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ABSTRACT

This thesis presents a variety of soft clipping simulations and their respective de-clipping
functions. A restoration method uses a Douglas-Rachford algorithm (already verified
for hard de-clip). The algorithm is extended by inverse functions and simultaneous de-
quantization is proposed. The simulations are applied to audio samples, and the proposal
is tested in the computing environment MATLAB. A restored signal is later evaluated
by objective and subjective methods.

KEYWORDS
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ABSTRAKT

Prace se zabyva simulacemi a naslednou rekonstrukci mékké saturace, u které dochazi
pri zpracovani audio signali. Metoda obnovy vyuziva jako vychozi Douglas-Rachfordiv
algoritmus (jiz ovéFeny pro tvrdy ofez signalu). Algoritmus je rozsiten o inverzni funkce
a de-kvantizaci. Simulace jsou aplikovany na realnych zvukovych datech a navrh je tes-
tovan ve vypocetnim prostfedi MATLAB. Obnoveny signal je vyhodnocen za pomoci
objektivnich a subjektivnich metod.
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ROZSIRENY ABSTRAKT

Diplomova prace se zabyva rekonstrukci mékce saturovanych audio signalt. V prvni
kapitole teoretické ¢asti se nachazi struény tvod do problematiky saturace, jejiho
pivodu a vlivu na audio signaly. Dale se rozebiraji znamé typy mékkych saturaci,
kde se konkrétné jedna o efekty Distortion, Overdrive, simulaci elektronkového ze-
silovace a zkresleni zaznamem magnetického pasku. Prislusné simulace téchto typu
zkresleni jsou matematicky definovany za pomoci nelinedrnich prevodnich charak-
teristik a jejich vliv na signal v ¢asové i kmitoctové oblasti je rozebiran. Je zde téz
zminéno a znazornéno zkresleni, pri kterém dochéazi pri dynamické tpravé signélu a
vyuziti téchto zkresleni v hudebni produkei.

Druha kapitola se zabyva kvantizaci, k jakému zkresleni ve spektru dochézi pri
kvantizaci signélu a jakou chybu vnasi A/D prevod do problematiky rekonstrukce
meékce saturovanych signalii. Pojem de-kvantizace je zaveden a vysvétlena souvislost
mezi problematikou de-saturace a de-kvantizace.

Tteti kapitola priblizuje rizné piistupy k rekonstruci saturovanych signali z
predeslych vyzkumt. Vénuje se restauraci tvrdé saturovanych signalti a popisuje
zéklady metod vyuzivajici fidké reprezentace signali. Definuji se pojmy jako syn-
teticky model rekonstrukce, baze, raimce a vyuziti STFT /Gaborovy analyzy. Nésle-
duje formulace minimalizacni tlohy pro tvrdou de-saturaci. Vychozimi poznatky pro
mékkou de-saturaci jsou pristupy pouzité pro tvrdou de-saturaci, konkrétné vyuziti
Douglas-Rachfordova dopredné zpétného algoritmu. Pro meékkou de-saturaci byla
upravena projekce na mnozinu pripustnych feseni. Narozdil od tvrdé de-saturace,
kde za pomoci rozdéleni signalu do ,masek®, tedy vektort vzorkt, které byly satur-
ovany a které jsou vérohodné a neménné, v pripadé meékké de-saturace algoritmus
minimalizuje pocet Feseni v rameci intervali, ve kterych byl ptivodni saturovany signél
kvantovan. Na tyto intervaly jsou aplikovany zaroven inverzni saturacni funkce.

Ctvrta kapitola popisuje implementaci vise zminéného feSeni. Saturace a algo-
ritmus je nasimulovan ve vypocetnim prostiedi MATLAB za pomoci funkci z LTFAT
toolboxu. Funkénost byla nejdrive otestovana na simulovanych signalech a poté se
testovaly realné audio data. Porovnavalo se celkem 9 audio vzorkt, sestavajicich z
lidské Teci, s6lovych nastroji a hudebnich ukazek. Vsechny tyto hudebni vzorky byly
saturovany ¢tyrmi typy saturaci, které byly uvedeny v prvni ¢asti. Rekonstrukce byla
posuzovana objektivnimi i subjektivnimi metodikami, tedy vyhodnocenim zlepseni
pomoci ASDR oproti saturovanému signéalu, psychoakustického modelu PEMO-Q a
subjektivnim poslechovym testem MUSHRA s patnacti respondenty.

Lze tici, ze rekonstrukce byla tispésna u vsech typu testovanych vzorku, at uz se
jednalo o solové nastroje ¢i komplexnéjsi hudebni nahravky. I pii relativné nizkém
nakvantovani (8 bit) a slySitelné mékké saturaci audio signali bylo zlepseni dle

vydnoceni PEMO-Q AODG objektivni stupnice prumérné o 1-3. Vyhodnoceni



dle ASDR pro vétsinu audio ukazek se pohybovalo v zapornych hodnotach okolo
—2 dB Respondenti subjektivniho ohodnoceni MUSHRA zaznamenali mirné zmeény
mezi rekonstruovanymi vzorky a referenci, ale u nékterych rekonstruovanych vzorkt
dochézelo i k jejich zaméné s referenci.

V porovnani s komercéné vyuzivanym de-saturacnim software DeClipper Izotope
RX dosahovala testovana metoda rekonstrukce lepsich vysledki, jak pfi vyhodnoceni
za pomoci ASDR, PEMO-Q tak i u respondentt ovSem za cenu vyssiho vypocetniho

casu.
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Introduction

Nowadays, digital signal processing (DSP) is a necessary part of most engineering
fields. When it comes to signal processing of telecommunications, sonar, radar,
digital image processing, data compression, video coding, audio, or speech, DSP
becomes the primary tool in most of these operations. The mathematical operations
and principles throughout all mentioned fields can be similar. This thesis presents
the importance and the uses of DSP in the last area, audio and speech signals
processing.

Although the applications of DSP vary based on specific sectors, it has already
surpassed and proven many advantages over analog processing. Nevertheless, there
are several occasions where processed signals may lose essential parts of their data.
Data loss may occur while converting the signal from analog to digital (ADC), for
example, by choosing a low sampling frequency and underestimating the required
bit-depth and saturation.

This thesis deals with signal saturation, which typically occurs while recording
music, where the input analog signal exceeds the maximum limit of a recording
device. If this excess went unnoticed during recording and the soundtrack was not
re-recorded, the limited signal cannot be used to work further, as it would cause
issues in future processing, mixing, or mastering. This issue also affects musicians
who may not want or cannot repeat the recorded part destroyed by unwanted sat-
uration. During recording, conversion, and reproduction, the signal may undergo
countless processes, causing nonlinear distortions, and the original idea is more or
less deformed. Soft de-clipping serves its purpose of compensating of the real-world
devices (such as amplifiers or magnetic recorders) that worsen and impact the audio
signal’s quality and original intent.

The first chapter explains the origin, impact, and different types of clipping
and how they affect audio signal and saturation as a part of artistic expression.
Such saturated signals are used in later chapters by the restoration algorithm. The
second chapter explains the effect of quantization. In the third chapter, different
approaches and ideas behind de-clipping are described. The fourth chapter sums up
the MATLAB implementation, results, and various comparative methods.
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1 Saturation

1.1 Origin

A signal is considered saturated when a maximum power level of a certain device is
exceeded. The output reaches the design limit of the device and cannot be produced
above this level, also known as a threshold. Any samples exceeding this threshold
are cut off, and their data is effectively lost.

Data loss manifests visually in the time domain (as mentioned threshold cutoff)
as well as in the frequency domain by producing higher harmonic frequencies. These
are the perceivable result of harmonic distortion. The spectrum form depends on the
exact type of saturation, as it will be shown and described in the following sections
(1.3.1, 1.3.2, 1.3.5 and 1.3.6) on the simplest shape of a signal: sinusoidal signal.

In the analog world, many sources can cause saturation. Every analog device or
electrical circuit consists of components, each of which has its operation point and
follows respective nonlinear transfer functions specified by their physical limitation.
Saturation occurs when the signal is outside a specific operational range. The output
signal of analog devices is limited by their power supply and cannot be amplified
further. The same applies to integrated circuits or vacuum tubes where the tube
parameters limit the number of transmitted electrons. Clipping also can occur while
the transistor is pushed to its maximum amplitude. Transistors are often driven
into hard saturation to be used as switches [1]. When the input signal is amplified
enough, the output takes a square shape where, in most cases, only two values exist.

In the digital domain, the emergence of hard clips depends on the efficiency of
ADC. Input voltage value V is given and described as a maximum that can be
converted due to a dynamic range of a digital system [2]. Based on the number
of bits, the amount of levels within this range is computed from this value. Every
discrete part of a signal exceeding the threshold is converted into a single number.

Thus hard clipping is performed.

1.2 Nonlinear Processing

1.2.1 Definition

A short introduction to nonlinear processing is required since all the clipping func-
tions from chap. (1.3) belong to this section.

Every signal processing device, either analog or digital that does not satisfy the
condition of linearity, is considered as nonlinear. A system in 1.1 where the input

is z(n) and y(n) denotes an output is a linear system [3].

13



x(n) = Azy(n) + Bxa(n) — y(n) = Ayi(n) + Byz(n) (1.1)

When the input z(n) of such a system is a continuous sinusoidal signal with

known frequency f; and amplitude A 1.2:

x(n) = Asin(2n f1Tn), (1.2)

the corresponding output y(n) is also a sinusoid (1.3) where the amplitude A is
modified as A, = |H(f1)| - A by the magnitude response of the transfer function
|H(f1)| and the phase response ¢our = ¢sn + ZH(f1).

y(n) = Apur sSin(2m f1Tn + Pour) (1.3)

On the other hand, the output of the nonlinear system is rather expressed as a

sum of sinusoids, as demonstrated in Fig. 1.1: [3]

y(n) = Ag+ Arsin(2rnf1Tn) + Assin(2 - 27 f1Tn) + ... + Ay sin(N - 27 f1Tn). (1.4)

Linear output | Spectrum
1
D D
© ©
= 0 = 0.5
-1
0
0 1 2 3 4 5 0 5000 10000
Time (s) %107 Frequency (Hz)
Nonlinear output 0 Spectrum
1
-10
o
g 2 20
=0 ="
=
-30
) [ |
-40
0 1 2 3 4 5 0 5000 10000
Time (s) x107° Frequency (Hz)

Fig. 1.1: Comparison of the linear and the nonlinear system

In music, nonlinear processing takes the form of dynamic range controllers (mainly
controlling the signal envelope where the generation of higher harmonics should be

as low as possible), strong harmonic distortions (guitar amps, effect processors) and

14



modulation effects (such as chorus, vibrato), and many others. Exciters and en-
hancers are signal processing devices creating higher harmonics and mixing them

with the original signal improving its timbre.

1.2.2 Harmonics

The previously shown nonlinear system was an example of hard-clipping distortion.
However, this type of distortion can only be a small part of distortion products which
occur in standard musical signals. The total harmonic distortion (THD) is one of
many ways of indicating nonlinearity. It is defined as the , square root of the ratio
of the sum of powers of all harmonic frequencies above the fundamental frequency

to the power of all harmonic frequencies including the fundamental frequency*. ([3],
p. 102) (1.5)

A3+ A3+ .+ A%
A3+ A%+ .+ A%

THD = J (1.5)

If the input signal consists of the sum of harmonics of a fundamental frequency fy,
the other partial distortion products are also in a row of fundamental’s harmonics.
The output signal then contains harmonics of amplitudes unrelated to the input
amplitudes.

In case input contains non-harmonic partials, the system adds a series of har-
monics based on each input partial. The interference between these series generates
other respective higher harmonics called intermodulation products. Such products
are mostly unwelcome because they can blur the signal or provide new harmonic
parts which are not precisely in tune. If this happens, the input signal has to undergo

proper filtering. [3]

1.2.3 Characteristic Curve

DSP is mainly built on linear time-invariant systems, but commonly used audio
reproduction systems and devices have several nonlinearities such as valve amplifiers,
tape recorders, or loudspeakers. Such nonlinearities are simulated and modeled by
suitable approaches, represented by nonlinear systems without a memory. Static
nonlinear curves are directly used on the input signal. The characteristic curves
are then simple graphic displays realized as an output to input relation. [3] Since
the input signal’s bandwidth after nonlinear system processing may exceed half the
sampling frequency (thus, the Nyquist theorem is not fulfilled), the input should be
first over-sampled to precede any aliasing distortion. [3]

15



1.3 Clipping types

Clipping is categorized into two main kinds; hard and soft. It is possible to closely
define types of saturation based on their respective characteristic curves. Further
distinguishing is either as symmetrical or asymmetrical, meaning that the clipped
amplitudes are the same in the positive and negative part of the signal (in geometric
terms: centrally symmetrical), or only one of those amplitudes is saturated. The

part around y = 0 is close to or equal to linearity.

1.3.1 Hard Clipping

As mentioned earlier, hard clipping is the most common form of saturation. The
amplitude is cut at a certain point, and magnitudes above the specified threshold
are assigned with a single maximum value. Thus, peak information is eliminated,
and the waveform over the threshold is flattened and clipped. The system’s output
is determined by condition, where the threshold is 6 (1.6).

9, x(n) >0,
y(n) =< z(n), —0 <z(n) <6, (1.6)
—0, x(n) < -0

As shown in (Fig. 1.2), both amplitudes of the nonlinear characteristic curve
are clipped symmetrically, the middle part is linear, and the spectrum produces
high order harmonics, thus a characteristic aggressive, digitally distorted sound is

produced.

Time domain

Time (s) %1073
Characteristic curve 0 FFT
1
0.5 = -10
z
> 0 m-ZO
©
-1 -40
-1 0 1 0 5000 10000
X Frequency (Hz)

Fig. 1.2: Representation of the hard clipped signal, § = 0.8
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1.3.2 Soft Clipping

In contrast to a hard clip, a soft clip saturates the amplitude as a smooth curve
and rounds its shape before the amplitude reaches the threshold. [3] This smooth
amplitude reduction can typically be found in analog systems such as vacuum tube
amplifiers or magnetic tapes. Soft clipping favours the human ear more than hard
clipping and produces odd-order harmonics. The major difference between the sym-
metrical soft clipping and hard clipping is that higher harmonics appear to have
much greater magnitudes in the case of the hard clip. The amount of data loss is
adequate for the amount of compression caused by soft clipping. Moreover, signals
saturated by soft clipping are more likely to be reconstructed if their characteris-
tic curves are known. Since no part of the signal was completely lost, reversion is

possible by applying a memory-less inverting polynomial of a finite degree. [4]

1.3.3 Distortion

The effect of distortion can be simulated according to [3] by the function:

f(xz) =sgn(x) (1 — e"gm') : (1.7)

Together with an overdrive effect represents a processing device that alters the
sound by increasing the input gain g. Multiplying the input z by a higher number
g leads to higher output distortion. Here, in Fig. 1.3 the gain is 4.

Time domain

Time (s) x1073
Characteristic curve 0 FFT
1
0.5 . -10
m
Tz
> 0 o -20
3]
=
0.5 -30 ‘
A 40 ‘
-1 -0.5 0 0.5 1 0 5000 10000
X Frequency (Hz)

Fig. 1.3: Distortion effect for g = 4
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1.3.4 Overdrive

The modulation function (1.8) is an overdrive effect precisely, which saturates the
signal as following:

29z, 0<z<i,
—(9—30x)2
fla)=q HEHE, p<a<, (1.8)
2
1, ggxgoo.

Conditions split static characteristic y = f(x) into intervals, where up to % of the

input z the linear region is multiplied by 2, between % to % of the input values, the

slight distortion is already produced, and above % is output set to 1 [3], as is seen

in Fig. 1.4, meanings the overdrive function combines both soft and hard clipping.

Time domain

0 1 2 3 4 5
Time (s) x1073
Characteristic curve 0 FFT
1
0.5 =z 10
z
> 0 o -20
(O
-0.5 = .30
'1 _40 |
-1 0 1 0 5000 10000
X Frequency (Hz)

Fig. 1.4: Overdrive effect for ¢ = 1

1.3.5 Tube Saturation

Valves or vacuum tubes are active components used for amplifying. Despite being
replaced by semiconductors, they still play an essential part in hi-fi. The tube satu-
ration was used as a representative of an asymmetrical clipping. The characteristic
curve of tubes varies from the type, and should consider the valve amplifier circuit,
speaker and cabinet influences. One of the many simulations can be given by 1.9
where () is a work point that controls the linearity of the transfer function for low
input levels, and d is the amount of distortion. [3]

z—Q Q
flz) = { a1 1-eda: Q#0,z#Q, (1.9)

it g z=Q.
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As seen in Fig. 1.5, the negative input values are mostly cut off, and positive
values are approximately linear. The signal looks destroyed at first, and there are
visible changes in its spectrum, even though this signal modification is not as dis-
turbing to a listener as the symmetrical hard clip. In comparison to the previous
figures, the appearance of order higher harmonic is more significant here. After us-
ing this function, proper lowpass and highpass filtration is recommended to achieve

a more authentic tube sound.

Time domain
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Fig. 1.5: Tube simulation for ) = —0.2, d = 8

1.3.6 Tape Saturation

Magnetic tapes produce soft, symmetrical clipping, which is almost unnoticeable to
an average listener, yet it adds harmonics to the final sound, specifically third and
other odd-order harmonics. The gain factor is generated based on the characteristic
curve of the input level and is used for compressing signals, while for low amplitudes,

it works as an amplifier. The tapes gradually progress into distortion. [3] [5]
As an example of the tape clipping, an arctan function was used for simulation

1.10. The parameter g specifies the gain.[5]

f(x) = 27 - arctan(gx) (1.10)

19



Time domain

1 L
()}
©
L 0
1k
0 1 2 3 4 5
Lo Time (s) «1073
Characteristic curve 0 FFT
1
0.5 o -10
z
> 0 m-20
(]
-0.5 = 30
-1 .40 ‘ \
-1 0 1 0 5000 10000
X Frequency (Hz)

Fig. 1.6: Tape simulation for g = 4
1.4 Dynamic range processing

Dynamics processing affects the signal dynamics and perceptually modifies its loud-
ness and timbre. The audio signal dynamics are processed by amplifying devices
where the analysis of the input signal controls the gain, primarily by compressors,
expanders, limiters, and noise gates. Nevertheless, these effects will only be men-
tioned briefly as the thesis mainly focuses on static characteristics, mapping the

instantaneous input to the instantaneous output.

The signal envelope is followed by amplitude detection. Either peak values of the
signal or an averaged constant providing RMS value by measuring the signal’s power
are detected. [3] The dynamic behavior is influenced by parameters such as attack
time and release time for the peak measurement approach and averaging time for
RMS approach. Based on these parameters, signal is then adjusted by a smoothing
filter and gain controller. The main signal flow is delayed due to any possible delay
in a side branch.

x(n) xin-d) yin
O » Delay —}(_ f 0
L) FEAKIRMS  lyyl  static curve [ Filter -
detection
fin)

Fig. 1.7: Dynamics processing diagram (redrawn from [3], p. 106)
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1.4.1 Compressor

The compressor’s main function is to reduce the signal’s dynamic range above the
threshold, which increases loudness without affecting the signal’s maximum level

output [6]. Compared to the limiter, the compressor does not use the infinite slope.

In the dB scale, the output can be expressed as a sum of input and gain. The gain
is 0 dB up to a certain threshold (here —30 dB). Above this level, the characteristic
follows a compression ratio. The ratio R specifies a relation between input level and
output level, which is defined by delta ¥ = % - AX. The slope factor S may be
defined instead of the ratio. (Fig. 1.8)

X[dB]
-60 -50 -40 -30 -20 -10 0
|
! -10
threshold = - 30 dB } s
(R) ratio = - 3/1 i . } 220
1 TR
-------- | -30
| Y[dB]
-40
(S) slope factor=1-1/R=2/3 -50
-60

Fig. 1.8: Static characteristic of a compressor (redrawn from [3], p. 108)

Compressors generally affect high levels or loud parts according to their charac-
teristic curve. Quiet parts are not modified, but due to reducing level peaks and
the dynamic range they seem to be much louder and stand out from the signal way

more than before processing.

1.4.2 Expander

The expander is a system that increases the signal dynamics by attenuating the
signal under a certain threshold; the rest remains unchanged. As in the compressor’s
case, the expander typically employs RMS level detectors of the input level with an
averaging time [3] [6]. The ratio is usually applied, e.g., as 1:3, which denotes an

upward-type expander amplifying input over the threshold by the value of 3. At
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a downward-type expander 3:1, the input below the threshold would be decreased

accordingly.

The following figure 1.9 demonstrates the possible impact of the compressor and
expander effect on a saxophone sample in both time and spectral domain while using
parameters: compressor (threshold —25 dB, ratio 10, knee width 5 dB); expander
(threshold —40 dB, ratio 10, attack time 0.01 s, release time 0.02 s). These functions
are found within the MATLAB Audio Toolbox.
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Fig. 1.9: Comparison of the compressor and expander

1.5 Sound and Musical Use

During the past decades, saturation effects have influenced many musical genres
heavily. As guitar amplifiers were evolving, characteristic sounds were generated.
Analog pedal guitar devices were developed based on saturated valve amps. The
first ones were based on the products manufactured by world-known brands such
as Mesa Boogie, Vox, and Marshall. [3] These effects were transferred into the

digital world with the signal processing implementation. Typically distorted sounds
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of asymmetrical clipping can be heard in Fuzz effects, while Distortion resembles
the most severe form of clipping. Soft clipping is mainly utilized in Overdrive effects
and in all analog device simulations, which are commonly employed in the form of

plug-ins: additional software used in mixing and mastering DAWs.
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2 Quantization

Since signals in DSP have to be processed using finite arithmetic, the analog signal

is first digitized, where quantization is an essential part of the process.

The signal is first sampled by the sampling frequency, which has to fulfill the
Nyquist-Shannon theorem’s condition to get the discrete digital signal (a sequence
of numbers). The sampling frequencies are usually 32 kHz (based on the 15 kHz
bandwidth of analog stereophonic FM broadcast), 44.1 kHz (CD standard estab-
lished by the video recorders), 48 kHz (suitable for the video processing), and their
respective integer multipliers (such as 88.2 kHz, 96 kHz, and 195 kHz). [6]

The range of finite possible values depends on the ADC’s bit-depth to achieve
the digital signal. The closest level from this range is assigned for each sample using
the rounded signal value. [7] [8] The reproduced signal is never identical to the
previous analog signals since the quantized signal is always distorted and affects

DSP approaches.

2.1 Quantization Effect

The example of a quantized signal is shown in Fig. 2.1, where a low bit depth was
simulated. For w-bit representation, there are 2% of levels within the specified range
where the quantization step is A = 2=~ Quantization error was computed by

subtraction of quantized and original signal.

There are two different ways of quantization based on the placement of quan-
tization levels. The quantization step A is constant, so the levels are distributed
equally over the whole dynamic range as in Fig. 2.1, or the quantization levels are
distributed non-uniformly across the range. [7] Professional audio devices utilize
ADC with only linear quantization, meaning constant quantization step. Non-linear
quantization is known from telecommunications applications. The resolution for
devices is 16, 20, and 24 bit. [6] According to formula (2.1), a quantized signal

x? € RV is computed:

ay £ 1
(x), = sgn+(xn)A<{ A J + 5), (2.1)

where n denotes the sample index and function sgn™(z) returns 1 for z > 0 and —1
for z < 0. [7]
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Fig. 2.1: Quantization error, 8 quantization levels (3 bit)

In electronic or experimental music, quantization is employed in an effect pro-
cessor called Bitcrush to simulate the sound of the synthesizers and drum machines
from the past century. Decimating input audio participates in the amount of dis-
tortion of the output signal. Decimating the sample rate and bit-depth input audio

participates in the amount of distortion of the output signal. [9]

2.2 Dequantization

As implied, dequantization removes the unnecessary distortion from the quantized
signal. In practice, hard declipping is related to dequantization since the principle
of signal amplitude saturation can be considered a particular type of quantization.
Dequantization (also called bit depth expansion) deals with a similar problem as the

area of decompressing signals.

The whole process focuses on the task of restoring the original unknown sig-
nal. This task is nevertheless ill-posed, meanings there are infinitely many possible
solutions, so additional information for solving this problem is required. Because

the audio signal has in the time-frequency domain approximately sparse coefficients
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(sec. 3.2.1), finding the signal with the sparsest coefficients whose samples do not lie
further than % from the closest quantization level may be used for signal restoration.
[2] Dequantization shares the principle with the hard-declipping algorithm. In the
case of the hard clipping restoration, the algorithm operates only above the higher
and lower threshold. Dequantization, on the other hand, within specified intervals.
Further explanation is provided in the chapter about the soft-decliping approach
(chap. 3.3).

In the paper [10], the authors compare different convex and non-convex dequan-
tization approaches by evaluating the results according to the methods described in
the section 4.1. Testing was performed on uniformly quantized audio samples, with
comparable improvement results, slightly better in the convex methods involving

the analysis time-frequency operator. [10]
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3 Restoration of Clipped Signal

The concept of declipping means reconstructing a distorted signal, which was limited,
and getting the most similar signal to the original one before clipping. The goal is
to get rid of any disturbing components and increase the subjective quality of the
signal. [11]

To draw the line between two main modern approaches, the recovery model is
considered supervised and unsupervised [12]. The supervised concept lies within the
machine learning, trained on clean audio signals and using the deep neural networks

(DNNs). Since they are trained on a specific data set, recovering is more specialized.

Still, most declip approaches are unsupervised or blind and assume predisposition
of what audio signal should be like. They follow a path of choosing the modeling do-
main (time, analysis or synthesis ...), generic model (autoregressive model, sparsity
...), model parameters (specified from clipped signal, coefficients and the dictionary
...), a criterion (links the model parameters and observations to be optimized, e.g.,
clipped part consistency, reliable part consistency.), suitable algorithm (optimizes
the model criterion) with a fixed number of iterations or conditions checking the
convergence. This overview layout was defined for the evaluation of declipping
methods in [12].

During past decades, many different approaches to signal declipping have been
widely discussed. The linear prediction offers another solution. Every discrete sam-
ple after signal discretization is expressed as a linear combination of previous sam-
ples; thus, the sample is predictable. [11] Recently, algorithms have achieved the
best results using the principle of sparse signal representations. The various methods

in audio hard-declipping are summed up briefly in the following section.

3.1 Hard-Declipping Methods

Restoring a Clipped Signal is the first mention of audio de-clip, which is dated back
to 1991 when authors Abel and Smith recovered the clipped signal by solving a
convex feasibility problem based on the assumption that the underlying signal has

limited bandwidth relative to the sampling rate (i.e., that it was oversampled) [13]
[14].

During the subsequent years, an article called Statistical model-based approaches

to audio restoration and analysis involved a statistical model approach where missing
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samples were replaced by the most probable ones based on the parametric signal

model and Bayesian statistical signal processing. [11]

The first study, which included the sparse signal representation and was tested on
general audio signals (not only speech and ultrasonic signals as in previous studies),
was released in the article A constrained matching pursuit approach to audio declip-
ping. The clipped samples were known beforehand, and the signal was processed
in frames (each with a length of 64 ms and 75% overlap) and then utilized by an
OLA method (Overlap-add approach). The modified OMP (Constrained Orthogo-
nal Matching Pursuit) algorithm with DCT dictionary found the sparsest solution.
The results of SNR (Signal to Noise Ratio) showed average signal improvement
compared to the distorted signal of around 4.5 dB. [15]

Recovering a Clipped Signal in Sparseland by authors Weinsten and Wakin also
followed sparse representation using ¢; minimization and DFT dictionary in algo-
rithm called Reweighted ¢1 minimization with clipping constraints where the sparse
vector is weighted in every iteration. The article also incorporated another algorithm
with less computation time dubbed Trivial Pursuit with Clipping Constraints. Using
DFT, the Fourier spectrum coefficients are found, and their values are determined
from the original spectrum by the least-squares method. If the original signal’s
sparsity k is known beforehand, the signal is reconstructed by founding the biggest
harmonics of the saturated signal. If the number of £ is unknown, the greedy algo-

rithm is utilized for the iterative reconstructing of harmonic components. [14]

The study that incorporated for the first time the psycho-acoustic model was by
B. Defraene and authors [16] is called Declipping of Audio Signals Using Perceptual
Compressed Sensing. Finding missing components is done by ¢; minimization and
DFT dictionary. The frames are N = 512, and the Hanning window is used instead
of the square one as in previous approaches. The aspects of human hearing, such as
the absolute hearing threshold and masking, were employed in a single parameter
instantaneous global masking threshold. The algorithm then computes this param-
eter by the standard of MPEG-1 from each processed frame and is later utilized
in the minimization task. The results were evaluated by SNR, PEAQ, ODG, and

subjective tests.

In 2014, Audio Declipping with Social Sparsity approach by [17] implemented so-
ctal sparsity. To limit the set of feasible solutions, the authors used the hinge squared
function and solved the optimization task by the relaxed algorithm (F)ISTA. A tight
Gabor frame based on a Hanning window with a length of 1024 samples was used

like a dictionary. Also, the authors compare within the article various shrinkage op-
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erators (respectively L Lasso, WGL Windowed Group-Lasso, EW Empirical Weiner
and PEW Persistent Empirical Weiner), and the results were presented on various

audio and speech signals using SNR comparison.

Audio Declipping via Nonnegative Matriz Factorization (NMF) from 2015 deals
simultaneously with audio inpainting (missing samples in digital audio signals) and
declipping. The method’s principle is combining of the algorithm GEM (generalized
expectation-maximization) used for model parameter estimation and Wiener filtra-
tion estimating signal reconstruction by model parameters. The algorithm runs 50
iterations and uses STFT computed via sin windows with 50% overlap and frame
length of 1024 samples. The results showed reconstruction comparable with the

Social Sparsity approach [11].

The authors (among others S. Kiti¢, the author of previous researches) present
A-SPADE and S-SPADE (SParse Audio DEclipper) in their article Sparsity and
Cosparsity for Audio Declipping: A Flexible Non-convexr Approach. After proper
adaptation of parameters, the introduced algorithm is suitable for both synthesis
and analysis data model. Models are identical in case their dictionaries are square
and inverse matrices. Also, the analysis model requires a tight frame as a dictionary.
Testing proved S-SPADE among A-SPADE, Social Sparsity, and C-IHT the most
satisfactory algorithm with the longest computation time (due to the iterative pro-
jection). On the other hand, A-SPADE was the fastest of the tested algorithms with
just a bit worse results. [18] [11] As a dictionary was used DGT (Discrete Gabor
Transform) with the Hamming window (length of 1024 samples and 75% overlap).

A recent study [19] provides the solution for the de-clipping problem using a
dictionary learning algorithm. While other approaches in the sparsity-based field use
fixed dictionaries (DCT or Gabor), dictionary learning has already proved previously

successful results in audio inpainting or denoising. [19]

The latest successful finding has been described in a paper [20] from 2022, where
the authors enhanced the sparsity-based inconsistent audio de-clipping method (SS
PEW - namely Social Sparsity with Persistent Empirical Wiener shrinkage) through
cross-fading the signal’s region. Research challenges the best performing de-clipper

NMEF, specifically in calculation time, is around 15 times shorter.
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3.2 /; Optimization

The following section will outline the basics of sparse signal representation, sparse
synthesis, proximal operators, the corresponding algorithm, and other necessary
resources for solving the de-clipping problem. The latter mentioned were taken
from the hard declip implementation, and are also necessary for utilizing the thesis’s

primary focus; the soft declip.

Since there are an infinite number of solutions, the declipping task is ill-conditioned.
Moreover, it leans on further signal information. Sparsity-based approaches approx-
imate the signal by a few synthesis coefficients. Finding the sparse solutions is
NP-hard, so a suitable approximation algorithm is used (greedy-type, convex mini-
mization, or a combination of both). [2] The thesis focuses on a convex formulation

of declipping in an STFT/Gabor domain.

For a better explanation of the following sections, the symbols, and abbreviations

are described.

The scalar values are represented by italic letters (such as m, N), vectors are
described by bold letters - x, y and considered as column vectors in which the first
element’s index starts with number one, i.e., y = [y, s, Y3, ---¥,]. The total number
of elements of the vector or a set is marked as an absolute value, e.g., |x| = {—6, 0,
2,7} = 4. [21]

Capital bold letters stand for matrices (A, B) and ¢ italic letters with an overline

for complex numbers.

A vector support is defined by supp(x) = {i|z; # 0} [21] as a set of indexes where
the vector contains nonzero coefficients, i.e. for a signal x = [zq, ..., 25| = [0, 0, 3,
0,4, 2,0, 5] is supp(x) = {3, b, 6, 8} and |supp(x)| = 4. [21] The vector space is

labeled by double struck capital letters (C) and is considered as a nonempty space.

3.2.1 Signals Sparsity

While searching for the sparsest solution, finding the vector with the lowest number

of nonzero coefficients is required [22].

For solving the following equations, the norm of a vector needs to be defined. The
vector’s norm is a real function that describes a nonzero vector’s value by assigning

the positive real number to the vector. The ¢, norm of a vector x € CV is defined
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as (3.1) and marked by ||x|| [22]

1
p

N
%Iy := <Z IIwiII”> st. 1 < p <00, [[x[o == |supp(x)|. (3.1)
i=1

The best-known form of the ¢, norm is probably the Euclidean norm for p = 2,
defining euclidean spaces. If p = 1, ¢; norm (in formulas indicated by ||-||1) represents
the complete sum of a vector’s absolute coefficient’s values. The definition of £y norm
and || - ||o is the total number of vector’s nonzero coefficients. This thesis uses ¢,
norm as a part of convex optimization methods (chap. 3.2.2). A definition of a
k-sparse vector has the most of the k nonzero coefficients, so the vector x € CV is

then k-sparse if meeting the condition: [21]

[xlo < k. (3.2)

3.2.2 Frames and sparse synthesis

A discrete signal can be expressed as a product of the coordinate vector and a
matrix. The process of converting the signal to this form is called transformation

(i.e., Fourier transform), where the matrix is then the transformation matriz.

A sparse synthesis applies that Ax =y, the y is any signal, A is the transforma-
tion matrix, and x is an assumed sparse vector of coordinates. It is called synthesis

because the resulting vector y is formed from various components. [11] [1§]

The vectors are usually finite in signal processing; thus, linear algebra is used.
The vector space V is a non-empty set consisting of basic elements; vectors. The
vector x € V can be expressed by a linear combination of a generator system E
(a subset of vector space V), where E is a matrix with generating vector within
each column. The vector x can have multiple representations since there are more
generating vectors than the dimension of the vector space. If the vector x can be

expressed in its generator system E as
X = cie1 + ey + ... +cpe, = EC, (33)

then the scalars c¢; represent the coordinates of x in E, corresponding with the

previously mentioned synthesis.
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The basis is described as the smallest set of vectors whose linear combination
can express any vector of V - the minimal generator system E. The dimension of V

equals the number of its basis vectors [11]

If other vectors are added to the basis of V, the subset of generators is created,
which is bigger than the V dimension. Therefore generators are linearly dependent
and still may represent any vector in vector space V. Such a set is called the frame.

Frames provide a redundant, stable way of representing a signal. [23] [11]

For a redundant generator system in V to form a frame, the set of vectors has
to follow a formula (3.4) and a condition 0 < A < B < oo, where A and B defines

frame bounds and frame elements F;. are called atoms.

Allx]* <X (= Fi)l” < Bllx|[*, vx € V (3.4)

kel

If bounds are A = B = 1, a Parseval tight frame is achieved, which is used later

in the implementation part of this thesis.

The Fourier Transform shows the spectrum characteristic of the whole signal at
once. This fact does not correspond with the human hearing’s ability to differentiate
spectral changes concerning time. The usage of a Short Time Fourier Transform
(STFT) is then essential; thus, Gabor analysis is used. A time-frequency analysis in
L?(R) is based on translation and modulation operators. Based on operators, the
Gabor analysis represents the function of a vector space f € L?(R) as a superposition
of translated and modulated versions of windowed, generator, fixed-function g €
L?(R), also known as a window function (Gaussian window for infinite time range
signal and Hann’s, Hamming or Blackman’s window is most frequently for STFT

usage). A set of such functions is called the Gabor system. (3.5) [11]

{ej%mbmg (x — na)} (3.5)

m,ne’l

The system with function g € L?(R) and the translation and modulation param-

eters a and b create the frame in the space of L*(R). [22]

The form of displaying Gabor coefficients is the spectrogram, the frequency-time

dependency graph with sufficient color bar denoting the values of the coefficients.
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3.2.3 Convex Optimization Methods

Finding the sparsest solution requires defining the minimization task. In a system
of linear equations Ax =y, the vector x is the wanted, an appropriate solution, and
a representation of the vector y. If x contains the least nonzero coefficients, it is

meN

the sparsest one. The vector y € C™ is a known result, and A € is a matrix

called a dictionary, where m < N. Then the problem is specified by:

min |[x[lo s.t. Ax =y. (3.6)

In practice, statement (3.6) is inefficient because every x that meets the condition
of Ax =1y is called feasible solution - feasible representation of the vector y, meaning
based on the linear algebra that under the above conditions on the matrix A, there
is an infinite number of feasible solutions that form an affine space. [22] Therefore
a compromise between computational accuracy and time was found. The processed
signal is noisy and causes a deviation ¢ while the computation of Ax = y. In most
cases, p is considered p = 2. [21]. Because the ¢, norm is not convex, it can not be
used for convex optimization methods and proximal algorithms. The closest convex
optimal solution is choosing the ¢; norm instead. If the noise is present in the signal,

the relaxation in the statement (3.6) is considered. The norm || - ||y is replaced by
- [l (3.7).

min [[x|[1 s.t. [[Ax —y|l2 < (3.7)

In practice, this solution does not always provide the sparsest results, but in most
cases, the solution of £y - minimization and ¢; - minimization is almost identical.
[22]

The hard clipped signal’s restoration problem needs to be solved by convex for-
mulation. For declipping itself, the sparse synthesis in Short-Time Fourier Trans-
form (STFT or also known as Gabor) is used. If it is assumed that discrete signal y
was hard clipped, then y can be separated into several parts - to the samples above
threshold 6y, the value of 0y is assigned, and the samples below 6y, are substituted by
01,. Any sample between 0y and 6y, is called reliable because it corresponds with the
sample of the original non-clipped signal of the same index. The signal y is sparse
and formally written by y &= Gc as a product of the linear Gabor synthesis operator

G and a vector c. After employing the ¢; norm, the optimization hard-declipping
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problem is formulated as [2]:

MgrGc = MRy,, reliable samples,

arg min ||c||1 subject to § MuGc > 0y, samples clipped over the threshold,
M,Gce < 6, samples clipped below the threshold.
(3.8)

Mg, My, and Mj, represent masks: projection operators of clipped and reliable
samples. Denoting the sets R, H, and L according to the three conditions of (3.8)
as:

R = {C|MRGC = MRyc}aH = {C|MHGC 2 QH},L = {C|MLGC S QL} (39)

then masks indexes of a set RU H U L are selected. The formulation (3.8) then
searches for approximately sparse coefficients and generate signal consistent with
the time-domain constraints [2]

However, there is no known way of effectively solving this (3.8) mathematical
problem. Therefore after rewriting it in an unconstrained form (3.10) (where the
variable may take any value, unlimited form), this problem can be sufficiently solved

by a proximal splitting algorithm.

arg m(icrllv l|c||1 + tr(c) + th(c) + tr(c) (3.10)
ce

Indicator function ¢ is formally written as 3.11:

+oo if x ¢ C,

where (o values are 0 if the function’s argument belongs to the set C' and 400 if the

1o (x) :{ 0 ifxed (3.11)

argument lies outside the set C, where C' C R¥.

For solving (3.10) by proper proximal algorithm, the proximal operator of a

convex function f for every x € R” is defined as a solution of minimization task:

1
prox(x) = argmin f (x) + = [|x — y|l5. (3.12)
f yERN 2

The essential proximal operators are, in our case, operators for the ¢; norm of a
vector and for set’s indicator function ¢¢.
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The proximal operator for ¢; of a vector x, formally written as A||x||1, is soft
thresholding, where the threshold is A > 0 and in the case of symmetrical clipping
is defined as softy(x). Soft thresholding takes the vector argument and performs

elementwise mapping [2] [11].

X—A if X<,
soft(x) =% 0, if x€ ()N, (3.13)
X—N\ if x>\

The proximal operator of the indicator function tc(prox, x) is then the projec-
tion onto set C' projs(x). The projection of the C set then moves x ¢ C to the
closest place from C and x € C [11].

3.2.4 Douglas - Rachford Algorithm

The unconstrained form can include many optimization problems where the sum of

convex functions is minimized. The basic unconstrained form is the following (3.14):

minimize f1 () + ...+ fim (2), (3.14)

zeRN

where f1,... f,, are convex functions of RY.

The declipping task may be solved upon other approaches by a forward-backward
algorithm that deals with the task in (3.15).

min fy (z) + f2 () (3.15)
z€RN
Both functions should be convex, and one of these is differentiable with a -
Lipschitz continuous gradient V fy [24]. If meeting the latter conditions, it is possible
to find at least one solution for v € (0,+00) in (3.16)

X = prox,, (x — 7YV fa(x)). (3.16)

If the formula (3.16) iterates for values of the step-size parameter =, , the
forward-backward splitting algorithm converges to the exact solutions (3.17), where

prox refers to the backward (implicit) algorithm’s step with function f; and x, —
vh
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YV fa(x,,) to the forward (explicit) gradient step with function f> of the algorithm.
[24]

Xnt1 = ProxX,r (Xpn =V fa(xn)) (3.17)
———
backward step forward step

In the Douglas-Rachford algorithm, the proximal operator compensates for the
disadvantage of having one of these functions differentiable. Its solution for ~ €
(0,+00) is described by conditions: [24] [11]

X = ProX,p¥y

. 5 (3.18)
ProX. r, ¥ = ProX. g ( ProxX.p y — y) .

3.2.5 Solution using the Douglas-Rachford algorithm

If the equation 3.10 is rewritten as a sum of two convex functions, the unconstrained
form is as follows (3.19) and can be solved by a proximal, iterative algorithm (DR).
It produces a sequence of vectors that converges to the minimizer of the sum of these
two functions.

argmin [[c[l; + c(c) (3.19)

To solve this problem accordingly, the projection onto a set C' should be per-
formed, where set C gathers all the coefficients from Mg, My, and M, into a single
set (3.9). For practical application, bounding vectors by, and by € RM of the set C
need to be defined, where ¢ denotes the sample index number. (3.20) [11].

y; fori€ Mg y; forie€ Mg
(bu)i=9 0u forie My (bL)i=q oo forie My (3.20)
—o0o forie M, O, for i€ My,

If, e.g., the j-positioned sample is reliable (does not lie within the saturated
masks), it will appear in vectors by, and by in j-position, so (br.); = (bn); = y; [11].
Using those vectors is feasible for the determining C' set as C' = {c|by, < Gc < by}
which matches with possible solutions C' [2] [11]. Finally, projection onto set C' is
described in (3.21):
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projo(c) = ¢ 4+ G (projy,, by (Ge) — Ge), (3.21)

where projp, p,, denotes:
PIOj[b; by (¥) = min(max(br,y), bu). (3.22)
After applying all of the statements mentioned above, the final Douglas-Rachford

algorithm is performed in (Alg. 1), where the convergence speed is specified by

parameter v [2].

Algorithm 1 Douglas-Rachford algorithm

Input: set starting point ¢(?, Set parameters A = 1,~ > 0.

1: for:=0,1,... do

2 ¢ = projcc(i)

3 ) =c 4 \(soft, (28 — c) — &@)
4: end for

5

. return c(tY

3.3 Soft Declipping

Studies regarding soft-declipping are not as common as hard declipping approaches.
There are various reasons: hard-clipping is way more destructive than soft-clip and
may occur on more occasions; because it is relatively easy to revert the signal through
the compensation curve since the characteristic of the nonlinear distortion is known.
Furthermore, that soft clip is often required as an artistic tool in audio processing,

so de-clipping here is not necessary.

Why is soft-declip needed then? It may compensate for real-world devices (such
as amplifiers or magnetic recorders) that worsen the audio signal quality and original
intent during recording, storing, or reproducing due to operating outside its linear
range. [25] There are already studies and patents which focus on a compensation
of the audio reproduction system in terms of time, frequency, phase, and transient
response based on impulse responses and dealt with by modified DSP filters as well
as additional analog electronic circuits. However, only a few of them mention this

task as a soft-declip.
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Previous attempts are studied in the work of F.R. Avila, and collective [4] where
authors propose a fully blind soft declipper for audio and speech signals where the
characteristic curve is unknown. Their primary focus was on the signal’s spectrum
domain instead of the near sparsity of the signal. The weights are calculated solely
from the distorted signal based on the weighted ¢; norm, so it is suitable for various
real-world usages and device simulations. The signal is separated into blocks, pro-
cessed by DCT, and weighted and normalized by its energy. Weighting makes the
nonlinear distortion more salient. Later the gradient-based optimization method is

employed. [4]

Their other article [25] deals with the same task using the constrained weighted
Least Squares for computing the exponential weighting function. Assumptions be-
hind this approach were also spectrum profile based on observations as follows;
salient frequency components of the original signal also remain in the degraded sig-
nal spectrum, the proposed weightening function behaves similarly to the inverse of
the original signal, distortion increases the magnitudes of low-energy regions of the
original spectrum, and weightening DCT components roughly measure the amount
of nonlinear distortion in the original signal. [25] Results of the proposed weight-
ening cost function show that />-norm of distorted and original audio signal detects

nonlinear distortion

3.3.1 Problem formulation

As was previously explained in the first chapters, the soft clipping transfer function
does not break at the upper and lower threshold points as in hard clipping. A
transition part around these points is relatively smoother. Since it is not this thesis
purpose to be able to declip any soft-clipped signal, instead, it focuses on a signal

restoration where the characteristic curve of the clipping function is known.

In the ideal case, the easiest way to de-clip is approximating by the inverse
function of the saturation function f~!(y), where x is the original signal and y is

the distorted signal. Since the nonlinear function applied on signal y is known, then

[y =x

However, due to the quantization, it leads to inaccurate results. Under normal
circumstances, the uniform constant-step quantization, as was mentioned in chapter
2.1, is used in professional audio devices. After employing a soft-clip function that
multiplies and pushes a higher number of samples to the limit values, more samples

end up in the clipping section. Any obtained sample after quantization is rounded to
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the closest quantization level. If any quantization level is denoted as [;, where ¢ is the
quantization level number and A is the quantization step, then the original signal
magnitude x at a given time t belonged within the interval of y € (I; — %, l; + %>
Since the knee (amplitude curve of a soft clip) belongs under just a few quantization
levels on y-axis, the equal interval on the input x-axis (number of affected samples)

also increases depending on the shape of a nonlinear curve.

As implied, the soft-declipping task combines the inversion of the nonlinear char-

acteristic curve with signal dequantization. Formally the problem is formulated:

argmin [|c[y s.t. f7'(li(n)) < (Ge), < [ (lisa(n)). (3.23)

This task is a convex problem where G denotes linear Gabor synthesis operator
and c the sparse vector. The sparse coefficients are sought and meet the condition,
where the n-th sample (product of synthesis) is between the interval f~!(I;(n)) and
f7'(lix1(n)). The more the nonlinear curve reaches its maximum values and the
flatter it is, the more the intervals widen as seen in Fig. 3.1. Towards zero, they
are almost identical; the intervals will hardly change and be the same size as the
original signal. The n-th synthesis sample is conditioned by the quantization levels

below and above.

3.3.2 Projection on feasible solutions

The condition 3.23 is utilized in the projection to satisfy those synthesis samples
and apply the DR algorithm iteratively. Once the quantization levels with according
decision levels by by, are established and recomputed by the inverse saturation
function f~1, (only if the saturation function is invertible) they determine limits for
each n-th sample of y. (3.24)

=1 (v =5 ) =1 s+ 5) 2

In discrete processing, if the saturation function is not invertible, it is possible
to invert at least the part of the function that is invertible by defining conditions.
If the original signal and the saturated signal are known, a vector of values can be
obtained which can be used to recalculate the inverse signal from the original data.
The remaining samples that could not be obtained in this way can be calculated

by interpolation or by adding a constant. These solutions have been utilized in the
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Fig. 3.1: Inversed intervals

programming of the thesis, specifically for the reconstruction of the overdrive effect
and the tube distortion.
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4 Implementation

This thesis aims to create a database of differently saturated signals for testing the
implementation of soft clip restoration. Saturation simulations and signal restora-
tion scripts were created in the computing environment MATLAB R2021a. For the
successful run of the scripts, downloading The Large Time-Frequency Analysis Tool-
box (LTFAT) is necessary. [26] First, the used evaluation methods will be presented
to introduce the necessary abbreviations, then the software solution itself will be

explained 4.2.

4.1 Evaluation Methods

There are several ways of evaluating audio signal quality. The objective methods
deliver exact unbiased numerical results of the audio signal. Meanwhile, the subjec-
tive methods directed to the group of the instructed listeners show the end-user’s
relative preferences. The SDR and PEMO-Q evaluation (objective methods) and
MUSHRA (subjective method) were selected to measure the signal’s parameters and

audible differences between the original, clipped, and restored signal.

4.1.1 SDR

Signal to distortion ratio (SDR) is the most commonly used metric for testing and
comparing the similarity of given signals. SDR is equivalent to the signal-to-noise
ratio (SNR), which describes the noise and signal level ratio. The SDR is computed
using (4.1) and denotes the ratio of the original signal u and the clipped or restored
signal v. The unit is expressed in dB, and the bigger the value, the more similar

signals are. [22]

2
SDR(u,v) = 1Olog10M[dB] (4.1)

lu —vl3

By computing the difference ASDR of the SDRs of the clipped signal and recon-
structed signal (4.2), where y is the original signal, y,. denotes clipped signal, and

Y indicates restored signal, the approximate level of reconstruction is achieved.
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4.1.2 PEMO-Q

Since 1998 a tool for an objective method used for the measurement of the signal
quality called Perceptual evaluation of audio quality (PEAQ) became ITU-R recom-
mendation BS.1387. Its purpose was mainly focused on subjective quality ratings of
low-bit-rate coded audio signals. Around 2006 the new method PEMO-Q (full name
Perception Model - Quality Assessment) was built on a modified and expanded ver-
sion of PEAQ. The method focuses on predicting the perceived quality degradation
of wide-band audio signals to that of a reference signal and uses a psycho-acoustically
validated auditory processing model. [22] [27]

The Matlab implementation of PEMO-Q" includes the function audioqual [28]
that is called within the code for the testing purpose. Output arguments are PSM
(Perceptual Similarity Measure) - overall correlation between internal representa-
tions, PSMt (27¢ overall objective quality measure), ODG (Objective Difference
Grade), and PSM_inst (vector of instantaneous objective quality). The ODG scale

(tab. 4.1) has its origin in ITU-R and indicates a worsening of the objective signal

quality.
0 imperceptible
-1 | perceptible but not annoying
-2 slightly annoying
-3 annoying
-4 very annoying

Tab. 4.1: ODG Scale Evaluation

4.1.3 MUSHRA

A commonly used method for subjective comparisons of the signal quality is a lis-
tening test MUSHRA (Multi Stimulus test with Hidden Reference and Anchor).
The MUSHRA method shows the respondent maximum of 15 stimuli, where the
known reference, hidden reference (original signal), hidden anchor (clipped signal),
and tested samples lie. The listener chooses the numbers from the interval 0 (bad)
- 100 (excellent), and absolute results are then averaged. [29] The advantage of
this method is that respondents can assess even very subtle differences between test
samples.

Lavailable for academic use and research until 2021 from the website: https://www.hoertech.
de/de/f-e-produkte/pemo-q.html
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4.2 Program Solution

The primary part of this program is the file soft_declip.m, in which the restoration
algorithm takes place. This algorithm is based on the hard declipping and dequan-
tization algorithm from researches [2] and [7]. Other function files complement the
main script. The script folder is detected and added with all subfolders to the path
at the very start of the soft de-clipping script. After adding the LTFAT library
to the same folder or changing the MATLAB directory, the command ltfatstart
loads the LTFAT toolbox. The choice of either plotting the results or not is given
right before the sample in .wav format is loaded using function audioread, with the
sampling frequency f; = 44.1 kHz and bit depth of 16 bit. Samples were further

normalized, and their length was specified in seconds.

4.2.1 Generated Signal

A simple signal was tested for the first test run of the restoration script soft_ declip.m.
It consists of a sum of three sinusoidal signals with frequencies: 600 Hz, 1 kHz, and

1.1 kHz and Gaussian noise. This reconstruction is shown in Fig.:4.3.

4.2.2 Audio Samples

The tested database consists of various audio signals (which are found in an attach-
ment to this document). Furthermore, the usage and variability of the proposed

restoring approach are demonstrated on them.

The audio database contains various types of short samples, consisting of speech,
recordings of solo instruments, as well as more complex sounds, specifically: male
and female voice (17male7speech.wav1, 27female7speech.wav1), a recording of dif-
ferent kinds of solo instruments (in relation to the exciter), acoustic guitar playing
chords (3_ guitar.wav!), a flute solo (4_flute.wav'), a saxophone solo (5_ saxophone.
wav!), a violin melody (6_violin.wav!), orchestral part (7_orchestra.wav?), a verse
of a pop song (8 pop_ band.wav?®) and electronic-music pattern (9_electronic.wav?).
All the audio samples mentioned above were shortened to a 10 seconds duration.
This diverse choice mainly aimed to test different types of audio that could be sub-

jected to soft-clip in real-life situations.

laudio samples are available from the paid platform Splice.com
2 Author: Xinematix, available from: https://freesound.org/s/519185/
3rights belong to the author of this thesis and Eponine band
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4.2.3 Signal clipping

The soft-clip function switching occurs after sample loading. These functions are
saturation effects of overdrive (code solution from [3], p. 125), distortion, and simu-
lations of tube saturation (code solution from [3], p. 122) and tape saturation which
were introduced in the theoretical part (sections 1.3.1, 1.3.2, 1.3.5, and 1.3.6). It is
possible to adjust function parameters, such as the amount of the gain, or working
point (tube simulation). It is recommended to match the input distortion of the
tested audio samples to specific SDR values. This specific value was set between
3-5 dB. The applied parameters of the given distortion functions for the tested audio
files are shown in the table 4.2. The dependence curves of these parameters on the

SDR are shown in the graphs of figure 4.1.

Distortion Overdrive

SDR [dB]

-10 10
2 3 4 5
gain [-] threshold [-]
Tube Tape
10 20
8
oy o 10
= =
x 6 o
o o
(%] (%] 0
4
2 -10
5 10 15 20 2 4 6
gain [-] gain [-]
Male Speech
Female Speech
Guitar
m—|ute
Saxophone
Violin
Orchestra
Pop Band
Electro

Fig. 4.1: SDR of clipped samples in relation with function parameters

After clipping the signal, the inverse de-clipping function is defined according to

the clip type and later called by the function handle.
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gain male | female | guit. | flute | sax | violin | orch. | pop | electro
distortion | 2.1 2.2 2.2 4.5 | 24 2.2 2.3 3 3.5
overdrive | 0.8 0.8 0.8 1.3 | 0.8 0.8 0.8 0.9

tube 20 15 6.5 15 15 6 6.7 5

tape 3 3.5 3 75 | 3.5 3.5 3.3 4.5

Tab. 4.2: Gain parameters of tested audio samples

4.2.4 Signal Restoration

Before the de-clipping, the clipped signal undergoes further quantization, set to
8 bit. This value was determined based on listening and reconstruction results using
PEMO-Q. Using quantization with a higher number of bits, it was not possible
to distinguish the original audio sample from the reconstructed one and its ODG
values showed results around zero. The decision levels by by, are computed from
the quantized signal and the inverse clipping function.

The DGTreal frame is constructed with the help of LTFAT function frame, with
the Hanning window of length n = 1025 and 50% overlap, which is employed in
frame analysis operator - frana. The parameter ite determines the number of DR
algorithm’s iterations, which is set by default to 1000, primarily due to the time
efficiency. The Fig 4.2 shows that even with a higher number of iterations, the
algorithm’s convergence is mostly unchanged.
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Fig. 4.2: {1 norm in time/iterations
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Every iteration includes in the first step the projection.m, where the decision
levels are compared with the product of frame synthesis operator frsyn, and affected
samples are detected and mapped. The second step uses the proximal operator of
soft thresholding. In the final iteration step, the objective function of ¢; norm
of coefficients ¢ is computed, a counter adds +1, and moves to the next iteration.
The algorithm output coefficients are transformed back to the time domain by frsyn
function. After a successful run of the algorithm, the reconstructed signal is received,
and its waveform is plotted in the time and frequency domain using the function
spectrogram.

Time

0.8 1 -10

0.6

0.4

0.2

mag [-]
mag [dB]

}h“\mm s LU

1 1.01 1.02 1.03 1.04 1.05 - 10? 103
time [s] f[Hz]

Fig. 4.3: Artificial signal restoration in time and frequency domain

The picture Fig. 4.3 shows the artificial signal consisting of 3 sinusoidal signals
and Gaussian noise where distortion clipping with the parameter gain = 5 was
applied. The green signal represents the result of the restoration algorithm that
is almost identical to the original signal in both the time and frequency domain.

Time-domain displays clipped waveform without the amplification factor.

4.3 ASDR Evaluation Results

Figure 4.4 compares the improvement by ASDR across all tested samples and dis-
tortion types. Overall, ASDR evaluates the reconstruction in negative values, i.e.
as deterioration. To calculate a meaningful ASDR where improvement is considered
only using Douglas Rachford algorithm reconstruction method, the formula 4.1 is
used, where the original signal is u and v is the inversion of clipped and quantized
signal. In 4.2, the subtraction of the inverse signal from the reconstructed signal is

handled in a similar way. The worse ASDR results are due to the ¢; norm in the

46



algorithm itself, which inherently chooses smaller values in the search for solutions
in the specified conditions, hence they do not imply worse sound quality. Improve-
ments were achieved in the flute sample for the three types of distortion around
+1 dB, a slight improvement in the pop_band and electro samples when recon-
structed from overdrive, and female speech reached +3dB when restored from tube
distortion. In general, the other samples held around values of —3 dB and —4 dB
in the case of distortion and tape. The worst performance of the reconstruction
from tube distortion was therefore in the case of complex sounds such as saxophone

pop_ band and electro, where there is the largest data loss due to a hard asymmetric

clipping.
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Fig. 4.4: ASDR evaluation of reconstructed samples

4.4 PEMO-Q Evaluation Results

The following graph 4.5 shows quite different results than the previous evaluation.
The data is plotted as AODG, in the same way as ASDR. This is the difference

in overall quality between the reconstruction and the inversion of the original dis-
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torted and quantized signal. The reconstruction from distortion and tape saturation
(positive values between 1-3 AODG) achieved the qualitative improvement for most
samples. In contrast, the reconstruction from overdrive for male speech, guitar,

saxophone and orchestra achieved a deterioration in objective quality.
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Fig. 4.5: AODG improvement of reconstructed samples

4.5 MUSHRA Evaluation Results

A total of 15 respondents aged 23-34 years volunteered to perform the test on
one day in a quiet room with closed headphones (headphones: Ultrasone 840,
soundcard: Steinberg UR242, PC: HP ProBook 450 G2). The test was created
using the webMUSHRA package [30] and the following Fig.4.6 with the help of
multiple_boxplot.m function [31]. Respondents mostly successfully detected the
hidden anchor and the reference. Overall, there were minor differences between the
four reconstructed clipping types. Distortion clipping was chosen for reconstruction

using [zotope RX and was rated worse than reconstruction using the DR algorithm.
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4.6 Comparison with Commercial Software (lzotope
RX)

This work aims to compare the reconstruction results with commercially available
and widely used de-clipping software, Izotope RX. The same test samples as in the
previous section were used in SDR, PEMO-Q and MUSHRA comparisons.

The latest available Izotope RX 9 is the repair bundle for restoring audio. It
consists of various tools for de-reverbing, de-noising, de-humming, and de-clipping.
De-Clip repairs, according to the online documentation [32], the digital and analog
clipping artifacts, either if its hard-clipping from A/D converters or over-saturated
tape. The program structure requires automatically or manually setting the thresh-
old over a waveform displayed in a histogram meter where the threshold can be
independently adjusted to positive and negative amplitude. The values above and
below the threshold interpolate the waveform to a more "rounded" shape. In cases
of severe distortion, where De-Clip is not sufficient, the manual recommends using
modules Deconstruct or Spectral Repair. [32] A significant advantage of this soft-
ware in contrast to the proposed algorithm is the real-time reconstruction, where

the tested five-second samples were rendered almost instantaneously.

Extreme Analog Clipj -~ =

Threshold [dB] Quality

0,0

Suggest Post-limiter

Preview Bypass + | | Compare

Fig. 4.7: DeClip by Izotope RX (printscreen)

50



Based on both types of evaluation, the results of the Izotope reconstruction
seem to be worse. It is important to note that Izotope does not know the inverse
of the conversion characteristics, and as can be seen in the first plot of Figure
4.8, the results come out worse for soft clipping functions such as distortion and
tape saturation than for semi-hard clipped functions such as overdrive and tube.
As outlined in the paragraph above, Izotope detects the threshold according to
the histogram and reconstructs the data from that level, which probably cannot
be fully replicated in the case of the distortion and tape saturation functions. In
the case of PEMO-Q evaluation, the type of signal is more important than the
reconstruction from a given distortion type. For the complex sounds of the flute,
orchestra, pop_ band and electro audio samples, there was an objective degradation

from —1 to —3.5 AODG. The remaining samples were more or less undetected.
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Fig. 4.8: DeClip restoration evaluation using ASDR and AODG
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Conclusion

This work describes and observes the effect of reconstructing audio soft-clipped
signals. The de-clipping uses the Douglas-Rachford algorithm previously used to
restore hard-clipped signals with modified projection depending on the degree of

quantization and type of distortion.

The first section describes an introduction to saturation and selected tested clip-
ping functions, specifically simulations of overdrive and distortion effects, tube am-
plifier and magnetic tape distortion. The second part outlines the quantization
issues that affect the soft-declipping task. The third section summarizes the various
declipping approaches and describes the sparse signal theory and the de-clipping
algorithm used. The fourth section covers the implementation performed in MAT-
LAB using the LTFAT toolbox. The de-clipping of the selected test audio samples
was evaluated by both objective and subjective methods; ASDR, the PEMO-Q psy-
choacoustic model and the MUSHRA listening quality test. A comparison with the

commercially available software Izotope RX was also performed.

The comparisons showed reasonably good results mainly in the PEMO-Q evalu-
ation using AODG (improving by approximately 1-3 grades of the ODG scale in the
case of distortion effect, tube saturation and tape saturation) and MUSHRA (where
reconstructed samples were often confused with the reference by the listeners) and
less well in terms of the ASDR. Unlike the reconstruction using the commercial
software DeClipper from Izotope RX, the type of audio sample (be it speech, solo
instrument or complex music sample) does not matter much. Izotope generally per-
formed worse than the studied soft-declipping algorithm, mostly in the evaluation

using ASDR for distortion effect and tape saturation as well as in the listening test.
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Symbols and abbreviations

DSP
ADC
THD
RMS
DAW
FFT
STFT
DFT
DCT
DGT
DR
LTFAT
SNR
SDR
PEAQ
PEMO-Q
ODG

MUSHRA

digital signal processing

analog-digital converter

Total Harmonic Distortion

Root Mean Square

Digital Audio Workstation

Fast Fourier Transform

Short Time Fourier Transform

Discrete Fourier Transform

Discrete Cosine Transform

Discrete Gabor Transform

Douglas - Rachford

The Large Time-Frequency Analysis Toolbox
Signal to Noise Ratio

Signal to Distortion Ratio

Perceptual evaluation of audio quality
Perception Model - Quality Assessment
Objective Difference Grade

Multi Stimulus test with Hidden Reference and Anchor
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A Content of the electronic attachment

Tested in MATLAB R2021a. LTFAT toolbox [26] and PEMO-Q [28] audioqual .m

required.

| 1 _male_speech.wav

| 2_female_speech.wav

| 3_guitar.wav

| 4 flute.wav

| 5_saxophone.wav

| 6_violin.wav

| 7_orchestra.wav

| 8_pop_band.wav

| 9 _electro.wav

D e 0 T m scripts
| distortion.m

| _inverse_overdrive.m

| _overdrive.m

| _projection.m

| _quantization.m

| SOt _deC it ettt e main file
. tape_saturation.m

| tube_simulation.m

L MUSHTA T SUL S . XS vttt ettt ittt ettt ettt ettt et e e table
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