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ABSTRACT 
This thesis presents a variety of soft clipping simulations and their respective de-clipping 
functions. A restoration method uses a Douglas-Rachford algorithm (already verified 
for hard de-clip). The algorithm is extended by inverse functions and simultaneous de-
quantization is proposed. The simulations are applied to audio samples, and the proposal 
is tested in the computing environment M A T L A B . A restored signal is later evaluated 
by objective and subjective methods. 

KEYWORDS 

Saturation, soft clipping, signal restoration, quantization, de-quantization, de-clip 

ABSTRAKT 
Práce se zabývá simulacemi a následnou rekonstrukcí měkké saturace, u které dochází 
při zpracování audio signálů. Metoda obnovy využívá jako výchozí Douglas-Rachfordův 
algoritmus (již ověřený pro tvrdý ořez signálu). Algoritmus je rozšířen o inverzní funkce 
a de-kvantizaci. Simulace jsou aplikovány na reálných zvukových datech a návrh je tes­
tován ve výpočetním prostředí M A T L A B . Obnovený signál je vyhodnocen za pomocí 
objektivních a subjektivních metod. 
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ROZŠÍŘENÝ ABSTRAKT 
Diplomová práce se zabývá rekonstrukcí měkce saturovaných audio signálů. V první 
kapitole teoretické části se nachází stručný úvod do problematiky saturace, jejího 
původu a vlivu na audio signály. Dále se rozebírají známé typy měkkých saturací, 
kde se konkrétně jedná o efekty Distortion, Overdrive, simulaci elektronkového ze­
silovače a zkreslení záznamem magnetického pásku. Příslušné simulace těchto typů 
zkreslení jsou matematicky definovány za pomoci nelineárních převodních charak­
teristik a jejich vliv na signál v časové i kmitočtové oblasti je rozebírán. Je zde též 
zmíněno a znázorněno zkreslení, při kterém dochází při dynamické úpravě signálu a 
využití těchto zkreslení v hudební produkci. 

Druhá kapitola se zabývá kvantizací, k jakému zkreslení ve spektru dochází při 
kvantizaci signálu a jakou chybu vnáší A / D převod do problematiky rekonstrukce 
měkce saturovaných signálů. Pojem de-kvantizace je zaveden a vysvětlena souvislost 
mezi problematikou de-saturace a de-kvantizace. 

Třetí kapitola přibližuje různé přístupy k rekonstruci saturovaných signálů z 
předešlých výzkumů. Věnuje se restauraci tvrdě saturovaných signálů a popisuje 
základy metod využívající řídké reprezentace signálů. Definují se pojmy jako syn­
tetický model rekonstrukce, báze, rámce a využití STFT/Gaborovy analýzy. Násle­
duje formulace minimalizační úlohy pro tvrdou de-saturaci. Výchozími poznatky pro 
měkkou de-saturaci jsou přístupy použité pro tvrdou de-saturaci, konkrétně využití 
Douglas-Rachfordova dopředně zpětného algoritmu. Pro měkkou de-saturaci byla 
upravena projekce na množinu přípustných řešení. Narozdíl od tvrdé de-saturace, 
kde za pomocí rozdělení signálu do „masek", tedy vektorů vzorků, které byly satur­
ovány a které jsou věrohodné a neměnné, v případě měkké de-saturace algoritmus 
minimalizuje počet řešení v rámci intervalů, ve kterých byl původní saturovaný signál 
kvantován. Na tyto intervaly jsou aplikovány zároveň inverzní saturační funkce. 

Čtvrtá kapitola popisuje implementaci výše zmíněného řešení. Saturace a algo­
ritmus je nasimulován ve výpočetním prostředí M A T L A B za pomocí funkcí z LTFAT 
toolboxu. Funkčnost byla nejdříve otestována na simulovaných signálech a poté se 
testovaly reálné audio data. Porovnávalo se celkem 9 audio vzorků, sestávajících z 
lidské řeči, sólových nástrojů a hudebních ukázek. Všechny tyto hudební vzorky byly 
saturovány čtyřmi typy saturací, které byly uvedeny v první části. Rekonstrukce byla 
posuzována objektivními i subjektivními metodikami, tedy vyhodnocením zlepšení 
pomocí A S D R oproti saturovanému signálu, psychoakustického modelu P E M O - Q a 
subjektivním poslechovým testem M U S H R A s patnácti respondenty. 

Lze říci, že rekonstrukce byla úspěšná u všech typů testovaných vzorků, ať už se 
jednalo o sólové nástroje či komplexnější hudební nahrávky. I při relativně nízkém 
nakvantování (8 bit) a slyšitelné měkké saturaci audio signálů bylo zlepšení dle 
vydnocení P E M O - Q A O D G objektivní stupnice průměrně o 1-3. Vyhodnocení 



dle A S D R pro většinu audio ukázek se pohybovalo v záporných hodnotách okolo 
—2 dB Respondenti subjektivního ohodnocení M U S H R A zaznamenali mírné změny 
mezi rekonstruovanými vzorky a referencí, ale u některých rekonstruovaných vzorků 
docházelo i k jejich záměně s referencí. 

V porovnání s komerčně využívaným de-saturačním software DeClipper Izotope 
R X dosahovala testovaná metoda rekonstrukce lepších výsledků, jak při vyhodnocení 
za pomocí ASDR, P E M O - Q tak i u respondentů ovšem za cenu vyššího výpočetního 
času. 
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Introduction 
Nowadays, digital signal processing (DSP) is a necessary part of most engineering 
fields. When it comes to signal processing of telecommunications, sonar, radar, 
digital image processing, data compression, video coding, audio, or speech, DSP 
becomes the primary tool in most of these operations. The mathematical operations 
and principles throughout all mentioned fields can be similar. This thesis presents 
the importance and the uses of DSP in the last area, audio and speech signals 
processing. 

Although the applications of DSP vary based on specific sectors, it has already 
surpassed and proven many advantages over analog processing. Nevertheless, there 
are several occasions where processed signals may lose essential parts of their data. 
Data loss may occur while converting the signal from analog to digital (ADC), for 
example, by choosing a low sampling frequency and underestimating the required 
bit-depth and saturation. 

This thesis deals with signal saturation, which typically occurs while recording 
music, where the input analog signal exceeds the maximum limit of a recording 
device. If this excess went unnoticed during recording and the soundtrack was not 
re-recorded, the limited signal cannot be used to work further, as it would cause 
issues in future processing, mixing, or mastering. This issue also affects musicians 
who may not want or cannot repeat the recorded part destroyed by unwanted sat­
uration. During recording, conversion, and reproduction, the signal may undergo 
countless processes, causing nonlinear distortions, and the original idea is more or 
less deformed. Soft de-clipping serves its purpose of compensating of the real-world 
devices (such as amplifiers or magnetic recorders) that worsen and impact the audio 
signal's quality and original intent. 

The first chapter explains the origin, impact, and different types of clipping 
and how they affect audio signal and saturation as a part of artistic expression. 
Such saturated signals are used in later chapters by the restoration algorithm. The 
second chapter explains the effect of quantization. In the third chapter, different 
approaches and ideas behind de-clipping are described. The fourth chapter sums up 
the M A T L A B implementation, results, and various comparative methods. 
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1 Saturation 

1.1 Origin 

A signal is considered saturated when a maximum power level of a certain device is 
exceeded. The output reaches the design limit of the device and cannot be produced 
above this level, also known as a threshold. Any samples exceeding this threshold 
are cut off, and their data is effectively lost. 

Data loss manifests visually in the time domain (as mentioned threshold cutoff) 
as well as in the frequency domain by producing higher harmonic frequencies. These 
are the perceivable result of harmonic distortion. The spectrum form depends on the 
exact type of saturation, as it will be shown and described in the following sections 
(1.3.1, 1.3.2, 1.3.5 and 1.3.6) on the simplest shape of a signal: sinusoidal signal. 

In the analog world, many sources can cause saturation. Every analog device or 
electrical circuit consists of components, each of which has its operation point and 
follows respective nonlinear transfer functions specified by their physical limitation. 
Saturation occurs when the signal is outside a specific operational range. The output 
signal of analog devices is limited by their power supply and cannot be amplified 
further. The same applies to integrated circuits or vacuum tubes where the tube 
parameters limit the number of transmitted electrons. Clipping also can occur while 
the transistor is pushed to its maximum amplitude. Transistors are often driven 
into hard saturation to be used as switches [1]. When the input signal is amplified 
enough, the output takes a square shape where, in most cases, only two values exist. 

In the digital domain, the emergence of hard clips depends on the efficiency of 
A D C . Input voltage value V is given and described as a maximum that can be 
converted due to a dynamic range of a digital system [2]. Based on the number 
of bits, the amount of levels within this range is computed from this value. Every 
discrete part of a signal exceeding the threshold is converted into a single number. 
Thus hard clipping is performed. 

1.2 Nonlinear Processing 

1.2.1 Definition 

A short introduction to nonlinear processing is required since all the clipping func­
tions from chap. (1.3) belong to this section. 

Every signal processing device, either analog or digital that does not satisfy the 
condition of linearity, is considered as nonlinear. A system in 1.1 where the input 
is x(n) and y(n) denotes an output is a linear system [3]. 
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x(n) = Axi(n) + Bx2(n) —> y(n) = Ayi(n) + By2(n) (1.1) 

When the input x(n) of such a system is a continuous sinusoidal signal with 
known frequency fx and amplitude A 1.2: 

x(n) = A sin(27r/i Tn), (1.2) 

the corresponding output y(n) is also a sinusoid (1.3) where the amplitude A is 
modified as Aout = \H(fi) \ • A by the magnitude response of the transfer function 
\H(fi)\ and the phase response <f>out = <f>in + ZH(f1). 

y(n) = Aout sin(27r/iTn + 4>out) (1.3) 

On the other hand, the output of the nonlinear system is rather expressed as a 
sum of sinusoids, as demonstrated in Fig. 1.1: [3] 

y(n) = AQ + A1 sin(27r/iTn) + A2 sin(2 • 27r/iTn) + ... + AN S\TL{N • 2irflTn). (1.4) 

Fig. 1.1: Comparison of the linear and the nonlinear system 

In music, nonlinear processing takes the form of dynamic range controllers (mainly 
controlling the signal envelope where the generation of higher harmonics should be 
as low as possible), strong harmonic distortions (guitar amps, effect processors) and 
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modulation effects (such as chorus, vibrato), and many others. Exciters and en­
hancers are signal processing devices creating higher harmonics and mixing them 
with the original signal improving its timbre. 

1.2.2 Harmonics 

The previously shown nonlinear system was an example of hard-clipping distortion. 
However, this type of distortion can only be a small part of distortion products which 
occur in standard musical signals. The total harmonic distortion (THD) is one of 
many ways of indicating nonlinearity. It is defined as the ^square root of the ratio 
of the sum of powers of all harmonic frequencies above the fundamental frequency 
to the power of all harmonic frequencies including the fundamental frequency". ([3], 

If the input signal consists of the sum of harmonics of a fundamental frequency fo, 
the other partial distortion products are also in a row of fundamental's harmonics. 
The output signal then contains harmonics of amplitudes unrelated to the input 
amplitudes. 

In case input contains non-harmonic partials, the system adds a series of har­
monics based on each input partial. The interference between these series generates 
other respective higher harmonics called intermodulation products. Such products 
are mostly unwelcome because they can blur the signal or provide new harmonic 
parts which are not precisely in tune. If this happens, the input signal has to undergo 
proper filtering. [3] 

1.2.3 Characteristic Curve 

DSP is mainly built on linear time-invariant systems, but commonly used audio 
reproduction systems and devices have several nonlinearities such as valve amplifiers, 
tape recorders, or loudspeakers. Such nonlinearities are simulated and modeled by 
suitable approaches, represented by nonlinear systems without a memory. Static 
nonlinear curves are directly used on the input signal. The characteristic curves 
are then simple graphic displays realized as an output to input relation. [3] Since 
the input signal's bandwidth after nonlinear system processing may exceed half the 
sampling frequency (thus, the Nyquist theorem is not fulfilled), the input should be 
first over-sampled to precede any aliasing distortion. [3] 

p. 102) (1.5) 

THD 
A2

2 + Al + ... + A\ -N 
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1.3 Clipping types 

Clipping is categorized into two main kinds; hard and soft. It is possible to closely 
define types of saturation based on their respective characteristic curves. Further 
distinguishing is either as symmetrical or asymmetrical, meaning that the clipped 
amplitudes are the same in the positive and negative part of the signal (in geometric 
terms: centrally symmetrical), or only one of those amplitudes is saturated. The 
part around y = 0 is close to or equal to linearity. 

1.3.1 Hard Clipping 

As mentioned earlier, hard clipping is the most common form of saturation. The 
amplitude is cut at a certain point, and magnitudes above the specified threshold 
are assigned with a single maximum value. Thus, peak information is eliminated, 
and the waveform over the threshold is flattened and clipped. The system's output 
is determined by condition, where the threshold is 9 (1.6). 

r e, x(n) > e, 
y{n) = < x(n), -9 < x(n) < 9, (1.6) 

[ -9, x(n) < -9. 

As shown in (Fig. 1.2), both amplitudes of the nonlinear characteristic curve 
are clipped symmetrically, the middle part is linear, and the spectrum produces 
high order harmonics, thus a characteristic aggressive, digitally distorted sound is 
produced. 

Time domain 

- 1 0 1 0 5000 10000 
x Frequency (Hz) 

Fig. 1.2: Representation of the hard clipped signal, 9 = 0.8 

16 



1.3.2 Soft Clipping 

In contrast to a hard clip, a soft clip saturates the amplitude as a smooth curve 
and rounds its shape before the amplitude reaches the threshold. [3] This smooth 
amplitude reduction can typically be found in analog systems such as vacuum tube 
amplifiers or magnetic tapes. Soft clipping favours the human ear more than hard 
clipping and produces odd-order harmonics. The major difference between the sym­
metrical soft clipping and hard clipping is that higher harmonics appear to have 
much greater magnitudes in the case of the hard clip. The amount of data loss is 
adequate for the amount of compression caused by soft clipping. Moreover, signals 
saturated by soft clipping are more likely to be reconstructed if their characteris­
tic curves are known. Since no part of the signal was completely lost, reversion is 
possible by applying a memory-less inverting polynomial of a finite degree. [4] 

1.3.3 Distortion 

The effect of distortion can be simulated according to [3] by the function: 

/ (x) = sgn (x) ( l - e~M) . (1.7) 

Together with an overdrive effect represents a processing device that alters the 
sound by increasing the input gain g. Multiplying the input a; by a higher number 
g leads to higher output distortion. Here, in Fig. 1.3 the gain is 4. 

Time domain 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Time(s) x10" 3 

Characteristic curve FFT 

-1 -0.5 0 0.5 1 0 5000 10000 
x Frequency (Hz) 

Fig. 1.3: Distortion effect for g = 4 
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1.3.4 Overdrive 

The modulation function (1.8) is an overdrive effect precisely, which saturates the 
signal as following: 

/ ( * ) 

2gx, 
3_(2-3gx) 2 

0 < x < \, 

3 — X — 3 ' 

1 < X < CO. 

Conditions split static characteristic y — f(x) into intervals, where up to | of the 
input x the linear region is multiplied by 2, between | to | of the input values, the 
slight distortion is already produced, and above | is output set to 1 [3], as is seen 
in Fig. 1.4, meanings the overdrive function combines both soft and hard clipping. 

Time domain 

5000 
Frequency (Hz) 

10000 

Fig. 1.4: Overdrive effect for g = 1 

1.3.5 Tube Saturation 

Valves or vacuum tubes are active components used for amplifying. Despite being 
replaced by semiconductors, they still play an essential part in hi-fi. The tube satu­
ration was used as a representative of an asymmetrical clipping. The characteristic 
curve of tubes varies from the type, and should consider the valve amplifier circuit, 
speaker and cabinet influences. One of the many simulations can be given by 1.9 
where Q is a work point that controls the linearity of the transfer function for low 
input levels, and d is the amount of distortion. [3] 

i , o x = Q u-yj 
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As seen in Fig. 1.5, the negative input values are mostly cut off, and positive 
values are approximately linear. The signal looks destroyed at first, and there are 
visible changes in its spectrum, even though this signal modification is not as dis­
turbing to a listener as the symmetrical hard clip. In comparison to the previous 
figures, the appearance of order higher harmonic is more significant here. After us­
ing this function, proper lowpass and highpass filtration is recommended to achieve 
a more authentic tube sound. 

Time domain 

x Frequency (Hz) 

Fig. 1.5: Tube simulation for Q = —0.2, d = 8 

1.3.6 Tape Saturation 

Magnetic tapes produce soft, symmetrical clipping, which is almost unnoticeable to 
an average listener, yet it adds harmonics to the final sound, specifically third and 
other odd-order harmonics. The gain factor is generated based on the characteristic 
curve of the input level and is used for compressing signals, while for low amplitudes, 
it works as an amplifier. The tapes gradually progress into distortion. [3] [5] 

As an example of the tape clipping, an arctan function was used for simulation 
1.10. The parameter g specifies the gain.[5] 

f(x) = 2n • arctan(gx) (1.10) 
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Fig. 1.6: Tape simulation for g = 4 

1.4 Dynamic range processing 

Dynamics processing affects the signal dynamics and perceptually modifies its loud­
ness and timbre. The audio signal dynamics are processed by amplifying devices 
where the analysis of the input signal controls the gain, primarily by compressors, 
expanders, limiters, and noise gates. Nevertheless, these effects will only be men­
tioned briefly as the thesis mainly focuses on static characteristics, mapping the 
instantaneous input to the instantaneous output. 

The signal envelope is followed by amplitude detection. Either peak values of the 
signal or an averaged constant providing RMS value by measuring the signal's power 
are detected. [3] The dynamic behavior is influenced by parameters such as attack 
time and release time for the peak measurement approach and averaging time for 
RMS approach. Based on these parameters, signal is then adjusted by a smoothing 
filter and gain controller. The main signal flow is delayed due to any possible delay 
in a side branch. 

O Delay 

PEAKO'RMS 
detection 

^ Static Cur Filter 

Fig. 1.7: Dynamics processing diagram (redrawn from [3], p. 106) 
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1.4.1 Compressor 

The compressor's main function is to reduce the signal's dynamic range above the 
threshold, which increases loudness without affecting the signal's maximum level 
output [6]. Compared to the limiter, the compressor does not use the infinite slope. 

In the dB scale, the output can be expressed as a sum of input and gain. The gain 
is 0 dB up to a certain threshold (here —30 dB). Above this level, the characteristic 
follows a compression ratio. The ratio R specifies a relation between input level and 
output level, which is defined by delta Y — • A X . The slope factor S may be 
defined instead of the ratio. (Fig. 1.8) 

X[dB] 

-60 -50 -40 - 30 -20 

threshold = - 30 dB 
(R) ratio = - 3/1 

Y[dB] 

Fig. 1.8: Static characteristic of a compressor (redrawn from [3], p. 108) 

Compressors generally affect high levels or loud parts according to their charac­
teristic curve. Quiet parts are not modified, but due to reducing level peaks and 
the dynamic range they seem to be much louder and stand out from the signal way 
more than before processing. 

1.4.2 Expander 

The expander is a system that increases the signal dynamics by attenuating the 
signal under a certain threshold; the rest remains unchanged. As in the compressor's 
case, the expander typically employs RMS level detectors of the input level with an 
averaging time [3] [6]. The ratio is usually applied, e.g., as 1:3, which denotes an 
upward-type expander amplifying input over the threshold by the value of 3. At 
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a downward-type expander 3:1, the input below the threshold would be decreased 
accordingly. 

The following figure 1.9 demonstrates the possible impact of the compressor and 
expander effect on a saxophone sample in both time and spectral domain while using 
parameters: compressor (threshold —25 dB, ratio 10, knee width 5 dB); expander 
(threshold —40 dB, ratio 10, attack time 0.01 s, release time 0.02 s). These functions 
are found within the M A T L A B Audio Toolbox. 

ong ong 

Time (s) 

Fig. 1.9: Comparison of the compressor and expander 

1.5 Sound and Musical Use 

During the past decades, saturation effects have influenced many musical genres 
heavily. As guitar amplifiers were evolving, characteristic sounds were generated. 
Analog pedal guitar devices were developed based on saturated valve amps. The 
first ones were based on the products manufactured by world-known brands such 
as Mesa Boogie, Vox, and Marshall. [3] These effects were transferred into the 
digital world with the signal processing implementation. Typically distorted sounds 
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of asymmetrical clipping can be heard in Fuzz effects, while Distortion resembles 
the most severe form of clipping. Soft clipping is mainly utilized in Overdrive effects 
and in all analog device simulations, which are commonly employed in the form of 
plug-ins: additional software used in mixing and mastering DAWs. 
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2 Quantization 

Since signals in DSP have to be processed using finite arithmetic, the analog signal 
is first digitized, where quantization is an essential part of the process. 

The signal is first sampled by the sampling frequency, which has to fulfill the 
Nyquist-Shannon theorem's condition to get the discrete digital signal (a sequence 
of numbers). The sampling frequencies are usually 32 kHz (based on the 15 kHz 
bandwidth of analog stereophonic F M broadcast), 44.1 kHz (CD standard estab­
lished by the video recorders), 48 kHz (suitable for the video processing), and their 
respective integer multipliers (such as 88.2 kHz, 96 kHz, and 195 kHz). [6] 

The range of finite possible values depends on the ADC' s bit-depth to achieve 
the digital signal. The closest level from this range is assigned for each sample using 
the rounded signal value. [7] [8] The reproduced signal is never identical to the 
previous analog signals since the quantized signal is always distorted and affects 
DSP approaches. 

The example of a quantized signal is shown in Fig. 2.1, where a low bit depth was 
simulated. For w-bit representation, there are 2W of levels within the specified range 
where the quantization step is A = 2~(-w~1\ Quantization error was computed by 
subtraction of quantized and original signal. 

There are two different ways of quantization based on the placement of quan­
tization levels. The quantization step A is constant, so the levels are distributed 
equally over the whole dynamic range as in Fig. 2.1, or the quantization levels are 
distributed non-uniformly across the range. [7] Professional audio devices utilize 
A D C with only linear quantization, meaning constant quantization step. Non-linear 
quantization is known from telecommunications applications. The resolution for 
devices is 16, 20, and 24 bit. [6] According to formula (2.1), a quantized signal 
x.g G WLN is computed: 

where n denotes the sample index and function sgn+(:r) returns 1 for x > 0 and — 1 
for x < 0. [7] 

2.1 Quantization Effect 

(2.1) 
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Fig. 2.1: Quantization error, 8 quantization levels (3 bit) 

In electronic or experimental music, quantization is employed in an effect pro­
cessor called Bitcrush to simulate the sound of the synthesizers and drum machines 
from the past century. Decimating input audio participates in the amount of dis­
tortion of the output signal. Decimating the sample rate and bit-depth input audio 
participates in the amount of distortion of the output signal. [9] 

2.2 Dequantization 

As implied, dequantization removes the unnecessary distortion from the quantized 
signal. In practice, hard declipping is related to dequantization since the principle 
of signal amplitude saturation can be considered a particular type of quantization. 
Dequantization (also called bit depth expansion) deals with a similar problem as the 

of decompressing signals. 

The whole process focuses on the task of restoring the original unknown sig­
nal. This task is nevertheless ill-posed, meanings there are infinitely many possible 
solutions, so additional information for solving this problem is required. Because 
the audio signal has in the time-frequency domain approximately sparse coefficients 
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(sec. 3.2.1), finding the signal with the sparsest coefficients whose samples do not lie 
further than ^ from the closest quantization level may be used for signal restoration. 
[2] Dequantization shares the principle with the hard-declipping algorithm. In the 
case of the hard clipping restoration, the algorithm operates only above the higher 
and lower threshold. Dequantization, on the other hand, within specified intervals. 
Further explanation is provided in the chapter about the soft-decliping approach 
(chap. 3.3). 

In the paper [10], the authors compare different convex and non-convex dequan­
tization approaches by evaluating the results according to the methods described in 
the section 4.1. Testing was performed on uniformly quantized audio samples, with 
comparable improvement results, slightly better in the convex methods involving 
the analysis time-frequency operator. [10] 
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3 Restoration of Clipped Signal 

The concept of declipping means reconstructing a distorted signal, which was limited, 
and getting the most similar signal to the original one before clipping. The goal is 
to get rid of any disturbing components and increase the subjective quality of the 
signal. [11] 

To draw the line between two main modern approaches, the recovery model is 
considered supervised and unsupervised [12]. The supervised concept lies within the 
machine learning, trained on clean audio signals and using the deep neural networks 
(DNNs). Since they are trained on a specific data set, recovering is more specialized. 

Still, most declip approaches are unsupervised or blind and assume predisposition 
of what audio signal should be like. They follow a path of choosing the modeling do­
main (time, analysis or synthesis ...), generic model (autoregressive model, sparsity 
...), model parameters (specified from clipped signal, coefficients and the dictionary 
...), a criterion (links the model parameters and observations to be optimized, e.g., 
clipped part consistency, reliable part consistency), suitable algorithm (optimizes 
the model criterion) with a fixed number of iterations or conditions checking the 
convergence. This overview layout was defined for the evaluation of declipping 
methods in [12]. 

During past decades, many different approaches to signal declipping have been 
widely discussed. The linear prediction offers another solution. Every discrete sam­
ple after signal discretization is expressed as a linear combination of previous sam­
ples; thus, the sample is predictable. [11] Recently, algorithms have achieved the 
best results using the principle of sparse signal representations. The various methods 
in audio hard-declipping are summed up briefly in the following section. 

3.1 Hard-Declipping Methods 

Restoring a Clipped Signal is the first mention of audio de-clip, which is dated back 
to 1991 when authors Abel and Smith recovered the clipped signal by solving a 
convex feasibility problem based on the assumption that the underlying signal has 
limited bandwidth relative to the sampling rate (i.e., that it was oversampled) [13] 
[14]. 

During the subsequent years, an article called Statistical model-based approaches 
to audio restoration and analysis involved a statistical model approach where missing 
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samples were replaced by the most probable ones based on the parametric signal 
model and Bayesian statistical signal processing. [11] 

The first study, which included the sparse signal representation and was tested on 
general audio signals (not only speech and ultrasonic signals as in previous studies), 
was released in the article A constrained matching pursuit approach to audio declip-
ping. The clipped samples were known beforehand, and the signal was processed 
in frames (each with a length of 64 ms and 75% overlap) and then utilized by an 
O L A method (Overlap-add approach). The modified O M P (Constrained Orthogo­
nal Matching Pursuit) algorithm with D C T dictionary found the sparsest solution. 
The results of SNR (Signal to Noise Ratio) showed average signal improvement 
compared to the distorted signal of around 4.5 dB. [15] 

Recovering a Clipped Signal in Sparseland by authors Weinsten and Wakin also 
followed sparse representation using l\ minimization and D F T dictionary in algo­
rithm called Reweighted l\ minimization with clipping constraints where the sparse 
vector is weighted in every iteration. The article also incorporated another algorithm 
with less computation time dubbed Trivial Pursuit with Clipping Constraints. Using 
DFT, the Fourier spectrum coefficients are found, and their values are determined 
from the original spectrum by the least-squares method. If the original signal's 
sparsity k is known beforehand, the signal is reconstructed by founding the biggest 
harmonics of the saturated signal. If the number of k is unknown, the greedy algo­
rithm is utilized for the iterative reconstructing of harmonic components. [14] 

The study that incorporated for the first time the psycho-acoustic model was by 
B. Defraene and authors [16] is called Declipping of Audio Signals Using Perceptual 
Compressed Sensing. Finding missing components is done by l\ minimization and 
D F T dictionary. The frames are N = 512, and the Hanning window is used instead 
of the square one as in previous approaches. The aspects of human hearing, such as 
the absolute hearing threshold and masking, were employed in a single parameter 
instantaneous global masking threshold. The algorithm then computes this param­
eter by the standard of MPEG-1 from each processed frame and is later utilized 
in the minimization task. The results were evaluated by SNR, P E A Q , ODG, and 
subjective tests. 

In 2014, Audio Declipping with Social Sparsity approach by [17] implemented so­
cial sparsity. To limit the set of feasible solutions, the authors used the hinge squared 
function and solved the optimization task by the relaxed algorithm (F)ISTA. A tight 
Gabor frame based on a Hanning window with a length of 1024 samples was used 
like a dictionary. Also, the authors compare within the article various shrinkage op-
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erators (respectively L Lasso, W G L Windowed Group-Lasso, E W Empirical Weiner 
and P E W Persistent Empirical Weiner), and the results were presented on various 
audio and speech signals using SNR comparison. 

Audio Declipping via Nonnegative Matrix Factorization (NMF) from 2015 deals 
simultaneously with audio inpainting (missing samples in digital audio signals) and 
declipping. The method's principle is combining of the algorithm G E M (generalized 
expectation-maximization) used for model parameter estimation and Wiener filtra­
tion estimating signal reconstruction by model parameters. The algorithm runs 50 
iterations and uses STFT computed via sin windows with 50% overlap and frame 
length of 1024 samples. The results showed reconstruction comparable with the 
Social Sparsity approach [11]. 

The authors (among others S. Kitic, the author of previous researches) present 
A - S P A D E and S-SPADE (SParse Audio DEclipper) in their article Sparsity and 
Cosparsity for Audio Declipping: A Flexible Non-convex Approach. After proper 
adaptation of parameters, the introduced algorithm is suitable for both synthesis 
and analysis data model. Models are identical in case their dictionaries are square 
and inverse matrices. Also, the analysis model requires a tight frame as a dictionary. 
Testing proved S-SPADE among A-SPADE, Social Sparsity, and C-IHT the most 
satisfactory algorithm with the longest computation time (due to the iterative pro­
jection). On the other hand, A - S P A D E was the fastest of the tested algorithms with 
just a bit worse results. [18] [11] As a dictionary was used D G T (Discrete Gabor 
Transform) with the Hamming window (length of 1024 samples and 75% overlap). 

A recent study [19] provides the solution for the de-clipping problem using a 
dictionary learning algorithm. While other approaches in the sparsity-based field use 
fixed dictionaries (DCT or Gabor), dictionary learning has already proved previously 
successful results in audio inpainting or denoising. [19] 

The latest successful finding has been described in a paper [20] from 2022, where 
the authors enhanced the sparsity-based inconsistent audio de-clipping method (SS 
P E W - namely Social Sparsity with Persistent Empirical Wiener shrinkage) through 
cross-fading the signal's region. Research challenges the best performing de-clipper 
N M F , specifically in calculation time, is around 15 times shorter. 
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3.2 l\ Optimization 

The following section will outline the basics of sparse signal representation, sparse 
synthesis, proximal operators, the corresponding algorithm, and other necessary 
resources for solving the de-clipping problem. The latter mentioned were taken 
from the hard declip implementation, and are also necessary for utilizing the thesis's 
primary focus; the soft declip. 

Since there are an infinite number of solutions, the declipping task is ill-conditioned. 
Moreover, it leans on further signal information. Sparsity-based approaches approx­
imate the signal by a few synthesis coefficients. Finding the sparse solutions is 
NP-hard, so a suitable approximation algorithm is used (greedy-type, convex mini­
mization, or a combination of both). [2] The thesis focuses on a convex formulation 
of declipping in an STFT/Gabor domain. 

For a better explanation of the following sections, the symbols, and abbreviations 
are described. 

The scalar values are represented by italic letters (such as m, N), vectors are 
described by bold letters - x, y and considered as column vectors in which the first 
element's index starts with number one, i.e., y = y2, y3, •••?/„]• The total number 
of elements of the vector or a set is marked as an absolute value, e.g., |x| = {—6, 0, 
2, 7} = 4. [21] 

Capital bold letters stand for matrices (A, B) and c italic letters with an overline 
for complex numbers. 

A vector support is defined by supp(x) = {i\xi ^ 0} [21] as a set of indexes where 
the vector contains nonzero coefficients, i.e. for a signal x = [xi, ..., x8] — [0, 0, 3, 
0, 4, 2, 0, 5] is supp(x) = {3, 5, 6, 8} and |supp(x)| = 4. [21] The vector space is 
labeled by double struck capital letters (C) and is considered as a nonempty space. 

3.2.1 Signals Sparsity 

While searching for the sparsest solution, finding the vector with the lowest number 
of nonzero coefficients is required [22]. 

For solving the following equations, the norm of a vector needs to be defined. The 
vector's norm is a real function that describes a nonzero vector's value by assigning 
the positive real number to the vector. The £ p norm of a vector x e is defined 
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as (3.1) and marked by ||x|| [22] 

( 
N 

) P s.t. 1 < p < oo, ||x||o := |supp(x)|. (3.1) 
.i=i 

The best-known form of the £ p norm is probably the Euclidean norm for p — 2, 
defining euclidean spaces. If p = 1, £i norm (in formulas indicated by ||• ||i) represents 
the complete sum of a vector's absolute coefficient's values. The definition of £Q norm 
and || • 11o is the total number of vector's nonzero coefficients. This thesis uses l\ 
norm as a part of convex optimization methods (chap. 3.2.2). A definition of a 
/c-sparse vector has the most of the k nonzero coefficients, so the vector x e is 
then /c-sparse if meeting the condition: [21] 

3.2.2 Frames and sparse synthesis 

A discrete signal can be expressed as a product of the coordinate vector and a 
matrix. The process of converting the signal to this form is called transformation 
(i.e., Fourier transform), where the matrix is then the transformation matrix. 

A sparse synthesis applies that A x = y, the y is any signal, A is the transforma­
tion matrix, and x is an assumed sparse vector of coordinates. It is called synthesis 
because the resulting vector y is formed from various components. [11] [18] 

The vectors are usually finite in signal processing; thus, linear algebra is used. 
The vector space V is a non-empty set consisting of basic elements; vectors. The 
vector x e V can be expressed by a linear combination of a generator system E 
(a subset of vector space V) , where E is a matrix with generating vector within 
each column. The vector x can have multiple representations since there are more 
generating vectors than the dimension of the vector space. If the vector x can be 
expressed in its generator system E as 

then the scalars q represent the coordinates of x in E , corresponding with the 
previously mentioned synthesis. 

x||o < k. (3.2) 

x = ciei + c 2 e 2 + ... + c„e. •n Ec (3.3) 
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The basis is described as the smallest set of vectors whose linear combination 
can express any vector of V - the minimal generator system E . The dimension of V 
equals the number of its basis vectors [11] 

If other vectors are added to the basis of V , the subset of generators is created, 
which is bigger than the V dimension. Therefore generators are linearly dependent 
and still may represent any vector in vector space V . Such a set is called the frame. 
Frames provide a redundant, stable way of representing a signal. [23] [11] 

For a redundant generator system in V to form a frame, the set of vectors has 
to follow a formula (3.4) and a condition 0 < A < B < oo, where A and B defines 
frame bounds and frame elements F& are called atoms. 

If bounds are A — B — 1, a Parseval tight frame is achieved, which is used later 
in the implementation part of this thesis. 

The Fourier Transform shows the spectrum characteristic of the whole signal at 
once. This fact does not correspond with the human hearing's ability to differentiate 
spectral changes concerning time. The usage of a Short Time Fourier Transform 
(STFT) is then essential; thus, Gabor analysis is used. A time-frequency analysis in 
L 2 (M) is based on translation and modulation operators. Based on operators, the 
Gabor analysis represents the function of a vector space / G L2(R) as a superposition 
of translated and modulated versions of windowed, generator, fixed-function g G 
L 2 (M), also known as a window function (Gaussian window for infinite time range 
signal and Hann's, Hamming or Blackman's window is most frequently for STFT 
usage). A set of such functions is called the Gabor system. (3.5) [11] 

The system with function g G L 2 (M) and the translation and modulation param­
eters a and b create the frame in the space of L 2 (M) . [22] 

The form of displaying Gabor coefficients is the spectrogram, the frequency-time 
dependency graph with sufficient color bar denoting the values of the coefficients. 

(3.4) 

(3.5) 
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3.2.3 Convex Optimization Methods 

Finding the sparsest solution requires defining the minimization task. In a system 
of linear equations Ax = y, the vector x is the wanted, an appropriate solution, and 
a representation of the vector y. If x contains the least nonzero coefficients, it is 
the sparsest one. The vector y e C m is a known result, and A e c m x A r j s a matrix 
called a dictionary, where m < N. Then the problem is specified by: 

min ||x||o s.t. Ax = y. (3.6) 

In practice, statement (3.6) is inefficient because every x that meets the condition 
of Ax = y is called feasible solution - feasible representation of the vector y, meaning 
based on the linear algebra that under the above conditions on the matrix A, there 
is an infinite number of feasible solutions that form an affine space. [22] Therefore 
a compromise between computational accuracy and time was found. The processed 
signal is noisy and causes a deviation S while the computation of Ax = y. In most 
cases, p is considered p — 2. [21]. Because the £o norm is not convex, it can not be 
used for convex optimization methods and proximal algorithms. The closest convex 
optimal solution is choosing the l\ norm instead. If the noise is present in the signal, 
the relaxation in the statement (3.6) is considered. The norm || • | | 0 is replaced by 
II-Hi (3-7). 

min ||x||i s.t. 11Ax — y112 < S (3.7) 

In practice, this solution does not always provide the sparsest results, but in most 
cases, the solution of £Q - minimization and l\ - minimization is almost identical. 
[22] 

The hard clipped signal's restoration problem needs to be solved by convex for­
mulation. For declipping itself, the sparse synthesis in Short-Time Fourier Trans­
form (STFT or also known as Gabor) is used. If it is assumed that discrete signal y 
was hard clipped, then y can be separated into several parts - to the samples above 
threshold On, the value of On is assigned, and the samples below #L are substituted by 
#L- Any sample between On and #L is called reliable because it corresponds with the 
sample of the original non-clipped signal of the same index. The signal y is sparse 
and formally written by y ~ Gc as a product of the linear Gabor synthesis operator 
G and a vector c. After employing the l\ norm, the optimization hard-declipping 
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problem is formulated as [2]: 

argmin| |c | | i subject to < 
M R G C = M R V c , reliable samples. 
M H G C > #H, samples clipped over the threshold. 
M L G C < OL, samples clipped below the threshold. 

(3.8 

M R , M H , and M L represent masks: projection operators of clipped and reliable 
samples. Denoting the sets R, H, and L according to the three conditions of (3.8) 
as: 

R = {c\MKGc = M R y c } , H = { c | M H G c > 9H}, L = {c\MLGc < 9L}. (3.9) 

then masks indexes of a set R U H U L are selected. The formulation (3.8) then 
searches for approximately sparse coefficients and generate signal consistent with 
the time-domain constraints [2] 

However, there is no known way of effectively solving this (3.8) mathematical 
problem. Therefore after rewriting it in an unconstrained form (3.10) (where the 
variable may take any value, unlimited form), this problem can be sufficiently solved 
by a proximal splitting algorithm. 

arg min Held + tR(c) + tH(c) + tL(c) (3.10) 
cec^ 

Indicator function IQ is formally written as 3.11: 

. 0 if x e C 
ic(v = { , . , , _ 3.11 

+oo if C, 

where LQ values are 0 if the function's argument belongs to the set C and +oo if the 
argument lies outside the set C, where C C M.N. 

For solving (3.10) by proper proximal algorithm, the proximal operator of a 
convex function / for every x G M>N is defined as a solution of minimization task: 

1 2 

prox(x) = a rgmin/ (x) + - ||x — y||2 . (3.12) 
/ 

The essential proximal operators are, in our case, operators for the l\ norm of a 
vector and for set's indicator function ic. 
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The proximal operator for t\ of a vector x, formally written as A | | x | | i , is soft 
thresholding, where the threshold is A > 0 and in the case of symmetrical clipping 
is defined as soft,\(x). Soft thresholding takes the vector argument and performs 
elementwise mapping [2] [11]. 

{ x — A, if x < A, 
0, z / x e ( A , A ) , (3.13) 
x — A, if x > A. 

The proximal operator of the indicator function ^ (prox^x) is then the projec­
tion onto set C proj c (x). The projection of the C set then moves x ^ C to the 
closest place from C and x e C [11]. 

3.2.4 Douglas - Rachford Algorithm 

The unconstrained form can include many optimization problems where the sum of 
convex functions is minimized. The basic unconstrained form is the following (3.14): 

minimize fi{x) + ... + fm (x), (3.14) 
xeRN 

where fi, • • • fm are convex functions of MN. 

The declipping task may be solved upon other approaches by a forward-backward 
algorithm that deals with the task in (3.15). 

m in r / i (x) + f2 (x) (3.15) 

Both functions should be convex, and one of these is differentiable with a (3-
Lipschitz continuous gradient V /2 [24]. If meeting the latter conditions, it is possible 
to find at least one solution for 7 e (0, +00) in (3.16) 

x = prox 7 / l (x - 7 V / 2 ( x ) ) . (3.16) 

If the formula (3.16) iterates for values of the step-size parameter 7 „ , the 
forward-backward splitting algorithm converges to the exact solutions (3.17), where 
prox refers to the backward (implicit) algorithm's step with function f\ and x n — 
7/1 
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7 n V / 2 ( x „ ) to the forward (explicit) gradient step with function / 2 of the algorithm. 
[24] 

x n + i = prox 7 / l (x w - 7 n V / 2 (x w ) )_ (3.17) 
backward step forward step 

In the Douglas-Rachford algorithm, the proximal operator compensates for the 
disadvantage of having one of these functions differentiable. Its solution for 7 G 
(0,+oo) is described by conditions: [24] [11] 

X = P r ° W

 ( . , (3.18) prox 7 / 2 y = prox 7 / l (2prox 7 / 2 y - yj . 

3.2.5 Solution using the Douglas-Rachford algorithm 

If the equation 3.10 is rewritten as a sum of two convex functions, the unconstrained 
form is as follows (3.19) and can be solved by a proximal, iterative algorithm (DR). 
It produces a sequence of vectors that converges to the minimizer of the sum of these 
two functions. 

argmin | |c | | i + tc(c) (3.19) 

To solve this problem accordingly, the projection onto a set C should be per­
formed, where set C gathers all the coefficients from M R , M H , and M L into a single 
set (3.9). For practical application, bounding vectors b L and b H G M M of the set C 
need to be defined, where i denotes the sample index number. (3.20) [11]. 

f Yi for ieMR (Yiforie M R 

( b H ) i = j 0 H forie M H ( b L ) i =1 00 forieMH (3.20) 
{ -00 for ieML { 9L for ie M L 

If, e.g., the j-positioned sample is reliable (does not lie within the saturated 
masks), it will appear in vectors b L and b n in j-position, so (DL)J = (Jon)j = Yj [H]-
Using those vectors is feasible for the determining C set as C = { c | b L < Gc < b H } 
which matches with possible solutions C [2] [11]. Finally, projection onto set C is 
described in (3.21): 
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projc(c) = c + G + (proj [ b L i b H ] (Gc) - Gc), 

where projj b L b H j denotes: 

(3.21) 

Pr°J[b
L
,bH](y) = min(max(bL,y),bH). (3.22) 

After applying all of the statements mentioned above, the final Douglas-Rachford 
algorithm is performed in (Alg. 1) , where the convergence speed is specified by 
parameter 7 [2]. 

Algorithm 1 Douglas-Rachford algorithm 
Input: set starting point c^°\ Set parameters A = 1 , 7 > 0. 

1: for i — 0,1,... do 
2: = projccW 

3 . c(i+i) = c ( i ) + A(soft7(2c ( i ) - c « ) - c ( i )) 

4: end for 
5: return c^+1^ 

3.3 Soft Declipping 

Studies regarding soft-declipping are not as common as hard declipping approaches. 
There are various reasons: hard-clipping is way more destructive than soft-clip and 
may occur on more occasions; because it is relatively easy to revert the signal through 
the compensation curve since the characteristic of the nonlinear distortion is known. 
Furthermore, that soft clip is often required as an artistic tool in audio processing, 
so de-clipping here is not necessary. 

Why is soft-declip needed then? It may compensate for real-world devices (such 
as amplifiers or magnetic recorders) that worsen the audio signal quality and original 
intent during recording, storing, or reproducing due to operating outside its linear 
range. [25] There are already studies and patents which focus on a compensation 
of the audio reproduction system in terms of time, frequency, phase, and transient 
response based on impulse responses and dealt with by modified DSP filters as well 
as additional analog electronic circuits. However, only a few of them mention this 
task as a soft-declip. 
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Previous attempts are studied in the work of F.R. Avila, and collective [4] where 
authors propose a fully blind soft declipper for audio and speech signals where the 
characteristic curve is unknown. Their primary focus was on the signal's spectrum 
domain instead of the near sparsity of the signal. The weights are calculated solely 
from the distorted signal based on the weighted l\ norm, so it is suitable for various 
real-world usages and device simulations. The signal is separated into blocks, pro­
cessed by D C T , and weighted and normalized by its energy. Weighting makes the 
nonlinear distortion more salient. Later the gradient-based optimization method is 
employed. [4] 

Their other article [25] deals with the same task using the constrained weighted 
Least Squares for computing the exponential weighting function. Assumptions be­
hind this approach were also spectrum profile based on observations as follows; 
salient frequency components of the original signal also remain in the degraded sig­
nal spectrum, the proposed weightening function behaves similarly to the inverse of 
the original signal, distortion increases the magnitudes of low-energy regions of the 
original spectrum, and weightening D C T components roughly measure the amount 
of nonlinear distortion in the original signal. [25] Results of the proposed weight­
ening cost function show that ^2-norm of distorted and original audio signal detects 
nonlinear distortion 

3.3.1 Problem formulation 

As was previously explained in the first chapters, the soft clipping transfer function 
does not break at the upper and lower threshold points as in hard clipping. A 
transition part around these points is relatively smoother. Since it is not this thesis 
purpose to be able to declip any soft-clipped signal, instead, it focuses on a signal 
restoration where the characteristic curve of the clipping function is known. 

In the ideal case, the easiest way to de-clip is approximating by the inverse 
function of the saturation function / _ 1 (y) , where x is the original signal and y is 
the distorted signal. Since the nonlinear function applied on signal y is known, then 

r 1 (y ) = x. 

However, due to the quantization, it leads to inaccurate results. Under normal 
circumstances, the uniform constant-step quantization, as was mentioned in chapter 
2.1, is used in professional audio devices. After employing a soft-clip function that 
multiplies and pushes a higher number of samples to the limit values, more samples 
end up in the clipping section. Any obtained sample after quantization is rounded to 
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the closest quantization level. If any quantization level is denoted as k, where i is the 
quantization level number and A is the quantization step, then the original signal 
magnitude x at a given time t belonged within the interval of y G {k — ̂ , k + ^)• 
Since the knee (amplitude curve of a soft clip) belongs under just a few quantization 
levels on y-axis, the equal interval on the input x-axis (number of affected samples) 
also increases depending on the shape of a nonlinear curve. 

As implied, the soft-declipping task combines the inversion of the nonlinear char­
acteristic curve with signal dequantization. Formally the problem is formulated: 

argnun HcHx s.t. f-\k{n)) < (Gc)n < f-\li+1(n)). (3.23) 

This task is a convex problem where G denotes linear Gabor synthesis operator 
and c the sparse vector. The sparse coefficients are sought and meet the condition, 
where the n-th sample (product of synthesis) is between the interval / _ 1 (/ j(n)) and 
/ _ 1 ( / i + i (n ) ) . The more the nonlinear curve reaches its maximum values and the 
flatter it is, the more the intervals widen as seen in Fig. 3.1. Towards zero, they 
are almost identical; the intervals will hardly change and be the same size as the 
original signal. The n-th synthesis sample is conditioned by the quantization levels 
below and above. 

3.3.2 Projection on feasible solutions 

The condition 3.23 is utilized in the projection to satisfy those synthesis samples 
and apply the DR algorithm iteratively. Once the quantization levels with according 
decision levels b H b L are established and recomputed by the inverse saturation 
function f~l, (only if the saturation function is invertible) they determine limits for 
each n-th sample of y. (3.24) 

(b H )„ = r 1 (y(n) - |) , (b L )„ = r 1 (y(n) + (3.24) 

In discrete processing, if the saturation function is not invertible, it is possible 
to invert at least the part of the function that is invertible by defining conditions. 
If the original signal and the saturated signal are known, a vector of values can be 
obtained which can be used to recalculate the inverse signal from the original data. 
The remaining samples that could not be obtained in this way can be calculated 
by interpolation or by adding a constant. These solutions have been utilized in the 
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Clipping curve - tape saturation 
1 I 1 1 1 1 1 1 1 

Fig. 3.1: Inversed intervals 

programming of the thesis, specifically for the reconstruction of the overdrive effect 
and the tube distortion. 
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4 Implementation 

This thesis aims to create a database of differently saturated signals for testing the 
implementation of soft clip restoration. Saturation simulations and signal restora­
tion scripts were created in the computing environment M A T L A B R2021a. For the 
successful run of the scripts, downloading The Large Time-Frequency Analysis Tool­
box (LTFAT) is necessary. [26] First, the used evaluation methods will be presented 
to introduce the necessary abbreviations, then the software solution itself will be 
explained 4.2. 

4.1 Evaluation Methods 

There are several ways of evaluating audio signal quality. The objective methods 
deliver exact unbiased numerical results of the audio signal. Meanwhile, the subjec­
tive methods directed to the group of the instructed listeners show the end-user's 
relative preferences. The SDR and P E M O - Q evaluation (objective methods) and 
M U S H R A (subjective method) were selected to measure the signal's parameters and 
audible differences between the original, clipped, and restored signal. 

4.1.1 SDR 

Signal to distortion ratio (SDR) is the most commonly used metric for testing and 
comparing the similarity of given signals. SDR is equivalent to the signal-to-noise 
ratio (SNR), which describes the noise and signal level ratio. The SDR is computed 
using (4.1) and denotes the ratio of the original signal u and the clipped or restored 
signal v. The unit is expressed in dB, and the bigger the value, the more similar 
signals are. [22] 

Hull2 

SDR(u,v) = 101og10 " ' |,2[dB] (4.1) 
l l u — v l h 

By computing the difference A S D R of the SDRs of the clipped signal and recon­
structed signal (4.2), where y is the original signal, y c denotes clipped signal, and 
yR indicates restored signal, the approximate level of reconstruction is achieved. 

A S D R = SDR(y, yc) - SDR(y, yR) (4.2) 
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4.1.2 PEMO-Q 

Since 1998 a tool for an objective method used for the measurement of the signal 
quality called Perceptual evaluation of audio quality (PEAQ) became ITU-R recom­
mendation BS.1387. Its purpose was mainly focused on subjective quality ratings of 
low-bit-rate coded audio signals. Around 2006 the new method P E M O - Q (full name 
Perception Model - Quality Assessment) was built on a modified and expanded ver­
sion of P E A Q . The method focuses on predicting the perceived quality degradation 
of wide-band audio signals to that of a reference signal and uses a psycho-acoustically 
validated auditory processing model. [22] [27] 

The Matlab implementation of PEMO-Q1 includes the function audioqual [28] 
that is called within the code for the testing purpose. Output arguments are P S M 
(Perceptual Similarity Measure) - overall correlation between internal representa­
tions, PSMt {2nd overall objective quality measure), O D G (Objective Difference 
Grade), and P S M inst (vector of instantaneous objective quality). The O D G scale 
(tab. 4.1) has its origin in ITU-R and indicates a worsening of the objective signal 
quality. 

0 imperceptible 
-1 perceptible but not annoying 
-2 slightly annoying 
-3 annoying 
-4 very annoying 

Tab. 4.1: O D G Scale Evaluation 

4.1.3 MUSHRA 

A commonly used method for subjective comparisons of the signal quality is a lis­
tening test M U S H R A [Multi Stimulus test with Hidden Reference and Anchor). 
The M U S H R A method shows the respondent maximum of 15 stimuli, where the 
known reference, hidden reference (original signal), hidden anchor (clipped signal), 
and tested samples lie. The listener chooses the numbers from the interval 0 (bad) 
- 100 (excellent), and absolute results are then averaged. [29] The advantage of 
this method is that respondents can assess even very subtle differences between test 
samples. 

available for academic use and research until 2021 from the website: https://www.hoertech. 
de/de/f-e-produkte/pemo-q.html 
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4.2 Program Solution 

The primary part of this program is the file soft_declip.m, in which the restoration 
algorithm takes place. This algorithm is based on the hard declipping and dequan-
tization algorithm from researches [2] and [7]. Other function files complement the 
main script. The script folder is detected and added with all subfolders to the path 
at the very start of the soft de-clipping script. After adding the LTFAT library 
to the same folder or changing the M A T L A B directory, the command l t f atstart 
loads the LTFAT toolbox. The choice of either plotting the results or not is given 
right before the sample in .wav format is loaded using function audioread, with the 
sampling frequency fs = 44.1 kHz and bit depth of 16 bit. Samples were further 
normalized, and their length was specified in seconds. 

4.2.1 Generated Signal 

A simple signal was tested for the first test run of the restoration script soft declip.m. 
It consists of a sum of three sinusoidal signals with frequencies: 600 Hz, 1 kHz, and 
1.1 kHz and Gaussian noise. This reconstruction is shown in Fig.:4.3. 

4.2.2 Audio Samples 

The tested database consists of various audio signals (which are found in an attach­
ment to this document). Furthermore, the usage and variability of the proposed 
restoring approach are demonstrated on them. 

The audio database contains various types of short samples, consisting of speech, 
recordings of solo instruments, as well as more complex sounds, specifically: male 
and female voice (l_male_speech.wav1, 2 female speech.wav1), a recording of dif­
ferent kinds of solo instruments (in relation to the exciter), acoustic guitar playing 
chords (3_guitar.wav1), a flute solo (4_flute.wav1), a saxophone solo (5 saxophone. 
wav 1), a violin melody (6_violin.wav 1), orchestral part (7_orchestra.wav2), a verse 
of a pop song (8 pop band.wav3) and electronic-music pattern (9 electronic.wav3). 
A l l the audio samples mentioned above were shortened to a 10 seconds duration. 
This diverse choice mainly aimed to test different types of audio that could be sub­
jected to soft-clip in real-life situations. 

1audio samples are available from the paid platform Splice.com  
2 Author: Xinematix, available from: https://freesound.Org/s/519185/  
3 rights belong to the author of this thesis and Eponine band 

43 

http://Splice.com
https://freesound.Org/s/519185/


4.2.3 Signal clipping 

The soft-clip function switching occurs after sample loading. These functions are 
saturation effects of overdrive (code solution from [3], p. 125), distortion, and simu­
lations of tube saturation (code solution from [3], p. 122) and tape saturation which 
were introduced in the theoretical part (sections 1.3.1, 1.3.2, 1.3.5, and 1.3.6). It is 
possible to adjust function parameters, such as the amount of the gain, or working 
point (tube simulation). It is recommended to match the input distortion of the 
tested audio samples to specific SDR values. This specific value was set between 
3-5 dB. The applied parameters of the given distortion functions for the tested audio 
files are shown in the table 4.2. The dependence curves of these parameters on the 
SDR are shown in the graphs of figure 4.1. 

Distortion 

-10 ' ' ' ' 
2 3 4 5 

gain [-] 

Overdrive 
10 i 1 1 — 

-1 o ' 1 1 1 

1 1.5 2 

threshold [-] 

5 10 15 20 2 4 6 

gain [-] gain [-] 

Male Speech 
Female Speech 

^ — Guitar 

Saxophone 

Orchestra 
Pop Band 
Electro 

Fig. 4.1: SDR of clipped samples in relation with function parameters 

After clipping the signal, the inverse de-clipping function is defined according to 
the clip type and later called by the function handle. 
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gain male female guit. flute sax violin orch. pop electro 
distortion 2.1 2.2 2.2 4.5 2.4 2.2 2.3 3 3.5 

overdrive 0.8 0.8 0.8 1.3 0.8 0.8 0.8 0.9 1 

tube 20 15 6.5 15 15 6 6.7 5 5 

tape 3 3.5 3 7.5 3.5 3.5 3.3 4.5 5 

Tab. 4.2: Gain parameters of tested audio samples 

4.2.4 Signal Restoration 

Before the de-clipping, the clipped signal undergoes further quantization, set to 
8 bit. This value was determined based on listening and reconstruction results using 
P E M O - Q . Using quantization with a higher number of bits, it was not possible 
to distinguish the original audio sample from the reconstructed one and its O D G 
values showed results around zero. The decision levels b H b L are computed from 
the quantized signal and the inverse clipping function. 

The DGTreal frame is constructed with the help of LTFAT function frame, with 
the Hanning window of length n = 1025 and 50% overlap, which is employed in 
frame analysis operator - f rana. The parameter ite determines the number of DR 
algorithm's iterations, which is set by default to 1000, primarily due to the time 
efficiency The Fig 4.2 shows that even with a higher number of iterations, the 
algorithm's convergence is mostly unchanged. 

I 4700 
o 

800 1000 1200 1400 1600 1800 2000 
Iterations [-1 

Fig. 4.2: l\ norm in time/iterations 
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Every iteration includes in the first step the project ion. m, where the decision 
levels are compared with the product of frame synthesis operator f rsyn, and affected 
samples are detected and mapped. The second step uses the proximal operator of 
soft thresholding. In the final iteration step, the objective function of l\ norm 
of coefficients c is computed, a counter adds +1, and moves to the next iteration. 
The algorithm output coefficients are transformed back to the time domain by f rsyn 
function. After a successful run of the algorithm, the reconstructed signal is received, 
and its waveform is plotted in the time and frequency domain using the function 
spectrogram. 

Time Frequency 

1 1.01 1.02 1.03 1.04 1.05 1Q2 10 3 104 

lime [s] 1 [Hz] 

Fig. 4.3: Artificial signal restoration in time and frequency domain 

The picture Fig. 4.3 shows the artificial signal consisting of 3 sinusoidal signals 
and Gaussian noise where distortion clipping with the parameter gain = 5 was 
applied. The green signal represents the result of the restoration algorithm that 
is almost identical to the original signal in both the time and frequency domain. 
Time-domain displays clipped waveform without the amplification factor. 

4.3 ASDR Evaluation Results 

Figure 4.4 compares the improvement by A S D R across all tested samples and dis­
tortion types. Overall, A S D R evaluates the reconstruction in negative values, i.e. 
as deterioration. To calculate a meaningful A S D R where improvement is considered 
only using Douglas Rachford algorithm reconstruction method, the formula 4.1 is 
used, where the original signal is u and v is the inversion of clipped and quantized 
signal. In 4.2, the subtraction of the inverse signal from the reconstructed signal is 
handled in a similar way. The worse A S D R results are due to the l\ norm in the 
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algorithm itself, which inherently chooses smaller values in the search for solutions 
in the specified conditions, hence they do not imply worse sound quality. Improve­
ments were achieved in the flute sample for the three types of distortion around 
+ 1 dB, a slight improvement in the pop band and electro samples when recon­
structed from overdrive, and female speech reached +3dB when restored from tube 
distortion. In general, the other samples held around values of —3 dB and —4 dB 
in the case of distortion and tape. The worst performance of the reconstruction 
from tube distortion was therefore in the case of complex sounds such as saxophone 
pop band and electro, where there is the largest data loss due to a hard asymmetric 
clipping. 

ASDR 

Fig. 4.4: A S D R evaluation of reconstructed samples 

4.4 PEMO-Q Evaluation Results 

The following graph 4.5 shows quite different results than the previous evaluation. 
The data is plotted as A O D G , in the same way as A S D R . This is the difference 
in overall quality between the reconstruction and the inversion of the original dis-
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torted and quantized signal. The reconstruction from distortion and tape saturation 
(positive values between 1-3 A O D G ) achieved the qualitative improvement for most 
samples. In contrast, the reconstruction from overdrive for male speech, guitar, 
saxophone and orchestra achieved a deterioration in objective quality. 

AODG 

9? 9? 
GjS> 

I distortion 
I overdrive 
jtube 
I tape 

Fig. 4.5: A O D G improvement of reconstructed samples 

4.5 MUSHRA Evaluation Results 

A total of 15 respondents aged 23-34 years volunteered to perform the test on 
one day in a quiet room with closed headphones (headphones: Ultrasone 840, 
soundcard: Steinberg UR242, PC: HP ProBook 450 G2). The test was created 
using the webMUSHRA package [30] and the following Fig.4.6 with the help of 
multiple_boxplot.m function [31]. Respondents mostly successfully detected the 
hidden anchor and the reference. Overall, there were minor differences between the 
four reconstructed clipping types. Distortion clipping was chosen for reconstruction 
using Izotope R X and was rated worse than reconstruction using the DR algorithm. 
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MUSHRA Reconstruction Evaluation 

overdrived tubed taped izotoped reference anchor 

Fig. 4.6: MUSHRA evaluation results 



4.6 Comparison with Commercial Software (Izotope 
RX) 

This work aims to compare the reconstruction results with commercially available 
and widely used de-clipping software, Izotope R X . The same test samples as in the 
previous section were used in SDR, P E M O - Q and M U S H R A comparisons. 

The latest available Izotope R X 9 is the repair bundle for restoring audio. It 
consists of various tools for de-reverbing, de-noising, de-humming, and de-clipping. 
De-Clip repairs, according to the online documentation [32], the digital and analog 
clipping artifacts, either if its hard-clipping from A / D converters or over-saturated 
tape. The program structure requires automatically or manually setting the thresh­
old over a waveform displayed in a histogram meter where the threshold can be 
independently adjusted to positive and negative amplitude. The values above and 
below the threshold interpolate the waveform to a more "rounded" shape. In cases 
of severe distortion, where De-Clip is not sufficient, the manual recommends using 
modules Deconstruct or Spectral Repair. [32] A significant advantage of this soft­
ware in contrast to the proposed algorithm is the real-time reconstruction, where 
the tested five-second samples were rendered almost instantaneously. 

Threshold [dB] Quality 

• • IUI. M • 

Fig. 4.7: DeClip by Izotope R X (printscreen) 
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Based on both types of evaluation, the results of the Izotope reconstruction 
seem to be worse. It is important to note that Izotope does not know the inverse 
of the conversion characteristics, and as can be seen in the first plot of Figure 
4.8, the results come out worse for soft clipping functions such as distortion and 
tape saturation than for semi-hard clipped functions such as overdrive and tube. 
As outlined in the paragraph above, Izotope detects the threshold according to 
the histogram and reconstructs the data from that level, which probably cannot 
be fully replicated in the case of the distortion and tape saturation functions. In 
the case of P E M O - Q evaluation, the type of signal is more important than the 
reconstruction from a given distortion type. For the complex sounds of the flute, 
orchestra, pop band and electro audio samples, there was an objective degradation 
from —1 to —3.5 A O D G . The remaining samples were more or less undetected. 
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Fig. 4.8: DeClip restoration evaluation using A S D R and A O D G 
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Conclusion 

This work describes and observes the effect of reconstructing audio soft-clipped 
signals. The de-clipping uses the Douglas-Rachford algorithm previously used to 
restore hard-clipped signals with modified projection depending on the degree of 
quantization and type of distortion. 

The first section describes an introduction to saturation and selected tested clip­
ping functions, specifically simulations of overdrive and distortion effects, tube am­
plifier and magnetic tape distortion. The second part outlines the quantization 
issues that affect the soft-declipping task. The third section summarizes the various 
declipping approaches and describes the sparse signal theory and the de-clipping 
algorithm used. The fourth section covers the implementation performed in M A T -
L A B using the LTFAT toolbox. The de-clipping of the selected test audio samples 
was evaluated by both objective and subjective methods; A S D R , the P E M O - Q psy-
choacoustic model and the M U S H R A listening quality test. A comparison with the 
commercially available software Izotope R X was also performed. 

The comparisons showed reasonably good results mainly in the P E M O - Q evalu­
ation using A O D G (improving by approximately 1-3 grades of the O D G scale in the 
case of distortion effect, tube saturation and tape saturation) and M U S H R A (where 
reconstructed samples were often confused with the reference by the listeners) and 
less well in terms of the A S D R . Unlike the reconstruction using the commercial 
software DeClipper from Izotope R X , the type of audio sample (be it speech, solo 
instrument or complex music sample) does not matter much. Izotope generally per­
formed worse than the studied soft-declipping algorithm, mostly in the evaluation 
using A S D R for distortion effect and tape saturation as well as in the listening test. 
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Symbols and abbreviations 

DSP digital signal processing 

A D C analog-digital converter 

T H D Total Harmonic Distortion 

R M S Root Mean Square 

D A W Digital Audio Workstation 

F F T Fast Fourier Transform 

S T F T Short Time Fourier Transform 

D F T Discrete Fourier Transform 

D C T Discrete Cosine Transform 

D G T Discrete Gabor Transform 

D R Douglas - Rachford 

L T F A T The Large Time-Frequency Analysis Toolbox 

SNR Signal to Noise Ratio 

SDR Signal to Distortion Ratio 

P E A Q Perceptual evaluation of audio quality 

P E M O - Q Perception Model - Quality Assessment 

O D G Objective Difference Grade 

M U S H R A Multi Stimulus test with Hidden Reference and Anchor 
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A Content of the electronic attachment 

Tested in M A T L A B R2021a. LTFAT toolbox [26] and P E M O - Q [28] audioqual.m 
required. 

/ root 
tested audio samples _ audio 

l_male_speech.wav 

2_female_speech.wav 

3_guitar.wav 

4_flute.wav 

5_saxophone.wav 

6_violin.wav 

7_orchestra.wav 

8_pop_band.wav 

9_electro.wav 

mfiles 

distortion.m 

inverse_overdrive. m 

overdrive.m 

projection.m 

quantizations 

soft_declip.m 

tape_saturation.m 

tube_simulation.m 

.mushra results.xlsx .... 

.m scripts 

main file 

table 
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