
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

OPENSCAP REPORT: A TOOL FOR VISUALIZING
SECURITY COMPLIANCE INSPECTION RESULTS
OPENSCAP REPORT: NÁSTROJ PRO VIZUALIZACI VÝSLEDKŮ KONTROLY DODRŽOVÁNÍ
BEZPEČNOSTNÍCH PŘEDPISŮ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

JAN RODÁK

Mgr. JOZEF DRGA,

BRNO 2023

T BRNO FACULTY I
UNIVERSITY OF INFORMATION |
OF TECHNOLOGY TECHNOLOGY

B a c h e l o r ' s T h e s i s A s s i g n m e n t | | | | | | | | | | | | | | | | | |
148184

Institut: Department of Intelligent Systems (UITS)
Student: Rodák J a n
Programme: Information Technology
Specialization: Information Technology
Title: O p e n S C A P Report : A Tool for V isua l iz ing Secur i ty Compl iance Inspection

Resul ts
Category: Security
Academic year: 2022/23

Assignment:

1. Get acquainted with S C A P standards and explore HTML reports generated by OpenSCAP
security scanners or other tools.

2. Suggest content improvements to the report.
3. Create a tool for processing S C A P results of the OpenSCAP scanner and generating an

interactive report in HTML format.
4. Create the package available for Fedora (and R H E L 9?).
5. Create a user-testing methodology.

6. Perform user testing according to the methodology and evaluate the results.

Literature:
• The S C A P - Security Content Automation Protocol, https://csrc.nist.gov/projects/security-content-

automation-protocol/
• Publication of S C A P : https://csrc.nist.gov/publications/detail/sp/800-126/rev-3/final
• The O p e n S C A P portal, https://www.open-scap.org/
• Fedora packaging guidelines, https://docs.fedoraproject.org/en-US/packaging-guidelines/
• Designing with data: improving the user experience with A /B testing,

https://primo.lib.vutbr.ez/permalink/f/1roshr/420BUT_Aleph000142118
• Don't make me think!: a common sense approsach to web usability,

https://primo.lib.vutbr.ez/permalink/f/1roshr/420BUT_Aleph000076907

Requirements for the semestral defence:
Completed points 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Drga Jozef , Mgr.
Head of Department: Hanäcek Petr, doc. Dr. Ing.
Beginning of work: 1.11.2022
Submission deadline: 10.5.2023
Approval date: 3.11.2022

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://csrc.nist.gov/projects/security-content-
https://csrc.nist.gov/publications/detail/sp/800-126/rev-3/final
https://www.open-scap.org/
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://primo.lib.vutbr.ez/permalink/f/1roshr/420BUT_Aleph000142118
https://primo.lib.vutbr.ez/permalink/f/1roshr/420BUT_Aleph000076907
https://www.fit.vut.cz/study/theses/

Abstract
The goal of the thesis is to develop a utility to present the results of OpenSCAP security
scans. S C A P scans use standardized input and output formats, and those formats are not
consumable by humans.

The utility aims to present the S C A P scan output in the form of an interactive report
that helps find the root cause of failed security requirements and enables users to understand
the composition of the respective security checks.

The report will allow users of OpenSCAP and developers of security profiles to debug
their checks. It will provide insights into relations between individual checks and help
understand the context of these checks within S C A P security profiles.

Abstrakt
Cílem práce je vyvinout nástroj pro prezentaci výsledků bezpečnostního skeneru Open­
SCAP. S C A P skenery používají standardizované vstupní a výstupní formáty, které nejsou
čitelné člověkem.

Cílem nástroje je prezentovat výstup S C A P skeneru ve formě interaktivního reportu,
který pomůže najít hlavní příčinu selhání bezpečnostních požadavků. Dovolí uživatelům
porozumět složení příslušných bezpečnostních kontrol.

Report umožní uživatelům OpenSCAP i vývojářům bezpečnostních profilů ladit jejich
kontroly. Poskytne pohled na vztahy mezi jednotlivými kontrolami a pomůže pochopit
kontext těchto kontrol v rámci bezpečnostních profilů SCAP.

Keywords
SCAP, OpenSCAP, A R F , X C C D F , O V A L , security compliance, audit, U I / U X

Klíčová slova
SCAP, OpenSCAP, A R F , X C C D F , O V A L , bezpečnostní předpisy, audit, U I / U X

Reference
RODÄK, Jan. OpenSCAP Report: A Tool for Visualizing Security Compliance Inspec­
tion Results. Brno, 2023. Bachelor's thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor Mgr. Jozef Drga,

O p e n S C A P R e p o r t : A T o o l fo r V i s u a l i z i n g
S e c u r i t y C o m p l i a n c e I n s p e c t i o n R e s u l t s

Declaration
I hereby declare that this Semestral project was prepared as an original work by the author
under the supervision of Mgr. Jozef Drga. The supplementary information was provided
by Evgeny Kolesnikov. I have listed all the literary sources, publications and other sources,
which were used during the preparation of this thesis.

Jan Rodák
May 8, 2023

Contents

1 Introduction 4

2 Security Content Automation Protocol 5
2.1 The Open Vulnerability and Assessment Language

(OVAL) 6
2.2 Extensible Configuration Checklist Description Format (X C C D F) 9
2.3 Common Platform Enumeration (CPE) 11

3 SCAP Scanners 13
3.1 OpenSCAP Projects 13
3.2 3-rd Party SCAP-compatible Scanners 14

4 Reporting Capabilities of SCAP-compatible Tools 16
4.1 S C A P Compliance Checker (SCC) 16
4.2 Qualys S C A P Auditor 18
4.3 OpenSCAP Scanner 21

5 Proposed Report Improvements 24
5.1 O V A L Results 25
5.2 Applicability of a Rule 26
5.3 Post-Remediation Rule Result 27

6 Implementation 28
6.1 Command Line Interface 28
6.2 S C A P Results Parser 29
6.3 Report Generator 34
6.4 Report Structure 35
6.5 Benchmark 41

7 The openscap-report Package 42
7.1 Building Packages 43
7.2 Continuous Integration and Tests 43

8 User Testing 45
8.1 Methodology 45
8.2 Outcome 47

9 Conclusion 49

1

Bibliography 50

A Contents of the Included Storage Media 52

B Build Manual 53

2

List of Figures

4.1 Example of a text report generated by SCC scanner 16
4.2 Example of H T M L report with detail of rule generated by SCC scanner. . . 17
4.3 Example of S C A P Scorecard Report from documentation of Qualys S C A P

Auditor. Taken from [2] 18
4.4 Example of the Rule Pass/Fail Report from documentation of Qualys S C A P

Auditor. Taken from [2] 19
4.5 Example of the Individual Host Report from documentation of Qualys S C A P

Auditor. Taken from [2] 20
4.6 Example of the command line output of oscap 21
4.7 Example of H T M L report with rule detail 23

5.1 Visualization of O V A L 25
5.2 Visualization of C P E Applicability Language 26
5.3 Rule with the result of the fix failed 27

6.1 Structure of openscap-report package 28
6.2 Diagram of the Report data structure 31
6.3 Example of the first section in report 35
6.4 Example of the compliance and scoring section in report 35
6.5 Example of the Evaluation Characteristics section in report 36
6.6 The search bar with filtering options in report 36
6.7 Detail of rule in report 37
6.8 The remediation of rule in report 38
6.9 The visualization of the O V A L Definition with criteria 38
6.10 Detail of the O V A L Test 39
6.11 Visualization of C P E Applicability Language 40

3

Chapter 1

Introduction

Cybersecurity has been growing in importance over the last few years. Many organiza­
tions such as large enterprises, governments, hospitals, the military, and airports are using
computers to organize infrastructure and manufacturing, communicate, process data, and
serve customers. These computers might contain sensitive data or might be part of a com­
pany's critical infrastructure. Protection and security for that machines are becoming an
increasingly important issue for many companies.

In the field of computer security, there are different approaches to protecting computers:
antivirus programs, firewalls, attack detection, or automated security audits.

Automated security audits (with accordance to the organization's security policy) can
reveal vulnerabilities in systems. These security policies, through a set of rules and recom­
mendations, define what a secure system should look like.

Traditional manual security audits are time-consuming and increase the potential for
human error. The Security Content Automation Protocol (SCAP) has been created to
reduce the time required for such kind of audits and amount of mistakes. Security scanners
that implement S C A P have standardized input and output formats.

The scanner uses a profile. A profile is a machine-readable version of a security policy
that the scanner understands. A profile consists of rules. These rules are evaluated. The
overall result of the scan is a cumulative score and/or a number of failed rules. It describes
the extent to which the system complies with the security policy.

Scanners usually offer several versions of result reports. But, commonly, these reports
are in a machine-readable format. And sometimes they lack information about the tests
that were performed on the system and the relationship between those tests and the rules.
Finding the root cause of the rule's failure is not an easy task: users have to get a grip on
large reports that were created for machines.

This work focuses on developing reports that help users understand the logic behind
complex security checks. The main standardized output (that would be used as the tool's
main input) is the Asset Reporting Format (ARF) . This format is based on X M L and
contains all the information about the security checks performed.

4

Chapter 2

Security Content Automation
Protocol

The Security Content Automation Protocol (SCAP) [25] is a set of specifications that stan­
dardize the form in which security configuration requirements are represented to machines
and humans. For example, S C A P can be used for automated configuration, vulnerability
and patch enumeration, technical control compliance activities, and security measurement.

According to S C A P technical specifications version 1.3 [25]. S C A P components can be
divided into several categories: "

• Languages - The SCAP languages provide standard vocabularies and conventions for
expressing security policy, technical check mechanisms, and assessment results. The
SCAP language specifications are Extensible Configuration Checklist Description For­
mat (XCCDF), Open Vulnerability and Assessment Language (OVAL), Open Check­
list Lnteractive Language (OCLL), and Common Platform Enumeration (CPE) - Ap­
plicability Language.

• Reporting formats - The SCAP reporting formats provide the necessary constructs to
express collected information in standardized formats. The SCAP reporting format
specifications are Asset Reporting Format (ARF) and Asset Ldentification. Although
Asset Ldentification is not explicitly a reporting format, SCAP uses it to identify the
assets that reports relate to.

• Ldentification schemes - The SCAP identification schemes provide a means to iden­
tify key concepts such as software products, vulnerabilities, and configuration items
using standardized identifier formats. They also provide a means to associate indi­
vidual identifiers with additional data on the subject of the identifier. The SCAP
identification scheme specifications are Common Platform Enumeration (CPE), Soft­
ware Ldentification (SWLD) Tags, Common Configuration Enumeration (CCE), and
Common Vulnerabilities and Exposures (CVE).

• Measurement and scoring systems - Ln SCAP this refers to evaluating specific charac­
teristics of a security weakness (for example, software vulnerabilities and security con­
figuration issues) and, based on those characteristics, generating a score that reflects
their relative severity. The SCAP measurement and scoring system specifications
are the Common Vulnerability Scoring System (CVSS) and Common Configuration
Scoring System (CCSS).

5

• Integrity - A SCAP integrity specification helps to preserve the integrity of SCAP
content and results. The Trust Model for Security Automation Data (TMSAD) is the
SCAP integrity specification.

The categories of Language and Report Formats are important for this work. A l l of the
languages or reporting formats used in S C A P are based on X M L . A l l of these documents
have an X M L schema that can be used to validate the X M L document format. The source
of content for S C A P scanners is a document called a Data Stream, a structure that incor­
porates S C A P components into a single file. This is useful for simplifying S C A P content
handling. Data Stream mainly contains documents written in the following languages:

• The X C C D F language, used to describe security checklists,

• The O V A L language, used to define checks of rules in security policy and declare
logical assertions about the system state,

• The OCIL language, used for checking rules that cannot be fully automated with
O V A L , and

• The C P E Applicability Language, that is used to declare automatic applicability tests
for benchmark sub-components.

A Data Stream file usually contains several security policies. Because, in many cases,
security policies overlap and share rule definitions and checks. Security policies define what
a secure computer system should look like, using rules and recommendations. A machine-
readable implementation of a security policy in the X C C D F language is called a Profile.
A Profile consists of a list of, possibly grouped, rule definitions. Rule definitions describe
the policy rules and hold references to O V A L and OCIL checks, applicability definitions
(the C P E Applicability Language), and other types of metadata.

The main reporting format is an A R F document that contains all results, such as O V A L
and X C C D F check results, with all S C A P components in Data Stream. It is also often called
the Result Data Stream because this file contains the original Data Stream information in
addition to evaluation results.

2.1 The Open Vulnerability and Assessment Language
(O V A L)

The main component of S C A P is the Open Vulnerability and Assessment Language [1].
It is an XML-based language for identifying vulnerabilities and configuration problems in
computer systems. O V A L standardizes the representation of automated checks in security
policy.

A n O V A L Definition defines a logical check of rules and describes the expected state
of a computer system. The O V A L Definition contains definition and criteria metadata.
The definition metadata are title, version, description, etc. See Listing 2.1 of the O V A L
Definition.

G

<oval-def:definition class="compliance"
id="oval:ssg-dconf_gnome_screensaver_idle_delay:def:1"
version="2">
<oval-def:metadata>
<oval-def:title>
Set GN0ME3 Screensaver Inactivity Timeout

</oval-def:title>
<oval-def:affected family="unix">

<oval-def:platform>Red Hat Enterprise Linux 9</oval-def:platform>
</oval-def:affected>
<oval-def:description>

The allowed period of i n a c t i v i t y before the Screensaver i s activated.
</oval-def:description>
<oval-def:reference ref_id="CCE-86510-5" source="CCE"/>
<oval-def:reference

ref_id="dconf_gnome_screensaver_idle_delay" source="ssg"/>
</oval-def:metadata>
<oval-def:criteria operator="0R">
<oval-def:extend_definition
comment="dconf i n s t a l l e d "
definition_ref="oval:ssg-package_dconf_instailed:def:1" negate="true"/>

<oval-def:criteria
comment="check Screensaver i d l e delay and prevent user from changing i t "
operator="AND">

<oval-def:extend_definition
comment="dconf user p r o f i l e exists"
definition_ref="oval:ssg-enable_dconf_user_profile:def:l"/>

<oval-def:criterion
comment="idle delay has been configured"
test_ref="oval:ssg-test_screensaver_idle_delay:tst:l"/>

<oval-def:criterion
comment="idle delay i s set correctly"
test_ref="oval:ssg-test_screensaver_idle_delay_setting:tst:l"/>

</oval-def:criteria>
</oval-def:criteria>

</oval-def:definition>
Listing 2.1: Example of O V A L Definition.

The O V A L Definition criteria are a tree structure consisting of several types of nodes that
reference other O V A L components. Criteria nodes can be nested and are used as a logical
operators. The Criteria node reflects the relationship between child nodes. This relationship
is represented by logical operator types such as A N D , OR, O N E , and X O R . These operators
have defined logical tables1.

Child nodes can be another Criterion node, an Extended Definition node that references
another O V A L Definition, or a Criterion node that references an O V A L Test. O V A L Tests

x h t t p s : //oval, mitre.org/language/version5.ll/ovaldefinition/documentation/oval-common-
schema.html#OperatorEnumeration

7

http://mitre.org/language/version5.ll/ovaldefinition/documentation/oval-

define the relationship between the O V A L Objects and O V A L States components. See
Listing 2.2 of an O V A L Test.

<ind:textfilecontent54_test check="all" check_existence="all_exist"
comment="screensaver i d l e delay setting i s correct"
id="oval:ssg-test_screensaver_idle_delay_setting:tst:1"
version="l">

<ind:object
object_ref="oval:ssg-obj_screensaver_idle_delay_setting:obj:l"/>

<ind:state
state_ref="oval:ssg-state_screensaver_idle_delay_setting:ste:l"/>

</ind:textfilecontent54_test>
Listing 2.2: Example of O V A L Test.

The O V A L State defines the expected value collected by the O V A L Object or refers to the
O V A L Variable. The O V A L Variable defines values that can be referenced by the O V A L
Elements such as O V A L State. The O V A L Object defines the value to be collected from
the system being evaluated. See the Listing of O V A L State 2.3, O V A L Objects 2.4, and
O V A L Variable 2.5.

<ind:textfilecontent54_state
id="oval:ssg-state_screensaver_idle_delay_setting:ste:1" version="1">

<ind:subexpression
datatype="int" operation="less than or equal"
var_check="all" var_ref="oval:ssg-inactivity_timeout_value:var:l"/>

</ind:textfilecontent54_state>
Listing 2.3: Example of O V A L State.

<ind-def:textfilecontent54_object
id="oval:ssg-obj_screensaver_idle_delay_setting:obj:1" version="l">

<ind-def:path>/etc/dconf/db/local.d/</ind-def:path>
<ind-def:filename operation="pattern match">~.*$</ind-def:filename>
<ind-def:pattern operation="pattern match">

"idle-delay[\s=]*uint32[\s] ([~=\s] *)
</ind-def:pattern>
<ind-def:instance datatype="int">l</ind-def:instance>

</ind-def:textfilecontent54_object>
Listing 2.4: Example of O V A L Object.

<local_variable id="oval:ssg-inactivity_timeout_value:var:1"
version="l" datatype="int" comment="inactivity timeout variable">
<literal_component>900</literal_component>

</local_variable>
Listing 2.5: Example of O V A L Variable.

O V A L results section contains information about O V A L evaluation: O V A L Objects that
were collected from the targeted system and results of O V A L Objects matching against
O V A L States. It also contains evaluation criteria that have the same structure as O V A L
Definitions but stripped of node metadata such as comments and names. What they do
contain instead is a result attribute with the conclusion of an individual criterion.

8

The results of Criteria, Extended Definitions, Criterion, and Tests can be negated. The
values of the results are True, False, Error, Unknown, Not Evaluated, and Not Applicable.
See Listing 2.6 of the O V A L Result.

<definition
definition_id="oval:ssg-dconf_gnome_screensaver_idle_delay:def:1"
result="false" version="2">

<criteria operator="0R" result="false">
<extend_definition
definition_ref="oval:ssg-package_dconf_installed:def:1"
version="l" result="false" negate="true"/>

<criteria operator="AND" result="false">
<extend_definition
definition_ref="oval:ssg-enable_dconf_user_profile:def:1"
version="l" result="true"/>

<criterion
test_ref="oval:ssg-test_screensaver_idle_delay:tst:1"
version="l" result="false"/>

<criterion
test_ref="oval:ssg-test_screensaver_idle_delay_setting:tst:1"
version="l" result="false"/>

</criteria>
</criteria>

</definition>
Listing 2.6: Example of O V A L Result.

A document that contains O V A L components is normalized. This means that all the
information is distributed in the document and components cross-reference each other.
Just like in a relational database. This makes it difficult for users to understand and follow
the logic of tests.

2.2 Extensible Configuration Checklist Description Format
(X C C D F)

Extensible Configuration Checklist Description Format (X C C D F) [26] is a language for
creating security checklists and benchmarks. X C C D F contains a structured collection of
security rules from security policies for a target system. Like other languages in the S C A P
standards collection, X C C D F is based on X M L . X C C D F defines a data model that consists
of several X M L elements.

The root element of an X C C D F document is the X C C D F Benchmark, which serves
as a container for other X C C D F elements. The X C C D F Benchmark element contains the
Group, Rule, Value, Profile, and TestResult elements.

The Group element may contain an additional Group element as a subgroup, Rule,
Value, platform reference, and other descriptive Group elements. The Rule element is filled
with a reference to the C P E platform, Check, Fix, and other metadata such as description,
title, links, etc.

9

A F ix is an element that contains code of fix in Bash or a different language that is
used to modify the system in a way that it would satisfy the requirement. See Listing 2.7
of X C C D F Rule.

<xccdf-1.2:Rule
selected="false"
id="xccdf_org.ssgproj ect.rule_dconf_gnome_screensaver_idle_delay"
severity="medium">

<xccdf-1.2:title>
Set GN0ME3 Screensaver Inactivity Timeout

</xccdf-l.2:title>
<xccdf-l.2:description>
The i d l e time-out value for i n a c t i v i t y i n the GN0ME3 desktop
i s configured v i a the <html:code>idle-delay</html:code>...

</xccdf-l.2:description>
<xccdf-l.2:reference
href="https://www.cisecurity.org/controls/">K/xccdf-l.2:reference>
<xccdf-l.2:reference href="https://www.fbi.gov">
5.5.5

</xccdf-l.2:reference>

<xccdf-l.2:rationale>
A-session time-out lock i s a temporary action taken
when a user stops work...

</xccdf-l.2:rationale>
<xccdf-l.2:platform idref="#machine"/>
<xccdf-l.2:ident system="https://nvd.nist.gov/cce/index.cfm">
CCE-86510-5
</xccdf-1.2:ident>
<xccdf-l.2:fix system="urn:xccdf:fix:script:ansible"

id="dconf_gnome_screensaver_idle_delay"
complexity="low" disruption="medium" reboot="false"
strategy="unknown">...

</xccdf-1.2:fix>
<xccdf-l.2:check

system="http://oval.mitre.org/XMLSenema/oval-definitions-5">
<xccdf-l.2:check-content-ref

href="ssg-rhel9-oval.xml"
name="oval:ssg-dconf_gnome_screensaver_idle_delay:def:l"/>

</xccdf-l.2:check>

</xccdf-l.2:Rule>
Listing 2.7: Example of X C C D F Rule.

The Value element contains data that can be re-defined. For example, timeout value in the
rule can be specific to each profile. The Profile is a customization element of the Benchmark.
The profile contains references to the Rule, Group, and Value elements. The TestResult
element contains results of a scan performed on the target system. TestResult references

10

https://www.cisecurity.org/controls/%22%3eK/xccdf-l.2:reference
https://www.fbi.gov
https://nvd.nist.gov/cce/index.cfm
http://oval.mitre.org/XMLSenema/oval-definitions-5

Rules, Values, and Checks performed and may reference Profile. See Listing 2.8 of the Rules
result.

<rule-result
idref="xccdf_org.ssgproject.rule_dconf_gnome_screensaver_idle_delay"
ro l e = " f u l l " time="2023-03-16T13:54:43+01:00"
severity="medium" weight="1.000000">

<result>fail</result>
<ident system="https://nvd.nist.gov/cce/index.cfm">CCE-86510-5</ident>
<check system="http://oval.mitre.org/XMLSchema/oval-definitions-5">
<check-content-ref
name="oval:ssg-dconf_gnome_screensaver_idle_delay:def:1"
href="#oval0"/>

</check>
</rule-result>

Listing 2.8: Example of X C C D F Rule Result.

The customization element occurs only once in the X C C D F document and contains a Profile
element that modifies the behavior of the benchmark. The X C C D F can contain several
security policies in the form of profiles. These profiles may share the same Rules and
Values.

2.3 Common Platform Enumeration (C P E)

The Common Platform Enumeration (CPE) [24] is a specification that standardizes the
way operating systems, hardware devices, and other components of the target system are
identified and enumerated. The C P E specification defines two main modules. One of these
modules is the C P E Applicability Language, a language for describing the relationships
between C P E platforms and checks. The relationship is represented by logical expressions
defined in the C P E specification. Another module of the specification is C P E Dictionary,
which defines a dictionary of C P E identifiers (names) and references to checks. Both spec­
ifications refer to checks written in the O V A L Language. Like other components of SCAP,
they are based on X M L .

The C P E Applicability Language consists of the platform element, which is a container
referenced by the IT platform, for the logical-test element. The logical-test element is the
root element for evaluating the C P E Applicability Language. Logical-test has operator and
negation attributes. The attributes represent the relationship between the children of the
logical-test element. Children of the logical-test element can check references, dictionary
references, or nested logical-test elements. See Listing 2.9 of applicability checks written in
the C P E Applicability Language.

11

https://nvd.nist.gov/cce/index.cfm%22%3eCCE-86510-5%3c/ident
http://oval.mitre.org/XMLSchema/oval-definitions-5

<cpe-lang:platform-specification>
<cpe-lang:platform id="not_aarch64_arch_and_not_ppc641e_arch">

<cpe-lang:logical-test operator="AND" negate="false">
<cpe-lang:logical-test operator="AND" negate="true">

<cpe-lang:fact-ref name="cpe:/a:aarch64_arch"/>
</cpe-lang:logical-test>
<cpe-lang:logical-test operator="AND" negate="true">

<cpe-lang:fact-ref name="cpe:/a:ppc641e_arch"/>
</cpe-lang:logical-test>

</cpe-lang:logical-test>
</cpe-lang:platform>

</cpe-lang:platform-specification>
Listing 2.9: Example of C P E Aplicibility Language.

The C P E Dictionary maps C P E names to O V A L Checks. The C P E Dictionary can be
used with the C P E Applicability Language or on its own. In older versions of the Open-
S C A P scanner and content for the OpenSCAP scanner, the relationship between platforms
is represented differently. The O V A L Language is used. IT platforms are specified using
the C P E name in the Rule, Group, or Profile element with the Platform element. See
Listing 2.10 of the C P E Dictionary.

<cpe-dict:cpe-list
xsi:schemaLocation="http://cpe.mitre.org/dictionary/2.0
http://cpe.mitre.org/files/cpe-dictionary_2.1.xsd">
<cpe-dict:cpe-item name="cpe:/a:aarch64_arch">

<cpe-dict:title xml:lang="en-us">
System architecture i s AARCH64

</cpe-dict:title>
<cpe-dict:check

system="http://oval.mitre.org/XMLSchema/oval-definitions-5"
href="ssg-rhel9-cpe-oval.xml">

oval:ssg-proc_sys_kernel_osrelease_arch_aarch64:def:1
</cpe-dict:check>

</cpe-dict:cpe-item>
<cpe-dict:cpe-item name="cpe:/a:audit:">

<cpe-dict:title xml:lang="en-us">
Package audit i s i n s t a l l e d

</cpe-dict:title>
<cpe-dict:check

system="http://oval.mitre.org/XMLSchema/oval-definitions-5"
href="ssg-rhel9-cpe-oval.xml">
oval:ssg-package_audit:def:1

</cpe-dict:check>
</cpe-dict:cpe-item>

</cpe-dict:cpe-list>
Listing 2.10: Example of C P E Dictonary.

12

http://cpe.mitre.org/dictionary/2.0
http://cpe.mitre.org/files/cpe-dictionary_2.1.xsd
http://oval.mitre.org/XMLSchema/oval-definitions-5
http://oval.mitre.org/XMLSchema/oval-definitions-5

Chapter 3

S C A P Scanners

S C A P scanners are the tools used to perform security audits. Usually, these tools are
accompanied with security profiles, implementations of specific security policies. The largest
open-source implementation of a S C A P scanner is the OpenSCAP project, the core of which
is the OpenSCAP library, an implementation of the S C A P standard. It is also the base for
different helper components like Anaconda Installer OpenSCAP Add-on.

3.1 O p e n S C A P Projects

OpenSCAP [6] is an open-source project that is developing an ecosystem with a range
of tools and components to help administrators and auditors assess, evaluate and enforce
security baselines.

Development of this project began in November 2008 within Red Hat [23].
The tools that are part of the OpenSCAP ecosystem are:

• OpenSCAP base,

. S C A P Workbench,

• ComplianceAsCode,

• and others.

O p e n S C A P Base

OpenSCAP Base [5] is a library and provides a command line tool that can be used to
analyze and evaluate the individual components of the S C A P standard. The library-based
approach allows rapid creation of new SCAP-based tools. OpenSCAP has received Security
Content Automation Protocol (SCAP) 1.2 certification from the National Institute of Stan­
dards and Technology (NIST), which means that OpenSCAP is fully S C A P 1.2 compliant.
The command-line tool called oscap provides a multipurpose tool for evaluating a system
based on any S C A P content.

S C A P Workbench

S C A P Workbench [7] is a tool that provides a graphical user interface (GUI) to easily
perform scans using oscap. This tool allows users to scan local or remote systems, perform
system remediation, generate multiple reports in different formats containing system scan

13

results, and easily edit the X C C D F profile without having to modify the corresponding
X C C D F file. The tool provides a graphical way to enable or disable X C C D F elements and
save changes to the X C C D F tailoring file.

ComplianceAsCode Project

ComplianceAsCode is a very important part of the ecosystem because a S C A P scanner
without S C A P content is useless. S C A P content is standardized input for S C A P scanners
in a machine-readable format that determines how the scanner evaluates the system based
on the set of rules in a given security policy. ComplianceAsCode [9] is an open-source
project that provides a S C A P Security Guide package1.

As the S C A P Security Guide [22] has grown and the goals of the project have expanded
to also making contributions to the S C A P content more accessible to non-programmers, the
name became a bit obsolete. As a result, the project was renamed to ComplianceAsCode.
The S C A P Security Guide [8] implements security policies recommended by recognized
authorities (the Payment Card Industry Security Standards Council (PCI SSC), Security
Technical Implementation Guides (STIG), the United States Government Configuration
Baseline (USGCB), etc.) for 18 products [21] including Red Hat Enterprise Linux, Fedora,
Debian, Firefox, Chromium and others. The S C A P Security Guide translates these security
policies into a machine-readable format that S C A P scanners can use to perform audit.

3.2 3-rd Party SCAP-compatible Scanners

There are many NIST-certified S C A P scanners. The list on the NIST website2 provides an
overview of available tools. Despite the visible variety the options are often obsolete or are
a part of a paid solutions. The list includes:

. S C A P Compliance Checker (SCC),

• Qualys S C A P Auditor,

• and more.

A l l implementations are compliant with S C A P standards, but each implementation of
the scanner and S C A P content may differ in some details. This can cause compatibility
issues.

For example, when using content from the S C A P Security Guide with the S C A P Compli­
ance Checker. The same compatibility issue exists with the visualization of S C A P scanner
results. The openscap-report is aimed to support reports generated with the OpenSCAP
implementation.

S C A P Compliance Checker (SCC)

This scanner was developed by the Naval Information Warfare Center Atlantic (NIWC
Atlantic) [19]. SCC performs automatic security configuration checks based on the contents
of the S C A P that comes with the scanner. The supplied S C A P content is an implementation
of the Security Technical Implementation Guides (STIG) policy. SCC users can install
different S C A P content to perform compliance checks according to their policy.

x h t t p s : //www.open-scap.org/ s e c u r i t y - p o l i c i e s / s cap-security-guide/
2 h t t p s : //csrc.nist.gov/projects/scap-validation-program/validated-products-and-modules

14

http://www.open-scap.org/
http://csrc.nist.gov/projects/

Qualys S C A P Auditor

Qualys S C A P Auditor [2] is a cloud-based solution for S C A P compliance. This scanner
is a subscription software and it is delivered as a Qualys Cloud Platform solution. S C A P
content is provided for this scanner to determine if the target system meets the United
States Government Configuration Baseline (USGCB) requirements. Users can also install
different kinds of S C A P content to perform compliance checks according to their policies.

15

Chapter 4

Reporting Capabilities of
SCAP-compatible Tools

Almost every S C A P scanner is equipped with a reporting format specified by the S C A P
standard, such as A R F . However, these reports are difficult to read by humans. That is
why each scanner implements its own way of reporting in a user-friendly manner.

4.1 S C A P Compliance Checker (SCC)

SCC provides standardized X M L files for reporting, such as A R F , X C C D F , and O V A L
results. SCC provides text reports containing plain text information about the scan per­
formed. See Figure 4.1 for an example text report.

5 R G - 0 S - B B 8 8 7 3 - G P 0 S - B B B 4 1
RHEL 8 must e n c r y p t a l l s t o r e d p a s s w o r d s w i t h a F I P S 1 4 0 - 2 a p p r o v e d c r y p t o g r a p h i c h a s h i n g a l g o r i t h m . - P a s s

S R G - G S - 8 6 B 6 7 3 - G P 0 S - B 8 6 4 1
RHEL 8 must emp loy F I P S 1 4 S - 2 a p p r o v e d c r y p t o g r a p h i c h a s h i n g a l g o r i t h m s f o r a l l s t o r e d p a s s w o r d s . - F a i l

S R G - O S - 8 B 0 8 7 3 - G P O S - 0 0 B 4 1
The RHEL 8 shadow p a s s w o r d s u i t e must be c o n f i g u r e d t o u s e a s u f f i c i e n t number o f h a s h i n g r o u n d s . - P a s s

5 R B - B S - B B B B 8 B - G P 0 S - B B B 4 8
RHEL 8 o p e r a t i n g s y s t e m s b o a t e d w i t h U n i t e d E x t e n s i b l e F i r m w a r e I n t e r f a c e (UEF I) must r e q u i r e a u t h e n t i c a t i o n upon b o o t i n g

i n t o s i n g l e - u s e r mode and m a i n t e n a n c e . - F a i l
5RG - G S - 8 8 8 8 8 8 - G P O S - 3 8 8 4 8

RHEL 8 o p e r a t i n g s y s t e m s b o o t e d w i t h a BIOS must r e q u i r e a u t h e n t i c a t i o n upon b o o t i n g i n t o s i n g l e - u s e r and m a i n t e n a n c e
modes . - P a s s
5 R B - 0 S - B B B B 8 B - G P 0 S - B B B 4 8

RHEL 8 o p e r a t i n g s y s t e m s must r e q u i r e a u t h e n t i c a t i o n upon b o o t i n g i n t o r e s c u e mode. - P a s s
S R G - G S - 8 8 8 1 2 8 - G P O S - 0 8 8 6 1

The RHEL 8 p a m _ u n i x . s o modu le must be c o n f i g u r e d i n t h e p a s s w o r d - a u t h f i l e t o use a F I P S 1 4 0 - 2 a p p r o v e d c r y p t o g r a p h i c
h a s h i n g a l g o r i t h m f o r s y s t e m a u t h e n t i c a t i o n . - P a s s
S R G - O S - 8 8 0 1 2 0 - G P O S - 0 8 8 6 1

Figure 4.1: Example of a text report generated by SCC scanner.

SCC also provides H T M L reports that are generated from X M L files. There are several
versions of such reports with details of the rules being evaluated. This detail includes O V A L
Tests and a lightweight overview of the relationships between O V A L Tests in the O V A L
Definition. Another type of report is the summary type, which contains only rule names
and results. Users can get both reports in filtered versions that contain only failed rules or
all tested rules. See Figure 4.2 for an example of a rule detail.

16

RHEL 3 operating systems booted with United Extensible Firmware Interlace (UEFI) must require authentication upon
booting into single-user mode and maintenance.

Rule ID: xccdf_mi 1 .d isa.stig_ru le_SV-2 30 2 34 r74 3922_ru le

Result: Fail

Version: RHEL^S-010140

Identities: CCI-000213 [NISTSP 800-53: AC-3; NISTSP 300-53A: AC-3.1; NIST SP 300-53 Rev4 : AC-3 ; NISTSP SOO-53 Rev 5: AC-3)

Description: If the system does not require valid authentication before it boots into single-user or maintenance mode, anyone who invokes single-user or maintenance
mode is granted privileged access to all files on the system. G R U B 2 is the default boot loader for RHEL 3 and is designed to require a password to boot
into single-user mode or make modifications to the boot menu, false

Fix Text: Configure the system to require a grub bootloader password for the grub superusers account with the grub2-setpassword command, which
creates/overwrites the /boottefi/EFI/redhatfuser.cfg file.

Generate an encrypted grub2 password for the grub su perusers account with the following command:

$ sudo grub 2-setpasswo rd
Enter password:
Confirm password:

Severity: high

Weight: 10.0

Reference: Title
Publisher

Type
Subject

Identifier

DPMS Target Red Hat Enterprise Linux 3
DISA
DPMS Target
Red Hat Enterprise Linux 3
2921

Definitions: Definition ID: oval:mil disa.stig.rhelB:def 106
Result: false

Title: RHEL-08-010140 - RHEL 3 operating systems booted with United Extensible Firmware Interface (UEFI) implemented must require
authentication upon booting into single-user mode and maintenance.

Description: If the system does not require valid authentication before it boots into single-user or maintenance mode, anyone who invokes single-user
or maintenance mode is granted privileged access to all files on the system. GRUB 2 is the default boot loader for RHEL 3 and is
designed to require a password to boot into single-user mode or make modifications to the boot menu.

Class: compliance
Tests: » false [One or more child checks must be true.)

* false (All child checks must be true.)
• true [/bootfefi/EFI/redhat/grub.cfg:su perusers exists and h a s a name.]
• false [/boot/efi/EFI/redhatf use r.cfg:GRUB2_PASSWORD exists and h a s a PBKDF2/SHA512 password assigned.)

o false [/boot/efi/EFI/redhat/grub.cfg exists.) [negated)

Tests: Test ID oval:mil.disa.stig.rhelS:tst:10600 [textfilecontent54_test)
Result true

Title /boot/efi/EFI/redhat/grub.cfg:superusers exists and has a name.
Check Existence All collected items must exist

Check All collected items must match the given state[s).
Object ID oval:mil.disa.stig.rhel8:obj:10600 [texrniecontent54_objecf)

Object Requirements • filepath must be equal to Vboot/efiyEFiyredhat/grub.cfg'
• pattern must match the pattern 1•,1\s isef\s-^-supe^use^s\s*=\s*,'[VlV+)'\s*$•
• instance must be qreaterthan orequal to T

Figure 4.2: Example of H T M L report with detail of rule generated by SCC scanner.

17

4.2 Qualys S C A P Auditor

According to the Qualys S C A P Auditor documentation - Qualys S C A P Auditor provides
several types of [2] reports. The S C A P Scorecard Report provides a summary of the current
status of S C A P compliance. See Figure 4.3 for an example.

My Scorecard Report

Asset Group Summary (1)

Assel Group Active Hests # Hosts in Compliance %Hosts in Compliance # Hosts Not i Compliance % Hosts Not 1 Compliance

EB Assets 2 1 50% 1 50 %

Rules Summary (255)

Rule Title 1 CCE CCE4 *Hosts in Cumpllan e % Hosts n Compliance # Hosts Hot in Compliance % Hosts Not in Compliance

Account Lockout Duration CCE-2928-0 CCE-930 1 50% 1 50%

Account Lockout Threshold CCE-29S6-B CCE-S58 1 50% 1 50%
Accounts: Administrator account status CCE-2943-9 CCE-499 1 100% o 0 %

Accounts: Ouest account status CCE-3040-3 CCE-332 2 100% 0 0 %

Accounts: Limit local account use of blank passwords to console logon only CCE-2344-Ü CCE-533 2 100« D 0 %
Accounts: Rename administrator account CCE-3135-1 CCE-438 1 50% 1 50%

Accounts: Rename gusstaccount CCE-3025-4 CCE-B34 1 50% 1 50%
Adrr •• istra-: -sHrt ? Rig-1 - To C ?:iug F • sgrar ; C : E-286 4-7 ^CE-84.2 2 100% 0] :-:

Alerter Service Disabled CCE-3Q34-6 CCE-4B7 2 100% 0 0%
Always Use Classic Logon CCE 3100-5 CCE-231 1 50% 1 50%

arp.exe Permissions CCE-2052-9 CCE-500 1 50% 1 50%

at em Permissions CCE-2184-Q CCE-393 1 50% 1 50%
attrib.exe Permissions CCE-2312-7 CCE-156 1 50% 1 50%
Audil Account Logon Events " F W :: n

CCE-3867-Ü
CCE-2543, 1
CCE-2S36

50% 1 50%

Audit Account Management CCE-2S02-5
CCE-2306-B

CCE-1646, 2
CCE-2000

100% 0 0%

Audit Directory Service Access CCE-2206-1
CCE-2933-0

CCE-2118, 1
CCE-239C

50% 1 50%

Audit Logon Events CCE-2100-B
CCE-2343-2

CCE-1686, 1
CCE-1744

50% 1 50%

Audit Object Access CCE-2.259-Q
CCE-2766-4

CCE-1991. 1
CCE-264C

50% 1 50%

Figure 4.3: Example of S C A P Scorecard Report from documentation of Qualys S C A P
Auditor. Taken from [2].

Users can also create S C A P policy reports that can be generated in X M L or C S V
formats. The content of S C A P Policy reports is based on the X C C D F report. Using
the A P I , users can download the full results as an A R F report. Qualys S C A P Auditor
provides two types of interactive S C A P reports. The rule pass/fail report identifies the
S C A P compliance status for a specific rule. See Figure 4.4 for an example of an interactive
Pass/Fail report.

18

Report Results

F i l e View*

Rule Pass/Fail Report
April 08,2013
Farial PC

i ' J I agei
Qula/s

Created:
D+/0S/2013 al 11:03:33 (GMT-0700)

Summary
Policy;
Banchmsrlc
Profile:
Version:
SCAP version:
Tecfinotogj-:
i' Lll
Asset Group:

1 0 IE 8
USGCB-ie-S
united_5tates_g wemmEnt_confi5u rati on_i;a5elifie_versiQri_1 0.1.0
vi.0.1.0
1.0
Inlernet Explorer fi
D A Nut Allow Users lc enasie er Disable Add-ons -Local computer
iE 7 and 3

Ho sis: 1
In Compliance; 1 ftOO%]
Notin Cornpjiance: 0
Qisplaj Resjlts: Both
SortEy. IP Aaaress
Evidence: No

Assel Group Information
Title: IE 7 and 8 Business Impact High
)Ps: 6 Division:
Domains: 0 Function:
Users: 1 Location:

R e s u l t s

Do Not A l l o w U s e i E l ü e n a b l e or D i s a b l e Add O n s L o c a l C o m p u t e i
IP Address Tracking DNS Hostname NetBIOS Hostname instance 05 OS CPE Posture Last scan Date

to.10.30.14 ||~IP~|| vlsiasp2-30-l4.qualys.com V1STASP2-30-14

IP Address Tracing DM5 Hostname

Windows cpe:.lo:microsofLwlncows_vls1a::sp2:j<&4- Pass&a 04*4^2013 at 13:02:12 [GMT-0700J
Vista — 11L•_-. |_ -_ •_-
Enterprise
Service
Pack?

NetBIOS Hostname Instance OS OS CPE Pasture Last Scan Date
f 1 items Shown, 0 selected

Figure 4.4: Example of the Rule Pass/Fail Report from documentation of Qualys S C A P
Auditor. Taken from [2].

19

http://vlsiasp2-30-l4.qualys.com

And the Individual Host Report (figure 4.5) identifies the S C A P compliance status for
a particular host.

Repor t Resu l ts

Fils - View- Help -

Individual Host Report
April 08.2013

Aanal PC

Manager
jula,;
3
t
9 Gujarat 9
India
Created:
04(08/2013 at 11:10:41 (GMT-0700)

Summary
PoliCjT 10 IE B
Benchmark: USGCB-ie-8
Protlle: unitB d_5tates_govem ment_configuration_oaseli n e_vers ion_1.0-1.0
Veislon: »1.0.1.0
SCAP Version: 1.0
Technology: Internet Explorer 8
^ssetGroup: IE 7 and 8
IP address 10.10.30.14

Rules: 111
In Compliance: 5 (4.5%)
Not in Compliance: 106 (95.5%)
Display Results: All
Sort By: Rule Title
Evidence: No

Results

1C.10.30.14(Score:NA) Windows Vista Enterprise Service Pack 2

IP Address: 10.10.30 14 Owner.
DNS Name: vi3tasp2-30.14.qualys.com Location:
NetBIOS Name: VISTASP2-30-14 Function:
OS: liVlndows Vista Enterprise Service Pactc 2 Asset Tag:
OS CPE: cpe^micTosoftvvindows l.,isla::sp2:x64-eritarprise:
Last Scan Date: 04j04/2013 al 13:02:12 (GMT-0700)

CCE CCE4 Rule ID Rule Title Posture

CCE-10380-4 CCE-47 AmessDalaSourcesAcrossDornains Internetzone Lc-calComculer

111 of 111 Items Shown, 0 selected

Access Data Failed
Sources
Across
Oomains •
Interne! Zone
- Local
Computer

Figure 4.5: Example of the Individual Host Report from documentation of Qualys S C A P
Auditor. Taken from [2].

20

http://vi3tasp2-30.14.qualys.com

4.3 O p e n S C A P Scanner

The oscap scanner provides several types of reports that are designed to be inspected by
users. Regular scanner output is a plain text, that contains only information about the
rules being tested and their results. See figure 4.6.

S t a r t i n g E v a l u a t i o n

T i t l e P r e f e r t o use a 6 4 - b i t O p e r a t i n g System when s u p p o r t e d
Rule x c c d f _ o r g . s s g p r o j e c t . c o n t e n t _ r u l e _ p r e f e r _ 6 4 b i t _ o s
Ident CCE-90839-2
R e s u l t pass

T i t l e I n s t a l l AIDE
Rule x c c d f _ o r g - s s g p r o j e c t . c o n t e n t _ r u l e _ p a c k a g e _ a i d e _ i n s t a i l e d
Ideut CCE-90843-4
R e s u l t f a i l

Figure 4.6: Example of the command line output of oscap.

X M L - b a s e d Reports

Also, the scanner generates a report, which is a standard A R F report that contains all
the information about system evaluation. Usually, this report is very large, so the user
has an option to select a subset of result types, such as X C C D F or O V A L results, and
generate a smaller X M L report to save space. These X M L reports are very complex and
not human-friendly. See Listing 4.1 with a small section of an A R F Report.

<arf:reports>
<arf:report id="xccdfl">
<arf:content>
<TestResult

xmlns="http://checklists.nist.gov/xccdf/l.2"
id="xccdf_org.open-scap_testresult_xccdf_org.profile_cis_workstation_ll"
start-time="2023-03-16T13:54:43+01:00" end-time="2023-03-16T13:55:03+01:00"
version="0.1.66" test-system="cpe:/a:redhat:openscap:1.3.6">
<benchmark
href="#scap_org.open-scap_comp_ssg-rhel9-xccdf.xml"
id="xccdf_org.ssgproject.content_benchmark_RHEL-9"/>
<title>0SCAP Scan Result</title>
<identity authenticated="false" privileged="false">jrodak</identity>
<profile
idref="xccdf_org.ssgproject.content_profile_cis_workstation_ll"/>

<target>rhel90-2</target>
<target-address>10.0.2.15</target-address>
<platform idref="#grub2"/>
<set-value idref="xccdf_org.ssgproject.value_var_ssh_client_rekey_limit_size">

512M
</set-value>

Listing 4.1: Example of small part of the A R F report.

21

http://checklists.nist.gov/xccdf/l.2

H T M L Reports

The A R F X M L report can be converted to an H T M L representation. This version of the
report contains limited details of the scan. And X S L T transformation used to produce
takes a lot of processing time. The H T M L report contains information about the rule and
the O V A L Test result, but does not explain tests relationship in the O V A L Definition that
is associated with the rule. Also, it does not contain information about the applicability of
the rule to the target system.

This H T M L report, produced by the OpenSCAP scanner, is more sophisticated than
the others, but it still does not contain all the useful information for content developers
and OpenSCAP users. See figure 4.7 with an example of the rule details in the report.

22

Ensure PAM Enforces Password Requirements • Minimum Digit Characters

R u l e ID

Resull

xccdf_org.ssgproject.content_rule_accounts_password_pam_dcredit

Multi-check no
rule

OVAL oval :ssg -accou nt5_password_pam_dcredit :def: 1
Definition ID

Time

Severity

Identifiers
and
References

2022 12-28T16:17:46+01 00

medium

U J J j j j g j J CCE -83b66 -0

Ijgaagg BP28(R IS) , 1,12,15, is , 5, DSSOE.O4, DSSOS.OS, DSS05.07 , DSS05.10 , D S S 0 6 . 0 3 ,
DSS06.10 , CCI-000194, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2,4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5,
4.3 3 6.6, 4.3.3.6 7, 4.3.3.6.8, 4 3 3 6.9, 4.3.3 7 2, 4.3.3.7 4, SR 1.1, SR 1 1 0 , S R 1.2, SR 1.3, SR 1.4,
S R 1,5, S R 1.7, S R 1,8, S R 1.9, S R 2 ,1 ,0421,0422,0431, 0974, 1173,1401, 1504,1505, 1546,1557,
1558, 1559, 15S0, 1561, A.18.1.4, A .7 .1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9 2.6, A.9.3.1, A.9.4 2,
A.9.4.3, IA-5(C), IA-5(1)(a), CM-6(a), IA-5(4), P R . A C - 1 , P R . A C - 6 , P R . A C - 7 , F M T M O F E X T . 1 ,
Req-8 2.3, S R G - O S 000071-GPOS-00039 , SRG-OS-000071 -VMM-000380

Description The pampwquality module's dc red i t parameter controls requirements for usage of digits in a

password. When sel to a negative number, any password will be required to contain that many digits.
When set to a positive number, pam_pwquality will grant +1 additional length credit for each digit. Modify
the dered i t setting in / e t c / s e c u r i t y / p u q u a u t y . e o n f to require the use of a digit in passwords.

Rationale Use ol a complex password helps to increase the time and resources required to compromise the
password. Password complexify, or strength, is a measure of the effectiveness of a password in resisting
attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The
more complex the password, the greater the number of possible combinations that need to be tested
before the password is compromised. Requiring digits makes password guessing attacks more difficult by
ensuring a larger search space.

Remediation Shell script

Remediation Ansible snippet a

OVAl tesl resijIKdelsils

check the configuration of fetc/pam.d/system-auth • oval:ssg-test_password_pam_pwquallty:tst:1 • true 1

Following items have been found on the system:

Path Content

/etc/pam.d/system-
auth

password requisite pampwquality.so t r y f i r s tpass loca luserson ly retry-3
authtok_type=

check the configuration of .etc security pwquallty.conf
oval:ssg-test_pas5word_pam_pwquallty_dcredlt:tst:1

No items have been found conforming to the following objects:

Object oval:ssg-objj_password_pam_pwquality_tlcredit:obj:1 of type textfilecontent54_objecl

Filepalh Pattern Instance

/etc'security/pwquality.conf "\s'dcreditr>]-=ris|*i-?\d+)(?:[\s]l$) 1

Figure 4.7: Example of H T M L report with rule detail.

23

Chapter 5

Proposed Report Improvements

A l l reports, generated by S C A P scanners, have several problems. Some reports are more
useful than others, but, in general, the content of the reports is a summarized result of
the scan performed. In some use cases, users only need to know the scan scores and rule
results with descriptions. However, when developing a security profile or hardening system
according to a guideline, users want to know what was tested and how, or whether the rule
is applicable.

If the target system has been remediated, users need information on how the remediation
was performed. User has to look for this information in a huge X M L file, which is very
confusing, as it was designed primarily for machines.

24

5.1 O V A L Results

The main component that determines what is being tested and how is the O V A L . The O V A L
Definitions establish the relationship between different tests. This relationship affects the
results of the rules. For example, some tests or operator nodes can be negated, which can
change the result of a branch in an O V A L Definition.

A n O V A L Definition can be described by a tree structure, which I ' l l call an O V A L tree.
This tree structure represents the relationships between tests. O V A L Tests define which
objects are collected from the target system to be evaluated against reference states. See
Figure 5.1 for an example graphical representation of an O V A L tree.

O O V A L graph of OVAL def ini t ion: oval:ssg-dconf_gnome_remote_access_encryption:def:1

X OR ^Def in i t ion^ fa lse X ^Configure GNOME3 to require encryption for a r remote access connections.

X NOT A N D Extend definition t r u e ^ dconf installed

^ test_pac kag e_d co nf_insta I led Test tru e package dconf is installed

Show test details

X A N p (c r i t e r i a) (f a l s e X ^

^ OR Extend definition t r ues / dconf user profile exists

X N O T A N D Extend definition t r ues / dconf installed

test_package_dconf_instal led Test t r u e ^ package dconf is installed

Show test details

^ test_dconf_user_profi le Test t r u e ^ dconf user profile exists

Show test details

X test_co nf i g u re_re m ote_a cces s_e n cry pt i on configure

Show test details

remote access encryption

configure rem ote access e nc rypti on ova I :ssg-test_oo nf ig u re_re rnote_a cces s_en c ry pti on :tst: 1

No items have been found conforming to the following objects:

oval:ssg-obj_conf igure_rernote_access_encryption:obj:1 of type textf i lecontent54_object

Fi lename Instance Path Pat tern

A *$ 1 /etc/dconf/db/ local .d/ A \ [org/gnorne/Vino\] ([A \n]* \n +)+?require-encryption=true$

X test_pre ve nt_user_ re m ote_a cces s_e n cry pt i on Prevent user from changing

Show test details

Figure 5.1: Visualization of O V A L .

25

5.2 Applicabil i ty of a Rule

The applicability of a rule is very important information for the user. If the rule is not
applicable, the O V A L Check is not performed and the result of the O V A L Check is not
evaluated.

The applicability of a rule is determined by the C P E platform. [4] " The CPE platform
of a rule or a group can contain a boolean expression, which describes the relationship of
a set of individual CPE platforms, which would later be converted by the build system into
the CPE AL definition."

This conversion to C P E Applicability Language definitions is under development. Ear­
lier versions of the content and scanner exclusively exploited the C P E Dictionary mecha­
nism.

The C P E Applicability Language directly refers to O V A L Definitions that check if a rule
makes sense for current environment. The relationship between these applicability checks
can be represented as a tree structure. See figure 5.2 for an example visualization of the
C P E Applicability Language.

C P E platform required by rule:

Q #machine_and_chroriy_or_ntp

S AND C P E AL operator || t r u e V

•y OR CPE AL operator true v *

*S Reference to OVAL definition frac-ref cpe:/a:chrony^

*S AND O V A L def in i t ion of CPE p la t fo rm t r u e ^ checks ifpackage chrony is installed

L
^ test_env_has_chrony_instalied Test t rue Package chrony is installed

S h o w tes t detai ls

p a c k a g e chrony is insta l led oval :ssg-test_env_ha5_chrony_insta l led: ts t :1

Fol lowing i tems have been found on the sys tem:

Arch Epoch Evr Extended name Name Release Signature keyid Version

s & 6 _ 6 4 (none) 0 :4 .3-1. fc36 ch rony -0 :4 .3 -1 . f c36 x 8 6 _ 6 4 chrony l . fc36 9 9 9 f 7 c b f 3 S a b 7 1 f 4 4 .3

f rac - re f cpe : /a :n tp X X Reference to OVAL delinition

X AND (OVAL definition of CPE p la t fo r "m)(fa lse X ^ Checks if package ntp is installed.

*S Reference to OVAL definition f rac - re f c p e : / a : m a c h i n e \ /

^ AND O V A L def in i t ion of C P E platform true^" Check far absence of fifes characterizing container fitesystems.

*S NOT OR ^ E x t e n d d e f i n i t i c n ^ f a l s e X ^ t f g m d r o n m m f K ^ a c

X test_instalied_env_is_a_docker_container Checkif/.dockerenv exists

Figure 5.2: Visualization of C P E Applicability Language.

26

5.3 Post-Remediation Rule Result

This improvement introduces two new results types, that are available when the target
system has been remediated. The result f i x unsuccessful means that the remediation
was made, but the subsequent O V A L Check was unsuccessful. The result f i x f a i l e d
means that the fix failed in the execution phase. See figure 5.3 of a rule with a f i x f a i l e d
result.

C o n f i g u r e d n f - a u t o m a t i c t o Instal l O n l y S e c u r i t y U p d a t e s low (X fix failed

Resul t :

Multi-check rule:

Time:

Weight:

xccdf_org.ssgprofect.ccntent_rule_dnf-automatic_security_updates_only | p

(jc fix fa i led)

1C

2022-C2-Q2Tll:Q6:17+01:QC

1.0

Sever i ty : Id

Identifiers:

References :

Descr ip t ion :

Rat ionale:

CCE-S2267-6

BP28(R8) , 51-2(5), C M - G (a) , 5 l -2(c) f F M T _ 5 M F _ E X T . l r S R G - O S - 0 0 0 1 9 1 - G P Q S - 0 Q 0 8 0

To configure d n f - a u t o m a t i c to install only securi ty updates automatically, set upgrade_type to s e c u r i t y

under [commands] sect ion in / e t c f d n f / a u t o m a t i c , c o n f .

By default, d n f - a u t o m a t i c installs all available updates. Reducing the amount of updated packages only to

updates that w e e issued ns n par i of JI security adv sory increases the system stabi ty.

M e s s a g e s : © M e s s a g e :

F i x e x e c u t i o n c o m p l e t e d a n d r e t u r n e d : 1

© M e s s a g e :

/ t m p / o s c a p . B Y q K H a / f i x - X X Q B V U a : l i n e 1 5 : / e t c / d n f / a u t o m a t i c . c o n f :

P e r m i s s i o n d e n i e d

© M e s s a g e :

F a i l e d t o v e r i f y a p p l i e d f i x : C h e c k i n g e n g i n e r e t u r n s : f a i l

© M e s s a g e :

The OVAL g r a p h o f t h e r u l e as i t was d i s p l a y e d b e f o r e t h e f i x was

p e r f o r m e d .

+ Remed ia te - ! Shell scr p"

Figure 5.3: Rule with the result of the fix failed.

27

Chapter 6

Implementation

This thesis deals with the development of a tool for generating interactive H T M L reports.
This tool is implemented mostly in Python, but H T M L with JavaScript are used to make
the generated reports interactive.

A clean code approach is used to implement the tool along with object-oriented pro­
gramming. The tool is divided into several parts, which are:

• Command line interface,

• S C A P results parser,

— Data structures of S C A P results,

• Report generators.

These parts are implemented as sub-packages of the collection package openscap-report.
It is available as a stand-alone Python package as well as an R P M package. This approach
allows developers to reuse the code and integrate parts of the tool into other projects. See
the 6.1 package structure diagram.

openscap-report

Command Line Interlace
•

S C A P Results Parser Report Generators

f \

Data Structures -]
Parsers

Figure 6.1: Structure of openscap-report package.

6.1 Command Line Interface

The command line interface (CLI) is the first entry point that users interacts with. This
entry point is called oscap-report. The implementation of the command line interface is

28

in the file c l i .py. In this file, there is a class called CommandLineAPI that is used as the ap­
plication programming interface (API). This A P I provides basic methods for loading input
data, storing output data, generating reports, etc. The CommandLineAPI class internally
parses arguments using the argparse library. The argparse library is part of the Python
Core Libraries. A P I methods are affected by the arguments being parsed.

The user can view information about the use of oscap-report by using
oscap-report — h e l p or by using man page1 with man oscap-report (as part of the
openscap-report R P M package).

The tool expects the input file to be an A R F file. The FILE positional argument allows
the user to specify the path to the file. If no file path is specified, the tool expects a file on
standard input. Users can specify the path where to save the generated reports using the
—output OUTPUT parameter. If no output path is specified, the standard output is used.

For debugging Python code, the user can set the logging level using the parameter the
— l o g - l e v e l LEVEL. The logs are output to standard error output using the parameter the
— l o g - f i l e L0G_FILE, the file to which the logs should be saved can be specified.

To debug the generated H T M L report or the generation process, user can apply addi­
tional debug settings using the —debug DEBUG_FLAGS option. Currently available debug
flags would modify H T M L reports for report development and testing, but if desired, the
debug flags can be extended to include flags that affect input processing and generation.
For example, for some specific logging formats, generating only O V A L visualizations, etc.
Available debug flags include disabling H T M L report minification or enabling online CSS
resources. To propagate debug flags to report generators, the DebugSettings data class is
used.

The tool supports several output types, which the user can specify using the parameter
the —format FORMAT option. Default output format is H T M L . That is, the tool will
generate an H T M L report. For backward compatibility, the OLD-STYLE-HTML format is
available, which generates an H T M L report that resembles the report created by OpenSCAP
using X S L T transformations (original X S L T files from OpenSCAP are used for this process).

On top of that, as an experimental feature, the tool can generate reports in JSON format.

6.2 S C A P Results Parser

This sub-package is responsible for analyzing the A R F file and generating the object-
oriented data model of the report. The lxml library is used to process X M L files. The
lxml [13] library provides an object-oriented approach to processing X M L files. The library
is also quite good performance-wise, having critical parts of processing routines implemented
in C.

The scap_result_parser sub-package consists of two sub-packages for better clarity
and code orientation. One is the parsers sub-package, which contains parser classes for
processing specific parts of A R F files, such as:

• Information about the performed scan,

• Used profile,

• Identifiers of rules and groups that are used in the profile,

1Online man page: https://openscap-report.readthedocs.io/en/latest/oscap-report.l.html

29

https://openscap-report.readthedocs.io/en/latest/oscap-report.l.html

• Definition of individual rules, groups, rule checks in O V A L Language and rule appli­
cability checks,

• Results of rules, rule checks in O V A L Language and rule applicability checks.

The second sub-package named data_structures is used to represent and store processed
information. This sub-package contains class definitions that represent the object-oriented
data model that is used to generate the H T M L report or a variant of the JSON report.

The Data Mode l

The implementation of the data model is in the data_structures sub-package. Classes
in this sub-package use the Odataclass [17] decorator, which automatically adds special
methods to classes like i n i t (). The entire data model is divided into several classes,
that represent different information structures from the A R F file. These classes together
define the main structure called Report. A report can be represented as an H T M L report,
JSON structure, or a Python dictionary.

Classes that constitute the report have many associations between them. This dia­
gram 6.2 represents the relationship within data_structures sub-package. Additionally,
some classes may contain multiple instances of referred classes. This kind of relationship is
marked with an „X" symbol on the scheme.

30

Report

groups: Dict[str, Group]
profilejnfo
rules : Dictjstr, Rule]
scan_result

flag : sir
message : Optional|GvalObjectMessac,e|
object_data: List[Dict[str, str]]
objectjü : str
object_type: str

comment: str
state_data: Dict[s(r, str]
statejd : str
state_type : str

Figure 6.2: Diagram of the Report data structure

31

The Report class contains instances of the P r o f i l e l n f o and ResultOfScan classes,
these instances contain information about selected profile and scan results.

Information about the selected profile is stored in an instance of Profilelnfo, which
holds profile elements such as the description, name, profile identifier, identifiers of selected
rules and groups, and the C P E platform, with information about whether the platform is
applicable to the target system.

Information about the scan is stored in an instance of the ResultOfScan class, which
contains information about the scan that was performed, such as the name of the target
machine, the name and version of the scanner used, the name of the user who performed
the scan, start and end time, the resulting score, and so on.

The Report class contains a dictionary of instances of the Group class that are indexed
by the group identifier in the profile. A n instance of the Group class contains information
such as a group description, an identifier, a list of C P E platform identifiers, a list of rule
identifiers that are listed in the group, and a list of subgroups that are instances of the
Group class.

The most important part of the Report class is the dictionary, which collects instances
of the Rules class, that is indexed by rule identifiers. This dictionary contains all the
rules of the Data Stream. A n instance of the Rule class contains information about the
rule, such as description, name, rule identifier, O V A L Definition identifier, list of platform
C P E identifiers, security policy identifier and reference, rule result, list of remedies, list
of warnings, dictionaries with the applicability definitions, instances of the OvalDefinition
class, etc.

The dictionaries, that determine whether a rule is applicable to the target system and
can be part of an instance of the Rule class, are very similar. These two dictionaries are
based on the C P E Applicability Language and the C P E Dictionaries. The attribute named
cpe_al contains an instance of the Platform class that contains the C P E Applicability
Language tree. The cpe_oval_dict attribute contains a dictionary with instances of the
OvalNode class, which is a class of the O V A L Definition criterion structure, representing a
C P E Dictionary entity. Both dictionaries are ordered according to the position of the C P E
that defines rule applicability.

A n instance of the OvalDefinition class in the Rule class contains information about
the O V A L Definition, such as description, references, name, version, and criteria, repre­
sented by the OvalNode class, a recursive tree structure. A n instance of the OvalNode class
contains information about criteria such as identifier, node type, value, and commentaries.
For the leaf nodes, there is also information about the O V A L Test. The O V A L Test is
represented by an instance of the OvalTest class. The OvalNode class uses an instance of
a special class, that can evaluate operators according to the O V A L specification.

A n instance of OvalTest in the OvalNode contains information about the O V A L Test,
such as the test identifier, the check and check attributes, metadata, an instance of
OvalObject that represents the O V A L Object, and an instance of OvalState that represents
the O V A L State.

The OvalObject class uses wrapping to extend the O V A L Object abstraction. The
OvalObject class has a object_data attribute that stores a list containing dictionaries
of attributes and values. These dictionaries are stored in a list, functioning as a shared
database, because they are used to populate multiple instances of the collected objects.
In this case, common object-oriented approach has been modified to make it easier to use
different types of O V A L Objects and to store multiple instances of O V A L Objects.

32

The OvalState class uses similar wrapper to extend the O V A L State abstraction. The
OvalState class has a state_data attribute that stores a dictionary of attributes and
values, representing the state of the O V A L Object.

The C P E Applicability Language is represented by an instance of the Platform class.
The Platform class is used as a wrapper for the LogicalTest class, a class that represents
the logical test from the C P E Applicability Language. It defines a relationship between
other instances of LogicalTest. For the leaf logical test node, it also refers to O V A L crite­
ria. This reference is handled by an instance of the OvalNode class. The LogicalTest class
uses an instance of a special class, used to evaluate the relationship between applicability
checks.

A R F File Decomposition

The SCAPResultParser class handles the X M L A R F file as a string. This string is passed as
an argument to the SCAPResultParser instance. When the object is initialized, validation
is performed according to the X S D schema provided by N I S T 2 . Then the parser is ready
to create an object of class Report. If the input file is not valid, the A R F parser will warn
about this situation. The parser can process files in X C C D F result format, but the result
is an incomplete report.

The SCAPResultParser has a method called parse_report that returns an instance
of the Report class from the data_classes sub-package. This method uses additional
instances of specialized parsers from the Parsers sub-package to build a complete report
object.

The sub-package named Parsers is extended with several specialized parsers to ease
code navigation, but introduces many dependencies between them. This is key element of
the performance improvement. The slowness of the process was caused by references to
various elements in the X M L , that are deep in the X M L file hierarchy. For example, in
an A R F report, a variable can replace certain text in descriptions or define a value that
is being evaluated. This is caused by the reuse of rules for several profiles with different
requirements. For example, password length or idle timeout. There are many other non-
trivial cases where different elements are referenced in A R F reports. For example, rule
elements referencing the O V A L Definition, the C P E Dictionary, or the C P E Applicability
Language definition are checked. A l l these elements can be encountered in different parts
of the A R F file, including the results.

This problem of searching and cross-referencing in a large X M L file has been solved
by bottom-up processing and limiting the parser scope dive. The parser processes a small
portion of the parsed X M L and limits the depth of the search. The bottom-up processing
means that the parsers use another parser to extract the information to be parsed. This
information is returned as dictionaries, that are indexed by identifiers. The values in these
dictionaries can be X M L elements or object instances from the data_structures package.
For example, a parser that processes O V A L results prepares a dictionary that is indexed by
the identifiers of the O V A L Definitions and whose values are O V A L criteria, represented by
the OvalNode class. The extension definitions are represented by the class OvalNode, which
contains the O V A L Definition identifier that is resolved later. If the OvalNode reference to
O V A L Test is used, the parser that contains preprocessed parts of the O V A L Tests is used.

2https://csrc.nist.gov/Projects/Security-Content-Automation-Protocol/Specifications/arf

33

https://csrc.nist.gov/Projects/Security-Content-Automation-Protocol/Specifications/arf

6.3 Report Generator

The report_generator sub-package is responsible for generating reports in different for­
mats. The report _gener at or sub-package contains classes that are used to generate
specific report formats. Report generators use an instance of the Report class from the
scap_report_parser sub-package, created by an instance of the SCAPReportParser class.
In the case of JSON, the report can be transformed into a dictionary that matches the JSON
format. In the case of the default JSON version, filtering and dictionary transformation is
performed. If the JSON-EVERYTHING format is selected, the filtering and transformation are
skipped.

A template with macros from the Jinja2 library is used to generate an H T M L report.
These macros add the data from the input report to the output report template. However,
not all information is rendered as plain text. Some information is inserted as JSON. Also,
JavaScript code, fonts, and CSS files are incorporated in the final report to make it self-
sufficient.

The reason for embedding JSON in the H T M L element instead of generating proper
H T M L is to minimize the size of the generated report and to save time in generating complex
H T M L structures. JSON in the H T M L element is used to represent the O V A L Language
and the C P E Applicability Language. The graphical representation of the O V A L Language
and the C P E Applicability Language as H T M L elements is generated by the browser using
asynchronous JavaScript code.

Some browsers have trouble displaying huge H T M L reports with thousands of H T M L
elements because the browser renders the entire H T M L document. That is why display­
ing a report containing hundreds of rules can cause performance problems. To optimize
the performance lazy loading of rules in the report has been implemented to reduce the
rendering time when the user scrolls through the report.

The H T M L report provides a full-text search mechanism for rule names and rule iden­
tifiers. The list of rules can be also filtered by rule results and by rule severity.

34

6.4 Report Structure

The final report consists of several parts. For the main report style, the Patternfly 3 frame­
work is used. A n example of the generated report is contained on the storage medium as a
file named report_example.html. The first part displays the description and name of the
selected profile. See figure 6.3 for an example of the first section.

O S C A P Scan Result

About profile

O S P P - Pro tec t ion Prof i le for Genera l Pu rpose Operat ing Systems

This profile reflects mandatary configuration controls identified in the NIAP Configuration Annex to the Protection Profile for

General Purpose Operating Systems (Protect ion Profile Version 4.2). As Fedora O S is moving target, this profile does not

guarantee to provide security levels required from US National Security Systems. Main goal of the profile is to provide Fedora

developers with hardened environment similar to the one mandated by US National Security Systems.

Figure 6.3: Example of the first section in report

The second part focuses on compliance and scoring. This section contains overall statis­
tics on performed tests, such as the number of passing and failing tests and the rules for
scoring and summarizing the tests. See the example figure 6.4 with the Compliance and
Scoring section.

Compliance and Scoring

O T h e ta rge t s y s t e m d id not sa t i s f y t h e cond i t i ons o f 184 ru les!
Please review rule results and consider applying remediat ion.

Rule results Severity of failed rules

11 Low 161 Medium

S c o r e

17.02 of 100.00 ©

E v a l u a t i o n C h a r a c t e r i s t i c s >

Figure 6.4: Example of the compliance and scoring section in report

The section on compliance and scoring includes a subsection on the Evaluation Char­
acteristics of the scan. This subsection contains general information about the scan, such

https: //www.patternf ly.org/v4/

35

http://www.patternf
http://ly.org/v4/

as the name and version of the scanner, the name of the user who performed the scan, etc.
See figure 6.5 for an example of an Evaluation Characteristic in the report.

Evaluation Character ist ics V

Profi le ID: xccdf_org.ssgproject.content_profile_pci-dss

This profile is applicable for this C P E platforms: cpe:/o:redhat:enterprise_linux:9

C P E platforms that were found applicable on the

evaluated machine:

cpe:/o:redhat:enterprise_linu;<:9

Evaluation target: rhel90

Per formed by: jrod-Eik

Scanner: OpenSCAPl.3.6

Benchmark ID: ÄCcdf_org.ssgproject.content_benchmark_RHEL-9

Benchmark url: #5cap_org.open-5cap_comp_ssg-rhel9-xccdfxml

Benchmark version: 0.1.66

Started at: 2023-02-28T17:24:08+01:00

Finished at: 2023-02-28T17:25:02+01:00

Test system: cpe:/a:redhat:openscap:1.3.6

Figure 6.5: Example of the Evaluation Characteristics section in report

Below the Compliance and Scoring section is the Rule Overview section, which contains
a list of rules and a search bar with filtering. See figure 6.6 of the filterable search bar.

Rule Overview

Q, Search rule

Advanced filtering options
Filter by result:

Q Pass Q Fail Q Not checked Q Not applicable Q Fixed Q Error Q Fix failed Q Fix unsuccessful

Q Informational Q Unknown

Filter by severity:

Q high Q Medium Q Low Q Unknown

Figure 6.6: The search bar with filtering options in report

36

Each rule is interactively expandable with the rule details: result, check time, severity,
description, rationale, remediation, warning, visualization of the rule check and applicability
check, etc. See figure 6.7 for an example of a rule detail.

> S e t P a s s w o r d W a r n i n g A g e medium V pass

v L o c k A c c o u n t s A f t e r F a i l e d P a s s w o r d A t t e m p t s medium (X fa\\^

Rule ID: xccdf_org.ssgproject.content_rule_accounts_passwcrds_pamJ :aNlcck_deny i P

Resul t : fa i t)

Mu l t i - check rule: no

T ime : 2023- 03-16T13:20:57+ 01:00

Weight : 1.0

Sever i ty : (medium)

Identi f iers: C C E - 3 3 5 3 7 - 6

References : BP28(R18), 1,12,15,16, 5.5.3, D S S 0 5 . 0 4 , DSS05.10, DSS06.10, 3.1.8, C C I - 0 0 0 0 4 4 , C C I - 0 0 2 2 3 6 , CCI -002237 ,

CCI -0Q223B, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6 4, 4.3.3.6 5, 4.3.3.6.6, 4.3.3.6.7 r 4.3.3.6.8, 4.3.3.6.9, S R 1.1, S R

1.10, S R 1.2, S R 1.5, S R 1.7, S R I S , S R 1.9, 0421 F 0422 , 0431, 0974,1173,1401,1504,1505,1546,1557,1553,1559,1560,

1561, A.I8.I.4, A.9,2.1, A.9.2.4, A.9.3.1, A.9.4.2, A . 9 A 3 , C M - 6 (a) , AC-7 (a) , P R , A C - 7 , FIA_AFL. l , Req-3.1,6, S R G -

O S - 0 0 0 3 2 9 - G P O S - 0 0 1 2 8 , S R G - O S - 0 0 0 0 2 1 - G P O S - 0 0 0 0 5 , S R G - O S - 0 0 0 0 2 1 - V M M - 0 0 0 0 S 0 , 5.4.2, 5.5.2

Descr ip t ion : This rule configures the system to lock out accounts after a number of incorrect login at tempts using

p a m _ f a i l l o c k . so . pamjfai l lock.so module requires multiple entries in pam files. These entries must be carefully

defined to work as expected. In order to avoid errors when manually editing these files, it is recommended to use

the appropriate tools, such as a u t h s e l e c t or a u t h c o n f i g , depending on the O S version.

Rat ionale: By limiting the number of failed logon attempts, the risk of unauthorized system access via user password

guessing, also known as brute-forcing, is reduced. Limits are imposed by locking the account

Warnings: A Genera l warn ing

If the system relies on a u t h s e l e c t tool to manage P A M sett ings, the remediation will also use

a u t h s e l e c t too l . However, if any manual modif icat ion was made in RAM files, the a u t h s e l e c t

integrity check will fail and the remediation will be aborted in order to preserve intentional changes. In

this case, an informative message will be shown in the remediation report. If the system supports the

f e t c / s e c u r i t y / f a i l l o c k . conf file, the pam_faillock parameters should be def ined in

f a i l l o c k . c o n f file.

• Reme-c ri: c 1 SI" ell sei pt

Figure 6.7: Detail of rule in report

In the rule details there is a section with the rule remediation code. If user is interested
in manual remediation of the system, they can click on the correction and get the correction
code that can be used to modify the system to conform to the rule. See figure 6.8 for an
example of remediation.

37

T Remediat ion Shell script

Complexity: 0\'y

Disruption:

Strategy:

OW

configure

|p Copy remediation

R e m e d i a t i o n i s a p p l i c a b l e o n l y i n c e r t a i n p l a t f o r m s

i f [! - f / . d o c k e r e n v] && [J - f / r u n / . c o n t a i n e r e n v] ; t h e n

f i n d - H / e t c / c r o n . h o u r l y / - m a x d e p t h 1 - t y p e d - e x e c chown & {} V ;

e l s e >BL2 e c h o ' R e m e d i a t i o n i s n o t a p p l i c a b l e , n o t h i n g was d o n e 1

f i

• = o i v r . c A -. bio •• t

Figure 6.8: The remediation of rule in report

O V A L def in i t ion :

Def in i t ion ID: oval:ssg-dconf_gnome_sessionjdle_u5er_locks:def:l

Class:

Ti t le:

compliance

Ensure Users Cannot Change G N O M E 3 Session Idle Sett ings

Vers ion :

Descr ip t ion :

Resul t exp la ined:

Ensure that users cannot change G N G M E 3 session idle sett ings

Compl iance class descr ibes O V A L Definit ions that check to see if a system's state is compliant with a specif ic

policy. An evaluation result of "true", for this class of O V A L Definit ions, indicates that a system is compliant with

the stated policy.

O O V A L g raph of O V A L def in i t ion : oval:ssg-dconf_gnome_&ession_idle_LJser_locks;def:1

v X O R (pef ini t ion^)(false X ^) Ensurethat users cannot change GNOME3 session idle settings.

v X MOT A N D Extend definit ion t r u e V dconf installed

*S tes t_package_dconf_ ins ta l led Test t r u e ^ package dconf is installed

Show test details

X A N D (^Cr i ter ia^fBlse X J check Screensaver idle delay andprevent userfrom changing it

v s / OR Extend definition t r u e s / dconf user profile exists

v X MOT A N D Extend definit ion t r u e V dconf installed

tes t_package_dconf_ ins ta l led Test t r u e ^ package dconf is installed

Show test details

s / test_d conf_user_prof i le Test tru e s / dconf user profile exists

Show test details

X test_user_change_id le_delay_lock prev&i I user from changsn c idle dcljy

Show test details

Figure 6.9: The visualization of the O V A L Definition with criteria

In the rule details, users can see the visualization of the rule checks and the applicability
of the rule, which is defined in O V A L and the C P E Applicability Language. The O V A L

38

Language visualization is demonstrated using an oval definition with criteria. See Figure 6.9
for a visualization of the O V A L Definition with criteria.

If the criterion node is a leaf node, it is a test node that can populate the O V A L Object
and the O V A L State. The O V A L Test optionally contains two attributes that define how
the O V A L Test is evaluated. These attributes are called check and check_existence. The
check attribute specifies how many collected objects must meet the requirements specified
in the O V A L State for the O V A L Test to evaluate to true. The check_existence attribute
specifies how many objects defined by the O V A L Object must exist for the O V A L Test to
evaluate to true. See figure 6.10 as an example of an O V A L Test that populates the O V A L
Object in the O V A L State.

test_package_gpgkey-5a6340b3-6229229e_installed Test t r u e ^ package gpg-puhkey-5aG340b3-6229229s is installed

Show test details

oval i&g-te=t_D'nck'nge_CDqkey-7i,ni:.:.4C ibJ!-s522^ i22'i?=_ ~istiilled:~st;l © 'I h < atribi or y o r e ©

Following ite ins have been found on the sys tem:

Arc h E p o c h Ev/r E x t e n d e d name N a m e Re lease S i g n a t u r e key id Ve rs ion

(none) (none) Q:fd431d51-4aeG493b gpg-pubkey-0 : fd431d51-4ae0493b. (none) gpg-pubkey 4 a e 0 4 9 3 b 0 fd431d51

(none) (none) 0 : 5 a 5 3 4 0 b 3 - 6 2 2 9 2 2 9 e gpg -pubkey -0 :5a634Qb3-6229229e . (none) gpg-pubkey 5229229e 0 5a634Qb3

This is expec ted state of O V A L object:

ova l :ssg-s ta te_package_gpg-pubkey-5a6340b3-6229229e:s te :1

Re lease Vers ion

6229229 e S a 6 3 4 0 b 3

Figure 6.10: Detail of the O V A L Test

The visualization of the applicability rule is very similar to the visualization of the
O V A L Language. When using the C P E Dictionary-based approach, the criteria that are
related to the C P E Dictionary are displayed.

When using the C P E Applicability Language, the node hierarchy that is defined by
the C P E Applicability Language is displayed. These nodes have square labels to distin­
guish them from rule's own O V A L Criteria. See figure 6.11 for a visualization of the C P E
Applicability Language.

39

CPE platform requ i red by ru le:

O #not_rhe l_equals_9_0_and_rhe l_greater_eq i ja l_S_7

v X A N D C P E A L operator

v X A N D C P E A L operator false X

X Re fe rence to O V A L de f in i t i on cpe: /o : rhe l :eq:9:0 X

X A N D (p V A L defini t ion of C P E p l a t f o r m ^ f a l s e X ^ RHEL version equals 9.0

v V A N D Extend defini t ion true%/ The operating system installed on the system is RHEL

s / tes t_os_ id_ is_rhe l Test true >/ The operating system installed on the system is RHEL

Show test detai ls

X test_rhel_vers ion_id_ is_eq_9 The version of operating system RHEL equals 9.0

Sl iow test details

>/ R e f e r e n c e t o O V A L de f i n i t i on f rac-ref c p e : / o : m e l : g e : 8 : 7 v r

A N D O V A L def ini t ion of C P E plat form t r u e s / RHEL version greater or equal to 8.7

v ^ A N D Extend definit ion t r u e ^ The operating system installed on the system is RHEL

•*f tes t_os_id_ is_rhe l Test t r u e ^ The operating system installed on the system is RHEL

Show test details

*S tes t_rhe l_ve rsio n_id_is_g t_8_7 Test tru e ^ The version of operatingsys tern RHEL is greater than or equal 8.7

Show test detai ls

Figure 6.11: Visualization of C P E Applicability Language

10

6.5 Benchmark

The pref [3] tool was used to benchmark the report generation process. This tool serves as
an interface to monitor the performance of the Linux kernel. It is used to evaluate the execu­
tion time, C P U usage, and other metrics of the inspected application. The oscap-report
tool will be compared to the oscap tool. The versions of openscap-report 0.2.2 and
openscap-scanner 1.3.7 are being compared. Both commands were executed ten times,
and the resulting time was calculated as the average of these runs [20].

The following command was used for the benchmarking of oscap-report:
$ perf stat -e cpu-clock - r 10 oscap-report arf.xml > report.html

The results:

Performance counter stats for 'oscap-report arf.xml' (10 runs):

19 969,05 msec cpu-clock:u # 9,995 CPUs u t i l i z e d (+- 9,62%)

1,9979 +- 0,0113 seconds time elapsed (+- 0,57%)
Listing 6.1: Output of oscap-report benchmark.

The following command was used for the benchmarking of oscap:
$ perf stat -e cpu-clock - r 10 oscap xccdf generate \

report arf.xml > report.html

The results:

Performance counter stats for 'oscap xccdf generate report arf.xml' (10 runs):

40 250,06 msec cpu-clock:u # 9,998 CPUs u t i l i z e d (+- 9,64%)

4,0258 +- 0,0323 seconds time elapsed (+- 0,80%)
Listing 6.2: Output of oscap benchmark.

According to the benchmark, oscap-report generates reports in half of the time that is
needed for oscap.

41

Chapter 7

The openscap-report Package

The upstream repository of the openscap-report project is available at GitHub.com ,
where the development process is ongoing.

Two files are required to create an R P M package. The first file is a specification file
that describes the process of installing the application as a cookbook. There are special
macros and guidelines [12] for Python that simplify the process of creating an R P M package
and using Python's packaging tools. The spec file used in the Fedora and E P E L 9 R P M
packages is included on storage media under the name openscap-report. spec.

However, there is one catch with the openscap-report package dependencies. The
biggest issue, that required a resolution, was the Patternfily dependency. This problem
was caused by offline CSS as a source for reports, generated on air-gaped systems. The
Patternfly XStatic package set was not a good fit because these packages were abandoned
(they do not receive updates and are not available on R H E L systems). Therefore, the
openscap-report archive contains internally packaged Patternfly CSS files and the pack­
age requirements include only the fonts that are in use by Patternfly. Fonts are installed
separately, from their own package, as a dependency according to the packaging guide­
line [11]. The fonts are not present in the PyPI Python package (available for the pip
tool), but the user can install these fonts manually, or ignore their absence as it is not an
important part of the openscap-report.

With a complete spec file, only the tool source archive is needed. Which can be generated
using the Python build tool, used to build a Python package compatible with the PyPI
repository.

The setup.py bootstrap script is required to create a Python package [14]. The script
contains information about the package such as entry points, dependencies, versions, etc.
For a more complex project, one also need to provide a MANIFEST.in file, that specifies all
the extra files the Python package must deliver: templates, CSS files, an so on.

Packaging openscap-report into the R P M package and PyPI package (Python pack­
age) is facilitated by the release process. Thanks to Github's Actions 2 service, almost all
tasks are performed in an automated fashion. The release is done using a bash script named
release. sh. This script expects a version number as the parameter and performs tasks
such as checking if the release is possible, retrieving the version from setup .py and pushing
the changes with the version tag to the repository.

x h t t p s : //github.com/OpenSCAP/openscap-report
2 h t t p s : //github.com/OpenSCAP/openscap-report/actions

42

http://GitHub.com

After that, two independent Github actions are performed. The first commits the
Python package to P y P I 3 and the second creates a release on GitHub .

The Github release is a trigger for the Packlt [15] service, which is used to build and
test R P M packages in the upstream pull requests. In the course of the release process,
it is used to create a pull request with the changes to the downstream repository. The
downstream repository is used to release the R P M package for Fedora and Extra Packages
for Enterprise Linux [10] (can be enabled on Red Hat Enterprise Linux 9). Finally, the build
and release submission to the downstream repository actions are performed manually. This
step concludes the R P M package release process.

The developer must become a Fedora contributor to request permission to release the
package for Fedora Linux distribution. And all new packages must be reviewed and ap­
proved by other Fedora contributors to be released for Fedora Linux under Fedora Guide­
lines [11].

7.1 Bui lding Packages

To build an R P M package, you must install the Packlt C L I tool. Instructions for installing
the Packlt C L I tool are available at webpage . Other R P M tools, such as rpmbuild or
mock can be used to build, but Packlt simplifies the process of building an R P M package
for your version of Fedora. To build an R P M package, you can run the following command
in the project root:

$ packit build l o c a l l y

The build process for PyPI repository and installation process using the pip tool are de­
scribed in the manual. Running code from source files and installing using the R P M package
manager are also described in the manual. The manual itself is built using Sphinx. The de­
scription of the build process for the manual is available in the appendix B.

7.2 Continuous Integration and Tests

A test suite was created to test the functionality of openscap-report. The way to run the
test suite locally is described in the manual. The main test suite consists of several tools.
The Tox [18] tool, which is a Python test tool for automating tests. This tool can run test
suites with different versions of Python in virtual environments. The Tox configuration
enables openscap-report to be tested in different Python environments without using
containers or virtual machines.

Pytest [16] is the framework used for testing the package. Tests are divided into two
categories: unit and integration tests. Unit tests test each part of the openscap-report
independently. Integration tests test the openscap-report package as a whole.

The openscap-report code is also lint-checked to be aligned with P E P 8 6 , a set of
requirements and guidelines to keep the code is healthy, clean as readable.

3 h t t p s : //PyPI.org/proj ect/openscap-report/
4 h t t p s : / / github.com/OpenSCAP/openscap-report/releases
5 h t t p s : //packit.dev/docs/cli/
6 h t t p s : //peps.Python.org/pep-0008/

43

http://github.com/OpenSCAP/
http://Python.org/pep-0008/

Each pull request in the upstream repository triggers a continuous integration that
runs a suite of tests and other testing services, such as scrutinizer-ci.com and CodeQL 8 ,
which scan the code to check if the pull request introduces security holes or vulnerabilities.
There is also an R P M build test with changes to the pull request using the smoke test
and a dependency check to ensure that the change does not break the release process with
unexpected dependencies or broken code.

A weekly integration test is created to check that openscap-report keeps up with other
components such as OpenSCAP Scanner and S C A P Security Guide. The weekly integration
test uses the latest released version of openscap-report along with A R F reports generated
from the latest released packages openscap-scanner, scap-security-guide and content
that is created from the ComplianceAsCode repository development branch.

7 h t t p s : //scrutinizer-ci.com/g/OpenSCAP/openscap-report/
8 h t t p s : //codeql.github.com/

44

http://scrutinizer-ci.com
http://github.com/

Chapter 8

User Testing

User testing is an important part of project development and is one of the main sources of
user feedback for the application being developed. Following the user feedback,
openscap-report can be improved to the satisfaction of the customers.

The openscap-report tool is developed for very narrow group of users such as security
content developers, OpenSCAP scanner developers, and users who use OpenSCAP to verify
compliance with their company's security policy. These users usually are system adminis­
trators or auditors. Hallway or shadow testing approaches are therefore not viable because
these users are spread out across the globe. Therefore, I decided to reach out to users using
a form where users would answer questions, try out openscap-report, and also would be
able to leave extended feedback on openscap-report.

8.1 Methodology

The user testing form consists of two main parts. Each part focuses on a different part
of the openscap-report. The first part focuses on using the command line interface and
generating reports. The second part focuses on report controls and report contents. A l l
files that were used for user testing are contained on the storage medium in a directory
named user_testing.

Environment Setup

The user must install openscap-report before the testing process can begin. This section
is excluded from the evaluation because the use of package managers such as D N F is not
in the focus of user testing.

In this section, users are provided with installation instructions or R P M packages and
the necessary files for user testing. The evaluation files needed for testing, such as security
scan results in the form of A R F X M L , can be generated by the user, but for convenience,
these files are also provided.

Report Generation

This section focuses on the command line tool called oscap-report, which is provided by
the openscap-report package. Users are introduced to the command line capabilities of
the oscap-report tool and prompted to use it to generate an interactive H T M L report

45

from an A R F results file. The user was asked to perform the following tasks and answer
questions:

1. Task: Display help for the oscap-report tool via the man pages (man oscap-report)
or with the command oscap-report —help.

(a) Can you generate an H T M L report with oscap-report after reading the man
pages or help messages?

(b) Do you have enough information that describes the functionality of the tool? If
you don't, what would you like to be explained in more depth?

(c) Do you have any other problems with the display or content of the man page or
help message?

2. Task: Please generate an H T M L report from the A R F results X M L file using the
oscap-report command. You can use the file that was provided in the setup section.
Alternatively, you can use your own A R F report generated by the SCAP-compatible
scanner.

(a) Was the generation of the H T M L report successful? Please, don't hesitate to
create an issue for the project here1 if you had problems with the tool (attach
the A R F file you've used).

Report Contents

This section focuses on the content of the H T M L report and its interactive capabilities.
User would work with the H T M L report generated in the previous section. Users had to
complete the following tasks and answer the following questions:

1. Task: Please open the generated H T M L report in your web browser.

(a) Do you have any trouble opening the H T M L report? If you do, please write
them down.

2. Task: Please explore the contents of the H T M L report.

(a) Do you find the About Profile and Compliance and Scoring sections useful?

(b) Missing any scoring or profile information? If yes, write what is missing.

(c) Do you find the Evaluation Characteristics section useful?

(d) Do you miss any information in the Evaluation Characteristics section? If yes,
write down what is missing.

3. Task: Please try filtering rules by result or severity to find the rule you want or filter
rules that have the word „account" in the title or id, which have failed and are of
medium severity.

(a) Was it easy to use the filter? (If you have a problem, click the arrow on the right
side in the search bar)

(b) Do you miss any filtering options? If yes, write down what is missing.

x h t t p s : //github.com/OpenSCAP/openscap-report/issues

46

4. Task: Please see the rule detail. (Click on the title of a rule or the arrow on the left
side next to the rule's title)

(a) Do you miss any information about a rule? If yes, write down what is missing.

(b) Do you miss any information in the rule's check visualization (OVAL Language)?
If yes, write down what is missing.

(c) Are you missing any information in the rule applicability check visualization? If
yes, write what is missing.

(d) Why did the rule
xccdf_org.ssgproject.content_rule_dconf_gnome_screensaver_idle_delay
fail? The report was provided via the link.

5. Conclusion

(a) Do you have improvement ideas?

(b) Did you find any bugs or problems?

(c) Anything else?

8.2 Outcome

The feedback was positive in general, and I also received several suggestions for improving
the report. I have had the opportunity to speak personally with some users and discuss
their needs. I have received feedback from users not only from Red Hat but also from other
companies or institutions such as Canonical, Fermilab, and SUSE.

Based on the responses, I will point out the main issues and suggestions for improvement.
For any ideas or issues that were mentioned in the responses, I plan to create issues on
GitHub. So that I'd follow up on them and could be able to improve opnescap-report in
the future. I've divided the answers into several categories, such as Documentation, Report
Informativeness, and Report Capabilities.

Users liked the new Report and asked if this Report will replace the old OpenSCAP
scanner H T M L Report. Users were surprised at the speed of generating the new H T M L
Report compared to the old H T M L Report. Users are also interested in generating O V A L
visualizations from the O V A L Results file or other report formats.

Documentation

According to the feedback, users are missing the examples of tool usage in the man page.
One user suggested that only options without too much text should be shown in the help
and that some flags not related to normal use should be moved to the man pages only. The
flags for debugging was given as an example. Users also noted the lack of documentation
on manual build and installation procedures for openscap-report package.

Report Informativeness

Users want the Report to include a link to the original security policy, the version of the
S C A P Security Guide, and the IP address of the target system.

47

Some users were interested in an explanation of how the scan score is calculated. How
O V A L operators are evaluated because they confused them with boolean operators. In gen­
eral, they wanted to have an explanation readily available in the report to avoid switching
to the S C A P specification.

Users also wanted to be able to visually distinguish platform usability checks from
configuration checks.

Report Capabilities

Users suggest a two-layered view of the Evaluation Characteristics, with the most useful
items visible after the first expansion and the rest of it after the second. Users were not
able sort rules by title, severity, and outcome.

Users are interested in being able to filter rules using STIG identifiers.
Users missed buttons to uncheck all filters, clear the search box, filter only matching

or non-matching rules, and a button to move to the top of the report. Users would like to
have links in rules organized by security policy, for example.

18

Chapter 9

Conclusion

The goal of this work was to learn about SC A P standards and examine the reports generated
by the OpenSCAP security scanner or other S C A P scanners, propose improvements to the
H T M L report content, and develop a tool that generates an interactive H T M L report from
the S C A P results.

The tool was packaged into an R P M package available on Fedora Linux and other
distributions such as Red Hat Enterprise Linux 9 or Centos Stream 9 via Fedora E P E L
packages.

The main part of this thesis is to learn about the S C A P standard report formats and
implement the tool, which is packaged in a package called openscap-report, which provides
a oscap-report tool that can generate an interactive H T M L report.

This thesis begins by explaining the main components of the S C A P standard. In this
Chapter 2, the author draws on his next three years of experience with the OpenSCAP
project. Chapter 3 introduces the OpenSCAP project and other S C A P scanners. Chapter
4 provides an overview of the reporting capabilities of S C A P scanners. In Chapter 5, the
author presents his reporting enhancements. In Chapters 6 and 7, the author describes
the implementation and what tools were used to develop and package the tool to generate
interactive H T M L reports. In Chapter 8, the author develops the User Testing Methodology
and presents the results of the user testing.

The author successfully developed the oscap-report tool and created an R P M pack­
age called openscap-report, which is available for Fedora Linux and other distributions
such as RedHat Enterprise Linux 9 or Centos Stream 9 via Fedora E P E L packages. Also,
openscap-report has been bundled into openSUSE Linux by SUSE engineers. It is possi­
ble that in the future, openscap-report will also be included in Ubuntu Linux by Ubuntu
developers.

You can check the current availability of openscap-report on Linux distributions at
pkgs webpage1.

User testing provides some ideas and reveals issues that the author plans to implement
and fix in future development. Users have also expressed interest in other versions of the
reports, such as the report generated from O V A L results or formats like JSON.

x h t t p s : //pkgs. org/download/opens cap-report

49

Bibliography

[1] OVAL Content Creation Tutorial. Center for Internet Security, 2017 [cit. 2022-12-18].
Available at: ht tps: / /ovalproject .github.io/gett ing-started/tutorial / .

[2] Qualys PC/SCAP Auditor - Getting Started Guide. Getting Started Guide.
Q U A L Y S , INC, november 2017 [cit. 2022-12-28]. Available at:
https: //www.qualys.com/docs/qualys-scap-getting-started-guide.pdf.

[3] Getting started with the perf command [online]. 2021 [cit. 2023-4-12]. Available at:
https://www.ibm.com/docs/en/linux-on-systems?topic=
performance-getting-started-perf-command.

[4] ComplianceAsCode Developer documentation. Red Hat Security Compliance Team,
2022 [cit. 2022-12-20]. Available at:
https: //complianceascode.readthedocs.io/en/latest/manual/developer/
06_contributing_with_content.html#applicability-of-content.

[5] The OpenSCAP Base [online]. 2022 [cit. 2022-11-15]. Available at:
https: //www.open-scap.org/tools/openscap-base/.

[6] The OpenSCAP tools [online]. 2022 [cit. 2022-11-15]. Available at:
https: //www.open-scap.org/tools/.

[7] The OpenSCAP Workbench [online]. 2022 [cit. 2022-11-15]. Available at:
https: //www.open-scap.org/tools/scap-workbench/.

[8] SCAP security guide [online]. 2022 [cit. 2022-11-15]. Available at:
https: //www.open-scap.org/security-policies/scap-security-guide/.

[9] The Security compliance content in SCAP, Bash, Ansible, and other formats [online].
2022 [cit. 2022-11-15]. Available at: https://github.com/ComplianceAsCode/content.

[10] Extra Packages for Enterprise Linux (EPEL). The Fedora Project, 2023 [cit.
2023-4-12]. Available at: https://docs.fedoraproject.org/en-US/epel/.

[11] Fedora Packaging Guidelines. The Fedora Project, 2023 [cit. 2023-4-12]. Available at:
https: //docs.fedoraproject.org/en-US/packaging-guidelines/.

[12] Fedora Packaging Guidelines: Python. The Fedora Project, 2023 [cit. 2023-4-12].
Available at: https: //docs.f edoraproj ect.org/en-US/packaging-guidelines/Python/.

[13] The Ixml XML toolkit for Python. Contributors of The lxml library, 2023 [cit.
2023-4-12]. Available at: https:// lxml.de/.

50

https://ovalproject.github.io/getting-started/tutorial/
http://www.qualys.com/docs/qualys-scap-getting-started-guide.pdf
https://www.ibm.com/docs/en/linux-on-systems?topic=
http://www.open-scap.org/tools/openscap-base/
http://www.open-scap.org/tools/
http://www.open-scap.org/tools/scap-workbench/
http://www.open-scap.org/security-policies/scap-security-guide/
https://github.com/ComplianceAsCode/content
https://docs.fedoraproject.org/en-US/epel/
http://fedoraproject.org/en-US/packaging-guidelines/
https://lxml.de/

[14] Packaging and distributing projects. Python Software Foundation, 2023 [cit.
2023-4-12]. Available at: https://packaging.python.org/en/latest/guides/
distributing-packages-using-setuptools/.

[15] Packit. Contributors of The Packit, 2023 [cit. 2023-4-12]. Available at:
https: //packit.dev/.

[16] Pytest: helps you write better programs. Holger Krekel and pytest-dev team, 2023
[cit. 2023-4-12]. Available at: https://docs.pytest.org/en/7.3.x/.

[17] The Python Standard Library - Data Classes. Python Software Foundation, 2023
[cit. 2023-4-12]. Available at: https://docs.python.org/3/library/dataclasses.html.

[18] Tox - automation project. The Tox Developers, 2023 [cit. 2023-4-12]. Available at:
https: / / tox .wiki /en / la tes t / .

[19] A T L A N T I C , N . Security Content Automation Protocol (SCAP) Compliance Checker
(SCC) [online]. 2022 [cit. 2022-11-20]. Available at:
https: / / www.niwcatlantic.navy.mil/scap/.

[20] E R A N I A N , S., G O U R I O U , E . , M O S E L E Y , T. and B R U I J N , W . de. Linux kernel profiling
with perf. 2023 [cit. 2023-4-12]. Available at:
https: //perf .wiki.kernel.org/index.php/Tutorial.

[21] H A I Č M A N , M . SCAP Security Guide intro pitch [Red Hat internal slides]. 2018 [cit.
2023-4-12].

[22] L Y S O N Ě K , M . System for Automatic Filtering of Tests. Brno, CZ, 2020. [cit.
2023-4-12]. Diplomová práce. Vysoké učení technické v Brně, Fakulta informačních
technologií. Available at: https://www.fit.vut.cz/study/thesis/23098/.

[23] Č E R N Ý , J . Nástroj pro tvorbu definic OVAL v projektu OpenSCAP. Brno, CZ, 2016.
[cit. 2023-4-12]. Bakalářská práce. Vysoké učení technické v Brně, Fakulta
informačních technologií. Available at: https://www.fit.vut.cz/study/thesis/18235/.

[24] W A L T E R M I R E , D. , C I C H O N S K I , P. and S C A R F O N E , K . Common Platform

Enumeration: Applicability Language Specification Version 2.3. NIST Interagency
Report 7698. National Institute of Standards and Technology, august 2011 [cit.
2022-12-18]. Available at:
https: //nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7698.pdf.

[25] W A L T E R M I R E , D. , Q U I N N , S., B O O T H , H . , S C A R F O N E , K . and P R I S A C A , D. The

Technical Specification for the Security Content Automation Protocol (SCAP). NIST
Special Publication 800-126, 3rd ed. National Institute of Standards and Technology,
february 2018 [cit. 2022-11-28]. Available at:
https: //nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-126r3.pdf.

[26] S T A N D A R D S , N . I. of and T E C H N O L O G Y . Extensible Configuration Checklist
Description Format (XCCDF) [online]. 2016 [cit. 2022-12-18]. Available at:
https://csrc.nist . gov/Projects/Security-Content-Automation-Protocol/
Specifications /xccdf#resource-1.2.

51

https://packaging.python.org/en/latest/guides/
https://docs.pytest.org/en/7.3.x/
https://docs.python.org/3/library/dataclasses.html
http://www.niwcatlantic.navy.mil/scap/
http://wiki.kernel.org/index.php/Tutorial
https://www.fit.vut.cz/study/thesis/23098/
https://www.fit.vut.cz/study/thesis/18235/
http://nist.gov/nistpubs/Legacy/IR/nistir7698.pdf
http://nist.gov/nistpubs/SpecialPublications/NIST.SP
https://csrc.nist.gov/Projects/Security-Content-Automation-Protocol/

Appendix A

Contents of the Included Storage
Media

The storage medium contains the following structure1:
/ Root directory of storage media

_ openscap-report Source files of openscap-report project
.github Configuration files for GitHub
docs Source codes of documentation
openscap_report Source codes of implementation
L e u • py Command line A P I

_ plans T M T plans for the T M T test suite
tests Source codes of test suite
openscap-report. spec Spec file
setup .py Python setup script
MANIFEST .in Specification of files in Python package
release.sh Realase script

_ LICENSE License
LICENSE. spdx S P D X version of license
requirements.txt Python package requirements
README.md

manual Compiled documentation

t oscap-report .1 Compiled manual page
HTML_manual Compiled H T M L manual

these_source_code Source codes of this document
_ RPM Built R P M packages
_user_testing Files for user testing
report_example.html Example of generated report
_xrodakOO_openscap-report .pdf Electronic version of this document for print
xrodakOO_openscap-report_IS .pdf Electronic version of this document for
submission to the IS V U T

1The entire storage medium contains about 67 directories and 355 files.

52

Appendix B

Build Manual

To build a manual page and a manual that contains all the information and usage of the
openscap-report package and the oscap-report command line tool, you need to install
the python3-sphinx, python3-sphinx_rtd_theme packages. The built versions of the
manual page and manual are contained on storage media in a directory named manual or
provided with the online version of this documentation1.
To build a man page open directory docs and run this command:

$ sphinx-build -b man . TARGET_DIR

To build H T M L manual open directory docs and run this command:

$ sphinx-build . TARGET_DIR

Optionally files in the modules directory can be regenerated using a command executed in
directory openscap-report:

$ sphinx-apidoc openscap_report -o docs/modules

x h t t p s : //opens cap-report.readthedocs.io/en/lat est/

53

