Windows were identified. Based on
review of the current implementation, multiple changes in the OpenSCAP project were
proposed. New probes in OpenSCAP project were identified as strongly needed.

The author worked closely with the upstream open source project and continuously
improved his code based on code reviews and other feedback provided by the project com­
munity.

The author has provided 34 pull requests that altogether add 17405 and remove 65319
lines of code. The pull requests together consist of 735 commits. A l l the patches related to
this work have finally been accepted into the OpenSCAP upstream repository. The changes
are described in the project documentation.

Many improvements that were made during author's work on this thesis could be bene­
ficial for the whole OpenSCAP project, not only for the Windows support activity. Namely
architecture changes, the build system rewrite and offline mode fixes are useful in general.
Also, the code portability was improved a lot, therefore it is now easier to port OpenSCAP
to other platforms (Mac OS X , Android, etc.) as well.

The improvements enabled to scan Windows operating systems using OpenSCAP with
popular S C A P security policies, e.g. DISA S T I C OpenSCAP reports the results and can
be used on Windows the same way as on previous platforms.

The work described in this thesis is part of OpenSCAP master branch and will be part
of upcoming major upstream release OpenSCAP 1.3.0.

54

Bibliography

[1] Baude, B. : Introducing atomic scan—Container vulnerability detection. Blog post.
May 2016. [Online; retrieved 7.12.2017].
Retrieved from: h t tps : / /developers .redhat .com/blog/2016/05/02/ introducing-
a t o m i c - s c a n - c o n t a i n e r - v u l n e r a b i l i t y - d e t e c t i o n /

[2] Center for Internet Security: Open Vulnerability and Assessment Language. Web site.
2018. [Online; retrieved 3.1.2018].
Retrieved from: h t t p s : / / o v a l . c i s e c u r i t y . o r g /

[3] Černý, J.: A Tool for Development of OVAL Definitions within OpenSCAP Project.
Bachelor's thesis. Brno University of Technology, Faculty of Information Technology.
2016.

[4] Cooley, S.: AFUNIX comes to Windows. Blog post. December 2017. [Online;
retrieved 14.2.2018].
Retrieved from: h t tps : //blogs.msdn.microsoft.com/commandline/2017/12/19/
af_unix-comes-to-windows/

[5] Defense Information Systems Agency: Security Technical Implementation Guides
(STIGs). Web site. 2017. [Online; retrieved 2.1.2018].
Retrieved from: h t tps : / / i a se .d i sa .mi l / s t ig s /Pages / index .aspx

[6] Jones, R.: MinGW: Compile software for Windows without leaving your Fedora
machine. Blog post. October 2008. [Online; retrieved 1.12.2017].
Retrieved from: h t tp :
/ / camltast ic .blogspot .cz/2008/ 10/mingw-compile-sof tware-for-windows.html

[7] Lipner, S. B. : The Birth and Death of the Orange Book. IEEE Annals of the History
of Computing, vol. 37, no. 2. Apr i l 2015: pp. 19-31. ISSN 1058-6180.

[8] Lukašík, S.: Compliance Audit of Linux Environments. Masters's thesis. Masaryk
University, Faculty of Informatics. Brno. 2013.

[9] Luparu, M . : CMake support in Visual Studio. Blog post. October 2016. [Online;
retrieved 6.12.2017].
Retrieved from: h t tps : //blogs.msdn.microsoft.com/vcblog/2016/10/05/cmake-
s u p p o r t - i n - v i s u a l - s t u d i o /

[10] Martin, K . ; Hoffman, B.: Mastering CMake. Kitware, Inc.. 2013. ISBN
978-1930934269.

55

https://oval.cisecurity.org/
https://iase.disa.mil/stigs/Pages/index.aspx
http://camltastic.blogspot.cz/2008/

[11] Microsoft: Component Object Model (COM). Web site. [Online; retrieved 29.3.2018].
Retrieved from: h t tps :
//msdn.microsof t.com/en-us/library/windows/desktop/ms680573(v=vs.85) .aspx

[12] Microsoft: Security Identifiers. Web site. [Online; retrieved 16.3.2018].
Retrieved from: h t tps :
//msdn.microsof t .com/en-us/library/windows/desktop/aa379571 (v=vs.85) .aspx

[13] Microsoft: Windows Management Instrumentation. Web site. [Online; retrieved
27.3.2018].
Retrieved from:
h t tps : //msdn.microsof t .com/en-us/library/aa394582 (v=vs.85) .aspx

[14] Microsoft: Aligned Free. Web site. September 2016. [Online; retrieved 10.2.2018].
Retrieved from: h t tps :
/ /docs .microsof t . com/en-us /cpp/c - run t ime- l ib ra ry / re f e rence /a l igned-f ree

[15] Mittelette, E . : Vcpkg: a tool to acquire and build C++ open source libraries on
Windows. Blog post. September 2016. [Online; retrieved 8.11.2017].
Retrieved from: h t tps : //blogs.msdn.microsoft.com/vcblog/2016/09/ 19/vcpkg-
a - too l - to -acqu i r e -and-bu i ld -c -open- source - l i b ra r i e s -on -windows /

[16] Multiple Authors: Common Criteria Portal. Web site. [Online; retrieved 16.12.2017].
Retrieved from: https:/ /www.commoncriteriaportal .org/

[17] Multiple Authors: IBM BigFix Compliance. Web site. [Online; retrieved 18.4.2018].
Retrieved from: h t tps : //www.ibm.com/us-en/marketplace/bigf ix-compliance

[18] Multiple Authors: Joval Continuous Monitoring. Web site. [Online; retrieved
17.4.2018].
Retrieved from: ht tps: / / jovalcm.com/

[19] Multiple Authors: Security Content Automation Protocol (SCAP) Compliance
Checker (SCC). Web site. [Online; retrieved 12.3.2018].
Retrieved from:
h t tp : / /www.public.navy.mil/spawar/Atlantic/Technology/Pages/SCAP.aspx

[20] Multiple Authors: OpenSCAP portal. Web site. 2016. [Online; retrieved 27.2.2018].
Retrieved from: https://www.open-scap.org/

[21] Multiple Authors: OpenSCAP Versioning. Web site. January 2016. [Online; retrieved
4.1.2018].
Retrieved from: h t tps : //github.com/0penSCAP/openscap/blob/maint-1.2/docs/
contr ibute/vers ioning.adoc

[22] Multiple Authors: Using the G N U Compiler Collection (GCC): Labels as Values.
Web site. 2016. [Online; retrieved 15.2.2018].
Retrieved from: h t tps : / /gcc .gnu.org/onl inedocs/gcc/Labels-as-Values .html

[23] Multiple Authors: OpenSCAP User Manual. User manual. 2018. [Online; retrieved
11.1.2018].
Retrieved from:
h t tps : //github.com/OpenSCAP/openscap/blob/master/do c s/manual/manual, adoc

56

http://microsoft.com/en-us/
https://www.commoncriteriaportal.org/
http://www.ibm.com/us-en/marketplace/bigf
https://jovalcm.com/
http://www.public.navy.mil/spawar/Atlantic/Technology/Pages/SCAP.aspx
https://www.open-scap.org/

[24] National Information Assurance Partnership: Protection Profile for General Purpose
Operating Systems. Web site. [Online; retrieved 10.1.2018].
Retrieved from: h t tps : //www.niap-ccevs.org/MM0/PP/pp_os_v4.1.pdf

[25] National Institute of Standards and Technology: National Checklist Program
Repository. Web site. [Online; retrieved 2.1.2018].
Retrieved from: h t tps : / /nvd .n i s t .gov /ncp / repos i to ry

[26] National Institute of Standards and Technology: The United States Government
Configuration Baseline (USGCB). Web site. May 2009. [Online; retrieved 2.1.2018].
Retrieved from: h t tps : / /usgcb .n is t .gov/

[27] National Institute of Standards and Technology: Security Content Automation
Protocol (SCAP) 1.2 Product Validation Record. Web site. August 2017. [Online;
retrieved 29.12.2017].
Retrieved from: h t tps : / /nvd .n i s t . gov / scap /va l ida t ion /142

[28] NIST Computer Security Resource Center: Security Content Automation Protocol
Validation Program - SCAP 1.2 Validation Resources. Web site. 2018. [Online;
retrieved 30.1.2018].
Retrieved from: h t tps : / / c s r c .n i s t . gov /P ro jec t s / s cap -va l ida t ion -p rogram/
Va l ida t ion -Tes t -Con t ent

[29] Podzimek, V . : SCAP policy compliance configuration in Linux installations.
Masters's thesis. Masaryk University, Faculty of Informatics. Brno. 2013.

[30] Quinn, S.; Scarfone, K . ; Barrett, M . ; et al.: Guide to Adopting and Using the Security
Content Automation Protocol (SCAP) Version 1.0. Technical report. National
Institute of Standards and Technology. July 2010.

[31] Riesgo, A . : Using UTF-8 as the internal representation for strings in C and C++
with Visual Studio. Blog post. May 2011. [Online; retrieved 1.5.2018].
Retrieved from: http://www.nubaria.com/en/blog/?p=289

[32] Ronacher, A . : Beautiful Native Libraries. Blog post. August 2013. [Online; retrieved
6.12.2017].
Retrieved from:
h t tp : / / l ucumr .pocoo .o rg /2013 /8 /18 /beau t i fu l -na t ive - l ib ra r i e s /

[33] Stack Overflow: Developer Survey Results. Web site. May 2017. [Online; retrieved
6.1.2018].
Retrieved from: ht tps : / / ins ights .s tackoverf low.com/survey/2017

[34] The M I T R E Corporation: Open Vulnerability and Assessment Language. Web site.
May 2014. [Online; retrieved 3.1.2018].
Retrieved from: h t tps : / /ova l .mi t re .o rg /about /

[35] Waltermire, D.; Quinn, S.; Booth, H . ; et al.: The Technical Specification for the
Security Content Automation Protocol (SCAP): SCAP Version 1.3. Technical report.
National Institute of Standards and Technology. 2018.

[36] Wikipedia: Windows Registry. Web site. 2018. [Online; retrieved 3.1.2018].
Retrieved from: h t tps : / /en .wikipedia .org/wiki /Windows_Regis t ry

57

http://www.niap-ccevs.org/MM0/PP/pp_os_v4.1.pdf
https://nvd.nist.gov/ncp/repository
https://usgcb.nist.gov/
https://nvd.nist.gov/scap/validation/142
http://csrc.nist.gov/Projects/
http://www.nubaria.com/en/blog/?p=289
http://lucumr.pocoo.org/2013/8/18/beautiful-native-libraries/
https://insights.stackoverflow.com/survey/2017
https://oval.mitre.org/about/
https://en.wikipedia.org/wiki/Windows_Registry

Append i x A

OpenSCAP Upstream Pul l
Requests

1. https://github.com/0penSCAP/openscap/pull/890 Porting OpenSCAP to CMake

build system

2. https://github.com/0penSCAP/openscap/pull/901 Fixing header files includes

3. https: //github.com/0penSCAP/openscap/pull/907 Minor problems caused by CMake

4. https: //github.com/0penSCAP/openscap/pull/915 Minor problems caused by CMake

5. https: //github.com/0penSCAP/openscap/pull/918 Minor problems caused by CMake

6. https://github.com/0penSCAP/openscap/pull/925 Enabling cross-compilation for

Windows on Fedora using MinGW

7. https://github.com/0penSCAP/openscap/pull/926 Describe project import to Vi­

sual Studio 2017 in documentation

8. https: //github.com/0penSCAP/openscap/pull/927 Fixes to build OpenSCAP with­

out probe subsystem

9. https: //github.com/0penSCAP/openscap/pull/930 Compatibility function for realpath

10. https://github.com/0penSCAP/openscap/pull/931 Remove variable length arrays

11. https: //github.com/OpenSCAP/openscap/pull/932 Compatibility function for basename

12. https://github.com/0penSCAP/openscap/pull/934 Mark public library symbols

13. https://github.com/0penSCAP/openscap/pull/961 Add a comment about 1 macro

14. https://github.com/0penSCAP/openscap/pull/965 Enable Ninja build system

15. https: //github.com/0penSCAP/openscap/pull/979 Rewrite serial expression parser

16. https://github.com/0penSCAP/openscap/pull/978 Build OpenSCAP probe sub­

system on Windows

17. https://github.com/0penSCAP/openscap/pull/984 Remove variadic macros

58

https://github.com/0penSCAP/openscap/pull/890
https://github.com/0penSCAP/openscap/pull/901
https://github.com/0penSCAP/openscap/pull/925
https://github.com/0penSCAP/openscap/pull/926
https://github.com/0penSCAP/openscap/pull/931
https://github.com/0penSCAP/openscap/pull/934
https://github.com/0penSCAP/openscap/pull/961
https://github.com/0penSCAP/openscap/pull/965
https://github.com/0penSCAP/openscap/pull/978
https://github.com/0penSCAP/openscap/pull/984

18. https://github.com/0penSCAP/openscap/pull/994 Remove unused code that was
difficult to build on Windows

19. https://github.com/0penSCAP/openscap/pull/999 Change offline mode in system
info probe to not use chroot

20. https://github.com/0penSCAP/openscap/pull/1000 Improve offline mode

21. https://github.com/0penSCAP/openscap/pull/981 Make OpenSCAP a single pro­
cess

22. https: //github.com/OpenSCAP/openscap/pull/1004 Windows version of O V A L Sys­
tem Info Characteristics

23. https: //github.com/OpenSCAP/openscap/pull/1006 Create and remove temporary
directory on Windows

24. https: //github.com/OpenSCAP/openscap/pull/1007 Add Windows Registry Probe

25. https: //github.com/OpenSCAP/openscap/pull/1009 Add Windows Accesstoken Probe

26. https://github.com/0penSCAP/openscap/pull/1010 Update developer's documen­
tation

27. https://github.com/0penSCAP/openscap/pull/1012 F ix oscap_dirname on Win­
dows

28. https://github.com/0penSCAP/openscap/pull/1018 F ix O V A L record element

29. https://github.com/0penSCAP/openscap/pull/1019 Add wmi57 Windows probe

30. https://github.com/0penSCAP/openscap/pull/1025 Remove '\r' characters from
help output

31. https://github.com/0penSCAP/openscap/pull/1020 Windows installer

32. https: //github.com/OpenSCAP/openscap/pull/1024 Support comparing state record
elements with O V A L state

33. https://github.com/0penSCAP/openscap/pull/1027 Add IP addresses in X C C D F
results on Windows

34. https://github.com/0penSCAP/openscap/pull/1032 Add AppVeyor CI badge and
configuration

59

https://github.com/0penSCAP/openscap/pull/994
https://github.com/0penSCAP/openscap/pull/999
https://github.com/0penSCAP/openscap/pull/1000
https://github.com/0penSCAP/openscap/pull/981
https://github.com/0penSCAP/openscap/pull/1010
https://github.com/0penSCAP/openscap/pull/1012
https://github.com/0penSCAP/openscap/pull/1018
https://github.com/0penSCAP/openscap/pull/1019
https://github.com/0penSCAP/openscap/pull/1025
http://Remove
https://github.com/0penSCAP/openscap/pull/1020
https://github.com/0penSCAP/openscap/pull/1027
https://github.com/0penSCAP/openscap/pull/1032

Append i x B

Contents of the Attached Media

• oval/ - Example O V A L definitions

• reports/ - Example H T M L reports

• src/ - Source code for this text in DTßX

• count .py - Script counting O V A L object elements

• openscap-1.3.0.tar.gz - OpenSCAP source code

• OpenSCAP-1.3.0-win32.msi - OpenSCAP for Windows Installer

• thesis.pdf - This text in P D F format

60

