
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

WEATHER AND AERONAUTICAL DATA ON MAP FOR
AIRPLANE EFB

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. ONDŘEJ KOUKOLÍČEK
AUTHOR

BRNO 2015

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

METEOROLOGICKÁ A AERONAUTICKÁ DATA V MAPĚ
PRO EFB LETADLA
WEATHER AND AERONAUTICAL DATA ON MAP FOR AIRPLANE EFB

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. ONDŘEJ KOUKOLÍČEK
AUTHOR

VEDOUCÍ PRÁCE Ing. LUKÁŠ POLOK
SUPERVISOR

BRNO 2015

Abstrakt
Práce se zabývá evaluací moºného vyuºítí webových technologií pro p°epracování gra�ckého
uºivatelského prost°edí aplikace Weather Information Service (WIS) od spole£nosti Hon-
eywell. Rozhraní je z velké £ásti tvo°eno mapovým enginem, který by byl ve webovém
rozhraní implementován JavaScriptovou mapovou knihovnou. Jako moºné knihovny byli
vybráni komer£ní Altus Map Engine a voln¥ dostupný Lea�et. Ob¥ knihovny byly prozk-
oumány, zda je v nich moºné implementovat v²echny prvky vyuºívané v aplikace WIS a
také byly implementovány dv¥ demonstra£ní aplikace, které knihovny vyuºívají. Knihovna
Altus Mapping Engine byla vyhodnocena jako nevhodná pro implementaci, protoºe není
zcela dokon£ená. Knihovna Lea�et je naopak doporu£ena, protoºe umoº¬uje implementaci
v²ech poºadovaných prvk·.

Abstract
The aim of this thesis is to evaluate the possibilities of using web technologies to reimplement
the graphical user interface part of the Honeywell Weather Information Service application.
The major part of the interface is a map engine, which would be implemented using a
JavaScript map library. Commercial Altus Map Engine and open source Lea�et are selected
as possible options to be used. Both libraries are evaluated for required capabilities and a
two demonstration applications are created using each of them. It is found that the Altus
library is currently unsuitable for practical use, because its implementation is un�nished.
On the other hand, Lea�et is capable to implement all required features and is recommended
for use.

Klí£ová slova
Lea�et, Altus, mapy, mapová knihovna, WebGL, HTML Canvas, data po£así

Keywords
Lea�et, Altus, maps, map library, WebGL, HTML Canvas, weather data

Citace
Ond°ej Koukolí£ek: Weather and Aeronautical Data on Map for Airplane EFB, diplomová
práce, Brno, FIT VUT v Brn¥, 2015

Weather and Aeronautical Data on Map for Airplane

EFB

Declaration
I declare that this thesis has been written by myself under supervision of Ing. Luká² Polok.
I also declare that I have acknowledged all resources and publications used in my work.

. .
Ond°ej Koukolí£ek

June 3, 2015

Acknowledgement
I would like to thank my supervisor Ing. Luká² Polok for his patient guidance and helpful
advices.

c© Ond°ej Koukolí£ek, 2015.
Tato práce vznikla jako ²kolní dílo na Vysokém u£ení technickém v Brn¥, Fakult¥ infor-

ma£ních technologií. Práce je chrán¥na autorským zákonem a její uºití bez ud¥lení oprávn¥ní

autorem je nezákonné, s výjimkou zákonem de�novaných p°ípad·.

Contents

1 Introduction 2

2 Honeywell Weather Information Service 3
2.1 Features . 4

3 Web Based Map Solutions 7
3.1 Altus Mapping Engine . 8
3.2 Lea�et . 9

4 Rendering technologies in web environment 11
4.1 DOM rendering . 11
4.2 HTML Canvas . 14
4.3 WebGL . 16

5 Design and Implementation 20
5.1 Design . 20
5.2 Common parts implementation . 20
5.3 Altus Mapping Engine demonstration implementation 21
5.4 Lea�et demonstration implementation . 23

6 Comparison of Map Libraries 29

7 Conclusion 31

A Content of Supplemental CD/DVDs 34

1

Chapter 1

Introduction

The number of web applications being created and used has grown rapidly. With HTML5
widely supported in both desktop and mobile devices, it is now easier than ever to develop
fully �edged applications comparable to native applications in both functionality and per-
formance. Web o�ers a huge advantage in a fact, that the application will always run,
independently of an operating system or device manufacturer. This has a potential to re-
duce costs of both development and subsequent product support, making the technology
interesting for software companies.

This thesis is developed as a study of possible options for rewriting the Weather Infor-
mation Service (WIS) software, made by Honeywell, into a web application. The company
is interested in replacing the currently used native interface of the application with a web in-
terface. WIS uses a map engine extensively and the thesis is therefore focused on JavaScript
libraries for rendering maps. The company is considering usage of either commercial Altus
Mapping Engine or an open source alternative such as Lea�et. The thesis will examine these
libraries and report their capability to be used for the company software. A demonstration
application is created using each of the libraries as a proof of concept.

The Honeywell Weather Information Service is discussed in more detail in chapter 2. The
reasons for rewriting the application are explained as well as features, which are required to
be implementable in web environment. Chapter 3 describes web map engines and related
important concepts. Map engines selected for the thesis are then introduced, analysed and
their features are listed. Chapter 4 discusses modern rendering technologies used in web,
each with an implemented example showing its advantages and possible use. Chapter 5
describes the process of design and implementation of both the demonstration applications.
Means used to implement all the features are explained in detail. Chapter 6 highlights
advantages and disadvantages of each library and �nally the chapter 7 concludes the thesis
with a summary of work.

2

Chapter 2

Honeywell Weather Information
Service

Honeywell is well established international conglomerate company focused on wide variety
of products and services. Its aerospace division has recently engaged in development of
electronic �ight bag (EFB) applications. These are applications meant to be used by airplane
crewman in �ight using a tablet computer. The EFB may be used for viewing documents
such as navigational charts or operating manuals, but it can also simplify and automate
certain calculations and planning. The Weather Information System (WIS) is the �rst
Honeywell application released for EFB devices [11].

Figure 2.1: Apple iPad as an EFB device in an airplane cockpit [21].

WIS is designed to provide pilots with continuously updated, in-�ight weather infor-
mation. This is bene�cial for both planning and in-�ight optimization of the �ight path,
allowing the pilot to both reduce fuel costs for airlines and increase the safety of the �ight.

The application is written in C++ in combination with OpenGL ES as a rendering tech-
nology, using only a minor amount of platform speci�c features. This allows to run the
application on multiple target platforms within the same code base, which greatly speeds
up the development.

Currently there is an e�ort to integrate WIS into an in-house framework, which requires
splitting the application code into independent modules. In case of WIS that is not an
easy task, because the code is fairly complex. Since the application would require a major
rewrite, it was decided to explore the possibilities to write a new application interface using
web technologies. The purpose of this thesis is to test and evaluate the suitability of selected
map libraries for this task.

3

2.1 Features

This section will give an overview of WIS features which will need to be created and speci�cs
of their implementation. The preview of the application is visible in �gure 2.2.

Figure 2.2: Weather Information Service application.

The map engine is the main component of the application. Supported controls are
pan and zoom with both mouse and touch input. It is implemented using raster image
tiles of set size in degrees. Unlike web map engines, the tiles are static and never split into
multiple smaller ones, when the map is zoomed in. Instead, images of two di�erent sizes are
available for each tile and are switched by level of detail system. Tile system is also closely
tied with weather data, with possibility to download only certain tiles to limit the amount of
downloaded data. Countries borders are then drawn as vector poly-lines based on shape
data shipped with application.

Map tiles are generated based on a height map. An in-house software uses it to create
a single large image, which is then cut into map tiles. The format of tiles is not compatible
with web map engines.

GUI generally consists of two types of elements. Fixed position overlay elements or
windows and the so-called �oating windows, which sticks to the �xed position of map.
Example of each is visible in �gure 2.3.

(a) (b)

Figure 2.3: (a) Fixed position settings window. (b) Floating window with airport status.

Flight plan is showing a shortest path going through set of waypoints (�gure 2.4).
Since the map is projected to a �at surface, the path is not actually a straight line. The

4

path has to be calculated according to a great circle (orthodrome).

Figure 2.4: Flight plan orthodrome.

Static symbols such as navigational aids, waypoints or air�elds locations are important
for navigation. There are tens of thousands of these symbols combined and drawing them
has serious performance impact, especially on mobile devices. In order to avoid screen
clutter, such as symbols or their labels drawing over each other, de-cluttering algorithm has
to be employed. Overlapping symbols are hidden or minimized based on their priority, for
example international airports over domestic airports. Labels are also moved around the
symbol in case they do not �t in initial position. Figure 2.5 show the de-cluttering of airport
symbols in United Kingdom in two di�erent levels of zoom.

(a) (b)

Figure 2.5: (a) Airports with lesser priority are hidden. (b) All airports are visible.

Symbolic weather products are indicating the weather conditions using one or multi-
ple symbols on the map. These include wind aloft forecast, METARs and SIGMET symbols
(�gure 2.6). Their symbols are generally not static. They are in some cases procedurally
generated and change depending on the depicted situation. SIGMET symbols also include
a polyline indicating a�ected area.

Graphical weather data consist of observation products such as radar showing pre-
cipitation or the satellite imagery of cloud cover, and forecasts like the clear air turbulence
(�gure 2.7). The data is stored as an array of values per each available map tile. Each
weather products has di�erent resolution of the data, for example the radar (green, yellow
and red in the image) has the highest resolution. The data array generally consists of few
known values indicating the intensity of weather condition or its absence. Rendering of
this data is accomplished using interpolation in OpenGL shaders. Forecast products, which

5

Figure 2.6: SIGMETs and wind barbs symbols.

are transparent are drawn with a solid border obtained using edge detection in the shader
program. This allows the data representation to always be rendered in native resolution
and there is no visible aliasing.

Figure 2.7: Graphical weather data.

6

Chapter 3

Web Based Map Solutions

Implementation of reliably working map engine is an non-trivial time-consuming task. For-
tunately, there are many solutions freely available for use in both free and commercial
applications. The number of usable libraries is especially high for web applications [10].
This chapter will focus solely on Map engines in a form of JavaScript library.

Map library typically provides a simple way to render a map of choice in a speci�c
element in a web page. Map also handles mouse and keyboard input to move the map
around and provide basic GUI elements for map control.

Libraries do not include any actual map data. A Tile server is a provider of map tiles,
which are used to render the maps. There are many freely available tile servers, the most
well known would perhaps be servers of OpenStreetMap Foundation (OSM), as well as paid
services with custom made maps as per client requirements

Map tiles are typically image �les with size of 256x256 pixels. Each level of zoom is
using its own set of image tiles addressable using their X and Y coordinates. When the map
is completely zoomed out, the entire map could �t into single tile. With each increase of
zoom, the number of tiles is increased according to following formula: 2n × 2n where n is
the zoom level starting with 0. In higher level of zoom, the number of tiles grows quickly
up to billions for OSM [25]. Each tile is accessible using URL address in a format visible in
listing 3.1. This system is currently a norm shared among all major map providers.

http :// exampletileserver.com/zoom/x/y.png

Listing 3.1: Example of URL used to retrieve map tile from a tile server.

Layer is another important concept related to maps. Layers are sets of data added to
the map as a single object. These may contain for example:

• raster or vector map tiles source,

• weather data,

• image overlays

and many more. Libraries generally allow adding multiple layers of various data, rendered
in speci�c order, creating overlays or combinations of maps.

The following sections will introduce mapping libraries selected to be used for thesis
implementation. Lea�et is being one of them as an open source library and Altus Mapping
Engine as its proprietary counterpart.

7

3.1 Altus Mapping Engine

This commercial map engine is created by BA3 [1] as a part of their complete suite of
products to handle map assets and rendering. It is currently successfully utilized in EFB
application ForeFlight Mobile [9]. Usage of this speci�c library is based on Honeywell
corporate decision.

Altus Mapping Engine (Altus) was originally released for iOS and Android. The code
is written in C++. The creators are also working on releasing the library for OS X, Linux,
Windows 8 and web applications. The web API is the platform used in this thesis. The
original C++ code is compiled to asm.js language [4], which is a subset of JavaScript (JS)
designed to have much better performance than native JS code. This however means the
code is not very readable and it is almost impossible to add any functionality without
engaging the authors.

The web API was �rst released in March 2014 as a very early alpha preview. It does not
include all the features from iOS and Android versions but since there is no newer release
available, it is used in the thesis (version 1.4-54).

Figure 3.1: Altus Mapping Engine.

Altus map is rendered to a sphere using WebGL (�gure 3.1). Current version however
does not work on mobile devices and the performance is not very good even on desktop
computers. The maps are only comfortably usable in Google Chrome browser,which is
known for its currently fastest JavaScript engine.

At this moment Altus web API provides following features:

• User controls � pan and zoom.

• Rendering of raster and vector maps from online sources in a layer system.

• Animated map transition to selected coordinates.

• Adding and rendering of customizable map markers.

• Rendering of data maps (undocumented function, probably GeoJSON vector data).

The feature list is currently very limited and there is no option to expand it by yourself.
However, once the complete version of the map engine is released, it should o�er all features
required for implementation of WIS software.

The documentation for Altus is available for each supported platform in a form of a
knowledge base [2]. Each platform generally has up to four tutorials and some also have

8

automatically generated API overview. The documentation of web API seems to be under-
going adjustments and was recently hidden. Some tutorials are also available as blog posts
on company web pages. The tutorials are well written with commented code examples, but
they only cover the most basic issues. Since almost nobody uses Altus outside of corporate
environment, no additional learning resources are available. The company however o�ers
an employee training and support for its enterprise clients as well as pre-paid hourly rated
support for single developers.

3.2 Lea�et

Lea�et [15] was selected as an open source representative among the map engines. There
are of course alternatives such as OpenLayers [22], which o�er equally good features, but
Lea�et is currently a popular choice. It is being widely used in web applications including
major web sites such as Flickr, Foursquare or craigslist.

The library was �rst released in May 2011, the code base is quite new and uses modern
features. The code is written in JavaScript and works well on both desktop and mobile
devices. Lea�et uses DOM rendering as a base drawing method while also o�ering ways
to extend the library with custom map layers rendered using HTML5 Canvas or WebGL.
Lea�et is designed to be a light weight library which o�ers perfectly working basic features
and a possibility to extend these using plug-ins.

Figure 3.2: Lea�et map engine.

By default, Lea�et uses map projection known as Web Mercator (�gure 3.2). This is
a standard used by almost all map providers such as Google Maps, Bing Maps or Open-
StreetMap. Map also comes with built in support of elliptical Mercator and equirectangular
(plate carrée) projections.

Although the library is light weight, it o�ers a long list of features. Only those relevant
to the WIS software will be mentioned:

• Smooth map controls with plenty of build in customization parameters (f.e. map
bumping, zoom level limits).

• Rendering of raster map tiles.

• Support of GeoJSON vector data (for example borders of countries, areas, polygons).

• WMS layers support (�gure 3.3).

9

• Drawing of vector lines and shapes.

• Fully customizable map markers. Any drawing method is available.

• Pop-up windows system, also customizable (�oating windows in WIS).

• GUI system of controls tied to map, easily extended with own components (for example
a scale or layer selector).

• Many utility functions for mapping from and to projections or map coordinates.

Figure 3.3: Precipitation as WMS layer in Lea�et. (source: NOAA [20])

In case these features were not enough, there are hundreds of community plug-ins adding
anything one could ever need. They are available on Lea�et web page, sorted by category,
usually with working example and usage instructions. It seems all the features of WIS are
implementable using Lea�et without troubles.

Documentation for Lea�et consists of well organized API overview with code exam-
ples [13]. In addition, there is a set of tutorials with di�culty ranging from simple to
advanced, showing major features of library. Being a very popular library, there are lots of
uno�cial resources available including multiple books as well.

10

Chapter 4

Rendering technologies in web
environment

Choice of rendering technology for web product is an important one. It will a�ect both
speed and di�culty of development as well as appearance and feel of the �nal product. It is
not a long time ago when there were only limited options when it came to drawing dynamic
graphic content such as maps or games. There was classic Document Object Model (DOM)
rendering and then there were browser plug-in based software platforms such as Adobe
Flash, Java or Microsoft Silverlight. Since the desired �nal product should work on multiple
di�erent platforms, using plug-ins would be limiting and in some cases impossible, thus
these platforms will not be discussed.

Today the choice of rendering technology is made easier with addition of WebGL and
HTML Canvas. Both available natively within modern web browsers. These methods, along
with DOM rendering, will be further described in following sections. Each of them is also
demonstrated using prepared example application. The source codes of these examples are
available on attached CD.

4.1 DOM rendering

The oldest rendering method, also known as DOM sprites, is based on using div, span

and other HTML elements styled using Cascading Style Sheets (CSS). Object style can be
further modi�ed in time or based on user input using JavaScript. Objects are part of the
page DOM, which means they are rendered in a same way as is the rest of the page. This
is an operation which is for the most web browsers very well optimized using hardware
acceleration via GPU. This allows the method to be used for drawing of hundreds of objects
without performance issues (benchmark available at [28]).

The CSS properties of objects are o�ering wide variety of settings. Some of the more
important are:

• size and position,

• �ll and border color,

• rounded corners,

• background image,

• animations,

11

• matrix transformations (including 3D).

With div and span elements being rectangular, the drawing is limited to simple shapes
based on rectangle and its transformations. This is however not limiting, because DOM
rendering is mostly used for drawing sprite based graphics consisting of simple div with
partially transparent image background.

Compared to other rendering methods, there are following advantages and disadvantages:

• Advantages:

� Easy to use.

� Universal browser support should guarantee working project in any device and
browser.

� Built-in system for creating animations.

� Text is rendered as actual selectable text, unlike the rest of rendering methods.

• Disadvantages:

� Allows only simple shapes and sprites.

� Originally it was not intended to use DOM elements for drawing purposes, it is
more of a workaround. And this means, the coding style is di�erent from other
established standards. This problem can be mitigated using one of the JavaScript
graphics libraries encapsulating the code (f.e. Crafty.js [8])

� Di�erent browsers may not render identical content.

Example

A basic demonstration was created to show how simple it is, to draw and animate objects
using DOM rendering. The example implements a web page visible in a �gure 4.1.

Figure 4.1: DOM rendering demonstration.

The page represents a map consisting of two tiles, a static icon and an animated icon.
The airplane icon moves over set trajectory in a way resembling markers used in �ight radar
applications. Both icons highlights on mouse contact. The HTML part of the code is visible
in listing 4.1.

12

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet" type="text/css" href="stylesheet.css">

</head>

<body>

<div class="Tile" style="background -image:url(map_3_4_2.jpg)">

</div>

<div class="Tile" style="background -image:url(map_3_5_2.jpg)">

</div>

<div class="Icon" style="background -image:url(symbol.png); top:

120px; left: 100px">

</div>

<div class="Icon Plane" style="background -image:url(plane.png)">

</div>

</body>

</html>

Listing 4.1: HTML code of the example.

All components are implemented using div elements with background image (source [19]).
Each div element is also assigned a style sheet class de�ned in a separate �le (listing 4.2).
Classes set dimensions and positioning for their respective elements. Icon class also de�nes
hover selector style, which is used on icons under mouse cursor.

.Tile { width:256px; height:256px; float:left; border:1px solid; }

.Icon { width:32px; height:32px; position:absolute; }

.Icon:hover { border :4px solid blue; border-radius:6px;

margin:-4px; }

.Plane { animation-name:flight; animation-duration:10s;

animation-iteration-count:infinite; }

@keyframes flight

{

0% { top: 256px; left: 0px; transform:rotate (45deg); }

50% { top: 0px; left: 256px; transform:rotate (45 deg); }

55% { top: 0px; left: 256px; transform:rotate (135 deg); }

100% { top: 256px; left: 512px; transform:rotate (135 deg); }

}

Listing 4.2: CSS code of the example.

The airplane icon movement is implemented using CSS animations. These allow an element
to gradually change from one style to another using prede�ned key frames. In case of this
example, there are four key frames de�ning starting position in the bottom left corner of
the image, movement to the top centre point, rotation to the new direction and �nally
movement to the bottom right corner.

While the demonstration is fairly basic, it shows advantages of this rendering method.
Equivalent implementation in HTML Canvas or WebGL would be much more complex and
would require some degree of programming knowledge.

13

4.2 HTML Canvas

Canvas is a new page element usable in HTML5 compatible browsers and it is also used as
a name of 2D rendering method using this element. Canvas element is tied with WebGL as
well. Both methods need to create canvas, the di�erence comes with context, which is an
object with methods used to draw into canvas. Programmer can use canvas to get either
2D or 3D (WebGL) context. This section will address the 2D rendering method.

Canvas works as a transparent rectangular drawing board in the web page. Issued
commands are executed immediately and there is no memory of the scene. It is up to the
programmer to somehow preserve the contents of the scene should there be a need to redraw
it. There are multiple JavaScript libraries and game engines implementing scene graph to
solve this problem (f.e. Paper.js [23]).

Drawing API is fairly straightforward with following rendering capabilities:

• Drawing of lines, curves, paths and shapes.

• Colors and gradients.

• Drawing images or even videos to canvas.

• Font rendering and metrics.

• Pixel data access and operations.

• Global transformation matrix applied to all future commands.

At the �rst glance, it might look like Canvas is only able to draw simple graphics, but
that is not true. There are many impressive looking applications. For example there is a
heat map renderer [17] in �gure 4.2 which shows potential of canvas to render weather data.

(a) (b)

Figure 4.2: (a) Heat map renderer [17]. (b) Winter forest visualization [6].

• Advantages:

� Quick and easy to use API.

� Lots of di�erent visual elements are available.

� Supported by all major desktop and mobile web browsers.

• Disadvantages:

� No memory of the scene.

� Absence of shaders limits capabilities of weather data rendering.

14

Example

Provided example, visible in �gure 4.3, shows once again a map tile, three airport symbols
and a path trajectory.

Figure 4.3: Canvas rendering demonstration.

The implementation consist of two canvas elements in the HTML �le (listing 4.3) and a
drawing script in JavaScript. These canvas elements are positioned over each other working
as a layer system and each of them has their own drawing function.

<canvas id="map" class="abs" width="256" height="256"

style="z-index: 0;"></canvas >

<canvas id="symbols" class="abs" width="256" height="256"

style="z-index: 1;"></canvas >

Listing 4.3: Canvas elements in the HTML �le

The contents of map layer drawing function is shown in listing 4.4. The �rst step is to
obtain a context object, which gives access to the entire drawing API.

// get canvas context

var canvas = document.getElementById("map");

var ctx = canvas.getContext("2d");

// create image from source url

var img = new Image();

img.src = "http :// otile1.mqcdn.com/tiles /1.0.0/ sat /3/4/2. jpg";

img.onload = function ()

{

// draw image to scene top left corner

ctx.drawImage(img , 0, 0, img.width , img.height);

}

Listing 4.4: Draw function of map layer canvas.

Then a new image object is created and its data source set. The image is loaded from an
online source. This is needed because the image object uses asynchronous http request to get
the image data and these are not allowed to be used on local �les for security reasons. Once
the image data is received from the server, the onload function of an image object, de�ned

15

in the bottom of code, is called and the image is drawn to the canvas. The asynchronous
loading of the image is the reason why two di�erent canvases were used. The image will
generally get drawn as the last element and would overwrite existing graphics.

// Set drawing style

ctx.lineWidth = 3;

ctx.strokeStyle = 'white ';

ctx.fillStyle = 'white ';

ctx.font = "13pt arial";

// draw airport symbols

drawAirport (80, 100, "ESMV");

drawAirport (90, 180, "LKPR");

drawAirport (150, 240, "LRBS");

// draw lines

ctx.strokeStyle = 'magenta ';

ctx.beginPath ();

ctx.moveTo (80, 100);

ctx.lineTo (90, 180);

ctx.lineTo (150, 240);

ctx.stroke ();

Listing 4.5: Draw function of symbol
layer canvas.

function drawAirport(x,y,text)

{

var radius = 8;

// draw circle

ctx.beginPath ();

ctx.arc(x, y, radius , 0,

2*Math.PI);

ctx.stroke ();

// draw label text

ctx.fillText(text , x +

radius , y - radius);

}

Listing 4.6: Draw function of airport
symbol.

The second canvas with symbols is renderer through a function in listing 4.5. The context
is obtained from canvas element in the same way as previously and therefore the code is
omitted. The set up of context properties which determine the colors, font and line width
of future rendering are set up �rst. Then the airport symbols are drawn using prepared
function visible in listing 4.6. The function creates an arc at a set position going from 0 to
360◦ and thus creating a circular path which is then stroked. Airport label is then rendered
next to the circle using the �llText function call. The remainder of code shows line drawing
using paths.

4.3 WebGL

WebGL is fairly new (2011) low-level JavaScript graphic API based on OpenGL ES. Identi-
cally to OpenGL, it provides access to computers rendering hardware and allows developers
to create complex graphic applications. While it is not part of HTML5 speci�cation, it is
supported by majority of both desktop and mobile browsers (although it may be disabled
by default in some cases) [30].

The API is almost identical to desktop OpenGL and any programmer with previous
knowledge will be able to use it easily. Being low-level API, it is substantially more com-
plicated to draw even simple rectangle when compared to one of the rendering methods
described earlier. It may not be the best choice for simpler tasks. There are few libraries
simplifying the drawing process, the most utilized is the Three.js project [26].

WebGL programs are a combination of JavaScript and GLSL code of the shaders both
incorporated in the web page. The graphics are rendered to a HTML5 Canvas element. This
means the possibilities of placement are very unrestricted. For example map frameworks
commonly allow drawing custom map markers using one WebGL canvas per each symbol.

16

Canvases can also be used as overlay, or the other way around, be overlaid by any other
page element.

• Advantages:

� WebGL can easily perform tasks, which would impossible or very di�cult in
previous methods (f.e. 3D scenes, shaders,lighting, materials).

� Best performance when dealing with complex applications.

• Disadvantages:

� The most time-consuming and di�cult method.

� Since the API si quite new, there is a limited number of materials available for
troubleshooting encountered problems.

Example

Usage of WebGL is not too straightforward and the code gets lengthy easily. The created
example is therefore as simple as possible, drawing a single triangle (�gure 4.4). Structure
of the code is simpli�ed and error checks are omitted.

Figure 4.4: WebGL rendering demonstration.

Entire code is written in a single HTML �le, which consists of canvas element visible in
listing 4.7 and multiple scripts in JavaScript. Dimensions set for the element are also used
as a resolution of a frame bu�er for WebGL context of canvas. It is possible to set resolution
di�erent from the actual size of the element using CSS.

<canvas id="glCanvas" width="800" height="400" style="border:solid">

</canvas >

Listing 4.7: Canvas element

Canvas element is followed by shader programs de�nitions visible in listings 4.8 and
4.9. In this case, GLSL code of the shader is encapsulated in a script tags with a speci�c
type. The custom type string is used for convenience, the browser does not recognize this
type and therefore will not try to execute the code inside. Shaders can also be written in
a JavaScript variable as a string, which is not ideal as multiple lines has to be written as
string concatenation. Having shaders in separated �les is also problematic as browsers are
not allowed to load local �les, unless this security options is disabled or the page is running
on a web server.

17

<script id="vshader"

type="x-shader/x-vertex">

attribute vec4 a_vertex;

void main()

{

gl_Position = a_vertex;

}

</script >

Listing 4.8: Vertex shader

<script id="fshader"

type="x-shader/x-fragment">

void main()

{

gl_FragColor =

vec4 (0,0,0,0.3);

}

</script >

Listing 4.9: Fragment shader

The shaders used are essentially the simplest possible. Vertex shader receives vector
of four coordinates as input attribute and sets it as an output vertex position. Fragment
shader sets the output color to be transparent black.

var canvas = document.getElementById("glCanvas");

var gl = canvas.getContext("experimental -webgl");

gl.viewport(0, 0, canvas.width , canvas.height);

Listing 4.10: Getting WebGL context and viewport initialization.

Rendering requires a context, which gives access to the WebGL API. Listing 4.10 shows
how to do so. First, previously created canvas element is located in page DOM by its ID
and reference is saved. Context is obtained through getContext function called on canvas.
Once context is available, the view port is set to match the size of canvas element.

var vertexShader = gl.createShader(gl.VERTEX_SHADER);

gl.shaderSource(vertexShader ,

document.getElementById("vshader").text);

gl.compileShader(vertexShader);

var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);

gl.shaderSource(fragmentShader ,

document.getElementById("fshader").text);

gl.compileShader(fragmentShader);

var program = gl.createProgram ();

gl.attachShader(program , vertexShader);

gl.attachShader(program , fragmentShader);

gl.linkProgram(program);

gl.useProgram(program);

Listing 4.11: Shader program preparation

Next step is the preparation of shader program (listing 4.11). Both vertex and fragment
shader variables are created and set up with contents of previously de�ned script elements
as its source codes. Both are compiled and attached to shader program. When successfully
linked, the program is set as currently used.

18

var vertArray = new Float32Array(

[

-0.5, 0.0, // bottom left point

0.5, 0.0, // bottom right point

0.0, 1.0 // center top point

]);

bufferVertices = gl.createBuffer ();

gl.bindBuffer(gl.ARRAY_BUFFER , bufferVertices);

gl.bufferData(gl.ARRAY_BUFFER , vertArray , gl.STATIC_DRAW);

Listing 4.12: Shader program preparation

Drawing graphic primitives requires de�nition of its vertices. Listing 4.12 shows creation
of array with vertices consisting of three points de�ned as X, Y �oat values. The scene is
initially set up in orthographic (parallel) projection, with view port coordinates ranging
from minus one to one in both X and Y axis.

Vertices has to be saved WebGL bu�er object. It is created, bound as currently active
and �lled with vertices array.

locVertex = gl.getAttribLocation(program , "a_vertex");

gl.vertexAttribPointer(locVertex , 2, gl.FLOAT , false , 0, 0);

gl.enableVertexAttribArray(locVertex);

gl.drawArrays(gl.TRIANGLES , 0, vertArray.length / 2);

Listing 4.13: Vertex attribute settings and draw call.

Finally the last required action before the triangle can be drawn is settings of used shader
attribute(listing 4.13). Index of attribute in the shader program is found and remembered.
Function vertexAttribPointer speci�es data format expected per vertex. In this case two
�oat values (X, Y) per vertex with no stride inbetween them and no initial o�set from the
begging of bu�er.

Even though each vertex has only two components and the shader is expecting vector
of four, this will not be problem. The attribute is automatically extended to expected size.

The use of vertex attribute is enabled and the primitive is drawn using drawArrays call.
Triangle type is selected, starting from �rst primitive, drawing up to three vertices.

19

Chapter 5

Design and Implementation

This chapter will cover the intentions and expected results of this thesis, followed by a draft
of solution and �nally a description of techniques used for implementation.

The aim of the thesis is to evaluate the suitability of replacing the in-house map engine
used in Honeywell WIS software with web map solution. The application has speci�c re-
quirements discussed in section 2.1 which may not possible to ful�l in a web environment.
The evaluation is to be performed on a demonstration applications implemented using both
map frameworks discussed in chapter 3.

5.1 Design

Making a web application using a JavaScript library does not leave much choice in selection
of the implementation language. Besides the pure JavaScript solution, there are languages
such as Co�eeScript [7] or Babel [5] which are transcompiled to JavaScript. These would
o�er convenient features such as classes and encapsulation, which are of course possible in
JavaScript, but not very comfortable to use. In the end, it was decided not to implement the
application using the transcompiled languages, for educational reasons. The used language
will therefore be JavaScript in combination with HTML and CSS.

Development of applications in JavaScript often employ usage of a frameworks to expand
the possibilities or simplify certain tasks. In case of this demonstration application, a
framework helping with a creation of GUI elements would be helpful. It was decided to use
jQuery UI [12] framework, an open source extension of jQuery, which o�ers a set of widgets
used for building user interfaces.

JavaScript o�ers use features of object-oriented programming, the application is designed
accordingly. Since there are two applications to be implemented, which should perform same
set of functions, it was decided to share as much code as possible among them. Therefore
there is a main object of the application, with map object as a member. The map object
o�ers an API with a set of functions to enable drawing certain elements on map. The map is
then initiated with either Lea�et or Altus framework and internally handles the commands
di�erently for each of them.

5.2 Common parts implementation

Both demonstration applications can share certain parts of the code. The GUI elements,
such as menu and static windows, which are not tied to the map are the prime examples.

20

The implemented menu visible in �gure 5.1 is vertical, unlike the one used in WIS
software. The reason being, the application is expected to run on a wide-screen device and
the already limited vertical space should not be further reduced. The menu is positioned
straight over the map as an overlay div element.

Figure 5.1: Vertical menu.

The menu is implemented using jQuerry UIs menu widget. The widget takes a div

element with a bullet list of the menu structure inside as an input and creates working
menu. It is then possible to de�ne functions which get called on certain events such as click
or hover over menu buttons.

Static windows (dialogues) are not used in the application. It would be possible to create
one using a Dialog widget in jQuerry UI. It allows creation of both modal and modeless
dialogues in a way similar to menu creation. Dialogue windows are fully customizable as
visible in �gure 5.2.

Figure 5.2: jQuerry UI dialogue window example.

5.3 Altus Mapping Engine demonstration implementation

The implementation of application using Altus library is very limited. After inspecting the
source code of the latest version of the library, it was found, that only a few features of the
full Altus product are available in the web API.

// Create an intance of Altus map engine in target div element

var map = new Altus(document.getElementById("divMap"));

// Add a new map layer from the online tile server

map.addInternetMap("baseMap",

"http :// otile1.mqcdn.com/tiles /1.0.0/ sat/{z}/{x}/{y}.jpg");

Listing 5.1: Altus map initialization.

Altus map engine is initialized in a very simple way (listing 5.1). The engine requires a
div element of set size to be present in the page DOM. An instance of Altus engine is then

21

created with this element as target. Now the map engine is initialized (�gure 5.3), but with
no map data. The second command in the listing adds a tile server as a source to the map
layer, which will be accessible as

�
baseMap� .

Figure 5.3: Altus Map Engine with mapQuest satellite map tiles [19].

The only implemented feature for Altus map is drawing of an airport layer. It consists
of just under �ve thousand markers. Each of them should be drawn in certain geographic
position as a circular symbol with its ICAO code as a label. This number of markers
requires usage of de-cluttering mechanism to hide overlapping symbols based on airport
priority. Altus web API currently o�er following functions for drawing markers:

• addDynamicMarkerWithUrl() � Adds a marker at a target location with a symbol
from an online source. Does not allow usage of local image.

• addDynamicMarkerWithImageData() � Same functionality, but the symbol is de�ned
as a raster image data.

• addClusteredMarkerMapWithJsonUrl() � Function is not documented, but seems to
be intended for the purpose of drawing large number of markers.

Neither of the functions does exactly what is needed. The �rst function will not be
usable unless the application is running on a web server, which will not be the case. The
third function uses clustering, which is resembling de-cluttering in its purpose, but di�ers
in a way which makes it unsuitable for this type of usage. Clustering joins nearby markers
together in a new marker, which does not make sense for airports or any other markers
rendered by WIS.

The implementation was performed using the second function. The output was not
expected to be usable and it was indeed not (�gure 5.5). Besides the lack of de-cluttering,
there is a rendering problem with the markers, visible in �gure 5.4.

The markers are slightly deformed making the label text unreadable. This is probably
caused due to the fact that markers are drawn as a vector data to HTML canvas, which is
then converted to a raster image data as an input to the used drawing function. This is a
technique taken from BA3 example code. It was veri�ed that the markers drawn using the
addDynamicMarkerWithUrl() function are rendered correctly, so the problem will probably
be solved when the library receives a newer version.

22

Figure 5.4: Marker rendering problem.

Figure 5.5: Airport markers drawn without de-cluttering mechanism.

This concludes the features which were implemented with Altus library. The library is
still a very early alpha version which de�nitely should not be used for anything but trying
it out.

5.4 Lea�et demonstration implementation

The implementation using Lea�et library demonstrates the possibility to implement WIS as
a web application. The demonstration consists of the map engine and menu, which is used
to enable or disable implemented features.

Lea�et allows a method chaining, which makes it possible write the code in a manner
shown in listing 5.2. Map functions generally returns the map object, unless they speci�cally
should be returning something else and thus more commands can be chained together. This
is entirely optional and the same output can be achieved using the more traditional approach
visible in listing 5.3. Lea�et is very unrestricted and there are usually multiple ways to
accomplish any task.

// Create Leaflet map in div element

var map = L.map('divMap ');

// Set position of the camera and zoom level

map.setView ([49, 16], 0);

// Add a map tile layer from an online source

map.addLayer(L.tileLayer("http :// example.com/{z}/{x}/{y}.jpg"));

Listing 5.2: Lea�et map initialization basic aproach.

23

var map = L.map('divMap ').setView ([49, 16], 0);

L.tileLayer("http :// example.com/{z}/{x}/{y}.jpg").addTo(map);

Listing 5.3: Lea�et map initialization with method chaining.

Lea�et is initialized in a manner similar to Altus library. Again there has to be prepared
a div element with a speci�ed identi�er in which the map will get drawn. Initial view
position (in geographical coordinates) and zoom level are required to be set. And �nally
at least one map layer with tile data should be added. Empty initialized map is visible in
�gure 5.6.

Figure 5.6: Initialized Lea�et map with mapQuest satellite map tiles [19].

The map can be customized using high number of options found in the API reference
document [13]. For WIS like map feel, there are following relevant options:

• maxBounds � limits movement of the map to rectangular area de�ned in geographical
coordinates. If vertical edges of the map are set as the limit, the map will produce a
bouncing e�ect same as in WIS map.

• min/maxZoom � limits the range of available zoom level.

These can be set for the entire map, or for speci�c map layers only. It can be used to
draw a certain layer only in selected region, or disallow loading more detailed map tiles,
while still allowing to zoom in very closely.

Figure 5.7: Country borders drawn with GeoJSON data.

Lea�et map tile system is not compatible with tiles used in WIS. It would be possible
to create tiles based on image data used in WIS, but the output would make the overall
appearance of the application quite poor. Instead a new maps should be generated in native

24

resolution for each zoom level. There are tools such as Mapnik [18], which can be used to
render map tiles from vector sources. Maps are customizable with a choice of which elements
are to be rendered and what colours to use.

Figure 5.8: GeoJSON data map without raster map tiles.

Country borders are implemented as visible in �gure 5.7. The data is in GeoJSON
format and comes from a freely available source [3]. Usage of GeoJSON data is very simple
in Lea�et, the code for adding borders to the map is visible in listing 5.4. Lea�et includes
a layer prepared for rendering GeoJSON, so the entire process can be done in a single
command. Variable countries contains GeoJSON database. The contents of database are
rendered as paths in this case, but they can also be �lled into polygons (5.8). That would
be helpful in case we wanted to create a simple vector map without terrain.

L.geoJson(countries ,

{

"color": "white", "weight": 1.0,

"opacity": 0.5, "fillOpacity": 0.0

}).addTo(map);

Listing 5.4: Country borders implementation.

Lea�ets ability to draw large number of markers was put to test by rendering airports
overlay. Markers in Lea�et can be heavily customized using many available options, event
system, and they can be drawn with two methods:

• Simple image icon.

• Custom DOM element de�ned with HTML code.

The second method is especially interesting. Each marker can be drawn as a speci�cally
created DOM element, for example a div, which can be styled in any way using CSS and
more importantly can contain any element. It is possible to have marker icon de�ned as
a canvas element, which is drawn upon using WebGL or canvas rendering. This makes
implementation of markers with procedurally generated icons possible.

Lea�et does not incorporate markers de-cluttering. There is however a plug-in which
adds the functionality [16]. The plug-in creates a new type of marker layer, which is used
identically to the basic one, but performs the de-cluttering automatically (�gure 5.9).

The plug-in internally uses R-tree structure for spatial indexing implemented in RBush
library [24]. Every time there is a zoom level change, all markers are checked for collisions
using bounding boxes. The markers with lesser priority are hidden in case of con�ict. The

25

Figure 5.9: Airport markers de-cluttering and a �oating window.

plug-in determines the priority by the order of markers added to the layer. Airports are
currently added in alphabetical order, so the priority is wrong, but it would be fairly easy
to arrange the airports in correct order.

The performance of de-cluttering process is not very good, but it might be possible to
optimize the method of creating the markers, which currently takes few seconds. Some
symbols drawn in WIS application however come in multiples of airports numbers, so this
could be problematic.

Floating windows capability is demonstrated on airport markers. Once clicked, a
window with basic airport informations is presented. These windows are as usually easily
customizable and able to draw any required graphics.

A �ight plan trajectory is drawn using a plug-in [14] again, because Lea�et does not
support orthodromes (�gure 5.10). The �ight plan is editable as the markers are draggable.

Figure 5.10: Flight plan rendered using an orthodrome.

Graphical weather data rendering is implemented to show the ability to use the same
weather data format as in WIS. The data consists of an variably sized 2D array of speci�c
values for a designated geographical area. A small set of demonstration data was therefore
created to use in the thesis. The data is in readable text format unlike WIS data, which is
compressed, and the resolution of the data is lower than real data, but the principle is the
same.

The rendered data is visible in �gure 5.11. The rectangle designates the area covered
with the data. The purple weather product, which is representing turbulences, has a very
low data resolution of 16x16 values. The other one represent a radar data with a slightly

26

higher resolution of 64x64 values. Figure 5.12 show the visualization is always rendered
sharply with no raster artifacts visible.

Figure 5.11: Graphical weather data visualization.

The rendering method used for implementation is WebGL. A new type of Lea�et layer
was created, based on an article [29], which contains a canvas usable for WebGL rendering.
The layer works as an map overlay which gets updated any time the map gets moved.

Figure 5.12: Graphical weather data is always rendered in native resolution.

The drawing itself makes use of a linear interpolation in textures. The array of data
(values 0 to 3) is loaded into a texture as an image data. Single channel textures are not
supported in WebGL, so the data is loaded into a red channel of RGBA texture. The
texture is then drawn over the rectangular area of the weather data coverage. Fragment
shader receives the texture and recovers initial data value in the current fragment position.
The value is interpolated from the closest four texels in the texture. The nearest whole
number of the value is then used to determine the color of the fragment.

The drawn output is identical to WIS renderer output except for the missing outlines
and di�erence in weather data resolution.

27

Preceding discussion shows it is de�nitely possible to implement the features WIS re-
quires using Lea�et. Not all of them were implemented, but the methods of implementation
were discussed. The only encountered problem is the performance when de-cluttering large
number of markers, excluding that, the implementation in this library is highly advisable.
Figure 5.13 shows features of the resulting application combined.

Figure 5.13: Implemented application.

28

Chapter 6

Comparison of Map Libraries

Comparing Altus Mapping Engine in its current early alpha version with Lea�et would not
be very bene�cial. Lea�et would superior in every way. Instead, let us pretend a �nished
version of Altus is available and it contains features stated on its web page [1]. It is actually
possible it will be released soon, as the alpha version was presented over a year ago and
the documentation pages were edited recently. Features will only be mentioned in the
comparison, if they are relevant to WIS implementation.

The most obvious di�erence between maps is the 3D rendering of Altus against the 2D of
Lea�et. Rendering map on a sphere will make the map less deformed in pole regions. Web
Mercator projection, used in 2D maps, renders the pole areas very distorted. Comparison
is visible in �gure 6.1. Greenland is gigantic compared to United States, while in reality
it is less than half of its size. Drawing a �ight trajectory is also somewhat confusing when
using �at projection. It needs to be drawn using orthodrome, shown earlier in �gure 2.4.
Trajectory drawn on a sphere would be easier to understand. There are also downsides to
using 3D projection. The performance will be signi�cantly lower, especially while rendering
additional weather products on a mobile device.

Figure 6.1: 2D Web Mercator projection on the left, sphere on the right.

If considering expected use of WIS application, the only advantage of Altus over Lea�et
is the simpler orthodrome. Not many airliners �y over Greenland and the map is used with
zoom level so close in, both of the maps will look almost the same.

Altus is also not the only library rendering maps in 3D, there is also an open source
project WebGL Earth [27], which implements the same thing and it is compatible with
Lea�et API. This means project implemented in Lea�et can be converted to WebGL Earth

29

by changing a name of map used and everything will work the same. Unfortunately the
API is not yet fully implemented.

Extensibility is a major di�erence between these two libraries. Altus, being closed source,
will not let developers to add any feature at all. If anything is missing, the only way to add
it would be to contact BA3 and ask them to provide the feature. For example the graphical
weather data used in WIS are in non-standard format, which is obviously not supported.
Now if the data were to be rendered, it would need to be converted to supported format
�rst and thereafter added to Altus. Lea�et on the other hand can be extended with custom
data renderer as was shown in the demonstration application and draw the data directly.

Altus is probably meant to be used with another BA3 product � Altus Server, which is
supposed to maintain all weather data. Using the Altus Server would however again mean
converting all non-standard data in the current format to one of the commonly used weather
formats. This could be a good thing though as it would also make future use any other
libraries working with weather data easier.

Lea�et is widely used compared to Altus. This means there are solutions for problems
available all over the internet. Resolution of problem in Altus is on the other hand only
possible using limited documentation or paid support.

30

Chapter 7

Conclusion

The topic of the thesis was web applications and their capabilities. The Honeywell Weather
Information Service (WIS) native application was presented and its key GUI features were
described. It consists mostly of a map engine and di�erent types of weather and navigational
data drawn in the map. The goal of the thesis is to evaluate the possibility to implement
graphical interface of WIS as a web application.

Lea�et and Altus Mapping Engine were web based map libraries researched for the
purpose of implementation. It was found, that the Altus library is not yet ready for usage
as it is in early development and supports only very little amount of functions. Lea�et on
the other hand was found to be very powerful and simple to use.

There are multiple ways to render graphics in a web application. There is the old DOM
based rendering and then the new methods � HTML Canvas and WebGL. It was established
that each method has its advantages and disadvantages and is generally suitable for di�erent
tasks. Commented examples, relevant to rendering navigational data, were provided to show
their strong points in practice.

In order to show if it is possible to rewrite WIS using web technologies, a demonstration
applications was created for both previously discussed map libraries. The implemented
application using Altus shows all functions available in a present version of library, which is
however not much. The demonstration using Lea�et o�ers more features and successfully
proves it is possible to implement anything used within WIS, with only one hindrance, the
performance of de-cluttering mechanism for large number of markers.

Created demonstration applications can be used as an aid to familiarize developers, used
to di�erent programming languages, with using JavaScript map libraries. Future expansions
are not expected as the output is just a proof of concept style application.

31

Bibliography

[1] Altus Mapping Engine. In: BA3 [online]. [cit. 2015-06-03].
Available: http://www.ba3.us/.

[2] Altus Mapping Engine Knowledge Base. In: BA3 [online]. [cit. 2015-06-03].
Available: http://ba3.us/knowledge-base.

[3] Annotated geo-json geometry �les for the world. In: GitHub [online]. [cit. 2015-06-03].
Available: https://github.com/johan/world.geo.json.

[4] asm.js [online]. [cit. 2015-06-03]. Available: http://asmjs.org/.

[5] Babel [online]. [cit. 2015-06-03]. Available: http://babeljs.io/.

[6] Canvas Cycle: True 8-bit Color Cycling with HTML5 [online]. [cit. 2015-06-03].
Available: http://www.effectgames.com/demos/canvascycle/.

[7] Co�eeScript [online]. [cit. 2015-06-03]. Available: http://coffeescript.org/.

[8] Crafty.js � JavaScript Game Engine [online]. [cit. 2015-06-03].
Available: http://craftyjs.com/.

[9] ForeFlight [online]. [cit. 2015-06-03]. Available: https://www.foreflight.com/.

[10] Frameworks. In: OpenStreetMap Wiki [online]. [cit. 2015-06-03].
Available: http://wiki.openstreetmap.org/wiki/Frameworks.

[11] Honeywell Weather Information Service. [online]. [cit. 2015-06-03]. Available:
https://aerospace.honeywell.com/en/services/weather-information-service.

[12] jQuery UI [online]. [cit. 2015-06-03]. Available: https://jqueryui.com/.

[13] Lea�et API reference [online]. [cit. 2015-06-03].
Available: http://leafletjs.com/reference.html.

[14] Lea�et Geodesic plugin. In: GitHub [online]. [cit. 2015-06-03].
Available: https://github.com/henrythasler/Leaflet.Geodesic.

[15] Lea�et [online]. [cit. 2015-06-03]. Available: http://leafletjs.com/.

[16] Lea�et plugin LayerGroup.Collision. In: GitHub [online]. [cit. 2015-06-03].
Available: https://github.com/MazeMap/Leaflet.LayerGroup.Collision.

[17] Lea�et.heat � Lea�et Heat Map Plugin [online]. [cit. 2015-06-03].
Available: https://github.com/Leaflet/Leaflet.heat.

32

http://www.ba3.us/
http://ba3.us/knowledge-base
https://github.com/johan/world.geo.json
http://asmjs.org/
http://babeljs.io/
http://www.effectgames.com/demos/canvascycle/
http://coffeescript.org/
http://craftyjs.com/
https://www.foreflight.com/
http://wiki.openstreetmap.org/wiki/Frameworks
https://aerospace.honeywell.com/en/services/weather-information-service
https://jqueryui.com/
http://leafletjs.com/reference.html
https://github.com/henrythasler/Leaflet.Geodesic
http://leafletjs.com/
https://github.com/MazeMap/Leaflet.LayerGroup.Collision
https://github.com/Leaflet/Leaflet.heat

[18] Mapnik [online]. [cit. 2015-06-03]. Available: http://mapnik.org/.

[19] MapQuest, Inc.. MapQuest Maps. [online]. [cit. 2015�06-03].
Available: http://www.mapquest.com/.

[20] National Oceanic and Atmoshperic Administration [online]. [cit. 2015-06-03].
Available: http://www.noaa.gov/.

[21] Nordwind Airlines selects Fokker EFB on iPad for Airbus, Boeing �eet. In: Inteligent
Aerospace [online]. [cit. 2015-06-03]. Available:
http://www.intelligent-aerospace.com/articles/2014/07/

nordwind-airlines-selects-fokker-efb-on-ipad-for-airbus-boeing-fleet.

html.

[22] OpenLayers [online]. [cit. 2015-06-03]. Available: http://openlayers.org/.

[23] Paper.js � JavaScript Vector Graphics Framework [online]. [cit. 2015-06-03].
Available: http://paperjs.org/.

[24] RBush Javascript library. In: GitHub [online]. [cit. 2015-06-03].
Available: https://github.com/mourner/rbush.

[25] Slippy map tilenames. In: OpenStreetMap Wiki [online]. [cit. 2015-06-03].
Available: http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames.

[26] three.js � Javascript 3D library [online]. [cit. 2015-06-03].
Available: http://threejs.org/.

[27] WebGL Earth [online]. [cit. 2015-06-03]. Available: http://www.webglearth.org/.

[28] GROVES M. To DOM or not to DOM?. In: Goodboy [online]. [cit. 2015�06-03].
Available: http://www.goodboydigital.com/to-dom-or-not-to-dom/.

[29] SUMBERA S. Many points with Lea�et WebGL. In: Sumbera's blocks [online].
[cit. 2015-06-03]. Available: http://bl.ocks.org/sumbera/c6fed35c377a46ff74c3.

[30] PARISI T. Programming 3D Applications with HTML5 and WebGL. O'Reilly Media,
2014. ISBN 978-1-449-36296-6.

33

http://mapnik.org/
http://www.mapquest.com/
http://www.noaa.gov/
http://www.intelligent-aerospace.com/articles/2014/07/nordwind-airlines-selects-fokker-efb-on-ipad-for-airbus-boeing-fleet.html
http://www.intelligent-aerospace.com/articles/2014/07/nordwind-airlines-selects-fokker-efb-on-ipad-for-airbus-boeing-fleet.html
http://www.intelligent-aerospace.com/articles/2014/07/nordwind-airlines-selects-fokker-efb-on-ipad-for-airbus-boeing-fleet.html
http://openlayers.org/
http://paperjs.org/
https://github.com/mourner/rbush
http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
http://threejs.org/
http://www.webglearth.org/
http://www.goodboydigital.com/to-dom-or-not-to-dom/
http://bl.ocks.org/sumbera/c6fed35c377a46ff74c3

Appendix A

Content of Supplemental CD/DVDs

• demonstration/: Implemented demonstration applications

• doc/: The technical report.

• doc/src/: Source �les of technical report.

• examples/: Examples from chapter 4

34

	Introduction
	Honeywell Weather Information Service
	Features

	Web Based Map Solutions
	Altus Mapping Engine
	Leaflet

	Rendering technologies in web environment
	DOM rendering
	HTML Canvas
	WebGL

	Design and Implementation
	Design
	Common parts implementation
	Altus Mapping Engine demonstration implementation
	Leaflet demonstration implementation

	Comparison of Map Libraries
	Conclusion
	Content of Supplemental CD/DVDs

