BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF INFORMATION SYSTEMS
USTAV INFORMACNICH SYSTEMU

DEMONSTRATION AND ANALYSIS OF ATTACKS ON
PROTOCOL HTTPS

DEMONSTRACE A ANALYZA UTOKU NA PROTOKOL HTTPS

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR ADAM MURGAS
AUTOR PRACE

SUPERVISOR doc. Ing. ONDREJ RYSAVY, Ph.D.

VEDOUCI PRACE

BRNO 2022



VYSOKE UCENi FAKULTA
TECHNICKE INFORMACNICH
V BRNE TECHNOLOGI|

-r

Zadani bakalarské prace ||||||||||||||||"|

] ] 148217
Ustav: Ustav informaénich systému (UIFS)

Student: Murga$ Adam

Program: Informacni technologie

Specializace: Informacni technologie

Nazev: Demonstrace a analyza utokui na protokol HTTPS

Kategorie: Bezpeclnost

Akademicky rok: 2022/23

Zadani:

Seznamte se s protokoly HTTP/1.1, SPDY a HTTP/2.

Nastudujte principy Utoktl BEAST a CRIME.

Vytvorte si vhodné virtualni prostredi pro dalSi experimenty.

Demonstrujte Gtoky pro nékolik scénaiti a zaznamenejte komunikaci z téchto Gtokd ve formé
anotovanych datovych sad.

Analyzujte komunikaci z Gtok( a navrhnéte jednoduchou metodu pro jejich detekci.
6. Zhodnotte provedené experimenty a diskutujte mozné zplsoby obrany proti t¢mto Gtokam.

N =

o

Literatura:

¢ O. lvanov, V. Ruzhentsev & R. Oliynykov, "Comparison of Modern Network Attacks on TLS
Protocol," 2018 International Scientific-Practical Conference Problems of Infocommunications.
Science and Technology (PIC S&T), 2018, pp. 565-570

* Duong & J. Rizzo, "Here come the Ninjas", Ekoparty, 2011.

¢ T. Duong & J. Rizzo, "The CRIME attack", Ekoparty, 2012.

* Y. Gluck, N. Harris & Angelo Prado, "BREACH: Reviving The CRIME Attack" in Blackhat, USA,
2013.

Pfi obhajobé semestralni ¢asti projektu je pozadovano:
Minimalné body 1-3.

Podrobné zavazné pokyny pro vypracovani prace viz https://www. fit.vut.cz/study/theses/

Vedouci prace: Rysavy Ondfrej, doc. Ing., Ph.D.
Vedouci Ustavu: Kolar Du$an, doc. Dr. Ing.

Datum zadani: 1.11.2022

Termin pro odevzdani: 17.5.2023

Datum schvaleni: 28.10.2022

Fakulta informacénich technologii, Vysoké uceni technické v Brné / Bozetéchova 1/2 /612 66 / Brno


https://www.fit.vut.cz/study/theses/

Abstract

The objective of this report is to analyze two attacks against the HT'TPS protocol, namely
the BEAST and CRIME attacks. The main point is to see whether or not they are still
possible with the technologies of today, as well as demonstrate how they work and how
to prevent or detect similar attacks in the future. This report describes the theoretical
foundation behind these attacks and addresses possible solutions for detection or preven-
tion. Following the theoretical foundation and the prevention and detection methods, this
report also provides a demonstration of the principles behind these attacks as well as a
dataset focused on certain metrics regarding the attacks, in order for readers to gain better
understanding of their principles, as similar attacks might be discovered in the future.

Abstrakt

Cielom tejto prace je analyzovat dva utoky na protokol HTTPS, najméa utoky BEAST a
CRIME. Hlavnou pointou prace je zistit, ¢i sa tieto utoky stdle mozné s dnesnymi technolo-
giami, a zaroven demonstrovat ako tieto utoky funguju a ako sa podobnym utokom vyhnut
alebo ako ich vcas detekovaf. Tato praca opisuje teoreticky zaklad tychto utokov a taktiez
opisuje mozné riesenia pre detekciu a prevenciu. Po teoretickom zaklade a sposoboch pre-
vencie, tato praca taktiez poskytuje demonstraciu principov tychto itokov a taktiez dataset,
ktory sa zameriava na urcéité metriky utoku, aby mali ¢itatelia lepsSiu znalost o principoch
za tymito utokmi, pretoze podobné utoky by mohli byt objavené v budicnosti.

Keywords

HTTPS, SPDY, BEAST, CRIME, TLS/SSL, Cipher Block Chaining (CBC), Initialization Vector
(IV), cipher suites, block ciphers, TLS compression, Python

Klicova slova

HTTPS, SPDY, BEAST, CRIME, TLS/SSL, Cipher Block Chaining (CBC), Inicializa¢ni Vektor
(IV), soubor sifer, blokové sifry, TLS komprese, Python

Reference

MURGAS, Adam. Demonstration and analysis of attacks on protocol HTTPS. Brno, 2022.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor doc. Ing. Ondfej Rysavy, Ph.D.



Demonstration and analysis of attacks on proto-
col HTTPS

Declaration

Prehlasujem, zZe som tato bakalarsku pracu vypracoval samostatne pod vedenim pana doc.
Ing. Ondreja Rysavého Ph.D. Uviedol som vsSetky literarne pramene, publikicie a dalsie
zdroje, z ktorych som cerpal.

Adam Murgas
May 11, 2023



Contents

Introduction

BEAST attack

2.1 Cipher block chaining vulnerability . . . . .. ... ... ... .. ......
2.2 Preconditions . . . . . . . .. ... e
2.3 How BEAST works . . . . . . . . . . e e
2.3.1 Initialization vector canceling . . . . . .. . ... .. ...
2.3.2 Guessing the plaintext block . . . .. .. ... o000
2.4 Prevention against BEAST . . . . ... .. ... ... ... ..
2.4.1 Randomized padding . . . . . . . .. ... Lo oo
2.4.2 Use of packet pattern recognition . . . . . . .. ... ... ... ...
243 0/nsplit. . ...
244 1/n-1split. . ..o
CRIME attack
3.1 Information leakage by compression . . . .. . ... ... ... ... ... .
3.2 Preconditions . . . . . . . . . ... e
3.3 How CRIME works . . . . . . . . . . . ittt
3.3.1 Observing the length of the original packet . . . .. ... ... ...
3.3.2 Injecting redundant data . . . . .. ... ..o 0oL
3.4 Prevention against CRIME . . . . . .. .. ... .o oL
3.4.1 Randomized padding . . . . . . . .. ... ..o
3.4.2 Use of packet pattern recognition . . . . . . .. ... ... ... ...

Security countermeasures
4.1 Outdated and unsupported technologies . . . . . . .. ... ... ... ...
4.2 Security policies . . . . . .. ..o

Demonstration of attacks

5.1 Used libraries . . . . . . . . 0 0 e e e e
5.2 Demonstration of BEAST . . . . . . . . . . . ...
5.2.1 Storing the cookie . . . . . . . . .. ... o
5.2.2 Man-in-the-Middle . . . . . . . . .. .. ...
5.2.3 Crafting requests . . . . . . . . . .o e
5.2.4 How touse thescript . .. .. ... ... ... .
5.3 Demonstration of CRIME . . . . . . .. .. . ... ...
5.3.1 Storing the cookie . . . . . . . . ...
5.3.2 Man-in-the-Middle . . . . . . . . . . .. ...

00 =1 ~J ~J & =

10
10

11
12

13
13
14
14
15
15
16
16
16

17
17
18



5.3.3 Inmitial request . . . . . . . ..

5.3.4 Inflating initial request . . . . . . . . ..o
5.3.5 How touse thescript . . . . . . . . ... oo
6 Data analysis

6.1 Simulation constraints . . . . . . . . ..o oo
6.2 Target cookie length range . . . . . . . . ... ...
6.3 BEAST attack data analysis. . . . . . . . .. ... ...
6.4 CRIME attack data analysis. . . . . . . . .. . ...
6.5 Attack dataset comparison . . . . . . .. ...

7 Conclusion

Bibliography

31
31
32
32
34
35

36

37



Chapter 1

Introduction

Nowadays, as people spend more and more time on the internet, more and more day
to day activities are also shifting into the virtual online world. People do all sorts of
activities online, from chatting with friends or ordering food, to playing video games or
even managing bank accounts. As it happens, some of those activities are bound to be
private or confidential and therefore need to be secured. Researchers and developers are
constantly putting in massive amounts of effort into improving existing security mechanisms
and inventing new ones, in order to keep all of our online activities safe. Despite their
best efforts however, possibilities of new clever exploits and attacks are constantly being
discovered and exploited, which fortunately also serves to improve online security. Because
of this, it makes more sense than ever for everyone involved in the online world, to be aware
of how to behave on the internet, so that they keep their personal details and activities as
safe as possible.

A vast majority of the internet in today’s age uses the HT'TPS protocol, in order to
encrypt online communication and thus keeps it safe and private. However even this very
secure protocol is not completely safe and throughout the years many vulnerabilities have
been discovered. The focus of this thesis is to describe two kinds of attacks on the HTTPS
protocol, which are the BEAST attack and the CRIME attack. As described in the later
chapters, these attacks are no longer possible with modern technologies. However, they
still provide a great example of a handful of principles on how attackers might be able to
exploit certain vulnerabilities and break encryption mechanisms. The goal of this thesis is to
provide a theoretical basis and the preconditions of these attacks, as well as a demonstration
of their principles and methods of how we can possibly prevent or detect similar attacks
in the future. With the understanding of these topics, attacks similar to the BEAST and
CRIME attacks, which might be discovered in the future, will be easier to deal with.



Chapter 2

BEAST attack

The Browser Exploit Against SSL/TLS (BEAST) attack is an attack on the HTTPS proto-
col, which aims to exploit a vulnerability in TLS version 1.0 or any older SSL protocol[12].
Specifically, it exploits a vulnerability in the Cipher Block Chaining (CBC) encryption
mode of TLS. If an attacker can exploit this vulnerability successfully, they will have the
ability to decrypt HTTPS secured communication between a client and a server without
ever needing to obtain the decryption key and thus being able to perform session hijack-
ing. The BEAST attack as a whole, is a combination of multiple kinds of attacks and
techniques, such as record splitting, a chosen boundary attack and a Man-in-the-Middle
(MitM) attack.

The origins of this attack date back to 2002, when Phillip Rogaway, a professor of com-
puter science and cryptography at the University of California, highlighted a predictability
in the cipher block chaining mode of TLS. Later, in 2011, two security researchers Juliano
Rizzo and Thai Duong have further exploited this vulnerability and formed the BEAST
attack, as it is known today.

In order for the BEAST attack to be possible, several preconditions need to be met.
These preconditions, in combination with the fact that the attack can only read very short
pieces of information in limited time as well as several security countermeasures having
been developed since its discovery, make the BEAST attack very impractical and therefore
also very unlikely. However, even though the BEAST attack is no longer considered very
effective, it still displays how it is possible to combine multiple principles and exploits to
form an effective attack. Because of its effectiveness at the time of discovery, the attack
was considered threatening enough for the vulnerability in cipher block chaining to be fixed
in version 1.1 of TLS and the following versions. Most modern browsers and servers use
TLS version 1.1 or higher and launching a BEAST attack is only possible, if they are using
TLS 1.0 or an older SSL protocol. Another option would be to use the BEAST attack
in combination with a different attack, which forces a server to revert to older versions of
TLS[16].

2.1 Cipher block chaining vulnerability

The entire BEAST attack is based on a vulnerability in cipher block chaining. It is there-
fore important to understand how cipher block chaining works and how this vulnerability
becomes relevant, so that it can be exploited efficiently in the BEAST attack.



When using TLS during internet communication, the browser and the server will first use
an asymmetrical encryption mechanism during the negotiation phase of the communication.
During this phase the client verifies the server’s identity using its SSL certificate authority’s
digital signature. After that, the client and the server will negotiate several encryption
details, which will be used during the communication. This is called a TLS handshake
[10]. After the negotiation process, the communication between the client and the server
will be encrypted symmetrically, using the encryption key which was previously negotiated.
Symmetrical encryption means that both participants in the communication will use the
same encryption key to encrypt and decrypt messages.

Client Server
I G
Connection
.................................................................................................................... ems
Request
-
(@)
vl
BUS «+evereeeeee e ee e ettt Connection '
ns Acknowledged a
o
CltentHe Lo e 68ms
4
.
ServerHello v
LOZMS +vveveresseessmes s Certificate -
ServerHelloDone |
ClientKeyExchange g
ChangeCipherSpec 136ms
Finished
Application
A7OMS o Bats
-
.................................................................................................................... 2 04[‘15

Figure 2.1: TLS handshake[2].

TLS uses block ciphers during encryption of the communication. This means that
the data gets divided into blocks, which have a fixed length. Each block of data then
gets encrypted separately, before it is sent[3]. However, when encrypting identical blocks
of data with the same encryption key, the resulting encrypted ciphertexts will also be
identical, which creates possible vulnerabilities. In order to counter this, TLS uses what is
called initialization vectors (IVs). Initialization vectors are arbitrary numbers, which
are of the same length, as the data blocks. They serve to prevent identical data blocks being
encrypted into identical ciphertexts. Before encrypting a data block, TLS first performs a
logical XOR operation between the data block and the initialization vector. Only the result
of this logical operation then gets encrypted with the negotiated encryption key, which
finally gives us the final ciphertext. Because of the data blocks getting logically X0Red with
an arbitrary initialization vector, even if the raw data blocks are identical, the resulting
ciphertext will be different.

Instead of always using a random initialization vectors to encrypt separate blocks of
data, older versions of TLS (namely version 1.0 or any older SSL protocol) will use the
resulting ciphertext of the previous data block as the initialization vector for the encryption
of the subsequent data block. This is called Cipher Block Chaining[15]. Here is exactly



where the vulnerability, which makes the BEAST attack possible, exists. If an attacker has
the ability to monitor the HT'TPS communication between the server and the client, they
has access to the encrypted ciphertexts. They may not be able to read the raw data, which
is encrypted in these ciphertexts, but if cipher block chaining is in use, they can abuse the
fact that the ciphertexts they have access to, will be used as initialization vectors for the
following data blocks. Exactly how this can be abused will be described in the following
sections.

Plaintext Plaintext Plaintext
ITrrmmTrn [ITTITITTTTTT] CITITIIT T
Initialization Vector (IV)
CITTTTTII I  —— —= =
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
(ITTTTTTTTTT] ITTTTTTTTTTT] CITTTITTTTITT]
Ciphertext Ciphertext Ciphertext

Figure 2.2: Cipher block chaining[4].

This specific vulnerability was highlighted by Phillip Rogaway in 2002. Later in 2011
he also published a very comprehensive evaluation of different block cipher modes[14]. As
mentioned before, Phillip Rogaway uncovered this vulnerability in the cipher block chaining
mode of TLS by highlighting the predictability of the initialization vector used for every
subsequent message after the first one. Assuming the attacker has access to the encrypted
ciphertexts, they would then be able to know, that a given ciphertext would be used for
the following message. Using this information, the attacker can then attempt to brute-force
(guess) the contents of the plaintext they want to decrypt. However, at the time it seemed
like it was only possible to decrypt the encrypted data, by correctly guessing the entire
block of plaintext. The usual sizes of cipher blocks are 8 bytes (64 bits), 16 bytes (128
bits) or 32 bytes (256 bits). Correctly guessing the entire block of any of these sizes is
astronomically unlikely and practically impossible. Because of that, the attack was only
considered to be a theoretical threat.

In the year 2011, two security researchers Juliano Rizzo and Thai Duong discovered a
new approach to the process of guessing the encrypted data[l12]. They discovered, that by
performing a chosen boundary attack, it is possible to isolate just one single byte of the
plaintext, which the attacker wants to decrypt. After the attacker guesses this isolated byte
correctly, they can then shift the cipher block boundaries to isolate the next unknown byte
and then repeat the process. This way, the attacker can guess one single byte at a time,
instead of having to guess an entire block of 8, 16 or 32 bytes at once, which is significantly
more manageable and makes this attack a lot more feasible. While the BEAST attack was
always considered an unlikely, theoretical one, Duong and Rizzo’s discovery prompted many
servers and browsers to upgrade to newer versions of TLS, which provide invulnerability
against the BEAST attack.



2.2 Preconditions

As mentioned before, the BEAST attack has a few preconditions, which need to be met in
order for an attacker to be able to launch it[12].
These preconditions are:

e TLS version 1.0 or an older SSL protocol must be used for encrypting the communi-
cation, or the attacker must have a way to enforce this by performing a downgrade
attack[13] - this is because BEAST aims to exploit the predictability of the initializa-
tion vectors used in cipher block chaining, which is fixed in newer versions of TLS.

e The attacker must be able to monitor the ongoing encrypted communication between
the browser and the server - this is because the attack utilizes the encrypted cipher-
texts, by comparing them with the ciphertexts generated with the guessed plaintext.

e The attacker must be able to inject plaintext data blocks into the communication, to
observe the generated ciphertext output - this used to be possible by performing a
Man-in-the-Middle (MitM) attack[6], a JavaScript injection, or other methods.

2.3 How BEAST works

Now that we know what exactly the BEAST attack is trying to exploit and we know the
preconditions that we need to meet before launching this attack, let’s look at how it works
in more detail.

Let’s assume that a client, who will be the victim of the BEAST attack, has logged into
a website using their private credentials and that they are communicating with the server
using TLS 1.0 (or any other older SSL protocol with cipher block chaining). Part of this
communication will inevitably be some sensitive data, such as a password, a session ID, or
anything of this sort. The attacker’s objective is going to be to decrypt this sensitive data,
without using the encryption key.

2.3.1 Initialization vector canceling

When using TLS for encrypting communication, the raw data of the communication gets
divided into blocks of a fixed length. All of these blocks are then individually logically
XORed with the current initialization vector (IV). The result of this logical operation then
gets encrypted with the negotiated encryption key, which results in a ciphertext. This
ciphertext is then sent, but also stored, so that it can be used as the initialization vector
for the next plaintext block. For reference, see figure 2.2.

Suppose that there is a block of plaintext X, which contains information, that we (the
attacker) want to obtain. This block X gets logically XORed with an initialization vector,
which will be the ciphertext of the previous message Y and then encrypted with the encryp-
tion key, resulting in ciphertext Z. Suppose also that at a later point in the communication,
there is a block of plaintext A, which we, as the attacker, have control over. This block A
gets logically XORed with an initializaiton vector, which will be the ciphertext of the pre-
vious message B and then also gets encrypted with the same encryption key, resulting in
ciphertext C.



Plaintext ¥ Plaintext A

[EEEENENENEEEE| TTTTTTTTTI11 OTTTTTTTT77T OTTTTTTTTTT
Initialization Vector (IV)
I — E——— — ——
block cipher block cipher block cipher block cipher
key encryption key encryption Key encryption Key encryption
TTTTTTTTTT1] OTTTTTTTITTT] OTTTTTTTTTTT OTTTTTTTTTT
Y z B C

Figure 2.3: Scenario visualization.

We can set the value of plaintext A as such:
A=B

What this essentially means, is that we will be using the ciphertext of the previous message
as the value of the plaintext, that we are in control of. This value then gets logically XORed
with the previous message’s ciphertext, which has the same value. Logically XORing two
blocks with identifal values results in a block of zeros. We have therefore effectively canceled
out the initialization vector for the message that we are in control of.

We can then further abuse this by setting the value of plaintext A to:

A=BeaYa X

Here we are XORing three values and setting the result as the value of our block of plaintext
A. The three values here are:

e B - the ciphertext of the previous message
e Y - the ciphertext which was used to encrypt the block of plaintext we want to decrypt

e X’ - our guess of the contents of plaintext X, which we want to decrypt. The goal is
to try to guess X’ and match it with X.

If the block of plaintext A is set as such, the value which is going to get encrypted will be
B®B®Y ®X'. The two identical values B will cancel each other out, leaving us with Y@ X".
Encrypting the XOR of these two values then results into ciphertext C and the goal is to
match ciphertexts C and Z. The important thing to note here, is that we essentially canceled
out the initialization vector B for our constructed block of plaintext A and replaced it with
the initialization vector Y, which was used for encrypting the plaintext, that we want to
decrypt. Therefore both blocks of plaintext X and A will use the same initialization vector,
as well as the same encryption key. This means, that in order to match ciphertexts C and
Z, the only thing we need to do is to match X and X°.

2.3.2 Guessing the plaintext block

When communicating over the internet using HI'TPS, part of the communication are also
multiple headers containing various pieces of information, such as the language, browser
version on the client side, character encoding or many other pieces of metadata. More
importantly, there are some headers, which contain sensitive information, such as cookies,
which hold the session ID, passwords, or anything of the sort. All of these headers are



arranged in the HTTPS communication in a predetermined manner. Therefore when the
client makes the same request to the server multiple times, the headers containing the
metadata of the communication will be arranged in the same way, resulting in the same
HTTPS request structure each time. That is to say, the contents of the HT'TPS packets
are predictable and we (the attacker) can tell where exactly the sensitive information is
located. Using this knowledge, we can make specially crafted HTTPS requests, in order
to manipulate the position of the sensitive information in such a way, so that a data block
contains only one unknown byte of the sensitive information. We can then attempt to
guess this single byte and once successful, we can manipulate the position of the sensitive
information again, to expose the next unknown byte. This is known as the chosen boundary
attack]9].

For example, suppose that during an ongoing encrypted communication, a client will
try to access a file index.html. An HTTPS request will be assembled with the use of the
mentioned headers, in a predetermined way. The final HT'TP request might look like this:

GET /index.html HTTP/1.1
Host: google.com

Cookie: Session=21047948
Accept-Encoding: text/html
Accept-Charset: utf-8

In this example, let’s also assume that the size of the block cipher will be 8 bytes. At
1 byte per character, the HTTPS request will get divided into blocks of 8 bytes. Since the
headers are organized in a predictable way, we can accurately tell the position of the session
ID.

SETOIO0  (e)x b m0))
HETELAEL)E NN H)s )]
() e)lo)lo)elle) (e o)mOr[\n)
[NoJo)k) )] [sNels)s)i)o)n)(=)
(2)(1)0)a)7)s)a)8) (N n)Ac)c)e]

Figure 2.4: Separation of HTTP request into data blocks.

Knowing the current position of the session ID, we can create a specially crafted HT'TPS
request in such a way, so that the session ID is shifted to a position where only one byte
of it is exposed. In our example, this could be done by changing the accessed document
from index.html to index.htm for example. By doing this, we can shorten the data before
the session ID by one byte, resulting in one byte of the session ID being shifted into the
previous data block. The final HT'TPS request would then look as follows:

GET /index.htm HTTP/1.1
Host: google.com

Cookie: Session=21047948
Accept-Encoding: text/html
Accept-Charset: utf-8


http://google.com
http://google.com

ST d)  (e)x]C I e )m)()(H)
DEPAEJWN) (N n)H s )
e )oJole)1)e)C)  (c)o)mArN)(n)(c)
[ooliii)e . )(s)  (els)s)i)o)n)=)2)
(1)o)a)7)o)a)8)\) (N n)(Alc)c)e)(e)

Figure 2.5: Separation of crafted HI'TP request into data blocks.

We first make the victim send an HTTPS request for index.htm and we let all of the
headers get appended automatically, with the knowledge of the session ID’s position. Then
we make the victim send another request for index.htm, but this time we will be appending
the headers manually. After doing this, we can observe the two encrypted ciphertexts of
these HT'TPS requests, while trying possible options for the given byte of the session 1D
that we are trying to guess. If the ciphertext of the request with automatically added
headers matches the ciphertext of the request with our guessed byte, we have guessed the
byte successfully. We can then move on to the next byte by shifting the session ID position
again, in this case by making the next series of requests for index.ht and we repeat this
process until the entire session ID is decrypted.

2.4 Prevention against BEAST

The BEAST attack has prompted many web browser developers and server administrators
to try to mitigate the possibility of the attack. The simplest solution by far is to enforce the
use of newer versions of TLS, such as version 1.1 or higher, because these newer versions
address the underlying cipher block chaining vulnerability. However, using newer versions
of TLS is not always possible. Because of this, other methods and workarounds have been
explored.[9].

At first, it was recommended to switch to a stream cipher, as opposed to a block cipher.
The vulnerability was only present in block ciphers, but older versions of TLS also supported
the RC4 stream cipher. However, it was later discovered, that the RC4 stream cipher was
theoretically unsafe and as more and more flaws have been highlighted, the use of the RC4
stream cipher has eventually been prohibited. Therefore, other methods of mitigating this
attack had to have been implemented.

2.4.1 Randomized padding

Randomized padding is a technique in cryptography, used to prevent attacks which exploit
messages having a known structure or length. The purpose of randomized padding is to
add extra randomized data into a message before it gets encrypted. This ensures that
encrypting the same data multiple times will produce unique ciphertexts. Thanks to that,
the BEAST attack cannot rely on the predictability of the structure of requests and it will
become considerably harder for the attacker to analyze encrypted data, identify patterns
and extract sensitive information.

10



2.4.2 Use of packet pattern recognition

The BEAST attack involves the victim sending a large number of requests in a row, while
only slightly altering the contents of the message. Knowing about this pattern, we can then
prevent the BEAST attack with the use of:

e rate-limiting techniques, with which we can limit the amount of requests from clients
to the server. By doing this, we can considerably lengthen the time required for such
an attack, or make it completely unviable.

o Web Application Firewalls (WAF). These firewalls are placed between the server
and the clients and their purpose is to monitor traffic and compare it to its rules and
policies. If the traffic matches a pattern of known attacks, it can be blocked, or an
alert can be triggered, for server administrators to take action.[7]

2.4.3 0/n split

Some web browser developers and server administrators have implemented a so called 0/n
split, in order to mitigate the BEAST attack. The idea behind this is to first send an
empty data block with a payload length of 0 before sending actual data blocks with the size
of n (hence the name 0/n split). Blocks, which are not fully filled with data, get padded
with randomly generated data. Therefore sending an empty data block results in a data
block full of randomly generated padding. This block then gets encrypted and used as the
initialization vector for the first data block of the actual message, which restores randomness
of the encryption. However, as this was only a quick work around, it was not officially
documented in the TLS documentation, which caused it to create many compatibility issues.
Some web browsers also do not support sending empty messages, which caused further issues
with the 0/n split.

GET /index.html...

Plaintext Plaintext Plaintext
OTTTTTITT771] OTITTTTTTTI11 OTTTTTTT7TT
Initialization Vector (V)
OTTTTT T T —— = E—
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
OTTTTTTTT771] OTITTTTTTTIT11 OTTTTTTT7TT
Ciphertext Ciphertext Ciphertext

Figure 2.6: 0/n split.

11



2.4.4 1/n-1 split

An upgraded version of the 0/n split which solves the empty message incompatibility is
the 1/n-1 split. In this version of the solution, instead of sending an empty message
before the actual data, the first byte of the actual data is used. The first message will
contain the first byte of the data and the rest of the message gets padded with randomly
generated data. The result then gets encrypted and used as the initialization vector for
the following block of data. This solution also restores the randomness of the encryption,
however since it doesn’t use empty data blocks, there are no compatibility issues, compared
to the 0/n split.

G ET findex.html ...
Plaintext Plaintext Plaintext
OTTTTTITTTT11 [TTTTTTITTTT] [ITTTTTTTTTTT]
Initialization Vector (IV)
OTTTTI T T —— —— —
block cipher block cipher black cipher
Key encryption Key encryption Key encryption
ITTTTTTTT7T11 [TTTITTITTTT] [ITTTTTTTTTTT]
Ciphertext Ciphertext Ciphertext

Figure 2.7: 1/n-1 split.

12



Chapter 3

CRIME attack

The Compression Ratio Info-leak Made Easy (CRIME) attack, is an attack which is very
similar to the BEAST attack in many aspects. Same as for BEAST, the CRIME attack aims
to exploit a vulnerability in protocols used for encrypted communication over the internet
and its objective is also to decrypt sensitive parts of this communication, without the use
of the negotiated encryption key. However, instead of the predictability in the cipher block
chaining mode of the older versions of TLS, the CRIME attack exploits a vulnerability,
which is caused by compression. This vulnerability is present both in HT'TP and in SPDY,
which is Google’s HT'TP-like protocol[11]. CRIME also requires the attacker to perform a
Man-in-the-Middle (MitM) attack, in order to force the victim to make cross-site requests,
similarly to BEAST.

The compression vulnerability was first highlighted in the SPDY protocol in 2011 by
Adam Langley, Google’s software engineer. He described the possibility of being able to
deduce contents of encrypted SPDY packets, based on observing their length after com-
pression. This concept was also demonstrated in the form of the CRIME attack by two
security researchers Juliano Rizzo and Thai Duong, during the Ekoparty security conference
in Argentina in 2012[5].

The attack itself is a combination of a chosen plaintext attack and unintentional infor-
mation leakage through data compression. Similarly to BEAST, the CRIME attack also
has a handful of preconditions, which need to be met in order for an attacker to be able to
execute it. It is also only able to decrypt short strings of sensitive information in limited
time, while using a relatively large amount of HTTP requests. This makes the CRIME at-
tack fairly impractical and very unlikely to happen, however with a wide range of websites
having been prone to these kinds of attacks at the time, developers and researchers have
since looked for solutions, or even stopped HT'TP header compression altogether. This in
turn made the CRIME attack a lot less likely to happen today.

3.1 Information leakage by compression

As mentioned before, the basis of the CRIME attack lies in a vulnerability caused by data
compression. When compressing data in an encrypted communication, the compression
might leave behind clues, which can help deduce the encrypted content. It is therefore
important to understand what exactly the vulnerability is and how we can exploit the clues,
in order to figure out sensitive data. During encrypted communication over the internet,
the server and the client use multiple metadata headers. As these headers become more

13



numerous, they also make up more data and therefore more bandwidth on the network.
In order to make the communication more efficient, compression was implemented into the
HTTP and SPDY protocols (as well as others). Compression was introduced into these
protocols in the form of compression modes, which could be disabled. For HT'TP, the TLS
DEFLATE compression scheme in particular was found to be vulnerable to CRIME[11].
When using compression during communication over the internet, the compression will
locate duplicate occurrences of strings and it will replace them with smaller tokens, which
point to their first instances, in order to get rid of redundant data. However, if an attacker
can monitor the ongoing communication, as well as inject data into it, they can alter the
client’s requests, with the goal of trying to insert duplicate data into them. If the data
injected into the request headers by the attacker is common with the original data, it will
get compressed. The attacker will therefore be able to observe a decrease in the encrypted
packet’s size. Exactly how this can be done, will be explained in the following sections.

3.2 Preconditions

In order for an attacker to be able to execute the CRIME attack, the following preconditions
need to be met:

e The attacker must be able to monitor the ongoing encrypted communication between
the browser and the server - this is because the attack will be observing the changes
in length of the HTTP packets.

o The attacker must be able to inject data into the clients HT'TPS requests - this used
to be possible by performing a Man-in-the-Middle (MitM) attack[6], a JavaScript
injection, or other methods.

e Both the client’s browser and the server must support the SDPY protocol, or any
version of TLS with compression enabled - this is because the attacker will be abusing
the compression mechanism by injecting redundant data into the HTTP headers.

3.3 How CRIME works

With the theoretical basis for the CRIME attack explained and assuming all of the precon-
ditions have been met, let’s look into the principles of CRIME, so that we understand how
it works in more detail.

Suppose the following scenario. A client, who will be the victim of the CRIME attack,
has logged into the website example.com using their private credentials. Both the server
and the client’s browser have to either be using the SPDY protocol, or TLS with header
compression enabled. In order for the server to be able to identify the client, it has stored
the session ID 21047948 into a cookie in the client’s browser. This session ID will be used
in any subsequent requests for example.com from our victim. Similarly to the BEAST
attack, our objective will be to decrypt the session ID without the negotiated encryption
key. If we can obtain the session ID of the connection between the victim’s browser and
the server, we can then hijack the victim’s session and impersonate them, therefore being
able to send requests on their behalf.

14


http://example.com

3.3.1 Observing the length of the original packet

As mentioned before, in order to be able to execute the CRIME attack, we must be acting
as the man-in-the-middle. This is because we need to be able to force the client into
sending multiple requests, and then observe them. Therefore for this example, assume
that the victim visits a website malicious.com, which is under our control and contains
malicious code. Using this website, we can force the victim to make a request to the website
example.com, which he was accessing beforehand, with his private credentials. The request
will be built in a predetermined way using several headers and it might look like this:

GET /index.html HTTP/1.1
Host: example.com
Cookie: Session=21047948
Accept-Charset: utf-8

After the request is created, compression will remove duplicate bits and then the request
will be encrypted. We can then observe the encrypted packet’s size. In this example, let’s
assume the size is 90 bytes. We will consider this the packet’s base size.

3.3.2 Injecting redundant data

As the next step, we are going to be injecting data into the headers, with the intention of
creating redundancies and minimizing the packet’s size by compression. For example, we
could inject the string ,,Cookie: Session=“. The final request will then look like this:

GET /index.html HTTP/1.1
Host: example.com
Cookie: Session=21047948
Accept-Charset: utf-8
Cookie: Session=

The string ,,Cookie: Session=" is now present in the request twice. This will get rec-
ognized by the compression mechanism and the injected data will get compressed, meaning
the length of the packet will remain the same size (90 bytes). Now we can start guessing
the first byte of the session ID. The way to guess if, is to add a likely value of the first
byte after our injected string and then observe the packet’s length. If the packet’s length
remains the same, we have guessed the value correctly and we can proceed to the next byte.

For example, let’s assume that our guess of the first byte of the session ID is ,,1“. The
string we would be injecting into the request’s headers would in this case be ,Cookie:
Session=1“. Since the next byte we added is not correct and therefore not common with
the actual session ID, the packet’s length would be greater by 1 byte. If we instead guess
the value ,,2“, the request will look like this.

GET /index.html HTTP/1.1
Host: example.com
Cookie: Session=21047948
Accept-Charset: utf-8
Cookie: Session=2

Now our entire injected string is common with the cookie containing the session ID.
Because of this, it will get compressed, resulting in the same packet size of 90 bytes as the
original request. When we observe the length of the packet not changing, we move onto
the next byte and repeat the process, until the entire session ID is decrypted.

15



3.4 Prevention against CRIME

Even though the CRIME attack may be nowadays be considered impractical and outdated,
the vulnerability created by header compression posed a threat to a big number of servers
and browsers. Because of that, researchers and developers have since looked into developing
countermeasures against the CRIME attack and the header compression data leakage ex-
ploit in general. The simplest and most effective solution is to disable header compression,
or using newer versions of TLS, such as TLS 1.2 or higher. Newer versions of TLS do not
support header compression, while also providing better security, compared to TLS 1.0.
There are also other options for detecting and preventing CRIME.

3.4.1 Randomized padding

Similarly to the BEAST attack, we can use randomized padding to prevent the CRIME
attack. The CRIME attack exploits requests having a known length by repeatedly send-
ing requests with small changes and observing their length. The purpose of randomized
padding is to add extra randomized data into a request before it gets encrypted. This will

unpredictably alter the requests length, thus preventing the attacker from proceeding with
the CRIME attack.

3.4.2 Use of packet pattern recognition

The CRIME attack also involves the victim sending a large amount of requests in a row,
while only slightly changing the contents of the requests. Knowing about this pattern, we
can then prevent the CRIME attack by the use of:

e rate-limiting techniques, with which we can limit the amount of requests from clients
to the server. By limiting the amount of requests in a given timeframe, we can
considerably lengthen the time required for the CRIME attack, or make it completely
unviable.

o Web Application Firewalls (WAF). We can place a special firewall in between the
server and the clients with the purpose of monitoring traffic and comparing it to its
rules and policies. If the traffic matches a pattern of known attacks, it can be blocked,
or an alert can be triggered, for server administrators to take action.[7]

16



Chapter 4

Security countermeasures

As mentioned before, both the BEAST and the CRIME attack were considered threatening
enough at the time of their discovery, to prompt the implementation of a series of security
countermeasures on all fronts, such as client-side browser security enhancements and server-
side security enhancements. With these security countermeasures in place, it has become
extremely difficult and impractical to execute these attacks in today’s age. In this chapter
we go over the outdated technologies, which were vulnerable to BEAST and CRIME, as
well as newly developed countermeasures designed to protect against these kinds of attacks.

4.1 Outdated and unsupported technologies

After the discovery of these attacks, servers and web browsers started using updated versions
of their respective technologies, which address certain vulnerabilities, which made these
attacks possible. A few examples of the technologies, which are outdated, or no longer
supported nowadays are:

e TLS 1.0 - in order for us to be able to execute the attacks, both the victim’s browser
and the server must support TLS version 1.0. This is because the attacks make use
of vulnerabilities in a handful of older cipher suites, which are no longer used in
the newer versions of TLS. It is still possible to enable TLS version 1.0 on both the
server and the victim’s browser, however it is not allowed by default and enabling it
is generally heavily discouraged.

e CBC and DEFLATE - as mentioned before, the attacks make use of older cipher
suites. The BEAST attack requires the use of any cipher suite, which uses the cipher
block chaining mode. A few examples of cipher suites which use CBC are:

— TLS_RSA_WITH_DES_CBC_SHA

— TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

— TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA
The CRIME attack on the other hand would also work on cipher suites, which use
CBC, however ideally the RC4 stream cipher would be used. Same as with TLS version
1.0, it is still possible to enable these cipher suites on the web server. Unfortunately

on the client side becomes be an issue. All up-to-date browsers have completely
dropped all cipher suites, which are viable for these attacks due to security concerns.

17



4.2

Additionally, the CRIME attack also requires the TLS DEFLATE compression method
to be used. This compression method has also been dropped from all modern browsers.
With these restrictions in mind, here is a rough estimation of the versions of browsers
which the client would have to be using, for these attacks to be possible:

Internet Explorer versions between 6 to 9
— Safari versions between 5.0.1 to 6.0

Firefox versions between 2 to 15

— Chrome versions between 4 to 25

It is worth mentioning that the TLS DEFLATE compression method was also dropped
on the server side, due to the same security concerns. In order for the web server to
support this compression method, older versions of SSL libraries would have to be
used. Once again, here is a rough estimation of the versions of SSL libraries which
would have to be used, for the attacks to be possible:

— OpenSSL - versions prior to 1.1.0.
— BoringSSL - versions prior to 5.0.0
— wolfSSL - versions prior to 4.0.0
— GnuTLS - versions prior to 3.0.0

Security policies

The discovery of the BEAST and CRIME attacks, as well as many others, has also encour-
aged web browser developers to implement a series of security policies and mechanisms.
Their purpose varies depending on the individual mechanism or policy, however generally
their goal is to prevent or limit all kinds of different web browser functions, which could
potentially be abused by attackers. A few examples of the newly developed security policies
and mechanisms are as follows:

SOP - the Same-Origin Policy is a security countermeasure which is implemented by
all modern browsers. Its purpose is to prevent cross-site scripting (XSS) and other
vulnerabilities, which are exploitable by running malicious scripts in the victim’s
browser. The Same-Origin Policy allows access to the browser’s resources only if the
request for these resources comes from the same origin, as the origin of the resources.
An origin is defined as the combination of the domain, the protocol and the port of a
given web page. If any of these components do not match, the request is considered
to be coming from a different origin and thus access is not allowed. For these attacks
specifically, this is an issue, because part of the attacks is to send modified requests
from the browser through a java applet or pure javascript. When these are executed
in the victim’s browser, they will attempt to send a request to the server. Here the
browser will recognize that these requests would be from a different domain, and it
will first send an OPTIONS request to the server, in order to figure out whether or
not the cross-domain request is allowed. Unless the web server specifically allows
access from the attacker’s domain, it will not allow its resources to be shared with
the scripts and any following requests coming from the scripts to the server would be
denied. The Same-Origin Policy can therefore be considered a good countermeasure
against the BEAST and the CRIME attacks.

18



e CORS - the Same-Origin Policy generally does not allow any requests coming from
different domains, unless the server is configured to allow them. However, there are
legitimate use cases, where cross-domain access is required. Because of this, the Cross-
Origin Resource Sharing (CORS) was introduced. The CORS mechanism allows us
to create exceptions for the Same-Origin Policy through a series of HT'TP headers,
which specify whether or not a cross-domain request is allowed. Unfortunately for the
BEAST and the CRIME attacks, even though there may be real web servers nowadays,
which might still be using CORS exceptions for the Same-Origin Policy, the attacker’s
domain will still not be allowed to make requests, if the server is configured correctly
and securely.

o Modifying HTTP stream (BEAST specific) - in order to perform the BEAST
attack, the attacker must have a way to directly influence the raw data going into the
HTTP stream, while also having the ability to read the ciphertexts of the previous
parts of the message, which were encrypted by TLS. In the original demonstration of
the attack, this was done by a java applet browser exploit. However, it was recognized
as a major security issue and has long been addressed. This exploit is therefore no
longer possible. One way to possibly work around this issue, would be for the attacker
to use a proxy. This proxy would be intercepting encrypted ciphertexts coming from
the victim and then sending these ciphertexts back to the attacker’s scripts in the
victim’s browser via a websocket connection. The scripts would then be able to make
use of these ciphertext when crafting the following request blocks, however here the
attacker would encounter yet another issue. For the BEAST attack to work, the
attacker needs to be able to only send the beginning blocks of the request, then
intercept them with his proxy, send information back to the script and then send the
following updated blocks.

¢ chunked transfer - a possible solution to overcome the previous issue of modifying
the HT'TP stream is to make use of chunked transfer encoding. Chunked transfer
encoding is a special type of encoding included in HT'TP 1.1. Its purpose is to divide
data into smaller blocks and sending them independently over a single HT'TPS con-
nection. It is nowadays mostly used for cases where the length of the data isn’t known
in advance, such as video streaming applications. This encoding can be specified with
the Transfer-Encoding HTTP header]8].

19



Chapter 5

Demonstration of attacks

The demonstration of the BEAST and the CRIME attacks would generally include three
participants:

e the server, which is serving content over HT'TPS and provides a secret cookie

e the victim’s machine, which is running a browser containing the secret cookie from
the server. The attacker also runs his malicious code on the victim’s machine in order
to decrypt the secret cookie.

e the attacker’s machine, which will be hosting a website with malicious code, as well
as intercepting traffic from the victim to the server.

The best way to demonstrate the BEAST and the CRIME attacks in practice would be
to actually perform these attacks in a controlled testing environment with a test server, a
victim and an attacker. However, as mentioned in chapter 4, with several security mecha-
nisms and policies, as well as updated versions of technologies in place, the ideal conditions
for these attacks have become very difficult and unlikely to reach. Therefore a different ap-
proach for demonstrating the principles of these attacks will be used. Instead of executing
these attacks directly, they will instead be demonstrated with the use of Python scripts,
which closely follow the events of what would happen during the actual attacks. The fol-
lowing diagram describes how the attacker interacts with the victim and his communication
with the server.

Victim running the
java appletfjavascript Aftacker (MitM) Server

intercept

send request v

send info with
next guess to script

intercept

send modified request v

Figure 5.1: Man-in-the-middle communication diagram.

20



The principles of the BEAST and the CRIME attack are going to be demonstrated
with the use of Python proof-of-concept scripts, which follow the events of what would
happen during the actual attacks as closely as possible, while also providing a clear expla-
nation of the principles of these attacks. The version of Python used for creating these
proof-of-concept scripts is 3.10.2. In the following sections, the attacks are going to be
demonstrated by running the script one time and then explaining in great detail what
happens during the execution of the code.

5.1 Used libraries

Before diving into the process of demonstrating the attacks, here is a quick overview of all
of the libraries, used to implement the Python proof-of-concept scripts:

e csv - used for logging data into a dataset
e time - used for tracking the time of execution of the script
e random - used for generating a random cookie

e os - used for generating encryption keys, which would under real circumstances be
used for encrypting the communication between the victim and the server.

o sys - used for handling system input/output, such as specifying a custom cookie,
which the attacker will be trying to decrypt.

e time - used for simulating the delay between requests, to give a rough idea of the
amount of time needed for the attacks, as well as visiblity over the progress of the
attack.

e string - standard Python library for working with strings.
e binascii - used for converting data from raw bytes into hexadecimal values.

e cryptography - this specialized Python library provides access to ciphers, encryption
algorithms and their modes, such as CBC, which is necessary for the BEAST attack.

e z1ib - this Python library provides compression and decompression of data using
the z1ib format. This library is used to simulate the TLS DEFLATE compression
mechanism, which is necessary for the CRIME attack.

5.2 Demonstration of BEAST

Before the BEAST attack can start, a couple of things need to happen. Suppose that a
client, who will be our victim attempts to access a web page bank.com/index.html using
HTTPS, which is hosted on a secure server. Suppose also that both the server and the
client have TLS version 1.0 enabled, the server allows encryption mechanisms which use
the cipher block chaining mode and the client’s browser also supports these encryption
mechanisms. Since the server is secure and the client is trying to access the web page using
HTTPS, the TLS handshake must first occur in order to establish a secure connection,
before any actual application data can be sent.

21


http://bank.com/index.html

The client first sends a ClientHello message to the server over the TLSv1 protocol.
In this message, the client lists all of the encryption mechanisms, which are supported by
the browser. Suppose that one of these encryption mechanisms uses the AES cipher with
support for the CBC mode, where the cipher block size is 16 bytes. The server reads
through all of the supported encryption mechanisms and then selects one of them, based on
its configured settings. Suppose that the server also selects the same encryption mechanism,
which uses the AES cipher with support for the CBC mode, where the cipher block size is 16
bytes. The server then sends a ServerHello response to the client, in which it specifies
which encryption mechanism was chosen (among other things). The client will then take
note of the chosen encryption mechanism and this mechanism will then be used for the
remainder of the communication between the client and the server. During this process,
an encryption key is also agreed upon between the client and the server. This encryption
key will be used by the AES cipher in order to encrypt the following communication. In the
Python proof-of-concept demonstration script, the process of generating a random key for
the communication is simulated by the following snippet of code:

AES_block_size = 16
key = os.urandom(AES_block_size)

For this specific instance of the communication between the client and the server, sup-
pose that the randomly generated key has the following hexadecimal value:

key = 5£43d9be6£8be3529d9bbef19d6de8eb6

After being generated, this key will now be used by both the client and the server for
the purpose of encrypting messages between each other.
5.2.1 Storing the cookie

Upon the successful TLS handshake, the client finally requests the bank.com/index.html
file, which he was attempting to access. The server then sends a response containing the
web page. Inside of the response will also be an HTTP header for setting a cookie into
the client’s browser. This cookie will then be used for authentication of the client in any
subsequent requests. Suppose that in this instance, the HT'TP header looks like this:

Set-Cookie: SESSIONID=abEcr37cO00k1E

Upon receiving the response from the server, the client’s browser reads the response,
takes the value of the cookie provided by the server, and stores the cookie as:

Cookie: SESSIONID=abEcr37cO0k1E
With the cookie stored in the client’s browser, the BEAST attack may now begin.

5.2.2 Man-in-the-Middle

Suppose that after visiting the web page bank.com/index.html, hosted by the secure server,
the client now visits a second web page malicious.com/index.html, which is hosted on
the our’s machine (we play the role of the attacker in this demonstration). Inside of the
code of this web page, we can place a java applet or some javascript, which will be executed

22


http://bank.com/index.html
http://malicious.com/index.html

in the client’s browser. One of the capabilities of these scripts is to send HTTP requests
on behalf of the client’s browser. Generally speaking, we would now only have very limited
control over the requests we can make with the use of javascript or java applets. This
is mainly because of the implementation of the Same-Origin Policy (SOP) as mentioned
in chapter 4.2. However, for the purpose of this demonstration, let us assume that the
Same-Origin Policy is either bypassed, disabled or that the server has allowed cross-domain
resource sharing (CORS) for requests coming from any domain, which would implicitly
include our domain. If this is the case, then we now has the ability to send requests
from the client’s browser, while also having control over them. Therefore we became the
»2Man-in-the-Middle“.

5.2.3 Crafting requests

With control over the browser’s requests, we can now specially craft our own requests. The
goal is to decrypt the following cookie:

Cookie: SESSIONID=abEcr37cO0k1E

In order for us to craft a request, which can help us achieve this, we can use the following
two pieces of information:

e the block size of the encryption mechanism used for encrypting the communication
between the client and the browser is 16 bytes.

o we know that the cookie begins with the string ,SESSIONID=".

Using this information, we can artificially increase the number of characters before the
cookie, in order to get the secret cookie into such a position, where the first character of
the unknown part of the cookie is the last character in a block. In the real attack, this
can be achieved by inflating the request path with arbitrary characters. An example of
an arbitrarily inflated request path can be POST /aaaaaaaaa. Another thing that we need
to keep in mind however, is that we do not want the block containing the first unknown
character of the cookie to be the first block. This is because we need to make use of the
ciphertext of the previous block. In the real attack, this is ensured naturally, due to the
HTTP request containing other headers before the Cookie header. In the Python proof-of-
concept script we assure this by simply another block of arbitrary characters in front of the
block with the first unknown character. All of this is achieved with the following snippet
of code:

front_padding = AES_block_size - len(known) - 1

add_bytes = AES_block_size

target = cookie

front_padded_message = "a" * (add_bytes + front_padding) + target

23



First we calculate how much front padding is needed in order for the first unknown
character to be at the end of the block. We calculate this by subtracting the length of the
string we know (in this case ,SESSIONID=", which is 10 characters long) from the block
size and then subtracting an extra 1 for the first unknown character. After that we append
the letter ,a" at the front of the cookie however many times necessary, so that the first
unknown character will be isolated, giving us the result front_padded_message, which
looks like this:

|aaaaaaaaaaaaaaaaaaaaaSESSIONID=a5Ecr37c00Kk1E|

Figure 5.2: Crafted request.

Of course, we as the attacker do not know the contents of the cookie, so from our
perspective, we would only be able to know this (* marks an unknown character):

|laaaaaaaaaaaaaaaaaaaaaSESSION|ID=*****&*k*&***x |

Figure 5.3: Crafted request from the attacker’s point of view.

At this point, in the real attack we would send our specially crafted request, which would
be processed by the encryption algorithm. During this processing, the request gets divided
into blocks of 16 bytes and in case the last block is not fully occupied, the encryption
mechanism adds padding onto the end of the request to fill the gap. In the Python proof-
of-concept script, this is simulated with the following snippet of code:

raw_message =
front_padded_message + (16 - len(front_padded_message) % 16) * "a"

In our case, the last block is missing 4 bytes at the end, so the character ,a" is appended
4 times. After adding the padding onto the end we can now force the browser to send our
crafted request. Before the browser sends it to the server, it is first encrypted. This is
simulated as such:

def encrypt(plaintext, init_vector=0):
if init_vector ==
init_vector = os.urandom(AES_block_size)
cipher = Cipher(algorithms.AES(key), modes.CBC(init_vector))
encryptor = cipher.encryptor ()
return encryptor.update(plaintext)

encrypted_message = encrypt(raw_message.encode())

Here, the encryption mechanism first takes the raw message and then splits it into
blocks of 16 bytes, giving us the following blocks of data (we can also observe that we
successfully shifted the first unknown character of the cookie into the back of the block):

aaaaaaaaaaaaaaaa| aaaaaSESSIONID=a | 5Ecr37c00k1Eaaaa|

Figure 5.4: Data split into blocks.

24



For the first block, a random initialization vector is generated. In this case the generated
vector is bf976b06c69d1fadbabcab7102a3fb9c. This vector then gets XOR-ed with the
first block and the result then gets encrypted using the encryption key, resulting in a
ciphertext. This cipher text is then used as the initialization vector for the next block and
so on, according to the principles of CBC. After the encryption is complete, the encrypted
blocks would get sent over to the server. On the way there, we as the attacker would
be monitoring this communication and we would be able to intercept the following three
encrypted ciphertext blocks:

|al1812be143e09f0559448485b83a1e8 |a2de63aebc122234bcb15f3ca6739f0f | 7¢7130ab2e2d17db9ce0e898f4feb0d5 |

Figure 5.5: Intercepted ciphertext blocks.

In the demonstration Python script, these blocks are saved for inspection like this:

hexlified = binascii.hexlify(encrypted_message)
blocks = [hexlified[i:i+32] for i in range(0, len(hexlified), 32)]

After intercepting the encrypted messages, we can establish the three following pieces
of information:

o the first intercepted block is the ciphertext block, which was used to encrypt the next
block, which contains the first unknown character.

e the last intercepted block is the ciphertext block, which will be used to encrypt the
next message.

o the second intercepted block is the result of a plaintext block which contained the
string aaaaaSESSIONID=*, where * marks the unknown character.

The next step for us is to replace the unknown character * with our guess for the first
character. In the demonstration Python script we are testing for all lowercase characters,
all uppercase characters and all digits. After we replace the unknown character with out
guess, we XOR the three following values (the logic behind this XOR is explained in chapter
2.3):

o the first intercepted ciphertext

e the last intercepted ciphertext

e our guess of the plaintext of the second intercepted ciphertext
In the script, this is done with the following snippet of code:

last_iv = encrypted_message[-AES_block_size:]

iv_for_target = encrypted_message[0:AES_block_size]

guess = (known + i).encode(’utf-87’)

xored =

bytes([_a"_b~_c for _a,_b,_c in zip(last_iv,iv_for_target,guess)])

25



After we calculated the XOR value of these three items combined, we then force the
client’s browser to send a second request which contains the xored value. This request
would once again go through the same encryption process as the first request and then it
would be sent. We can then intercept the encrypted message again and we can find the
following ciphertext:

a2de63aebc1222a4bcb15f3ca6739fof

Figure 5.6: Intercepted ciphertext of the second request.

If our guess of the unknown character was correct, the ciphertext of the second request
and the second ciphertext of the first request will be equal, therefore we found a match and
decrypted the first character of the cookie. If this is the case, we shift the block boundaries
again, to expose the new character and start the next iteration of steps described in chapter
5.2.3. If our guess was incorrect, then we simply follow the steps described in chapter 5.2.3
with the next character guess, but without shifting the block boundaries. We repeat this
process until the entire cookie is decrypted.

5.2.4 How to use the script

The Python proof-of-concept script for the BEAST attack is submitted alongside this re-
port. Therefore for the purpose of providing better understanding of the demonstration for
the readers, this short section is dedicated to providing instructions on how to operate the
script.

In order to launch the script, use the following command:

py beastPoC.py [cookie] [-nonalphanum] [-debug]
The script has three optional parameters:

e cookie - for specifying the cookie which the script will be decrypting.
e nonalphanum - for including nonalphanumerical characters in the cookie.

e debug - for enabling debug mode. The purpose of this mode is to provide extra
detailed console output throughout the duration of the attack, in order to better
highlight how the attack is proceeding.

Without debug mode enabled, the script will first display important metadata about the
attack, such as the target cookie, the known prefix, the encryption key and the encryption
mechanism details. Following the metadata, the script will output the current plaintext
block guess, as well as the ciphertext blocks, which the script is trying to match. If the
correct character is found, it will be displayed and the script continues with the next
character. After the whole cookie is decrypted, the script outputs the cookie, as well as the
number of requests it took for decryption.

With debug mode, additional information such as raw messages, initialization vectors
and ciphertext blocks are displayed.

26



5.3 Demonstration of CRIME

Similarly to BEAST, before the CRIME attack can start, a few events have to happen
beforehand. Once again let us suppose that there is a client, who will be our victim and
he attempts to access a web page bank.com/index.html using HTTPS, which is hosted
on a secure server. Suppose also that both the server and the client have TLS version 1.0
enabled, the server allows encryption mechanisms which use the RC4 stream cipher and the
client’s browser also supports these encryption mechanisms (once again it is worth noting
that the CRIME attack is not limited to the RC4 stream cipher, but the attack’s principles
are best demonstrated on this stream cipher). Since the server is secure and the client is
trying to access the web page using HT'TPS, the TLS handshake must first occur in order
to establish a secure connection, before any actual application data can be sent. The client
once again first sends a ClientHello message to the server over the TLSv1 protocol. In this
message, the client lists all of the browser supported encryption mechanisms. Suppose that
one of these mechanisms uses the RC4 stream cipher. Suppose also that the browser sup-
ports the TLS DEFLATE compression method. This will also be communicated to the server
in the ClientHello message. The server reads through all of the supported encryption
and compression mechanisms and then selects one of each, based on its configured settings.
Suppose that the server also selects the same encryption mechanism, which uses the RC4
stream cipher, as well as the TLS DEFLATE compression method. After selecting, the server
sends a ServerHello response to the client, in which it specifies the selected encryption
mechanism and compression method. The client’s browser will take note of these mecha-
nisms and they will be used for the remainder of the communication between them. Same
as before, an encryption key for the RC4 stream cipher is also agreed upon between the
client and the server. In the Python proof-of-concept demonstration script for the CRIME
attack, the process of generating a random key is simulated by the following code:

key = os.urandom(AES_block_size)

For this specific instance of the communication between the client and the server, sup-
pose that the randomly generated key has the following hexadecimal value:

key = 003314749205ba2e77d5£9204£423925

After being generated, this key will now be used by both the client and the server for
the purpose of encrypting messages between one another.

5.3.1 Storing the cookie

Upon the successful TLS handshake, the client requests the bank.com/index.html file,
which he was attempting to access. The server then sends a response containing the web
page. Inside of the response will also be an HT'TP header for setting a cookie into the client’s
browser. This cookie will then be used for authentication of the client in any subsequent
requests. Suppose that in this instance, the HT'TP header looks like this:

Set-Cookie: Cookie: SESSIONID=aV3rY5Ecr37cO0kl1E

Upon receiving the response from the server, the client’s browser reads the response,
takes the value of the cookie provided by the server, and stores the cookie as:

Cookie: SESSIONID=aV3rY5Ecr37cO0k1E
With the cookie stored in the client’s browser, the BEAST attack may now begin.

27


http://bank.com/index.html
http://bank.com/index.html

5.3.2 Man-in-the-Middle

We will once again be playing the role of the attacker for the duration of this demonstration.
The first step of the CRIME attack for us is to become the ,Man-in-the-Middle*. Suppose
that after visiting the web page bank.com/index.html, hosted by the secure server, the
client now visits a second web page malicious.com/index.html, which is hosted on our
machine. Inside of the code of this web page, we can place a java applet or some javascript,
which will be executed in the client’s browser. Similarly to the BEAST attack, we can send
HTTP requests on behalf of the client’s browser, with the use of these scripts. Because
of the Same-Origin Policy, we would once again only have very limited control over the
requests we can make using our scripts. However, for the purpose of this demonstration,
let us assume that the Same-Origin Policy is either bypassed, disabled or that the server
has allowed cross-domain resource sharing (CORS) for requests coming from any domain,
which would implicitly include our domain. If this is the case, then we now have the ability
to send requests from the client’s browser, while also having control over them. Therefore
we successfully became the ,Man-in-the-Middle“.

5.3.3 Inmitial request

With control over the victim’s browser requests, we can now specially craft our own requests.
The goal is to decrypt the following cookie:

Cookie: SESSIONID=aV3rY5Ecr37cO0k1E

We know that the known prefix of the cookie is ,,Cookie: SESSIONID=". In order for
us to decrypt this cookie, we will first force the victim to send a crafted request, where we
inject the known prefix into it, in order to create a duplicate substring, which will then be
compressed by TLS DEFLATE. In our demonstration the crafted request will look like this:

GET /index.html HTTP/1.1

Host: www.bank.com

Cookie: SESSIONID=aV3rYbEcr37cO0k1E
Cookie: SESSIONID=

In the Python script this is represented with the following code:

known = "Cookie: SESSIONID="

base_request = """GET /index.html HTTP/1.1
Host: www.bank.com""" + "\n" + cookie
request = base_request + "\n" + known

Afterwards, using our javascript or java applet, which is running in the victim’s browser,
we can force him to send our crafted request. This request would get compressed using
TLS DEFLATE and then encrypted using the RC4 encryption mechanism, before finally being
sent.

28


http://bank.com/index.html
http://malicious.com/index.html
http://www.bank.com
http://www.bank.com

The process of encryption and compression is simulated by the following code:

def encryption(raw):
algorithm = algorithms.ARC4 (key)
cipher = Cipher(algorithm, mode=None)
encryptor = cipher.encryptor ()
return encryptor.update(zlib.compress(raw.encode()))

encrypted_request = encryption(request)

We can then intercept this message on its way to the server and observe its length. Here
is the code from the demonstration script, which simulates these events:

encrypted_request = encryption(request)
current_length = len(encrypted_request)

We will be able to observe, that the length of the message is 89 bytes and we will take
note of this length.

5.3.4 Inflating initial request

After taking note of the length of the initial request, we will now force the victim’s browser
to send more crafted requests with additional injected plaintext, using our javascript or java
applet. In these requests, we will be appending an extra character after the known prefix
,Cookie: SESSIONID=". This character will be our guess for the first unknown character
of the actual cookie. We will therefore further inflate the initial request as such:

GET /index.html HTTP/1.1

Host: www.example.com

Cookie: SESSIONID=aV3rY5Ecr37cO0k1E
Cookie: SESSIONID=a

After crafting the request, we once again force the victim’s browser to send this request
and then intercept it on its way to the server and we observe its length. In the demonstration
script this is done with the following snippet of code:

request = base_request + "\n" + known + x
encrypted_request = encryption(request)

Here, we will be able to observe, that even though we added an extra byte into the
request, the size of the message is still 89 bytes, same as before. This is because the TLS
DEFLATE compression mechanism has compressed our additional character, meaning it was
the same as the one in the original cookie, therefore we have found a match. If this is the
case, we can communicate to our javascript or java applet, that we have found a match, so
that it appends the given character to our known substring, so we can start guessing the
next character.

If the length of the intercepted message would be 90 bytes, that would mean that
our injected character was incorrect. We would therefore repeat the process with the next
character, instead of appending it to the known substring. Now we simply repeat the
process starting from chapter 5.3.4, until we decrypt the entire cookie.

29


http://www.example.com

5.3.5 How to use the script

The Python proof-of-concept script for the CRIME attack is submitted alongside this re-
port. Therefore for the purpose of providing better understanding of the demonstration for
the readers, this short section is dedicated to providing instructions on how to operate the
script.

In order to launch the script, use the following command:

py beastPoC.py [cookie] [-nonalphanum] [-debug]
The script has three optional parameters:

e cookie - for specifying the cookie which the script will be decrypting.
e nonalphanum - for including nonalphanumerical characters in the cookie.

e debug - for enabling debug mode. The purpose of this mode is to provide extra
detailed console output throughout the duration of the attack, in order to better
highlight how the attack is proceeding.

Without debug mode enabled, the script will first display important metadata about the
attack, such as the target cookie, the known prefix, the encryption key and the encryption
mechanism details. Following the metadata, the script will output the current substring of
the request which we are injecting. If the correct character is found, it will be displayed
and the script continues with the next character. After the whole cookie is decrypted, the
script outputs the cookie, as well as the number of requests it took for decryption.

With debug mode, additional information such as the initial request’s length, lengths
of messages after compression and lengths of messages intercepted by the attacker are
displayed.

30



Chapter 6

Data analysis

After having covered the theoretical basis behind these attacks, as well as demonstrating
how each of them works, we can take a look at some other aspects. Both of the attacks have
certain time requirements for decrypting secret cookies. If these attacks were to be executed
in the real world, the attacker might not always have the time that’s needed. It is therefore
worth taking a look at just how fast these attacks can be. Another important metric of
the attacks is the amount of requests. As mentioned before, both of the attacks force the
victim’s browser to send many requests, which then get intercepted by the attacker for the
purpose of decrypting cookies. It is therefore also worth investigating how many requests
these attacks take. When combining this information, we can gain good understanding
of the time and request complexity of these attacks, which might help us come up with
effective methods of detecting and preventing these attacks in advance.

6.1 Simulation constraints

In order to gain the understanding mentioned before, a dataset was created by observing
certain metrics during the repeated execution of the Python proof-of-concept scripts. How-
ever, it is important to note, that even though the proof-of-concept scripts are made to
closely follow the events of these attacks, they are still only simulations. This naturally
comes with certain limitations and abstractions, which we have to take into account. One
such important abstraction is time. In a real execution of these attacks, the victim first has
to obtain the cookie from a legitimate server, then visit the attacker’s website and load the
malicious scripts. These scripts then also have to establish a connection with the attacker.
All of these actions take some time, however the proof-of-concept scripts only focus on the
decryption part. Therefore these actions are not considered in the following datasets.

The decryption stage of both of the attacks consists of the victim repeatedly sending
requests to the server. Naturally there is always going to be some delay between each
request, however in the real world, this delay is not always the same. In order to account
for this, the proof-of-concept script uses an artificial delay of 10ms between each request.

31



The value of 10ms is an estimated average of delay between requests based on the
following components:

e time between sending the request and the attacker intercepting it - in an ideal situation
for the attacker, they would be in the same local network as the victim. Generally
speaking the latency from the client to the default gateway falls within the range of
1-5ms. It is therefore reasonable to assume, that the time frame for the attacker to
intercept packets from the victim would also fall into a similar range.

o time of processing the intercepted request on the attacker’s machine - the operations
on the intercepted requests are not very complex nor time consuming. The time of
processing requests will generally never be more than 1-2ms.

e time of sending information from the attacker’s machine to the script in the victim’s
browser - once again, since both the attacker and the victim would ideally be on the
same local network, the time frame of 1-5ms is considered.

With these components in mind and based on observations of delays in modern browsers,
the arbitrary value of 10ms has been chosen.

6.2 Target cookie length range

Another important aspect of decrypting cookies is of course their length. It goes without
saying that the longer the cookie is, the longer it will take for the attacks to decrypt it. The
length of cookies is determined by the configuration on the server side. A web performance
researcher, Paul Calvano, conducted research on the length of cookies in all web pages
tracked in the HT'TP archive[l] in 2020. According to his research, the median value of
the length of cookies is 36 characters, but it can range anywhere from just 1 character,
up to a maximum of 29735 characters, while the 99th percentile is 287 characters. The
created dataset is therefore targeted at the cookie length range from 20 to 56 characters
with increments of 4. This provides us with sufficient understanding for the time and
request requirements of the attacks for most common lengths of cookies.

6.3 BEAST attack data analysis

As mentioned before, the dataset for the BEAST attack targets the cookie length range
from 20 to 52 characters with 4 character intervals in between. The Python proof-of-concept
script for the BEAST attack was launched repeatedly for each interval. The dataset then
describes the average of all script execution results for each interval. The main focus of
the data set is to measure how big of an impact the length of the cookie has on the time
and request requirements of the attack. We are also differentiating between cookies, which
only use alphanumerical characters and cookies, which use non-alphanumerical characters
as well, in order to see how big of an impact the complexity of the cookie has on the time
and request requirements. The repeated execution of the Python proof-of-concept script
produced data displayed on the following page.

32



M Alphanumerical [ Nonalphanumerical

80.00

67.65
61.50
60.00 55.27

40.00 37.13 35.78

Timeis)

20.00

20 24 28 32 36 40 44 48 52

Length of cookie

Figure 6.1: Graph of average time by length for BEAST.

Firstly, we may observe that for the range of 20 to 52 characters the decryption process of
the BEAST attack takes between 19.23 and 51.45 seconds. From this we can deduce that
the attack needs about 1 second on average to decrypt a single alphanumerical character. It
is however worth noting again, that this time is purely an estimation, due to the simulation
restrictions described in section 6.1. If we take into account the use of non-alphanumerical
characters as well, the dataset shows an average increase of about 33% in the amount of time
required for decryption, giving us an average of about 1.34 seconds for a single character.
Similar ratios can be observed on the following graph, which depicts how many requests on
average it takes to decrypt cookies of different lengths. For alphanumerical characters only,
the average amount of requests ranges from 1233 up to 3306, giving us an average of about
65 requests per character. Similarly to the time metric, we can also observe an increase
of roughly 33% in the number of requests, when taking into account non-alphanumerical
characters.

B Alphanumerical [l Monalphanumerical

5000
43446

4000

3000

2000

Amount of requests

1000

20 24 28 32 36 40 44 438 52

Length of cookie

Figure 6.2: Graph of average number of requests by length for BEAST.

33



6.4 CRIME attack data analysis

The CRIME attack dataset targets the cookie length range from 20 to 52 characters with 4
character intervals in between. Likewise, the Python proof-of-concept script was launched
repeatedly for each interval. The dataset output describes the average results for each
interval, with the main focus of the dataset once again being to measure how big of an
impact the length of the cookie has on the time and request requirements of the attack.
The repeated execution of the Python proof-of-concept script has produced the following
results:

B Alphanumerical [l Nonalphanumerical

40.00

35.08
3312

29.97
30.00 27.17

20.00

Timeis)
e
4]
-~
o
-~
(=2

10.00

20 24 23 32 36 40 44 43 52

Length of cookie

Figure 6.3: Graph of average time by length for CRIME.

From this dataset we can deduce that it takes about 0.5 seconds to decrypt a single
alphanumerical character. If we consider non-alphanumerical characters as well, we can
observe a 32-33Y% increase in time. The same ratios can also be observed on the average
amount of requests by length here:

B Alphanumerical [l Nonalphanumerical
2500
2127.5

2000 1923.9

17439

1459.8
1415.6
1500 13134

1000 8304

Amount of requests
=
a
w

500

20 24 28 32 38 40 44 48 52

Length of cookie

Figure 6.4: Graph of average amount of requests by length for CRIME.

34



6.5 Attack dataset comparison

In this section we take a quick look on how the time and request requirements of the
attacks stack up to one another. This will help provide understanding on which attack is
more effective, which is faster and by how much. Firstly the comparison of the attacks by
the amount of time required is as follows:

W BEAST W CRIME

80.00
67.65
61.50

55.27
60.00 50.86

46.70
40.55

3713
40.00 33.12 35.08

Time(s)
w
1
o
(=)
()
B
-]
~

20.00 14.72

Length of cookie

Figure 6.5: Amount of time required for BEAST vs CRIME.

Based on this data, we can see that the BEAST attack takes roughly twice as long as
CRIME for cookies of the same length. This means that for shorter cookies both attacks
can be viable, however with the growing length of the cookie, the BEAST attack becomes
a lot less efficient in comparison to CRIME. The same can be observed on the amount of
requests between the two attacks.

W SEAST W CRIME

5000
4344.6

3946

4000 3545.6
3286
= 3022.2
$ 3000 Janat 2590.2
3 . 2244
5 1967 B30 1923.9 2127.5
£ 2000 15836 1570.3 :
5 1415.6
g 1229.2
£ 942.4 1061.3

1000

0

Length of cookie

Figure 6.6: Amount of requests required for BEAST vs CRIME.

The difference in efficiency mainly comes down to the fact that the BEAST attack needs
two requests for a single guess of a character, where as the CRIME attack only needs one.
However, we can observe that with the use of cookies, which are at least 20 characters long,
the attacks use upwards of 800 requests in just a couple of seconds. We can therefore use
this information to detect the possibility of the attacks being in progress, while they are
happening.

35



Chapter 7

Conclusion

In this report I have analyzed the BEAST and CRIME attacks against the HT'TPS protocol.
I have provided the theoretical basis behind them and their brief history, which is followed
by an in-depth explanation of the principles of these attacks as well as ways to predict
or detect them, or similar attacks which might be discovered in the future. Furthermore I
have created Python proof-of-concept scripts for the purpose of demonstrating these attacks
and by repeated execution of these scripts, I have obtained datasets, which describe how
effective these attacks are and how they compare to each other.
The main objectives of this report are as follows:

research the principles of the BEAST and CRIME attacks - the principles of the
BEAST and CRIME attacks are described in chapters 2 and 3 respectively.

e create a suitable environment for demonstrating these attacks - the attacks were
demonstrated with the use of Python proof-of-concept scripts, which are described in
chapters 5.2 and 5.3 respectively.

e create annotated datasets from attack demonstrations - annotated datasets were cre-
ated by repeated execution of the proof-of-concept scripts. They are described in
chapter 6.

o analyze created datasets and research suitable attack detection and prevention meth-
ods - detection and prevention against the BEAST and CRIME attacks are described
in chapters 2.4 and 3.4 as well as chapter 4.

This report could further be improved by demonstrating the attacks in an environment
which resembles the real situation even closer, which can be done by separating the attack
demonstrations into individual participants with legitimate TLS communication between
them. This improvement could for example be achieved with the use of specialized Python
libraries for simulating HT'TPS servers and clients. Another way would be to create virtual
machines and install all of the outdated versions of technologies necessary, as described
in chapter 4, however some of the required technologies, such as TLS Deflate browser
support, are very difficult to come by.

36



Bibliography

[1] An analysis of cookie sizes on the web. Paul Calvano, 2020 [cit. 5.5.2023]. Available at:
https://paulcalvano.com/2020-07-13-an-analysis-of-cookie-sizes-on-the-web/.

[2] Abbreviated TLS 1.2 Handshake. Wikimedia, 2022 [cit. 15.4.2023]. Available at:
https://commons.wikimedia.org/wiki/File:Abbreviated_TLS_1.2_Handshake.svg.

[3] Block cipher. Wikimedia Foundation, 2022 [cit. 25.11.2022]. Available at:
https://en.wikipedia.org/wiki/Block_cipher.

[4] Block cipher mode of operation. Wikimedia Foundation, 2022 [cit. 27.11.2022].
Available at: https://en.wikipedia.org/wiki/Block_cipher_mode_of _operation.

[5] CRIME. Wikimedia Foundation, 2022 [cit. 23.12.2022]. Available at:
https://en.wikipedia.org/wiki/CRIME.

[6] Man-in-the-middle attack. Wikimedia Foundation, 2022 [cit. 28.11.2022]. Available at:
https://en.wikipedia.org/wiki/Man-in-the-middle_attack.

[7] What is a WAF? | Web Application Firewall explained | Cloudflare. Cloudflare, Inc.,
2023 [cit. 15.4.2023]. Available at: https:

//www.cloudflare.com/learning/ddos/glossary/web-application-firewall-waf/.

[8] What is HTTP chunked encoding? how is it used? Bunny.net, 2023 [cit. 10.5.2023].
Available at: https://bunny.net/academy/http/what-is-chunked-encoding/.

[9] BANACH, Z. How the BEAST Attack Works. 2020 [cit. 13.12.2022]. Available at:
https://www.invicti.com/blog/web-security/how-the-beast-attack-works/.

[10] CLOUDFLARE, I. What happens in a TLS handshake? 2022 [cit. 25.11.2022]. Available
at: https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/.

[11] KiprIN, B. What Is the CRIME Attack and How Does It Work. 2021 [cit. 23.12.2022].
Available at: https://crashtest-security.com/prevent-ssl-crime/.

[12] K1PRIN, B. What Is the SSL BEAST Attack and How Does It Work. 2021 [cit.
24.11.2022]. Available at: https://crashtest-security.com/ssl-beast-attack-tls/.

[13] KiPRrIN, B. What is a downgrade attack and how to prevent it. 2022 [cit. 28.11.2022].
Available at: https://crashtest-security.com/downgrade-attack/.

[14] PHILLIP, R. Ewvaluation of Some Blockcipher Modes of Operation [online|. Security
Evaluation. Davis, California, USA: University of California, Davis, february 2011
[cit. 27.11.2022]. Available at:

https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf.

37


http://vaLno.com/2020-07-13-aLn-ajialysis-of-cookie-sizes-on-the-web/
http://commons.wikimedia.org/wiki/File
http://Abbreviated_TLS_l.2_Handshake.svg
http://wikipedia.org/wiki/Block_cipher
http://wikipedia.org/wiki/Block_cipher_mode_of_operation
http://en.wikipedia.org/
http://en.wikipedia.org/
http://cloudflare.com/learning/ddos/glossary/web-application-firewall-waf/
http://Bunny.net
http://invicti.com/blog/web-security/how-the-beast-
http://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
https://crashtest-security.com/prevent-ssl-crime/
https://crashtest-security.com/ssl-beast-attack-tls/
https://crashtest-security.com/downgrade-attack/
http://cs.ucdavis.edu/~rogaway/papers/modes.pdf

[15] TECHTARGET. Cipher block chaining (CBC). TechTarget, 2021 [cit. 25.11.2022].

Available at:
https://www.techtarget.com/searchsecurity/definition/cipher-block-chaining.

[16] WILLEKE, J. Beast. 2015 [cit. 24.11.2022]. Available at:
https://ldapwiki.com/wiki/BEAST.

38


https://www.techtarget.com/searchsecurity/definition/cipher-block-chaining

