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Abstract 
In today's world, there is an increasing need for automatic reliable mechanisms for detect­
ing and local izing people - from performing people flow analysis in museums, controll ing 
smart homes to guarding hazardous areas like railway platforms. We propose a method 
for detecting and locating people using low-cost F L I R Lepton 3.5 thermal cameras and 
a Raspberry P i 3 B + computers. Th is thesis describes the continuation of the "Detection of 
People i n R o o m Using Low-Cost Thermal Imaging Camera" project, which now supports 
modell ing of complex scenes wi th polygonal boundaries and mult iple thermal cameras ob­
serving them. In this paper, we introduce an improved control and capture l ibrary for the 
Lepton 3.5, a new person detection technique that uses the state-of-the-art Y O L O (You 
On ly Look Once) real-time object detector based on deep neural networks, furthermore, 
a new thermal unit w i th automated configuration using Ansib le encapsulated in a custom 
3D printed enclosure for safe manipulat ion, and last but not least, a step by step instruc­
t ion manual on how to deploy the detection system i n a new environment including other 
supporting tools and improvements. The results of the new system are demonstrated on 
a simple people flow analysis performed i n the Czech Nat iona l Museum i n Prague. 

Abstrakt 
V d n e š n í m svě tě je n e u s t á l e se zvyšující p o p t á v k a po spolehl ivých a u t o m a t i z o v a n ý c h mech­
anismech pro detekci a lokalizaci osob pro r ů z n é účely - od ana lýzy pohybu n á v š t ě v n í k ů 
v muze ích přes ov l ádán í c h y t r ý c h d o m o v ů až po h l ídán í n e b e z p e č n ý c h oblas t í , j imiž jsou 
n a p ř í k l a d n á s t u p i š t ě v lakových stanic. P ř e d s t a v u j e m e metodu detekce a lokalizace osob s 
p o m o c í n í zkonák ladových t e r m á l n í c h kamer F L I R Lep ton 3.5 a m a l ý c h p o č í t a č ů Raspberry 
P i 3 B + . Tento projekt, navazuj íc í na p ředchoz í b a k a l á ř s k ý projekt "Detekce lidí v m í s t n o s t i 
za použ i t í n í zkonák ladové t e r m á l n í kamery", nově podporuje mode lován í komplexn ích scén 
s po lygoná ln ími okraji a více t e r m á l n í m i kamerami. V t é t o p rác i p ř e d s t a v u j e m e vy lepšenou 
knihovnu ř ízení a s n í m á n í pro kameru Lep ton 3.5, novou techniku detekce lidí používaj íc í 
ne jmoderně j š í Y O L O (You O n l y Look Once) detektor o b j e k t ů v r e á l n é m čase, za ložený 
na h l u b o k ý c h n e u r o n o v ý c h sí t ích, dá le novou automaticky konfigurovatelnou t e r m á l n í jed­
notku, c h r á n ě n o u s c h r á n k o u z 3D t i s k á r n y pro b e z p e č n o u manipulaci , a v nepos l edn í ř a d ě 
t a k é p o d r o b n ý n á v o d instalace de t ekčn ího s y s t é m u do nového p r o s t ř e d í a da lš í p o d p ů r n é 
nás t ro j e a vylepšení . Výs ledky nového s y s t é m u demonstrujeme p ř í k l a d e m a n a l ý z y pohybu 
osob v N á r o d n í m muzeu v Praze. 
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Rozšířený abstrakt 
V d n e š n í m svě tě je neus t á l e se zvyšující p o p t á v k a po spolehl ivých a u t o m a t i z o v a n ý c h mecha­
nismech pro detekci a lokalizaci osob. T y t o mechanismy mohou n a p ř í k l a d p o m á h a t s t a r š í m 
či z d r a v o t n ě p o s t i ž e n ý m o s o b á m s k a ž d o d e n n í m ž ivo tem o v l á d á n í m chy t rých d o m o v ů nebo 
zvyšovat ú roveň bezpečnos t i na pracoviš t í ch t í m , že budou h l ída t rizikové zóny. Takové 
zóny mohou p ř e d s t a v o v a t n a p ř . kolejiště na v lakových n á s t u p i š t í c h nebo oblasti v bl ízkost i 
nebezpečných s t ro jů ve vý robn ích ha l ách . M i m o j iné se metody detekce a p o č í t á n í lidí 
používaj í t a k é k ana lýze toku lidí v h r o m a d n é dopravě , v obchodech či v muzeích , kde se 
zjišťuje, k t e r é čás t i expozice jsou pro n á v š t ě v n í k y nejzaj ímavější . 

Tento projekt navazuje na p ředchoz í b a k a l á ř s k ý projekt "Detekce lidí v m í s t n o s t i za 
použ i t í n í zkonák ladové t e r m á l n í kamery" a klade si za cíl odstanit n ě k t e r é jeho nedokon­
alosti a implementovat n a v r h o v a n á vylepšení . P ř e d s t a v u j e m e vy lepšenou metodu detekce 
a lokalizace osob s p o m o c í n í zkonák ladových t e r m á l n í c h kamer F L I R Lepton 3.5 a m a l ý c h 
p o č í t a č ů Raspberry P i 3 B + . 

Tento text v ú v o d u p ř i p o m í n á motivaci projektu, obecné m o ž n o s t i použ i t í m e c h a n i s m ů 
pro detekci a lokalizaci osob a a k t u á l n ě použ ívané technologie, k t e r é n a v z á j e m srovnává , 
a popisuje i jejich k o n k r é t n í použ i t í . T y t o mechanismy m ů ž e m e o b r a z n ě rozděl i t do dvou 
kategor i í : jedna, sloužící p r i m á r n ě k j e d n o d u š š í m u p o č í t á n í p r ů c h o d ů osob, a d r u h á , k t e r á 
do j i s t é m í r y zahrnuje zp racován í obrazu a detekci ob jek tů , p o p ř í p a d ě lokalizaci o b j e k t ů 
ve z n á m é scéně. D r u h á kategorie p ř e d s t a v u j e d ražš í pokroči le jš í technologie jako n a p ř í k l a d 
stereovize nebo pokroč i lé zp racován í videa z kamery. D o t é t o kategorie p a t ř í i tento s y s t é m 
pro detekci a lokalizaci osob termokamerou. Opro t i o s t a t n í m ře šen ím m á však v ý r a z n o u 
v ý h o d u , a to, že s t e r m á l n í m k a m e r o v ý m modulem o m a l é m rozl išení p ř i rozeně nelze provés t 
rozpoznáván í obličeje, t ud íž m ů ž e bý t v h o d n ý m řešen ím na m í s t a , kde s o u k r o m í hraje 
dů lež i tou rol i , jako domovy nebo pracov i š tě . 

Dalš í čás t p r á c e popisuje novou t e r m á l n í jednotku sys t ému , s loženou z t e r m á l n í kamery 
Lepton 3.5, m a l é h o p o č í t a č e Raspberry P i 3 B + a v l a s tn ího obvodu pro ř ízení n a p á j e n í 
kamery. 

Použ i t ý ř ídicí p o č í t a č Orange P i P C 2 b y l v n o v é m projektu nahrazen t r a d i č n í m jedno­
deskovým p o č í t a č e m Raspberry P i 3 B + , k t e r ý je na rozdí l od Orange P i a k t i v n ě vyví­
jen velkou komunitou, je k o m p l e t n í a snadno konfigurovatelný, co se t ý k á h a r d w a r o v ý c h 
r o z h r a n í a l inuxových kernelů . 

V novém projektu byla p o u ž i t a novější kamera Lepton 3.5 ( n a m í s t o 3.0), k t e r á pod­
poruje tzv. pravou radiometr i i . To z n a m e n á , že m á kamera v sobě zabudovanou a zkal i -
brovanou funkci pro p ř e v o d dopada j í c ího svě te lného toku inf račerveného zá řen í na teplotu 
v Kelv inech . S t a r š í verze kamery vyžadova la d o d á n í t akové funkce od uživate le a byla 
č a s t ý m zdrojem nepřesnos t í . Lep ton 3 m á pouze funkci n e p r a v é radiometrie, což z n a m e n á , 
že firmware kamery zaruču je př i r ů z n ý c h t e p l o t á c h kamery a okolí s t á le stejnou v ý s t u p n í 
hodnotu pixelu pro stejnou teplotu pozo rovaného objektu. 

Lepton 3, a bohuže l , i 3.5 se po týka j í s n e p ř í j e m n ý m p r o b l é m e m . Č a s od času se stane, 
že kamera p ř e s t a n e pos í la t t e r m á l n í s n í m k y a p ř i j íma t ř ídicí př íkazy, t í m p á d e m n e m ů ž e bý t 
ani r e s t a r t o v á n a p o m o c í p ř í kazu ov ládac ího r o z h r a n í 0EM_REB00T. V t akových p ř í p a d e c h 
p o m ů ž e pouze kameru odpojit a p ř ipo j i t zpě t , což je v naš í situaci nepř i j a t e lné , neboť 
t e r m á l n í jednotka s y s t é m u m u s í bý t k o m p l e t n ě sp ravována vzdá leně p řes síť; fyzický p ř í s t u p 
k j e d n o t k á m nen í možný. Z tohoto d ů v o d u byla t e r m á l n í jednotka nově vybavena v l a s t n í m 
obvodem pro ř ízení n a p á j e n í kamery p o m o c í G P I O v ý s t u p u poč í t ače Raspberry P i . Tento 
obvod je u m í s t ě n na desce p lošných spo jů a p o m o c í N P N a P - M O S F E T t r a n z i s t o r ů př ivád í 
napá jec í n a p ě t í 5 V do kamery. Tento obvod umožňu je kameru ú p l n ě odpojit , když nen í 



zrovna p o t ř e b a , a t a k é j i restartovat, pokud p ř e s t a n e o d p o v í d a t . O b č a s se stane, že ani 
odpo jen í h l avn ího n a p á j e n í n e v y m í t í restart kamery, neboť je s p í n a n ý zdroj u v n i t ř kamery 
s tá le n a p á j e n z d a t o v ý c h sbě rn ic I 2 C nebo S P I . P ř i o d p o j e n í sbě rn ic i n a p á j e n í je však 
kamera vždy spolehl ivě r e s t a r t o v á n a . Jel ikož je tento řídicí obvod o v l á d á n z 3,3V v ý s t u p u 
poč í t ače Raspberry P i , je m o ž n é kameru z a p í n a t a v y p í n a t vzdá leně . 

V p ř e d c h o z í m projektu byla kamera a ř ídicí p o č í t a č u m í s t ě n y na nepá j ivém pol i a spo­
jeny pouze vodiči . To neumožňova lo jakékol iv p ř e n á š e n í nebo demonstraci, p ro tože bylo 
toto sn ímac í zař ízení velmi k řehké . V n o v é m projektu figuruje pojem termálni jednotka jako 
označen í pro Lepton 3.5 kameru, Raspberry P i 3 B + řídicí p o č í t a č a ř ídicí obvod n a p á j e n í 
u m í s t ě n é ve spec iá ln í s ch ránce v y t i s k n u t é na 3D t i ská rně . Tento o c h r a n n ý box b y l n a v r ž e n 
a vyroben v r á m c i tohoto projektu a zajišťuje ochranu pro jeho t ř i v n i t ř n í komponenty, 
d o s t a t e č n é chlazení pro ř ídicí p o č í t a č a p ř í h o d n é uchycen í t e r m á l n í kamery tak, aby bylo 
m o ž n é m ě n i t pozorovac í úhe l scény p o m o c í lad ic ího š roubu . 

V p rác i jsou p o p s á n y kroky instalace všech p o t ř e b n ý c h sof twarových komponent na 
Raspberry P i k s p r á v n é funkčnost i t e r m á l n í jednotky. Konf igurační proces b y l autom­
at izován p o m o c í agi ln ího konf iguračního n á s t r o j e Ansible . P r o k a ž d o u novou t e r m á l n í 
jednotku je tento n á s t r o j s p u š t ě n a ten podle p ř e d e m def inovaného p ř e d p i s u zajist í , že 
na cí lovém zař ízení jsou na in s t a lovány všechny n e z b y t n é součás t i , n á s t r o j e a knihovny. 

T e r m á l n í kamery Lepton používaj í S P I r o z h r a n í pro odes í lán í video s n í m k ů a I 2 C sběr­
nici pro ř ízení kamery. P r o komunikaci s kamerou p o m o c í t ě c h t o n ízkoúrovňových r o z h r a n í 
slouží p rávě m a l ý ř ídicí p o č í t a č , j ehož procesor obsahuje h a r d w a r o v é moduly pro jejich 
ř ízení . Pro tokoly pro p řenos videa a v y d á v á n í p ř í kazů pro kameru se ve své p o d s t a t ě mezi 
verzemi 3 a 3.5 nezměni ly . Nová verze kamery obsahuje více p ř íkazů , k t e r é jsou spojeny 
s j iž z m í n ě n o u pravou rad iomet r i í , a ukáza lo se, že v kombinaci s p o č í t a č e m Raspberry P i 
3 B + vyžadu je u rych len í vyč í t án í s n í m k ů až 8 x , aby nedocháze lo k desynchronizaci. 

K n i h o v n a pro ř ízení a s n í m á n í v4121epton3, k t e r á se vyskytovala j iž v p ř e d c h o z í m pro­
jektu, by la zcela p ř e p r o g r a m o v á n a a rozdě lena na C + + apl ikaci a Py thon3 kn ihovn í bal íček. 
Software pro ov ládán í kamery by l p ř e s u n u t do Py thon3 ba l íku a b y l v ý r a z n ě zgenera l izován. 
Nově obsahuje definice metodyod a na s t av i t e l ných hodnot všech p o d p o r o v a n ý c h p ř íkazů , 
v ý r a z n ě větš í m n o ž s t v í p ř í k a z ů a automaticky generované metody pro všechny př íkazy, což 
v ý r a z n ě redukuje redundanci p ředchoz ího řešení . 

K n i h o v n a v4121epton3 byla v p ř e d c h o z í m projektu n a v r ž e n a pro lokální komunikaci . 
Jel ikož p o ž a d a v k y nového s y s t é m u pro detekci a lokalizaci osob zahrnu j í podporu více 
kamer a agregaci detekce na jednom mís t ě , je n u t n é , aby knihovna zv láda la p ř e n á š e t ter­
m á l n í s n í m k y v surové p o d o b ě přes síť, což doposud nebylo m o ž n é . Nová C + + aplikace pro 
s n í m á n í nás leduje klient-server model a je tedy rozdě lena na dvě čás t i . C e n t r á l n í vyhod­
nocující p o č í t a č se chová jako klient a p ř ipo ju je se na všechny o s t a t n í t e r m á l n í jednotky, 
k t e r é se chovají jako servery. Serverová čás t aplikace byla v ý r a z n ě urychlena redukc í volání 
OS a double bufferingem s n í m k ů i s e g m e n t ů . Server umožňu je zapnout Z L I B kompresi, 
zo tav í se z jakékol iv chyby a nez t r ác í synchronizaci s kamerou. 

Kl i en t ská strana je i m p l e m e n t o v á n a v C + + i v P y t h o n u jako součás t v4121epton3 
Python3 kn ihovn ího bal íčku. C + + klient nás leduje myš l enku využ i t í v i r t u á l n í h o video 
zař ízení v4121oopback a z p ř í s t u p ň u j e vzdá lený t e r m á l n í stream v loká ln ím video zař ízení . 
P y t h o n implementace klienta je součás t í knihovny, jde j i snadno zahrnout ve v la s tn ích 
projektech a je v y u ž í v á n a ve zby tku de t ekčn ího sy s t ému . Součás t í r e p o z i t á ř e s knihovnou 
v4121epton3 jsou t a k é spus t i t e lné Py thon3 skripty lepton3client .py, 
lepton3capture .py a lepton3control .py, k t e r é zp ř í s tupňu j í implementaci s n í m á n í videa, 
j edno t l i vých s n í m k u a ov l ádán í z knihovny. 



Následuj ící čás t p r á c e popisuje nedokonalosti v d e t e k č n í m algori tmu, k t e r ý b y l t e s tován 
ve větš ích p r o s t o r á c h s více l i dmi , kde se ukáza lo , že v takto n á r o č n ý c h p ros t ř ed í ch p ů v o d n í 
j e d n o d u c h ý de t ekčn í algoritmus selhává. B y l o tedy n u t n é provés t p r ů z k u m a s r o v n á n í dos­
t u p n ý c h a l t e r n a t i v n í c h de tekčn ích a lgo r i tmů , ze k t e r é h o b y l v y b r á n ne jmoderně j š í Y O L O 
detektor o b j e k t ů v r e á l n é m čase založený na h l u b o k ý c h n e u r o n o v ý c h sí t ích. V r á m c i nového 
projektu bylo n a t r é n o v á n o a p o r o v n á n o několik verzí a vel ikost í Y O L O detektoru, z nichž 
nej lépe vyšel nejnovější Y O L O v 4 o velikosti 320 x 320. Výs ledný detektor je v ý r a z n ě 
lepší než p ů v o d n í j e d n o d u c h ý detektor a bez p r o b l é m u si p o r a d í i s t ě m i ne jnáročně j š ími 
ve lkými s c é n a m i s ve lkým m n o ž s t v í m lidí a spoustou p ř e k r y t í , a tedy p ředs t avu j e v ý z n a m n é 
vylepšení celého de t ekčn ího sys t ému . 

K t r énován í detektoru byla p o u ž i t a spec iá ln í d a t a b á z e t e r m á l n í c h s n í m k ů , k t e r á vzn ik la 
spo jen ím oficiálního datasetu od firmy F L I R a v l a s tn í d a t a b á z e n a s n í m a n é p o m o c í Lepton 
3.5 kamer v N á r o d n í m muzeu v Praze v p r ů b ě h u někol ika měs íců . Celkem k t r énován í 
modelu, za loženém na h l u b o k é neu ronové síti , bylo využ i t o 13416 t e r m á l n í c h s n í m k ů s 53628 
o a n o t o v a n ý m i osobami. 

Po apl ikaci detektoru na t e r m á l n í sn ímek z í skáme o b d é ln ík y ohraničuj íc í de tekované 
osoby. T y t o obdé ln íky se využi j í v da l š ím kroku - lokal izaci o b j e k t ů ve z n á m é scéně. 
M e t o d a lokalizace je za ložena na rekonstrukci scény z p ě t n o u projekcí ob razových sou řadn ic 
do 3D modelu scény. Nezbytnou p o d m í n k o u pro tuto z p ě t n o u projekci je znalost pozice 
kamery ve scéně. Pozicí kamery r o z u m í m e její n a t o č e n í (rotaci) a p o s u n u t í (translaci) 
v d a n é scéně. Určen í t é t o pozice popisuje p e r s p e k t i v n í p r o b l é m n b o d ů . Ten řeší perspek­
t ivn í projekci b o d ů ze sou řadn icového s y s t é m u scény do s y s t é m u obrazového ( souřadn ice 
obrazových pixelů) p o m o c í soustavy l ineárn ích rovnic. P o k u d d o s a d í m e do rovnice a l e spoň 
4 body předs tavu j íc í projekci z b o d ů scény do b o d ů obrazových , jsme schopni v y p o č í t a t 
translaci a rotaci kamery v d a n é scéně, a t í m i popsat transformaci všech b o d ů ze scény 
do ob razového souřadn icového sy s t ému . Z p ů s o b projekce ob razových b o d ů do modelu scény 
je matematicky p ře sný a n e m ě n í se od p ů v o d n í h o b a k a l á ř s k é h o projektu. 

Napro t i tomu softwarová implementace abstrakce mode lované scény byla p ř e p r o g r a m o ­
v á n a a v ý r a z n ě vy lepšena . P ů v o d n í model podporoval pouze jednu obdé ln íkovou scénu s jed­
nou kamerou, kde koresponduj íc í body mezi t e r m á l n í m obrazem a scénou musely bý t z a d á n y 
m a n u á l n ě . Novou implementaci lze na léz t v d r u h é m Py thon3 bal íčku ThermoDetection 
v d r u h é m repoz i t á ř i projektu thermo-person-detection. Scéna je u ložena v JSON kon­
f iguračním souboru, ve k t e r é m lze vy jádř i t l ibovolný p o č e t po lygoná ln ích hranic scény se 
j m é n e m a barvou pro účely zobrazování . V souboru jsou t a k t é ž u loženy všechny kamery 
se jmény , barvami, I P adresami a polohami v 3D prostoru scény. D r u h ý r e p o z i t á ř dále 
obsahuje v izuá ln í k a l i b r á t o r scény, k t e r ý zobraz í b u d živý nebo s t a t i c k ý pohled z kamery 
a n a b í d n e uživate l i vybrat v ý z n a m n é body p ř í m o v t e r m á l n í m obrazu a zadat jejich 3D 
souřadn ice . Tento n á s t r o j p o t é všechny takto v y t v o ř e n é mapu j í c í body uloží do konfigu­
račn ího souboru scény a př i k a ž d é m n a č t e n í scény jsou tyto body p o u ž i t y pro v y p o č í t á n í 
pozice kamer ve scéně a vy tvo řen í pro jekčních matic pro z p ě t n o u projekci ob razových b o d ů 
do scény. 

P o u ž i t á metoda lokalizace o b j e k t ů ve z n á m é scéně je p ř i rozeně matematicky velmi 
p řesná , záleží jen na p řesnos t i d o d a n ý c h mapuj íc ích b o d ů př i kal ibraci kamer a p ře snos t i 
detekce. 

Závěrečná čás t p r á c e popisuje typické kroky p ř i instalaci nových t e r m á l n í c h jednotek 
v n o v é m p r o s t ř e d í sloužící t a k t é ž jako n á v o d a reá lné t e s tován í výs l edného de t ekčn ího a 
lokal izačního s y s t é m u v N á r o d n í m muzeu v Praze, kde byla v r á m c i v z á j e m n é spo lup ráce 
v p r ů b ě h u někol ika měs íců v y t v o ř e n a rozsáh lá d a t a b á z e t e r m á l n í c h s n í m k ů z probíha j íc í 



expozice. Tato d a t a b á z e byla p o u ž i t a jak k t r énován í nového detektoru, tak nás l edně 
k ana lýze pohybu n á v š t ě v n í k ů prostory expozice za pomoci nového de t ekčn ího a lokaliza­
čního s y s t é m u . Cí lem ana lýzy bylo vy tvo ř i t mapy nejčas tě jš ího v ý s k y t u návš t ěvn íků , k t e ré 
by pomohly odhalit ty čás t i expozice, k t e r é návš těvn íc i považuj í za nejzaj ímavější . 

Nejkr i t ič tě jš í čás t í celého procesu detekce a lokalizace je detekce lidí z t e r m á l n í c h s n í m k ů 
a nově p o u ž i t á metoda v ý r a z n ě zvyšuje p ře snos t s y s t é m u i ve velmi komplexn ích s i tuac ích . 
Dalš í kr i t ickou čás t í s y s t é m u ovlivňující p ře snos t je lokalizace lidí z de t ekovaného obdé ln íku . 
Zde se nab íz í celá ř a d a možných vylepšení . S a m o t n á m a t e m a t i c k á lokalizace s p o m o c í 
pro jekční matice je velmi p ře sná , ale v ý z n a m n o u rol i zde hra j í z a s t í něné osoby, deformace 
obrazu čočkou, m a l é rozlišení kamery způsobuj íc í až metrovou odchylku na jeden pixel př i 
vzdá lenos t i 16 m e t r ů od kamery a dalš í . Lze s j is totou říci, že s y s t é m pro menš í m í s t n o s t i 
(do 8 m e t r ů ) s neve lkým p o č t e m osob a kamerou u m í s t ě n o u v h o r n í m čás t i m í s t n o s t i s y s t é m 
pro dr t ivou vě t š inou p ř í p a d ů funguje velmi d o b ř e . P r o k o m p l e x n í scény se spoustou osob 
(p ř ík l adem m ů ž e bý t velká m í s t n o s t muzea se 17 metry na dé lku a 50 osobami) dává smysl 
uvažovat dalš í rozší ření s y s t é m u pro zvýšení p řesnos t i . N a p ř í k l a d použ i t í stereovize, u níž 
by se kamery shodly na de tekovaných osobách , by vedlo k v ý z n a m n é m u zpřesněn í na lezené 
lokace osob. J i n ý m z a j í m a v ý m rozš í řen ím by mohlo bý t s ledování o b j e k t ů n a p ř í k l a d p o m o c í 
nového algori tmu D e e p S O R T . 
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Chapter 1 

Introduction 

This thesis deals w i t h the follow-up project to the bachelor's project [18] w i th the topic of 
Detection of People in Room Using Low-Cost Thermal Imaging Camera, which dealt w i th 
u t i l iz ing a single low-cost thermal camera module, a smal l single-board computer and image 
processing to solve the problem of how to detect and locate people i n a known environment. 

The problem of people detection and localizat ion has found its usage i n many areas 
of everyday life. It is often used for queue management i n shops, people flow analysis in 
museums, or i n marketing for determining the best product placement. We also encounter 
people-detecting mechanisms in smart homes, where they aid to control the environment, 
and most importantly, they can help to ensure safety i n heavy machinery workplaces, 
industry halls or often at railway stations by guarding hazard zones. 

Using a smal l thermal camera module eliminates the possibil i ty of person and /or face 
recognition while preserving the functionality of detecting and even locating people. The 
solution to the problem of people detection based on thermal imaging is therefore a viable 
option for places where privacy plays an important role. 

The bachelor's project finished wi th : 

• a working capture system composed of a Lepton 3 camera and an Orange P i P C 2 
single-board computer, 

• a C + + capture l ibrary al lowing to read thermal images from the camera i n bo th raw 
format and false color over S P I interface, 

• a P y t h o n control script al lowing to issue commands to the camera over I 2 C i n order 
to change a color palette, format, control automatic gain ( A G C ) , perform flat-field-
correction ( F F C ) and other, 

• P y t h o n scripts for person detection and single-camera rectangular scene abstraction 
allowing for reverse-projecting image points (of detected people) into a 3D scene 
model. 

Several imperfections and improvement proposals had to be addressed i n order to create 
a r ig id marketable product w i t h clear deployment instructions and a friendly interface. 

The capture system was extremely fragile since the camera and the Orange P i P C 2 
computer were held together only wi th wires on a breadboard making it impossible to 
carry around, br ing to presentations or offer it as a product. The Lepton 3 thermal camera 
had a bad habit of seizing indefinitely and d id not support true radiometry, meaning, that 
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the user had to supply a conversion function i n order to obtain pixel temperatures. The 
conversion function, unfortunately, allowed for a large temperature error. 

The capture l ibrary had been designed to work on the smal l host computer, which would 
pu l l thermal frames from the camera and push them into a local v i r tua l video device. Then , 
the idea was to use a too l like ffmpeg to stream the thermal video into a single station 
wi th more computat ional power for processing. This turned out to be impossible to achieve 
for the raw Y 1 4 thermal video, as no lossless codec and format combination would allow 
t ransmit t ing such stream. Furthermore, the scene abstraction software supported modeling 
of only simple rectangular areas w i t h a single camera, and most importantly, the thermal 
detector based on simple image processing has been tested i n a large complex environment 
wi th a generous number of people, which created a l l sorts of par t ia l occlusions and overlaps. 
In this environment the detector d id not perform well at a l l . Deploying it anywhere beyond 
simple smal l rooms wi th up to two persons would probably lead to a cr i t ica l failure of the 
detection system. 

The objective of this project was to continue the research t ry ing to eliminate flaws 
listed above and implement a l l suggested improvements in order to bu i ld a robust, salable 
and easy-to-install detection system, that allows for modeling complex scenes wi th mul t i ­
ple thermal cameras, m in ima l possibil i ty of false detection and accurate placement of the 
detected objects into the scene. 

This thesis describes in detai l a l l improvements done to this project, which can be 
summarized into: 

• upgrading the thermal camera to Lep ton 3.5, which supports true radiometry, 

• changing the processing computer to the standard Raspberry P i 3 B + w i t h the Rasp-
bian operating system to avoid many hidden pitfalls of the A r m b i a n developed by 
a smal l community, 

• configuring an automated deployment tool al lowing for an easy instal lat ion of a l l 
required dependencies and configuration of the new Raspberry P i 3 B + computer to 
be used inside the thermal unit, 

• designing and 3D-pr in t ing an enclosure box for the thermal unit consisting of the 
Raspberry P i 3 B + computer and the Lepton 3.5 thermal camera, 

• designing and constructing an addi t ional camera-control printed circuit board allow­
ing for cut t ing off the power to the camera remotely i n case the camera freezes, 

• redesigning and reimplementing the v4121epton3 capture and control l ibrary so that 
it supports the new Lep ton 3.5 thermal camera, allows for streaming of the raw 
thermal video over the network and is significantly faster in order to avoid desynchro-
nization issues, which are even harder to avoid wi th the Lep ton 3.5, 

• improving the scene abstraction so that it can model complex boundaries w i t h mul­
tiple cameras in a single scene, 

• adding a tool for an easy visual cal ibrat ion of every camera i n a new scene, 

• and most importantly, capturing an extensive database of thermal images and creating 
a new r ig id person detector w i th the use of the state-of-the-art Y O L O real-time object 
detector based on deep neural networks trained on the thermal dataset. 
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The thesis devotes the first chapter to explain once again possible use cases of person 
detection and localizat ion systems, how the thermal solution differs from other solutions and 
what are its benefits. The next chapter describes in detail the newly constructed thermal 
unit which consists of the upgraded Lep ton 3.5, Raspberry P i 3 B + and a custom control 
circuit board, a l l encapsulated i n a 3D-printed enclosure box. Then , the thesis goes through 
the new design and implementat ion of the control and capture l ibrary v4121epton3 based 
on a server-client model, following wi th the new person detector principle, the process of its 
t raining, and finally, comparison wi th the old simple thermal detector. The next chapter 
reminds the mathematics behind reverse-projecting image points into a 3D scene model and 
describes the new extended implementat ion of the scene abstraction, that allows modeling 
of complex scenes wi th mult iple cameras. The last chapter finishes wi th explaining the 
typica l steps for deployment of the detection and localizat ion system i n a new environment 
and summarizes results obtained during a real-world deployment i n the Czech Nat iona l 
Museum for the purpose of bui ld ing heatmaps of people movement throughout exhibi t ion 
premises. 

The end result of the project should be an easily deployable person detection and local­
izat ion system based on thermal imaging that supports mult iple cameras and can serve as 
an input for other systems that take actions by knowing positions of people i n the monitored 
environment. For example alerting security staff, analyzing flow of people for marketing 
purposes or controll ing the environment i n smart homes. 
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Chapter 2 

Utilization of people detection and 
current technology comparison 

This chapter is split into two sections. The first section deals w i th the usage of people 
detection in general and the second one compares currently used technologies i n people 
count ing/detect ing/ locat ing disciplines w i t h respect to their use case. The theory in this 
chapter is common for both bachelor's and this project and has been mostly taken over 
from the bachelor's thesis [18]. 

2.1 Uti l izat ion of people detection 

A s stated i n the introduction, count ing/detect ing/ locat ing people has found its usage in 
many areas and is an essential part of many complex systems. The following l is t ing describes 
some of the most important where these techniques are used. 

Mercanti le interests 

In marketing, it is possible to determine the best placement of a product based on a model 
constructed wi th the data of customer movement. F r o m people detection systems, it is 
possible to extract interesting information, such as i n which areas customers spend the 
majority of t ime or what path they tend to take in a part icular environment (shop, super­
market). The detection and local izat ion system provides us, in this case, w i th data we can 
analyze, and based on that for example, optimize the spot for our advertisement. 

Queue management 

In shops and at public service places in general, counting and detecting techniques are used 
to measure number of customers in premises, estimate queue lengths i n real time, measure 
an average wait t ime to be served or staff idle t ime. The data from the system might serve 
to improve customer experience and manage resources of the facility more efficiently For 
supermarkets, number of open desks can vary over t ime based on actual queue lengths, and 
store personnel can be distr ibuted more efficiently or reallocated on the fly. 
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Publ ic transport 

Similar ly to the previous paragraph, detection and counting techniques are vastly used 
at airports, in subways, and sometimes at t r a in or bus stations. These automatic people 
counting solutions are mostly used for people flow analysis. A n a l y z i n g people flow statistics 
is the key to maintaining user friendly environment and can start an ini t iat ive for improve­
ment. We count the number of passengers being transported, how full a t ra in or bus gets 
during which hour of the day, and as w i t h the queue management, we measure t ime delays 
of for example passengers getting i n and out of a vehicle. 

G u a r d i n g dangerous zones 

One of the most important areas, where detection of l iv ing beings is v i t a l , is undoubtedly 
ensuring workplace safety or securing dangerous zones. Th is might include hazardous areas 
at t ra in or subway stations near railway tracks, i n heavy machinery, industry halls near 
dangerous machines, where no l iv ing being should be present at normal circumstances. In 
these cases, the people detection mechanism may alert responsible personnel and prevent 
severe accidents from happening. 

Smart homes 

Another usage of systems for detection and local izat ion of people can be i n smart homes. 
Nowadays, everything from light bulbs, microwave ovens to washing machines can connect 
to the network and interact w i th other devices and humans as well . B y getting information 
about the presence, location and/or pose of people, the detection system is capable of 
commanding these smart devices, i.e., controll ing the environment around the people. This 
can help elderly or disabled people wi th everyday life by turning machines on or disabling 
them if there is a high chance of them forgetting to do so. In smart-home environments, 
there is a possibil i ty to uti l ize counting, detecting and also locating people techniques. [11] 
[31] 

2.2 Currently available technologies allowing for people de­
tection 

Some of the current technologies being used for purposes of counting, detecting or locating 
people might include the following: 

• I R / L a s e r beam interruption 

• Laser light burst travel t ime ( L I D A R 1 ) 

. G P S / W i - F i / B l u e t o o t h tracking 

• Project ing structured light 

• 3D stereo video analysis 

• Monocular video analysis 

1 L I D A R ( L i g h t D e t e c t i o n A n d R a n g i n g ) - m e t h o d for m e a s u r i n g d is tances ( ranging) b y i l l u m i n a t i n g the 
target w i t h laser l igh t a n d m e a s u r i n g the re f lec t ion w i t h a sensor. h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / L i d a r 
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The following paragraphs describe these technologies, point out their weaknesses and 
determine their most suitable use case. 

I R / L a s e r beam interruption 

Infrared/laser beam interruption technique can be used only for counting people passing 
through a narrow passage, for example a doorway. A transmitter device is installed on one 
side of the narrow passage and a receiver on the other as i l lustrated i n figure 2.1. The two 
devices are connected together and form an invisible barrier of light. W h e n an object breaks 
the connection between transmitter and receiver, the system registers plus one count. This 
general solution yields inaccurate results i n case more people are allowed to pass through 
the sensor close to each other or when they decide to turn around. This problem is usually 
solved by instal l ing more advanced sensors. The accuracy of the system can be increased by 
using mult iple barriers and analyzing measured intensities of each sensor to detect special 
cases, as when people turn around right between the sensors. [53] In order to achieve even 
higher success rate, we might consider using for example a L I D A R based solution. 

Figure 2.1: Infrared/laser barrier sensor for counting people passing through. (Source: 
[42].) 

L I D A R 

Figure 2.2 demonstrates the usage of a L I D A R device. A L I D A R - b a s e d detection device 
consists of only a single sensor usually placed above ge. The sensor acts a transmitter 
and a receiver at the same t ime. The device casts laser beams into several directions and 
measures precisely the t ime required for each reflected beam to get back into the sensor. 
Th is way it is possible to calculate the distance each laser beam has traveled, and therefore 
create a depth map revealing objects in its field of view. 

The L I D A R approach makes counting people i n a doorway way more accurate than using 
the beam interruption method. This type of detection system can deduct the direction of 
the passing object, and since the sensor is usually installed above the passage, it has no 
problem wi th detecting mult iple people passing next to each other, which was a major 
problem w i t h the infrared/laser barrier. Th is solution is widely used at airports or in 
sliding doors opening mechanisms and has a guaranteed accuracy over 95 %. [9] [13] 
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Figure 2.2: L I D A R - b a s e d device for counting people entering and leaving through a door­
way. (Source: [9].) 

G P S / W i - F i / B l u e t o o t h smart device tracking 

W i t h the growth of smart devices support ing wireless technologies such as W i - F i or Blue­
tooth, a new method of t racking people has been adopted. Devices wi th these technologies 
make it easy to triangulate their posit ion. Obviously not every l iv ing being needs to carry 
a smart device at a l l times, however if they do, their smart device offers valuable infor­
mat ion about their owner's whereabouts. A l though it can not be reliably used to detect 
people, as we would get plenty of false negatives, the tracked paths of detected devices can 
be used to create a map of customer movements, which can help to promote products or 
optimize advertisement in general. A n i l lustrat ion of a heatmap2, representing the durat ion 
of people's presence throughout a shop, is depicted in figure 2.4. 

Figure 2.3: Intensity map representing durat ion of people's presence at a certain location. 
(Source: [58].) 

2 A heat m a p (or hea tmap) is a d a t a v i s u a l i z a t i o n t echn ique t ha t shows m a g n i t u d e of a p h e n o m e n o n as 
color i n two d imens ions , g i v i n g obv ious v i s u a l cues to the reader a b o u t h o w the p h e n o m e n o n is c lus te red or 
varies over space. h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / H e a t _ m a p 
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Project ing structured light 

The method of projecting structured light is not used directly for purposes of detecting 
or locating people, but more often for obtaining 3D models of relatively smal l objects or 
continuous depth maps. 

The system usually consists of two parts - a camera and a projector. The projector 
casts structured light on the scene. The structured light is usually a horizontal black-and-
white-line pattern or a checkerboard pattern. The camera is then used to view the scene, 
and by analyzing deformations i n the projected pattern, a depth map is constructed. 

O n its own, this technique may be used i n the same use case as L I D A R sensors - people 
counting. This setup has one advantage when compared to the L I D A R solution. The 
L I D A R sensors cast rays only into several directions. B y projecting the light pattern, the 
device covers a continuous area and has a potential to be more accurate. A s wi th L I D A R 
devices, this sensor would be placed above ge and would often use structured light 
from the invisible infrared spectrum. 

The structured light sensors, however, have major disadvantages. Such system requires 
extremely precise calibrat ion, is bigger i n size and more complex. 

Figure 2.4: Example setup of a depth mapping system composed of a single camera and a 
projector casting structured light. (Source: [35].) 

3D stereo vision 

Stereo video analysis is quite often used i n high end solutions. The system consists of 
two precisely calibrated cameras viewing a scene. The technology is somewhat similar 
to human vision - two eyes viewing a scene wi th the bra in extracting depth information 
from differences in the two shifted images. B y combining video frames from two cameras, 
the system constructs the depth dimension of the scene, which generally provides accurate 
object-to-camera distance measurement. 

This approach can be seen in cut t ing edge solutions designed for airports, b ig t ra in sta­
tions, where accurate detection and local izat ion is crucial . The current solutions using this 
technology tend to be very expensive, due to their complexity and cal ibrat ion requirements. 

W h e n compared wi th the L I D A R and structured light approach for counting people, 
this technology has one drawback. It has much narrower field of view, which means it is 
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challenging to find a proper location for instal l ing the stereoscopic device at places wi th 
a low ceiling. Another drawback, which also applies to the monocular video analysis, 
is privacy issues. W i t h the use of regular cameras for purposes of detecting, locat ing or 
counting people, it is also possible to perform facial recognition, which may be unacceptable 
in certain situations. 

Monocular video analysis 

The monocular video or single frame analysis is quite similar to the 3D stereoscopic vision, 
however, for monocular video analysis, no depth map is used, as the monocular video 
analysis uses only a single camera. 

B y video analysis and digi ta l image analysis (used in both monocular and stereoscopic 
vision), we understand a process of extracting meaningful information from video or images 
respectively. Nowadays various techniques and approaches are being used. The process can 
be somewhat generalized into few steps: 

1. Image preprocessing - preparing the image for analysis by digi ta l image processing. 
This might include filtering, adjusting contrast, dynamic range of the image and so 
on. 

2. Feature extraction - extract ing indices that are meaningful for the type of analysis 
we want to perform. This might include finding binary contours i n the image, lines, 
corners, extracting the histogram of oriented gradients ( H O G ) [19] and so on. 

3. F ina l stage of the analysis - the actual a lgori thm used to achieve the goal of video 
or image analysis. The goal might be object detection, classification, recognition or 
similar. In this stage, we encounter various algori thmic approaches - often from the 
machine learning family - from simple thresholding, linear binary classifiers a l l the 
way to support vector machines and deep neural networks. 

Using a thermal imaging camera module to help solving the problem of detecting people 
also belongs to the monocular video analysis section and brings several advantages when 
compared wi th other approaches. [40] Fi rs t ly , we need only a single camera, so there is 
no need for extremely precise hardware cal ibrat ion of the system, as w i th stereo vis ion or 
structured-light projection. We can detect and also locate l iv ing beings in contrast w i th 
infrared/laser beam or light travel techniques, which can only count objects entering and 
leaving an area. The biggest advantage is however the fact that by using a thermal camera 
wi th smal l image resolution, it is impossible to perform facial or person recognition. Th is 
makes this approach more suitable for places, where privacy plays an important role, e.g. 
at workplaces or homes. The rma l images are not dependent on l ighting conditions of the 
scene, which makes the system very effective dur ing the night. The largest disadvantage 
of monocular image analysis is the missing depth dimension. L o w camera resolution wi th 
the missing depth dimension cause locations of the detected objects to be only a rough 
approximate, as the missing dimension has to be estimated based on some assumption like 
that the object is touching ground. 

The idea behind detection and local izat ion of people using a thermal camera is to 
capture a thermal image, detect objects corresponding to people in the image and estimate 
locations of each object i n a model of the scene using perspective projection. 
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Chapter 3 

Thermal capture unit 

This chapter describes the thermal capture unit , which can be used for standalone or re­
mote capture of thermal data. The unit can be placed anywhere wi th electric and network 
connection and consists of F L I R ' s Lepton 3.5 [5] thermal camera module, a custom P C B 
wi th a circuit controll ing the thermal module and a Raspberry P i 3 B + single-board com­
puter, which communicates direct ly wi th the camera and provides the user w i th higher level 
access. A l l these three parts are enclosed i n a custom-designed 3D-printed enclosure box. 
The following sections go i n detai l through each part of the thermal capture unit. 

3.1 F L I R Lepton 3.5 
In previous experiments and the bachelor's project [18], the earlier version of the thermal 
module - Lep ton 3 - has been used. In this project, the thermal camera module has 
been replaced w i t h version 3.5. Th is section describes the Lepton 3.5 wi th a l l differences 
between the previous version of the thermal camera as well as a l l necessary adjustments to 
the capture and control l ibrary v4121epton3 designed to communicate w i th the camera. 
A n in-depth documentation of a l l new features i n the v4121epton3 l ibrary can be then 
found in chapter 4. 

O ir 

1 
m i i n I I i 

Figure 3.1: Lepton 3/3.5 wi th breakout board. (Source: [25].) 
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3.1.1 L e p t o n 3.5 specif ications 

In this project we use a Lepton 3.5 thermal camera module 3 made by the company F L I R 
which is currently one of the leading manufactures of thermal camera solutions. The camera 
contains a sensor sensitive to long wave infrared ( L W I R ) light i n range from 8 to 14 /im. 
The camera module is smaller than a dime and provides images wi th decent resolution of 
160 by 120 pixels. The effective frame rate of the camera is only 8.7 H z , however for our 
needs, it is sufficient. The camera only requires low voltage supply and has smal l power 
consumption of around 160 m W . See table 3.1 for more detailed specifications. 

For better manipulat ion wi th the camera module we use a breakout board (figure 3.7) 
w i th a housing for the Lepton camera module. Lepton 3 and 3.5 both have the exact 
same dimensions and pinout, therefore both versions fit into the same breakout board. 
The breakout board provides better physical accessibility, improves heat dissipation and 
increases the input voltage supply range to 3-5 V using its bui l t - in regulated power supply. 
This power supply provides the camera module wi th three necessary voltages: 1.2, 2.8 and 
2.8-3.1 V . The breakout board also supplies the camera wi th master clock signal. [25] The 
camera uses two interfaces for communication: 

• SPI for transferring video frames from the camera to the S P I master device. 

• I 2 C for receiving control commands from the I 2 C master device. 

Even though the name of the project include the keyword low-cost, we need to th ink of 
this statement wi th respect to the thermal imaging market. The Lepton 3.5 thermal cam­
era module can be considered low-cost when compared to other thermal camera devices 
available, as it costs around $230 (2020 5 ). Th is could however be considerably more expen­
sive when compared to other non-thermal solutions, for example when a simple infrared 
counting sensor is used. 

Spectral range 8 to 14 /im 
A r r a y format 160 x 120 pixels 

P i x e l size 12 fim 
Thermal sensitivity <50 m K 
Temperature range - 1 0 to + 4 0 0 ° C 

F O V horizontal 56° 
F O V diagonal 71° 
Dep th of field 28 cm to oo 

Lens type f/1.1 silicon doublet 
Output format 16-bit Y 1 6 raw temperature or 24-bit R G B 8 8 8 false color 

Clock speed 25 M H z 
Input voltage 2.8 V , 1.2 V , 2.8-3.1 V 

Power dissipation 160 m W operating, 5 m W shutdown mode, 800 m W shutter event 
Dimensions 11.8 x 12.7 x 7.2 m m 

Table 3.1: Lep ton 3.5 camera module specifications. (Source [4].) 

3 F L I R L e p t o n homepage h t t p s : / / l e p t o n . f l i r . c o m /  
4 F L I R homepage h t t p : / / w w w . f l i r . e u / 
5 F L I R L e p t o n 3.5 supp l i e r e-shop h t t p s : / / g r o u p g e t s . c o m / m a n u f a c t u r e r s / f l i r / p r o d u c t s / l e p t o n - 3 - 5 
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Table 3.1 summarizes the parameters of the new 3.5 version of the Lep ton camera. 
F rom the version 3.0 it differs among others in temperature range and power consumption. 
The camera has increased temperature range and consumes a l i t t le bit more power during 
shutter events. 

3.1.2 L e p t o n 3 vs 3.5 - fa l se / true r a d i o m e t r y 

The previously used version 3.0 is a non-radiometric camera or so-called false radiometric. 
It does have an option and a command for turning the radiometric feature on, however, this 
feature only ensures that the output values from the sensor stay the same when the internal 
temperature of the camera changes. Th is behavior is depicted in figure 3.2. Th is way one 
can be sure that for any given temperature of a pixel , there is a specific value on the output 
no matter the internal condit ion of the camera. It has false radiometry because it does 
not provide the function for converting incident flux of a p ixel into the real temperature in 
K e l v i n . Th is nonlinear function has to be supplied by the user. 

Radiometry Disabled Radiometry Enabled 

-10 20 50 SO -10 20 50 80 

Camera Temp (deg C) Camera Temp (deg CJ 

Figure 3.2: Hypothe t ica l i l lustrat ion of camera output vs camera temperature. (Source: 
[26-27].) 

The mapping function is usually an output of a cal ibrat ion process which involves an ac­
curate spot thermometer. M a p p i n g points between pixel values of the Lep ton 3 module and 
actual temperatures taken by the thermometer are constructed over a wider temperature 
range and used for interpolation i n order to obtain the calibrated mapping function. The 
documentation [4] mentions that the mapping function is close to linear but not completely. 

The Lep ton 3 camera module has been replaced by the newest version 3.5 mostly be­
cause of its true radiometry capability. The conversion function is provided internally and 
applied by the camera firmware, so that the output of the camera already contains the final 
temperature of each pixel in K e l v i n . 

The real temperature coming from Lepton 3.5 is scaled by a scalar, that can be set to 
either 100 or 10. To get the temperature from a pixel i n K e l v i n , the 16-bit integer pixel 
value needs to be divided by the scalar. See conversion examples i n the table 3.2. 

Note that the true radiometric mode is essential for the problem of people detection 
because knowing the exact temperature of a scene allows us to filter out regions of the scene 
that have temperatures outside the human-body-temperature range, which can simplify 
the computat ion. Alternat ively, we can reject a potential detected object (person) after 
checking its temperature dis tr ibut ion. 
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16 bit pixel value 
Scalar 10 Scalar 100 

16 bit pixel value 
[K] [°C] [K] [°C] 

16,000 1,600.0 1,326.85 160.0 -113.15 
65,535 6,553.5 6,280.35 655.35 328.2 
30,315 3,031.5 2,758.35 303.15 30 

Table 3.2: Lep ton 3.5 16-bit p ixel value conversion example using true radiometry for given 
resolutions (scalars). 

3 .1.3 Lepton 3.5 control protocol (CCI) 

The command and control interface (CCI ) is used to control the camera and is hosted 
on a two-wire interface ( T W I ) , which is almost identical to I 2 C . The protocol had been 
implemented i n P y t h o n and supported essential commands for the Lepton 3 thermal camera. 

For the Lepton 3.5 version, the protocol itself d id not change, however, some new 
commands have become available - mostly connected wi th the new true radiometry feature. 
These commands had to be included into the control software. B o t h Lepton 3 and 3.5 have 
the same command RAD_ENABLE to enable or disable the false radiometric feature. The 
Lepton 3.5 comes w i t h a set of three new commands setting the TLINEAR feature which 
corresponds w i t h the true radiometry. 

If the TLINEAR feature is left off while having radiometry enabled, the camera behaves 
like Lepton 3 wi th the false radiometry. The TLINEAR opt ion enables the inner calibrated 
mapping function for converting the incident flux into real temperature in K e l v i n , which 
the camera then returns for each pixel . 

For Lepton 3.5, the following three essential commands have been added to the control 
software w i t h respect to the true radiometry: 

• RAD_TLINEAR_ENABLE: tlinear is the name of the feature that enables the incident 
flux to temperature conversion, i n other words, makes true from false radiometry, as 
mentioned in subsection 3.1.2. 

• RAD_TLINEAR_SCALE: this command sets or gets the scalar for the pixel values in 
K e l v i n . The scalar may be set to 100 or 10. 

• RAD_TLINEAR_AUT0_SCALE: turns on or off an automatic scalar selection between 100 
and 10, based on the observed temperatures in the scene, which effectively increases 
or decreases resolution as well as measurement error. 

A n 0EM_REB00T command has also been included among others, as it turned out that 
issuing a reboot command over the I 2 C interface deals w i t h the camera seizing problem in 
the least invasive way. Though, it does not always work, as is mentioned later in section 
3.2. 

Furthermore, the previous implementat ion contained plenty of redundancy when adding 
a new command. E a c h command may have GET, SET or RUN method (in most cases at 
least two), plus for a SET command, several options are usually available. In the old 
implementation, w i t h each newly added command, it was necessary to create a function for 
each available method and SET option. This redundancy and inelegance of the process of 
adding new commands have been addressed and as a part of the v4121epton3 capture and 
control l ibrary. The camera control software comes reimplemented almost from scratch. 
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The implementat ion details w i t h a l is t ing of a l l currently available commands can be found 
in chapter 4. 

3.1.4 Lepton 3.5 video transfer protocol (VoSPI) 

The Video Over SPI (VoSPI) protocol d id not change between version 3.0 and 3.5 of the 
Lepton camera. F r o m this point of view, the code pul l ing frames out of the thermal camera 
should work without any change also wi th the version 3.5. Th i s , however, was not the case, 
as there were major synchronization issues. Desynchronized camera is one of the biggest 
problems of Lepton modules reported by the community. The controll ing computer or the 
code running on it is s imply not fast enough to read out a l l packets from the camera in t ime, 
which causes the camera to reset. A s a result, it is not possible to read even a single frame 
out of the camera. F r o m the packet numbering, I calculated that i n my case, the reading 
process would have to be 8 times faster to run smoothly wi th the old implementation. 

Also the new use case of the project requires collecting continuous video feeds from 
mult iple cameras and processing them i n a single place. Th is leads to a completely different 
architecture, therefore, the capture l ibrary had to be redesigned and sped up significantly. 
The new version of the v4121epton3 l ibrary is described i n detai l in chapter 4. 

3.2 Thermal camera control P C B 

The Lepton 3 thermal camera module used to have one really bad habit - from time to 
t ime it would seize operation indefinitely. The camera stops sending frames over S P I and 
any attempt to read data from it results in a t imeout. In such state, the camera also does 
not respond to any commands over I 2 C cla iming it is busy or not ready to receive any new 
command. Unfortunately, this problem also occurs in the 3.5 variant of the camera module, 
however not that often. In most cases, even though the camera does not return nor set 
any control registers and claims to be busy, the reboot command does reboot the camera 
completely fixing the broken state. 

There are situations, however, when not even the reboot command works, and the 
camera gets i n a state i n which it s imply can not be used anymore. This poses a real 
problem because the system is meant to be working remotely and physically unplugging 
and plugging the camera back i n is not plausible. It was essential to provide a workaround 
i n order to be able to manage the thermal capture system remotely. The camera used to 
be powered directly from the host computer. Being able to remotely disconnect the camera 
from the circuit would force a cold boot of the camera and would also come i n handy when 
the camera is not needed. Turn ing the camera off when it is not needed would prolong its 
lifespan, save power and eliminate the cl icking shutter noise. 

In order to solve this problem, a custom power switch has been designed and buil t on 
a printed circuit board that allows for disconnecting the power from the camera and then 
reapplying it remotely. Tha t effectively forces the camera to perform a full reboot. 

3.2.1 The first design of the control circuit 

The first design of the circuit contained an N-channel M O S F E T transistor w i th a pull-down 
resistor on its gate that was controlled by a d igi ta l signal coming from a G P I O p in of the 
Raspberry P i . The circuit also contained a couple of capacitors w i th values of 100 fiF and 
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100 n F to improve power supply stability. The plan was to use Raspberry P i ' s G P I O to 
apply 5 V to the camera through the transistor. The first design can be seen in figure 3.3. 

The first design however proved itself not to be functioning properly because logl of 
3.3 V coming from the Raspberry P i ' s G P I O output would not saturate the N-channel 
M O S F E T enough to turn the camera on, despite the typica l gate-source threshold voltage 
of the I R F Z 4 4 N M O S F E T [2] of 2-4 V. 

GPIO ENABLE 

.00 nF ^ ^ 1 0 0 | f 

Figure 3.3: The first design of the M O S F E T switch circuit . 

3.2.2 T h e second design of the contro l c ircui t 

The second design contained a standard power switch wi th the use of P-channel M O S F E T 
and a second transistor - this t ime an N P N bipolar transistor B C 3 3 7 [3] that is current-
driven, and thus has no problem operating at the 3.3-V level. The bipolar transistor 
grounds the gate of the I R F 9 Z 3 4 N M O S F E T [1], which then applies 5 V to the thermal 
camera supply ra i l . The second design was successful, and wi th its help, it is possible to 
tu rn the camera's power supply on or off remotely using a Raspberry P i ' s G P I O p in . The 
second design can be seen in figure 3.4 and the physical custom P C B b in figure 3.5. 

Figure 3.4: The second design of the M O S F E T switch circuit . 

P C B - p r i n t e d c i r c u i t b o a r d 
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Figure 3.5: P C B of the second design of the M O S F E T switch circuit . 

3.2.3 G P I O control library WiringPi 

For controll ing G P I O pins of the Raspberry P i computer, we are using the wiringPi l ibrary 
[28]. The standard Raspbian image has the l ibrary wiringPi preinstalled, however, on the 
Raspbian L i t e operating system the l ibrary needs to be installed first using the following 
command: 

$> sudo apt-get i n s t a l l wiringpi 

This l ibrary provides a C A P I as well as an easy terminal access for controll ing the G P I O 
pins of the Raspberry P i computer. The A P I syntax is identical to the Ardu ino l ibrary 
having functions like pinModeO or digitalWrite() . A n example C code of turning on 
and off the v i r tua l G P I O p in 15 can be examined i n l is t ing 1. 

G P I O pins can be controlled direct ly from the terminal using the gpio tool . The mode 
of p in 15 to output can be set using: 

$> gpio mode 15 out # 15=GPI0 pin, modes=in/out/pwm/clock/up/down/tri 

Wri t i ng logl to p in 15 can be done using: 

$> gpio write 15 1 # 15=GPI0 p i n , va lues=l/0 

#include <wiringPi.h> 
#include "unistd.h" 
#define PIN 15 

int main(int arge, char **argv) 
{ 

wiringPiSetupO ; 
pinMode(PIN, OUTPUT); 
while(true) 
{ 

digitalWrite(PIN, HIGH); sleep(l); 
digitalWrite(PIN, LOW) ; sleep(l); 

} 
return 0; 

} 

Lis t ing 1: One second bl ink example on the v i r tua l G P I O p in 15. 
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Some G P I O pins are also connected to a special hardware modules of the processor like 
I 2 C or SPI . In that case the mode of such p in is displayed as ALTX (alternative function X ) . 
Modes and current d ig i ta l values of a l l available G P I O pins of the Raspberry P i computer 
can be read using command gpio readall which is demonstrated in figure 3.6. 

pi@>thermal1: ~ 

BCM wPi | Name | Mode 1 v | Physical 1 v | Mode | Name | WPI | BCM | 
. . . . • H 

| 3.3v 
H H H 

1 1 
+ H 
1 1 2 

H H 
1 1 5v 

. . . H 
1 

+ + 
1 1 

2 8 SDA.l | ALTS 1 3 4 1 1 5v 1 1 1 
3 9 SCL.l | ALTS 1 5 6 1 | Ov 1 1 1 
4 7 | GPIO. 7 IN 1 7 8 1 | OUT TxD 1 15 1 14 1 

| Ov 1 9 1 1 IB | 1 | IN | RxD 1 16 1 15 1 
17 0 | GPIO. 0 | IN 1 o | 11 1 1 12 1 o | IN | GPIO. 1 1 1 1 18 1 
27 2 | GPIO. 2 IN 0 1 13 14 1 | Ov 1 1 1 
22 3 | GPIO. 3 IN 0 1 15 1 1 16 0 | IN GPIO. 4 1 4 1 23 | 

3.3v 1 17 1 1 18 0 IN GPIO. 5 1 5 1 24 | 
10 12 | MDSI | ALTO 1 0 | 19 1 1 26 1 | Ov 1 1 1 
9 13 | MISO | ALTO 1 o 1 21 1 1 22 1 o | IN | GPIO. 6 1 6 1 25 | 

11 14 SCLK | ALTS 1 | 23 24 1 OUT | CES | 10 1 8 | 
Ov 1 25 1 1 26 1 | OUT CE1 | 11 1 7 | 

0 39 SDA.O IN 1 1 27 1 1 28 1 IN | SCL.O 1 31 1 1 1 
5 21 | GPIO.21 | IN 1 1 | 29 1 1 30 1 | Ov 1 1 1 
6 22 | GPIO.22 | IN 1 1 1 31 1 1 32 1 o | IN | GPIO. 26 1 26 1 12 1 

13 23 | GPIO.23 IN 0 | 33 34 1 Ov 1 1 1 
19 24 | GPIO.24 IN 0 1 35 36 0 | IN GPIO. 27 1 27 1 16 1 
26 25 | GPIO.25 IN 0 1 37 1 1 38 0 | IN GPIO. 28 1 28 1 20 | 

| Ov | 39 1 1 4B 1 0 | IN | GPIO. 29 | 29 1 21 | 
+  H H H H + H H H + — H + + 

BCM wPi | Name | Mode 1 v | Physical 1 v | Mode | Nane | WPI | BCM | 

Figure 3.6: Exammple result of gpio readall command on a thermal unit . 

The custom circuit described i n subsection 3.2 allows us to remotely disconnect the 
camera from the power supply. In our case, the power switch is controlled wi th the wPi 
vi r tua l G P I O p in 15 visible i n figure 3.6. Unfortunately, if the camera is i n the corrupted 
frozen state i n which it does not send frames nor can be rebooted using I 2 C control interface, 
cut t ing off its power supply does not do the tr ick and the camera does not reboot. Even 
though the switch transistor is fully off, there is s t i l l around 2 V on the camera power ra i l , 
which most l ikely causes the camera to sustain its internal broken state, and when 5 V is 
reapplied to the positive ra i l , the camera keeps not responding. 

After the transistor turns off, the camera most l ikely starts stealing power from S P I 
or I 2 C interfaces and its switching power supply keeps the camera's internal voltage from 
dropping a l l the way to 0 V . So i n order to fully disconnect the camera, we must use the 
custom transistor switch, disable both interfaces and set a l l pins connected to the camera 
to output logO. Th is effectively pulls a l l pins of the camera to ground and discharges the 
camera completely leading to a full reset. After re-enabling data interfaces and applying 
power to the supply pin , the camera boots up normally and starts working as it is supposed 
to. Th is procedure needs to be done i n around 5 % of the cases when the camera freezes. 
For the rest, issuing a simple oem_reboot command v ia I C C does the trick. 
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3.2.4 Segmentation fault on I 2 C kernel module unload 

Another t r icky part is disabling and re-enabling the data interfaces. Disabl ing these in­
terfaces effectively means unloading kernel modules from the l inux operating system. A t 
this t ime, there is unfortunately a known issue' w i th disabling the I 2 C hardware interface. 
A r o u n d 25 % of attempts to unload the kernel module i2c_bcm2835 fails on segmenta­
t ion fault (NULL pointer dereferencing) inside the kernel which has catastrophic effect on 
the Raspberry P i 3 B + , as no other modules can be loaded or unloaded and the Raspbian 
operating system can not be rebooted because the command sudo reboot [-f ] hangs in­
definitely. The only way to revive the Raspberry P i from this state is unplugging it and 
plugging it back in . (hard restart) 

A snippet from the terminal output of the segmentation fault dur ing unloading the 
kernel module using rmmod can be seen in l is t ing 2. More information about the fault 
obtained from kernel message buffer using dmesg8 is depicted i n l is t ing 3. The issue has 
been already f ixed 9 , however, it is going to take some time un t i l the fix is merged into the 
official Raspbian kernel. T i l l then, the safer way is s imply to reboot the whole Raspberry 
P i straight away. D u r i n g the reboot, a l l pins of the Raspberry P i are, for a brief moment, 
set to logO, which cuts off the power to the camera through the custom transistor switch 
and the whole camera reboots. 

pi@thermal3:- $ sudo rmmod i2c-bcm2835 
Message from syslogd@thermal3 at Oct 26 00:31:13 ... 
kernel:[ 105.607954] Internal error: Oops: 17 [#1] SMP ARM 

( . . . ) 
Message from syslogd@thermal3 at Oct 26 00:31:13 ... 
kernel:[ 105.697356] Code: e8bd4000 e2504000 089da818 ebfff6c8 (e5943014) 
Segmentation fault 

Lis t ing 2: Terminal snippet of the segmentation fault when unloading I 2 C kernel module 
using rmmod. 

[ 185 993328] Unable to handle kernel NULL pointer dereference at virtual 
address 00000012 

[ 185 998257] Internal error: Oops: 17 [#1] SMP ARM 
[ 185 999511] Modules linked in: i2c_bcm2835(-) (...) 
[ 186 009776] CPU: 1 PID: 790 Comm: rmmod Tainted: G C 4.19.80-v7+ #1274 
[ 186 013013] Hardware name: BCM2835 
[ 186 014681] PC is at clk_rate_exclusive_put+0x20/0x5c 
[ 186 029528] Process rmmod (pid: 790, stack limit = 0x7989f0fb) 

Lis t ing 3: dmesg snippet from after the kernel segmentation fault on unloading I 2 C kernel 
module. 

7 R e p o r t o f the I 2 C kerne l m o d u l e segmen ta t ion faul t https://www.raspberrypi.org/forums/ 
viewtopic.php?f=28&t=255294 

8dmesg (d i sp lay message or d r ive r message) - u n i x - l i k e c o m m a n d p r i n t i n g the ke rne l message buffer 
9 [ P A T C H R F C ] i2c: b c m 2 8 3 5 : Store po in t e r to bus c lock: N u l l po in te r dereference fix c o m m i t https: 

//marc.info/?l=linux-arm-kernel&m=157209334808763&w=2 
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3.3 Raspberry P i 3B+ 

Compared wi th the bachelor's project [18], we have migrated from Orange P i P C 2 ( A r m -
bian) to Raspberry P i 3 B + (Raspbian). The change has been made to improve portabil i ty, 
increase computat ional power and avoid some of the pitfalls connected w i t h using cloned 
Chinese single-board computers w i th smal l community and many O S features s t i l l wait ing 
to be completed. 

It was necessary to reconfigure the whole image from the beginning. The thermal unit 
is currently using Raspbian Bust ler L i t e 1 0 which is a min ima l operating image wi th only 
435 M B in size. Since it is a min ima l image, it is necessary to instal l a l l dependencies and 
libraries manually. The exact same steps would have to be performed on every thermal 
unit and repeated for every new unit in the future. Therefore, it only makes sense to use 
a tool to automatize the steps of preparing the environment on thermal units for running 
the detection and localizat ion system. 

This section describes the configuration and properties of the Raspberry P i 3 B + com­
puter, which is used to direct ly communicate w i th the thermal camera, and is therefore the 
brain of the thermal unit . 

Figure 3.7: Raspberry P i 3 B + single board computer. (Source: [45]. 

3.3.1 Raspberry P i 3 B + specifications 

The Raspberry P i 3 B + is the last revision of the th i rd generation single-board computer. 
It is a low-cost, credit-card sized computer capable of performing everything one might 
expect from a regular desktop computer. 

The Raspberry P i runs a Debian-based operating system Raspbian Bustler L i t e . The 
Raspberry P i platform has a massive community base, and it is widely used by a l l sorts of 
hobbyists for their D I Y projects. Its biggest upside is its size and hardware interfaces. The 
computer has a bui l t - in hardware support for S P I , I 2 C , U A R T , Bluetooth and W i - F i com­
municat ion. Its general purpose input /output ( G P I O ) pins are also extremely important for 
interfacing w i t h other electronic devices. Even for its size, the Raspberry P i has nowadays 
a quite decent computat ion power. See table 3.3 wi th Raspberry P i 3 B + parameters. 

1 0 R a s p b i a n off icial o p e r a t i n g s y s t e m image d o w n l o a d page h t t p s : / / w w w . r a s p b e r r y p i . o r g / d o w n l o a d s / 
r a s p b i a n / 
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C P U Broadcom B C M 2 8 3 7 B 0 , Cor tex-A53 ( A R M v 8 ) 64-bit @ 1.4 G H z x 4 
R A M 1 G B L P D D R 2 S D R A M 
W i - F i 2.4 G H z and 5 G H z I E E E 802.11.b/g/n/ac 

Bluetooth 4.2, B L E 
Ethernet Gigabi t , but max 300 M b / s , P o E support 

G P I O Extended 40-pin header 
U S B 2.0 4x 

Power supply 5 V @ 2.5 A D C 
Interfaces C S I , D S I , S P I , I 2 C , U A R T , stereo output, composite video output 

Table 3.3: Raspberry P i 3 B + specifications. (Source [45].) 

3.3.2 Automation with Ansible 

For the automatic deployment, it has been decided to use the too l A n s i b l e 1 1 . It is an 
agentless tool , which temporari ly connects to its targets v i a ssh to perform tasks specified in 
so-called Ans ib le playbooks. A n Ansib le playbook specifies actions that should be performed 
on the target machine. Some of the most common tasks i n an Ansible playbook might 
include: 

• managing users 

• creating, delete files or directories 

• copying a configuration file from local storage to the target 

• making sure a dependency/ l ibrary is installed on the target system 

• cloning a git repository and compile a program from sources 

• executing shell commands 

and a lot more. The advantage of Ansible is i n its flexibility. There does not have to 
be a master service running permanently that would be constantly checking the state of 
the target devices according to a given configuration like for example when using P u p p e t 1 2 . 
Ansible performs tasks from the playbook only when it is asked to and it works straight 
out of the box. The only requirement is that the target device is accessible through an ssh 
connection. Ans ib le w i l l do the rest according to the given Ansib le playbook. 

3.3.3 Preparing the Raspbian image for the new thermal unit 

After wr i t ing the Raspbian Bust ler L i t e image to an S D card using for example the bale-
naEtcher t o o l 1 3 , the first thing to configure is the ssh daemon. The daemon is enabled by 
creating an empty file /boot/ssh. 

In case the thermal unit should automatical ly connect to a wireless network, the /boot/ 
wpa_supplicant.conf file shall be edited wi th the content from l is t ing 4. 

1 1 A n s i b l e - software p r o v i s i o n i n g , con f igu ra t i on managemen t , a n d a p p l i c a t i o n - d e p l o y m e n t t o o l https: 
//www.ansible.com/ 

1 2 P u p p e t - open-source c o n f i g u r a t i o n managemen t t o o l https://puppet.com/ 
1 3 b a l e n a E t c h e r - free open-source u t i l i t y for c r e a t i n g l ive S D cards a n d U S B flash dr ives https: 

/ / www.balena. io/et cher/ 
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country=CZ 
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev 
update_config=l 
network={ 

ssid="the-internet-ssid" 
psk=069c6f3318349...eaf0077fa2f7 

} 

Lis t ing 4: Contents of /boot/wpa_supplicant. conf file enabling auto-connection to a 
prespecifled wireless network. 

If the thermal unit w i l l be connected to a wired network v i a an ethernet cable, the 
W i - F i (and Bluetooth) modules can be disabled by adding a lines from l is t ing 5 to /boot/ 
config.txt file. 

dtoverlay=pi3-disable-wifi # disable Wi-Fi 
dtoverlay=pi3-disable-bt # disable Bluetooth 

Lis t ing 5: Lines of /boot/conf ig.txt file which disable W i - F i and Bluetooth modules on 
boot. 

If there w i l l be no D H C P server in the network, it is possible to specify static connection 
parameters i n /etc/dhcpcd. conf file. A n example code for setting a static I P address to 
the Raspberry P i ' s interface ethO can be seen i n l is t ing 6. 

# Example s t a t i c IP configuration: 
interface ethO 
st a t i c ip_address=192.168.2.205/24 
# s t a t i c ip6_address=fd51:42f8:caae:d92e::ff/64 
s t a t i c routers=192.168.2.101 
st a t i c domain_name_servers=8.8.8.8 

Lis t ing 6: Lines of /etc/dhcpcd.conf setting up a wired connection without a D H C P 
server. 

A t this stage, it is possible to copy an ssh public key into 
/home/pi/.ssh/authorized_keys file for easy access v ia ssh using asymmetric cryptogra­
phy. 

3.3.4 Ansible playbook 

The knowledge used in this chapter comes from [30] and [26]. After taking care of the 
configuration on the S D card, it can be inserted into the Raspberry P i . The computer 
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should boot up and connect to the network according to the configuration from the previous 
steps. After that, Ans ib le can take over. F r o m the master computer, the thermal units are 
configured by running the Ans ib le playbook wi th the following command: 

$> ansible-playbook - i hosts thermal_deploy.yml 

The hosts file contains information about the target hosts - devices on which Ansible 
performs tasks specified i n the playbook. In the example hosts file i n l is t ing 7, there is a 
group thermal_clients w i th 3 devices. 

[thermal_clients] 
t h l ansible_host= 192 168 1 31 ansible. _user=pi # UNIT 1 
th2 ansible_host= 192 168 1 32 ansible. _user=pi # UNIT 2 
th3 ansible_host= 192 168 1 33 ansible. _user=pi # UNIT 3 

Lis t ing 7: Example hosts file for Ans ib le w i th 3 devices. 

The playbook thermal_deploy.yml itself contains list of tasks to be performed on 
specified hosts. A snippet from this file can be seen i n l is t ing 8. Setting up the environment 
for thermal units can be, i n our case, summarized into the following steps: 

1. run sudo apt update, sudo apt upgrade 

2. instal l the following apt packages: git, python-dev, python3-dev, python-pip, pythonS-
pip, wiringpi, python-opencv, python3-opencv, libboost-all-dev, v4l-utils, v4l2loopback-
dkms, v4l2loopback-utils 

3. instal l py thon/python3 packages using pip/pip3: smbus2, SPI-Py1'1 

4. clone the v4121epton3 l ibrary and and compile it 

5. run sudo apt autoclean, sudo apt autoremove 

6. run sudo raspi-conf i g w i th arguments to enable S P I and I 2 C interfaces 

After executing a l l tasks from the playbook, the thermal unit is ready to operate. If 
any changes need to be done globally to a l l deployed thermal units, they can be stated in 
the Ans ib le playbook and Ansib le w i l l make sure they are applied to a l l the devices. 

1 4 S P I - P y l i b r a r y https://github.com/lthiery/SPI-Py.git 
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- hosts: thermal_clients 
tasks: 
- name: Running apt upgrade 
become: true 
apt: 

upgrade: yes 
update_cache: yes 
cache_valid_time: 86400 

- name: I n s t a l l apt packages, 
become: true 
apt: 
name: "{{item]-}" 
state: present 

with_items: 
" g i t 
- python-dev 

- python3-dev 

Lis t ing 8: Snippet from an Ansib le playbook. 

3.3.5 Enabling SPI and I 2 C hardware interfaces 

In order to communicate w i th the camera using S P I and I 2 C hardware modules on the 
Raspberry P i , they need to enabled on the kernel level. O n the previously used Orange 
P i board, this was a very tedious process that led to decompiling the device tree overlay, 
manually specifying pins where the hardware modules are connected, recompiling it and 
ensuring the overlay gets loaded during boot up. 

O n the Raspberry P i computer a l l of this can be done using the raspi-conf i g uti l i ty, 
which allows to enable and disable specific modules of the processor using graphical interface 
or s imply by executing the script w i t h arguments as i n l is t ing 9. Note that this shell 
command can also be specified as an Ans ib le task i n a playbook. 

sudo raspi-config nonint do_spi 0 # enable SPI 
sudo raspi-config nonint do_i2c 0 # enable I2C 

sudo raspi-config nonint do_spi 1 # disable SPI 
sudo raspi-config nonint do_i2c 1 # disable I2C 

Lis t ing 9: Enab l ing S P I and I 2 C interfaces using a shell command. 
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A s a result, there are corresponding character devices permanently visible i n the /dev 
directory and they w i l l also be present after reboot. These devices can be manipulated 
using i o c t l system calls. Whether are these devices available in the operating system can 
be checked using commands i n l is t ing 10. 

piOraspberrypi: ~ $ Is /dev/spi* 
/dev/spidevO.0 /dev/spidevO.1 
piOraspberrypi: - $ Is /dev/i2c* 
/dev/i2c-l 

Lis t ing 10: Demonstrat ion of character devices i n the /dev directory. 

3.4 Thermal unit enclosure 

The Lepton camera sends video frames over the S P I interface on 20 M H z which implies 
that the length of wires connecting the Lepton camera to the Raspberry P i needs to be 
as short as possible - m a x i m u m of 20 c m i n order to provide a stable connection without 
interference and transmission errors. T h i s condit ion enforces the Lepton camera and the 
Raspberry P i to be physically close to each other. Together, they form a thermal unit . 

In order to make the whole thermal unit transferable, protected and professionally 
looking for quick demonstrations or real life deployment, an enclosure has been designed 
to fit and mount a l l of its components—the Raspberry P i 3B+, the custom camera switch 
circuit board and the Lepton 3.5 camera. The thermal unit case is composed of two parts 
- an enclosure box for the Raspberry P i w i th the power switch and a camera chassis that 
is mounted to the top of the first part w i th a bit of slack that allows the camera chassis 
to be moved along the horizontal axis. This way it is possible to adjust the viewing angle 
of the camera using a screw and a rubber band that applies a back force to the camera 
case against the screw. The unit 's enclosure box has hexagonal holes from top and bot tom 
to provide air flow to cool down the Raspberry P i , as it gets quite hot even wi th a rather 
small load. 

•~~ " •" 
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Figure 3.8: Lep ton Breakout Case . s t l model. 

The enclosure box was designed i n the Ske tchup 1 5 software and exported into the . s t l 
format for 3D-printing. The Lepton 3.5 camera chassis model, created by the official Lep ton 

3 S k e t c h u p - T r i m b l e des ign software h t t p s : / / w w w . s k e t c h u p . c o m / 

26 

https://www.sketchup.com/


Breakout Board manufacturer GroupGets , has been taken from the por ta l Thingiverse . 
The model can be seen in figure 3.8. Two pins were added i n the lower part of the back 
side of the chassis to serve as a pivot points around which the camera could move. The 
3D-printed chassis w i th the Lepton 3.5 camera i n a breakout board can be seen i n figure 
3.9. 

Figure 3.9: 3D-printed case for the Lepton 3.5 in a breakout board. 

The unit 's enclosure comes from a Raspberry P i 3 B + . s t l model also published at 
Thingiverse. The model has been edited and enlarged to fit the Raspberry P i , the custom 
P C B wi th the transistor switch, the moving camera chassis and a l l wi r ing needed to connect 
al l components together. The . s t l model of the bo t tom piece of the thermal unit enclosure 
can be seen i n figure 3.10 and the top piece i n figure 3.11. 

Figure 3.10: Thermal unit enclosure model - bot tom. 

1 6 L e p t o n B r e a k o u t Case . s t l m o d e l https://www.thingiverse.eom/thing:1563825  
1 7 T h i n g i v e r s e - a websi te ded i ca t ed t o the s h a r i n g of user-created d i g i t a l des ign files https: // 

www.thingiverse.com/ 
1 8 R a s p b e r r y P i 3B+ Case . s t l m o d e l http://www.thingiverse.eom/thing:3361218 
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Figure 3.11: The rma l unit enclosure model - top. 

The camera chassis w i th the Lepton camera gets inserted into the hole on the right side 
of the top piece of the enclosure. The S P I and I 2 C interfaces are connected directly to the 
Raspberry P i v i a approximately 10 cm long jumper wires. Two power wires are connected 
to the custom P C B wi th the switch, which is mounted i n the enclosure underneath the 
camera, right next to the Raspberry P i . F r o m the custom P C B , there are three wires going 
to the Raspberry P i directly - to GND, 5 V and a v i r tua l GPIO-15 p in . A n assembled 
thermal unit can be seen in figure 3.12 on the right side, and on the left side, there is 
a connected thermal unit just without the top cover. Tota l of four thermal units were 
constructed for testing purposes. 

Figure 3.12: A finished thermal unit w i th Raspberry P i 3 B + , custom power switch and a 
Lepton 3.5 thermal camera in a chassis. 
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Chapter 4 

v4121epton3 capture and control 
library 

The v4121epton3 l ibrary is the main software part of the project. It is a l ibrary that 
takes care of controll ing the camera and retrieving thermal video feed from it . It has been 
in i t ia l ly presented as a part of the bachelor's thesis [18], however, because of the issues 
connected wi th the previous implementat ion described in subsections 3.1.3 and 3.1.4, it has 
been redesigned and reimplemented almost from scratch. The l ibrary consists of two parts: 
the C + + applicat ion for thermal video manipula t ion and a Py thon3 package for camera 
control and single frame manipulat ion. 

This chapter goes in detai l through the capture and control parts of the new version of 
the library. The old implementat ion that s t i l l relates to the bachelor's thesis can be found 
in a separate b r a n c h 1 9 of the v4121epton3 repository. The new implementat ion is i n the 
master b r a n c h 2 0 of the same repository. 

4.1 Controlling the camera over C C I 

The Lepton camera provides a command and control interface (CCI ) v i a a two-wire interface 
almost identical to I 2 C wi th the only difference being that a l l transactions must be 16 bits 
i n length. Lepton's I 2 C address is 0x2A and during communicat ion behaves as a slave 
device. A l l Lepton's registers are 16 bits wide. Lepton camera offers 4 control registers 
and 16 data registers which are a l l 16-bit wide and are used by the host (master) device 
to issue commands to the camera. A command is issued by wr i t ing and reading part icular 
registers i n the camera v ia I 2 C . The exact process is described i n the C C I documentation 
[7]. The protocol has been implemented i n the bachelor's project and analyzed i n detail in 
the bachelor's thesis [18] [subsection 3.1.4]. 

The C C I protocol has not changed from Lepton version 3 to 3.5, however, the imple­
mentation of the control l ibrary has been redone to remove redundancy and inelegance 
mentioned i n subsection 3.1.3. Furthermore, significantly more commands were added 
including essential commands for the true radiometry feature. Th is section explains dif­
ferences between the old and new implementation, how the redundancy has been removed 
and which commands the control l ibrary currently supports. 

1 9 v4121epton3 git repository - old implementation h t tp s : / / g i t l ab . eom/CharvN/v4121ep ton3 / - / t r ee / 
bp 

2 0 v4121epton3 git repository - new implementation h t tps : / /g i t lab .com/CharvN/v4121epton3 
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4.1.1 Old implementation of the C C I 

A s mentioned i n subsection 3.1.3, the previous implementation contained plenty of redun­
dancy when adding a new command. A n example may be the VID_PC0L0R_LUT command, 
which controls the false color palette used for art if icial coloring of the thermal image. The 
command has two methods - GET and SET. The value of the property, which the commands 
sets or gets, ranges from 0 to 8 - each representing a predefined color palette. In the old 
implementation, this led to having 9 functions for the SET method of the command and 
one other for the GET method. The GET function also returned a raw value of the currently 
set palette, which had to be looked up i n the Lep ton I D D manual [7]. The actual values 
that can be set or get w i t h the VID_PC0L0R_LUT command are listed i n table 4.1, and an 
example of the command functions in the old implementat ion is depicted in l is t ing 11. 

Color palette Opt ion values in list of bytes 
wheel6 [0x00, 0x00] 
fusion [0x00, 0x01] 

rainbow [0x00, 0x02] 
glowbow [0x00, 0x03] 

sepia [0x00, 0x04] 
color [0x00, 0x05] 

icefire [0x00, 0x06] 
ra in [0x00, 0x07] 

user defined [0x00, 0x08] 

Table 4.1: Options wi th their respective values i n lists of bytes for the VID_PC0L0R_LUT 
command setting false color palette for the Lepton 3/3.5 thermal camera. 

def vid_pcolor_lut_get(self): 
return self._command(Lepton3Control.VID, Lepton3Control.VID_PC0L0R_LUT, 
•-f Lepton3Control .GET, 2) 

def vid_pcolor_lut_set_fusion(self): 
return self._command(Lepton3Control.VID, Lepton3Control.VID_PC0L0R_LUT, 
^ Lepton3Control.SET, [0x00, 0x01]) 

def vid_pcolor_lut_set_rainbow(self): 
return self._command(Lepton3Control.VID, Lepton3Control.VID_PC0L0R_LUT, 
^ Lepton3Control.SET, [0x00, 0x02]) 

def vid_pcolor_lut_set_icefire(self): 
return self._command(Lepton3Control.VID, Lepton3Control.VID_PC0L0R_LUT, 
^ Lepton3Control.SET, [0x00, 0x06]) 

( . . . ) 

L i s t ing 11: Example of Lepton 3/3.5 color palette command functions for GET and SET 
methods wi th 3 out of 10 options i n the o ld implementation. 
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This redundancy and inelegance of the process of adding new commands has been 
addressed, and as a part of the v4121epton3 l ibrary, the camera control software comes 
reimplemented almost from scratch. 

4.1.2 New implementation of the C C I 

In the new implementation, each command has exactly one definition, which automati­
cally generates allowed methods and contains a translation map for each option that the 
command can set. 

If we take for example the previously mentioned command VID_PC0L0R_LUT, in the new 
implementation, those 10 functions covering this command shrink a l l the way to 1. The 
function created according to the command description in the C C I documentation [7] and 
i l lustrated in figure 4.1 is depicted i n l is t ing 12. 

SDK Modu le ID: VID 0x0300 

SDK Command ID: 
Wi th 
Wi th 

Base 0x04 
Get 0x04 
Set 0x05 

SDK Data Length: Get 2 size on an En urn data type on a 32-bit machine 
Set 2 size on an Enum data type on a 32-bit machine 

Compatibility C-5DK Commands Description 
Updates v i d P c o l o r L u t P t r with the 

All Lepton Configurations LEP G s t V i d P c o l o r L u t O Camera's currentvideo pseudo-color 
LUT selection. 

All Lepton Configurations LEP Se tV idPco lo rLu t { ) Sets Camera's current video pseudo­
color LUT selection to v i d P c o l o r L u t 

C SDK Interface: 

LEF_HESULT rfiP_GetVidPcolorLut(LEP_CÄMEHa_POHT_DE3C_T_PTR portDeacPtrr 

LEP PCOTJCH LUT E PTE vidPcalotLutPtr) 

LEP_HESULT LEP_S#tVidPöölörLut(LEP_CÄMEHA_POHT_DESC_T_FTH pöttDesCPtrr 

LEF_FCOLOH_LUT_E vidPcttlarLut) 
/ * Vidfrb Pfl-eudö-C-ölör LUT Enum 

* / 
typtdef enum LEP_PCaLOS_IiDT_E_TAG 

[ 

lEF_VID_HHEELt_LDT-0„ 
IiEP_V I D_FTJ SIQMJLD T , 

IiEP_V I D_PA IMBO W_Ii TJT, 

1EP_V I D_GLCECfW_IiU T , 

LEP_YID_5EPIA_LTJT , 

LEP_VID_OOLC«_LIJT , 

IiEP_VID_ICE_FIRE_LTJT „ 

1EP_VID_RAIH_I.UT, 

IiEP_VID_US.ER_IiTJT, 

IiEP_V I D_EMD_PCaLO RJLTJT 

) L E P_PDQLLOR_LUT_E-, * L E P _ P D Q l L O R _ L U T _ E _ P T H J 

Figure 4.1: VID_PC0L0R_LUT command description i n the C C I documentation [7] (page 72). 
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Construct ing the command object from the C C I documentation 

From the part of the documentation in figure 4.1, the following information for the 
VID_PC0L0R_LUT command is extracted: 

• The command addresses the VID hardware module of the camera wi th the 16-bit 
address of 0x0300. 

• The command ID is 0x04 (base). 

• The command has two available methods: GET and SET. 

• There are 9 values ranging from 0 to 8, which can be set using the command. 

Using the extracted information, a single object representing the command wi th auto­
matical ly generated underlying methods is constructed. The object is depicted i n l is t ing 
12. 

class Lepton3Control(obj 
(...) 
COMMANDS: Dict[str, 

ect) : class Lepton3Control(obj 
(...) 
COMMANDS: Dict[str, Lepton3Command] = { 

'vid_pcolor_lut' : Lepton3GetSetCommand(Lepton3Command.Module.VID, 0x04, 
{ 

'wheel6' 
'fusion' 
'rainbow 
'glowbow 
'sepia': 
'color': 
'icefire 
'rain': 

: [0x00, 0x00], 
: [0x00, 0x01], 
1: [0x00, 0x02], 
1: [0x00, 0x03], 

[0x00, 0x04], 
[0x00, 0x05], 

1: [0x00, 0x06], 
[0x00, 0x07], 

'user_defined': [0x00, 0x08] 
}), 

(...) 
} 

Lis t ing 12: Defini t ion of the VID_PC0L0R_LUT command in the new implementat ion of the 
v4121epton3 l ibrary. 

C C I implementation in v4121epton3 Python3 package 

The control software is implemented i n the v4121epton3. control Py thon3 module as a 
part of the v4121epton3 Py thon3 package available i n the git repos i to ry 2 1 . The module 
contains Lepton3Control class, which can be imported to a custom project or inherited 
from and extended wi th more commands. The module also includes addresses for I 2 C 
registers and command hardware modules as well as base classes for general commands, 
which eases their definition. The following list summarizes a l l important entities i n the 
v4121epton3. control module, which is the control part of the v4121epton3 l ibrary. They 
may be imported and ut i l ized i n any other project that requires controll ing of the Lepton 
3/3.5 thermal camera. 

21v4121epton3 c o n t r o l a n d cap tu re l i b r a r y gi t r e p o s i t o r y https://gitlab.com/CharvN/v4121epton3 

32 

https://gitlab.com/CharvN/v4121epton3


• Lepton3Command - base class defining a Lepton command. Holds supported methods, 
command id , command module (address of the hardware module that the command 
is issued to), length i n bytes of the command's parameter and parameter mappings. 

• Lepton3Get Command - derived class from Lepton3Command, supports only the GET 
method. 

• Lepton3GetSetCommand - derived class from Lepton3GetCommand, this class adds the 
SET method. 

• Lepton3RunCommand - similarly, class inheri t ing from Lepton3Command supporting 
the RUN method. 

• Lepton3EnableDisableCommand - helper class, which inherits from 
Lepton3GetSetCommand and automatical ly supplies the enabled/disabled command 
parameters as 1/0 values. 

• Lepton3Control - class containing the implementat ion of the C C I protocol having 
instantiated commands wi th their methods and parameters, routines for wr i t ing and 
reading any register v i a I 2 C and also for executing a command. 

• Lepton3Command.Module - enumeration class containing addresses of a l l Lep ton 3 
and 3.5 hardware modules, which can be addressed by a command. 

• Lepton3Command.Method-enumeration class w i th GET, SET and RUN command meth­
ods. 

• Lepton3Control.Register - enumeration class containing addresses of the most 
commonly used registers in Lepton thermal cameras. 

In the repository, there is the lepton3control .py script that can be executed using a 
Py thon3 interpreter. This allows to quickly get, set or run any supported command wi th 
predefined options from the console. L i s t i ng 13 contains a complete list of a l l currently 
supported commands wi th their respective methods. 

A n interaction sample wi th getting and setting the false color lookup table (using the 
command VID_PC0L0R_LUT mentioned earlier) is shown in l is t ing 14. Ge t t ing a currently 
set value for the color palette is i n the new implementat ion translated back to the name 
of the option. The previous implementation would return a list of bytes and its meaning 
would have to be looked up i n the C C I documentation. 
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Use lepton3control.py <i2c_number> <command> <method> [<data>] 
<i2c_number> — for /dev/i2c-l use 1 
<command> — one of the commands below 
<method> — one of the get, set, run - see available methods next to 
^ commands below 
<data> — parameter only for the set method, leave empty to see 

available options 
Commands: 

agc_calc_enable — ['GET', 'SET'] 
agc_enable — [ 'GET', 'SET'] 
agc_policy — ['GET', 'SET'] 
oem_bad_pixel_replacement_enable — ['GET', 'SET'] 
oem_calc_status — ['GET'] 
oem_customer_part_number — [ 'GET'] 
oem_flir_part_number — ['GET'] 
oem_output_format — ['GET', 'SET'] 
oem_reboot — ['RUN'] 
oem_sw_revision — ['GET'] 
oem_temporal_filter_enable — ['GET', 'SET'] 
oem_thermal_shutdown_enable — ['GET', 'SET' ] 
oem_video_out_enable — ['GET', 'SET'] 
rad_enable — [ 'GET', 'SET'] 
rad_ffc_run — ['RUN'] 
rad_tlinear_auto_scale — ['GET', 'SET'] 
rad_tlinear_enable — ['GET', 'SET'] 
rad_tlinear_scale — ['GET', 'SET'] 
rad_tshutter_mode — ['GET', 'SET'] 
sys_aux_temp_k — ['GET'] 
sys_camera_up_time — ['GET'] 
sys_customer_serial_number — ['GET'] 
sys_ffc_run — ['RUN'] 
sys_ffc_status — ['GET'] 
sys_flir_serial_number — ['GET'] 
sys_fpa_temp_k — ['GET'] 
sys_frames_to_average — ['GET', 'SET'] 
sys_frames_to_average_run — ['RUN'] 
sys_gain_mode — ['GET', 'SET'] 
sys_ping — ['RUN'] 
sys_scene_statistics — ['GET'] 
sys_shutter_position— ['GET', 'SET'] 
sys_telemetry_enable — ['GET', 'SET'] 
sys_telemetry_location — ['GET', 'SET'] 
vid_focus_calc_enable — ['GET', 'SET'] 
vid_freeze_enable — ['GET', 'SET'] 
vid_low_gain_pcolor_lut — ['GET', 'SET'] 
vid_output_format — ['GET', 'SET'] 
vid_pcolor_lut — ['GET', 'SET'] 

Lis t ing 13: Lis t of a l l currently supported commands w i t h their methods i n 
v4121epton3 l ibrary. 
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pi@th4:~/py/v4121epton3 $ python3 lepton3control.py 1 vid_pcolor_lut get 
Opening i2c device: 1 
Booted: True Ready: True ErrorCode: 0 
Error code: 0 
Result: wheel6 

pi@th4:~/py/v4121epton3 $ python3 lepton3control.py 1 vid_pcolor_lut set 
Opening i2c device: 1 
Booted: True Ready: True ErrorCode: 0 
Error: For SET method for command: vid_pcolor_lut you must specify one of this 
^ parameters: {'wheel6': [0, 0], 'fusion': [0, 1], 'rainbow': [0, 2], 

'glowbow': [0, 3], 'sepia': [0, 4], 'color': [0, 5], 'icefire': [0, 6], 
^ 'rain': [0, 7], 'user': [0, 8]} 

pi@th4:~/py/v4121epton3 $ python3 lepton3control.py 1 vid_pcolor_lut set fusion 
Opening i2c device: 1 
Booted: True Ready: True ErrorCode: 0 
Error code: 0 
Done. 

pi@th4:~/py/v4121epton3 $ python3 lepton3control.py 1 vid_pcolor_lut get 
Opening i2c device: 1 
Booted: True Ready: True ErrorCode: 0 
Error code: 0 
Result: fusion 

Lis t ing 14: Demonstrat ion of getting and setting the false color lookup table using the new 
implementation of the VID_PC0L0R_LUT command from the lepton3control .py file. 

4.2 Capturing thermal frames: server-client model 

A s mentioned i n the subsection 3.1.4, there were several issues wi th the previous implemen­
ta t ion of the capture software. Even though the video over SPI (VoSPI) protocol has not 
changed from version 3 to 3.5, the old implementat ion was showing major desynchronization 
issues wi th the new camera. Furthermore, previously, the capture software in C + + was 
implemented w i t h the idea that the frames would go into a local v412 v i r tua l video device 
where they could be manipulated by common l inux tools like ffmpeg, vie or gstreamer. This 
would include sending the thermal video over a network using for example an R T P stream. 

Firs t of a l l , this method was quite slow. It required the capture applicat ion to pu l l 
frames from the camera and copy it over to the v412 v i r tua l video device. Moreover, there 
had to be an ffmpeg (or similar) applicat ion running, which would copy the frames out of 
the v i r tua l video device, compress them and send them over the network. The whole process 
copies each frame two times more than necessary. Addi t ional ly , i n order to have a smooth 
fluent capture, the master computer (Raspberry P i ) has to be dedicated to operating the 
I 2 C only. A n y delay, caused by a different process using process t ime, might result i n a 
camera desynchronization. 

Secondly, the idea of sending the thermal video over the network using ffmpeg-like 
tool works only for false color R G B 8 8 8 format. I was unable to find out a combination 
of format and lossless codec to transmit the raw Y 1 6 thermal feed, whose each pixel is a 
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16-bit value representing real temperatures. E i ther the combinat ion of codec and format 
was not supported by the tool or the codec fell back to a lossy one and the video came 
out w i t h artifacts on the receive side. The R G B 8 8 8 format comes already nonlinearly 
normalized from the camera for displaying purposes, and thus, is unusable for reconstructing 
temperatures of the scene. 

The new project's requirement was to collect thermal feed from mult iple cameras, detect 
and locate people and merge them into a single scene. Rea l temperatures are needed for 
the thermal detector, therefore, the whole capture part of the l ibrary had to be redesigned 
to be able to reliably transmit raw 16-bit thermal images over the network. O n top of that, 
the whole capture process had to be sped up about 8 times to avoid losing synchronization 
wi th the camera. 

The new implementat ion of the capture software follows the server-client model . It 
is wr i t ten i n C + + and forms a single process that runs on the Raspberry P i computer to 
achieve m a x i m u m speed. The thermal unit behaves like a synchronous server. Its server 
process listens on a port and waits for a client to connect. Once a client is connected, it 
initializes the S P I interface and starts pul l ing frames from the camera and sending them 
over the open socket. W h e n a connection is lost to the client, the thermal unit stops 
communicat ing wi th the Lepton camera and starts listening for another client. 

client: 
main 
I I I 

client: 
receive 
thread 

<-
startCapture 

server: mam 

getFrame 

<--
getFrame 

process frame 5 
loop [until client exit] 

stopCapture  

<-

server: 
SPI free 
running 
capture 
thread 

startSPICapture 

Lepton 
camera 

I I I I 

< 
getFrame 

returnFrame [if getFrame 
before frame is ready] 

^-j loop [until stopCapture] 

disconnect . 
loop [until 

* "1 sendFrame fails] 

stop SFI Capture 

< 

SPITransferFrame 

Id 
loop [until 

stopSP] Capture] 

loop [True] (wait for 
new client to connect) 

Figure 4.2: Sequential graph of the server-client model. 

The central station for aggregating a l l thermal data acts i n this case as a client. It 
connects to the port of the server and immediately starts receiving frames i n the raw Y 1 6 
format. The communicat ion between the client and the server is shown in figure 4.2. The 
server: capture and c l i e n t : receive threads are free running, which means that they 
are continuously receiving frames from the Lepton camera or server respectively, and they 
hand over a frame to the ma in thread of the server or client process only when requested 
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using the getFrame ca l l . This way it is ensured that the Lepton camera does not lose 
synchronization and that the client always gets the most recent frame. In case there is a 
new frame available before it has been requested by the main thread, the frame gets s imply 
discarded. Discarding frames lowers the effective frame rate, which is being logged by the 
process and optionally by the client as well. 

The connection between the server and the client is realized using a T C P connection. 
The T C P transport protocol has been chosen because it ensures in-order delivery of every 
packet. If packets got lost or arrived out of order, it would not be possible to assure proper 
reconstruction of each frame. The server is sending frame by frame, p ixe l by pixel . The 
client keeps receiving bytes unt i l 160 x 120 x 2 bytes are obtained. F r o m this data, the 
client reconstructs the thermal frame i n its raw format (Y16). Since the stream may be 
compressed by the z l i b stream compressor, it is important to receive every frame and then 
decompress i t . 

The following subsections describe implementation, features and usage of both sides of 
the client-server implementat ion of the capture library. 

4.3 Server side 

B o t h server and client sides are available i n the v4121epton3 git repos i to ry 2 2 . In order to 
get the server up and running on the thermal unit manual ly without the use of Ansible , 
the following steps must be performed: 

• Clone the v4121epton3 repository into the Raspberry P i . 

• Install the server from sources using the following commands: 

1 cd v4121epton3 & & mkdir build & & cd build 
2 cmake .. 
3 make server 

In order to compile the server, its dependencies must be installed first. The l ibrary 
depends on libboost C++, CMake >= 3.6 and z l i b . 

• R u n the server w i t h custom arguments using the following command: 

i | ./server [-p <port>] [-s <spi_device>] [-t <timeout_ms>] [-h] [-c] 

— -h —he l p : shows help 

— -p — p o r t <port>: sets server T C P port, default 2222 
— -s — s p i <spi_device>: S P I device, default /dev/spidevO.O 
— - t —timeout <timeout_ms>: frame acquisit ion timeout i n ms, default 5000 
— -c —compress: turns on zl ib compression 

The server by default starts listening on port 2222. The S P I device may also be changed 
from the default /dev/spidevO.O. There is a timeout in the server set to 5,000 ms, which 
prevents the server from freezing up when it is impossible to obtain a frame from the camera. 

22v4121epton3 c o n t r o l a n d cap tu re l i b r a r y gi t r e p o s i t o r y https://gitlab.com/CharvN/v4121epton3 
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If for some reason the frame is not read from the camera in t ime (set by the t imeout), the 
server assumes that there has been a cr i t ical problem wi th connection to the camera and 
shuts down wi th an error code 2. The connection problem may arise by having a loose wire 
or by the camera freezing up. This error code indicates that there has been a problem wi th 
the connection to the camera and a supervisor (a system service for example) may decide to 
reboot the camera using the C C I 0EM_REB00T command or by disconnecting it completely 
through the custom power switch. 

W h e n the -c argument is used, the server turns on z l i b stream compression, which 
reduces the amount of t ransmit ted data from 360 K B / s to 130-160 K B / s . Turn ing the 
compression on has a negative side effect because it puts strain on the C P U . W i t h the 
compression on, the server drops the frame rate a l i t t le bit from 8.7 F P S to 7.8 F P S and 
sometimes causes a desynchronization event. The desynchronization is however temporary 
and the server quickly recovers, reinitializes the camera and starts t ransmit t ing frames once 
again. 

The server is logging events into the server.log.N file. There can be up to 5 log files, 
and when the log file is full , the server rotates the log files so that server. log. 0 always 
contains the most recent log messages. A n example of a single session captured i n the 
log can be seen in l is t ing 15. The server logs: start ing of the server, wai t ing for a client, 
receiving a connection, an average frame rate of the transmit ted thermal video, the event 
of a client disconnecting or an exit signal. 

[2020-06-03 01 39 48 321926 [info] Waiting for a client on port: 2222 
[2020-06-03 01 40 02 662328] [info] Client 192.168.1.2:47070 connected. 
[2020-06-03 01 40 02 662926] [trace] Starting SPI capture thread. 
[2020-06-03 01 42 23 939730] [trace] FPS: 8.77543 
[2020-06-03 01 42 25 535755] [trace] Lost connection with the client: write: 
•-f Broken pipe 
[2020-06-03 01 42 25 536103] [info] Client disconnected. 
[2020-06-03 01 42 25 536243] [trace] Stopping SPI capture thread. 
[2020-06-03 01 42 25 536383] [trace] Closing SPI. 
[2020-06-03 01 42 25 536793] [info] Waiting for a client on port: 2222 
[2020-06-03 01 42 27 983937] [info] Received SIGINT. Exiting. 

Lis t ing 15: Session example from a v4121epton3 server log. 

The communicat ion between the server and the client i n this case goes only one way. 
Consequently, the client may disconnect at any point without notifying the server (as might 
happen unintentionally when there is a network connection problem). In order to handle 
such situation, the server is expecting possible errors when sending each frame to the 
client. W h e n any error occurs, the server logs it and assesses the si tuation as the client has 
disconnected, stops its dedicated thread for S P I communicat ion, resets its internal state 
and starts wai t ing for a new client. 

In order to read a single frame from the camera, the capture process must read out 4 
segments of 60 packets of 64 bytes (for raw Y 1 6 format without telemetry). Dur ing this 
process, several problems may arise as follows: 

• SPI error: W h e n there is an S P I problem w i t h either opening the device or transceiv-
ing the data, the server tries to reopen the S P I device and reinitialize the camera every 
2 seconds unt i l the per-frame-timeout l imi t is reached. After that, the server exits 
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wi th error code 2, which may trigger some outer events, for example a forced restart 
of the thermal unit . 

• Invalid packet: Lower 4 bits of the first byte having the value of OxF signifies an 
invalid packet. The camera sends inval id packets when it is i n not i n the ready state 
and can not send data. Th is may happen after startup, dur ing resynchronization event 
(for example when the host fails to read the whole frame i n t ime before the next one is 
ready) or when the camera is cal ibrat ing itself- dur ing the flat field correction ( F F C ) 
event. W h e n the capture process detects an inval id packet, it sleeps for 1 fis and tries 
reading a packet again. A val id packet usually appears after few attempts. 

• Lost synchronization: A n inval id packet may also be received i n the middle of a 
segment transaction. This means that the host has not been able to read a l l segments 
of a frame in t ime (most l ikely because the host has been too slow) and the camera 
is i n an unknown state. In this situation, the server forces resynchronization, which 
translates into id l ing the S P I communicat ion for 200 milliseconds. This assures that 
the camera is reset and ready to start the transmission over. After a few invalid 
packets, the server starts receiving a new frame from the beginning. 

• Unexpected segment: A frame consists of 4 segments. E a c h segment has a segment 
number stored in the header of the 2 0 t h packet. Segments must be received i n order 
from segment number 1 to 4. If a segment number is 0, the whole segment is invalid 
and should be discarded. The server keeps receiving segments un t i l it gets segments 
w i t h numbers from 1 to 4 in order. If the server receives an unexpected segment, it 
logs the accident and tries pul l ing another one. After a l l 4 segments are received in 
order, they get assembled into a frame and sent over to the client. 

The server can handle well each issue that might occur during the thermal video feed 
transmission. If desynchronization happens, the server quickly recovers and starts sending 
frames soon after so that it is not even observable on the client side. The only time, when a 
client side experiences an interruption, is when the camera performs the automatic flat field 
correction. D u r i n g that time, the camera is not sending any frames, it closes its shutter and 
briefly exposes the camera's sensor to a uniform thermal scene allowing itself to recalibrate, 
and thus, produce highly uniform images. The F F C process takes about 1 second. 

Optimizations 

The server C + + implementat ion had to be opt imized and sped up i n order to avoid constant 
desynchronizations wi th the camera. The following changes have been made when compared 
to the original code of the capture software: 

• D u a l segment buffering: There is a dedicated thread that is in charge of capturing 
a whole segment (60 packets of 164 bytes). After the segment is received, segment 
buffers are swapped and a new capture is started straight away. The caller thread 
meanwhile processes the received segment, strips the packet header and places the 
segment into the frame. 

• D u a l frame buffering: W h e n the frame is complete, frame buffers are swapped 
and a new frame is being constructed asynchronously i n the new buffer while the old 
buffer is used for sending the frame to the client. 
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• Reduced O S calls: Every S P I operation translates i n an i o c t l system cal l . The old 
implementation used to transceive one packet at a t ime (164 bytes) and then checked 
its header to see if the packet was val id . Th is natural ly adds plenty of overhead and 
delays. In the new implementation, the server pulls a single packet at a t ime unt i l 
the packet is val id (starting packet w i t h number 0). Then the rest of the segment 
(59 packets) is pulled at once using a single large transaction. The S P I transaction is 
59 x 164 = 9676 bytes long. 

O n a standard Raspberry P i , an S P I transaction this large can not be performed 
straight away because the system S P I device buffer is set to only 4 k B . The transaction 
fails or hangs indefinitely. The size of the S P I buffer can be obtained by running the 
following command: 

1 $> cat /sys/module/spidev/parameters/bufsiz 
2 4096 

The size of the system S P I buffer can be increased up to 64 k B by placing 

i | spidev.bufsiz=65536 

parameter to the end of the /boot/cmdline.txt file and rebooting. After increasing 
the buffer size, the large S P I transaction succeeds and gains valuable time. 

These optimizations helped to speed up the server capture process to run smoothly without 
any desynchronizations. 

4.4 Client side 

O n the client side, the following two implementations were created: 

• Python client: The P y t h o n implementat ion is more generic and agile. The client 
is placed i n the v4121epton3. cli e n t Py thon3 module, which can be easily used in 
other projects. In our case, we are going to be using this client implementat ion i n the 
detection and local izat ion process. 

• C4—h client: The C + + implementat ion is designed for a more specific use case. The 
C + + client works s imilar ly as in the bachelor's project. It connects to the server and 
pushes every frame it receives into a local v i r tua l video device, so that the thermal 
stream may be local ly manipulated by generic video processing tools like the ffmpeg, 
vie, gstreamer and so on. 

The following subsection describes specific features, design and usage of these two client 
implementations. 

4.4.1 Client implementation: Python 

The python implementat ion can be found i n the Lepton3Client class i n the 
v4121epton3.client module. Its constructor only takes two arguments: ip and port 
and has one essential function get_frame() , which returns the most recent frame from 
the camera as a numpy np.ndarray object w i th 160 x 120 16-bit unsigned integers. The 
typica l usage of this class is demonstrated i n l is t ing 16. 
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The P y t h o n package containing the client, control and single frame manipulat ion func­
t ional i ty can by installed into the system by running: 

| python3 _m pip install . 

in the v4121epton3 directory. The l ibrary is then used by the rest of the system to interact 
w i th the camera directly. 

In the repository, there is the lepton3client .py file that imports from the module and 
can be directly executed. W h e n interpreted wi th the Py thon3 interpreter, it is expecting 
two posi t ional parameters ip and port . The script instantiates the Lepton client and starts 
receiving frames i n an infinite loop. Each frame is normalized using O p e n C V to increase 
its dynamic range and rendered in an O p e n C V window. Every 2 seconds, the script prints 
average frame rate of processed thermal images, and using the spacebar key, the current 
frame can be saved. 

The P y t h o n client automatical ly recognizes whether the server is using compression or 
not. A t first, it tries to use the z l i b decompression and if it fails, the client continues to 
receive frames wi th decompression disabled. 

from v4121epton3.client import Lepton3Client 
with Lepton3Client('192.168.1.51', 2222) as client: 

while True: 
frame = client.get_frame() 
# process, normalize, print etc 

Lis t ing 16: Example of a typica l usage of the P y t h o n client implementation. 

4.4.2 Client implementation: C-\—h 

The C + + client is designed i n more of a standalone manner. It is used by s imply running 
it in the background and the result is having a thermal video stream available in a v i r tua l 
video device in the local system. The client connects to the remote server and pushes every 
frame it receives into the video device. 

Before compil ing the client, there must be C++ libboost, z l i b and cmake installed on 
the client system as well as a v i r tua l video kernel module v4121oopback. The v4121oopback 
repository 2 '^ contains a l l necessary instal lat ion steps. 

After loading the kernel module w i th 

I $> sudo modprobe v4121oopback 

there is going to be a video device visible in the l inux device tree, for example /dev/videoO. 
After cloning the v4121epton3 capture and thermal library, the C + + capture client 

can be compiled using the following commands: 

cd v4121epton3 & & mkdir build & & cd build 
cmake .. 
make client 

v4121oopback virtual video kernel module - git repository h t tps : / /g i thub.com/umlaeute / 
v4121oopback 
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The typica l usage of the C + + client is demonstrated below: 

i | ./client - i <ipv4> [-p <port>] [-v <video_dev>] [-c] 

• -h —he l p : shows help 

• - i — i p <ipv4>: I P address of the server 

• ~P —port <port>: T C P port of the server, default 2222 

• -v — v i d e o <video_dev>: name of the video loopback device, default /dev/videoO 

• -c —compress: turns on z l i b frame decompression 

The C + + client initializes the v i r tua l video loopback device to accept RAW color space 
and Y16 (a single 16-bit intensity value per pixel) format. It connects to the server and every 
frame it receives pushes into the v i r tua l video device. For the C + + client, it is necessary 
to configure the compression the same way as for the server. 
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Chapter 5 

Person detection 

This chapter describes the development and evolution of the person detector from the 
version i n the bachelor's project to the new detector that is used now. The first section 
summarizes the method used i n the old legacy detector and pinpoints its defects and draw­
backs. The next section goes theoretically through the current general methods that can 
be used for person detection purposes. The sections that follow from then on describe 
the newly chosen method for person detection and the process connected wi th getting the 
method to work for our use case, its usage and results. 

5.1 Legacy thermal detector 

The person detector used in the bachelor's project was a simple one based on filtering tem­
peratures outside the human-body-temperature range and image processing. The camera 
used in the o ld project was the Lepton 3, which does not have the true radiometry fea­
ture, so it was necessary to provide the mapping function between incident flux and real 
temperature. This function has been only an approximat ion w i t h relatively large error. 

5.1.1 Detector method 

The old detector was designed to work in the following steps: 

1. Convert p ixel values to real temperatures using our approximate mapping function. 

2. F i l t e r out pixels that have temperatures outside the human-body-temperature range. 

3. Increase the dynamic range of the thermal image using linear normalizat ion. 

4. A p p l y adaptive binary mean thresholding to obtain a binary image wi th white areas 
containing potential ly detected objects. 

5. Reduce noise using morphological transformations (opening and closing). 

6. F i n d contours of compact white areas in the binary image. 

7. Create border boxes around found contours. 

8. F i l t e r out boxes wi th insufficient 

9. Draw found boxed into the original image. 
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A more detailed description of the legacy thermal detector can be looked up i n the 
bachelor's thesis [18] [chapter 5]. A n example of the detector i n work is depicted in figure 
5.1. 

Adaptive gaussian threshold: 93,-30 Dilation & Erosion 5x5 

0 20 40 60 SO 100 120 140 

Min box area: 400 

0 20 40 60 80 100 120 140 

Normalized image. 

0 20 40 60 B0 100 120 140 0 20 40 60 B0 100 120 140 

Figure 5.1: Example of the legacy thermal detector at work. 

5.1.2 Detector hyper parameter calibrator 

The legacy detector has various parameters and opportunities for adjustments. In the 
bachelor's project, it has been empirical ly calibrated for the part icular dataset captured in 
quite a smal l room usually wi th a few people in it using the false radiometric Lep ton 3 
thermal camera. Since the detector was showing very good results in such environments 
and was extremely fast, it was planned to continue using this detection technique also in 
the new project, i n which we are t ry ing to create a large system that covers wide open areas 
wi th complex borders and mult iple thermal cameras. In order to use the detector w i th the 
new Lepton 3.5 thermal camera i n a larger area and achieve the best results possible, it 
was necessary to adjust the hyperparameters of the detector. 

The parameters of the legacy thermal detector are the following: 

• temperature filtering MIN, MAX 

• adaptive thresholding BLOCK SIZE, CONSTANT 

• kernel sizes for OPENING and CLOSING 

• m in ima l detected object bounding box AREA and TEMPERATURE 

In order to calibrate the hyperparameters of the detector, a cal ibrat ion script for visual 
adjustments was created. The usage of the cal ibrat ion script can be seen in l is t ing 17. In 
order to run the calibrator, the — d i r e c t o r y parameter has to be specified. The calibrator 
goes through a l l . t i f f raw thermal images from the directory and displays results of the 
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thermal detector w i th the current hyperparameters. Detector parameters can be adjusted 
by pressing keys specified i n l is t ing 18. Every parameter change takes immediate visual 
effect. 

python3 calibrate_thermo_detection_params.py -d DIR [-h] [-s SCENE] [-c CAMERA] 

Arguments: 
-h, —help ge and exit. 
-d DIR, — d i r DIR . t i f f raw thermal images. 
-s SCENE, —scene SCENE format. 
-c CAMERA, —camera CAMERA # Name of a calibrated camera in the loaded scene. 

Lis t ing 17: Arguments of the thermal detector hyperparameter calibrator. 

Optional ly, by running the script w i th —scene and —camera arguments, it is possible 
to load a scene and project detected objects into it using the specified camera i n the later 
argument. The scene abstraction and its implementat ion is described later in this thesis, 
specifically i n chapter 6. For now, the only important part is how well the detector detects 
and encloses detected objects i n bounding boxes. 

Controls +/-: 
- UP/DOWN - adaptive temp MAX 
- LEFT/RIGHT - adaptive temp MIN 
- Q/A - thresholding BLOCK SIZE 
- W/S - thresholding CONSTANT 
- E/D - kernel size OPEN 
- R/F - kernel size CLOSE 
- T/G - min box area 
- U/J - min BOX TEMP threshold 
- SPACE - next image 
- ESC - exit and print parameters 

Lis t ing 18: L is t of active control keys for the detector hyperparameter calibrator. 

B y pressing SPACE the script loads a next thermal image and displays detected objects 
and optionally their posit ion i n world space. B y pressing ESC, the calibrator exits and prints 
out the current detector hyperparameters. A n example of visual output of the calibrator 
can be seen i n figure 5.2 and text console output i n l is t ing 19. 
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Figure 5.2: V i s u a l example output of the detector parameter calibrator. 

$> calibrate_thermo_detection_params.py -d ../DATA/thl -s nm_scene.json -c thl 
File: 20191213_1554_05.raw 
Min: 19.27000000000004 °C Max: 29.430000000000007 °C 
Normalizing: min 29242 max: 30258 
->[ESC] 
Parameters: DETECTOR: 

- TEMP: min: 21.0 °C max 37.0 °C 
- KERNEL SIZE: open: 2 close: 5 
- THRESHOLDING: block size: 95 constant: -30 
- BOX AREA: 54 
- MIN BOX TEMP: 25.0 °C 

Lis t ing 19: Text example output of the detector parameter calibrator. 

5 .1.3 Detector issues 

A s mentioned previously, the detector d id a really good job on detecting simple and more 
important ly smaller scenes. Addi t ional ly , the detector is extremely fast, thus, it would be 
perfect for a real-time operation i n a larger, complex environment w i th mult iple cameras. 

Unfortunately, after some testing in a large museum ha l l w i th higher amount of people 
wi th a l l sorts of occlusions, the detector started failing. The ha l l was 15.8 x 5.7 meters 
which is quite a large area for a camera wi th the resolution of only 160 x 120 pixels. W h e n 
there were mult iple people standing further away from the camera, their heat signature 
started creating a single interconnected object, which confused the detector into classifying 
a whole group of people as a single person. This problem is well visible in every part of 
figure 5.5. 

Another problems are occlusions i n general, i f a person is standing in front of another, 
any software or even a person is going to have a hard t ime tel l ing them apart. Th is is 
especially true for thermal imagery, where boundaries between s imilar ly warm objects are 
not distinct enough. A n example of such difficult thermal image can be seen i n subfigures 
a), b) and c) of figure 5.5. 
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Moreover, the detector is prone to make false positive detections. If there is an object 
in the scene wi th about the same temperature as a human - like for example a T V , an 
information board wi th backlight or a radiator - the detector often classifies it as a person. 
It basically considers any large enough object i n the allowed temperature range as a person. 
This issue can be noticed i n subfigure f) of figure 5.5. 

There is one more issue, which is more connected to the thermal imagery than the legacy 
detector itself, and that is thermal reflections. A s a standard camera and object detector 
would classify a mirror image of a person as a real person, the same th ing happens also in 
thermal imagery. O n l y it is a bit more unpredictable for humans because we can not see 
which surface happens to be a good thermal mirror . Usual ly flat and shiny surfaces, or for 
example a polished floor, reflect heat (as a long wave infrared radiation) very well . This 
k ind of problem is noticable on the left side of subfigures c), d) and e) of figure 5.5. 

These issues make the simple legacy thermal detector unusable for the new project, 
as one of the requirements is being able to detect ind iv idua l persons in a larger area wi th 
more than a few people, for example i n a museum exhibi t ion hal l . Therefore, a new detector 
based on a completely different method has been chosen, designed and implemented to suit 
the needs of the new project. The following sections focus on image detection methods in 
general, and later, on the method chosen for this project. 

5.2 Object detection 

Object detection is in simple words a task of placing boxes around objects in an image and 
saying what those objects are. Humans are extremely good i n object detection, where on 
the other hand, computers struggled quite a lot historically. Even though object detection 
as a problem has been around since the sixties, the first actually good facial detector was 
released less than 20 years ago. The Viola-Jones a lgori thm [60], released i n 2001, was 
using hand-coded features that were fed into an support vector machine ( S V M ) classifier. 
The hand-coded features for facial detection would be positions of eyes, nose, mouth and 
their relation wi th respect to each other. The a lgor i thm performed well i n detecting faces 
matching wi th the hand-coded features, however, struggled w i t h detecting rotated faces or 
faces i n any other orientation. [46] 

HOG . t MT ' J tT 

(a) Viola-Jones algorithm (b) Histograms of Oriented Gradients 
(HOG) 

Figure 5.6: I l lustrat ion of the first facial detectors using hand-coded features and histograms 
of oriented gradients. (Source [46].) 
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In 2005, a new H O G - b a s e d detection algori thm was released. The histogram of oriented 
gradients ( H O G ) [19] was used as a feature descriptor, where each pixel of the image was 
replaced by a gradient showing the direction of decreasing pixel intensity w i t h respect 
to surrounding pixels. The image was then divided into squares and a l l gradients inside 
each square merged into a single most dominant gradient. Dur ing this process, an image 
was replaced by a simple representation of the essence of the image using gradients. The 
algori thm would then use a s imilar i ty metric to determine how close an image is to the 
object we are looking for by comparing their gradient patterns. These two techniques are 
i l lustrated in figure 5.6. [46] 

The biggest breakthrough came i n 2012, when the deep learning era began. The C N N 
based A lexNet [33] from A l e x Kr izhevsky outperformed every other solution at that time 
and won mult iple image classification contests. Convolut ional neural networks had been 
known since the nineties, however it has been only recently w i t h the immense increase 
of processing power and amount of data when the neural networks began to show their 
potential . The convolutional neural network in essence learns the feature descriptors on its 
own during the t ra ining process as opposed to the previous two methods i n which they had 
to be crafted by hand. 

These three algorithms, as described, correspond more to object classifiers, meaning, 
that they can te l l what the object i n an image is i f there is nothing but one object i n i t . It 
can not detect and classify mult iple objects i n a single image. This has however been proven 
to be possible by repurposing any image classifier. The classifier can sequentially classify 
every part of an image through a sl iding window, and detections wi th the highest confidence 
score, i n that case, represent the output of the detector. Th is approach is however extremely 
computat ional ly expensive. 

In 2014, the popular R - C N N object detector [23] was released followed by Fast R-
C N N [22] and Faster R - C N N [51] (2015), which were using the selective search technique 
instead of a sl iding window to create sets of bounding boxes that were later fed into the 
classifier to cut down the number of operations. E v e n though the R - C N N was the most 
accurate detector on the market at the time, it had to look from thousand up to hundred 
thousand times at a single image to perform the detection, and that was s t i l l very far from 
real-time. The R - C N N model is i l lustrated i n figure 5.7 and speed comparison wi th other 
models can be seen in table 5.1. 

R - C N N : Regions with CNN features 

1. Input 2. Extract region 3. Compute 4. Classify 
image proposals (~2k) CNN features regions 

Figure 5.7: I l lustrat ion of the R - C N N detector pipeline. (Source [23].) 

In 2015, there was a revolution i n the field of object detection wi th the new Y O L O 
algori thm which took a completely different approach and outperformed R - C N N and a l l of 
its variants. 
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Detector Pascal dataset m A P 2 1 % Speed 
D P M v 5 2 5 33.7 14 s/image 

R - C N N 66.0 20 s/image 
Fast R - C N N 70.0 2 s/image 

Faster R - C N N 73.2 7 image/s 
Y O L O v l 69.0 45 image/s 

Table 5.1: Speed and accuracy comparison of relevant object detectors in 2016. (Source 
[47].) 

5.3 Y O L O - You Only Look Once 

Y o u O n l y Look Once ( Y O L O ) is the state-of-the-art real-time object detection system 
originally presented by Joseph Redmon, Santosh Divva la , Ross Girshick and A l i Farhadi 
in 2015. W h e n compared to a l l other detectors at the time, it took a completely different 
approach. Instead of repurposing an image classifier and using it to classify different regions 
in the image, it uses a neural network that takes an image as an input and i n a single pass 
outputs regions w i t h detected classes and confidence scores for each region as well as class. 

The new approach required redefining parametrization of object detection. Every image 
is split into a grid, where each grid cell is responsible for predict ing several bounding boxes 
and confidence scores for each bounding box, saying, how sure the detector is that a certain 
bounding box actually contains an object, and if there is an object, what k ind of object it 
is. 

If the image is split into 7 x 7 grid, each cell is responsible for predict ing 2 bounding 
boxes and the detector should detect 20 classes, then the output of the neural network has 

7 x 7 x (2 x 5 + 20) = 1,470 values, 

where 5 is the to ta l number of parameters for each bounding box - namely x, y, width, 
height and confidence. Th is part icular example shows how the Y O L O version 1 is con­
structed. 

To summarize, the Y O L O v l detector is a neural network trained to predict tensors wi th 
1,470 values, which contain detected bounding boxes w i t h corresponding class probabilities 
and detection confidence scores a l l at once. W i t h this approach, the detector pipeline can 
be as quick as a classification pipeline. Moreover, since the whole image is processed at 
once, the model can incorporate global context of the image, which increases its accuracy. 
The detection process of the first version of Y O L O is i l lustrated i n figure 5.8. 

2 4 m A P - m e a n average p rec i s ion , p o p u l a r m e t r i c for m e a s u r i n g the a c c u r a c y of object detectors i n % 
2 5 D P M v 5 (Deformab le P a r t s M o d e l ve r s ion 5) - one of the base legacy de t ec t i on m o d e l s u s i n g the s l i d i n g 

w i n d o w a p p r o a c h 
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- — — 1 

Final detections 

Class probability map 

Figure 5.8: I l lustrat ion of the Y O L O v l detection process. (Source [48].) 

In 2016, the second version of Y O L O was released [49] featuring important improve­
ments that increase its overall accuracy. The detector finished t ra ining on images wi th 
higher resolution and changed the way of representing bounding boxes. The Y O L O v 2 uses 
dimension clusters to represent bounding boxes. Us ing unsupervised learning, the creators 
extracted 5 most common shapes and sizes of bounding boxes occuring in the V O C 2007 
image dataset 2 6 , and used them as templates for bounding boxes that each cell i n the 
Y O L O v 2 detector can detect. The new representation makes the problem easier to learn. 
The Y O L O v 2 also uses multi-scale t raining, meaning, that the input image size is not fixed 
throughout the t ra ining process but changes on the fly resulting i n a more robust detector, 
as it works better on differently sized images. 

The Y O L O v 3 [50] brought even more improvements i n 2018. One of them is the support 
for mult iple labels, as not every t ime are two different classes exclusive - like a pedestrian 
and a chi ld . More importantly, the Y O L O v 3 is using a new backbone (or feature extractor 
part of the network) Darknet-53. The network has 53 convolutional layers w i t h short-cut 
connections, al lowing for extraction of finer-grained information from the image, which 
significantly improves detection accuracy of smal l objects. Unl ike the previous versions, 
Y O L O v 3 makes bounding box predictions at 3 different scales further improving accuracy 
of the detector. 

In February 2020, the original author of Y O L O Joseph Redmon announced that he 
would stop his research i n the field of computer vision. O n his Twit ter account he wrote: 

"/ stopped doing CV research because I saw the impact my work was having. 
I loved the work but the military applications and privacy concerns eventually 
became impossible to ignore." — Joseph Redmon, 20. February 2020 2 ' 

This post raised a lot of questions about what we are actually doing here and what 
consequences it might have. It also proves just how good the Y O L O model is. Fortunately, 

2 6 P A S C A L V i s u a l O b j e c t Classes 2007 image dataset http://host.robots.ox.ac.uk/pascal/VOC/ 
voc2007/ 

2 7 T w i t t e r pos t f rom J. R e d m o n https://twitter.com/pjreddie/status/1230524770350817280?lang=en 
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our system uses thermal cameras just so that facial or person recognition is not possible, 
therefore, privacy is not i n danger i n this case. 

B y the end of A p r i l 2020, the fourth version of Y O L O [15] was released by Alexey 
Bochkovskiy and his team promising even better accuracy and speed, effectively dominat ing 
every other solution i n the field of real-time object detection. The creators performed 
an ablat ion s t u d y 2 8 to test and select the most effective t ra ining opt imizat ion methods, 
which can lead to huge improvements i n accuracy, yet, w i th no or min ima l addi t ional 
computat ional cost. 

The tested methods were mostly data augmentation techniques that could potential ly 
increase the descriptive power of the feature extracting part of the network. Some of the 
data augmentation methods are the following: edge map, flip, rotate, detexture, cutmix, 
mosaic, dropblock regularization and so on. A new activation function mish has been tested 
as well as other specialized techniques like cross stage partial connections or multi-input 
weighted residual connections. The optimizations also covered selecting the opt imal hyper-
parameters of the model like number of training steps, batch size, learning rate, momentum, 
weight decay or minibatch size. A s a result, the Y O L O v 4 is superior to a l l other object 
detectors in terms of both speed and accuracy, which can be observed i n figure 5.9. 

For the new person detector used i n this project, the Y O L O object detection model 
has been chosen. More information about the specific Y O L O implementat ion used i n our 
project is located in section 5.5 of this chapter. 

MS COCO Object Detection MS COCO Object Detection 
real-time 

10 30 50 70 90 110 130 0 10 20 JO 40 SO 60 70 SO 90 100 

FPS(VIOO) FPS(V'olla) 

Figure 5.9: Speed and accuracy comparison of different object detectors. (Source [15].) 

5.4 Training on a thermal dataset 

Every object detector requires a set of labeled images on which the detector can be tested, 
and most of the time, even trained i f the detector belongs to the category of supervised 
machine learning. Our chosen detector requires the labeled dataset for both t ra ining and 
testing. A labeled dataset contains images wi th information about objects we want to 
detect. This information is called labels or annotations, and there are different ways to 
store this information. A label stores information about: i n which image the object is, in 
which region of the image the object is and what the object is (which class). 

2SAblation study has i t s roots i n the field of e x p e r i m e n t a l neu ropsycho logy of the 1960s a n d 
1970s, where pa r t s o f a n i m a l s ' b r a in s were r emoved to s t u d y the effect tha t th i s h a d o n the i r be­
hav iou r . (Source: h t t p s : / / s t a t s . s t a c k e x c h a n g e . c o m / q u e s t i o n s/380040 / w h a t - i s - a n - a b l a t i o n - s t u d y -
a n d - i s - t h e r e - a - s y s t e m a t i c - w a y - t o - p e r f o r m - i t ) 
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5.4.1 Object annotation types 

There are several different labeling formats. Every labeling format supports different types 
of objects, can be used wi th different image processing technique and is stored i n a different 
way. Some formats support more types of objects, some are simpler and designed for a 
single purpose only. Some annotat ion formats may also be used in different disciplines than 
object detection. This subsection has been inspired by [24], [43]. 

(c) key-points or landmarks ( d ) p i x e l - w i s e segments 

Figure 5.10: Object annotation type examples. (Source [43].) 

Some of the most commonly used object types are the following: 

• Bounding boxes: simplest and most commonly used object type. For each object 
in an image, an enclosing border box is recorded. This object type is usually used for 
standard object detection. 

• Polynomial segments: objects do not always have to be enclosed in a rectangular 
box. This object type allows the object to be circumscribed by a more complex shape 
made of polygons. 

• Pixel-wise segments: an annotated object is described by a set of pixels that belong 
to i t . Th is type of label is usually used for semantic segmentation of an image, where 
the segmentation algori thm is t ry ing to classify each pixel into a part icular class of 
objects. W h e n compared wi th the previous techniques, the pixel-wise segmentation 
has the highest resolution. 

• Key-points: this k ind of annotation stores several interconnected points creating a 
skeleton of the object. Th is k ind of label is often used for facial expression detection, 
human body parts, poses and similar. 
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• Lines and curves: often used for t ra ining autonomous vehicle systems for detection 
of road lanes. 

Examples of these object annotation types are demonstrated i n figure 5.10. 

5.4.2 Annotation formats 

Object annotations may be stored using several different formats. The most common la­
beling formats are COCO, PascalVOC and YOLO. Each format supports different object types 
and has its specific way to store them. 

• C O C O Dataset Format: The C O C O format has been developed for the large, 
publ icly available annotated image set C O C O 2 9 . It supports several different object 
types and is usable for the broadest variety of d ig i ta l image processing tasks includ­
ing object detection, image segmentation, keypoint detection, image captioning and 
others. Annotat ions are a l l i n a single JSON file w i th the following structure: 

"info": { 
"description": "COCO 2017 Dataset", "year": 2017 

}, 
"licenses": [...], 
"images": [{ 

"file_name": "imgl.jpg", 
"height": 427, "width": 640, "id": 397333 

"annotations": [{ 
"category_id": 1, 
"area": 702.1057499999998, 
"id": 154235421, "image_id": 397333, 
"bbox": [473.07,395.93,38.65,28.67] 

H , 
"categories": [ 

{"supercategory": "person","id": l,"name": "person"} 
] 
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• P a s c a l V O C : Another commonly used annotat ion format is Pascal V O C . This format 
is very popular for object detection. Unl ike C O C O , the P a s c a l V O C format uses 
XML encoding, and annotations are not stored i n a single file, as instead, there is a 
dedicated annotat ion file w i t h labeled objects for each image. Another difference is 
the way how border boxes are represented. A bounding box i n the C O C O dataset 
format is represented by x, y of the top-left corner plus width and height, while the 
P a s c a l V O C format uses x, y of the top-left and bottom-right corners. The P a s c a l V O C 
annotation file has the following structure: 

1 <annotation> 
2 <filename>imgl.jpg</filename> <segmented>0</segmented> 
3 <size> 

C O C O image dataset h t t p : / / c o c o d a t a s e t . O r g / # h o m e 
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<width>640</width> 
<he ight>427</height> 
<depth>3</depth> 

</size> 
<object> 

<name>397333</name> <pose>Frontal</pose> 
<occluded>0</occluded> 
<difficult>0</difficult> <truncated>0</truncated> 
<bndbox> 

<xmin>473</xmin> 
<xmax>51 K/xmax> 
<ymin>395</ymin> 
<ymax>423</ymax> 

</bndbox> 
</object> 

</annotation> 

• Y O L O : The Y O L O annotation format is by far the most simple and easy to use, but 
it can be used to annotate only rectangular objects. A regular .txt p la in annotation 
file must be created for every image in the dataset w i t h the same file name as the 
image it stores annotations for. E a c h line of the annotat ion file represents one object 
and has the following pattern: 

i | <class_id> <x> <y> <width> <height> 

Coordinates x and y are referring to the top-left corner of the bounding box, so from 
this point of view, the notat ion is s imilar to the C O C O dataset format. Y O L O , 
however, has a l l 4 coordinates i n relative units w i t h respect to the image size. Th is 
means that x, y, width and height are a l l floating point numbers between 0 and 
1. c l a s s _ i d is an index of a user-defined class start ing at 0. Class translations are 
then placed i n a separate file and uti l ised by the specific image processing algori thm. 
The Y O L O implementat ion described later in this chapter requires a .names text file, 
where each line contains a class name. For example, the class name on the first line 
corresponds wi th c l a s s _ i d 0, the second line w i th c l a s s _ i d 1 and so on. 

5.4.3 Custom thermal dataset 

There are currently no pretrained Y O L O models for thermal data. The only way how to 
util ize the Y O L O object detector to detect people in thermal images is to create a custom, 
annotated, thermal dataset and use it for retraining the Y O L O detection model, which has 
been originally trained on the large C O C O image dataset. In other words, an extensive 
thermal image set had to be captured and manual ly annotated. 

The Y O L O v 4 documentation [14] suggests to have at least 2,000 images in the custom 
dataset for each class we want to detect. In order to construct the custom thermal dataset, 
two different thermal datasets were combined. The first one is the only publ ic ly available 
thermal dataset from F I L R and the second one was created using previously constructed 
thermal units w i th Lepton 3.5 thermal cameras. 
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F L I R ' s thermal dataset 

F L I R , as the world's largest company specializing in the design and product ion of thermal 
imaging cameras, offers a free thermal dataset 3 0 for a lgor i thm training usage. The dataset 
contains thermal images and video from the F L I R ' s high-end T A U 2 3 1 thermal camera 
mounted to the front of a car. The thermal images in the F L I R ' s dataset come from a 
significantly better device costing over 200 times more than the Lep ton 3.5. T h i s means 
that the data is of higher resolution and significantly different characteristics, and using 
only the F L I R ' s dataset would presumably yie ld poor results. 

Since the trained model would be used exclusively wi th the low-cost Lepton 3.5 camera 
module, it makes sense to combine the F L I R ' s thermal dataset w i th one captured using the 
Lepton 3.5 camera. This way it is possible to harvest features specific to the Lepton 3.5 
and also essential characteristics of people on generic high resolution thermal images. 

The F L I R ' s thermal dataset includes over 14,000 thermal images wi th 5 annotated 
classes i n raw Y 1 6 and normalized grayscale R G B 8 8 8 formats. Since we are specifically 
interested i n people, only thermal images containing people were selected. Tha t sums up to 
7,044 thermal images wi th 28,151 annotated person objects. A n example from the F L I R ' s 
thermal dataset is visible in figure 5.11. 

The F L I R ' s dataset is using the C O C O annotation format to store object annotations 
for images. Th is format is not supported by the Y O L O implementat ion that we are using 
in this project, and therefore, the annotations had to be converted into the Y O L O format 
using a custom script. 

Figure 5.11: Examples from the F L I R ' s thermal datset. (Source [8].) 

Lepton 3.5 custom dataset 

The tota l of 3 thermal units were deployed i n the Czech Na t iona l M u s e u m 3 2 in Prague. 
The cameras were capturing thermal images in two larger halls (15.8 x 5.7 meters) every 
minute during opening hours for over several months. A s a result, an extensive database 
of raw thermal images has been created. 

3 0 F R E E F L I R T h e r m a l Da ta se t for A l g o r i t h m T r a i n i n g h t t p s : / /www. f l i r . c o m / o e m / a d a s / a d a s - d a t a s e t -
f o r m / 

3 1 F L I R ' s T A U 2 t h e r m a l c a m e r a - p r o d u c t page h t t p s : / / w w w . f l i r . c o m / p r o d u c t s / t a u - 2 /  
3 2 C z e c h N a t i o n a l M u s e u m i n P r a g u e h t t p s : / / w w w . n m . c z / e n 
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Dur ing this process, the thermal units were behaving as independent units executing 
a script that was programmed to capture and save a single thermal frame at a time. The 
script is located i n the scripts directory of the v4121epton3 l ibrary under the name of 
capture_periodical .py. W h e n the script is interpreted by the Py thon3 interpreter, it 
opens the preconfigured S P I device and reads out one frame in the raw Y 1 6 format. The 
thermal image is then saved under the current t imestamp name i n both - . t i f f format 
(raw) and .png format after normalizat ion. 

The P y t h o n interpreter is very slow on its own, and when combined wi th many system 
calls to interact w i th the S P I device, it is unusable for continuous capturing of the thermal 
feed. Cap tur ing a single frame is however possible. The script has the tota l of 45 seconds 
to pu l l and save each thermal image. If it fails to do so before the timeout runs out, the 
script logs an error and quits. 

The script is designed for a single run at a time, and therefore, has its own log file 
where it logs successfully saved frames and any errors that might have occurred, including 
timeouts which often mean that a camera froze and has to be rebooted. 

The script has been scheduled to run every minute during opening hours of the Museum, 
which is from 10 to 18 hours. The ideal way to schedule such task is to use the bui l t - in 
l inux tool cron 3 3. Cron is a l inux daemon to execute scheduled commands. Scheduling a 
command i n l inux can be done by running 

i | crontab -e 

and inserting a scheduling configuration as a new line. In order to run the sequential capture 
script every minute every day from 10 to 18 hours, the following configuration has been 
inserted: 

i | * 10-18 * * * python3 /home/pi/v4121epton3/scripts/capture_periodical.py 

Scheduled commands can be listed using the crontab -1 command. 

F rom the captured thermal dataset, the tota l of 6,372 images were selected for annotation. 
Rejected images were often either empty or overcrowded scenes, which were not suitable 
for manual annotat ion process. O n these 6,372 selected images, I annotated 25,477 person 
objects by hand. The annotating process took about a man-week of work. 

For labeling the images, the labelling too l has been used. Labelling is a free graphical 
image annotation tool support ing P a s c a l V O C and Y O L O annotation formats. Graphica l 
interface of this tool is shown i n figure 5.12. 

3 3 c r o n ( 8 ) - l i n u x m a n page https: //linux. die. net/man/8/cron 
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Figure 5.12: Example of the Labelling graphical interface. 

Merging the F L I R ' s and the custom thermal dataset resulted i n having 13,416 thermal 
image files w i th 53,628 annotated person objects. Th is amount is significantly more than 
the m i n i m u m of 2,000 suggested by the Y O L O v 4 manual, which is a good predisposition 
for t raining a r ig id and reliable object detector. 

5.5 Darknet implementation of Y O L O 

For t ra ining the Y O L O object detection models, the official Y O L O v 4 Darknet [14] imple­
mentation has been chosen. It is wri t ten i n C and C U D A and has been forked from the 
original Y O L O b r a n c h 3 4 created by Joseph Redmon and A l i Farhadi . The fourth version 
of the Y O L O real-time object detection system is however implemented and maintained by 
Alexey Bochkovskiy i n his forked repository [14]. B y the time I was choosing an object de­
tector, the Y O L O v 4 detector had been released for only 2 weeks and was already raising a 
wave of enthusiasm. A l so at that t ime, the only Y O L O v 4 implementat ion was the Darknet 
one, which was perfectly fine, as it is well documented, remarkably fast, allows for G P U 
acceleration and contains a step-by-step official manual on how to t ra in Y O L O models on 
custom datasets. 

5.5.1 Transfer learning 

The Darknet framework comes w i t h pretrained Y O L O models, which have been trained on 
the C O C O image dataset to detect up to 80 classes from regular color images. A Y O L O 
model can not be used for thermal data straight away for obvious reasons. O n the other 
hand, it is also not necessary to t ra in the Y O L O model from scratch, which would require 
a huge dataset, computat ional resources and plenty of time. 

In this case, the pretrained model can be retrained and repurposed for our specific task 
- that is to detect person objects in thermal images. The retraining process is often called 
transfer learning. Repurposing pretrained models is a common process, as it saves a 
large por t ion of computat ion and time when compared wi th t ra ining from scratch. 

3 4 D a r k n e t : O p e n Source N e u r a l N e t w o r k s i n C h t t p s : / / p j r e d d i e.com / d a r k n e t / 
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Most detector models based on convolutional neural networks can be simplified into 
two sections. The first section, which receives the input image, creates and extracts feature 
maps from the image, which are then used for the detection itself i n the second section. 
These feature maps are pieces of information about the visual world - like ind iv idua l in ­
terconnected shapes, color changes, contrast transitions, context of an object and so on. 
Analogical ly, a human seeing a round object of the skin color, w i th two evenly spaced eyes 
and wavy shaped red-colored lips underneath classifies the object as a human head. It is 
those l i t t le details and their context (distance, ratios, colors), which determine the classifi­
cation result. These details correspond to the feature maps extracted i n the first „section" 
of detection or classification models. 

The idea behind transfer learning is that a pretrained network trained on a large dataset 
has bui l t - in itself a generic model of the essence of the visual world. Ret ra in ing takes 
advantage of these learned feature maps and continues t ra ining from the point after the 
first section has converged. This significantly reduces t ra ining time, necessary amount of 
t ra ining images and improves overall accuracy. B y transfer learning, we effectively t ra in 
only the last part of the model . A s the model already understands the essence of an image, 
the t ra ining focuses only on the custom task, which is in our case person detection on 
thermal images. 

The Darknet repository contains a step-by-step m a n u a l 3 5 on how to perform transfer 
learning and retrain pretrained Y O L O models for detection of custom objects. This manual 
has been used to prepare the custom training dataset for transfer learning. 

5.5.2 Preparing custom dataset for training in Darknet 

From the previous step, there are 13,416 thermal images and 13,416 annotation files i n the 
same folder. For t ra ining the detector, the R G B 8 8 8 normalized grayscale thermal image 
format has been selected. 

Image format 

The Darknet framework is able to work wi th single channel images, however, this feature 
must be enabled i n the source code and the framework must be recompiled. We decided not 
to go down this path, as the community had been reporting issues, bugs and interestingly 
loss of accuracy when using a single channel input data. Even though the Y O L O pretrained 
model has been trained on a color dataset, it has been proven that it can well handle gray 
scale images as well . In our case, the model is being fed by gray scale images w i t h three 
channels, meaning, that each channel of every pixel has the same 8-bit value. 

A s a consequence to this decision, normalized 8-bit gray scale images have been selected 
from the F L I R ' s thermal dataset. F r o m the custom Lepton 3.5 thermal dataset, the raw 
Y 1 6 images had to be normalized and converted to 8-bit gray scale . jpg. Since it is desired 
to uti l ize the feature map from the pretrained Y O L O model as is, it only makes sense to 
provide the model w i th images visual ly as close as possible to human readable images -
images on which a human could perform the detection task quickly and accurately. 

If we were to input raw Y 1 6 thermal images, the model would probably first have to 
adjust the feature map and develop the image normalizat ion function i n order to start 
„seeing" the image as it was trained to wi th the regular color dataset. In order to prevent 

3 5 H o w to t r a i n (to detect your c u s t o m objects) u s i n g yo lov4 m a n u a l h t t p s : / / g i t h u b . c o m / A l e x e y A B / 
d a r k n e t # h o w - t o - t r a i n - t o - d e t e c t - y o u r - c u s t o m - o b j e c t s 
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this, and therefore speed up the convergence and increase accuracy, the images fed into the 
model are preprocessed by a custom normalizat ion function. 

T h e r m a l image normalization functions 

R a w thermal images in the Y 1 6 format have the theoretical range of pixel values from 0 to 
655.35 K . For a common room temperature scene, this range is too wide and only a small 
port ion of the available pixel values are used. W h e n displaying such raw image, the scene 
appears uniform wi th minor color differences. For displaying or feeding the image into the 
detection model, it is better to increase its dynamic range by first c l ipping temperatures 
outside some reasonable range that are not of interest, and then applying a normalizat ion 
algori thm. Some of the most common normalizat ion algorithms are listed bellow: 

• Linear normalization: Linear normalizat ion is the simplest a lgori thm for dynamic 
range expansion. It takes the m i n i m u m and m a x i m u m pixel value from the image and 
linearly spreads a l l values in between into the new range. If we a im for 8-bit images, 
the new pixel values are between 0 and 255. 

• Histogram equalization ( H E Q ) : His togram equalization is a bit more complex 
normalizat ion technique. It solves one problem of the linear normalizat ion. If there 
is a relatively cold scene wi th a smal l very hot object, a l l p ixel values corresponding 
w i t h temperatures between the cold scene and the hot object are left unused. Th is 
results i n a smal l white object on a monoli thic black background. 

His togram normalizat ion is one of the best methods for image enhancement without 
the loss of information. It spreads out more frequent pixel values, flattens the his­
togram. This results i n areas of lower local contrast to gain higher contrast. It is 
a nonlinear normalizat ion yielding unrealistic images, however, it is great for object 
detection as it highlights outlines of objects. 

• Contrast l imited adaptive histogram equalization ( C L A H E ) : C L A H E is an 
advanced method that is not using a single global histogram but normalizes several 
local histograms throughout the image. In an image wi th two large parts - one cold 
and other hot - the adaptive a lgori thm increases the contrast i n both areas separately 
revealing the finest details. 

The regular adaptive histogram equalization algori thm tends to overamplify regions 
wi th near constant p ixel values. The contrast l imi ted variant reduces this noise ampl i ­
fication problem. The C L A H E algori thm l imits the contrast amplif ication by cl ipping 
the histogram above a predefined threshold and dis t r ibut ing the values above equally 
into every b in of the histogram. This method yields the most desirable results and 
is also implemented in the Lepton camera itself under the automatic gain control 
( A G C ) feature name. Th i s feature can however be used only for R G B false color 
camera output. 

A l l these three normalizat ion algorithms are implemented using numpy and OpenCV in 
the ThermoDetection/ThermoHelper.py file i n the second project's repository^ 6 containing 
the detection system. The comparison between normalizat ion algorithms is shown i n figure 
5.13. 

3 6 t h e r m o - p e r s o n - d e t e c t i o n - de t ec t i on sy s t em gi t r e p o s i t o r y h t t p s : / / g i t l a b . c o m / C h a r v N / t h e r m o -
p e r s o n - d e t e c t i o n 
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(a) Linear normalization (b) Histogram equalization (c) C L A H E 

Figure 5.13: Compar ison of normalizat ion algorithms for increasing dynamic range. 

5.5.3 Configuring a custom Y O L O model 

This subsection summarizes steps required to prepare the custom thermal dataset for trans­
fer learning according to the Darknet Y O L O v 4 m a n u a l 3 5 . 

1. Clone and instal l the Darknet framework from repository [14]. 

2. Create a copy of cfg/yolov4-custom.cfg model configuration file into the cfg/ 
yolov4-thermal.cfg. 

3. A l t e r the cfg/yolov4-thermal.cfg configuration file for the custom dataset as fol­
lows: 

(a) Set batch=64. 
(b) Set subdivisions=32. The manual suggests 16, however, w i th 6 G B of G P U 

R A M , the graphics card was running out of memory. 

(c) Set max_batches=4000. It is recommended to set the number of iterations to 
2,000 x the number of classes, but not less than 6,000 or number of images for 
t raining. Since we have around 13,000 images in total , the parameter has been 
set to 12,000 at first, but after a few experimental runs, 4,000 iterations were 
well enough i n this case. More on that later. 

(d) Set steps=3200,3600 which correspond to 80 and 90 % of max_batch.es param­
eter. 

(e) Set the network size to width=320 height=320. The dimension must be a mul­
tiple of 32, images from the Lepton 3.5 have resolution of 160 x 120 but F L I R ' s 
thermal dataset contains images of resolution 640 x 512 pixels. A reasonable 
size of the network in between has been chosen, so that resources are not wasted 
on a large network, yet, detailed information from the F L I R ' s dataset are not 
lost. 

(f) Set classes=l for each of three [yolo] layers in the config. 

(g) Set f ilters=18 for each of three [convolutional] layers before every [yolo] 
layer. The recommended value is (the number of classes + 5) x 3. 

4. Create a data/thermal .names p la in text file containing class names. Each line con­
tains a single class name, the first line corresponds to a c l a s s _ i d 0. In our case, the 
file only contains the word person on the first line. 
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5. Create a cfg/thermal. data p la in text file w i th the following content: 

4 

2 

names 

train 
valid 

backup 

classes 1 
data/thermal.train.txt 
data/thermal.test.txt 
data/thermal.names 
backup/ 

backup is the directory where the t ra ining checkpoints of the model w i l l be stored, 
t r a i n and v a l i d parameters point to text files w i th image locations intended for 
t ra ining and testing respectively. 

6. Place a l l images and annotat ion files from the merged thermal custom dataset into 
the data/thermal directory. 

7. Create data/thermal.train.txt and data/thermal.test.txt files containing links 
to a l l image files i n the data/thermal directory split by a reasonable ratio. We have 
chosen 80 % training and 20 % testing. 

8. Download pretrained weights for the specific Y O L O model according to the configu­
ration file. For Y O L O v 4 template, the yolov4.conv. 137 weights file is suggested. 

For purposes of this project, steps 1, 2 and 8 were repeated to prepare other Y O L O mod­
els for comparison. In total , yolov4, yolov3-spp and yolov3-tiny models were prepared 
for transfer learning wi th the custom thermal dataset. After the configuration process, the 
Darknet directory contains new files as demonstrated i n l is t ing 20. 

I I— thermal.data 
I I— yolov3-spp-thermal.cfg 
I I— yolov3-tiny-thermal.cfg 
I I — yolov4-thermal.cfg 
I — data 
I I— thermal.names 
I I— thermal_all_test.txt 
I I— thermal_all_train.txt 
I I — thermal 
I I — imgl.jpg 
I I— imgl.txt 
I I — img2.jpg 
I I — img2.txt 
I I — (...) 
I— yolov4.conv.137 
I— darknet53.conv.74 
I— yolov3-tiny.conv.15 

Lis t ing 20: Tree of new files created during the configuration of the custom Y O L O model 
in the darknet directory. 

darknet 
backup 
cfg 
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5.5.4 Training custom Y O L O models on thermal images 

The t ra ining of the Y O L O detection models has be performed on a laptop wi th specifications 
listed i n table 5.2. 

C P U Intel® C o r e ™ i7-9750H C P U @ 2.60 G H z 12 x 

R A M 16 G B D D R 4 @ 2,666 M H z 
Storage 1 T B S S D N V M e 

Graphics 1 x N V I D I A GeForce G T X 1660 T i 
Graph ica l memory 6 G B G D D R 6 

N V I D I A Dr iver version 435.21 
N V I D I A C U D A version 10.1 

N V I D I A C U D A compute capabil i ty 7.5 (Turing) 
N V I D I A c u D N N version 7.6.5 

Table 5.2: Specifications of a laptop used for t ra ining custom Y O L O models. 

In order to properly uti l ize the power of this machine, it was important to edit the 
Darknet 's Makefile before compilat ion. The modified parameters in the Makefile are 
shown i n l is t ing 21. 

GPU=1 
CUDNN=1 
CUDNN_HALF=1 
0PENCV=1 
AVX=1 
0PENMP=1 

# GeForce RTX 2080 Ti, RTX 2080, RTX 2070, Quadro RTX 8000, Quadro RTX 6000, 
^ Quadro RTX 5000, Tesla T4, XN0R Tensor Cores 
ARCH= -gencode arch=compute_75,code=[sm_75,compute_75] 

Lis t ing 21: GPU-spec i f ic changes i n the Darknet 's Makefile. 

Setting the graphics specific compute capability using the ARCH parameter to 7.5 made 
the largest impact on performance. Setting the computat ion capabil i ty higher than 7 makes 
the nvcc C U D A compiler uti l ize mixed-precision on tensor cores of the G P U , which can 
improve performance more than 3 times. D u r i n g some testing, the G P U version of Darknet 
was measured to be up to 6 times faster than the C P U version. 

After the configuration of the custom thermal dataset and Y O L O models, the t ra ining 
is started by running the following command: 

| ./darknet detector train cfg/thermal.data cfg/yolov4-thermal.cfg yolov4.conv.137 

Current information about the t raining process is displayed in real t ime i n a dedicated 
window. The course of t ra ining is represented by a graph of loss for current i teration. 
The information panel also contains: current iteration, maximum iterations and estimated 
remaining time. Addi t ional ly , the mean average precision m A P metric can be turn on 
and displayed i n real t ime by using the -map argument. A loss function represents the 

63 



current error of the model on the t ra ining data and should decrease wi th iterations. The 
mean average precision is a widely used representative metric for measuring wellness and 
accuracy of the model on testing data - here, the higher the better. The t ra ining process 
saves weights every 1,000 iterations into the backup folder. After the t ra ining is completed, 
the most recently updated loss graph is stored as a detailed look on the t ra ining process. 

After t ra ining is complete, one model should be selected from a l l the checkpoints along 
the way - the most accurate yet general. The Darknet 's manual recommends to select 
model weights from a so called early stopping point as demonstrated i n figure 5.14. This 
way we avoid selecting an overfitted model. 

EctM-
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" • — — — 

0 Early Number o f 
stopping Iteration* 

Figure 5.14: Loss development graphs on t ra ining and testing data throughout iterations 
demonstrating the problem of overfitting the model . (Source [14].) 
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Figure 5.15: G r a p h of performance of the yolov3-tiny-thermal model on testing data 
throughout iterations. 
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The first t raining session was performed on the yolov3-tiny-thermal w i th the size 
of 320 x 320 and 12,000 recommended iterations. The tiny model was chosen because 
it was designed to run on embedded devices and is very small , thus, really fast to train. 
Its t ra ining chart is visible i n figure 5.16 as well as its accuracy development throughout 
iterations i n figure 5.15. 

1200 2400 3600 4800 6000 7200 8400 9600 10800 12' 
current avg loss = 1.3796 iteration = 1:2000 appro*, time left - 0.02 hours 

Press 's' to save : chart.png - Sarved Iteration number In efg max_batehes-12000 

Figure 5.16: Loss and m A P development graphs throughout t ra ining of the 
yolov3-tiny-thermal model. 

F rom the t ra ining graphs, it is noticeable that from iteration 2,000 onward the loss 
function stops decreasing and the mean average precision metric stops rising. In fact, it 
does not get significantly higher even after twice as much iterations. W i t h this being said, 
the number of iterations can be safely reduced to around 4,000 iterations. In this t raining 
session, the model weights from iteration 2,000 (or 3,000) would be used as output i f we 
wanted to follow the early stopping point strategy in order to achieve the highest level of 
generalization (avoid overfitting). 

The number of iterations required for the full t raining of a Y O L O model most l ikely 
correlates w i t h the dataset being used, or the fact that a l l used Y O L O models behave 
quite alike, which is observable i n figure 5.17. The loss graphs of the other models -
yolov4-thermal and yolov3-spp-thermal - show similar behavior, therefore, it is safe 
to assume that 4,000 iterations is enough for every one of them. Th i s way we can set the 
number of iterations to 4,000 and experiment w i th the size of the models i n order to find the 
best performing one. Fi rs t ly , a l l three different types of the Y O L O model has been trained 
having the same size. F r o m these three models, yolov4 performs the best, so experiments 
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wi th larger model size have been done only for the Y O L O v 4 object detector. The max imum 
size of the Y O L O model trainable using the reference computer is 512, which requires just 
under 6 G B of graphics memory. 
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Figure 5.17: Loss development graphs of custom Y O L O detection models during the first 
4,000 iterations. 

Tra in ing of the neural networks was surprisingly fast, most l ikely because the detector 
was trained only for one class and because of the G P U acceleration w i t h the compute 
capability 7.5. 

Complete characteristics of each custom Y O L O model trained on the thermal dataset are 
summarized i n tables 5.3 and 5.4. F r o m these three detectors, the one based on y o l o v 4 , 
is the fastest and yields the best results. The y o l o v 4 - t h e r m a l - 3 2 0 object detector has 
therefore been chosen as the flagship for person detection in this project. The model w i th 
size 320 x 320, even though has lower m A P , has higher precision and seems more reliable 
and accurate on thermal images from the Lepton 3.5 camera, as the larger models would 
sometimes tend to incorrectly detect smal l objects, for example an a rm of a person can 
sometimes get detected as a person far away from the camera. 

F e a t u r e y o l o v 3 - t i n y y o l o v 3 - s p p y o l o v 3 - t i n y y o l o v 3 - s p p 
Size 160 x 160 160 x 160 320 x 320 320 x 320 

Stopping i teration 2,000 2,000 3,000 2,000 
Detection F P S 8.70 6.70 8.70 6.62 

Tra in ing t ime [hours] 0.25 2.1 2.5 6.3 
Precision 0.40 0.69 0.67 0.80 

Reca l l 0.38 0.61 0.60 0.76 
F l - score 0.39 0.65 0.63 0.78 

Average IoU 27.09 % 49.69 % 47.53 % 58.33 % 
M e a n average precision 24.38 % 57.74 % 56.21 % 77.51 % 

Table 5.3: Results and characteristics of each custom Y O L O v 3 detection model trained for 
4,000 iterations on the custom thermal dataset. 
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Feature yolov4 yolov4 yolov4 
Size 320 x 320 416 x 416 512 x 512 

Stopping i teration 2,000 2,000 2,000 
Detect ion F P S 8.70 8.70 8.70 

Training t ime [hours] 5.2 5.9 7.8 
Precis ion 0.87 0.85 0.84 

Reca l l 0.80 0.87 0.90 
F l - score 0.83 0.86 0.87 

Average IoU 66.30 % 66.19 % 64.58 % 
M e a n average precision 85.66 % 89.98 % 91.50 % 

Table 5.4: Results and characteristics of each custom Y O L O v 4 detection model trained for 
4,000 iterations on the custom thermal dataset. 

5.6 Usage of the trained Y O L O detector 

The result of the transfer learning is a model trained to detect persons on thermal images. 
F rom the three trained models, the best one has been chosen to be used in this project. The 
model is represented by two files: yolov4-thermal.cfg and yolov4-thermal.weights. The 
yolov4-thermal.weights file is obtained from the backup directory, where a l l intermediate 
checkpoints created during t ra ining are stored. 

These two files can be easily used for detection using the DNN module of the O p e n C V 
library. The D N N module implements forward pass (inferencing) w i th deep networks, 
pretrained using deep learning frameworks like Caffe, TensorFlow, Torch or Darknet . The 
D N N module has been support ing Y O L O models trained by the Darknet framework for 
a long t ime, however, the Y O L O v 4 was added to the list of supported networks only 1 
day before I considered using O p e n C V for the detection itself. Consequently, the O p e n C V 
l ibrary had to be compiled from sources i n order to have the most recent updates including 
the Y O L O v 4 support. 

The P y t h o n code in l is t ing 22 demonstrates the simple usage of the retrained custom 
Y O L O v 4 thermal detector using the D N N module of the O p e n C V library. 

import cv2 

yolo = cv2.dnn_DetectionModel(yolov4-thermal.cfg, yolov4-thermal.weights) 
yolo.setlnputSize(width = 160, height = 160) 
yolo.setInputScale(1.0 / 255) 

classes, confidences, boxes = yolo.detect(img, confThreshold=0.1, 
•-f nmsThreshold=0.4) 

Lis t ing 22: Demonstrat ion of the D N N module of O p e n C V l ibrary performing detection on 
an image using the custom Y O L O v 4 thermal detector. 

The D N N module and the way it operates has been abstracted into the YoloDetector 
class i n the ThermoDetection/YoloDetector.py file of the thermo-person-detection 
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repos i tory 3 7 . The class automatical ly loads the custom Y O L O v 4 model and can be just 
imported and used for the detection. 

The conf Threshold parameter sets a confidence threshold. Based on this threshold, 
the detector filters out potential objects w i t h the confidence score less than 0 . 1 . The 
nmsThreshold (non-maximum suppression threshold) parameter is used to reduce the num­
ber of proposed objects that are overlapping up to a certain level. The detector often 
proposes mult iple objects of the same class that are just sl ightly misaligned, which creates 
duplicate detections. A l l of these proposed detections are i n reality a single object. The 
non-maximum suppression algori thm calculates the intersection over union (IoU) of every 
two proposed objects, then, if the calculated IoU is larger than a specific threshold, the 
proposal w i th smaller confidence score is removed. [16] A n exaple of the non-maximum 
suppression algori thm i n action can be seen i n figure 5.18. 

Figure 5.18: Example of the non-maximum suppression ( N M S ) algori thm in action. (Source 
[16].) 

The Darknet l ibrary can be compiled into a shared l ibrary wi th a python binding, 
however, using it inside the Lep ton 3.5 client is not as neat and clean as using the D N N 
module of the O p e n C V library. The Darknet approach is definitely a way to go for high 
performance use cases. The Lepton 3.5 camera however has an effective frame rate of only 
8.7 F P S , so detection speed is not crucial in this case. The C P U version of O p e n C V used 
to slow down the live stream wi th the detection about 1 F P S , however, the most recent 
O p e n C V update wi th Y O L O v 4 optimizations solved the throt t l ing completely, and the live 
thermal feed wi th the Y O L O v 4 detector is at full speed. 

Interestingly, the O p e n C V l ibrary compiled to run on a G P U is i n this case slower and 
gives out only about 6.3 frames per second. I at tach the speed reduction to the fact that 
the O p e n C V has to frequently copy a smal l amount of data back and forth between the 
graphics and main memory. 

The YoloDetector class has been used i n an upgraded lepton3client implemented 
in the lepton3client_detect .py file. The script connects to a remote Lepton 3.5 server 
and every frame it receives runs through the custom Y O L O detector. Detected objects are 
highlighted i n the image shown to the user inside an O p e n C V window i n real time. 

3 7 t h e r m o - p e r s o n - d e t e c t i o n - de t ec t i on sy s t em gi t r e p o s i t o r y h t t p s : / / g i t l a b . c o m / C h a r v N / t h e r m o -
p e r s o n - d e t e c t i o n 
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The detector proved itself very well . W h e n compared w i t h object detection models, the 
Y O L O v 4 is the state-of-the-art real-time detector. O u r custom Y O L O thermal detector 
is fast, has a remarkable accuracy and solves almost a l l problems that the legacy thermal 
detector based on t r i v i a l image processing had. It deals well w i th larger groups of people, 
occlusions and eliminates false detections of warm objects like radiators, T V s and so on. 
The thermal reflections are however s t i l l problematic and there is no easy fix for that. The 
Y O L O v 4 detector does a surprisingly good job even for a very complex scenes that poses 
a real challenge even to humans. A side by side comparison w i t h the legacy detector can 
be seen in figure 5.22. 

7 0 



Chapter 6 

Scene reconstruction 

The detection process yields bounding boxes around detected people represented by image 
coordinates. The next step is to create an abstraction of the environment monitored by 
the camera, and then, translate each detected object into an approximate locat ion i n the 
model of the environment. Th is chapter describes the implemented scene abstraction and 
explains the solution to the problem of how to programmatical ly compute correspondence 
between image coordinates of a bounding box and 3D coordinates in the scene model. 

Theoret ical parts of this chapter are almost identical to those i n the bachelor's thesis 
[18] (section 5.3) and have been taken over. The implementat ion part has been however 
revised completely wi th the exception of the mathematics behind the theory. Changes to 
the implementat ion have been forced by the fact that the output of this project should 
be a system capable of u t i l iz ing mult iple thermal cameras to compute somewhat accurate 
locations of people in a complex environment. The old implementat ion was capable to 
project only into a simple rectangular plane from a single camera. 

6.1 Projecting objects from image to 3D scene model 

In order to approximate coordinates of an image object i n world space, it is necessary to 
understand the camera location and orientation i n world space. K n o w i n g the pose of the 
camera allows us to reconstruct the 3D scene and display the camera and detected objects in 
it. The camera pose estimation problem is often referred to as Perspective-n-point problem 
or PnP. 

After obtaining the pose of the camera - more specifically its rotat ion and posit ion 
(translation) - it is possible to cast rays from the camera origin into world space using pixel 
coordinates of the detected bounding boxes, and therefore, approximate their locat ion in 
the monitored environment. 

The knowledge used to write this section comes from [27], [36], [56], [57], [39], [20], [38], 
[41], [56], [59] and [17]. 

6.1.1 Perspective-n-point problem 

The perspective-n-point problem ( P n P ) is a problem of estimating the pose of a calibrated 
camera. B y pose, we understand the camera posit ion and orientation wi th respect to 
another coordinate system. We w i l l represent the camera pose by rotat ion matr ix R and 
translat ion vector t. Solving the P n P problem requires pairs of corresponding 3D to 2D 
(world to image) mapping points. G i v e n those mapping points, estimating the pose is a 
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matter of solving a system of linear equations. A t least 4 pairs of points are required to find 
a solution. The perspective-n-point problem can be expressed by equation 6.1, which comes 
from the perspective projection (world to screen or world to image transformation). 

Pi = K [ R | t ] P , (6.1) 

where P i is an image point (2D), K is a mat r ix of intrinsic camera parameters, R is a 
rotation matr ix , t is a translation vector and P w is a world point (3D). 

The expanded form of equation 6.1 can be found in equation 6.2. 

x% fx 7 Cx roo rni ro2 tx 
Vi = 0 fy Cy n o rn ty 

l 0 0 1 r20 ''21 T22 tz 

xw 

JJw 
zw 
1 

(6.2) 

where the fx and fy are focal lengths, cx and cy are center point coordinates of the 
image (principal point) and 7 is axis skew (usually assumed 0). 

The [R|t] mat r ix is usually extended into a single 4 x 4 matr ix for the sake of convenience 
(equation 6.3). Th is matr ix allows to project points from world to camera space (coordinate 
system), and thus, is sometimes referred to as world to camera, world to view or s imply 
view matr ix . 

[ R I t 

TOO m ''02 tx 
n o rn ''12 ty 

T20 ''21 T22 tg 

0 0 0 1 

(6.3) 

The mat r ix of intrinsic camera parameters K represents the transformation of a point 
from camera to screen (or alternatively image) space. The mat r ix can be assembled from 
known camera parameters such as resolution and field of view or focal lengths (more on 
that later). 

B y plugging image points (2D) and corresponding world points (3D) into equation 6.2, it 
is possible to compute rotat ion and translat ion vectors, and therefore construct the world 
to camera or view mat r ix (6.3) that can be used to transform points from world into 
camera space. 

6.1.2 Solving P n P problem using O p e n C V 

B y solving the perspective-n-point problem, it is possible to determine the rotat ion and po­
sit ion of the camera in world space based on pairs of 3D world and 2D corresponding image 
coordinates. The pose of the camera can be calculated using the function cv2 . solvePnPO 
or cv2 . solvePnPRansac () i n the O p e n C V library. [38] The function takes, along wi th the 
mentioned 2D and 3D mapping points, also the intrinsic camera mat r ix K and distort ion 
coefficients. 

K 
fx 7 Cx 
0 fy Cy 
0 0 1 

(6.4) 

The intrinsic camera matr ix (equation 6.4) can be constructed wi th focal length i n each 
axis and usually camera resolution - wid th x and height y. In this case, the focal lengths 
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fx, fy are calculated from the horizontal and vert ical field-of-view ( F O V ) , which are known 
parameters of the Lep ton 3.5 camera. 

For the intrinsic camera parameter mat r ix K , we also need the pr inc ipal point (or center 
point) cx, cy, which is a relative center point to the image origin. In equation 6.5, the center 
point is calculated using the camera image resolution x and y. 

x 

2 
y 
2 

(6.5) 

fx 
tan ^ fov 

(6.6) 

fy tan l'for 

The variable 7 represents the axis skew causing shear distort ion i n the projected image. 
For simplicity, we assume 7 = 0. In this project, we are also not taking into count radial nor 
tangential distort ion of the camera, which means that we keep the distort ion coefficients 
equal to 0. 

W i t h the world points, image points, intrinsic camera parameters and distort ion coef­
ficients, the cv2.solvePnP() function returns the rotation and translation vectors of 
the camera, which represent its pose. 

F rom the rotat ion vector, it is possible to construct a rotation mat r ix using the Ro-
drigues' a l g o r i t h m 3 8 , and after that, express the whole transformation from world to cam­
era space using a single matr ix - the world to camera matr ix . The Rodrigues ' a lgori thm 
is also available in the O p e n C V l ibrary as cv2.Rodrigues(). 

6.1.3 Reversing world to screen transformation 

The world to camera matr ix , when combined wi th the intrinsic parameter matr ix , rep­
resent the complete world to screen transformation. This transformation can be reversed, 
which allows for points to be projected from the image back to world space. To reverse the 
transformation, equation 6.1 (or 6.2) needs to be rearranged. The rearranged form can be 
seen in equation 6.7. 

r r - 1 - R 1 t 
0 1 

K " 1 (6.7) 

where — R 1 • t can be expressed as in equation 6.8. 

R " 1 t = -
m ro2 

-1 

R " 1 t = - n o rn ty 

T20 r-2i T22 
(6.8) 

Rodrigues' rotation formula - a l lows to c o m p u t e a r o t a t i o n m a t r i x f rom a n ax is -angle represen ta t ion 
( ro t a t i on vec to r ) . 
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Since the rotat ion matr ix R is an orthogonal matr ix wi th its determinant equal to 1, 
its inverse is equal to its transpose. 

R 1 = R T 

The rearranged equation 6.7 describes the process of a point transformation from im­
age space back to world space. The intrinsic camera mat r ix inverse K _ 1 represents the 
transformation from screen (image) space into camera space. Aga in , a single 4 x 4 mat r ix 
can be assembled to simplify the transformation from the camera coordinate system to the 
world coordinate system. This matr ix would be called camera to world mat r ix and is the 
key to reverse-projecting points from the image to the world coordinate system. 

It is important to note that projecting points from world space (3D) to screen space 
(2D) always causes a loss of one dimension (depth). W h e n reverse-projecting a point from 
image space of a single camera, it is impossible to determine the original world point, as 
infinite number of world points w i th varying depth gets projected into that single image 
point. In other words, for any image point, a line exists in the scene model. 

For our use case, it would be helpful to obtain a single point i n world space instead of 
a line. For any image point that we want to reverse project we can cast a ray in world 
space from the camera origin and look for interesting intersection points i n the scene. The 
ray is effectively a line i n the world coordinate system whose a l l points get projected into 
the same one image point. If we find an intersection of this ray wi th an interesting other 
object in world space - for example the ground plane wi th the th i rd coordinate equal to 0 
- such intersection point may be declared as the result of the reverse transformation. This 
means that for any image point we are able to assign a single point i n world space. This is 
part icularly useful for estimating locat ion of objects from a single camera. This is of course 
only possible provided that we have an addi t ional information about those objects - for 
example that those objects are people and they stand on the floor. 

6.1.4 Reverse projection process of an image point 

For any image (2D) point P i we want to reverse-project into a single world 3D point P , 
the following steps are preformed: 

1. M u l t i p l y the inverted mat r ix of intrinsic camera parameters K _ 1 and image point 
Pi = [xi, Vi, 1 ] T - Th is effectively projects the image point into camera space resulting 
in point P c . 

2. Project point in camera space P c = [xc, yc, zc, l]T into world space by mul t ip ly ing the 
camera to world mat r ix w i t h i t . Th i s results in an arbi t rary world point P w that 
gets projected to in i t i a l image point P i . 

3. Use step 2 to project camera origin i n camera space C c = [0,0,0,1] T into point in 
world space C w . (This step can be done only once for each camera.) 

4. Calculate euclidean vector R (ray direction) point ing the direction from camera origin 
C w to point P w - bo th in world space. This vector effectively describes the ray or 
line in world space whose points get projected into in i t i a l image point P i . We obtain 
the vector by subtracting the camera origin from the projected point as in equation 
6.9 

R = P w - C w (6.9) 
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5. B y scaling vector R using scalar s and adding it to the camera origin i n world space, 
it is possible to find single point P on the ray in world space (equation 6.10). 

P = C w + s R (6.10) 

Scalar s can be adjusted so that the result point meets our specific requirements. For 
example, scalar s can be set i n such way that the z coordinate of the point on the 
ray has a specific value z. For the value of z = 0, the computed point i n world space 
both gets projected into the in i t i a l image point and coincides wi th the ground plane 
of the scene. The scalar is computed in equation 6.11. 

s =

z _ ^ c ^ ( 6 n ) 

ZR 

6.1.5 Placing a detected person into the scene 

The previous subsection described how to reverse-project an image point into a line (camera 
ray) in the scene coordinate system. The ray can be collapsed using an addi t ional informa­
t ion about the object placement. In this case, the detected object is a person, therefore, we 
may select a ray that intersects the posit ion of their feet or head. We can then assume that 
the person is standing on the ground or we can calculate w i th an average person height in 
order to collapse the ray into a single point in world space. In other words, we are expl ici t ly 
searching for a point on the ray i n world space wi th a part icular z coordinate - height from 
the ground. For any detected object i n the thermal image enclosed by a bounding box, we 
can either assume its lower edge is touching the ground or its upper edge is located the 
average-human-height above the ground. 

6.2 Scene abstraction software 

One of the outputs of the bachelor's project [18] was a scene abstraction script allowing 
to model a rectangular scene w i t h a single camera and reverse-project detected people 
into i t . In order to model a mul t i - room exposition or any larger complex environment 
wi th mult iple cameras, the scene abstraction had to be rewrit ten almost from scratch and 
improved significantly. 

In the new implementation, the scene model is stored in a JSON configuration file, which 
contains among others positions of cameras and a list of boundaries w i th their respective 
names and displayed colors. The boundaries are stored as a list of vertices that are con­
nected one by one. A vertex is a tuple of x and y coordinates of the integer type. The scene 
abstraction is programmed i n the ThermoDetection/Scene .py. A n example of the scene 
configuration file is depicted in l is t ing 23. Each camera has three addi t ional attributes: ip, 
port and mapping_points. The first two are used for enabling a live connection during 
cal ibrat ion or for product ion usage, and the mapping_points at tr ibute contains mapping 
points from the image (2D) to the world (3D) coordinate system that are used for cali­
brat ing each camera i n the scene every t ime it is loaded by solving the perspective-n-point 
problem. 

These mapping points can be either added manual ly into the configuration file or in ­
serted automatical ly using a visual scene calibrator implemented in the ThermoDetection/ 
SceneCalibrator.py file. 
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{ 
"scene": { 

"boundaries":[{ 
"name": "rooml", 
"color": "blue", 
"vertices": [[0, 0], [1582, 0] , [1582, 570], [0, 570], [0, 0]] 

H. 
"cameras" : [{ 

"name": "unitl", 
"color": "green", 
"ip": "192.168.1.111", 
"port": 2222, 
"position": [1582, 17, 250], 
"mapping_points": { 

"image_points": [[81, 28], [19, 36] , [147, 57], [102, 15], [81, 6], 
- [17, 12], [25, 117]], 
"world_points": [[0, 570, 0] , [5, 5, 0], [1059, 570, 0], [529, 570, 
^ 170], [0, 570, 250], [0, 0, 250] , [1250, 0, 0]] 

} 
>] 

} 
> 

Lis t ing 23: Example of a scene JS0N configuration file. 

B y cal ibrat ing a scene, we understand creating mapping points between the image and 
the world for each camera i n the scene model. The mapping points are then used to calculate 
the screen to world transformation mat r ix for every camera when the scene is loaded. The 
transformation matr ix is then used to project detected objects into the scene model. 

A scene can be visual ly calibrated by running the calibrate_scene.py script, which 
utilizes both static and dynamic scene calibrator. The usage of the cal ibrat ion script is 
depicted in l is t ing 24. The cal ibrat ion script has to be always provided w i t h a path to the 
scene configuration file. Optional ly, i f the —camera argument is supplied, the calibrator 
connects to the camera and starts the cal ibrat ion process using a live feed from the camera. 
In that case, the connection parameters have to be stored i n the configuration file for the 
part icular camera. Alternat ively, the — f i l e argument can be used for cal ibrat ing the 
camera using a static raw . t i f f image. 

python3 calibrate_scene.py [-h] -s SCENE [-c CAMERA] [-f FILE] 

Arguments: 
-h, —help show this help message and exit 
-s SCENE, —scene SCENE Path to a scene .JS0N config f i l e . 
-c CAMERA, —camera CAMERA it Camara name to be calibrated. 
-f FILE, — f i l e FILE Calibration .TIFF f i l e for static calibration. 

Lis t ing 24: Arguments of the scene calibrator from calibrate_scene.py. 
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W h e n launching the calibrator, the . j son configuration file must be specified using the 
—scene parameter. After either connecting to the live camera feed or loading the static 
thermal image from a file, the cal ibrat ion process begins. The calibrator shows a view from 
the camera (static or live) and a ground plan of the scene model w i th a l l cameras i n their 
respective locations. The cal ibrat ion process consists of cl icking points in the window wi th 
the camera view and entering 3D corresponding world coordinates. 

The typica l step by step process of cal ibrat ing a new scene is the following: 

1. Create a scene .j son configuration file w i th boundaries and cameras wi th their asso­
ciated colors, names and vertices in the world coordinate system. Opt iona l ly add ip 
and port for each camera for live calibration. 

2. R u n the scene calibrator without any arguments other than —scene to confirm the 
configuration corresponds to a val id scene. The calibrator w i l l only display the ground 
plane of the scene. 

3. R u n the scene calibrator to calibrate one camera from the scene using the —camera 
parameter. Use static or dynamic cal ibrat ion. Example i n figure 6.1 shows the cali­
brator i n action cal ibrat ing the t h l camera from the static t h l . t i f f image executed 

by 

| ./calibrate_scene.py -s scene.json -c thl -f t h l . t i f f 

4. Adjust brightness and contrast of the image using the arrow keys. 

5. C l i ck an image point on the camera view and enter x,y ,z corresponding coordinates 
in world space. 

6. Repeat step 5 at least 4 times. A previously added pair of mapping points can be 
removed by pressing BACKSPACE. 

7. Close the calibrator using the ESC key and press any key to overwrite the scene. j son 
configuration file. Dur ing this step, a l l mapping points created in step 5 w i l l be 
stored in the configuration file, and next t ime the scene is loaded, the camera w i l l be 
automatical ly calibrated. (The screen to world projection mat r ix w i l l be computed.) 

8. Repeat from step 3 for every camera i n the scene. 

I Mapping points 
I expo_walls 
I expojobby 
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Figure 6.1: Example of the visual scene calibrator cal ibrat ing camera t h l . 
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The result of the scene cal ibrat ion is a configuration file of a scene model i n a single 
coordinate system wi th cameras wi th known projection matrices. A calibrated camera 
shows its field of view using visible arms on the ground plan. A n example of a scene wi th 
calibrated cameras can be seen i n figure 6.2. W i t h the screen to world projection matrices, 
it is possible to assign a line i n the same 3D world coordinate system to each image pixel 
of every camera. These lines are then used for localizing detected people and placing them 
into the scene. 

F expo_walls 
expo jobby 
thl 
th2 
Hi3 

750 1000 1250 

Figure 6.2: Example of a scene wi th calibrated cameras displaying their field of view. 
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Chapter 7 

Real use-case deployment 

This chapter summarizes and demonstrates real-world applicat ion possibilities of the new 
system for detection and local izat ion of people. The first section goes step by step through 
the instal lat ion process of the detection system i n a new environment and the second section 
describes an ongoing cooperation wi th the Czech Na t iona l Museum i n Prague, which had 
expressed interest i n using the system for movement analysis of its visitors. 

7.1 Deployment process 

This section describes the steps of a typica l instal lat ion of the detection system i n a new 
environment. 

1. Based on the size and complexity of the monitored area, choose the number of thermal 
units. For larger areas, it is important to be aware that the Lepton 3.5 thermal camera 
has resolution of 160 x 120, which means that local izat ion accuracy w i l l suffer. If a 
thermal unit is placed 2 meters above ground on one side of a 16-meter-long hal l , a 
single image pixel difference can result i n almost 1 meter difference on the opposite 
side of the hal l . In this part icular example, it would be worth considering placing a 
second camera to the opposite side of the ha l l to improve accuracy. 

2. Ob ta in or assemble the thermal units. 

3. For every thermal unit , download and burn a Raspbian image into an S D card. Hav ing 
the S D card connected to a computer, configure a network connection for the thermal 
unit and instal l an ssh key for easy and secure access over the network. 

4. Install thermal units at their stable positions i n the monitored area and connect them 
to the network and power. 

5. Try to ssh into each thermal unit to see i f everything works properly. W h i l e connected 
to the thermal unit , it is advised to change the default Raspberry P i password and 
the name of the device. 

6. Clone v4121epton3 3 9 and thermo-person-detection 1 0 repositories. 

3 9 v4121epton3 control and capture library git repository h t tps : / /g i t lab .com/CharvN/v4121epton3  
4 0 the rmo-person-de tec t ion - detection system git repository h t tps : / /g i t l ab .com/CharvN/ the rmo-

person-de tec t ion 
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7. Change the Ans ib le hosts file to match the number of deployed thermal units w i t h 
their respective IP addresses for ssh connection under the [thermal_units] section. 

8. R u n the Ansible playbook to instal l a l l required dependencies and configure the ther­
mal units w i th the following command: 

| $> ansible-playbook - i hosts thermal_deploy.yml -v —forks 4 

The forks parameter sets the number of concurrent connections, so it should be set 
to the number of thermal units. Th is step automatical ly clones the v4121epton311 

repository into the /home/pi directory and installs the v4121epton3 server i n the 
/home/pi/v4121epton3/build directory. 

9. Tu rn the camera on by running the . /on script from the v4121epton3 directory i n the 
thermal unit . The script enables S P I and I 2 C interfaces and sets the v i r tua l G P I O p in 
15 to high, which activates the custom power switch that applies 5 V to the camera. 
The camera can be turned off using the ./off script. 

10. The Lep ton 3.5 should be shipped w i t h the default options set from the factory 
that do not require any modifications. However, it does not hurt to check that a l l 
camera parameters are the way they should using the get command method. To 
set everything correctly, these commands can be executed from the thermal unit 's 
/home/pi/v4121epton3/ directory: 

$> . /lepton3control py I vid_ _output_format set rawl4 
$> . /lepton3control py I oem_ _output_format set rawl4 
$> . /lepton3control py I sys. _gain_mode set low 
$> . /lepton3control py I sys. _telemetry_enable set off 
$> . /lepton3control py I age. enable set off 
$> . /lepton3control py I rad_ enable set on 
$> . /lepton3control py I rad_ _tlinear_enable set on 
$> . /lepton3control py I rad_ _tlinear_scale set 100 
$> . /lepton3control py I rad_ _tlinear_auto_scale set off 

11. Tu rn on the v4121epton3 server by running the /home/pi/v4121epton3/build/ 
server i n the background. 

12. O n the configurating computer, create a scene, json file w i th the borders of the 
monitored area, camera locations, colors, names, connection data, according to the 
description i n section 6.2. 

13. R u n the visual scene cal ibrat ion script first only w i t h the —scene argument to verify 
that the scene configuration file is val id . Then , for each camera in the scene, run the 
cal ibrat ion script as follows: 

$> . /thermo -person--detection/calibrate. scene py -s scene json 
$> . /thermo -person--detection/calibrate. scene py -s scene json -c caml 
$> . /thermo -person--detection/calibrate. scene py -s scene json -c camX 

v4121epton3 c o n t r o l a n d cap tu re l i b r a r y gi t r e p o s i t o r y https://gitlab.com/CharvN/v4121epton3 
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After each run, save and overwrite the configuration . j son file. The calibrator saves 
the mapping points for each camera, which are used for constructing its screen to world 
projection matr ix . A calibrated camera can be spotted by its two arms showing its 
field of view on the scene ground plan. 

14. A t this point, everything is set up and ready. It is possible to connect to any cam­
era and view its thermal feed in real t ime using the 0 + + v4121epton3 client in 
a v4121oopback v i r tua l video device. Alternat ively, the lepton3client .py P y t h o n 
implementation can display the feed i n an O p e n C V window. The extended client 
lepton3client_detect.py can do the same th ing w i t h the addi t ion of loading the 
Y O L O detector and highlighting people detected i n the feed. Another possibil i ty is 
to setup a cron scheduled task, capture a single frame at a t ime and save it locally 
or remotely using the v4121epton3/scripts/capture_periodical.py script. 

(a) t h l (b) th2 
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(c) ground plan 

Figure 7.1: Demonstrat ion of the live detector and locator tool in action. 
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15. For the actual product ion usage and real-time moni tor ing wi th detection and localiza­
t ion, the control computer may run the detect_live .py live detector and localizator 
from the thermo-person-detection directory wi th the scene, j son cal ibrat ion file: 

J $> ./detect_live.py -s scene.j son 

The script builds the scene abstraction according to the configuration file supplied, 
calibrates a l l cameras wi th defined mapping points, connects to their live feed, displays 
the view from each camera i n a separate window wi th the detector running and plots 
every detected object into the ground plan. The ground plan is updated wi th every 
frame, again, i n a separate window. The live detector and locator i n action w i t h two 
active cameras and merged locations of detected people is demonstrated in figure 7.1. 

7.2 People flow analysis in the Czech National Museum 

There is an ongoing project between the S T R a D e 1 2 research group at the university and 
the Czech Na t iona l Museum i n Prague regarding people detection, localizat ion, heatmap 
generation, group detection and other. It is in the museum's interest to learn hidden 
information about the flow of people through its premises. 

Using a thermal system for moni tor ing people has two great advantages. Fi rs t ly , the 
system performs exactly the same way regardless of light conditions during the day and 
during the night, which makes it also usable as a security system that can trigger an a larm 
during the night when there is a person detected while the system is armed. The second 
advantage is that the resolution and characteristics of thermal imagery make the system 
unable to perform person recognition as a matter of principle. Consequently, it is safe to 
use the system on dai ly basis without potential accusations of spying or personal privacy 
breach. This however also means that it w i l l not be able to create any valuable evidence 
when used as a security system. 

Figure 7.2: I l lustrat ion of the thermal unit instal lat ion process i n the Czech Nat iona l 
Museum i n Prague. 

W i t h i n the scope of this project, the to ta l of three thermal units have been assembled 
and deployed i n two large exhibi t ion halls. The thermal units were installed i n the Nat iona l 

4 2 S T R a D e Resea rch g roup - pa r t of D e p a r t m e n t of In te l l igent Sys tems at F a c u l t y of I n f o r m a t i o n T e c h ­
no logy of B r n o U n i v e r s i t y of T e c h n o l o g y h t t p s : / / s t r a d e . f i t . v u t b r . c z / e n / 
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Museum in Prague to overwatch an ongoing exposition wi th the a i m of extracting informa­
t ion about the visitor 's movement. M o r e specifically, the outcome of u t i l iz ing thermal units 
at this stage was to extract heatmaps corresponding to visitors common whereabouts. The 
heatmap can potential ly yield hidden information about visitor 's interest i n specific parts 
of the exposition, which is a very valuable information for the management of the museum. 
Figure 7.2 demonstrates the instal lat ion process in the Czech Nat iona l Museum i n Prague. 

The cooperation is mutual ly beneficial because i n exchange we were allowed to capture 
an extensive database of thermal images, and therefore, construct the custom thermal 
dataset for Lepton 3.5, which led to the creation of the new enhanced detector. The new 
detection and local izat ion system has been used to construct a heatmap of the exposition 
revealing the most favorite areas. The heatmap is depicted i n figure 7.3. 

Figure 7.3: Heatmap i l lustrat ion constructed wi th the new custom Y O L O thermal detector. 

The heatmap reveals interesting information about the common whereabouts of people. 
The dark red color shows spots in the exposition that were occupied by people more often. 
These hotspots can be associated wi th specific parts of the exhibi t ion that were part icular ly 
interesting to the visitors. The white spots i n the middle of the larger ha l l correspond wi th 
no or very smal l amount of detections, and i n fact, these areas were obstructed by show-cases 
and panels. It is however noticeable that there are larger gaps between detected positions 
further away from the camera i n the lower hal l . This has to do wi th the smal l resolution 
of the camera as mentioned previously. One pixel change i n the camera view can translate 
up to one meter large step in the scene, which introduces artifacts into the heatmap. N o 
person can ever be detected i n the white regions of the checkerboard pattern visible on the 
bot tom left side of the heatmap i n figure 7.3, as they correspond wi th positions i n between 
two pixels i n the thermal image. There was a th i rd camera installed on the opposite side of 
the exposition hal l (th2 marked gray) that would eliminate this problem, however, not long 
after the deployment, the camera went offline and could not be revived before the end of the 
exhibi t ion. The system was supposed to be reinstalled i n a new exhibi t ion, unfortunately, 
this was prevented by the C O V I D - 1 9 outbreak forcing museums to close down completely. 

The museum represents the ul t imate challenging environment for the detection and 
localizat ion system that uses a Lepton camera wi th relatively smal l resolution. The modeled 
scene is large and contains many people. If we considered a smaller room wi th less people 
and therefore not so many occlusions, w i th the new Y O L O detector, the new system would 
not have any problems and yie ld reasonably accurate positions at a l l times. 
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Chapter 8 

Conclusion 

The goal of the whole project was to uti l ize smal l low-cost thermal imaging cameras to 
create a system solving the problem of detecting and locating people, which shall find its 
usage i n many areas like hazardous area guarding, security systems, people flow analysis for 
marketing purposes and others. The advantage of using a system based on thermal imaging 
is that l ighting conditions are irrelevant for correct functioning and that the system may be 
deployed to locations where privacy plays an important role because the camera resolution 
and thermal imagery i n principle prevent facial recognition, yet, allow for detecting of 
people. 

The master's project was a continuation of the bachelor's project documented i n [18], 
and its goal was to eliminate flaws from the final solution of the bachelor's project, imple­
ment suggested improvements and extend it into an easily deployable system supporting 
large complex scenes wi th mult iple thermal cameras. 

In the master's project, the Lepton 3 thermal camera has been upgraded to the version 
3.5, which supports true radiometry, meaning, that the user does not have to supply a tem­
perature conversion function anymore, which used to be very error-prone. The Orange P i 
P C 2 computer used in the previous project has been replaced wi th the more t radi t ional 
and well maintained Raspberry P i 3 B + . In order to provide a way to manage the camera 
remotely, a custom power switch circuit has been designed allowing to tu rn the camera on 
or off remotely using a G P I O p in on the Raspberry P i . The printed circuit board wi th the 
control circuit placed i n between the camera and the Raspberry P i enables the camera to 
be turned on and off remotely forcing a full reboot that solves the problem wi th freezing 
up. The Lepton 3.5 together w i th the Raspberry P i 3 B + and the custom printed circuit 
board were placed and encapsulated in a custom 3D-printed enclosure box, which repre­
sents a single thermal unit . The thermal unit is now robust and can be safely transported, 
presented or deployed to a new environment. 

Since it is expected that more thermal units w i l l be assembled i n the future, the process 
of configuring each thermal unit has been automated using the Ans ib le tool . A custom 
Ansible playbook has been created taking care of a l l instal lat ion steps, libraries and depen­
dencies. The Ansib le playbook is used to prepare each new thermal unit. 

W i t h the upgrade of the camera, new commands had to be implemented in the control 
software i n order to be able to uti l ize the new features of the camera. A t this occasion, the 
control script has been rewrit ten almost from scratch, which helped removing some code 
redundancies when defining new commands, especially commands wi th mult iple methods 
and various available options. The to ta l of 38 commands wi th a l l methods have been added 
to the control tool . 
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The old capture l ibrary could not be ut i l ized anymore because it was not fast enough 
to mainta in synchronization wi th the new Lep ton 3.5, and most importantly, transferring 
the raw thermal video from mult iple cameras into a single computer for processing turned 
out to be impossible using the old approach. The capture l ibrary has been therefore re­
designed according to the client-server model w i th bui l t - in data transfer v i a T C P sockets. 
The thermal unit now runs a server implementat ion wri t ten i n C + + and sped up by dual 
segment and dual frame buffering. W h e n a client connects to the server, it starts pul l ing 
raw thermal frames from the camera and sends them directly through the open T C P con­
nection, or optionally, through a z l i b compressor beforehand. The server does not have 
synchronization issues, not even wi th the new Lep ton 3.5 thermal camera, recovers from 
any unexpected event and does its own logging. 

A s a part of the new v4121epton3 capture library, two clients have been implemented. 
The first one i n C + + preserves the original usage of the v i r tua l video device allowing 
for a remote thermal unit to be connected as a local video device. The second client is 
implemented i n Py thon , can be used on its own to display a live thermal feed, but more 
importantly, it is used i n the rest of the detection system as it is very simple, easy to 
include, yet sufficiently fast. 

A s a part of an ongoing cooperation wi th the Czech Nat iona l Museum i n Prague, three 
thermal units were assembled and deployed to one of their expositions. Us ing the in ­
cluded single-thermal-frame capture script and cron scheduling, an extensive custom ther­
ma l database from a complex real-world scene has been acquired over the period of several 
months. The data has proven that the old simple thermal detector can not be used i n such 
complex environment because of its poor performance. Therefore, it had to be upgraded. 

The custom thermal dataset has been manual ly annotated and merged wi th the F L I R ' s 
official thermal database creating the to ta l of 13,416 thermal images wi th 53,628 anno­
tated person objects in i t . The merged thermal dataset has been used to t ra in several 
different Y O L O object detectors w i th different network sizes including the recently released 
state-of-the-art Y O L O v 4 real-time object detector based on a deep neural network. F r o m 
the trained models, the Y O L O v 4 - 3 2 0 has been chosen to be used i n the final detection 
system as it performed the best. O n testing thermal images and also on a real-time ther­
ma l video, the detector performs incomparably better than the old simple one, and is able 
to reliably detect a dozen people regardless of their pose i n a complex scene wi th par t ia l 
occlusions. Every th ing the detector needs is a single 160 x 120 thermal image enhanced by 
temperature filtering and contrast limited adaptive histogram equalization ( C L A H E ) . Even 
though the new Y O L O v 4 detector is significantly slower than the o ld detector, it is s t i l l 
faster than any other currently available object detector based on a neural network and fast 
enough to process the thermal video at full speed (at 8.7 Hz) without decreasing the frame 
rate. 

The mathematics behind reverse-projecting image points into a 3D scene model stayed 
the same, however, the scene abstraction software has been redone from scratch. The scene 
is stored i n a JSON configuration file, supports mult iple cameras and mult iple polygonal 
boundaries w i th different colors and names. The scene abstraction software also includes 
a visual camera calibrator tool , which simplifies the cal ibrat ion process of every newly 
installed camera. The too l connects to a camera, displays its thermal feed i n real t ime, 
then, the user selects significant points in the thermal image and enters corresponding 
real-world coordinates of those points. The mapping coordinates are then stored i n the 
configuration file of the scene and used every t ime the scene is loaded for computing the 
projection matr ix of each configured camera. 
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The project also contains plenty of support ing scripts that can be used for testing or 
troubleshooting the system. This includes a script for disconnecting the camera completely, 
for turn ing it back on, the P y t h o n v4121epton3 client implementation wi th the detection 
performed on every frame wi th the option to save the frame, scripts for single-frame cap­
tur ing (used wi th scheduling local ly and remotely), a script for running the detector on raw 
thermal images from a specified directory an so on. The complete system is implemented in 
the detect_live .py file, which loads the preconfigured and calibrated scene, connects to 
every calibrated camera i n the scene, shows their live feed i n separate windows and draws 
locations of detected people i n the ground plan of the observed scene. 

W i t h i n the scope of the cooperation wi th the Czech Nat iona l Museum i n Prague, the 
detector has been applied to the collected thermal dataset w i th the a im of constructing 
a heatmap of visitor 's frequent occurrence wi th in the exposition. The heatmap reveals 
hidden information about which part icular sections of the exposition interest the visitors 
the most. 

To summarize 

A new thermal unit has been designed wi th a custom enclosure box, a new upgraded camera, 
a custom control circuit and an upgraded host computer. The process of configuring a new 
thermal unit has been automated using Ansib le . The v4121epton3 control and capture 
l ibrary has been redesigned from scratch. The control part supports many more commands 
wi th a l l methods and translated options. The capture part has been split into two parts -
a server and a client. The C + + mult i threaded implementat ion of the server has been sped 
up by double segment buffering, double frame buffering and reduced number of system calls. 
It does not lose synchronization wi th the camera, can recover from any k ind of error and 
allows for z l i b compression. There are two client implementations available. The C + + 
one uses a v i r tua l video device to br ing the remote thermal feed into the local machine 
for generic processing, the P y t h o n implementat ion is simple and easy to use or include in 
other projects. It is used i n the detection software, but can also be used for quick previews. 
The scene abstraction software has been redesigned so that now a scene is abstracted in 
a JSON configuration file, supports mult iple polygonal boundaries and mult iple cameras, 
which can be calibrated visual ly using a visual calibrator tool . F ina l ly , the o ld thermal 
detector showing poor results in larger scenes wi th more people has been replaced by the 
new state-of-the-art Y O L O v 4 real-time object detector trained on custom thermal dataset 
that has been created by merging the F L I R ' s public thermal dataset and a custom one 
created i n the Czech Na t iona l Museum wi th in the scope of an ongoing cooperation. The 
new detector is far superior to the old detector and can reliably detect people even i n some 
of the most challenging situations. The final detection system loads a preconfigured scene, 
connects to a l l cameras, displays their real-time thermal feeds, and after the detection has 
been performed, the detected persons are marked i n the ground plan representation of the 
scene. The new detector has been applied to the captured data from the Czech Nat iona l 
Museum i n Prague wi th the a im of constructing a heatmap of visitor 's movements. The 
buil t heatmap proves the capabilities of the detection system and may be beneficial to the 
management of the museum. 

Drawbacks and potential improvements 

B y having the new detector, the process of estimating locations of detected objects from 
their bounding boxes becomes the largest area for possible improvements. The accuracy 
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of an estimated locat ion rapidly decreases wi th distance because of the low resolution of 
the thermal camera. A b o u t 16 meters away from the camera, a difference of 1 image pixel 
can easily translate into a 1-meter difference i n the scene model . If a bounding box around 
a person is moved even by a few image pixels, its estimated location can change drastically. 

In order to reverse-project an image point into a single point in the scene model, it 
is necessary to provide some addi t ional information - for example the z coordinate of the 
searched point. For reverse-projecting feet of a detected person, the z coordinate would 
be set to 0, alternatively, 170 (cm) would be used for the head posit ion (to represent an 
average person height). Us ing the head posit ion is usually less accurate than feet, as the 
height of people varies naturally. The posit ion of feet works well when the camera is located 
high above ground or there are not many people i n the scene. If neither condit ion is met, 
there is a higher possibil i ty that a person would have its feet occluded by a different object. 
In that case, the system would assume that the person is further away and misplace h i m 
completely. W h e n a bounding box is touching the bo t tom of an image, the system expects 
that the feet of the detected person is not visible and uses the head posit ion instead. This 
however does not solve the issue wi th occlusions. 

One solution might be to t ra in the detector to detect two classes - a torso and a whole 
person. Tha t would require reannotating the whole dataset and longer t ra ining wi th unsure 
results because the detector would then detect both the torso and the whole person and the 
system would have to identify that those two detections belong to the same person, which 
adds more room for error. 

B o t h problems could be solved by adding another camera to observe the same scene from 
a different angle. The camera would have a pr ior i ty to localize objects closer to it and both 
cameras could agree on the same objects. Tha t addi t ional coordinate required for placing 
the detected object into the scene would be provided from the two cameras using stereo 
vision. This feature was planned to be included i n this project, however after the C O V I D - 1 9 
outbreak, the Czech Na t iona l Museum was closed down along w i t h our testing environment 
wi th several thermal units, therefore, this feature could not be properly implemented nor 
tested. This feature shall remain on the top of the list of future upgrades. 

Another possible improvement could be implementing allowed and blocked area concept 
for localization. In the current implementation, there are no rules saying which section of 
the scene is marked for possible occurrence of people and there is no way to te l l which part 
of the scene is actually observable from which camera. B y being able to determine which 
area of the scene is observable, it would become possible to exclude incorrect locations of 
detected people that lie outside the observable part of the scene. These outliers are often 
caused by thermal reflections, large occlusions or the smal l resolution of the camera. 

The future improvements might also tackle w i t h lens distort ion of Lepton cameras, as it 
becomes apparent for some part icular modules. Another interesting feature to implement 
in the system could be person tracking. E a c h detected person would obtain an ID and his 
movement through the scene would be stored in a database. This k ind of data could be 
used for a more specific type of people flow analysis where we could, for example, calculate 
the most typica l direction of the movement of people. The candidate technology for object 
t racking could be the new D e e p S O R T [63]. 
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