
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

OPENSCAP REPORT: A TOOL FOR VISUALIZING
SECURITY COMPLIANCE INSPECTION RESULTS
OPENSCAP REPORT: NÁSTROJ PRO VIZUALIZACI VÝSLEDKŮ KONTROLY DODRŽOVÁNÍ
BEZPEČNOSTNÍCH PŘEDPISŮ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JAN RODÁK
AUTOR PRÁCE

SUPERVISOR Mgr. JOZEF DRGA,
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Intelligent Systems (UITS)

Student: Rodák Jan

Programme: Information Technology

Specialization: Information Technology

Category: Security

Academic year: 2022/23

Assignment:

1. Get acquainted with SCAP standards and explore HTML reports generated by OpenSCAP
security scanners or other tools.

2. Suggest content improvements to the report.
3. Create a tool for processing SCAP results of the OpenSCAP scanner and generating an

interactive report in HTML format.
4. Create the package available for Fedora (and RHEL 9?).
5. Create a user-testing methodology.
6. Perform user testing according to the methodology and evaluate the results.

Literature:
The SCAP - Security Content Automation Protocol, https://csrc.nist.gov/projects/security-content-
automation-protocol/
Publication of SCAP: https://csrc.nist.gov/publications/detail/sp/800-126/rev-3/final
The OpenSCAP portal, https://www.open-scap.org/
Fedora packaging guidelines, https://docs.fedoraproject.org/en-US/packaging-guidelines/
Designing with data: improving the user experience with A/B testing,
https://primo.lib.vutbr.cz/permalink/f/1roshr/420BUT_Aleph000142118
Don´t make me think!: a common sense approsach to web usability,
https://primo.lib.vutbr.cz/permalink/f/1roshr/420BUT_Aleph000076907

Requirements for the semestral defence:
Completed points 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Drga Jozef, Mgr.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2022

Submission deadline: 10.5.2023

Approval date: 3.11.2022

Bachelor's Thesis Assignment
148184

OpenSCAP Report: A Tool for Visualizing Security Compliance Inspection
Results

Title:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
The goal of the thesis is to develop a utility to present the results of OpenSCAP security
scans. SCAP scans use standardized input and output formats, and those formats are not
consumable by humans.

The utility aims to present the SCAP scan output in the form of an interactive report
that helps find the root cause of failed security requirements and enables users to understand
the composition of the respective security checks.

The report will allow users of OpenSCAP and developers of security profiles to debug
their checks. It will provide insights into relations between individual checks and help
understand the context of these checks within SCAP security profiles.

Abstrakt
Cílem práce je vyvinout nástroj pro prezentaci výsledků bezpečnostního skeneru Open-
SCAP. SCAP skenery používají standardizované vstupní a výstupní formáty, které nejsou
čitelné člověkem.

Cílem nástroje je prezentovat výstup SCAP skeneru ve formě interaktivního reportu,
který pomůže najít hlavní příčinu selhání bezpečnostních požadavků. Dovolí uživatelům
porozumět složení příslušných bezpečnostních kontrol.

Report umožní uživatelům OpenSCAP i vývojářům bezpečnostních profilů ladit jejich
kontroly. Poskytne pohled na vztahy mezi jednotlivými kontrolami a pomůže pochopit
kontext těchto kontrol v rámci bezpečnostních profilů SCAP.

Keywords
SCAP, OpenSCAP, ARF, XCCDF, OVAL, security compliance, audit, UI/UX

Klíčová slova
SCAP, OpenSCAP, ARF, XCCDF, OVAL, bezpečnostní předpisy, audit, UI/UX

Reference
RODÁK, Jan. OpenSCAP Report: A Tool for Visualizing Security Compliance Inspec-
tion Results. Brno, 2023. Bachelor’s thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor Mgr. Jozef Drga,

OpenSCAP Report: A Tool for Visualizing
Security Compliance Inspection Results

Declaration
I hereby declare that this Semestral project was prepared as an original work by the author
under the supervision of Mgr. Jozef Drga. The supplementary information was provided
by Evgeny Kolesnikov. I have listed all the literary sources, publications and other sources,
which were used during the preparation of this thesis.

. .
Jan Rodák

May 8, 2023

Contents

1 Introduction 4

2 Security Content Automation Protocol 5
2.1 The Open Vulnerability and Assessment Language

(OVAL) . 6
2.2 Extensible Configuration Checklist Description Format (XCCDF) 9
2.3 Common Platform Enumeration (CPE) . 11

3 SCAP Scanners 13
3.1 OpenSCAP Projects . 13
3.2 3-rd Party SCAP-compatible Scanners . 14

4 Reporting Capabilities of SCAP-compatible Tools 16
4.1 SCAP Compliance Checker (SCC) . 16
4.2 Qualys SCAP Auditor . 18
4.3 OpenSCAP Scanner . 21

5 Proposed Report Improvements 24
5.1 OVAL Results . 25
5.2 Applicability of a Rule . 26
5.3 Post-Remediation Rule Result . 27

6 Implementation 28
6.1 Command Line Interface . 28
6.2 SCAP Results Parser . 29
6.3 Report Generator . 34
6.4 Report Structure . 35
6.5 Benchmark . 41

7 The openscap-report Package 42
7.1 Building Packages . 43
7.2 Continuous Integration and Tests . 43

8 User Testing 45
8.1 Methodology . 45
8.2 Outcome . 47

9 Conclusion 49

1

Bibliography 50

A Contents of the Included Storage Media 52

B Build Manual 53

2

List of Figures

4.1 Example of a text report generated by SCC scanner. 16
4.2 Example of HTML report with detail of rule generated by SCC scanner. . . 17
4.3 Example of SCAP Scorecard Report from documentation of Qualys SCAP

Auditor. Taken from [2]. 18
4.4 Example of the Rule Pass/Fail Report from documentation of Qualys SCAP

Auditor. Taken from [2]. 19
4.5 Example of the Individual Host Report from documentation of Qualys SCAP

Auditor. Taken from [2]. 20
4.6 Example of the command line output of oscap. 21
4.7 Example of HTML report with rule detail. 23

5.1 Visualization of OVAL. 25
5.2 Visualization of CPE Applicability Language. 26
5.3 Rule with the result of the fix failed. 27

6.1 Structure of openscap-report package. 28
6.2 Diagram of the Report data structure . 31
6.3 Example of the first section in report . 35
6.4 Example of the compliance and scoring section in report 35
6.5 Example of the Evaluation Characteristics section in report 36
6.6 The search bar with filtering options in report 36
6.7 Detail of rule in report . 37
6.8 The remediation of rule in report . 38
6.9 The visualization of the OVAL Definition with criteria 38
6.10 Detail of the OVAL Test . 39
6.11 Visualization of CPE Applicability Language 40

3

Chapter 1

Introduction

Cybersecurity has been growing in importance over the last few years. Many organiza-
tions such as large enterprises, governments, hospitals, the military, and airports are using
computers to organize infrastructure and manufacturing, communicate, process data, and
serve customers. These computers might contain sensitive data or might be part of a com-
pany’s critical infrastructure. Protection and security for that machines are becoming an
increasingly important issue for many companies.

In the field of computer security, there are different approaches to protecting computers:
antivirus programs, firewalls, attack detection, or automated security audits.

Automated security audits (with accordance to the organization’s security policy) can
reveal vulnerabilities in systems. These security policies, through a set of rules and recom-
mendations, define what a secure system should look like.

Traditional manual security audits are time-consuming and increase the potential for
human error. The Security Content Automation Protocol (SCAP) has been created to
reduce the time required for such kind of audits and amount of mistakes. Security scanners
that implement SCAP have standardized input and output formats.

The scanner uses a profile. A profile is a machine-readable version of a security policy
that the scanner understands. A profile consists of rules. These rules are evaluated. The
overall result of the scan is a cumulative score and/or a number of failed rules. It describes
the extent to which the system complies with the security policy.

Scanners usually offer several versions of result reports. But, commonly, these reports
are in a machine-readable format. And sometimes they lack information about the tests
that were performed on the system and the relationship between those tests and the rules.
Finding the root cause of the rule’s failure is not an easy task: users have to get a grip on
large reports that were created for machines.

This work focuses on developing reports that help users understand the logic behind
complex security checks. The main standardized output (that would be used as the tool’s
main input) is the Asset Reporting Format (ARF). This format is based on XML and
contains all the information about the security checks performed.

4

Chapter 2

Security Content Automation
Protocol

The Security Content Automation Protocol (SCAP) [25] is a set of specifications that stan-
dardize the form in which security configuration requirements are represented to machines
and humans. For example, SCAP can be used for automated configuration, vulnerability
and patch enumeration, technical control compliance activities, and security measurement.

According to SCAP technical specifications version 1.3 [25]. SCAP components can be
divided into several categories: “

• Languages – The SCAP languages provide standard vocabularies and conventions for
expressing security policy, technical check mechanisms, and assessment results. The
SCAP language specifications are Extensible Configuration Checklist Description For-
mat (XCCDF), Open Vulnerability and Assessment Language (OVAL), Open Check-
list Interactive Language (OCIL), and Common Platform Enumeration (CPE) – Ap-
plicability Language.

• Reporting formats – The SCAP reporting formats provide the necessary constructs to
express collected information in standardized formats. The SCAP reporting format
specifications are Asset Reporting Format (ARF) and Asset Identification. Although
Asset Identification is not explicitly a reporting format, SCAP uses it to identify the
assets that reports relate to.

• Identification schemes – The SCAP identification schemes provide a means to iden-
tify key concepts such as software products, vulnerabilities, and configuration items
using standardized identifier formats. They also provide a means to associate indi-
vidual identifiers with additional data on the subject of the identifier. The SCAP
identification scheme specifications are Common Platform Enumeration (CPE), Soft-
ware Identification (SWID) Tags, Common Configuration Enumeration (CCE), and
Common Vulnerabilities and Exposures (CVE).

• Measurement and scoring systems – In SCAP this refers to evaluating specific charac-
teristics of a security weakness (for example, software vulnerabilities and security con-
figuration issues) and, based on those characteristics, generating a score that reflects
their relative severity. The SCAP measurement and scoring system specifications
are the Common Vulnerability Scoring System (CVSS) and Common Configuration
Scoring System (CCSS).

5

• Integrity – A SCAP integrity specification helps to preserve the integrity of SCAP
content and results. The Trust Model for Security Automation Data (TMSAD) is the
SCAP integrity specification.

“
The categories of Language and Report Formats are important for this work. All of the

languages or reporting formats used in SCAP are based on XML. All of these documents
have an XML schema that can be used to validate the XML document format. The source
of content for SCAP scanners is a document called a Data Stream, a structure that incor-
porates SCAP components into a single file. This is useful for simplifying SCAP content
handling. Data Stream mainly contains documents written in the following languages:

• The XCCDF language, used to describe security checklists,

• The OVAL language, used to define checks of rules in security policy and declare
logical assertions about the system state,

• The OCIL language, used for checking rules that cannot be fully automated with
OVAL, and

• The CPE Applicability Language, that is used to declare automatic applicability tests
for benchmark sub-components.

A Data Stream file usually contains several security policies. Because, in many cases,
security policies overlap and share rule definitions and checks. Security policies define what
a secure computer system should look like, using rules and recommendations. A machine-
readable implementation of a security policy in the XCCDF language is called a Profile.
A Profile consists of a list of, possibly grouped, rule definitions. Rule definitions describe
the policy rules and hold references to OVAL and OCIL checks, applicability definitions
(the CPE Applicability Language), and other types of metadata.

The main reporting format is an ARF document that contains all results, such as OVAL
and XCCDF check results, with all SCAP components in Data Stream. It is also often called
the Result Data Stream because this file contains the original Data Stream information in
addition to evaluation results.

2.1 The Open Vulnerability and Assessment Language
(OVAL)

The main component of SCAP is the Open Vulnerability and Assessment Language [1].
It is an XML-based language for identifying vulnerabilities and configuration problems in
computer systems. OVAL standardizes the representation of automated checks in security
policy.

An OVAL Definition defines a logical check of rules and describes the expected state
of a computer system. The OVAL Definition contains definition and criteria metadata.
The definition metadata are title, version, description, etc. See Listing 2.1 of the OVAL
Definition.

6

<oval-def:definition class="compliance"
id="oval:ssg-dconf_gnome_screensaver_idle_delay:def:1"
version="2">

<oval-def:metadata>
<oval-def:title>
Set GNOME3 Screensaver Inactivity Timeout

</oval-def:title>
<oval-def:affected family="unix">

<oval-def:platform>Red Hat Enterprise Linux 9</oval-def:platform>
</oval-def:affected>
<oval-def:description>

The allowed period of inactivity before the screensaver is activated.
</oval-def:description>
<oval-def:reference ref_id="CCE-86510-5" source="CCE"/>
<oval-def:reference

ref_id="dconf_gnome_screensaver_idle_delay" source="ssg"/>
</oval-def:metadata>
<oval-def:criteria operator="OR">
<oval-def:extend_definition

comment="dconf installed"
definition_ref="oval:ssg-package_dconf_installed:def:1" negate="true"/>

<oval-def:criteria
comment="check screensaver idle delay and prevent user from changing it"
operator="AND">

<oval-def:extend_definition
comment="dconf user profile exists"
definition_ref="oval:ssg-enable_dconf_user_profile:def:1"/>

<oval-def:criterion
comment="idle delay has been configured"
test_ref="oval:ssg-test_screensaver_idle_delay:tst:1"/>

<oval-def:criterion
comment="idle delay is set correctly"
test_ref="oval:ssg-test_screensaver_idle_delay_setting:tst:1"/>

</oval-def:criteria>
</oval-def:criteria>

</oval-def:definition>

Listing 2.1: Example of OVAL Definition.

The OVAL Definition criteria are a tree structure consisting of several types of nodes that
reference other OVAL components. Criteria nodes can be nested and are used as a logical
operators. The Criteria node reflects the relationship between child nodes. This relationship
is represented by logical operator types such as AND, OR, ONE, and XOR. These operators
have defined logical tables1.

Child nodes can be another Criterion node, an Extended Definition node that references
another OVAL Definition, or a Criterion node that references an OVAL Test. OVAL Tests

1https://oval.mitre.org/language/version5.11/ovaldefinition/documentation/oval-common-
schema.html#OperatorEnumeration

7

https://oval.mitre.org/language/version5.11/ovaldefinition/documentation/oval-common-schema.html#OperatorEnumeration
https://oval.mitre.org/language/version5.11/ovaldefinition/documentation/oval-common-schema.html#OperatorEnumeration

define the relationship between the OVAL Objects and OVAL States components. See
Listing 2.2 of an OVAL Test.
<ind:textfilecontent54_test check="all" check_existence="all_exist"

comment="screensaver idle delay setting is correct"
id="oval:ssg-test_screensaver_idle_delay_setting:tst:1"
version="1">

<ind:object
object_ref="oval:ssg-obj_screensaver_idle_delay_setting:obj:1"/>

<ind:state
state_ref="oval:ssg-state_screensaver_idle_delay_setting:ste:1"/>

</ind:textfilecontent54_test>
Listing 2.2: Example of OVAL Test.

The OVAL State defines the expected value collected by the OVAL Object or refers to the
OVAL Variable. The OVAL Variable defines values that can be referenced by the OVAL
Elements such as OVAL State. The OVAL Object defines the value to be collected from
the system being evaluated. See the Listing of OVAL State 2.3, OVAL Objects 2.4, and
OVAL Variable 2.5.
<ind:textfilecontent54_state

id="oval:ssg-state_screensaver_idle_delay_setting:ste:1" version="1">
<ind:subexpression

datatype="int" operation="less than or equal"
var_check="all" var_ref="oval:ssg-inactivity_timeout_value:var:1"/>

</ind:textfilecontent54_state>
Listing 2.3: Example of OVAL State.

<ind-def:textfilecontent54_object
id="oval:ssg-obj_screensaver_idle_delay_setting:obj:1" version="1">

<ind-def:path>/etc/dconf/db/local.d/</ind-def:path>
<ind-def:filename operation="pattern match">^.*$</ind-def:filename>
<ind-def:pattern operation="pattern match">

^idle-delay[\s=]*uint32[\s]([^=\s]*)
</ind-def:pattern>
<ind-def:instance datatype="int">1</ind-def:instance>

</ind-def:textfilecontent54_object>
Listing 2.4: Example of OVAL Object.

<local_variable id="oval:ssg-inactivity_timeout_value:var:1"
version="1" datatype="int" comment="inactivity timeout variable">

<literal_component>900</literal_component>
</local_variable>

Listing 2.5: Example of OVAL Variable.

OVAL results section contains information about OVAL evaluation: OVAL Objects that
were collected from the targeted system and results of OVAL Objects matching against
OVAL States. It also contains evaluation criteria that have the same structure as OVAL
Definitions but stripped of node metadata such as comments and names. What they do
contain instead is a result attribute with the conclusion of an individual criterion.

8

The results of Criteria, Extended Definitions, Criterion, and Tests can be negated. The
values of the results are True, False, Error, Unknown, Not Evaluated, and Not Applicable.
See Listing 2.6 of the OVAL Result.

<definition
definition_id="oval:ssg-dconf_gnome_screensaver_idle_delay:def:1"
result="false" version="2">

<criteria operator="OR" result="false">
<extend_definition
definition_ref="oval:ssg-package_dconf_installed:def:1"
version="1" result="false" negate="true"/>

<criteria operator="AND" result="false">
<extend_definition
definition_ref="oval:ssg-enable_dconf_user_profile:def:1"
version="1" result="true"/>

<criterion
test_ref="oval:ssg-test_screensaver_idle_delay:tst:1"
version="1" result="false"/>

<criterion
test_ref="oval:ssg-test_screensaver_idle_delay_setting:tst:1"
version="1" result="false"/>

</criteria>
</criteria>

</definition>

Listing 2.6: Example of OVAL Result.

A document that contains OVAL components is normalized. This means that all the
information is distributed in the document and components cross-reference each other.
Just like in a relational database. This makes it difficult for users to understand and follow
the logic of tests.

2.2 Extensible Configuration Checklist Description Format
(XCCDF)

Extensible Configuration Checklist Description Format (XCCDF) [26] is a language for
creating security checklists and benchmarks. XCCDF contains a structured collection of
security rules from security policies for a target system. Like other languages in the SCAP
standards collection, XCCDF is based on XML. XCCDF defines a data model that consists
of several XML elements.

The root element of an XCCDF document is the XCCDF Benchmark, which serves
as a container for other XCCDF elements. The XCCDF Benchmark element contains the
Group, Rule, Value, Profile, and TestResult elements.

The Group element may contain an additional Group element as a subgroup, Rule,
Value, platform reference, and other descriptive Group elements. The Rule element is filled
with a reference to the CPE platform, Check, Fix, and other metadata such as description,
title, links, etc.

9

A Fix is an element that contains code of fix in Bash or a different language that is
used to modify the system in a way that it would satisfy the requirement. See Listing 2.7
of XCCDF Rule.

<xccdf-1.2:Rule
selected="false"
id="xccdf_org.ssgproject.rule_dconf_gnome_screensaver_idle_delay"
severity="medium">

<xccdf-1.2:title>
Set GNOME3 Screensaver Inactivity Timeout

</xccdf-1.2:title>
<xccdf-1.2:description>
The idle time-out value for inactivity in the GNOME3 desktop
is configured via the <html:code>idle-delay</html:code>...

</xccdf-1.2:description>
<xccdf-1.2:reference
href="https://www.cisecurity.org/controls/">1</xccdf-1.2:reference>

<xccdf-1.2:reference href="https://www.fbi.gov">
5.5.5

</xccdf-1.2:reference>
...
<xccdf-1.2:rationale>

A~session time-out lock is a temporary action taken
when a user stops work...

</xccdf-1.2:rationale>
<xccdf-1.2:platform idref="#machine"/>
<xccdf-1.2:ident system="https://nvd.nist.gov/cce/index.cfm">
CCE-86510-5

</xccdf-1.2:ident>
<xccdf-1.2:fix system="urn:xccdf:fix:script:ansible"

id="dconf_gnome_screensaver_idle_delay"
complexity="low" disruption="medium" reboot="false"
strategy="unknown">...

</xccdf-1.2:fix>
<xccdf-1.2:check

system="http://oval.mitre.org/XMLSchema/oval-definitions-5">
<xccdf-1.2:check-content-ref

href="ssg-rhel9-oval.xml"
name="oval:ssg-dconf_gnome_screensaver_idle_delay:def:1"/>

</xccdf-1.2:check>
...

</xccdf-1.2:Rule>

Listing 2.7: Example of XCCDF Rule.

The Value element contains data that can be re-defined. For example, timeout value in the
rule can be specific to each profile. The Profile is a customization element of the Benchmark.
The profile contains references to the Rule, Group, and Value elements. The TestResult
element contains results of a scan performed on the target system. TestResult references

10

Rules, Values, and Checks performed and may reference Profile. See Listing 2.8 of the Rules
result.

<rule-result
idref="xccdf_org.ssgproject.rule_dconf_gnome_screensaver_idle_delay"
role="full" time="2023-03-16T13:54:43+01:00"
severity="medium" weight="1.000000">

<result>fail</result>
<ident system="https://nvd.nist.gov/cce/index.cfm">CCE-86510-5</ident>
<check system="http://oval.mitre.org/XMLSchema/oval-definitions-5">
<check-content-ref
name="oval:ssg-dconf_gnome_screensaver_idle_delay:def:1"
href="#oval0"/>

</check>
</rule-result>

Listing 2.8: Example of XCCDF Rule Result.

The customization element occurs only once in the XCCDF document and contains a Profile
element that modifies the behavior of the benchmark. The XCCDF can contain several
security policies in the form of profiles. These profiles may share the same Rules and
Values.

2.3 Common Platform Enumeration (CPE)
The Common Platform Enumeration (CPE) [24] is a specification that standardizes the
way operating systems, hardware devices, and other components of the target system are
identified and enumerated. The CPE specification defines two main modules. One of these
modules is the CPE Applicability Language, a language for describing the relationships
between CPE platforms and checks. The relationship is represented by logical expressions
defined in the CPE specification. Another module of the specification is CPE Dictionary,
which defines a dictionary of CPE identifiers (names) and references to checks. Both spec-
ifications refer to checks written in the OVAL Language. Like other components of SCAP,
they are based on XML.

The CPE Applicability Language consists of the platform element, which is a container
referenced by the IT platform, for the logical-test element. The logical-test element is the
root element for evaluating the CPE Applicability Language. Logical-test has operator and
negation attributes. The attributes represent the relationship between the children of the
logical-test element. Children of the logical-test element can check references, dictionary
references, or nested logical-test elements. See Listing 2.9 of applicability checks written in
the CPE Applicability Language.

11

<cpe-lang:platform-specification>
<cpe-lang:platform id="not_aarch64_arch_and_not_ppc64le_arch">

<cpe-lang:logical-test operator="AND" negate="false">
<cpe-lang:logical-test operator="AND" negate="true">

<cpe-lang:fact-ref name="cpe:/a:aarch64_arch"/>
</cpe-lang:logical-test>
<cpe-lang:logical-test operator="AND" negate="true">

<cpe-lang:fact-ref name="cpe:/a:ppc64le_arch"/>
</cpe-lang:logical-test>

</cpe-lang:logical-test>
</cpe-lang:platform>
...

</cpe-lang:platform-specification>

Listing 2.9: Example of CPE Aplicibility Language.

The CPE Dictionary maps CPE names to OVAL Checks. The CPE Dictionary can be
used with the CPE Applicability Language or on its own. In older versions of the Open-
SCAP scanner and content for the OpenSCAP scanner, the relationship between platforms
is represented differently. The OVAL Language is used. IT platforms are specified using
the CPE name in the Rule, Group, or Profile element with the Platform element. See
Listing 2.10 of the CPE Dictionary.

<cpe-dict:cpe-list
xsi:schemaLocation="http://cpe.mitre.org/dictionary/2.0
http://cpe.mitre.org/files/cpe-dictionary_2.1.xsd">

<cpe-dict:cpe-item name="cpe:/a:aarch64_arch">
<cpe-dict:title xml:lang="en-us">

System architecture is AARCH64
</cpe-dict:title>
<cpe-dict:check

system="http://oval.mitre.org/XMLSchema/oval-definitions-5"
href="ssg-rhel9-cpe-oval.xml">

oval:ssg-proc_sys_kernel_osrelease_arch_aarch64:def:1
</cpe-dict:check>

</cpe-dict:cpe-item>
<cpe-dict:cpe-item name="cpe:/a:audit:">

<cpe-dict:title xml:lang="en-us">
Package audit is installed

</cpe-dict:title>
<cpe-dict:check

system="http://oval.mitre.org/XMLSchema/oval-definitions-5"
href="ssg-rhel9-cpe-oval.xml">

oval:ssg-package_audit:def:1
</cpe-dict:check>

</cpe-dict:cpe-item>
...

</cpe-dict:cpe-list>

Listing 2.10: Example of CPE Dictonary.

12

Chapter 3

SCAP Scanners

SCAP scanners are the tools used to perform security audits. Usually, these tools are
accompanied with security profiles, implementations of specific security policies. The largest
open-source implementation of a SCAP scanner is the OpenSCAP project, the core of which
is the OpenSCAP library, an implementation of the SCAP standard. It is also the base for
different helper components like Anaconda Installer OpenSCAP Add-on.

3.1 OpenSCAP Projects
OpenSCAP [6] is an open-source project that is developing an ecosystem with a range
of tools and components to help administrators and auditors assess, evaluate and enforce
security baselines.

Development of this project began in November 2008 within Red Hat [23].
The tools that are part of the OpenSCAP ecosystem are:

• OpenSCAP base,

• SCAP Workbench,

• ComplianceAsCode,

• and others.

OpenSCAP Base

OpenSCAP Base [5] is a library and provides a command line tool that can be used to
analyze and evaluate the individual components of the SCAP standard. The library-based
approach allows rapid creation of new SCAP-based tools. OpenSCAP has received Security
Content Automation Protocol (SCAP) 1.2 certification from the National Institute of Stan-
dards and Technology (NIST), which means that OpenSCAP is fully SCAP 1.2 compliant.
The command-line tool called oscap provides a multipurpose tool for evaluating a system
based on any SCAP content.

SCAP Workbench

SCAP Workbench [7] is a tool that provides a graphical user interface (GUI) to easily
perform scans using oscap. This tool allows users to scan local or remote systems, perform
system remediation, generate multiple reports in different formats containing system scan

13

results, and easily edit the XCCDF profile without having to modify the corresponding
XCCDF file. The tool provides a graphical way to enable or disable XCCDF elements and
save changes to the XCCDF tailoring file.

ComplianceAsCode Project

ComplianceAsCode is a very important part of the ecosystem because a SCAP scanner
without SCAP content is useless. SCAP content is standardized input for SCAP scanners
in a machine-readable format that determines how the scanner evaluates the system based
on the set of rules in a given security policy. ComplianceAsCode [9] is an open-source
project that provides a SCAP Security Guide package1.

As the SCAP Security Guide [22] has grown and the goals of the project have expanded
to also making contributions to the SCAP content more accessible to non-programmers, the
name became a bit obsolete. As a result, the project was renamed to ComplianceAsCode.
The SCAP Security Guide [8] implements security policies recommended by recognized
authorities (the Payment Card Industry Security Standards Council (PCI SSC), Security
Technical Implementation Guides (STIG), the United States Government Configuration
Baseline (USGCB), etc.) for 18 products [21] including Red Hat Enterprise Linux, Fedora,
Debian, Firefox, Chromium and others. The SCAP Security Guide translates these security
policies into a machine-readable format that SCAP scanners can use to perform audit.

3.2 3-rd Party SCAP-compatible Scanners
There are many NIST-certified SCAP scanners. The list on the NIST website2 provides an
overview of available tools. Despite the visible variety the options are often obsolete or are
a part of a paid solutions. The list includes:

• SCAP Compliance Checker (SCC),

• Qualys SCAP Auditor,

• and more.

All implementations are compliant with SCAP standards, but each implementation of
the scanner and SCAP content may differ in some details. This can cause compatibility
issues.

For example, when using content from the SCAP Security Guide with the SCAP Compli-
ance Checker. The same compatibility issue exists with the visualization of SCAP scanner
results. The openscap-report is aimed to support reports generated with the OpenSCAP
implementation.

SCAP Compliance Checker (SCC)

This scanner was developed by the Naval Information Warfare Center Atlantic (NIWC
Atlantic) [19]. SCC performs automatic security configuration checks based on the contents
of the SCAP that comes with the scanner. The supplied SCAP content is an implementation
of the Security Technical Implementation Guides (STIG) policy. SCC users can install
different SCAP content to perform compliance checks according to their policy.

1https://www.open-scap.org/security-policies/scap-security-guide/
2https://csrc.nist.gov/projects/scap-validation-program/validated-products-and-modules

14

https://www.open-scap.org/security-policies/scap-security-guide/
https://csrc.nist.gov/projects/scap-validation-program/validated-products-and-modules

Qualys SCAP Auditor

Qualys SCAP Auditor [2] is a cloud-based solution for SCAP compliance. This scanner
is a subscription software and it is delivered as a Qualys Cloud Platform solution. SCAP
content is provided for this scanner to determine if the target system meets the United
States Government Configuration Baseline (USGCB) requirements. Users can also install
different kinds of SCAP content to perform compliance checks according to their policies.

15

Chapter 4

Reporting Capabilities of
SCAP-compatible Tools

Almost every SCAP scanner is equipped with a reporting format specified by the SCAP
standard, such as ARF. However, these reports are difficult to read by humans. That is
why each scanner implements its own way of reporting in a user-friendly manner.

4.1 SCAP Compliance Checker (SCC)
SCC provides standardized XML files for reporting, such as ARF, XCCDF, and OVAL
results. SCC provides text reports containing plain text information about the scan per-
formed. See Figure 4.1 for an example text report.

Figure 4.1: Example of a text report generated by SCC scanner.

SCC also provides HTML reports that are generated from XML files. There are several
versions of such reports with details of the rules being evaluated. This detail includes OVAL
Tests and a lightweight overview of the relationships between OVAL Tests in the OVAL
Definition. Another type of report is the summary type, which contains only rule names
and results. Users can get both reports in filtered versions that contain only failed rules or
all tested rules. See Figure 4.2 for an example of a rule detail.

16

Figure 4.2: Example of HTML report with detail of rule generated by SCC scanner.

17

4.2 Qualys SCAP Auditor
According to the Qualys SCAP Auditor documentation – Qualys SCAP Auditor provides
several types of [2] reports. The SCAP Scorecard Report provides a summary of the current
status of SCAP compliance. See Figure 4.3 for an example.

Figure 4.3: Example of SCAP Scorecard Report from documentation of Qualys SCAP
Auditor. Taken from [2].

Users can also create SCAP policy reports that can be generated in XML or CSV
formats. The content of SCAP Policy reports is based on the XCCDF report. Using
the API, users can download the full results as an ARF report. Qualys SCAP Auditor
provides two types of interactive SCAP reports. The rule pass/fail report identifies the
SCAP compliance status for a specific rule. See Figure 4.4 for an example of an interactive
Pass/Fail report.

18

Figure 4.4: Example of the Rule Pass/Fail Report from documentation of Qualys SCAP
Auditor. Taken from [2].

19

And the Individual Host Report (figure 4.5) identifies the SCAP compliance status for
a particular host.

Figure 4.5: Example of the Individual Host Report from documentation of Qualys SCAP
Auditor. Taken from [2].

20

4.3 OpenSCAP Scanner
The oscap scanner provides several types of reports that are designed to be inspected by
users. Regular scanner output is a plain text, that contains only information about the
rules being tested and their results. See figure 4.6.

Figure 4.6: Example of the command line output of oscap.

XML-based Reports

Also, the scanner generates a report, which is a standard ARF report that contains all
the information about system evaluation. Usually, this report is very large, so the user
has an option to select a subset of result types, such as XCCDF or OVAL results, and
generate a smaller XML report to save space. These XML reports are very complex and
not human-friendly. See Listing 4.1 with a small section of an ARF Report.
<arf:reports>
<arf:report id="xccdf1">
<arf:content>
<TestResult

xmlns="http://checklists.nist.gov/xccdf/1.2"
id="xccdf_org.open-scap_testresult_xccdf_org.profile_cis_workstation_l1"
start-time="2023-03-16T13:54:43+01:00" end-time="2023-03-16T13:55:03+01:00"
version="0.1.66" test-system="cpe:/a:redhat:openscap:1.3.6">

<benchmark
href="#scap_org.open-scap_comp_ssg-rhel9-xccdf.xml"
id="xccdf_org.ssgproject.content_benchmark_RHEL-9"/>
<title>OSCAP Scan Result</title>
<identity authenticated="false" privileged="false">jrodak</identity>
<profile
idref="xccdf_org.ssgproject.content_profile_cis_workstation_l1"/>

<target>rhel90-2</target>
<target-address>10.0.2.15</target-address>
<platform idref="#grub2"/>
<set-value idref="xccdf_org.ssgproject.value_var_ssh_client_rekey_limit_size">

512M
</set-value>
...

Listing 4.1: Example of small part of the ARF report.

21

HTML Reports

The ARF XML report can be converted to an HTML representation. This version of the
report contains limited details of the scan. And XSLT transformation used to produce
takes a lot of processing time. The HTML report contains information about the rule and
the OVAL Test result, but does not explain tests relationship in the OVAL Definition that
is associated with the rule. Also, it does not contain information about the applicability of
the rule to the target system.

This HTML report, produced by the OpenSCAP scanner, is more sophisticated than
the others, but it still does not contain all the useful information for content developers
and OpenSCAP users. See figure 4.7 with an example of the rule details in the report.

22

Figure 4.7: Example of HTML report with rule detail.

23

Chapter 5

Proposed Report Improvements

All reports, generated by SCAP scanners, have several problems. Some reports are more
useful than others, but, in general, the content of the reports is a summarized result of
the scan performed. In some use cases, users only need to know the scan scores and rule
results with descriptions. However, when developing a security profile or hardening system
according to a guideline, users want to know what was tested and how, or whether the rule
is applicable.

If the target system has been remediated, users need information on how the remediation
was performed. User has to look for this information in a huge XML file, which is very
confusing, as it was designed primarily for machines.

24

5.1 OVAL Results
The main component that determines what is being tested and how is the OVAL. The OVAL
Definitions establish the relationship between different tests. This relationship affects the
results of the rules. For example, some tests or operator nodes can be negated, which can
change the result of a branch in an OVAL Definition.

An OVAL Definition can be described by a tree structure, which I’ll call an OVAL tree.
This tree structure represents the relationships between tests. OVAL Tests define which
objects are collected from the target system to be evaluated against reference states. See
Figure 5.1 for an example graphical representation of an OVAL tree.

Figure 5.1: Visualization of OVAL.

25

5.2 Applicability of a Rule
The applicability of a rule is very important information for the user. If the rule is not
applicable, the OVAL Check is not performed and the result of the OVAL Check is not
evaluated.

The applicability of a rule is determined by the CPE platform. [4] “The CPE platform
of a rule or a group can contain a boolean expression, which describes the relationship of
a set of individual CPE platforms, which would later be converted by the build system into
the CPE AL definition.“

This conversion to CPE Applicability Language definitions is under development. Ear-
lier versions of the content and scanner exclusively exploited the CPE Dictionary mecha-
nism.

The CPE Applicability Language directly refers to OVAL Definitions that check if a rule
makes sense for current environment. The relationship between these applicability checks
can be represented as a tree structure. See figure 5.2 for an example visualization of the
CPE Applicability Language.

Figure 5.2: Visualization of CPE Applicability Language.

26

5.3 Post-Remediation Rule Result
This improvement introduces two new results types, that are available when the target
system has been remediated. The result fix unsuccessful means that the remediation
was made, but the subsequent OVAL Check was unsuccessful. The result fix failed
means that the fix failed in the execution phase. See figure 5.3 of a rule with a fix failed
result.

Figure 5.3: Rule with the result of the fix failed.

27

Chapter 6

Implementation

This thesis deals with the development of a tool for generating interactive HTML reports.
This tool is implemented mostly in Python, but HTML with JavaScript are used to make
the generated reports interactive.

A clean code approach is used to implement the tool along with object-oriented pro-
gramming. The tool is divided into several parts, which are:

• Command line interface,

• SCAP results parser,

– Data structures of SCAP results,

• Report generators.

These parts are implemented as sub-packages of the collection package openscap-report.
It is available as a stand-alone Python package as well as an RPM package. This approach
allows developers to reuse the code and integrate parts of the tool into other projects. See
the 6.1 package structure diagram.

Figure 6.1: Structure of openscap-report package.

6.1 Command Line Interface
The command line interface (CLI) is the first entry point that users interacts with. This
entry point is called oscap-report. The implementation of the command line interface is

28

in the file cli.py. In this file, there is a class called CommandLineAPI that is used as the ap-
plication programming interface (API). This API provides basic methods for loading input
data, storing output data, generating reports, etc. The CommandLineAPI class internally
parses arguments using the argparse library. The argparse library is part of the Python
Core Libraries. API methods are affected by the arguments being parsed.

The user can view information about the use of oscap-report by using
oscap-report --help or by using man page1 with man oscap-report (as part of the
openscap-report RPM package).

The tool expects the input file to be an ARF file. The FILE positional argument allows
the user to specify the path to the file. If no file path is specified, the tool expects a file on
standard input. Users can specify the path where to save the generated reports using the
--output OUTPUT parameter. If no output path is specified, the standard output is used.

For debugging Python code, the user can set the logging level using the parameter the
--log-level LEVEL. The logs are output to standard error output using the parameter the
--log-file LOG_FILE, the file to which the logs should be saved can be specified.

To debug the generated HTML report or the generation process, user can apply addi-
tional debug settings using the --debug DEBUG_FLAGS option. Currently available debug
flags would modify HTML reports for report development and testing, but if desired, the
debug flags can be extended to include flags that affect input processing and generation.
For example, for some specific logging formats, generating only OVAL visualizations, etc.
Available debug flags include disabling HTML report minification or enabling online CSS
resources. To propagate debug flags to report generators, the DebugSettings data class is
used.

The tool supports several output types, which the user can specify using the parameter
the --format FORMAT option. Default output format is HTML. That is, the tool will
generate an HTML report. For backward compatibility, the OLD-STYLE-HTML format is
available, which generates an HTML report that resembles the report created by OpenSCAP
using XSLT transformations (original XSLT files from OpenSCAP are used for this process).

On top of that, as an experimental feature, the tool can generate reports in JSON format.

6.2 SCAP Results Parser
This sub-package is responsible for analyzing the ARF file and generating the object-
oriented data model of the report. The lxml library is used to process XML files. The
lxml [13] library provides an object-oriented approach to processing XML files. The library
is also quite good performance-wise, having critical parts of processing routines implemented
in C.

The scap_result_parser sub-package consists of two sub-packages for better clarity
and code orientation. One is the parsers sub-package, which contains parser classes for
processing specific parts of ARF files, such as:

• Information about the performed scan,

• Used profile,

• Identifiers of rules and groups that are used in the profile,
1Online man page: https://openscap-report.readthedocs.io/en/latest/oscap-report.1.html

29

https://openscap-report.readthedocs.io/en/latest/oscap-report.1.html

• Definition of individual rules, groups, rule checks in OVAL Language and rule appli-
cability checks,

• Results of rules, rule checks in OVAL Language and rule applicability checks.

The second sub-package named data_structures is used to represent and store processed
information. This sub-package contains class definitions that represent the object-oriented
data model that is used to generate the HTML report or a variant of the JSON report.

The Data Model

The implementation of the data model is in the data_structures sub-package. Classes
in this sub-package use the @dataclass [17] decorator, which automatically adds special
methods to classes like __init__(). The entire data model is divided into several classes,
that represent different information structures from the ARF file. These classes together
define the main structure called Report. A report can be represented as an HTML report,
JSON structure, or a Python dictionary.

Classes that constitute the report have many associations between them. This dia-
gram 6.2 represents the relationship within data_structures sub-package. Additionally,
some classes may contain multiple instances of referred classes. This kind of relationship is
marked with an ”X“ symbol on the scheme.

30

Figure 6.2: Diagram of the Report data structure

31

The Report class contains instances of the ProfileInfo and ResultOfScan classes,
these instances contain information about selected profile and scan results.

Information about the selected profile is stored in an instance of ProfileInfo, which
holds profile elements such as the description, name, profile identifier, identifiers of selected
rules and groups, and the CPE platform, with information about whether the platform is
applicable to the target system.

Information about the scan is stored in an instance of the ResultOfScan class, which
contains information about the scan that was performed, such as the name of the target
machine, the name and version of the scanner used, the name of the user who performed
the scan, start and end time, the resulting score, and so on.

The Report class contains a dictionary of instances of the Group class that are indexed
by the group identifier in the profile. An instance of the Group class contains information
such as a group description, an identifier, a list of CPE platform identifiers, a list of rule
identifiers that are listed in the group, and a list of subgroups that are instances of the
Group class.

The most important part of the Report class is the dictionary, which collects instances
of the Rules class, that is indexed by rule identifiers. This dictionary contains all the
rules of the Data Stream. An instance of the Rule class contains information about the
rule, such as description, name, rule identifier, OVAL Definition identifier, list of platform
CPE identifiers, security policy identifier and reference, rule result, list of remedies, list
of warnings, dictionaries with the applicability definitions, instances of the OvalDefinition
class, etc.

The dictionaries, that determine whether a rule is applicable to the target system and
can be part of an instance of the Rule class, are very similar. These two dictionaries are
based on the CPE Applicability Language and the CPE Dictionaries. The attribute named
cpe_al contains an instance of the Platform class that contains the CPE Applicability
Language tree. The cpe_oval_dict attribute contains a dictionary with instances of the
OvalNode class, which is a class of the OVAL Definition criterion structure, representing a
CPE Dictionary entity. Both dictionaries are ordered according to the position of the CPE
that defines rule applicability.

An instance of the OvalDefinition class in the Rule class contains information about
the OVAL Definition, such as description, references, name, version, and criteria, repre-
sented by the OvalNode class, a recursive tree structure. An instance of the OvalNode class
contains information about criteria such as identifier, node type, value, and commentaries.
For the leaf nodes, there is also information about the OVAL Test. The OVAL Test is
represented by an instance of the OvalTest class. The OvalNode class uses an instance of
a special class, that can evaluate operators according to the OVAL specification.

An instance of OvalTest in the OvalNode contains information about the OVAL Test,
such as the test identifier, the check and check attributes, metadata, an instance of
OvalObject that represents the OVAL Object, and an instance of OvalState that represents
the OVAL State.

The OvalObject class uses wrapping to extend the OVAL Object abstraction. The
OvalObject class has a object_data attribute that stores a list containing dictionaries
of attributes and values. These dictionaries are stored in a list, functioning as a shared
database, because they are used to populate multiple instances of the collected objects.
In this case, common object-oriented approach has been modified to make it easier to use
different types of OVAL Objects and to store multiple instances of OVAL Objects.

32

The OvalState class uses similar wrapper to extend the OVAL State abstraction. The
OvalState class has a state_data attribute that stores a dictionary of attributes and
values, representing the state of the OVAL Object.

The CPE Applicability Language is represented by an instance of the Platform class.
The Platform class is used as a wrapper for the LogicalTest class, a class that represents
the logical test from the CPE Applicability Language. It defines a relationship between
other instances of LogicalTest. For the leaf logical test node, it also refers to OVAL crite-
ria. This reference is handled by an instance of the OvalNode class. The LogicalTest class
uses an instance of a special class, used to evaluate the relationship between applicability
checks.

ARF File Decomposition

The SCAPResultParser class handles the XML ARF file as a string. This string is passed as
an argument to the SCAPResultParser instance. When the object is initialized, validation
is performed according to the XSD schema provided by NIST2. Then the parser is ready
to create an object of class Report. If the input file is not valid, the ARF parser will warn
about this situation. The parser can process files in XCCDF result format, but the result
is an incomplete report.

The SCAPResultParser has a method called parse_report that returns an instance
of the Report class from the data_classes sub-package. This method uses additional
instances of specialized parsers from the Parsers sub-package to build a complete report
object.

The sub-package named Parsers is extended with several specialized parsers to ease
code navigation, but introduces many dependencies between them. This is key element of
the performance improvement. The slowness of the process was caused by references to
various elements in the XML, that are deep in the XML file hierarchy. For example, in
an ARF report, a variable can replace certain text in descriptions or define a value that
is being evaluated. This is caused by the reuse of rules for several profiles with different
requirements. For example, password length or idle timeout. There are many other non-
trivial cases where different elements are referenced in ARF reports. For example, rule
elements referencing the OVAL Definition, the CPE Dictionary, or the CPE Applicability
Language definition are checked. All these elements can be encountered in different parts
of the ARF file, including the results.

This problem of searching and cross-referencing in a large XML file has been solved
by bottom-up processing and limiting the parser scope dive. The parser processes a small
portion of the parsed XML and limits the depth of the search. The bottom-up processing
means that the parsers use another parser to extract the information to be parsed. This
information is returned as dictionaries, that are indexed by identifiers. The values in these
dictionaries can be XML elements or object instances from the data_structures package.
For example, a parser that processes OVAL results prepares a dictionary that is indexed by
the identifiers of the OVAL Definitions and whose values are OVAL criteria, represented by
the OvalNode class. The extension definitions are represented by the class OvalNode, which
contains the OVAL Definition identifier that is resolved later. If the OvalNode reference to
OVAL Test is used, the parser that contains preprocessed parts of the OVAL Tests is used.

2https://csrc.nist.gov/Projects/Security-Content-Automation-Protocol/Specifications/arf

33

https://csrc.nist.gov/Projects/Security-Content-Automation-Protocol/Specifications/arf

6.3 Report Generator
The report_generator sub-package is responsible for generating reports in different for-
mats. The report_generator sub-package contains classes that are used to generate
specific report formats. Report generators use an instance of the Report class from the
scap_report_parser sub-package, created by an instance of the SCAPReportParser class.
In the case of JSON, the report can be transformed into a dictionary that matches the JSON
format. In the case of the default JSON version, filtering and dictionary transformation is
performed. If the JSON-EVERYTHING format is selected, the filtering and transformation are
skipped.

A template with macros from the Jinja2 library is used to generate an HTML report.
These macros add the data from the input report to the output report template. However,
not all information is rendered as plain text. Some information is inserted as JSON. Also,
JavaScript code, fonts, and CSS files are incorporated in the final report to make it self-
sufficient.

The reason for embedding JSON in the HTML element instead of generating proper
HTML is to minimize the size of the generated report and to save time in generating complex
HTML structures. JSON in the HTML element is used to represent the OVAL Language
and the CPE Applicability Language. The graphical representation of the OVAL Language
and the CPE Applicability Language as HTML elements is generated by the browser using
asynchronous JavaScript code.

Some browsers have trouble displaying huge HTML reports with thousands of HTML
elements because the browser renders the entire HTML document. That is why display-
ing a report containing hundreds of rules can cause performance problems. To optimize
the performance lazy loading of rules in the report has been implemented to reduce the
rendering time when the user scrolls through the report.

The HTML report provides a full-text search mechanism for rule names and rule iden-
tifiers. The list of rules can be also filtered by rule results and by rule severity.

34

6.4 Report Structure
The final report consists of several parts. For the main report style, the Patternfly3 frame-
work is used. An example of the generated report is contained on the storage medium as a
file named report_example.html. The first part displays the description and name of the
selected profile. See figure 6.3 for an example of the first section.

Figure 6.3: Example of the first section in report

The second part focuses on compliance and scoring. This section contains overall statis-
tics on performed tests, such as the number of passing and failing tests and the rules for
scoring and summarizing the tests. See the example figure 6.4 with the Compliance and
Scoring section.

Figure 6.4: Example of the compliance and scoring section in report

The section on compliance and scoring includes a subsection on the Evaluation Char-
acteristics of the scan. This subsection contains general information about the scan, such

3https://www.patternfly.org/v4/

35

https://www.patternfly.org/v4/

as the name and version of the scanner, the name of the user who performed the scan, etc.
See figure 6.5 for an example of an Evaluation Characteristic in the report.

Figure 6.5: Example of the Evaluation Characteristics section in report

Below the Compliance and Scoring section is the Rule Overview section, which contains
a list of rules and a search bar with filtering. See figure 6.6 of the filterable search bar.

Figure 6.6: The search bar with filtering options in report

36

Each rule is interactively expandable with the rule details: result, check time, severity,
description, rationale, remediation, warning, visualization of the rule check and applicability
check, etc. See figure 6.7 for an example of a rule detail.

Figure 6.7: Detail of rule in report

In the rule details there is a section with the rule remediation code. If user is interested
in manual remediation of the system, they can click on the correction and get the correction
code that can be used to modify the system to conform to the rule. See figure 6.8 for an
example of remediation.

37

Figure 6.8: The remediation of rule in report

Figure 6.9: The visualization of the OVAL Definition with criteria

In the rule details, users can see the visualization of the rule checks and the applicability
of the rule, which is defined in OVAL and the CPE Applicability Language. The OVAL

38

Language visualization is demonstrated using an oval definition with criteria. See Figure 6.9
for a visualization of the OVAL Definition with criteria.

If the criterion node is a leaf node, it is a test node that can populate the OVAL Object
and the OVAL State. The OVAL Test optionally contains two attributes that define how
the OVAL Test is evaluated. These attributes are called check and check_existence. The
check attribute specifies how many collected objects must meet the requirements specified
in the OVAL State for the OVAL Test to evaluate to true. The check_existence attribute
specifies how many objects defined by the OVAL Object must exist for the OVAL Test to
evaluate to true. See figure 6.10 as an example of an OVAL Test that populates the OVAL
Object in the OVAL State.

Figure 6.10: Detail of the OVAL Test

The visualization of the applicability rule is very similar to the visualization of the
OVAL Language. When using the CPE Dictionary-based approach, the criteria that are
related to the CPE Dictionary are displayed.

When using the CPE Applicability Language, the node hierarchy that is defined by
the CPE Applicability Language is displayed. These nodes have square labels to distin-
guish them from rule’s own OVAL Criteria. See figure 6.11 for a visualization of the CPE
Applicability Language.

39

Figure 6.11: Visualization of CPE Applicability Language

40

6.5 Benchmark
The pref [3] tool was used to benchmark the report generation process. This tool serves as
an interface to monitor the performance of the Linux kernel. It is used to evaluate the execu-
tion time, CPU usage, and other metrics of the inspected application. The oscap-report
tool will be compared to the oscap tool. The versions of openscap-report 0.2.2 and
openscap-scanner 1.3.7 are being compared. Both commands were executed ten times,
and the resulting time was calculated as the average of these runs [20].

The following command was used for the benchmarking of oscap-report:

$ perf stat -e cpu-clock -r 10 oscap-report arf.xml > report.html

The results:

Performance counter stats for ’oscap-report arf.xml’ (10 runs):

19 969,05 msec cpu-clock:u # 9,995 CPUs utilized (+- 9,62%)

1,9979 +- 0,0113 seconds time elapsed (+- 0,57%)

Listing 6.1: Output of oscap-report benchmark.

The following command was used for the benchmarking of oscap:

$ perf stat -e cpu-clock -r 10 oscap xccdf generate \
report arf.xml > report.html

The results:

Performance counter stats for ’oscap xccdf generate report arf.xml’ (10 runs):

40 250,06 msec cpu-clock:u # 9,998 CPUs utilized (+- 9,64%)

4,0258 +- 0,0323 seconds time elapsed (+- 0,80%)

Listing 6.2: Output of oscap benchmark.

According to the benchmark, oscap-report generates reports in half of the time that is
needed for oscap.

41

Chapter 7

The openscap-report Package

The upstream repository of the openscap-report project is available at GitHub.com1,
where the development process is ongoing.

Two files are required to create an RPM package. The first file is a specification file
that describes the process of installing the application as a cookbook. There are special
macros and guidelines [12] for Python that simplify the process of creating an RPM package
and using Python’s packaging tools. The spec file used in the Fedora and EPEL 9 RPM
packages is included on storage media under the name openscap-report.spec.

However, there is one catch with the openscap-report package dependencies. The
biggest issue, that required a resolution, was the Patternfily dependency. This problem
was caused by offline CSS as a source for reports, generated on air-gaped systems. The
Patternfly XStatic package set was not a good fit because these packages were abandoned
(they do not receive updates and are not available on RHEL systems). Therefore, the
openscap-report archive contains internally packaged Patternfly CSS files and the pack-
age requirements include only the fonts that are in use by Patternfly. Fonts are installed
separately, from their own package, as a dependency according to the packaging guide-
line [11]. The fonts are not present in the PyPI Python package (available for the pip
tool), but the user can install these fonts manually, or ignore their absence as it is not an
important part of the openscap-report.

With a complete spec file, only the tool source archive is needed. Which can be generated
using the Python build tool, used to build a Python package compatible with the PyPI
repository.

The setup.py bootstrap script is required to create a Python package [14]. The script
contains information about the package such as entry points, dependencies, versions, etc.
For a more complex project, one also need to provide a MANIFEST.in file, that specifies all
the extra files the Python package must deliver: templates, CSS files, an so on.

Packaging openscap-report into the RPM package and PyPI package (Python pack-
age) is facilitated by the release process. Thanks to Github’s Actions2 service, almost all
tasks are performed in an automated fashion. The release is done using a bash script named
release.sh. This script expects a version number as the parameter and performs tasks
such as checking if the release is possible, retrieving the version from setup.py and pushing
the changes with the version tag to the repository.

1https://github.com/OpenSCAP/openscap-report
2https://github.com/OpenSCAP/openscap-report/actions

42

https://github.com/OpenSCAP/openscap-report
https://github.com/OpenSCAP/openscap-report/actions

After that, two independent Github actions are performed. The first commits the
Python package to PyPI3 and the second creates a release on GitHub4.

The Github release is a trigger for the PackIt [15] service, which is used to build and
test RPM packages in the upstream pull requests. In the course of the release process,
it is used to create a pull request with the changes to the downstream repository. The
downstream repository is used to release the RPM package for Fedora and Extra Packages
for Enterprise Linux [10] (can be enabled on Red Hat Enterprise Linux 9). Finally, the build
and release submission to the downstream repository actions are performed manually. This
step concludes the RPM package release process.

The developer must become a Fedora contributor to request permission to release the
package for Fedora Linux distribution. And all new packages must be reviewed and ap-
proved by other Fedora contributors to be released for Fedora Linux under Fedora Guide-
lines [11].

7.1 Building Packages
To build an RPM package, you must install the PackIt CLI tool. Instructions for installing
the PackIt CLI tool are available at webpage5. Other RPM tools, such as rpmbuild or
mock can be used to build, but PackIt simplifies the process of building an RPM package
for your version of Fedora. To build an RPM package, you can run the following command
in the project root:

$ packit build locally

The build process for PyPI repository and installation process using the pip tool are de-
scribed in the manual. Running code from source files and installing using the RPM package
manager are also described in the manual. The manual itself is built using Sphinx. The de-
scription of the build process for the manual is available in the appendix B.

7.2 Continuous Integration and Tests
A test suite was created to test the functionality of openscap-report. The way to run the
test suite locally is described in the manual. The main test suite consists of several tools.
The Tox [18] tool, which is a Python test tool for automating tests. This tool can run test
suites with different versions of Python in virtual environments. The Tox configuration
enables openscap-report to be tested in different Python environments without using
containers or virtual machines.

Pytest [16] is the framework used for testing the package. Tests are divided into two
categories: unit and integration tests. Unit tests test each part of the openscap-report
independently. Integration tests test the openscap-report package as a whole.

The openscap-report code is also lint-checked to be aligned with PEP86, a set of
requirements and guidelines to keep the code is healthy, clean as readable.

3https://PyPI.org/project/openscap-report/
4https://github.com/OpenSCAP/openscap-report/releases
5https://packit.dev/docs/cli/
6https://peps.Python.org/pep-0008/

43

https://PyPI.org/project/openscap-report/
https://github.com/OpenSCAP/openscap-report/releases
https://packit.dev/docs/cli/
https://peps.Python.org/pep-0008/

Each pull request in the upstream repository triggers a continuous integration that
runs a suite of tests and other testing services, such as scrutinizer-ci.com7 and CodeQL8,
which scan the code to check if the pull request introduces security holes or vulnerabilities.
There is also an RPM build test with changes to the pull request using the smoke test
and a dependency check to ensure that the change does not break the release process with
unexpected dependencies or broken code.

A weekly integration test is created to check that openscap-report keeps up with other
components such as OpenSCAP Scanner and SCAP Security Guide. The weekly integration
test uses the latest released version of openscap-report along with ARF reports generated
from the latest released packages openscap-scanner, scap-security-guide and content
that is created from the ComplianceAsCode repository development branch.

7https://scrutinizer-ci.com/g/OpenSCAP/openscap-report/
8https://codeql.github.com/

44

https://scrutinizer-ci.com/g/OpenSCAP/openscap-report/
https://codeql.github.com/

Chapter 8

User Testing

User testing is an important part of project development and is one of the main sources of
user feedback for the application being developed. Following the user feedback,
openscap-report can be improved to the satisfaction of the customers.

The openscap-report tool is developed for very narrow group of users such as security
content developers, OpenSCAP scanner developers, and users who use OpenSCAP to verify
compliance with their company’s security policy. These users usually are system adminis-
trators or auditors. Hallway or shadow testing approaches are therefore not viable because
these users are spread out across the globe. Therefore, I decided to reach out to users using
a form where users would answer questions, try out openscap-report, and also would be
able to leave extended feedback on openscap-report.

8.1 Methodology
The user testing form consists of two main parts. Each part focuses on a different part
of the openscap-report. The first part focuses on using the command line interface and
generating reports. The second part focuses on report controls and report contents. All
files that were used for user testing are contained on the storage medium in a directory
named user_testing.

Environment Setup

The user must install openscap-report before the testing process can begin. This section
is excluded from the evaluation because the use of package managers such as DNF is not
in the focus of user testing.

In this section, users are provided with installation instructions or RPM packages and
the necessary files for user testing. The evaluation files needed for testing, such as security
scan results in the form of ARF XML, can be generated by the user, but for convenience,
these files are also provided.

Report Generation

This section focuses on the command line tool called oscap-report, which is provided by
the openscap-report package. Users are introduced to the command line capabilities of
the oscap-report tool and prompted to use it to generate an interactive HTML report

45

from an ARF results file. The user was asked to perform the following tasks and answer
questions:

1. Task: Display help for the oscap-report tool via the man pages (man oscap-report)
or with the command oscap-report --help.

(a) Can you generate an HTML report with oscap-report after reading the man
pages or help messages?

(b) Do you have enough information that describes the functionality of the tool? If
you don’t, what would you like to be explained in more depth?

(c) Do you have any other problems with the display or content of the man page or
help message?

2. Task: Please generate an HTML report from the ARF results XML file using the
oscap-report command. You can use the file that was provided in the setup section.
Alternatively, you can use your own ARF report generated by the SCAP-compatible
scanner.

(a) Was the generation of the HTML report successful? Please, don’t hesitate to
create an issue for the project here1 if you had problems with the tool (attach
the ARF file you’ve used).

Report Contents

This section focuses on the content of the HTML report and its interactive capabilities.
User would work with the HTML report generated in the previous section. Users had to
complete the following tasks and answer the following questions:

1. Task: Please open the generated HTML report in your web browser.

(a) Do you have any trouble opening the HTML report? If you do, please write
them down.

2. Task: Please explore the contents of the HTML report.

(a) Do you find the About Profile and Compliance and Scoring sections useful?
(b) Missing any scoring or profile information? If yes, write what is missing.
(c) Do you find the Evaluation Characteristics section useful?
(d) Do you miss any information in the Evaluation Characteristics section? If yes,

write down what is missing.

3. Task: Please try filtering rules by result or severity to find the rule you want or filter
rules that have the word ”account“ in the title or id, which have failed and are of
medium severity.

(a) Was it easy to use the filter? (If you have a problem, click the arrow on the right
side in the search bar)

(b) Do you miss any filtering options? If yes, write down what is missing.

1https://github.com/OpenSCAP/openscap-report/issues

46

https://github.com/OpenSCAP/openscap-report/issues

4. Task: Please see the rule detail. (Click on the title of a rule or the arrow on the left
side next to the rule’s title)

(a) Do you miss any information about a rule? If yes, write down what is missing.
(b) Do you miss any information in the rule’s check visualization (OVAL Language)?

If yes, write down what is missing.
(c) Are you missing any information in the rule applicability check visualization? If

yes, write what is missing.
(d) Why did the rule

xccdf_org.ssgproject.content_rule_dconf_gnome_screensaver_idle_delay
fail? The report was provided via the link.

5. Conclusion

(a) Do you have improvement ideas?
(b) Did you find any bugs or problems?
(c) Anything else?

8.2 Outcome
The feedback was positive in general, and I also received several suggestions for improving
the report. I have had the opportunity to speak personally with some users and discuss
their needs. I have received feedback from users not only from Red Hat but also from other
companies or institutions such as Canonical, Fermilab, and SUSE.

Based on the responses, I will point out the main issues and suggestions for improvement.
For any ideas or issues that were mentioned in the responses, I plan to create issues on
GitHub. So that I’d follow up on them and could be able to improve opnescap-report in
the future. I’ve divided the answers into several categories, such as Documentation, Report
Informativeness, and Report Capabilities.

Users liked the new Report and asked if this Report will replace the old OpenSCAP
scanner HTML Report. Users were surprised at the speed of generating the new HTML
Report compared to the old HTML Report. Users are also interested in generating OVAL
visualizations from the OVAL Results file or other report formats.

Documentation

According to the feedback, users are missing the examples of tool usage in the man page.
One user suggested that only options without too much text should be shown in the help
and that some flags not related to normal use should be moved to the man pages only. The
flags for debugging was given as an example. Users also noted the lack of documentation
on manual build and installation procedures for openscap-report package.

Report Informativeness

Users want the Report to include a link to the original security policy, the version of the
SCAP Security Guide, and the IP address of the target system.

47

Some users were interested in an explanation of how the scan score is calculated. How
OVAL operators are evaluated because they confused them with boolean operators. In gen-
eral, they wanted to have an explanation readily available in the report to avoid switching
to the SCAP specification.

Users also wanted to be able to visually distinguish platform usability checks from
configuration checks.

Report Capabilities

Users suggest a two-layered view of the Evaluation Characteristics, with the most useful
items visible after the first expansion and the rest of it after the second. Users were not
able sort rules by title, severity, and outcome.

Users are interested in being able to filter rules using STIG identifiers.
Users missed buttons to uncheck all filters, clear the search box, filter only matching

or non-matching rules, and a button to move to the top of the report. Users would like to
have links in rules organized by security policy, for example.

48

Chapter 9

Conclusion

The goal of this work was to learn about SCAP standards and examine the reports generated
by the OpenSCAP security scanner or other SCAP scanners, propose improvements to the
HTML report content, and develop a tool that generates an interactive HTML report from
the SCAP results.

The tool was packaged into an RPM package available on Fedora Linux and other
distributions such as Red Hat Enterprise Linux 9 or Centos Stream 9 via Fedora EPEL
packages.

The main part of this thesis is to learn about the SCAP standard report formats and
implement the tool, which is packaged in a package called openscap-report, which provides
a oscap-report tool that can generate an interactive HTML report.

This thesis begins by explaining the main components of the SCAP standard. In this
Chapter 2, the author draws on his next three years of experience with the OpenSCAP
project. Chapter 3 introduces the OpenSCAP project and other SCAP scanners. Chapter
4 provides an overview of the reporting capabilities of SCAP scanners. In Chapter 5, the
author presents his reporting enhancements. In Chapters 6 and 7, the author describes
the implementation and what tools were used to develop and package the tool to generate
interactive HTML reports. In Chapter 8, the author develops the User Testing Methodology
and presents the results of the user testing.

The author successfully developed the oscap-report tool and created an RPM pack-
age called openscap-report, which is available for Fedora Linux and other distributions
such as RedHat Enterprise Linux 9 or Centos Stream 9 via Fedora EPEL packages. Also,
openscap-report has been bundled into openSUSE Linux by SUSE engineers. It is possi-
ble that in the future, openscap-report will also be included in Ubuntu Linux by Ubuntu
developers.

You can check the current availability of openscap-report on Linux distributions at
pkgs webpage1.

User testing provides some ideas and reveals issues that the author plans to implement
and fix in future development. Users have also expressed interest in other versions of the
reports, such as the report generated from OVAL results or formats like JSON.

1https://pkgs.org/download/openscap-report

49

https://pkgs.org/download/openscap-report

Bibliography

[1] OVAL Content Creation Tutorial. Center for Internet Security, 2017 [cit. 2022-12-18].
Available at: https://ovalproject.github.io/getting-started/tutorial/.

[2] Qualys PC/SCAP Auditor – Getting Started Guide. Getting Started Guide.
QUALYS, INC, november 2017 [cit. 2022-12-28]. Available at:
https://www.qualys.com/docs/qualys-scap-getting-started-guide.pdf.

[3] Getting started with the perf command [online]. 2021 [cit. 2023-4-12]. Available at:
https://www.ibm.com/docs/en/linux-on-systems?topic=
performance-getting-started-perf-command.

[4] ComplianceAsCode Developer documentation. Red Hat Security Compliance Team,
2022 [cit. 2022-12-20]. Available at:
https://complianceascode.readthedocs.io/en/latest/manual/developer/
06_contributing_with_content.html#applicability-of-content.

[5] The OpenSCAP Base [online]. 2022 [cit. 2022-11-15]. Available at:
https://www.open-scap.org/tools/openscap-base/.

[6] The OpenSCAP tools [online]. 2022 [cit. 2022-11-15]. Available at:
https://www.open-scap.org/tools/.

[7] The OpenSCAP Workbench [online]. 2022 [cit. 2022-11-15]. Available at:
https://www.open-scap.org/tools/scap-workbench/.

[8] SCAP security guide [online]. 2022 [cit. 2022-11-15]. Available at:
https://www.open-scap.org/security-policies/scap-security-guide/.

[9] The Security compliance content in SCAP, Bash, Ansible, and other formats [online].
2022 [cit. 2022-11-15]. Available at: https://github.com/ComplianceAsCode/content.

[10] Extra Packages for Enterprise Linux (EPEL). The Fedora Project, 2023 [cit.
2023-4-12]. Available at: https://docs.fedoraproject.org/en-US/epel/.

[11] Fedora Packaging Guidelines. The Fedora Project, 2023 [cit. 2023-4-12]. Available at:
https://docs.fedoraproject.org/en-US/packaging-guidelines/.

[12] Fedora Packaging Guidelines: Python. The Fedora Project, 2023 [cit. 2023-4-12].
Available at: https://docs.fedoraproject.org/en-US/packaging-guidelines/Python/.

[13] The lxml XML toolkit for Python. Contributors of The lxml library, 2023 [cit.
2023-4-12]. Available at: https://lxml.de/.

50

https://ovalproject.github.io/getting-started/tutorial/
https://www.qualys.com/docs/qualys-scap-getting-started-guide.pdf
https://www.ibm.com/docs/en/linux-on-systems?topic=performance-getting-started-perf-command
https://www.ibm.com/docs/en/linux-on-systems?topic=performance-getting-started-perf-command
https://complianceascode.readthedocs.io/en/latest/manual/developer/06_contributing_with_content.html#applicability-of-content
https://complianceascode.readthedocs.io/en/latest/manual/developer/06_contributing_with_content.html#applicability-of-content
https://www.open-scap.org/tools/openscap-base/
https://www.open-scap.org/tools/
https://www.open-scap.org/tools/scap-workbench/
https://www.open-scap.org/security-policies/scap-security-guide/
https://github.com/ComplianceAsCode/content
https://docs.fedoraproject.org/en-US/epel/
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://docs.fedoraproject.org/en-US/packaging-guidelines/Python/
https://lxml.de/

[14] Packaging and distributing projects. Python Software Foundation, 2023 [cit.
2023-4-12]. Available at: https://packaging.python.org/en/latest/guides/
distributing-packages-using-setuptools/.

[15] Packit. Contributors of The Packit, 2023 [cit. 2023-4-12]. Available at:
https://packit.dev/.

[16] Pytest: helps you write better programs. Holger Krekel and pytest-dev team, 2023
[cit. 2023-4-12]. Available at: https://docs.pytest.org/en/7.3.x/.

[17] The Python Standard Library – Data Classes. Python Software Foundation, 2023
[cit. 2023-4-12]. Available at: https://docs.python.org/3/library/dataclasses.html.

[18] Tox – automation project. The Tox Developers, 2023 [cit. 2023-4-12]. Available at:
https://tox.wiki/en/latest/.

[19] Atlantic, N. Security Content Automation Protocol (SCAP) Compliance Checker
(SCC) [online]. 2022 [cit. 2022-11-20]. Available at:
https://www.niwcatlantic.navy.mil/scap/.

[20] Eranian, S., Gouriou, E., Moseley, T. and Bruijn, W. de. Linux kernel profiling
with perf. 2023 [cit. 2023-4-12]. Available at:
https://perf.wiki.kernel.org/index.php/Tutorial.

[21] Haičman, M. SCAP Security Guide intro pitch [Red Hat internal slides]. 2018 [cit.
2023-4-12].

[22] Lysoněk, M. System for Automatic Filtering of Tests. Brno, CZ, 2020. [cit.
2023-4-12]. Diplomová práce. Vysoké učení technické v Brně, Fakulta informačních
technologií. Available at: https://www.fit.vut.cz/study/thesis/23098/.

[23] Černý, J. Nástroj pro tvorbu definic OVAL v projektu OpenSCAP. Brno, CZ, 2016.
[cit. 2023-4-12]. Bakalářská práce. Vysoké učení technické v Brně, Fakulta
informačních technologií. Available at: https://www.fit.vut.cz/study/thesis/18235/.

[24] Waltermire, D., Cichonski, P. and Scarfone, K. Common Platform
Enumeration: Applicability Language Specification Version 2.3. NIST Interagency
Report 7698. National Institute of Standards and Technology, august 2011 [cit.
2022-12-18]. Available at:
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7698.pdf.

[25] Waltermire, D., Quinn, S., Booth, H., Scarfone, K. and Prisaca, D. The
Technical Specification for the Security Content Automation Protocol (SCAP). NIST
Special Publication 800-126, 3rd ed. National Institute of Standards and Technology,
february 2018 [cit. 2022-11-28]. Available at:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-126r3.pdf.

[26] Standards, N. I. of and Technology. Extensible Configuration Checklist
Description Format (XCCDF) [online]. 2016 [cit. 2022-12-18]. Available at:
https://csrc.nist.gov/Projects/Security-Content-Automation-Protocol/
Specifications/xccdf#resource-1.2.

51

https://packaging.python.org/en/latest/guides/distributing-packages-using-setuptools/
https://packaging.python.org/en/latest/guides/distributing-packages-using-setuptools/
https://packit.dev/
https://docs.pytest.org/en/7.3.x/
https://docs.python.org/3/library/dataclasses.html
https://tox.wiki/en/latest/
https://www.niwcatlantic.navy.mil/scap/
https://perf.wiki.kernel.org/index.php/Tutorial
https://www.fit.vut.cz/study/thesis/23098/
https://www.fit.vut.cz/study/thesis/18235/
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7698.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-126r3.pdf
https://csrc.nist.gov/Projects/Security-Content-Automation-Protocol/Specifications/xccdf#resource-1.2
https://csrc.nist.gov/Projects/Security-Content-Automation-Protocol/Specifications/xccdf#resource-1.2

Appendix A

Contents of the Included Storage
Media

The storage medium contains the following structure1:
/...Root directory of storage media

openscap-report..........................Source files of openscap-report project
.github Configuration files for GitHub
docs..Source codes of documentation
openscap_report.............................Source codes of implementation

cli.py..Command line API
plans.....................................TMT plans for the TMT test suite
tests .. Source codes of test suite
openscap-report.spec ... Spec file
setup.py..Python setup script
MANIFEST.in Specification of files in Python package
release.sh ... Realase script
LICENSE...License
LICENSE.spdx..SPDX version of license
requirements.txt..............................Python package requirements
README.md

manual .. Compiled documentation
oscap-report.1 Compiled manual page
HTML_manual..Compiled HTML manual

these_source_code...............................Source codes of this document
RPM..Built RPM packages
user_testing..Files for user testing
report_example.html..............................Example of generated report
xrodak00_openscap-report.pdf.....Electronic version of this document for print
xrodak00_openscap-report_IS.pdf.......Electronic version of this document for
submission to the IS VUT

1The entire storage medium contains about 67 directories and 355 files.

52

Appendix B

Build Manual

To build a manual page and a manual that contains all the information and usage of the
openscap-report package and the oscap-report command line tool, you need to install
the python3-sphinx, python3-sphinx_rtd_theme packages. The built versions of the
manual page and manual are contained on storage media in a directory named manual or
provided with the online version of this documentation1.
To build a man page open directory docs and run this command:

$ sphinx-build -b man . TARGET_DIR

To build HTML manual open directory docs and run this command:

$ sphinx-build . TARGET_DIR

Optionally files in the modules directory can be regenerated using a command executed in
directory openscap-report:

$ sphinx-apidoc openscap_report -o docs/modules

1https://openscap-report.readthedocs.io/en/latest/

53

https://openscap-report.readthedocs.io/en/latest/

	Introduction
	Security Content Automation Protocol
	The Open Vulnerability and Assessment Language(OVAL)
	Extensible Configuration Checklist Description Format (XCCDF)
	Common Platform Enumeration (CPE)

	SCAP Scanners
	OpenSCAP Projects
	3-rd Party SCAP-compatible Scanners

	Reporting Capabilities of SCAP-compatible Tools
	SCAP Compliance Checker (SCC)
	Qualys SCAP Auditor
	OpenSCAP Scanner

	Proposed Report Improvements
	OVAL Results
	Applicability of a Rule
	Post-Remediation Rule Result

	Implementation
	Command Line Interface
	SCAP Results Parser
	Report Generator
	Report Structure
	Benchmark

	The openscap-report Package
	Building Packages
	Continuous Integration and Tests

	User Testing
	Methodology
	Outcome

	Conclusion
	Bibliography
	Contents of the Included Storage Media
	Build Manual

