
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

DEMONSTRATION AND ANALYSIS OF ATTACKS ON
PROTOCOL HTTPS
DEMONSTRACE A ANALÝZA ÚTOKŮ NA PROTOKOL HTTPS

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ADAM MURGAŠ
AUTOR PRÁCE

SUPERVISOR doc. Ing. ONDŘEJ RYŠAVÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

T VYSOKÉ UČENÍ FAKULTA B

TECHNICKÉ INFORMAČNÍCH
V BRNĚ TECHNOLOGI Í I

Zadání bakalářské práce
148217

Ústav: Ústav in formačních sys témů (UIFS)

M u r g a š A d a m

Informační technolog ie

Informační technolog ie

D e m o n s t r a c e a a n a l ý z a ú t o k ů na p r o t o k o l H T T P S

Bezpečnost

Student :

P rogram:

Specia l izace:

Název:

Kategor ie:

Akademický rok: 2022/23

Zadání :

1. Seznamte se s protokoly H T T P / 1 . 1 , S P D Y a HTTP/2 .
2. Nastuduj te principy útoků B E A S T a C R I M E .
3. Vytvoř te si vhodné vir tuální prostředí pro další exper imenty .
4. Demonst ru j te útoky pro někol ik scénářů a zaznamene j te komunikac i z těchto útoků ve formě

anotovaných datových sad .
5. Analyzu j te komunikac i z útoků a navrhněte j ednoduchou metodu pro je j ich detekc i .
6. Zhodnoť te provedené exper imenty a diskutuj te možné způsoby obrany proti těmto ú tokům.

Li teratura:
• O. Ivanov, V. R u z h e n t s e v & R. Ol iynykov, "Compar ison of Modern Network At tacks on TLS

Protocol , " 2018 International Scientific-Practical Conference Problems of Infocommunications.
Science and Technology (PIC S&T), 2018 , pp. 565-570

• Duong & J . Rizzo, "Here come the Ninjas", Ekoparty, 2 0 1 1 .
• T. Duong & J . Rizzo, "The C R I M E attack", Ekoparty, 2012 .
• Y. Gluck, N. Harr is & Ange lo Prado, " B R E A C H : Reviv ing The C R I M E At tack" in Blackhat , USA,

2013.

Při obha jobě semest rá ln í části projektu je požadováno:
Min imálně body 1-3.

Podrobné závazné pokyny pro vypracování práce viz ht tps: / /www.f i t .vut .cz/study/ theses/

Vedouc í práce: R y š a v ý O n d ř e j , d o c . I ng . , P h . D .

Vedouc í ús tavu: Kolář Dušan , doc. Dr. Ing.

Da tum zadání : 1.11.2022

Termín pro odevzdání : 17.5.2023

Da tum schválení : 28 .10 .2022

Fakulta in formačních technologi í , Vysoké učení techn ické v Brně / Božetěchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
The objective of this report is to analyze two attacks against the H T T P S protocol , namely
the B E A S T and C R I M E attacks. The m a i n point is to see whether or not they are s t i l l
possible w i t h the technologies of today, as well as demonstrate how they work and how
to prevent or detect s imilar attacks in the future. Th is report describes the theoretical
foundation behind these attacks and addresses possible solutions for detection or preven
t ion. Fol lowing the theoretical foundation and the prevention and detection methods, this
report also provides a demonstrat ion of the principles behind these attacks as well as a
dataset focused on certain metrics regarding the attacks, i n order for readers to gain better
understanding of their principles, as similar attacks might be discovered i n the future.

Abstrakt
Cieľom tejto práce je analyzovať dva útoky na protokol H T T P S , na jmä útoky B E A S T a
C R I M E . H l a v n o u pointou práce je zistiť, či sú tieto útoky stále možné s dnešnými technoló
giami, a zároveň demonštrovať ako tieto útoky fungujú a ako sa podobným útokom vyhnúť
alebo ako ich včas detekovat. Táto práca opisuje teoretický základ týchto útokov a taktiež
opisuje možné riešenia pre detekciu a prevenciu. P o teoretickom základe a spôsoboch pre
vencie, táto práca taktiež poskytuje demonštráciu princípov týchto útokov a taktiež dataset,
ktorý sa zameriava na určité metr iky útoku, aby mal i čitatelia lepšiu znalosť o princípoch
za týmito útokmi, pretože podobné útoky by mohl i byť objavené v budúcnosti.

Keywords
HTTPS, SPDY, BEAST, CRIME, TLS/SSL, C i p h e r B l o c k C h a i n i n g (CBC), In i t ia l izat ion V e c t o r
(IV), cipher suites, block ciphers, TLS compression, P y t h o n

Klíčová slova
HTTPS, SPDY, BEAST, CRIME, TLS/SSL, C i p h e r B l o c k C h a i n i n g (CBC), Inicializační V e k t o r
(IV), soubor šifer, blokové šifry, TLS komprese, P y t h o n

Reference
M U R G A S , A d a m . Demonstration and analysis of attacks on protocol HTTPS. B r n o , 2022.
Bachelor's thesis. B r n o Univers i ty of Technology, Facul ty of Information Technology. Su
pervisor doc. Ing. Ondřej Ryšavý, P h . D .

Demonstration and analysis of attacks on proto
col H T T P S

Declaration
Prehlasujem, že som túto bakalársku prácu vypracoval samostatne p o d vedením pána doc.
Ing. Ondre ja Ryšavého P h . D . Uviedo l som všetky literárne pramene, publikácie a ďalšie
zdroje, z ktorých som čerpal.

A d a m Murgaš
M a y 11, 2023

Contents

1 Introduction 3

2 B E A S T attack 4
2.1 Cipher block chaining vulnerabi l i ty 4
2.2 Preconditions 7
2.3 How B E A S T works 7

2.3.1 Ini t ia l izat ion vector canceling 7
2.3.2 Guessing the plaintext block 8

2.4 Prevention against B E A S T 10
2.4.1 Randomized padding 10
2.4.2 Use of packet pattern recognition 11
2.4.3 0 / n split 11
2.4.4 1 / n - l split 12

3 C R I M E attack 13
3.1 Information leakage by compression 13
3.2 Precondit ions 14
3.3 How C R I M E works 14

3.3.1 Observing the length of the original packet 15
3.3.2 Injecting redundant data 15

3.4 Prevention against C R I M E 16
3.4.1 Randomized padding 16
3.4.2 Use of packet pattern recognition 16

4 Security countermeasures 17
4.1 Outdated and unsupported technologies 17
4.2 Security policies 18

5 Demonstrat ion of attacks 20
5.1 Used libraries 21
5.2 Demonstrat ion of B E A S T 21

5.2.1 Storing the cookie 22
5.2.2 M a n - i n - t h e - M i d d l e 22
5.2.3 C r a f t i n g requests 23
5.2.4 H o w to use the script 26

5.3 Demonstrat ion of C R I M E 27
5.3.1 Storing the cookie 27
5.3.2 M a n - i n - t h e - M i d d l e 28

1

5.3.3 Ini t ia l request 28
5.3.4 Inflating in i t i a l request 29
5.3.5 H o w to use the script 30

6 D a t a analysis 31
6.1 S imulat ion constraints 31
6.2 Target cookie length range 32
6.3 B E A S T attack data analysis 32
6.4 C R I M E attack data analysis 34

6.5 A t t a c k dataset comparison 35

7 Conclusion 36

Bibliography 37

2

Chapter 1

Introduction

Nowadays, as people spend more and more t ime on the internet, more and more day
to day activities are also shift ing into the v i r t u a l online wor ld . People do a l l sorts of
activities online, f rom chatt ing w i t h friends or ordering food, to playing video games or
even managing bank accounts. A s it happens, some of those activities are bound to be
private or confidential and therefore need to be secured. Researchers and developers are
constantly put t ing in massive amounts of effort into improving existing security mechanisms
and inventing new ones, i n order to keep a l l of our online activities safe. Despite their
best efforts however, possibilities of new clever exploits and attacks are constantly being
discovered and exploited, which fortunately also serves to improve online security. Because
of this, it makes more sense than ever for everyone involved i n the online world , to be aware
of how to behave on the internet, so that they keep their personal details and activities as
safe as possible.

A vast majori ty of the internet i n today's age uses the H T T P S protocol , i n order to
encrypt online communicat ion and thus keeps it safe and private. However even this very
secure protocol is not completely safe and throughout the years many vulnerabilit ies have
been discovered. The focus of this thesis is to describe two kinds of attacks on the H T T P S
protocol , which are the B E A S T attack and the C R I M E attack. A s described i n the later
chapters, these attacks are no longer possible w i t h modern technologies. However, they
s t i l l provide a great example of a handful of principles on how attackers might be able to
exploit certain vulnerabil it ies and break encryption mechanisms. The goal of this thesis is to
provide a theoretical basis and the preconditions of these attacks, as well as a demonstration
of their principles and methods of how we can possibly prevent or detect s imilar attacks
in the future. W i t h the understanding of these topics, attacks similar to the B E A S T and
C R I M E attacks, which might be discovered i n the future, w i l l be easier to deal w i t h .

3

Chapter 2

B E A S T attack

The Browser E x p l o i t A g a i n s t S S L / T L S (B E A S T) attack is an attack on the H T T P S proto
col, which aims to exploit a vulnerabi l i ty in T L S version 1.0 or any older S S L protocol[12].
Specifically, it exploits a vulnerabi l i ty i n the C i p h e r B l o c k C h a i n i n g (C B C) encryption
mode of T L S . If an attacker can exploit this vulnerabi l i ty successfully, they w i l l have the
abi l i ty to decrypt H T T P S secured communicat ion between a client and a server without
ever needing to obtain the decryption key and thus being able to perform session hijack
ing. The B E A S T attack as a whole, is a combination of mult iple kinds of attacks and
techniques, such as record spl i t t ing, a chosen boundary attack and a M a n - i n - t h e - M i d d l e
(M i t M) attack.

The origins of this attack date back to 2002, when P h i l l i p Rogaway, a professor of com
puter science and cryptography at the Univers i ty of Cal i fornia , highlighted a predictabi l i ty
in the cipher block chaining mode of T L S . Later , i n 2011, two security researchers Jul iano
R i z z o and T h a i D u o n g have further exploited this vulnerabi l i ty and formed the B E A S T
attack, as it is known today.

In order for the B E A S T attack to be possible, several preconditions need to be met.
These preconditions, i n combination w i t h the fact that the attack can only read very short
pieces of information i n l imi ted t ime as well as several security countermeasures having
been developed since its discovery, make the B E A S T attack very impract ica l and therefore
also very unlikely. However, even though the B E A S T attack is no longer considered very
effective, it s t i l l displays how it is possible to combine mult iple principles and exploits to
form an effective attack. Because of its effectiveness at the t ime of discovery, the attack
was considered threatening enough for the vulnerabi l i ty in cipher block chaining to be fixed
i n version 1.1 of T L S and the following versions. Most modern browsers and servers use
T L S version 1.1 or higher and launching a B E A S T attack is only possible, if they are using
T L S 1.0 or an older S S L protocol . Another opt ion would be to use the B E A S T attack
in combinat ion w i t h a different attack, which forces a server to revert to older versions of
T L S [16].

2.1 C i p h e r block chaining vulnerab i l i ty

The entire B E A S T attack is based on a vulnerabi l i ty i n cipher block chaining. It is there
fore important to understand how cipher block chaining works and how this vulnerabi l i ty
becomes relevant, so that it can be exploited efficiently i n the B E A S T attack.

4

W h e n using T L S dur ing internet communicat ion, the browser and the server w i l l first use
an asymmetr ical encryption mechanism dur ing the negotiation phase of the communicat ion.
D u r i n g this phase the client verifies the server's identity using its S S L certificate authority 's
digi ta l signature. A f t e r that , the client and the server w i l l negotiate several encryption
details, which w i l l be used dur ing the communicat ion. Th is is called a TLS handshake
[10]. A f t e r the negotiation process, the communicat ion between the client and the server
w i l l be encrypted symmetrical ly, using the encryption key which was previously negotiated.
Symmetr ica l encryption means that bo th participants i n the communicat ion w i l l use the
same encryption key to encrypt and decrypt messages.

Client Server

Connection
Request

ClientHello

0ns

34ms

102ns

ClientKeyExchange
ChangeCipherSpec
Finished

170ns

ServerHello
C e r t i f i c a t e
ServerHelloDone

136ns

• 204ns

Tine Tine

Figure 2.1: T L S handshake[2].

T L S uses block ciphers dur ing encryption of the communicat ion. Th is means that
the data gets d iv ided into blocks, which have a fixed length. E a c h block of data then
gets encrypted separately, before it is sent [3]. However, when encrypting identical blocks
of data w i t h the same encryption key, the resulting encrypted ciphertexts w i l l also be
identical , which creates possible vulnerabil i t ies . In order to counter this, T L S uses what is
called i n i t i a l i z a t i o n v e c t o r s (IVs). Ini t ia l izat ion vectors are arbi trary numbers, which
are of the same length, as the data blocks. They serve to prevent identical data blocks being
encrypted into identical ciphertexts. Before encrypting a data block, T L S first performs a
logical XOR operation between the data block and the ini t ia l izat ion vector. O n l y the result
of this logical operation then gets encrypted w i t h the negotiated encryption key, which
finally gives us the final ciphertext. Because of the data blocks getting logically XORed w i t h
an arbi trary in i t ia l izat ion vector, even if the raw data blocks are identical , the resulting
ciphertext w i l l be different.

Instead of always using a random ini t ia l izat ion vectors to encrypt separate blocks of
data, older versions of T L S (namely version 1.0 or any older SSL protocol) w i l l use the
resulting ciphertext of the previous data block as the ini t ia l izat ion vector for the encryption
of the subsequent data block. Th is is called C i p h e r B l o c k Chaining [1 5] . Here is exactly

5

where the vulnerabil i ty, which makes the B E A S T attack possible, exists. If an attacker has
the abi l i ty to monitor the H T T P S communicat ion between the server and the client, they
has access to the encrypted ciphertexts. They may not be able to read the raw data, which
is encrypted i n these ciphertexts, but if cipher block chaining is in use, they can abuse the
fact that the ciphertexts they have access to, w i l l be used as in i t ia l izat ion vectors for the
following data blocks. E x a c t l y how this can be abused w i l l be described in the following
sections.

Plaintext
111111111 i r m

initialization Vector [IV)

m—*•

Ksy-
block cipher
encryption

r m
Ciphertext

Key •

Plaintext

rm

- e

block cipher
encryption

rm
Ciphertext

Key •

Plaintext
r m

- e

block cipher
encryption

TTI
Ciphertext

Figure 2.2: C ipher block chaining[4].

This specific vulnerabi l i ty was highlighted by P h i l l i p Rogaway i n 2002. Later in 2011
he also published a very comprehensive evaluation of different block cipher modes [14]. A s
mentioned before, P h i l l i p Rogaway uncovered this vulnerabi l i ty i n the cipher block chaining
mode of T L S by highlighting the predictabi l i ty of the in i t ia l izat ion vector used for every
subsequent message after the first one. A s s u m i n g the attacker has access to the encrypted
ciphertexts, they would then be able to know, that a given ciphertext would be used for
the following message. Us ing this information, the attacker can then attempt to brute-force
(guess) the contents of the plaintext they want to decrypt. However, at the t ime it seemed
like it was only possible to decrypt the encrypted data, by correctly guessing the entire
block of plaintext . The usual sizes of cipher blocks are 8 bytes (64 bits) , 16 bytes (128
bits) or 32 bytes (256 bits) . Correct ly guessing the entire block of any of these sizes is
astronomically unlikely and pract ical ly impossible. Because of that, the attack was only
considered to be a theoretical threat.

In the year 2011, two security researchers Jul iano R i z z o and T h a i D u o n g discovered a
new approach to the process of guessing the encrypted data[12]. They discovered, that by
performing a chosen boundary attack, it is possible to isolate just one single byte of the
plaintext, which the attacker wants to decrypt. A f t e r the attacker guesses this isolated byte
correctly, they can then shift the cipher block boundaries to isolate the next unknown byte
and then repeat the process. This way, the attacker can guess one single byte at a t ime,
instead of having to guess an entire block of 8, 16 or 32 bytes at once, which is significantly
more manageable and makes this attack a lot more feasible. W h i l e the B E A S T attack was
always considered an unlikely, theoretical one, D u o n g and Rizzo 's discovery prompted many
servers and browsers to upgrade to newer versions of T L S , which provide invulnerabi l i ty
against the B E A S T attack.

6

2.2 Precondi t ions

A s mentioned before, the B E A S T attack has a few preconditions, which need to be met in
order for an attacker to be able to launch it[12].

These preconditions are:

• T L S version 1.0 or an older S S L protocol must be used for encrypting the communi
cation, or the attacker must have a way to enforce this by performing a downgrade
attack[13] - this is because B E A S T aims to exploit the predictabi l i ty of the in i t ia l iza
t ion vectors used i n cipher block chaining, which is fixed i n newer versions of T L S .

• T h e attacker must be able to monitor the ongoing encrypted communicat ion between
the browser and the server - this is because the attack utilizes the encrypted cipher-
texts, by comparing them w i t h the ciphertexts generated w i t h the guessed plaintext .

• T h e attacker must be able to inject plaintext data blocks into the communicat ion, to
observe the generated ciphertext output - this used to be possible by performing a
M a n - i n - t h e - M i d d l e (M i t M) attack[6], a JavaScript injection, or other methods.

2.3 H o w B E A S T works

N o w that we know what exactly the B E A S T attack is t ry ing to exploit and we know the
preconditions that we need to meet before launching this attack, let's look at how it works
i n more detail .

Let 's assume that a client, who w i l l be the v i c t i m of the B E A S T attack, has logged into
a website using their private credentials and that they are communicat ing w i t h the server
using T L S 1.0 (or any other older S S L protocol w i t h cipher block chaining). P a r t of this
communicat ion w i l l inevitably be some sensitive data, such as a password, a session I D , or
anything of this sort. T h e attacker's objective is going to be to decrypt this sensitive data ,
without using the encryption key.

2.3.1 I n i t i a l i z a t i o n vector cancel ing

W h e n using T L S for encrypting communicat ion, the raw data of the communicat ion gets
divided into blocks of a fixed length. A l l of these blocks are then indiv idua l ly logically
XORed w i t h the current in i t ia l izat ion vector (IV) . The result of this logical operation then
gets encrypted w i t h the negotiated encryption key, which results in a ciphertext. This
ciphertext is then sent, but also stored, so that it can be used as the in i t ia l izat ion vector
for the next plaintext block. For reference, see figure 2.2.

Suppose that there is a block of plaintext X, which contains information, that we (the
attacker) want to obtain . Th is block X gets logically XORed w i t h an in i t ia l izat ion vector,
which w i l l be the ciphertext of the previous message Y and then encrypted w i t h the encryp
t ion key, resulting i n ciphertext Z. Suppose also that at a later point i n the communicat ion,
there is a block of plaintext A, which we, as the attacker, have control over. This block A
gets logically XORed w i t h an in i t ia l iza i ton vector, which w i l l be the ciphertext of the pre
vious message B and then also gets encrypted w i t h the same encryption key, resulting in
ciphertext C.

7

Plaintext
I T

nitialization Vector (IV)
T l *

Key-
block cipher
encryption

m
' r

Key -

X

block cipher
encrypt ion

T T

Key -

Plaintext

r m

block cipher
encrypt ion

TTI
3

Key -

r m

- O

block cipher
encrypt ion

r m
c

Figure 2.3: Scenario visual izat ion.

We can set the value of plaintext A as such:

A = B

W h a t this essentially means, is that we w i l l be using the ciphertext of the previous message
as the value of the plaintext , that we are i n control of. This value then gets logically XORed
w i t h the previous message's ciphertext, which has the same value. Logical ly XORing two
blocks w i t h identifal values results i n a block of zeros. We have therefore effectively canceled
out the in i t ia l izat ion vector for the message that we are i n control of.

We can then further abuse this by setting the value of plaintext A to:

A = B®Y ®X'

Here we are XORing three values and setting the result as the value of our block of plaintext
A. The three values here are:

• B - the ciphertext of the previous message

• Y - the ciphertext which was used to encrypt the block of plaintext we want to decrypt

• X' - our guess of the contents of plaintext X, which we want to decrypt. The goal is
to t r y to guess X ' and match it w i t h X.

If the block of plaintext A is set as such, the value w h i c h is going to get encrypted w i l l be
B®B®Y®X'. The two identical values B w i l l cancel each other out, leaving us w i t h Y®X'.
E n c r y p t i n g the XOR of these two values then results into ciphertext C and the goal is to
match ciphertexts C and Z. The important th ing to note here, is that we essentially canceled
out the in i t ia l izat ion vector B for our constructed block of plaintext A and replaced it w i t h
the in i t ia l izat ion vector Y, which was used for encrypting the plaintext , that we want to
decrypt. Therefore both blocks of plaintext X and A w i l l use the same in i t ia l izat ion vector,
as well as the same encryption key. This means, that in order to match ciphertexts C and
Z, the only th ing we need to do is to match X and X ' .

2.3.2 G u e s s i n g the pla intext b l o c k

W h e n communicat ing over the internet using H T T P S , part of the communicat ion are also
mult iple headers containing various pieces of information, such as the language, browser
version on the client side, character encoding or many other pieces of metadata. More
importantly, there are some headers, which contain sensitive information, such as cookies,
which hold the session I D , passwords, or anything of the sort. A l l of these headers are

8

arranged in the H T T P S communicat ion i n a predetermined manner. Therefore when the
client makes the same request to the server mult iple times, the headers containing the
metadata of the communicat ion w i l l be arranged i n the same way, resulting i n the same
H T T P S request structure each t ime. T h a t is to say, the contents of the H T T P S packets
are predictable and we (the attacker) can tel l where exactly the sensitive information is
located. Us ing this knowledge, we can make specially crafted H T T P S requests, i n order
to manipulate the posit ion of the sensitive information i n such a way, so that a data block
contains only one unknown byte of the sensitive information. We can then attempt to
guess this single byte and once successful, we can manipulate the posit ion of the sensitive
information again, to expose the next unknown byte. Th is is known as the chosen boundary
attack [9].

For example, suppose that dur ing an ongoing encrypted communicat ion, a client w i l l
t r y to file index.html. A n H T T P S request w i l l be assembled w i t h the use of the
mentioned headers, i n a predetermined way. The f inal H T T P request might look like this:

GET /i n d e x . h t m l HTTP/1.1
Host: google.com
Cookie: Session=21047948
Accept-Encoding: t e x t / h t m l
A c c e p t - C h a r s e t : u t f - 8

In this example, let's also assume that the size of the block cipher w i l l be 8 bytes. A t
1 byte per character, the H T T P S request w i l l get d iv ided into blocks of 8 bytes. Since the
headers are organized in a predictable way, we can accurately tel l the posit ion of the session
I D .

[GjEEDmmH® @SQE0@OOD
• • E 0 0 ® m L e) •0@0[30m0

Figure 2.4: Separation of H T T P request into data blocks.

K n o w i n g the current posit ion of the session I D , we can create a specially crafted H T T P S
request i n such a way, so that the session I D is shifted to a posit ion where only one byte
of it is exposed. In our example, this could be done by changing the accessed document
from i n d e x . h t m l to index.htm for example. B y doing this, we can shorten the data before
the session I D by one byte, resulting i n one byte of the session I D being shifted into the
previous data block. The final H T T P S request would then look as follows:

GET /index.htm HTTP/1.1
Host: google.com
Cookie: Session=21047948
Accept-Encoding: t e x t / h t m l
A c c e p t - C h a r s e t : u t f - 8

9

http://google.com
http://google.com

0 0 0 0 0 0 0 0
0 0 0 0 0 O 0 0
O E 0 0 E 0 0 O

[HoBbeegdb

E S E 0 0 0 O 0
0 S 0 0 0 0 0 0
0 0 0 0 0 B 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Figure 2.5: Separation of crafted H T T P request into data blocks.

We first make the v i c t i m send an H T T P S request for index.htm and we let a l l of the
headers get appended automatically, w i t h the knowledge of the session ID's posit ion. T h e n
we make the v i c t i m send another request for index.htm, but this t ime we w i l l be appending
the headers manually. Af ter doing this, we can observe the two encrypted ciphertexts of
these H T T P S requests, while t ry ing possible options for the given byte of the session I D
that we are t ry ing to guess. If the ciphertext of the request w i t h automatical ly added
headers matches the ciphertext of the request w i t h our guessed byte, we have guessed the
byte successfully. We can then move on to the next byte by shift ing the session ID posit ion
again, in this case by making the next series of requests for i n d e x . h t and we repeat this
process u n t i l the entire session I D is decrypted.

The B E A S T attack has prompted many web browser developers and server administrators
to t ry to mitigate the possibil i ty of the attack. The simplest solution by far is to enforce the
use of newer versions of T L S , such as version 1.1 or higher, because these newer versions
address the underlying cipher block chaining vulnerabil i ty. However, using newer versions
of T L S is not always possible. Because of this, other methods and workarounds have been
explored. [9].

A t first, it was recommended to switch to a stream cipher, as opposed to a block cipher.
The vulnerabi l i ty was only present i n block ciphers, but older versions of T L S also supported
the RC4 stream cipher. However, it was later discovered, that the RC4 stream cipher was
theoretically unsafe and as more and more flaws have been highlighted, the use of the RC4
stream cipher has eventually been prohibi ted. Therefore, other methods of mi t igat ing this
attack had to have been implemented.

2.4.1 R a n d o m i z e d p a d d i n g

Randomized padding is a technique i n cryptography, used to prevent attacks which exploit
messages having a known structure or length. The purpose of randomized padding is to
add extra randomized data into a message before it gets encrypted. Th is ensures that
encrypting the same data mult iple times w i l l produce unique ciphertexts. Thanks to that ,
the B E A S T attack cannot rely on the predictabi l i ty of the structure of requests and it w i l l
become considerably harder for the attacker to analyze encrypted data, identify patterns
and extract sensitive information.

2.4 P r e v e n t i o n against B E A S T

10

2.4.2 U s e of packet p a t t e r n r e c o g n i t i o n

The B E A S T attack involves the v i c t i m sending a large number of requests in a row, while
only sl ightly altering the contents of the message. K n o w i n g about this pattern, we can then
prevent the B E A S T attack w i t h the use of:

• rate- l imit ing techniques, w i t h which we can l imit the amount of requests from clients
to the server. B y doing this, we can considerably lengthen the t ime required for such
an attack, or make it completely unviable.

• W e b A p p l i c a t i o n Firewal ls (W A F) . These firewalls are placed between the server
and the clients and their purpose is to monitor traffic and compare it to its rules and
policies. If the traffic matches a pattern of known attacks, it can be blocked, or an
alert can be triggered, for server administrators to take action.[7]

2.4.3 0 / n split

Some web browser developers and server administrators have implemented a so called 0 / n
s p l i t , i n order to mitigate the B E A S T attack. The idea behind this is to first send an
empty data block w i t h a payload length of 0 before sending actual data blocks w i t h the size
of n (hence the name 0 / n s p l i t) . Blocks, which are not ful ly fi l led w i t h data, get padded
w i t h randomly generated data. Therefore sending an empty data block results i n a data
block fu l l of randomly generated padding. This block then gets encrypted and used as the
in i t ia l izat ion vector for the first data block of the actual message, which restores randomness
of the encryption. However, as this was only a quick work around, it was not officially
documented i n the T L S documentation, which caused it to create many compat ibi l i ty issues.
Some web browsers also do not support sending empty messages, which caused further issues
w i t h the 0 / n s p l i t .

GET /index.html...

Plaintext Plaintext

nitialization Vector (IV)
1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 , /T\ _ i

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 »-ffi ~ t 3

Key - block cipher
encrypt ion Key — « - block cipher

encrypt ion

r
Ciphertext rm

Ciphertext

Plaintext

Key •

~ f
• t

block cipher
encrypt ion

r m
Ciphertext

Figure 2.6: 0 / n split .

11

2.4.4 1 / n - l split

A n upgraded version of the 0 / n s p l i t which solves the empty message incompat ib i l i ty is
the 1 / n - l s p l i t . In this version of the solution, instead of sending an empty message
before the actual data, the first byte of the actual data is used. The first message w i l l
contain the first byte of the data and the rest of the message gets padded w i t h randomly
generated data. The result then gets encrypted and used as the in i t ia l izat ion vector for
the following block of data. Th is solution also restores the randomness of the encryption,
however since it doesn't use empty data blocks, there are no compat ibi l i ty issues, compared
to the 0 / n s p l i t .

Plaintext

Initialization Vector (IV)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 ml 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * t" 3

Key - block cipher
encrypt ion

ET /index.html ...

Plaintext
r r

Key -
block cipher
encrypt ion

Plaintext

Key -

„ f
*• t

block cipher
encrypt ion

r m
Ciphertext

rm
Ciphertext

r m
Ciphertext

Figure 2.7: 1 / n - l split .

12

Chapter 3

C R I M E attack

The Compress ion R a t i o Info-leak M a d e E a s y (C R I M E) attack, is an attack which is very
similar to the B E A S T attack i n many aspects. Same as for B E A S T , the C R I M E attack aims
to exploit a vulnerabi l i ty i n protocols used for encrypted communicat ion over the internet
and its objective is also to decrypt sensitive parts of this communicat ion, without the use
of the negotiated encryption key. However, instead of the predictabi l i ty in the cipher block
chaining mode of the older versions of T L S , the C R I M E attack exploits a vulnerabil i ty,
which is caused by compression. This vulnerabi l i ty is present bo th in H T T P and in S P D Y ,
which is Google's H T T P - l i k e p r o t o c o l f l l] . C R I M E also requires the attacker to perform a
M a n - i n - t h e - M i d d l e (M i t M) attack, i n order to force the v i c t i m to make cross-site requests,
s imilar ly to B E A S T .

The compression vulnerabi l i ty was first highlighted i n the S P D Y protocol i n 2011 by
A d a m Langley, Google's software engineer. He described the possibil i ty of being able to
deduce contents of encrypted S P D Y packets, based on observing their length after com
pression. T h i s concept was also demonstrated in the form of the C R I M E attack by two
security researchers Jul iano R i z z o and T h a i D u o n g , dur ing the E k o p a r t y security conference
i n Argent ina i n 2012[5].

The attack itself is a combination of a chosen plaintext attack and unintentional infor
mat ion leakage through data compression. S imi lar ly to B E A S T , the C R I M E attack also
has a handful of preconditions, which need to be met i n order for an attacker to be able to
execute i t . It is also only able to decrypt short strings of sensitive information in l imited
t ime, while using a relatively large amount of H T T P requests. Th is makes the C R I M E at
tack fair ly impract ica l and very unlikely to happen, however w i t h a wide range of websites
having been prone to these kinds of attacks at the t ime, developers and researchers have
since looked for solutions, or even stopped H T T P header compression altogether. This in
t u r n made the C R I M E attack a lot less l ikely to happen today.

3.1 Informat ion leakage by compression

A s mentioned before, the basis of the C R I M E attack lies i n a vulnerabi l i ty caused by data
compression. W h e n compressing data i n an encrypted communicat ion, the compression
might leave behind clues, which can help deduce the encrypted content. It is therefore
important to understand what exactly the vulnerabi l i ty is and how we can exploit the clues,
i n order to figure out sensitive data . D u r i n g encrypted communicat ion over the internet,
the server and the client use mult iple metadata headers. A s these headers become more

13

numerous, they also make up more data and therefore more b a n d w i d t h on the network.
In order to make the communicat ion more efficient, compression was implemented into the
H T T P and S P D Y protocols (as well as others). Compression was introduced into these
protocols i n the form of compression modes, which could be disabled. For H T T P , the TLS
DEFLATE compression scheme i n part icular was found to be vulnerable to C R I M E [11].

W h e n using compression dur ing communicat ion over the internet, the compression w i l l
locate duplicate occurrences of strings and it w i l l replace them w i t h smaller tokens, which
point to their first instances, i n order to get r i d of redundant data. However, if an attacker
can monitor the ongoing communicat ion, as well as inject data into i t , they can alter the
client's requests, w i t h the goal of t r y i n g to insert duplicate data into them. If the data
injected into the request headers by the attacker is common w i t h the original data, it w i l l
get compressed. The attacker w i l l therefore be able to observe a decrease i n the encrypted
packet's size. E x a c t l y how this can be done, w i l l be explained in the following sections.

3.2 Precondi t ions

In order for an attacker to be able to execute the C R I M E attack, the following preconditions
need to be met:

• T h e attacker must be able to monitor the ongoing encrypted communicat ion between
the browser and the server - this is because the attack w i l l be observing the changes
in length of the H T T P packets.

• T h e attacker must be able to inject data into the clients H T T P S requests - this used
to be possible by performing a M a n - i n - t h e - M i d d l e (M i t M) attack[6], a JavaScript
injection, or other methods.

• B o t h the client's browser and the server must support the S D P Y protocol , or any
version of T L S w i t h compression enabled - this is because the attacker w i l l be abusing
the compression mechanism by injecting redundant data into the H T T P headers.

3.3 H o w C R I M E works

W i t h the theoretical basis for the C R I M E attack explained and assuming a l l of the precon
ditions have been met, let's look into the principles of C R I M E , so that we understand how
it works in more detail .

Suppose the following scenario. A client, who w i l l be the v i c t i m of the C R I M E attack,
has logged into the website example.com using their private credentials. B o t h the server
and the client's browser have to either be using the S P D Y protocol , or T L S w i t h header
compression enabled. In order for the server to be able to identify the client, it has stored
the session ID 21047948 into a cookie in the client's browser. This session ID w i l l be used
i n any subsequent requests for example. com f rom our v i c t i m . S imi lar ly to the B E A S T
attack, our objective w i l l be to decrypt the session ID without the negotiated encryption
key. If we can obtain the session I D of the connection between the v ic t im's browser and
the server, we can then hijack the v ic t im's session and impersonate them, therefore being
able to send requests on their behalf.

14

http://example.com

3.3.1 O b s e r v i n g the l e n g t h of the o r i g i n a l packet

A s mentioned before, in order to be able to execute the C R I M E attack, we must be acting
as the man-in-the-middle . This is because we need to be able to force the client into
sending mult iple requests, and then observe them. Therefore for this example, assume
that the v i c t i m visits a website m a l i c i o u s . com, which is under our control and contains
malicious code. Us ing this website, we can force the v i c t i m to make a request to the website
example. com, which he was accessing beforehand, w i t h his private credentials. The request
w i l l be buil t i n a predetermined way using several headers and it might look like this:

GET / i n d e x . h t m l HTTP/1.1
Host: example.com
Cookie: Session=21047948
Acce p t - C h a r s e t : u t f - 8

After the request is created, compression w i l l remove duplicate bits and then the request
w i l l be encrypted. We can then observe the encrypted packet's size. In this example, let's
assume the size is 90 bytes. We w i l l consider this the packet's base size.

3.3.2 Injec t ing r e d u n d a n t d a t a

A s the next step, we are going to be injecting data into the headers, w i t h the intention of
creating redundancies and m i n i m i z i n g the packet's size by compression. For example, we
could inject the str ing „Cookie: Session=". T h e final request w i l l then look like this:

GET / i n d e x . h t m l HTTP/1.1
Host: example.com
Cookie: Session=21047948
Acce p t - C h a r s e t : u t f - 8
Cookie: Session=

The str ing „Cookie: Session=" is now present in the request twice. This w i l l get rec
ognized by the compression mechanism and the injected data w i l l get compressed, meaning
the length of the packet w i l l remain the same size (90 bytes). N o w we can start guessing
the first byte of the session I D . The way to guess if, is to add a l ikely value of the first
byte after our injected str ing and then observe the packet's length. If the packet's length
remains the same, we have guessed the value correctly and we can proceed to the next byte.

For example, let's assume that our guess of the first byte of the session I D is „1". The
string we would be injecting into the request's headers would i n this case be „Cookie:
Session=l". Since the next byte we added is not correct and therefore not common w i t h
the actual session I D , the packet's length would be greater by 1 byte. If we instead guess
the value „2", the request w i l l look like this.

GET / i n d e x . h t m l HTTP/1.1
Host: example.com
Cookie: Session=21047948
Acce p t - C h a r s e t : u t f - 8
Cookie: Session=2

Now our entire injected str ing is common w i t h the cookie containing the session I D .
Because of this, it w i l l get compressed, resulting i n the same packet size of 90 bytes as the
original request. W h e n we observe the length of the packet not changing, we move onto
the next byte and repeat the process, u n t i l the entire session ID is decrypted.

15

3.4 P r e v e n t i o n against C R I M E

E v e n though the C R I M E attack may be nowadays be considered impract ica l and outdated,
the vulnerabi l i ty created by header compression posed a threat to a b ig number of servers
and browsers. Because of that, researchers and developers have since looked into developing
countermeasures against the C R I M E attack and the header compression data leakage ex
ploit i n general. The simplest and most effective solution is to disable header compression,
or using newer versions of T L S , such as T L S 1.2 or higher. Newer versions of T L S do not
support header compression, while also providing better security, compared to T L S 1.0.
There are also other options for detecting and preventing C R I M E .

3.4.1 R a n d o m i z e d p a d d i n g

Simi lar ly to the B E A S T attack, we can use randomized padding to prevent the C R I M E
attack. The C R I M E attack exploits requests having a known length by repeatedly send
ing requests w i t h smal l changes and observing their length. T h e purpose of randomized
padding is to add extra randomized data into a request before it gets encrypted. Th is w i l l
unpredictably alter the requests length, thus preventing the attacker from proceeding w i t h
the C R I M E attack.

3.4.2 U s e of packet p a t t e r n r e c o g n i t i o n

The C R I M E attack also involves the v i c t i m sending a large amount of requests i n a row,
while only sl ightly changing the contents of the requests. K n o w i n g about this pattern, we
can then prevent the C R I M E attack by the use of:

• rate- l imit ing techniques, w i t h which we can l imit the amount of requests from clients
to the server. B y l i m i t i n g the amount of requests i n a given timeframe, we can
considerably lengthen the t ime required for the C R I M E attack, or make it completely
unviable.

• W e b A p p l i c a t i o n Firewal ls (W A F) . We can place a special f irewall in between the
server and the clients w i t h the purpose of monitor ing traffic and comparing it to its
rules and policies. If the traffic matches a pattern of known attacks, it can be blocked,
or an alert can be triggered, for server administrators to take action. [7]

16

Chapter 4

Security countermeasures

A s mentioned before, bo th the B E A S T and the C R I M E attack were considered threatening
enough at the t ime of their discovery, to prompt the implementat ion of a series of security
countermeasures on a l l fronts, such as client-side browser security enhancements and server-
side security enhancements. W i t h these security countermeasures i n place, it has become
extremely difficult and impract ica l to execute these attacks i n today's age. In this chapter
we go over the outdated technologies, which were vulnerable to B E A S T and C R I M E , as
well as newly developed countermeasures designed to protect against these kinds of attacks.

4.1 O u t d a t e d and unsuppor ted technologies

After the discovery of these attacks, servers and web browsers started using updated versions
of their respective technologies, which address certain vulnerabil it ies, which made these
attacks possible. A few examples of the technologies, which are outdated, or no longer
supported nowadays are:

• T L S 1.0 - in order for us to be able to execute the attacks, bo th the vic t im's browser
and the server must support T L S version 1.0. Th is is because the attacks make use
of vulnerabilit ies in a handful of older cipher suites, which are no longer used in
the newer versions of T L S . It is s t i l l possible to enable T L S version 1.0 on b o t h the
server and the v ic t im's browser, however it is not allowed by default and enabling it
is generally heavily discouraged.

• C B C and D E F L A T E - as mentioned before, the attacks make use of older cipher
suites. The B E A S T attack requires the use of any cipher suite, which uses the cipher
block chaining mode. A few examples of cipher suites which use C B C are:

- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_EXP0RT1024_WITH_DES_CBC_SHA

The C R I M E attack on the other hand would also work on cipher suites, w h i c h use
C B C , however ideally the RC4 stream cipher would be used. Same as w i t h T L S version
1.0, it is s t i l l possible to enable these cipher suites on the web server. Unfortunately
on the client side becomes be an issue. A l l up-to-date browsers have completely
dropped a l l cipher suites, which are viable for these attacks due to security concerns.

17

Addit ional ly , the C R I M E attack also requires the TLS DEFLATE compression method
to be used. T h i s compression method has also been dropped from a l l modern browsers.
W i t h these restrictions in m i n d , here is a rough estimation of the versions of browsers
which the client would have to be using, for these attacks to be possible:

— Internet Explorer versions between 6 to 9

— Safari versions between 5.0.1 to 6.0

— Firefox versions between 2 to 15

— Chrome versions between 4 to 25

It is worth mentioning that the TLS DEFLATE compression method was also dropped
on the server side, due to the same security concerns. In order for the web server to
support this compression method, older versions of S S L libraries would have to be
used. Once again, here is a rough estimation of the versions of S S L libraries which
would have to be used, for the attacks to be possible:

— O p e n S S L - versions prior to 1.1.0.

— B o r i n g S S L - versions prior to 5.0.0

— wolfSSL - versions prior to 4.0.0

— G n u T L S - versions prior to 3.0.0

4.2 Securi ty policies

The discovery of the B E A S T and C R I M E attacks, as well as many others, has also encour
aged web browser developers to implement a series of security policies and mechanisms.
The i r purpose varies depending on the i n d i v i d u a l mechanism or policy, however generally
their goal is to prevent or l imi t a l l kinds of different web browser functions, which could
potential ly be abused by attackers. A few examples of the newly developed security policies
and mechanisms £1X6 ctS follows:

• S O P - the Same-Origin Po l i cy is a security countermeasure which is implemented by
al l modern browsers. Its purpose is to prevent cross-site scr ipt ing (XSS) and other
vulnerabil it ies, which are exploitable by running malicious scripts i n the vic t im's
browser. The Same-Origin Pol i cy allows access to the browser's resources only if the
request for these resources comes from the same origin, as the origin of the resources.
A n origin is defined as the combination of the domain , the protocol and the port of a
given web page. If any of these components do not match, the request is considered
to be coming from a different origin and thus access is not allowed. For these attacks
specifically, this is an issue, because part of the attacks is to send modified requests
from the browser through a Java applet or pure javascript. W h e n these are executed
in the v ic t im's browser, they w i l l attempt to send a request to the server. Here the
browser w i l l recognize that these requests would be f rom a different domain, and it
w i l l first send an OPTIONS request to the server, i n order to figure out whether or
not the cross-domain request is allowed. Unless the web server specifically allows
access from the attacker's domain, it w i l l not allow its resources to be shared w i t h
the scripts and any following requests coming f rom the scripts to the server would be
denied. The Same-Origin Po l i cy can therefore be considered a good countermeasure
against the B E A S T and the C R I M E attacks.

18

• C O R S - the Same-Origin Po l i cy generally does not allow any requests coming from
different domains, unless the server is configured to allow them. However, there are
legitimate use cases, where cross-domain access is required. Because of this, the Cross-
O r i g i n Resource Shar ing (C O R S) was introduced. The C O R S mechanism allows us
to create exceptions for the Same-Origin Pol i cy through a series of H T T P headers,
which specify whether or not a cross-domain request is allowed. Unfortunately for the
B E A S T and the C R I M E attacks, even though there may be real web servers nowadays,
which might s t i l l be using C O R S exceptions for the Same-Origin Pol icy, the attacker's
domain w i l l s t i l l not be allowed to make requests, if the server is configured correctly
and securely.

. M o d i f y i n g H T T P stream (B E A S T specific) - i n order to perform the B E A S T
attack, the attacker must have a way to direct ly influence the raw data going into the
H T T P stream, while also having the abi l i ty to read the ciphertexts of the previous
parts of the message, which were encrypted by T L S . In the original demonstration of
the attack, this was done by a Java applet browser exploit . However, it was recognized
as a major security issue and has long been addressed. This exploit is therefore no
longer possible. One way to possibly work around this issue, would be for the attacker
to use a proxy. Th is proxy would be intercepting encrypted ciphertexts coming from
the v i c t i m and then sending these ciphertexts back to the attacker's scripts i n the
vic t im's browser v i a a websocket connection. The scripts would then be able to make
use of these ciphertext when craft ing the following request blocks, however here the
attacker would encounter yet another issue. For the B E A S T attack to work, the
attacker needs to be able to only send the beginning blocks of the request, then
intercept them w i t h his proxy, send information back to the script and then send the
following updated blocks.

• chunked transfer - a possible solution to overcome the previous issue of modi fy ing
the H T T P stream is to make use of chunked transfer encoding. Chunked transfer
encoding is a special type of encoding included i n H T T P 1.1. Its purpose is to divide
data into smaller blocks and sending them independently over a single H T T P S con
nection. It is nowadays mostly used for cases where the length of the data isn't known
in advance, such as video streaming applications. This encoding can be specified w i t h
the Transfer-Encoding H T T P header[8].

19

Chapter 5

Demonstration of attacks

The demonstrat ion of the B E A S T and the C R I M E attacks would generally include three
participants:

• the server, which is serving content over H T T P S and provides a secret cookie

• the v ic t im's machine, which is running a browser containing the secret cookie from
the server. T h e attacker also runs his malicious code on the vic t im's machine i n order
to decrypt the secret cookie.

• the attacker's machine, which w i l l be hosting a website w i t h malicious code, as well
as intercepting traffic from the v i c t i m to the server.

The best way to demonstrate the B E A S T and the C R I M E attacks i n practice would be
to actual ly perform these attacks in a controlled testing environment w i t h a test server, a
v i c t i m and an attacker. However, as mentioned i n chapter 4, w i t h several security mecha
nisms and policies, as well as updated versions of technologies i n place, the ideal conditions
for these attacks have become very difficult and unlikely to reach. Therefore a different ap
proach for demonstrating the principles of these attacks w i l l be used. Instead of executing
these attacks directly, they w i l l instead be demonstrated w i t h the use of P y t h o n scripts,
which closely follow the events of what would happen dur ing the actual attacks. The fol
lowing diagram describes how the attacker interacts w i t h the v i c t i m and his communicat ion
w i t h the server.

Victim running Hie
Java applet/Javascript Attacker (MitM| Server

intercept

send request

send info with
j next guess to script

evaluate
intercepted

request

intercept

send modified request

evaluate
intercepted

request

Figure 5.1: Man- in- the-middle communicat ion diagram.

2 0

The principles of the B E A S T and the C R I M E attack are going to be demonstrated
w i t h the use of P y t h o n proof-of-concept scripts, which follow the events of what would
happen dur ing the actual attacks as closely as possible, while also providing a clear expla
nation of the principles of these attacks. The version of P y t h o n used for creating these
proof-of-concept scripts is 3.10.2. In the following sections, the attacks are going to be
demonstrated by running the script one t ime and then explaining i n great detai l what
happens dur ing the execution of the code.

5.1 U s e d l ibraries

Before d i v i n g into the process of demonstrating the attacks, here is a quick overview of a l l
of the libraries, used to implement the P y t h o n proof-of-concept scripts:

• csv - used for logging data into a dataset

• time - used for tracking the t ime of execution of the script

• random - used for generating a random cookie

• os - used for generating encryption keys, which would under real circumstances be
used for encrypting the communicat ion between the v i c t i m and the server.

• sys - used for handl ing system i n p u t / o u t p u t , such as specifying a custom cookie,
which the attacker w i l l be t r y i n g to decrypt.

• time - used for s imulat ing the delay between requests, to give a rough idea of the
amount of t ime needed for the attacks, as well as v is ib l i ty over the progress of the
attack.

• string - s tandard P y t h o n l ibrary for working w i t h strings.

• b i n a s c i i - used for converting data from raw bytes into hexadecimal values.

• cryptography - this specialized P y t h o n l ibrary provides access to ciphers, encryption
algorithms and their modes, such as C B C , which is necessary for the B E A S T attack.

• z l i b - this P y t h o n l ibrary provides compression and decompression of data using
the z l i b format. This l ibrary is used to simulate the TLS DEFLATE compression
mechanism, which is necessary for the C R I M E attack.

5.2 D e m o n s t r a t i o n of B E A S T

Before the B E A S T attack can start, a couple of things need to happen. Suppose that a
client, who w i l l be our v i c t i m attempts to web page bank.com/index.html using
H T T P S , which is hosted on a secure server. Suppose also that bo th the server and the
client have T L S version 1.0 enabled, the server allows encryption mechanisms which use
the cipher block chaining mode and the client's browser also supports these encryption
mechanisms. Since the server is secure and the client is t r y i n g to access the web page using
H T T P S , the TLS handshake must first occur i n order to establish a secure connection,
before any actual appl icat ion data can be sent.

2 1

http://bank.com/index.html

The client first sends a C l i e n t H e l l o message to the server over the T L S v l protocol .
In this message, the client lists a l l of the encryption mechanisms, which are supported by
the browser. Suppose that one of these encryption mechanisms uses the AES cipher w i t h
support for the C B C mode, where the cipher block size is 16 bytes. The server reads
through a l l of the supported encryption mechanisms and then selects one of them, based on
its configured settings. Suppose that the server also selects the same encryption mechanism,
which uses the AES cipher w i t h support for the C B C mode, where the cipher block size is 16
bytes. The server then sends a S e r v e r H e l l o response to the client, i n which it specifies
which encryption mechanism was chosen (among other things). The client w i l l then take
note of the chosen encryption mechanism and this mechanism w i l l then be used for the
remainder of the communicat ion between the client and the server. D u r i n g this process,
an encryption key is also agreed upon between the client and the server. Th is encryption
key w i l l be used by the AES cipher i n order to encrypt the following communicat ion. In the
P y t h o n proof-of-concept demonstration script, the process of generating a random key for
the communicat ion is simulated by the following snippet of code:

A E S _ b l o c k _ s i z e = 16
key = os.urandom(AES_block_size)

For this specific instance of the communicat ion between the client and the server, sup
pose that the randomly generated key has the following hexadecimal value:

key = 5f43d9be6f8be3529d9bbef19d6de8e6

After being generated, this key w i l l now be used by both the client and the server for
the purpose of encrypting messages between each other.

5.2.1 S t o r i n g the cookie

U p o n the successful TLS handshake, the client finally requests the bank.com/index.html
file, which he was at tempting to access. The server then sends a response containing the
web page. Inside of the response w i l l also be an H T T P header for setting a cookie into
the client's browser. Th is cookie w i l l then be used for authentication of the client in any
subsequent requests. Suppose that i n this instance, the H T T P header looks like this:

Set-Cookie: SESSI0NID=a5Ecr37c00klE

U p o n receiving the response from the server, the client's browser reads the response,
takes the value of the cookie provided by the server, and stores the cookie as:

Cookie: SESSI0NID=a5Ecr37c00klE

W i t h the cookie stored in the client's browser, the B E A S T attack may now begin.

5.2.2 M a n - i n - t h e - M i d d l e

Suppose that after v is i t ing the web page bank. com/index. html, hosted by the secure server,
the client now visits a second web page malicious.com/index.html, which is hosted on
the our's machine (we play the role of the attacker i n this demonstration). Inside of the
code of this web page, we can place a Java applet or some javascript, which w i l l be executed

2 2

http://bank.com/index.html
http://malicious.com/index.html

in the client's browser. One of the capabilities of these scripts is to send H T T P requests
on behalf of the client's browser. General ly speaking, we would now only have very l imited
control over the requests we can make w i t h the use of javascript or Java applets. This
is main ly because of the implementat ion of the S a m e - O r i g i n P o l i c y (SOP) as mentioned
in chapter 4.2. However, for the purpose of this demonstration, let us assume that the
Same-Origin Po l i cy is either bypassed, disabled or that the server has allowed cross-domain
resource sharing (C O R S) for requests coming f rom any domain , which would i m p l i c i t l y
include our domain . If this is the case, then we now has the abi l i ty to send requests
from the client's browser, while also having control over them. Therefore we became the
„Man-in-the-Middle".

5.2.3 C r a f t i n g requests

W i t h control over the browser's requests, we can now specially craft our own requests. The
goal is to decrypt the following cookie:

Cookie: SESSI0NID=a5Ecr37c00klE

In order for us to craft a request, which can help us achieve this, we can use the following
two pieces of information:

• the block size of the encryption mechanism used for encrypting the communicat ion
between the client and the browser is 16 b y t e s .

• we know that the cookie begins w i t h the str ing „SESSIONID=".

Using this information, we can art i f ic ial ly increase the number of characters before the
cookie, i n order to get the secret cookie into such a posit ion, where the first character of
the unknown part of the cookie is the last character i n a block. In the real attack, this
can be achieved by inflat ing the request path w i t h arbi t rary characters. A n example of
an arbi trar i ly inflated request path can be POST /aaaaaaaaa. Another th ing that we need
to keep i n m i n d however, is that we do not want the block containing the first unknown
character of the cookie to be the first block. T h i s is because we need to make use of the
ciphertext of the previous block. In the real attack, this is ensured natural ly, due to the
H T T P request containing other headers before the Cookie header. In the P y t h o n proof-of-
concept script we assure this by s imply another block of arbi trary characters in front of the
block w i t h the first unknown character. A l l of this is achieved w i t h the following snippet
of code:

f r o n t _ p a d d i n g = A E S _ b l o c k _ s i z e - len(known) - 1
add_bytes = A E S _ b l o c k _ s i z e
t a r g e t = c o o k i e
front_padded_message = "a" * (add_bytes + f r o n t _ p a d d i n g) + t a r g e t

23

Firs t we calculate how much front padding is needed i n order for the first unknown
character to be at the end of the block. We calculate this by subtract ing the length of the
string we know (in this case „SESSIONID=", which is 10 characters long) from the block
size and then subtract ing an extra 1 for the first unknown character. A f t e r that we append
the letter „a" at the front of the cookie however many times necessary, so that the first
unknown character w i l l be isolated, giving us the result front_padded_message, which
looks like this:

a S E S S I O N I D = a 5 E c r 3 7 c O O k l E

Figure 5.2: Craf ted request.

Of course, we as the attacker do not know the contents of the cookie, so f rom our
perspective, we would only be able to know this (* marks an unknown character):

r a S E S S I O N I D = * * * * * * * * * * * * '***|

Figure 5.3: Craf ted request from the attacker's point of view.

A t this point , in the real attack we would send our specially crafted request, which would
be processed by the encryption a lgor i thm. D u r i n g this processing, the request gets divided
into blocks of 16 b y t e s and i n case the last block is not ful ly occupied, the encryption
mechanism adds padding onto the end of the request to fill the gap. In the P y t h o n proof-
of-concept script, this is simulated w i t h the following snippet of code:

raw_message =
front_padded_message + (16 - len(front_padded_message) % 16) * "a"

In our case, the last block is missing 4 bytes at the end, so the character „a" is appended
4 times. A f t e r adding the padding onto the end we can now force the browser to send our
crafted request. Before the browser sends it to the server, it is first encrypted. Th is is
simulated as such:

def e n c r y p t (p l a i n t e x t , i n i t _ v e c t o r = 0) :
i f i n i t _ v e c t o r == 0:

i n i t _ v e c t o r = os.urandom(AES_block_size)
c i p h e r = C i p h e r (a l g o r i t h m s . A E S (k e y) , m o d e s . C B C (i n i t _ v e c t o r))
e n c r y p t o r = c i p h e r . e n c r y p t o r ()
r e t u r n e n c r y p t o r . u p d a t e (p l a i n t e x t)

encrypted_message = encrypt(raw_message.encode())

Here, the encryption mechanism first takes the raw message and then splits it into
blocks of 16 bytes, g iving us the following blocks of data (we can also observe that we
successfully shifted the first unknown character of the cookie into the back of the block):

a S E S S I O N I D = a 5 E c r 3 7 c 0 O k 1 E a a a a

Figure 5.4: D a t a split into blocks.

24

For the first block, a random ini t ia l izat ion vector is generated. In this case the generated
vector is bf976b06c69dlfad5a6cab7102a3fb9c. Th is vector then gets XOR-ed w i t h the
first block and the result then gets encrypted using the encryption key, resulting in a
ciphertext. This cipher text is then used as the in i t ia l izat ion vector for the next block and
so on, according to the principles of C B C . A f t e r the encryption is complete, the encrypted
blocks would get sent over to the server. O n the way there, we as the attacker would
be moni tor ing this communicat ion and we would be able to intercept the following three
encrypted ciphertext blocks:

all812bel43e09f05594484e5b83ale8 a2de63aebcl222a4bcbl5f3ca6739f0f 7c7130ab2e2dl7db9ce0e898f4feb0d5

Figure 5.5: Intercepted ciphertext blocks.

In the demonstration P y t h o n script, these blocks are saved for inspection like this:

h e x l i f i e d = b i n a s c i i . h e x l i f y (e n c r y p t e d _ m e s s a g e)
b l o c k s = [h e x l i f i e d [i : i + 3 2] f o r i i n range(0, l e n (h e x l i f i e d) , 32)]

After intercepting the encrypted messages, we can establish the three following pieces
of information:

• the first intercepted block is the ciphertext block, which was used to encrypt the next
block, which contains the first unknown character.

• the last intercepted block is the ciphertext block, which w i l l be used to encrypt the
next message.

• the second intercepted block is the result of a plaintext block which contained the
string aaaaaSESSIONID=*, where * marks the unknown character.

The next step for us is to replace the unknown character * w i t h our guess for the first
character. In the demonstrat ion P y t h o n script we are testing for a l l lowercase characters,
a l l uppercase characters and a l l digits . A f t e r we replace the unknown character w i t h out
guess, we XOR the three following values (the logic behind this XOR is explained i n chapter
2.3):

• the first intercepted ciphertext

• the last intercepted ciphertext

• our guess of the plaintext of the second intercepted ciphertext

In the script, this is done w i t h the following snippet of code:

l a s t _ i v = encrypted_message[-AES_block_size:]
i v _ f o r _ t a r g e t = encrypted_message[0:AES_block_size]
guess = (known + i) . e n c o d e (' u t f - 8 ')
xored =
b y t e s ([_ a ~ _ b ~ _ c f o r _a,_b,_c i n z i p (l a s t _ i v , i v _ f o r _ t a r g e t , g u e s s)])

25

After we calculated the XOR value of these three items combined, we then force the
client's browser to send a second request which contains the x o r e d value. Th is request
would once again go through the same encryption process as the first request and then it
would be sent. We can then intercept the encrypted message again and we can f ind the
following ciphertext:

a2de63aebcl222a4bcbl5f3ca6739f0f

Figure 5.6: Intercepted ciphertext of the second request.

If our guess of the unknown character was correct, the ciphertext of the second request
and the second ciphertext of the first request w i l l be equal, therefore we found a match and
decrypted the first character of the cookie. If this is the case, we shift the block boundaries
again, to expose the new character and start the next i terat ion of steps described i n chapter
5.2.3. If our guess was incorrect, then we s imply follow the steps described i n chapter 5.2.3
w i t h the next character guess, but without shift ing the block boundaries. We repeat this
process u n t i l the entire cookie is decrypted.

5.2.4 H o w to use the script

The P y t h o n proof-of-concept script for the B E A S T attack is submitted alongside this re
port . Therefore for the purpose of providing better understanding of the demonstration for
the readers, this short section is dedicated to providing instructions on how to operate the
script.

In order to launch the script, use the following command:

py beastPoC.py [cookie] [-nonalphanum] [-debug]

The script has three opt ional parameters:

• c o o k i e - for specifying the cookie which the script w i l l be decrypting.
• nonalphanum - for inc luding nonalphanumerical characters i n the cookie.

• debug - for enabling debug mode. The purpose of this mode is to provide extra
detailed console output throughout the durat ion of the attack, in order to better
highlight how the attack is proceeding.

W i t h o u t debug mode enabled, the script w i l l first display important metadata about the
attack, such as the target cookie, the known prefix, the encryption key and the encryption
mechanism details. Fol lowing the metadata, the script w i l l output the current plaintext
block guess, as well as the ciphertext blocks, which the script is t r y i n g to match. If the
correct character is found, it w i l l be displayed and the script continues w i t h the next
character. Af ter the whole cookie is decrypted, the script outputs the cookie, as well as the
number of requests it took for decryption.

W i t h debug mode, addit ional information such as raw messages, in i t ia l izat ion vectors
and ciphertext blocks are displayed.

26

5.3 D e m o n s t r a t i o n of C R I M E

Simi lar ly to B E A S T , before the C R I M E attack can start, a few events have to happen
beforehand. Once again let us suppose that there is a client, who w i l l be our v i c t i m and
he attempts to web page bank.com/index.html using H T T P S , which is hosted
on a secure server. Suppose also that bo th the server and the client have T L S version 1.0
enabled, the server allows encryption mechanisms which use the RC4 stream cipher and the
client's browser also supports these encryption mechanisms (once again it is worth noting
that the C R I M E attack is not l imi ted to the RC4 stream cipher, but the attack's principles
are best demonstrated on this stream cipher). Since the server is secure and the client is
t ry ing to access the web page using H T T P S , the TLS handshake must first occur in order
to establish a secure connection, before any actual appl icat ion data can be sent. T h e client
once again first sends a C l i e n t H e l l o message to the server over the T L S v l protocol . In this
message, the client lists a l l of the browser supported encryption mechanisms. Suppose that
one of these mechanisms uses the RC4 stream cipher. Suppose also that the browser sup
ports the TLS DEFLATE compression method. This w i l l also be communicated to the server
in the C l i e n t H e l l o message. The server reads through a l l of the supported encryption
and compression mechanisms and then selects one of each, based on its configured settings.
Suppose that the server also selects the same encryption mechanism, which uses the RC4
stream cipher, as well as the TLS DEFLATE compression method. A f t e r selecting, the server
sends a S e r v e r H e l l o response to the client, in which it specifies the selected encryption
mechanism and compression method. The client's browser w i l l take note of these mecha
nisms and they w i l l be used for the remainder of the communicat ion between them. Same
as before, an encryption key for the RC4 stream cipher is also agreed upon between the
client and the server. In the P y t h o n proof-of-concept demonstration script for the C R I M E
attack, the process of generating a random key is s imulated by the following code:

key = os.urandom(AES_block_size)

For this specific instance of the communicat ion between the client and the server, sup
pose that the randomly generated key has the following hexadecimal value:

key = 003314749205ba2e77d5f9204f423925

After being generated, this key w i l l now be used by both the client and the server for
the purpose of encrypting messages between one another.

5.3.1 S t o r i n g the cookie

U p o n the successful TLS handshake, the client requests the bank.com/index.html file,
which he was at tempting to access. The server then sends a response containing the web
page. Inside of the response w i l l also be an H T T P header for setting a cookie into the client's
browser. Th is cookie w i l l then be used for authentication of the client i n any subsequent
requests. Suppose that i n this instance, the H T T P header looks like this:

Set-Cookie: Cookie: SESSI0NID=aV3rY5Ecr37c00klE

U p o n receiving the response from the server, the client's browser reads the response,
takes the value of the cookie provided by the server, and stores the cookie as:

Cookie: SESSI0NID=aV3rY5Ecr37c00klE

W i t h the cookie stored in the client's browser, the B E A S T attack may now begin.

2 7

http://bank.com/index.html
http://bank.com/index.html

5.3.2 M a n - i n - t h e - M i d d l e

We w i l l once again be playing the role of the attacker for the durat ion of this demonstration.
The first step of the C R I M E attack for us is to become the „Man-in-the-Middle". Suppose
that after v is i t ing the web page bank.com/index.html, hosted by the secure server, the
client now visits a second web page malicious.com/index.html, which is hosted on our
machine. Inside of the code of this web page, we can place a Java applet or some javascript,
which w i l l be executed in the client's browser. S imi lar ly to the B E A S T attack, we can send
H T T P requests on behalf of the client's browser, w i t h the use of these scripts. Because
of the Same-Origin Pol icy, we would once again only have very l imi ted control over the
requests we can make using our scripts. However, for the purpose of this demonstration,
let us assume that the Same-Origin Po l i cy is either bypassed, disabled or that the server
has allowed cross-domain resource sharing (C O R S) for requests coming f rom any domain ,
which would i m p l i c i t l y include our domain . If this is the case, then we now have the abi l i ty
to send requests from the client's browser, while also having control over them. Therefore
we successfully became the „Man-in-the-Middle".

5.3.3 Ini t ia l request

W i t h control over the v ic t im's browser requests, we can now specially craft our own requests.
The goal is to decrypt the following cookie:

Cookie: SESSI0NID=aV3rY5Ecr37c00klE

We know that the known prefix of the cookie is „Cookie: SESSIONID=". In order for
us to decrypt this cookie, we w i l l first force the v i c t i m to send a crafted request, where we
inject the known prefix into i t , i n order to create a duplicate substring, which w i l l then be
compressed by TLS DEFLATE. In our demonstration the crafted request w i l l look like this:

GET /i n d e x . h t m l HTTP/1.1
Host: www.bank.com
Cookie: SESSI0NID=aV3rY5Ecr37c00klE
Cookie: SESSIONID=

In the P y t h o n script this is represented w i t h the following code:

known = "Cookie: SESSIONID="
base_request = GET / i n d e x . h t m l HTTP/1.1
Host: w w w . b a n k . c o m + "\n" + c o o k i e
r e q u e s t = base_request + "\n" + known

Afterwards, using our javascript or Java applet, which is running i n the v ic t im's browser,
we can force h i m to send our crafted request. Th is request would get compressed using
TLS DEFLATE and then encrypted using the RC4 encryption mechanism, before finally being
sent.

2 8

http://bank.com/index.html
http://malicious.com/index.html
http://www.bank.com
http://www.bank.com

The process of encryption and compression is simulated by the following code:

def e n c r y p t i o n (r a w) :
a l g o r i t h m = algorithms.ARC4(key)
c i p h e r = C i p h e r (a l g o r i t h m , mode=None)
e n c r y p t o r = c i p h e r . e n c r y p t o r ()
r e t u r n e n c r y p t o r . u p d a t e (z l i b . c o m p r e s s (r a w . e n c o d e ()))

e n c r y p t e d _ r e q u e s t = e n c r y p t i o n (r e q u e s t)

We can then intercept this message on its way to the server and observe its length. Here
is the code from the demonstrat ion script, which simulates these events:

e n c r y p t e d _ r e q u e s t = e n c r y p t i o n (r e q u e s t)
c u r r e n t _ l e n g t h = l e n (e n c r y p t e d _ r e q u e s t)

We w i l l be able to observe, that the length of the message is 89 b y t e s and we w i l l take
note of this length.

5.3.4 Inf la t ing in i t ia l request

After taking note of the length of the in i t i a l request, we w i l l now force the v ic t im's browser
to send more crafted requests w i t h addi t ional injected plaintext , using our javascript or Java
applet. In these requests, we w i l l be appending an extra character after the known prefix
M C o o k i e : SESSIONID=". This character w i l l be our guess for the first unknown character
of the actual cookie. We w i l l therefore further inflate the in i t i a l request as such:

GET /i n d e x . h t m l HTTP/1.1
Host: www.example.com
Cookie: SESSI0NID=aV3rY5Ecr37c00klE
Cookie: SESSIONID=a

After craft ing the request, we once again force the v ic t im's browser to send this request
and then intercept it on its way to the server and we observe its length. In the demonstration
script this is done w i t h the following snippet of code:

r e q u e s t = base_request + "\n" + known + x
encr y p t e d _ r e q u e s t = e n c r y p t i o n (r e q u e s t)

Here, we w i l l be able to observe, that even though we added an extra byte into the
request, the size of the message is s t i l l 89 bytes, same as before. Th is is because the TLS
DEFLATE compression mechanism has compressed our addi t ional character, meaning it was
the same as the one in the original cookie, therefore we have found a match. If this is the
case, we can communicate to our javascript or Java applet, that we have found a match , so
that it appends the given character to our known substring, so we can start guessing the
next character.

If the length of the intercepted message would be 90 bytes, that would mean that
our injected character was incorrect. We would therefore repeat the process w i t h the next
character, instead of appending it to the known substring. N o w we s imply repeat the
process start ing from chapter 5.3.4, u n t i l we decrypt the entire cookie.

2 9

http://www.example.com

5.3.5 H o w to use the script

The P y t h o n proof-of-concept script for the C R I M E attack is submitted alongside this re
port . Therefore for the purpose of providing better understanding of the demonstration for
the readers, this short section is dedicated to providing instructions on how to operate the
script.

In order to launch the script, use the following command:

py beastPoC.py [cookie] [-nonalphanum] [-debug]

The script has three opt ional parameters:

• c o o k i e - for specifying the cookie which the script w i l l be decrypting.
• nonalphanum - for inc luding nonalphanumerical characters i n the cookie.

• debug - for enabling debug mode. The purpose of this mode is to provide extra
detailed console output throughout the durat ion of the attack, in order to better
highlight how the attack is proceeding.

W i t h o u t debug mode enabled, the script w i l l first display important metadata about the
attack, such as the target cookie, the known prefix, the encryption key and the encryption
mechanism details. Fol lowing the metadata, the script w i l l output the current substring of
the request which we are injecting. If the correct character is found, it w i l l be displayed
and the script continues w i t h the next character. A f t e r the whole cookie is decrypted, the
script outputs the cookie, as well as the number of requests it took for decryption.

W i t h debug mode, addit ional information such as the in i t i a l request's length, lengths
of messages after compression and lengths of messages intercepted by the attacker are
displayed.

3 0

Chapter 6

Data analysis

After having covered the theoretical basis behind these attacks, as well as demonstrating
how each of them works, we can take a look at some other aspects. B o t h of the attacks have
certain t ime requirements for decrypting secret cookies. If these attacks were to be executed
in the real wor ld , the attacker might not always have the t ime that 's needed. It is therefore
worth tak ing a look at just how fast these attacks can be. Another important metric of
the attacks is the amount of requests. A s mentioned before, bo th of the attacks force the
v ic t im's browser to send many requests, which then get intercepted by the attacker for the
purpose of decrypting cookies. It is therefore also worth investigating how many requests
these attacks take. W h e n combining this information, we can gain good understanding
of the t ime and request complexity of these attacks, w h i c h might help us come up w i t h
effective methods of detecting and preventing these attacks i n advance.

6.1 S imula t ion constraints

In order to gain the understanding mentioned before, a dataset was created by observing
certain metrics dur ing the repeated execution of the P y t h o n proof-of-concept scripts. How
ever, it is important to note, that even though the proof-of-concept scripts are made to
closely follow the events of these attacks, they are s t i l l only simulations. Th is natural ly
comes w i t h certain l imitat ions and abstractions, which we have to take into account. One
such important abstraction is t ime. In a real execution of these attacks, the v i c t i m first has
to obtain the cookie from a legitimate server, then visit the attacker's website and load the
malicious scripts. These scripts then also have to establish a connection w i t h the attacker.
A l l of these actions take some time, however the proof-of-concept scripts only focus on the
decryption part . Therefore these actions are not considered i n the following datasets.

The decryption stage of bo th of the attacks consists of the v i c t i m repeatedly sending
requests to the server. N a t u r a l l y there is always going to be some delay between each
request, however i n the real wor ld , this delay is not always the same. In order to account
for this, the proof-of-concept script uses an art i f ic ial delay of 10ms between each request.

3 1

The value of 10ms is an estimated average of delay between requests based on the
following components:

• t ime between sending the request and the attacker intercepting it - in an ideal s i tuat ion
for the attacker, they would be in the same local network as the v i c t i m . General ly
speaking the latency f rom the client to the default gateway falls w i t h i n the range of
l-5ms. It is therefore reasonable to assume, that the t ime frame for the attacker to
intercept packets from the v i c t i m would also fal l into a s imilar range.

• t ime of processing the intercepted request on the attacker's machine - the operations
on the intercepted requests are not very complex nor t ime consuming. The t ime of
processing requests w i l l generally never be more than l-2ms.

• time of sending information from the attacker's machine to the script i n the v ic t im's
browser - once again, since both the attacker and the v i c t i m would ideally be on the
same local network, the t ime frame of l-5ms is considered.

W i t h these components i n m i n d and based on observations of delays i n modern browsers,
the arbi t rary value of 10ms has been chosen.

6.2 Target cookie length range

Another important aspect of decrypting cookies is of course their length. It goes without
saying that the longer the cookie is, the longer it w i l l take for the attacks to decrypt i t . The
length of cookies is determined by the configuration on the server side. A web performance
researcher, P a u l Calvano, conducted research on the length of cookies i n a l l web pages
tracked i n the H T T P archivefl] i n 2020. According to his research, the median value of
the length of cookies is 36 characters, but it can range anywhere from just 1 character,
up to a m a x i m u m of 29735 characters, while the 99th percentile is 287 characters. The
created dataset is therefore targeted at the cookie length range from 20 to 56 characters
w i t h increments of 4. Th is provides us w i t h sufficient understanding for the t ime and
request requirements of the attacks for most common lengths of cookies.

6.3 B E A S T attack data analysis

A s mentioned before, the dataset for the B E A S T attack targets the cookie length range
from 20 to 52 characters w i t h 4 character intervals in between. The P y t h o n proof-of-concept
script for the B E A S T attack was launched repeatedly for each interval . The dataset then
describes the average of a l l script execution results for each interval . The m a i n focus of
the data set is to measure how big of an impact the length of the cookie has on the time
and request requirements of the attack. We are also differentiating between cookies, which
only use alphanumerical characters and cookies, which use non-alphanumerical characters
as wel l , i n order to see how big of an impact the complexity of the cookie has on the time
and request requirements. The repeated execution of the P y t h o n proof-of-concept script
produced data displayed on the following page.

32

• Alphanumeric! • Norialprianurnerical

Figure 6.1: G r a p h of average t ime by length for B E A S T .

Firs t ly , we may observe that for the range of 20 to 52 characters the decryption process of
the B E A S T attack takes between 19.23 and 51.45 seconds. F r o m this we can deduce that
the attack needs about 1 second on average to decrypt a single alphanumerical character. It
is however worth noting again, that this t ime is purely an estimation, due to the s imulat ion
restrictions described i n section 6.1. If we take into account the use of non-alphanumerical
characters as well , the dataset shows an average increase of about 33% i n the amount of t ime
required for decryption, giving us an average of about 1.34 seconds for a single character.
S imilar ratios can be observed on the following graph, which depicts how many requests on
average it takes to decrypt cookies of different lengths. For alphanumerical characters only,
the average amount of requests ranges f rom 1233 up to 3306, giving us an average of about
65 requests per character. S imi lar ly to the t ime metric , we can also observe an increase
of roughly 33% i n the number of requests, when taking into account non-alphanumerical
characters.

• Alphanumerical • Nonalphanumerical

32 36 40

Length of cookie

Figure 6.2: G r a p h of average number of requests by length for B E A S T .

33

6.4 C R I M E attack data analysis

The C R I M E attack dataset targets the cookie length range from 20 to 52 characters w i t h 4
character intervals in between. Likewise, the P y t h o n proof-of-concept script was launched
repeatedly for each interval . The dataset output describes the average results for each
interval, w i t h the m a i n focus of the dataset once again being to measure how big of an
impact the length of the cookie has on the t ime and request requirements of the attack.
The repeated execution of the P y t h o n proof-of-concept script has produced the following
results:

• Alphanumeric • Nonalphanumerical

-0 DO

35.00
33.12

20 24 2E 32 38 40 44 48 52

Lerigtn of cookie

Figure 6.3: G r a p h of average t ime by length for C R I M E .

F r o m this dataset we can deduce that it takes about 0.5 seconds to decrypt a single
alphanumerical character. If we consider non-alphanumerical characters as well , we can
observe a 32-33% increase in t ime. The same ratios can also be observed on the average
amount of requests by length here:

• Alphanumerical • Nonalphanumerical

2500

2127.5
B2U]

20 2 4 28 32 36 40 44 48 52

Length ol cookie

Figure 6.4: G r a p h of average amount of requests by length for C R I M E .

34

6.5 A t t a c k dataset comparison

In this section we take a quick look on how the t ime and request requirements of the
attacks stack up to one another. Th is w i l l help provide understanding on which attack is
more effective, which is faster and by how much. F i r s t l y the comparison of the attacks by
the amount of t ime required is as follows:

BEAST • CRIME

50.36 •

Figure 6.5: A m o u n t of t ime required for B E A S T vs C R I M E .

Based on this data , we can see that the B E A S T attack takes roughly twice as long as
C R I M E for cookies of the same length. Th is means that for shorter cookies both attacks
can be viable, however w i t h the growing length of the cookie, the B E A S T attack becomes
a lot less efficient i n comparison to C R I M E . The same can be observed on the amount of
requests between the two attacks.

• BEAST • CRIME

20 24 23 32 36 40 44 43 52

Length of cookie

Figure 6.6: A m o u n t of requests required for B E A S T vs C R I M E .

The difference i n efficiency main ly comes down to the fact that the B E A S T attack needs
two requests for a single guess of a character, where as the C R I M E attack only needs one.
However, we can observe that w i t h the use of cookies, which are at least 20 characters long,
the attacks use upwards of 800 requests i n just a couple of seconds. We can therefore use
this information to detect the possibil i ty of the attacks being i n progress, while they are
happening.

35

Chapter 7

Conclusion

In this report I have analyzed the B E A S T and C R I M E attacks against the H T T P S protocol .
I have provided the theoretical basis behind them and their brief history, which is followed
by an in-depth explanation of the principles of these attacks as well as ways to predict
or detect them, or s imilar attacks which might be discovered in the future. Furthermore I
have created P y t h o n proof-of-concept scripts for the purpose of demonstrating these attacks
and by repeated execution of these scripts, I have obtained datasets, which describe how
effective these attacks are and how they compare to each other.

The m a i n objectives of this report ctre cts follows:

• research the principles of the B E A S T and C R I M E attacks - the principles of the
B E A S T and C R I M E attacks are described i n chapters 2 and 3 respectively.

• create a suitable environment for demonstrating these attacks - the attacks were
demonstrated w i t h the use of P y t h o n proof-of-concept scripts, which are described in
chapters 5.2 and 5.3 respectively.

• create annotated datasets f rom attack demonstrations - annotated datasets were cre
ated by repeated execution of the proof-of-concept scripts. They are described in
chapter 6.

• analyze created datasets and research suitable attack detection and prevention meth
ods - detection and prevention against the B E A S T and C R I M E attacks are described
in chapters 2.4 and 3.4 as well as chapter 4.

This report could further be improved by demonstrating the attacks i n an environment
which resembles the real s i tuat ion even closer, which can be done by separating the attack
demonstrations into i n d i v i d u a l participants w i t h legitimate T L S communicat ion between
them. This improvement could for example be achieved w i t h the use of specialized P y t h o n
libraries for s imulat ing H T T P S servers and clients. Another way would be to create v i r t u a l
machines and insta l l a l l of the outdated versions of technologies necessary, as described
in chapter 4, however some of the required technologies, such as TLS D e f l a t e browser
support , are very difficult to come by.

36

Bibliography

[1] An analysis of cookie sizes on the web. P a u l Calvano, 2020 [cit. 5.5.2023]. Available at:
https: //paulcalvaLno.com /2020-07-13 -aLn-ajialysis-of-cookie-sizes -on-the-web/.

[2] Abbreviated TLS 1.2 Handshake. W i k i m e d i a , 2022 [cit. 15.4.2023]. Available at:
https: //commons.wikimedia.org/wiki/File: Abbreviated_TLS_l.2_Handshake.svg.

[3] Block cipher. W i k i m e d i a Foundat ion, 2022 [cit. 25.11.2022]. Available at:
https: //en.wikipedia.org/wiki/Block_cipher.

[4] Block cipher mode of operation. W i k i m e d i a Foundat ion, 2022 [cit. 27.11.2022].
Available at: https: //en.wikipedia.org/wiki/Block_cipher_mode_of_operation.

[5] CRIME. W i k i m e d i a Foundat ion, 2022 [cit. 23.12.2022]. Available at:
https: //en.wikipedia.org/wiki/CRIME.

[6] Man-in-the-middle attack. W i k i m e d i a Foundat ion, 2022 [cit. 28.11.2022]. Available at:
https: / / en.wikipedia.org/wiki/Man- in-the-middle_attack.

[7] What is a WAF? / Web Application Firewall explained / Cloudflare. Cloudflare, Inc.,
2023 [cit. 15.4.2023]. Available at: https:
//www. cloudflare.com/learning/ddos/glossary/web-application-firewall-waf/.

[8] What is HTTP chunked encoding? how is it used? Bunny.net , 2023 [cit. 10.5.2023].
Available at: https: //bunny.net/academy/http/what-is-chunked-encoding/.

[9] B A N A C H , Z . HOW the BEAST Attack Works. 2020 [cit. 13.12.2022]. Available at:
https: //www. invicti.com/blog/web-security/how-the-beast-attack-works/.

[10] C L O U D F L A R E , I. What happens in a TLS handshake? 2022 [cit. 25.11.2022]. Available
at: https : //www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/.

[11] K I P R I N , B . What Is the CRIME Attack and How Does It Work. 2021 [cit. 23.12.2022].
Available at: https://crashtest-security.com/prevent-ssl-crime/.

[12] K I P R I N , B . What Is the SSL BEAST Attack and How Does It Work. 2021 [cit.
24.11.2022]. Available at: https://crashtest-security.com/ssl-beast-attack-tls/.

[13] K I P R I N , B . What is a downgrade attack and how to prevent it. 2022 [cit. 28.11.2022].
Available at: https://crashtest-security.com/downgrade-attack/.

[14] P H I L L I P , R . Evaluation of Some Blockcipher Modes of Operation [online]. Security
Evaluat ion . Davis , Cal i fornia , U S A : Univers i ty of Cal i fornia , Davis , february 2011
[cit. 27.11.2022]. Available at:
https: //web.cs.ucdavis.edu/~rogaway/papers/modes.pdf.

37

http://vaLno.com/2020-07-13-aLn-ajialysis-of-cookie-sizes-on-the-web/
http://commons.wikimedia.org/wiki/File
http://Abbreviated_TLS_l.2_Handshake.svg
http://wikipedia.org/wiki/Block_cipher
http://wikipedia.org/wiki/Block_cipher_mode_of_operation
http://en.wikipedia.org/
http://en.wikipedia.org/
http://cloudflare.com/learning/ddos/glossary/web-application-firewall-waf/
http://Bunny.net
http://invicti.com/blog/web-security/how-the-beast-
http://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
https://crashtest-security.com/prevent-ssl-crime/
https://crashtest-security.com/ssl-beast-attack-tls/
https://crashtest-security.com/downgrade-attack/
http://cs.ucdavis.edu/~rogaway/papers/modes.pdf

[15] T E C H T A R G E T . Cipher block chaining (CBC). TechTarget, 2021 [cit. 25.11.2022].

Available at:
https://www.techtarget.com/searchsecurity/definition/cipher-block-chaining.

[16] W l L L E K E , J. Beast. 2015 [cit. 24.11.2022]. Available at:
https: //ldapwiki.com/wiki/BEAST.

3 8

https://www.techtarget.com/searchsecurity/definition/cipher-block-chaining

