
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

JSON SCHEMA MAKER
APLIKACE PRO DEFINICI JSON SCHÉMAT

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

MARTIN FUJAČEK

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. ALEŠ SMRČKA, Ph.D.

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2019/2020

Bachelor's Thesis Specification |||||||||||||||||||||||||
22247

Student: Fujaček Martin
Programme: Information Technology
Title: JSON Schema Maker
Category: Web
Assignment:

1. Study the JSON format and the draft of JSON schema standard
2. Design a web application for specification of a JSON schema. Web application should

include an editor of JSON documents enabling syntax highlight and interactive modification
of a JSON code. The output of the application will be the definition of a JSON schema used
for for modified JSON documents. Optional feature of the application is the validator of
JSON documents for different programming languages.

3. Implement the designed application as a single-page application.
4. Demonstrate the functionality of the application on an artificial set of use cases.

Recommended literature:
• Draft standardu IETF pro schéma JSON. Dostupné na URL: https://tools.ietf.org/html/draft-

handrews-json-schema-01
• Standard JSON. The JavaScript Object Notation (JSON) Data Interchange Format. RFC

8259.
Requirements for the first semester:

• The first two points.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Smrčka Aleš, Ing., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 28, 2020
Approval date: May 15, 2020

Bachelor's Thesis Specification/22247/2019/xfujac00 Page 1/1

https://tools.ietf.org/html/draft-
https://www.fit.vut.cz/study/theses/

Abstract
JSON Schema provides a way of controlling how JSON data should look like. The goal of
this thesis is to simplify the definition of schemas for existing JSON data. This Bachelor's
thesis discusses the design and implementation of a single-page application for generating
JSON Schema based on sample JSON documents. The output of this application can help
users with defining the skeleton of the schema. The contribution of this thesis resides in
the ability to generate a schema for multiple JSON samples, without the need for repetitive
usage of the application and subsequent merging of the individual schemas into the resulting
schema. On top of that, the implemented tool provides an automatic validation while
manipulating either the input or the schema and also providing additional information in
case of errors.

Abstrakt
JSON Schéma predstavuje spôsob určovania ako majú vyzerať dáta formátu JSON. Táto
práca má za cieľ zjednodušiť definovanie schém pre existujúce dáta formátu JSON. Popisuje
návrh a implementáciu jednostránkovej aplikácie pre generovanie JSON schém podľa vzoriek
JSON dokumentov. Výstup aplikácie môže pomôcť užívateľom s tvorbou kostry schémy.
Prínos tejto práce spočíva v možnosti generovania výslednej schémy nad viacerými vzorkami
JSON dokumentov bez nutnosti opakovaného používania aplikácie a následného zlučovania
jednotlivých schém do výslednej schémy. Okrem toho poskytuje automatickú validáciu
pri manipulácii či už so vstupom, alebo schémou, pričom poskytuje dodatočné informácie
o prípadných chybách.

Keywords
web, JSON, schema, generator, validation, single-page application

Kľúčové slová
web, JSON, schema, generátor, validácia, jednostránková aplikácia

Reference
F U J A C E K , Martin. JSON Schema Maker. Brno, 2020. Bachelor's thesis. Brno University
of Technology, Faculty of Information Technology. Supervisor Ing. Ales Smrcka, Ph.D.

Rozšírený abstrakt
Táto práca sa zaoberá tvorbou a manipuláciou s JSON schémami, pričom si kladie za cieľ
uľahčiť prácu ich autorom. JSON schéma poskytuje spôsob definovania štruktúry a obsahu
dokumentov vo formáte JSON. Účelom práce bolo navrhnúť a implementovat jednoduchú,
jednostránkovú, webovú aplikáciu, ktorej úlohou je vygenerovať kostru JSON schémy na
základe existujúcich dokumentov formátu JSON, s možnosťou dodatočných, ručných úprav
výsledku.

Dôležitou vlastnosťou výsledného riešenia je schopnosť generovať schému z väčšieho
počtu vstupných dokumentov bez nutnosti opakovaného použitia pre každý dokument
zvlášť. Takisto bol kladený dôraz na poskytovanie spätnej väzby užívateľovi v priebehu
manipulácie so vstupnými dokumentmi alebo schémou. V neposlednom rade bolo dôležité
zabezpečiť, aby bolo možné s výsledkom ďalej pracovať a doplňovať ho či už ručne, alebo
opakovaným použitím.

Úvod tejto práce je venovaný oboznámeniu s formátom JSON. Najmä však s návrhom
štandardu JSON schémy, konkrétne verzie 07, na ktorú je cielený výsledný produkt. De­
tailne vysvetľuje jej princípy a popisuje jednotlivé kľúčové slová. Ďalej boli analyzované
existujúce riešenia s podobným zameraním. Výsledkom tejto analýzy bolo vytipovanie
chýbajúcich vlastností a výber použitej externej aplikácie pre realizovanie komponenty zod­
povednej za validáciu vstupného dokumentu voči schéme. Nasledovalo stručné predstavenie
použitých princípov a technológií, ktoré boli zvolené pre realizáciu riešenia.

Samotné riešenie predstavuje dva základné celky. Prvým z nich je validator. Táto súčasť
slúži na overenie, že daný vstupný dokument odpovedá schéme. Inými slovami rozhoduje,
že má očakávanú štruktúru a obsah. Výsledkom validácie je okrem samotného verdiktu aj
zoznam prípadných nezrovnalostí. Každý z týchto údajov nesie informáciu o tom, ktorá časť
dokumentu nezodpovedá definíciám, so stručným slovným vysvetlením a lokalitou definície
v schéme pre jednoduchú orientáciu. Samotná implementácia validátora nie je predmetom
tejto práce, bola použitá voľne dostupná knižnica tretej strany.

Zaujímavejšou časťou je zložka, ktorej úlohou je tvorba kostry schémy. Iteratívnym
spôsobom sú najskôr vygenerované čiastočné schémy pre každý vstupný dokument, ktoré
sa následne kombinujú do výslednej schémy. Je dôležité dodať, že vždy sa pracuje s aktuál­
nym obsahom schémy. To znamená, že je nutné schému vyprázdniť pred dalším použitím
v prípade, že nie je požadované pokračovať v práci s danou schémou.

Obe služby sú realizované formou webového aplikačného programového rozhrania, ktoré
využíva klientská časť aplikácie predstavujúca webové užívateľské rozhranie. Jeho najzá­
kladnejšou časťou sú dva editory, ktoré slúžia pre prácu so vstupnými dokumentmi, respek­
tíve schémou. Samotné editory poskytujú užívateľovi bohatú funkcionalitu ako zvýraznenie,
či kontrolu syntaxe. Okrem toho poskytujú možnosť definovať vlastné chybové oznáme­
nie a viazať ich na konkrétne pozície v editore. Týmto spôsobom je realizovaná spätná
väzba užívateľovi o chybových oznámeniach z validácie. Ďalšou dôležitou vlastnosťou je
možnosť vytvoriť a používať viacero inštancií textových modelov v rámci jedného editoru.
To umožňuje realizáciu záložiek a teda súbežne pracovať s viacerými vstupnými doku­
mentmi.

Pre implementáciu serverovej časti systému bola zvolená technológia .NET Core, ktorá
poskytuje vývoj multiplatformných aplikácií, a rovnako aj pre jednoduchú integráciu s ex­
ternou validačnou knižnicou, ktorá je postavená nad rovnakou technológiou. Klientská časť
je realizovaná v jazyku JavaScript pre jeho dominantné postavenie vo webových prehliada­
čoch.

Správnosť funkcionality aplikácie bola overená formou automatizovaných testov. Ešte
pred samotným vývojom serverovej časti bola vytvorená sada jednotkových testov, ktoré
definovali očakávaný výstup. To malo za následok rýchlejšiu spätnú väzbu a následne
rýchlejší vývoj. Po dokončení minimálnej nutnej funkcionality celej aplikácie boli vytvorené
systémové testy. Časti, ktoré nebolo možné otestovať automaticky boli overené ručným
testovaním.

J S O N S c h e m a M a k e r

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Aleš Smrčka, Ph.D. The supplementary information was
provided by Ing. Jiří Pokorný. I have listed all the literary sources, publications and other
sources, which were used during the preparation of this thesis.

Martin Fujaček
May 21, 2020

Acknowledgements
I would like to express my gratitude towards the supervisor, Ing. Aleš Smrčka, Ph.D. for his
bits of advice and professional guiding during the creation of this thesis. I also appreciate
countless remarks and tips from Ing. Jiří Pokorný.

Contents

1 Introduction 5

2 J S O N Schema and Used Technologies 6
2.1 Introduction to JSON Schema 6

2.1.1 JSON Document and its Structure 6
2.1.2 JSON Schema 7

2.2 Existing JSON Schema Generators 12
2.3 Existing JSON Schema Validators 17
2.4 Used Technologies and Principles 20

2.4.1 Hyper Text Markup Language k. Cascading Style Sheets 20
2.4.2 JavaScript 20
2.4.3 C # and .NET Core 21
2.4.4 Client/Server Model 21
2.4.5 Hypertext Transfer Protocol 22
2.4.6 Web Application Programming Interface 23

3 Design of J S O N Schema Maker 24
3.1 Outlining the Final Product 24
3.2 J S O N Schema Maker Requirements Specification 24
3.3 Designing Graphical User Interface 25
3.4 Architectural Overview of the Application 26

3.4.1 Server-Side Architecture 26
3.4.2 Client-Side Architecture 28

4 Implementation Details of J S O N Schema Maker 32
4.1 Third-Party Frameworks and Libraries 32
4.2 Implementing the Generator Part 33

4.2.1 Generator's Configuration Options 35
4.2.2 Code Snippets for JSON Validators 35

4.3 Component for Validating Against a Schema 36
4.4 Client-Side Implementation 36

5 Evaluation of Implemented Solution 41
5.1 Unit Tests 41
5.2 End-To-End Tests 42
5.3 Exploratory Testing 42

5.3.1 Demonstration of the Application's Functionality 43
5.4 Compatibility Testing 43

1

6 Conclusion 44

6.1 Unfinished Functionality 44

Bibliography 45

A Contents of the Included Storage Media 47

B Screenshots of the Web Application 48

2

List of Figures

2.1 Visual appearance of the Liquid Technologies web application 13
2.2 Example output generated by the Liquid Technologies 14
2.3 JsonSchema.net's user interface for generating a JSON Schema 15
2.4 Edit dialog for manually changing the definitions of the generated schema

by JsonSchema.net 15
2.5 Main part of quicktype's user interface 17
2.6 Client/server model 21

3.1 The initial layout of the web page 25
3.2 The modal dialog containing configuration options 26
3.3 States of the application and transitions between them 30

4.1 Class diagram describing different type generators 34
4.2 Class diagram of the client-side implementation 36
4.3 Preview of the EditorService class 37
4.4 Preview of the TabService class 38
4.5 Preview of the FileService class 38
4.6 Preview of the Validator class 39
4.7 Preview of the Utils class 39
4.8 Preview of the App class 40

B . l Sample details of validation errors 48
B.2 Final layout of the application 49
B.3 Preview of the validation snippet modal dialog for Python 50
B.4 Example of a notification toast message 50
B.5 Preview of the unfinished schema store support 50
B.6 Modal dialog with configuration options 51

3

http://JsonSchema.net
http://JsonSchema.net

Listings

2.1 Example of a JSON document 6
2.2 Example of a list validation 9
2.3 Example of a tuple validation with additionalltems 9
2.4 Example of a property dependency 10
2.5 Example of a schema dependency 11
2.6 Example of conditional branching in a JSON Schema 11
2.7 Simple H T T P G E T request 22
2.8 Sample H T T P response 22
4.1 Example usage of the Json .NET Schema validator 36
5.1 Writing unit test with NUnit 3 41

4

Chapter 1

Introduction

Many systems depend on external data, provided by a user or another system, to fulfill
their purpose. Every application expects a certain structure in its inputs. There are many
formats in which the data can be represented. JSON is an interchange format widely
used as a way of providing data to applications. It is easily readable for humans and also
for machines to parse. However, the application must be aware of the fact that the data
provided can have a different structure from what it expects.

That is when JSON Schema comes into play. JSON Schema is a piece of metadata
for JSON documents. It contains various information about the structure, content, val­
ues, types, properties, and a couple of other useful definitions that describe how a JSON
document should look like. It is not a standard yet, although there are multiple draft
specifications already, the 2019-09 version being the most recent in the time of writing this
paper.

Writing a schema manually for a semi-complex JSON could be very tedious as the
resulting schema is typically considerably larger than the data it describes. Imagine, a JSON
of 15 lines in length, its schema could be over a hundred lines long. This is the motivation
for creating a tool that can automatically generate a schema for your existing JSON sample,
and even multiple samples at once!

This paper introduces a web application with a code name plexSON whose purpose is
to simplify the creation of the JSON schemas.

Chapter 2 presents the core technologies that this thesis works with—a JSON document
and a JSON Schema. Then the currently available implementations for generating JSON
schemas are discussed. It talks about the individual characteristics of each implementation
and compares the advantages and the disadvantages of these tools. In the last section, the
author presents the chosen technologies, programming languages, and protocols. Chapter 3
contains the design of the application. The architecture is documented in this part as well as
the communications between the modules. On top of that, this chapter also includes a list of
requirements and the design of the visual side. The description of the implementation details
is in Chapter 4. It contains separate parts focusing on the back-end of the application as
well as its front-end. Chapter 5 discusses how the application is tested and how the results
were evaluated. Its purpose is to perform verification and validation of the final product.
Lastly, Chapter 6 is the conclusion and it deals with the next steps, possible extensions,
and opens space for further development.

5

Chapter 2

J S O N Schema and Used
Technologies

After reading this chapter, you will understand the basic purpose of schemas, particularly
the JSON Schema and its format. As the name suggests, it is related to the JSON format—
at first, because it describes JSON documents and secondly, it is also a JSON document
itself. It is mandatory to understand what JSON is, to understand the JSON Schema. The
explanation of the most frequently used terms in this thesis is here.

2.1 Introduction to J S O N Schema

The building blocks of this project are JSON, and more importantly, JSON Schema. It is
only right to start with the introduction to these terms.

2.1.1 J S O N Document and its Structure

JSON stands for JavaScript Object Notation. It is a lightweight, text-based, language-
independent data interchange format. It was derived from the ECMAScr ip t Programming
Language Standard. JSON defines a small set of formatting rules for the portable repre­
sentation of structured data [3].

Its purpose is to serialize data, usually structures and/or collections, in a format similar
to the JavaScript objects, which are key-value pairs. The format is human-readable and
easy to parse by machines. The keys are always strings and according to the specifica­
tion, they must be strictly double-quoted. This is different from the JavaScript's notation,
where the keys can be single-quoted as well, or not quoted at all. The value can be an
object, an array of values, a number, a string, or one of three literals: true, false, or
null. For a comprehensive explanation and restrictions on the format, refer to the R F C
specification [3]. Listing 2.1 denotes a simple JSON object.

{

"checked": false,
"dimensions": {

"width": 5,
"height": 10

}.
"id": 1,

(i

"name": "A green door",
"price": 12.5,
"tags": [

"home",
"green"

]
}

Listing 2.1: A sample JSON document (taken from [18]).

2.1.2 J S O N Schema

A JSON value describing a certain person can have many forms. Imagine an object con­
taining properties with the person's name, address as a single string with a street, a number
and a city, and his or her phone number and work number. The same data can be, however,
provided in a completely different way. For example, the same person can be described by
two properties for the first name and the last name, an object property for the address, and
an array of phone contacts. Now you want to make sure that your application receives the
person's information in an expected structure. That is the primary purpose of any schema,
JSON Schema not being an exception.

JSON Schema defines the media type application/schema+json, which is itself in
the JSON format, for describing the structure of JSON data. JSON Schema asserts how
a JSON document must look like, ways to extract information from it, and how to interact
with it. To distinguish the data documents serialized in the JSON format from the schema
documents, this thesis will use terms JSON instance, JSON document, and JSON Schema
document as defined by the draft specification[19]:

• J S O N document - an information resource (series of octets) described by the
application/j son media type.

• J S O N instance - A JSON document which a schema is applied to.

• J S O N Schema document, or simply a schema—a JSON document used to describe
an instance.

Validation

At its core, JSON Schema provides validation keywords and annotations. The latter cate­
gory does not have an influence on the validation result but provides additional information
about the instance or the schema. A brief overview of the JSON Schema content follows [5].

Most of the time, JSON Schema is an object, whose properties serve to describe a JSON
instance. However, some properties can contain one or more sub-schemas. Sometimes it
can come handy to either accept or refuse everything, particularly in these sub-schemas.
For this purpose, the JSON Schema can simply be a boolean value, where true always
passes and false always fails the validation.

If the schema is an object, it typically contains a property $schema, which is used
to distinguish JSON Schema from an arbitrary JSON data. Its value defines the schema
version by the URI associated with the schema draft version, e.g.:
http:/ /j son-schema.org/draft-07/schema*/.

7

http://j

Every schema can—and should—have its own unique identifier. This is achieved by
setting the $ i d property to an absolute U R L This property also has another purpose.
Mainly in conjunction with the $ref property, it provides a way of structuring complex
schemas. In that case, it provides a base U R L for relative $ref references in the same file
without the need to use JSON pointers. More on the $ref later.

Since comments in JSON are forbidden, the $comment is used to bypass this, providing
a way for the authors to include comments inside the schema. This keyword has no effect
on the validation.

There are multiple ways of defining the structure of the instance. The most restrictive
one is by specifying the exact value by the const property. It passes validation if and
only if the value is exactly the same as defined by the keyword. The enum keyword works
similarly, it provides an array of allowed values. The last option is restricting the type of
value, which can be accomplished by the type keyword. It can be either a string stating
which type should be allowed, or an array of such strings if we want to accept more types.
Every type can further be restricted by some type-specific keywords.

Numeric types

The number and integer types can restrict the range of accepted values by the maximum
and minimum keywords. Both have also an exclusive variant, exclusiveMaximum and
exclusiveMinimum respectively. Additionally, the value can be restricted by multipleOf,
which accepts numbers divisible by the specified number. A l l of these keywords' values
have to be a number.

There are two numeric types defined by the JSON Schema since most of the program­
ming languages distinguish integers and floating-point numbers. However, the JSON itself
does not have distinct types for these two categories, and thus it is recommended to use
additional checking on the mathematical value. To avoid situations where in some pro­
gramming languages 1.0 would be accepted as an integer and in some it would not. The
multipleOf keyword can be used to overcome this problem.

String type

The length of the string can be limited by the minLength and maxLength keywords, both
numeric. The value itself can be limited by a regular expression, specified by the pattern
property.

Despite the existence of a keyword that can be used for semantic validation—format—it
serves as an assertion and an annotation. The specification [20] does not force the validators
to treat it as an assertion influencing the validation outcome. Most of the validators do not
provide complete support for all of the possible values. Those are:

• email, IDN-email,

• hostname, IDN-hostname, URI, URI-reference, IRI, IRI-reference, URI-template,

• IPv4, IPv6,

• JSON-Pointer, Relative-JSON-Pointer,

• date, time, date-time, and

• regex.

8

The internationalized variants (starting with iri and idn) are not implemented as assertions
in the library which this project is using to simplify the manipulation with JSON data and
JSON Schemas. The values are case-insensitive.

Array type

Arrays can be restricted in length (numeric minltems, maxltems), uniqueness of the items
(boolean uniqueltems), and a check for presence of a specific item (the contains schema).

Furthermore, it is possible to define a schema for every item in the array. There are two
ways possible to accomplish this with the items keyword: if it is a schema, then every item
in the array must pass the validation against that schema—in this thesis, it will be referred
to as a list validation. If it is an array of schemas, then every item is validated against the
schema that corresponds to its position in the array (e.g. the first item is validated against
the first schema in the items array, the second item against the second schema and so on).
From now on, the term tuple validation will be used for this case. The difference between
these two types is visible in Listings 2.2 and 2.3.

Beware, however, if not further limited by other keywords, an array does not have to
contain as many elements as the items keyword specify. It can contain even more elements,
as long as the items keyword validates successfully.

In case of a tuple validation, there is a possibility to define a schema for the items of the
instance's array, whose position is greater than the items array. This is done by specifying
the additionalltems. Note that in case of a list validation (i.e. when items is a schema,
not an array of schemas) this keyword has no effect and it does not make sense at all.

{

"type": "array",

"items": {

"type": "number"

}

}

Listing 2.2: A n example of a list validation. Every item in a given array must validate
against the items sub-schema. In this case, it must be an array of numbers (taken from [5]).

{

"type": "array",

"items": [

{

"type": "number"
} .
{

"type": "string"

} .
{

"type": "string",

"enum": ["Street", "Avenue", "Boulevard"]
} .
{

"type": "string",

9

"enum": ["NW", "NE", "SW", "SE"]

}

].
"additionalltems": { "type": "string" }

}

Listing 2.3: A n example of a tuple validation with additionalltems, limiting the fifth and
higher elements of the array to be strings. In order to forbid more than four elements, that
are described by the items schema, we could use false in additionalltems, or specify
max It ems explicitly (taken from [5]).

Object type

The object type is the most interesting as for the validation possibilities. The number of
properties can be limited by the minProperties and maxProperties numeric values.

If some properties should be always present, their keys can be included in the required
array.

The main logic for validating object resides inside the properties keyword. It is an
object containing a schema for every property name of the object in the tested instance. It is
possible to specify a schema for properties without the need to know the exact name of the
property. One way is to use patternProperties. It works the same as properties, with
the exception that the property names are expressed as regular expressions rather than the
whole names. Another way is using the additionalProperties which will be used for all
of the properties that were matched by neither properties nor patternProperties. The
names of the object's properties can also be tested against a schema, the propertyNames
is used for this purpose.

The last keyword—dependencies—is probably the most complex one. It serves two
purposes based on the presence of a certain property in the validated instance. The value of
the keyword is an object, whose keys are property names and the values of those properties
can be either an array of strings representing the property names of the object being
validated, or it can be a schema.

If it is an array of strings, it means that if the specified property is present, then all of
the properties in that array must be present in the object as well. This is not bidirectional,
though. So when a property—whose name is specified in the array—is present in the
object, it does not mean that there must also be present the property which is the key of
the dependencies keyword. This type is known as a property dependency.

If it is a schema, then it extends the original schema to have other constraints. This is
called a schema dependency. Listings 2.4 and 2.5 contain examples of both types.

{

"type": "object",

"properties": {

"name": { "type": "string" },

"credit_card": { "type": "number" },

"billing_address": { "type": "string" }

}.
"required": ["name"],

"dependencies": {

"credit_card": ["billing_address"]

10

}

}

Listing 2.4: A n example of a property dependency. If an object contains a credit_card, it
must contain billing_address as well. However, only billing_address or neither of the
two, is valid (taken from [5]).

{

"type": "object",

"properties": {

"name": { "type": "string" >,

"credit_card": { "type": "number" }

}.
"required": ["name"],

"dependencies": {

"credit_card": {

"properties": {

"billing_address": { "type": "string" }

}.
"required": ["billing_address"]

>
}

}

Listing 2.5: A n example of a schema dependency. This is another way of defining the same
as Listing 2.4 (taken from [5]).

Combining sub-schemas

It is also possible to use conditional branching inside the JSON Schema. The keywords
providing this functionality are i f , then, and else. A l l accept a schema as their value.
Any of the keywords can be omitted, since then and else are ignored in case the i f is
not present. The i f schema does not have a direct impact on the validation result, it just
controls which conditional branch will be used to further validation, the same semantics as
programming languages use. A n example can be seen in Listing 2.6.

Do not forget that JSON (and thus JSON Schema) should not have duplicate properties
with the same key. This would mean that only one i f could be present in every schema.
This is true—to get around this, a cascade of conditions can be formed inside of an allOf
array of schemas, see below.

There is also a keyword named not. The value for it must be a schema as well and it
produces a negated result of that schema's result.

For combining sub-schemas, there are three keywords that can be used. A l l of them
are arrays of schemas. The first one is allOf . The validation of this keyword passes if
the instance is valid against every schema in the array. The second is anyOf. Here, the
validation will succeed as soon as the instance is valid against at least one of the schemas
in the array. The third keyword is oneOf. This time, the validation will pass if and only if
the instance is valid against exactly one schema in the array, no matter which one it is.

{

11

"type": "object",

"properties": {

"street_address": {

"type": "string"

}.
"country": {

"enum": ["United States of America", "Canada"]

>

}.
" i f " : {

"properties": { "country": { "const": "United States of America" } }

}.
"then": {

"properties": { "postal_code": { "pattern": " [0-9]{5}(-[0-9]{4})?" > >

}.
"else": {

"properties": { "postal_code": {

"pattern": " [A-Z] [0-9] [A-Z] [0-9] [A-Z] [0-9]" > >

}
}

Listing 2.6: A n example of conditional branching in a JSON Schema. Note that a schema
can only contain one such conditional. To extend this example for other countries, we would
need to wrap triples of i f , then, and else inside of an allOf for further scaling (taken
from [5]).

Annotations

Annotations are used for explanation purposes for humans and have informational charac­
ter. They do not influence on the validation result. The t i t l e and description properties
contain string annotations representing short and longer explanation of a given schema. The
value of the default property can be of any type, as it denotes the default value of the de­
scribed token. The examples property is an array whose items present how accepted values
could look like. The values can be marked read-only and/or write-only by the readonly
and writeOnly boolean properties.

2.2 Exist ing J S O N Schema Generators

Similar software solutions—that take a sample JSON instance and try to generate a JSON
Schema which would describe it—already exist. Some are useful, some are barely usable.
The reason for the creation of another tool is simple—none of the listed below meets all of
the requirements listed in Section 3.2 completely. Here are just a few of them compared
with a description of the main advantages and disadvantages of each one. Table 2.1 on the
end of the section summarizes the current situation.

12

Liquid Technologies

Liquid Technologies provide a free converter of a JSON document to a JSON Schema1.
However, only the input is editable, the generated output can not be manually edited, only
copied to the clipboard and edited elsewhere. The bigger disadvantage though, is that it
generates only draft version 4 of the JSON Schema, which lacks the latest features, like if-
then-else keywords and others. Similarly to many tools, this one accepts unquoted property
names as a valid JSON, even though it is not valid according to the JSON specifications.
Only one input can be entered and processed, which makes it impossible to update the
schema directly. Figures 2.1 and 2.2 show how the input and the output of the application
look like. Liquid Technologies provide a complementary tool to convert a JSON Schema to
a JSON instance as well 2 .

£ Download Free Liquid Studio Community Edition Now!

S a m p l e J S O N D o c u m e n t

1 {
2 "name": "Martin"
3 "age": 24
4 }

Options

Generate Schema

Figure 2.1: A part of the visual appearance of the Liquid Technologies web application.

Generate schema

Another tool is an open-source project called Generate Schema 3. It provides a command-
line interface to transform JSON objects to many different forms of schemas, like those
for M y S Q L , Mongoose, Google BigQuery, and more, including JSON Schema. It comes as
a Node.js 4 package and is licensed under the M I T license. However, the disadvantages over­
weight as the project's latest version was released in Apr i l 2018, with the last contribution
to the repository dating July that year. It only supports JSON Schema draft version 4 and

x

https: //www.liquid-technologies.com/online- j son-to-schema-converter
2

https: //www.liquid-technologies.com/online-schema-to-json-converter
3

https: //github.com/ni j ikokun/generate-schema
4

https: //nodej s.org/en/

13

http://www.liquid-technologies.com/online-
http://www.liquid-technologies.com/online-schema-to-json-converter

InferedJSON Schema Jfi

{
"$scliema" : "http://json-schema.org/draft-04/schenaf
"type": "object".

"properties ": {

"name": {
"type":

} t
"string"

"age": {
"type":

}
"integer"

},
"required": [

"name",
"age"

]
I

Figure 2.2: Example output for the input from Figure 2.1 generated by Liquid Technologies.

the generation can not be controlled by any configuration or user options apart from setting
a title to the resulting schema. It can only generate the schema from a single input JSON
which must be an object or an array.

JSONSchema.Net

The next tool is a web application again, it is called JSONSchema.Net 5. The users can
paste their JSON document and edit the following settings:

• select a draft version—available are 4, 6, and 7,

• select an identifier type—specifies the format of the Sid keyword, available are JSON
pointer, plain name, hybrid, base URI, and none,

• select an array validation type—available are list validation, tuple validation, and
allow anything,

• specify the absolute URI—fills the Sid of the root schema,

• pick annotations—specify which annotations will be present in the schema, e.g. title,
description, default, and examples of each sub-schema,

• pick the restriction level—available are type, enum, and const,

• make all properties required for object types, and

• use only JSON numeric types.

There is also a possibility of using a verbose mode, where all of the keywords are present in
the output, which is not directly editable manually. However, the definitions can be changed
interactively by clicking one after switching to a tree view. A n example of such edit dialog is
presented in Figure 2.4. Apart from the JSON, the user can also select other formats of the
output schema—YAML 6 and X M L 7 , which are other common serialization data formats.

5

https: / / j sonschema.net/home
6 Y A M L — Y A M L Ain't Markup Language
7XML—extensible Markup Language

14

http://json-schema.org/draft-04/schenaf
http://sonschema.net/home

Even though the project started in 2017, it is under active development. The last update to
the application was in March 2020. As seen in Figure 2.3, the application does not provide
a syntax highlighting except for emphasizing the keys of the properties. It is possible to
provide only a single input JSON document, so for multiple input instances, the application
would need to be used repetitively, and the resulting schema created manually.

Load Schema (^) Infer Schema

"checked": f a l s e ,
"dimensions": {

"width": 5,
"height": 16

h
" i d " : 1,
"name": "A green door"
"price": 12.5,
"tags": [

'home',
"green"

]

V Verbose Updated about 2 hours ago Ifj H I l • { I
2 "Sschema": "http://json-schema.org/draft- 07/schema",
3 "$id": "http://example.com/root.json",
4 "type": "object".
5 " t i t l e " : "The Root Schema",
6 "description": "The root schema i s the schema that

comprises the enti r e JSON document.",
7 "default": {},
8 - "required": [
9 "checked",

10 "dimensions".
11 " i d " ,
12 "name",
13 "price",
14 "tags"
15],
16 - "properties": {
17 - "checked": {
18 "Sid": "#/properties/checked",

Figure 2.3: JsonSchema.net's user interface for generating a JSON Schema.

t i t l e

The Width Schema

default
I?

I I readonly

I I writeOnly

p r o p e r t i e s / d i m e n s i o n s / p r o p e r t i e s / w i d t h

description
An explanation about the purpose of this instance.

example

Hello World'

1 T

5
n u m b e r

50 IOC

T +

T h i s i s a ret /u/retf p r o p e r t y

CANCEL

Figure 2.4: A n edit dialog for manually changing the width definitions of the generated
schema by the JsonSchema.net tool.

Schema G u r u

Schema Guru is another command-line application developed by Snowplow Analytics Ltd .
The strong advantage of Schema Guru is that it works with an unlimited set of input JSON

15

http://json-schema.org/draft-
http://example.com/root.json
http://JsonSchema.net
http://JsonSchema.net

instances at once, which provides more precise results immediately, without the need to
re-run with every input document. Unfortunately, that is all for its strong sides. The
project is dead for years, as the latest version (0.6.2) was released back in Apr i l 2016 and
it supports JSON Schema draft version 6. The project's GitHub repository8 states that it
comes with a demo web user interface, yet the link is not working anymore. The application
is written in Scala language and is licensed under the Apache-2.0 license.

Quicktype

The last candidate is a very powerful tool, which comes in multiple forms—it is a command-
line application with a web user interface and even as an extension to Integrated Develop­
ment Environments (IDEs) like Visual Studio and VS Code 9 by Microsoft or Xcode 1 0 by
Apple. The project is written in TypeScript language and is licensed under Apache-2.0.
The latest release tag was added in December 2017 however, it is under active development.
Contributions to the project's GitHub repository 1 1 are almost daily. Generating a JSON
Schema is only one of the application's features. It can also be used for generating types in
different programming languages such as JavaScript, C# , Python, Java, Go, C+-1-, Kotlin,
and even more. It supports different input types, too—JSON, JSON Schema, GraphQL
queries, or TypeScript. Most importantly, it can handle multiple JSON inputs to provide
the schema. The web application 1 2 provides an intuitive and easy-to-use interface. Fig­
ure 2.5 shows the web application. Unlike many of the web-based generators, this solution
allows the user to edit the generated output directly in place. Both editors provide a nice
syntax highlighting, which simplifies the usage even more. The only, yet quite significant
downfall is that it still does not support at least JSON Schema draft version 7.

X
+̂

d

d

£ , r H

a a o ^
CO g r-H {J +2
* O CO 2

o
03 <D > * ft 3
d d 03 CO • C O

o 9 T ^ - ^ c O d ^ ^

Eh J O ^ Q c n ^ H

Liquid Technologies proprietary Y E S N / A 4 Y E S NO NO
Generate Schema M I T NO 07/18 4 NO NO NO
JsonSchema.net Apache 2 Y E S 03/20 7 NO NO Y E S
Schema Guru Apache 2 NO 05/16 6 NO Y E S NO
Quicktype Apache 2 Y E S 12/17 6 Y E S Y E S Y E S
PlexSON C C B Y - N C - S A Y E S 05/20 7 Y E S Y E S Y E S

Table 2.1: The existing solutions compared with the product of this thesis, based on the
selected features.

8

https: //github.com/snowplow/schema-guru
9

https: //visualstudio.microsoft, com/
1 0

https: //developer, apple.com/xcode/

https: //github.com/quicktype/quicktype
1 2

https: //app.quicktype.io/#l=schema

16

http://JsonSchema.net
http://apple.com/xcode/

Q quicktype

Name
nirvana.json

• Artist

Q nirvana.json

Q radiohead.json

• Album

• Track

Source type
Multiple JSON i i

+ Type + Sample jjjj

"name": "Nirvana",
"founded": 1987,
"members": [

"Kurt Kobain",
"Dave G r o h l " ,
" K r i s t N o v o s e l i c "

]
}

"Jschems": "http://json-schema.org/draft-06/schema#",
" d e f i n i t i o n s " : {

" A r t i s t " : {
"type": "object",
"add i t i o n a l P r o p e r t i e s " : f a l s e ,
"properties': {

"name": {
"type": " s t r i n g "

>,
"founded": {

"type": "integer"
},
"members": {

"type": "array",
" items": {

"type": " s t r i n g "
i

}
h
"required": [] ,
" t i t l e " : " A r t i s t "

},
"Album": {

"type": "object",
"add i t i o n a l P r o p e r t i e s " : f a l s e ,
"properties": {

"name": {
"type": " s t r i n g "

>,
" a r t i s t " : {

"Sref": " # / d e f i n i t i o n s / A r t i s t "
}.

Figure 2.5: The main part of quicktype's user interface showing how to generate a schema
from multiple inputs.

2.3 Exist ing J S O N Schema Validators

Instead of implementing the JSON Schema validator from scratch, I decided to use one
from a long list of already existing validators 1 3. When picking the most suitable one, the
following criteria were considered, with assigned importance (weight) of their error feedback:

• supports at least draft version-07,

• finds all errors (4), and

• the validation error contains

— a user-friendly message (2),

— the value that failed the validation (2),
— a path to the value in the instance, line number and position (1+1), and
— a path to the violated definition in the schema, line number and position (1+1)

Following is a shortlist of the validators compared based on the given criteria. A l l
mentioned validators support at least JSON Schema draft version 7. Table 2.2 sums up the
comparisons with the assigned scores.

Json . N E T Schema

The Json .NET Schema 1 1 library is written in .NET Core. It comes with several license tiers,
but luckily, one of those is a free AGPL-3 .0 license. This edition is limited to 1000 validations

1 3

https: / / j son-schema.org/implementations.html#validators
1 4

https: //github.com/JamesM/Newtonsoft.Json.Schema

17

http://json-schema.org/draft-06/schema%23
http://son-schema.org/

per hour, which is sufficient for this project's needs. This library can be used to parse
a JSON string into an internal representation, manipulate it, validate an instance against
the schema, serialize, and de-serialize .NET types. It provides detailed validation output,
from the set of the requested information, the following are present: path in the instance,
line number and position in the instance, path in the schema, message, and value. The
validation finds all errors. Even though the latest version is released a couple of months
already, it is still under active development.

Manatee. Json

Another validator is Manatee.Json 1 5, which is very similar to Json .NET Schema. It is
also written in .NET Core and provides similar features. It differs in the license—which is
MIT—and the way it reports validation errors. The user can choose from different forms of
structuring the error outputs, from a flat list of errors to a nested hierarchy following the
structure of the schema. The most detailed one contains these from the set of requested
information: path in the instance, path in the schema, message, and value. The validation
finds all errors. The latest release is tagged from 2015, but the development has not stopped
since.

A J V

Another JSON Schema Validator 1 6 (AJV) is a JavaScript implementation for Node.js and
browser. It can also be used as a command-line interface tool. One of its unique features is
the ability to define custom keywords. By default, the validation returns results after the
first error is encountered, but this behaviour can be turned off, to continue and find all of
the errors. From the set of the requested information, the error records have the following
structure: path in the instance, a path in the schema, and a message about the error. In
a verbose mode, the error record additionally contains the validated data.

Networknt

The next candidate is JSON Schema Validator 1 ' by Networknt. It is written in Java and
is licensed under Apache-2.0 License. The latest version was released in Apr i l 2020. It
supports the latest JSON Schema draft version and the result of validation is a set of
validation errors, where from the set of the requested information, each (if any) contains
a message and a path in the instance.

Fast J S O N Schema

Another implementation is called Fast JSON Schema for Python 1 8 . As the previous sen­
tence suggests, it is written in the Python language, but only supports version 3.3 and
higher of this language. It has very good contribution rate since almost every month a new
contribution is submitted to the repository. It is licensed under BSD-3-Clause. In case
of a failed validation, it raises an exception which, from the set of the requested informa­
tion, contains: message, value, path in the instance document. The disadvantage is that it
reports the first error and exits, so it does not find all errors.

1 5

https: //github.com/gregsdennis/Manatee. Json
1 6

https: //github. com/epoberezkin/aj v
1 7

https: //github.com/networknt/json-schema-validator
1 8

https: //github.com/horej sek/python-f ast jsonschema

18

Jsonschema

Jsonschema 1 9 is another Python implementation of a JSON Schema validator. This one
works with Python version 2.7 and higher. The author contributes very often. The ap­
plication can be also used from the command-line. Its performance is not as fast as that
of the Fast JSON Schema, but it finds all errors. The validation errors contain plenty of
information, but from the requested ones, it provides: message, path in the instance, and
path in the schema.

Swaggest

The next one is a JSON Schema implementation for P H P 2 0 . Similarly to many others,
this project is licensed under the M I T license. Wi th multiple versions every quarter, it
is no doubt that the development is alive and perpetual. Even though the error message
contains much information about what went wrong during the validation, it is just one
string, which—in some cases—can be an indented multi-line string. From the set of the
requested information, it contains a brief message and a path in the schema which triggered
the validation error. However, the validation finds only the first error and ends. On the other
hand, Swaggest allows creating JSON Schemas programmatically in an Object-Oriented
manner.

Opis J S O N Schema

Another P H P implementation is called Opis JSON Schema 2 1. This time, it is licensed under
Apache-2.0 license and requires P H P 7 or later. In addition to all the keywords defined
by the JSON Schema specification, this library introduces a set of custom keywords like
$var, $map, and a few more. The result of a validation process is an object with properties
representing the success and a complement signalling whether there were errors. In such
case, from the set of the requested information, every error contains the data that did not
correspond and a path to that data in the instance. It now has been some time since the
latest version as the current release dates back to August last year.

Q r i

The last candidate is a module of a solution called Q r i 2 2 , which comes as a desktop ap­
plication as well as a command-line interface. It is implemented in the Go language and
the JSON Schema module is M I T licensed. The latest contribution was made in the fall
last year. The default validator produces error records with the following from the set of
requested information: message, value, path in the instance, and path in the schema.

1 9

https: //github.com/Julian/ j sonschema
2 0

https: //github.com/swaggest/php-j son-schema
2 1

https: //github.com/opis/j son- schema
2 2

https: //github. com/qri-io/j sons chema

19

Tool Draft version Error feedback Contribution License
Json .NET Schema
Manatee.Json
A J V
Networknt
FastJsonSchema
Jsonschema
Swaggest
Opis
Qri.io

7
2019-09

7
2019-09

7
7
7
7
7

11
10
10
7
5
8
6
7
10

05/20
05/20
05/20
05/20
03/20
05/20
04/20
08/19
05/20

Apache 2

Apache 2
BSD-3-Clause

AGPL-3.0

MIT

MIT
MIT

MIT
MIT

Table 2.2: Shortlist of the compared validators.

As a result, Json .NET Schema was chosen as a library for the back-end of the application
based mainly on the level of detail which it provides as part of the error feedback and also
because it is a complete tool-set for manipulation with JSON Schema, such as creating
and/or updating the definitions of the schema. On top of that, the fact that it can be
referenced from a .NET Core application allows for the consuming project to be multi-
platform.

2.4 Used Technologies and Principles

This section lists and briefly describes the technologies and principles that this thesis and
mainly the implementation are based on.

2.4.1 Hyper Text M a r k u p Language & Cascading Style Sheets

H T M L is the most basic building block of the Web. It was first published as an Internet
draft in 1993. The language was created by T im Berners-Lee, and today it is maintained
by W3C, W H A T W G , and I E T F organizations [13]. The latest version is H T M L 5 , which is
used in this project.

CSS is a stylesheet language used to describe the presentation of a document written
in H T M L or X M L (including X M L dialects such as S V G , MathML, or X H T M L) . CSS
describes how elements should be rendered. It was developed by Hakon Wium Lie [12]
and is maintained by the W3C organization. The latest version is CSS3, also used in this
project.

2.4.2 JavaScript

JavaScript is a dynamic, lightweight, interpreted, object-oriented language with first-class
functions and is best known as the scripting language for Web pages [15]. It is the most
popular and used technology for client-side development. It was created by Brendan Eich
at Netscape in 1995, originally called Mocha and LiveScript [17]. Netscape submitted
the language for standardization to the European Computer Manufacturer's Association
(E C M A) , and because of trademark issues, the official name of JavaScript is "ECMAScript" .
For the same trademark reasons, Microsoft's version of the language is formally known as
JScript [8]. The latest version is ECMAScr ip t 2019 (the 10th Edition). This project is
using version ECMAScr ip t 2016 (the 7th edition).

20

2.4.3 C # and . N E T Core

C # is a general-purpose, type-safe, object-oriented programming language. The chief archi­
tect of the language since its first version is Anders Hejlsberg (the creator of Turbo Pascal
and architect of Delphi). The C # language is platform-neutral and works with a range of
platform-specific compilers and frameworks, most notably the Microsoft .NET Framework
for Windows [1]. The disadvantage of the .NET Framework is that it runs only on Windows
OS.

This issue is solved by .NET Core. It is a cross-platform (R Multiplatform), open-
source, and modular .NET platform for creating modern web apps, micro-services, libraries,
and console applications [10]. It is licensed under the M I T License. This thesis uses .NET
Core version 3.1 which is the latest version available.

The next release is scheduled to be released on November 2020 and it will be named
.NET 5 [11].

2.4.4 Client/Server Mode l

Client/server is an architectural pattern, which consists of two independent, computational
systems. Each of these two systems has its own role in their relationship. The commu­
nication is always initiated by the client machine, which makes a request to the server.
The latter processes the request and optionally evaluates eventual input data. After the
operation, it responds with either the result or, in case of a problem, an error back to the
client.

One server can listen to and serve multiple clients. This model is depicted in Figure 2.6.
Typically, the communication is network-based and uses the Hypertext Transfer Protocol,
described in the next section. The client is usually equipped with a user interface to interact
with the user.

Figure 2.6: A visual representation of a client/server model (taken from [4]).

21

2.4.5 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is used as an underlying technology for commu­
nication between the client-side and the web application programming interface. H T T P is
a stateless application-level protocol for distributed, collaborative, hypertext information
systems [7]. The communication is divided into requests and responses. H T T P defines
several methods, each with a different use. The most commonly used ones are summarised
in Table 2.3, along with their intended use.

Every H T T P request has a target, called a resource, which is uniquely identified by
a Unified Resource Identifier (URI). Along with the resource, each request must also include
a method, the version, headers, and optionally payload data separated by an empty line.
Listing 2.7 presents a simple H T T P request.

H T T P method Meaning
G E T Retrieve a resource
P U T Upload a resource
POST Send data
P A T C H Update a resource
D E L E T E Remove a resource

Table 2.3: The most common H T T P methods and their usage.

GET /hello.txt HTTP/1.1

User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.71 zlib/1.2.3

Host: www.example.com

Accept-Language: en, mi

Listing 2.7: A simple H T T P G E T request (taken from [6]).

The responses have a slightly different structure. It starts with the version, a numeric
status code, and a textual reason phrase. The latter double indicates the outcome of the
operation. It is followed by headers ended with an empty line, and the payload data come
last. Listing 2.8 shows how such a response could look like.

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

ETag: "34aa387-d-1568eb00"

Accept-Ranges: bytes

Content-Length: 51

Vary: Accept-Encoding

Content-Type: text/plain

Hello World!

Listing 2.8: A sample H T T P response to a request from Listing 2.7 (taken from [6]).

22

http://www.example.com

2.4.6 Web Application Programming Interface

A n application programming interface (API) can be perceived as a contract. This con­
tract then makes the connection between the author developer and the consumer (typically
also a developer) much more efficient since the interfaces are documented, consistent, and
predictable [9].

Web Application Programming Interface (Web API) is a pattern used for communication
between arbitrary computer programs, mainly (but not limited to) web browsers controlled
by users to website or a service on a remote machine. This communication is
realized by the H T T P requests and responses [2].

One of the most common and used types of an A P I is a RESTful A P I , which conforms to
the REST 2 '^ protocol. RESTful APIs can be used in situations where C R U D operations on
resources are required. It suits best with database-based applications or other data-oriented
ones. However, this project does not require all these actions, it only provides a few actions
like validating JSON documents against a schema and/or generating a schema based on the
input instance. In Chapter 4, you will find more details on how it has been implemented.

REST—Representational State Transfer
CRUD—Create, Retrieve, Update, Delete

23

Chapter 3

Design of J S O N Schema Maker

The analysis and design are an integral part of any software development cycle. Under­
standing and defining the requirements precisely allows for faster development and higher
quality of the end product. This chapter intends to introduce the reader with the motivation
for creating a new application and explain its architecture.

3.1 Outlining the Final Product

The core of the system will run as a web service on a server, providing a simple web A P I .
This service will be bound to a web user interface, and it will provide two basic operations:
generating a schema and validating an input JSON against a schema. The former will be
user-initiated, the latter will be triggered regularly, as needed, mostly by changing either
input(s) or the schema. This way, the usage of the application will be simple, without the
need of downloading and setting up any sources or libraries. The only prerequisites will be
a browser1 and an internet connection.

3.2 J S O N Schema Maker Requirements Specification

The primary goal of this application is to easily validate JSON documents. For every system
that comes into contact with some external data, the best practice should be to validate
them. This should not be an exception with JSON data to preserve safety, even though the
JSON Schema is not yet fully standardized. Furthermore, creating a schema by hand can
be really time-consuming, error-prone, and very ineffective.

That is the second goal that this application addresses. The users will benefit from
generating the schema. A l l they need to do is to provide some samples of JSON documents
and the skeleton for their schema will be ready in one click. It is vital to point out the word
skeleton from the previous sentence. It is still a machine-generated piece of information
which, in many cases, can not cover all of the semantics of the original data. So the user
is encouraged to review the output and change the details to fit his needs. Many of the
current generators lack this important feature.

What about another scenario, when a user already has a schema, but maybe wants to
include new data. Let us say that a policy has changed, and now his system does not require
certain properties, but their presence is not prohibited either, or include new fields. Instead

l rThe client-side implementation has a few requirements for all the features to function properly, described
in Section 5.1.

24

of manually adding and deleting definitions in the schema, updating it will be as easy as
pasting it in the editor and specifying new samples. The application will then return an
updated schema which will include the new definitions.

Since the very beginning of the project, some requirements emerged naturally, based
on the assignment itself. Others arose during a deeper analysis. The following is a list
of requirements posed on the resulting product. Table 3.1 contains the requirements with
a description and also references to the sections where they are discussed.

After exploring the existing solutions (see Section 2.2) for use-cases defined in this
section, there is no really a candidate that would satisfy all those conditions.

3.3 Designing Graphical User Interface

Creating a good, simple, and intuitive user interface can be a challenging task. As the
first impression can really make a difference, it is important to pay enough attention to its
design.

As depicted by Figure 3.1, the layout of the web page is divided into two main parts
that occupy most of the page, since those are the most important areas. On the left-hand
side is a place for the editor for input documents. This is where users will probably spend
the most time at. The black rectangles represent the editors, which the users will interact
with. The editor on the right half is for the schema. Just under both editors, there are
two file pickers, one for every editor. At the bottom is a palette with control buttons. The
left-most button opens up a dialog for configuration options. The dialog itself is shown in
Figure 3.2. There are buttons for clearing the contents of the editors. These buttons are
visually distinguished from the other buttons, they are red to express attention. The main
control button, which starts the generating process, is also emphasized by a darker color.
Remaining buttons are in light grey color.

Input JSON JSON Schema

Figure 3.1: The initial layout of the web page. The black areas represent the editors. File
pickers are underneath and a palette with placeholder buttons is at the bottom.

25

Configuration -

Tit •:• Description

Absolute URI - Default

- Examples

Read Only Wri te Only

» •
Schema version

draf t -7 •

Figure 3.2: The modal dialog containing configuration options.

The final design of the user interface has come through several changes and remakes.
Originally, everything was planned to be displayed on the page, with no hidden elements.
This was not an optimal solution since there would be less room for the important parts—
the editors. Because of this, the configuration has been designed to be an area appearing
outside of the view-port at first. This did not look very user-friendly, so a modal dialog
was finally picked final decision.

3.4 Architectural Overview of the Applicat ion

Since the initial planning phase, the application was designed with the client/server model in
mind. From the high-level architecture perspective, the system is not too complex—there is
no need for a database, the authentication, concurrency, nor routing. Therefore, monolithic
architecture was chosen. The client and the server sides will be described separately.

3.4.1 Server-Side Architecture

The server side of the application is rather straightforward in terms of design. For validating
an input against a schema, a simple wrapper over the Json .NET Schema framework2 is
sufficient, as it provides all the functionality needed. Two arguments are all that is needed
to be provided—a JSON document to be validated and the schema used for validating.
Table 3.2 then represents the body of an H T T P request.

Property Type Meaning
Json string JSON document to be validated
Schema string JSON Schema used for validating

Table 3.2: Body structure of an H T T P request for validation.

2

https: //github. com/ JamesNK/Newtonsoft. Json. Schema

26

As for generating a schema, the starting point is the original content (an empty schema
for the first time). Then there is a couple of options on how to process the input documents
and create the resulting schema. One way would be merging those inputs into a single
super-document and then treat this as a single input. This would be a rather non-trivial
task since the inputs can be very different from each other and it would require complete
pre-processing of the structures. Another possibility is generating the resulting schema
incrementally. First, an inter-schema is generated from each input independently. Then,
these are merged together to form the final schema (R Iterative). This option was
considered more suitable and was implemented.

The way how the schema will be generated is configurable with a few options. These
include the presence of selected annotations or setting strict policy on the presence of
an object's properties. This inclines to define a request structure which is explained in
Table 3.3.

Name Type Meaning

InputInstances string [] Collection of JSON instances
Schema string The current value of the schema (initially

empty)
Id bool Controls the presence of the Sid in the

nested schemas
SchemaVersion number Desired draft version of the schema
AbsoluteUri string The value for the Sid of the root schema
AllRequired bool Specifies if all object's properties are

mandatory
Addit ionalPropert ies bool Allows additional properties not present

in the properties keyword (objects only)
AdditionalItems bool Allows additional items not present in the

items keyword (arrays only)
Title bool Controls the presence of the title annota­

tion in the result
Description bool Controls the presence of the description

annotation in the result
Default bool Controls the presence of the default anno­

tation in the result
Examples bool Controls the presence of the examples an­

notation in the result
Readonly bool/null Controls the presence/value of the read­

only annotation
WriteOnly bool/null Controls the presence/value of the

writeOnly annotation

Table 3.3: The body structure of an H T T P request for generating a schema.

One more operation will be available, and it will generate a code snippet in a given
programming or scripting language which will serve as a validator of the JSON instances
against the current content of the schema. The request will need to include information
about the desired language and obviously the schema. The language is an enumeration
with the values described later in Section 4.2.2. This request is portrayed in Figure 3.4.

27

Name Type
ProgrammingLanguage number
Schema string

Table 3.4: The body structure of an H T T P request for generating a validation code snippet.

The server exposes a simple A P I for these three operations. Table 3.5 recaps the inter­
face.

Operation Endpoint URI Request body
Validation api/validate See Table 3.2
Generating a schema api/generate/schema See Table 3.3
Generating code snippet api/generate/snippet See Table 3.4

Table 3.5: Web A P I exposed by the server. A l l three operations are used with the H T T P
P O S T method.

Similarly, the responses will have a predefined structure whose purpose is easy processing
on the client-side. In case when everything goes fine, and the operation finishes successfully,
the response to a generation request contains the contents of the generated schema. The
validation response is composed of a boolean representing the status of the validation. In
addition to this flag, it contains a list of eventual errors, where each record can contain
nested error records. The complete structure of the error record is the same as discussed
in Section 2.3.

When the request finishes successfully, a 200 O K status code is used. On the other
hand, if it ends with a failure—often because of invalid request data—the response results
in a 400 Bad Request status code with more information in the response body about the
cause of the failure.

3.4.2 Client-Side Architecture

The client-side is all about the interaction with the user. Its purpose is to provide ways to
present the results to the user and to further manipulate with it. Since there is no need
for persisting data, the application is implemented as a single page (R Single-page). It
also takes care of reading local files (R Upload) and handling drag and drop (R Drop)
actions. To allow easy interaction with multiple inputs at the same time (R Inputs), the
editor for inputs uses a concept of tabs to quickly navigate between the currently open input
instances (R Multi input). The results of a validation aim for user-friendly presentation
so the incorrect parts can be easily located in both editors (R Error, R Invalid).

The possible states and activities are shown in Figure 3.3. Each input instance holds its
state, meaning that one input can be in state invalid JSON and another in the corresponding
state at the same time. Considering the state that the system is currently in, different
actions are possible to execute. A l l of the actions are triggered by user interactions, except
for the validation, which is executed whenever the contents of the editors change. Changing
the configuration does not change the state. Editing the inputs and the schema can be
performed by typing, undoing, redoing, pasting, uploading, or dropping files.

28

Requirement ID Description Section
R Generator The application generates a valid JSON Schema. 4.2
R Inputs The application accepts one or more input JSON

instances to generate the schema from.
3.4.2, 4.2

R Version The application supports at least draft-07 version
of JSON Schema.

4.4

R_Validate The application validates the input document
against the current content of the schema regu­
larly.

4.3

R Error A user-friendly message is provided upon failed
validation of input against a schema.

3.4.2,
4.1, 4.4

R Editors Input and output text areas are editable. 4.1, 4.4
R Syntax Editors of JSON and JSON Schema provide syn­

tax highlighting of their contents.
4.1

R Invalid Editors of JSON and JSON Schema underline an
invalid part of their content.

3.4.2, 4.1

R_Config The user can modify the configuration to control
how the schema will be generated.

4.2.1

R _ C o n f i g _ l The user can provide a URI to be used as an $ i d
of the root schema.

4.2.1

R_Config_2 The user can toggle the presence of the $ i d key­
word in nested keywords and sub-schemas.

4.2.1

R_Config_3 The user can mark the schemas to be read-only
and/or write-only.

4.2.1

R_Config_4 The user chooses which annotations (title, descrip­
tion, default, and examples) will be included in the
generated schema.

4.2.1

R_Config_5 The user can control if all properties of objects are
required.

4.2.1

R_Config_6 The user can control if additional properties of
objects are allowed.

4.2.1

R_Config_7 The user can control if additional items in arrays
are allowed.

4.2.1

R Iterative The application generates the output schema in
an iterative manner if used with more than one
input JSON instance.

3.4.1, 4.2

R_Multiplatform The application is platform-agnostic. 2.4.3
R Single-page The tool is a single-page web application. 3.4.2
R_Mult i_Input Editor for input documents can have multiple in­

put JSON documents opened at once.
3.4.2

R_Upload The user can upload input files as well as a schema. 3.4.2, 4.4
R _ D r o p The user can add files by dragging and dropping

to the editor areas.
3.4.2, 4.4

R_Tests The application's functionality is covered by auto­
mated tests.

5

Table 3.1: Requirements posed on the JSON Schema Maker.

29

Figure 3.3: Different states of the application and transitions between them. This is not
a representation of a „guard/action"! It uses this signature for simplifying purposes. Most
of the transitions are bi-directional. Actions for different orientations are separated by
a slash (/) to save space and keep the diagram clean and readable. The first number is
directed downwards, the optional second heads upwards. The terms (in)valid refer to the
syntactic correctness of a JSON format, while (not) corresponding mean the validity against
the schema. The transitions are explained in Table 3.6.

30

Transition # Explanation
1 Edit configuration
2 Clear input
3 Clear schema
4 Edit input to valid JSON
5 Edit schema to valid JSON Schema
6 Edit input to invalid JSON
7 Edit schema to invalid JSON Schema
8 Generate JSON Schema
9 Validation success
10 Validation failure

Table 3.6: Explanation of transitions in Figure 3.3

31

Chapter 4

Implementation Details of J S O N
Schema Maker

This chapter discusses the implementation details of plexSON. The implementation started
with an H T M L template page and basic styling. Then I continued with the back-end
development. The web A P I was created with the validator, and the generator part was
added subsequently. Lastly, the client-side was implemented as a presentation layer.

4.1 Third-Party Frameworks and Libraries

There were several third-party libraries used in this project to simplify the development.
Most of them are licensed under M I T if not stated otherwise, and they are documented in
this section.

Boots t rap

This project uses the popular front-end framework Bootstrap 1. It is an open-source project
created at Twitter 2 . Using Bootstrap, styling a web page is accomplished by applying
special classes directly to the H T M L elements. The main advantage of using this library
is a responsive design out-of-the-box. However, the responsiveness is only partial. The
current version of the framework is 4.4. It also provides a lot of icons, which are used
instead of some buttons captions.

j Query

To simplify traversing and manipulating the H T M L document and its elements and to
unify the JavaScript interpretation across different browsers, this application is using the
j Query 3 library. This library can be also used for making asynchronous calls from the client
JavaScript to a server, but another way was used for this purpose which will be described
later. The latest version of the jQuery framework is currently 3.5, while in this project is
used the version 3.4.1.

x

https://getbootstrap.com/
2

https: //twitter.com/
3

https://jquery.com/

32

https://getbootstrap.com/
https://jquery.com/

Fetch A P I

The Fetch A P I provides an interface for fetching resources (including across the network).
It also defines related concepts such as C O R S 1 and the H T T P origin header semantics [16].
The Fetch A P I conforms to the Fetch Standard''. The request can be made by invoking the
global fetchO method.

Monaco Editor

The Monaco Editor is the code editor that powers Visual Studio Code IDE. It supports
Classic Edge, Edge, Chrome, Firefox, Safari, and Opera browsers [14]. It is an open-source
project of Microsoft, written in TypeScript language. For this thesis, the version 0.19.3 is
used, which is the second latest one. The latest version available is 0.20.0.

Monaco already has strong built-in support for JSON language mode, including syntax
highlighting (R Syntax) and validation of JSON syntax (R Invalid). Furthermore, it
also provides validation against a JSON Schema, but this feature is not used in order to
craft own, more accurate error feedback upon failed validation (R Error).

Except for Monaco, other web components were considered for realizing the editors,
mainly Code Mirror 6 and Ace , but Monaco provides the best functionality and user expe­
rience for this particular use-case.

Newtonsoft

As for the back-end production code, two libraries were used as NuGet 8 packages. They
are both from the same author and historically they were part of one package, but Json
.Net Schema was later extracted to its own package.

Json . N E T 9 is the most popular .NET library overall. It is a complete framework for
JSON serialization and deserialization.

Json .NET Schema 1 0 extends the general Json .NET package with operations related
to JSON schemas, like creating, generating, and validating. This package is used under the
A G P L 3.0 license as described in Section 2.2.

4.2 Implementing the Generator Part

The generation of resulting schema is a multi-step process, as mentioned in Section 3.4.1.
After checking all the input parameters, a type-specific generator's FillSchema method is
called to generate applicable schema definitions. The decision which generator should be
used is determined by the type of the input instance itself. Different type generators are
displayed on the class diagram, in Figure 4.1.

When all inputs have their own schema generated (R Inputs), they are all combined
together to create the resulting schema. Starting with the original schema, the doubles of the
schemas are merged into one and in this way reduced to one, final schema (R Iterative).

4CORS—Cross-Origin Resource Sharing
5 https: //fetch.spec.whatwg.org/
6https://codemirror.net/
7 https: //ace.c9.io/
8NuGet is a package manager for .NET
9 https: //www.newtonsoft.com/json

1 0 https: //www.newtonsof t.com/ j sonschema

33

http://spec.whatwg.org/
https://codemirror.net/
http://www.newtonsoft.com/json
http://www.newtonsof

«lnterface»
IBaseTypeGenerator

+ FillSchema(JToken, JSchema, string, Options): void
+ JoinSchemas(JSchema, JSchema, JSchema): void

P7
 S

\
String TypeGenerator Array TypeGenerator

- Comparer: IEqualityComparer<JSchema>

- FillSchema(JToken, JSchema): void

• •

BooleanTypeGenerator ObjectTypeGenerator

- Comparer: IEqualityComparer<JSchema>

- FillSchema(JToken, JSchema): void

«Abstract»
NumberBaseTypeGenerator

+ abstract FillSchema(JToken, JSchema, string, Options): void

Z! ; v
FloatTypeGenerator IntegerTypeGenerator

- FillSchema(JToken, JSchema): void - FillSchema(JToken, JSchema): void
+ override FillSchema(JToken, JSchema, string, Options): void + override FillSchema(JToken, JSchema, string, Options): void

Figure 4.1: Class diagram describing different type generators.

The main logic for this resides in the MergeSchemas method of the SchemaGenerator class,
which handles the whole generation process. The merging starts with the general keywords
and annotations. Since the schemas can all describe different types and the resulting schema
can contain multiple type-specific keywords, all type generators are used in the next step,
more specifically their JoinSchemas method.

It is worth noting that the generators are as restrictive as possible in the generation
phase. That means they use const keyword and strict ranges, where applicable (e.g. number
types boundaries, string length, array capacity, etc.). Similarly, during joining schemas, it
tries to apply the const keyword, if that can not be accomplished, it creates an enum of the
two const values and then further expands the values. This happens only until the number
of items in the enum exceeds a threshold, then the keyword is dropped to prevent expanding
it infinitely. The threshold was set to 6 items after an agreement with the supervisor.

The user's definitions are preserved whenever possible. This applies, e.g. when joining
the items keyword for array instances. The generators use the tuple validation, but if the
user's schema uses the list validation, the result will also contain list validation.

34

4.2.1 Generator's Configuration Options

The process of generating the JSON Schema can be configured by the user in certain ways
(R Config). Generally, this applies mainly to non-type-specific keywords and annota­
tions, but there are a few options that are relevant only to objects and arrays.

The user can provide a URI that will be used to identify the generated schema. The
value will be then included as an $id on the top level of the schema (R Config 1). The
value must be a valid URI . Otherwise, the generation will not succeed and show an error
message to the user about an invalid URI.

Since the JSON Schema allows to specify the $id keyword in any nested level, the user
can decide whether the generated schema will contain these keywords (R Config 2).
A simple switch is used to control this behaviour.

The presence of the readonly and writeOnly flags is also controlled by the user's choice
(R Config 3). To distinguish the value false of these keywords and the desire not to
include them at all, check-boxes could not be used. Instead, selections with three options
are available.

The application can pre-fill some of the available annotations for the user. The pres­
ence of every annotation can be toggled independently (R Config 4). Titles and
descriptions use a placeholder text that is meant to be replaced by the user. Defaults
are populated by the usual default values in programming languages—an empty string, 0,
false, an empty object, or an empty array, depending on the type of the value. Examples
are populated by the actual value in the input JSON document.

The next two options are used with object types. The first specifies if all of the prop­
erties of the object from the input JSON should be included in the required keyword
(R Config 5). This is equivalent of injection if we assume the properties of the input
J S O N as a domain and the properties of a set of all acceptable samples as a codomain. The
other option is used to allow any additional properties on top of those that are present in
the object (R Config 6). When disabled, this represents a surjection, using the same
assumption from before.

The last option is similar to the previous one, but this time it applies to arrays (R Con­
fig 7). Figure B.6 represents the modal dialog with all the options mentioned in this
section.

4.2.2 Code Snippets for J S O N Validators

For cases when the user would like to integrate a validator into his application, plexSON
has a feature for generating a validation code snippet for a few programming languages.
Currently, C# , Go, Java, JavaScript, PHP, and Python are supported. The code snippet
serves as a template for those languages which will create a simple class with one method,
accepting one string parameter (in the snippet for Python it is not a string, but a JSON
value already) representing the JSON instance. The code snippets use the validators de­
scribed in Section 2.3—Json .NET Schema for C# , Qri for Go, Networknt for Java, A JV
for JavaScript, Opis for PHP, and Jsonschema for Python. A n example of the output can
be seen in Figure B.3 in appendices.

The actual implementation is very straightforward. The only important part is to escape
the schema string correctly according to the syntax of the selected language.

35

4.3 Component for Validating Against a Schema

Outside the preparation of the parameters and error handling, the validation is completely
delegated to the Json .NET Schema package. At first, the input instance and the schema
are parsed to the internal representation (JToken and JSchema objects), and the validation
is accomplished by a single call on the JToken object, as shown by Listing 4.1. The result
and the errors are then used to form the response object.

bool valid = json.IsValid(schema, out IList<ValidationError> errors);

Listing 4.1: Example usage of the Json .NET Schema validator. The valid variable contains
the validation result. In case of a failure, all information will be saved in the errors variable.

4.4 Client-Side Implementation

The client-side implementation is divided into a few parts based on the functionality they
provide. Each of those parts is explained in more detail in this section. Figure 4.2 shows
a class diagram of the client-side.

Utils

TabService

Validator

FileService

App

Figure 4.2: Class diagram of the client-side implementation.

Editors

Everything related to the interaction with the editor is present in the editorservice. js
file. This includes creating the editors, manipulating with their content, but also providing
an interface to other components.

36

The Monaco Editor is used with a concept of models. A n editor instance is usually
created with an already existing model, but it is optional. Upon creating a model, one
assigns it a URI to identify it, specifies a language mode, and the initial textual content.
Each language can be further configured. In case of a JSON language mode, which is used
by this application, there is a possibility to allow comments, enable validation, and even
specifying a JSON Schema. This feature is used to validate the content of the editor for
schemas. It was originally meant to also be used in the editor for the inputs for a while,
which meant there would be no need to use a third-party validator. Unfortunately, while
the invalid parts are highlighted by underlining, the messages are not as user-friendly as
required. It states the problem but does not mention the path in the schema where the
definition is violated.

These models are then attached to the editor instance. Each model has its state, which
is beneficial in e.g. preserving an undo/redo stack or the position of the cursor when the
model of an editor changes. This implies that an editor's model can be changed anytime.
This feature comes handy when having multiple files open in one editor, which is the case
in this project. The editor for validation code snippets is read-only. Its content can not be
changed by the user. Figure 4.3 depicts the Editor Service class.

EditorService

- inputEditor: IStandaloneEditor
- schemaEditor: IStandaloneEditor
- snippetEditor: IStandaloneEditor

- createEditor(string, ITextModel): IStandaloneEditor
- onContentChanged(bool): void
- setJsonDefaultsQ: void
+ createModel(string, Uri): ITextModel)
+ clearlnput(): void
+ clearSchema(): void
+ setSchemaContent(string): void
+ getlnputModel(): ITextModel
+ getCurrentlnput(): string
+ getSchemaModelQ: ITextModel
+ getSchemaContent(): string
+ getSchemaMarkers(): number
+ setMarkers(IMarkerData[]): void
+ deleteAlllnputMarkers(): void
+ getSnippetContent(): string
+ setSnippetContent(string, string): void

Figure 4.3: Preview of the EditorService class.

Tabs

When using multiple input instances, each of them is represented by its own tab. In the
beginning, an empty tab is already prepared, so the application is ready to be used. New
tabs are created when uploading files or manually, like in web browsers. Tabs can be closed
as well. After closing the last opened tab, an empty one is created. The editor can not be
closed as a whole. Creating, destroying, and switching between the tabs is a responsibility
of tabservice. js. The editor for the schema does not use tabs, as working with multiple
schemas at a time is not in the scope of this work. Figure 4.4 depicts the TabService class.

37

TabService

- tabid: number
- tabs: object[]
- editorService: EditorService
- validator: Validator

+ createTabflTextModel, string): void
+ changeTab(HTMLLIEIement, number): void
+ getTabModelContent(number): string
+ destroyTab(HTMLLIEIement, number): void

Figure 4.4: Preview of the TabService class.

Files

Various tasks related to files are implemented in f ileservice. j s. Only the files containing
json in their Content-Type property are processed, others are ignored. It is important to
note, that only browsers supporting the FileReader from the File A P I specification 1 1 can
use this feature. A l l major browser support it, so it should not cause any impediments.

The files are read asynchronously after selecting files by the file picker (R Upload)
or by dragging and dropping over an editor (R Drop). This will work only if the files
are dropped exactly over the editors. Regarding the editor for the schema, only one file is
allowed. If multiple files are attempted to open, only the first one is processed. Figure 4.5
depicts the FileService class.

FileService

- editorService: EditorService
- tabService: TabService

- saveAsfstring, string, string): void
- handleDragOver(Event): void
- handlelnputFileSelect(Event): void
- handlelnputSelectDrop(Event): void
- setlnputContent(FileList): void
- handleSchemaFileSelect(Event): void
- handleSchemaSelectDrop(Event): void
- setSchemaContent(File): void

Figure 4.5: Preview of the FileService class.

Validating

Validator, js is responsible for managing the validations. The current contents of both
editors are used to form a validation request to the server. The response is processed, and
the user interface changes accordingly: if the input instance is valid, a green message about
successful validation will appear under the editor for inputs, but in case of any validation
error, a red message is displayed, the problematic parts are underlined with yellow, wavy
lines, and further details will appear after hovering the mouse over the underlined text.
The details include a path to the violated schema definition. Figures B.2 and B . l show the
result upon failed validation.

n

https://w3c.github.io/FileAPI/#dfn-f ilereader

38

https://w3c.github.io/FileAPI/%23dfn-f

A similar red message is also used to inform the user when either of the editors contains
an invalid JSON. In this case, the underline decorations are red.

In order to reuse relevant validation results as much as possible, the application caches
them so that a new request is not initiated when not needed. This might be just switching
between tabs without actually changing the contents. Each tab's validation result is cached
at the end of processing the response. Figure 4.6 depicts the Validator class.

Validator

- endpointUri: string
- editorService: EditorService

+ validateCurrentlnput(): void
+ printStatusMessage(number): void
+ toggleSchemaMessage(bool): void
- processValidationResult(object): void

Figure 4.6: Preview of the Validator class.

Utils

The functionalities, that are relevant for multiple components, are stored in utils.js.

It provides methods for making H T T P requests to the back-end, copying content to the
clipboard, showing various notifications to the user in the form of toast messages which
can be seen in Figure B.4, and also manipulating with the mentioned cache. The meta-
schema 1 2 for the JSON schemas (JSON Schema draft-07 version—R Version), which is
used to validate the content of the editor for the schema, is also stored here. Figure 4.7
depicts the Utils class.

Utils

+ needsValidation: bool
+ validationCache: object
+ metaSchema: object

+ postDatafRequestlnfo, object): Promise
+ showToastMessagefstring, string): void
+ createToastfstring, string): void
+ copyToClipboard(string): void
+ getFromCache(string): object I undefined
+ saveToCachefstring, number): void
+ deleteCache(string): void
+ invalidateCachef): void

Figure 4.7: Preview of the Utils class.

App

The starting point of the actual client-side logic resides in app. js. The initialization of,
e.g. tool-tips over the buttons is here, along with registering the event handlers. The
validation requests are fired periodically every two seconds if the contents have changed

1 2

https: / / j son-schema.org/ specif i cat ion.html#meta- schemas

39

http://son-schema.org/

since the last validation. Similarly, it prepares the generation request and handles the
response (updating the content in the editor for the schema or showing an error message if
anything goes wrong). Figure 1.8 depicts the App class.

App

- untitledCount: number
- editorService: EditorService
- fileSerivce: FileService
- validator: Validator
- tabService: TabService

- addToSchemaf): void
- newTabf): void
- generateSnippetf): void
+ Startf): void

Figure 4.8: Preview of the App class.

40

Chapter 5

Evaluation of Implemented
Solution

Verification of an application's functionality is an integral part of any software develop­
ment cycle. Before the development of the production code, automated unit-tests were
prepared to quickly verify the final product's functionality during the development. After
the first prototype was finished, end-to-end tests were added to verify the overall functional­
ity (R Tests). The application passed both of the W3.org's markup 1 and style 2 validators
successfully.

5.1 Uni t Tests

Because of the low complexity of the server-side component's architecture, the unit tests
were chosen to assure the verification. Several tests were created to test both endpoint
URLs . There are a total of 26 unit tests, and they belong to a separate project. As
a testing framework was chosen NUni t 3 . Listing 5.1 shows a simple test usage with this
framework. The tests can be run in different ways. The easiest might be running it from
the command-line with the dotnet test command followed by the project or solution
containing the tests. During the development, it is useful to run them directly from an IDE
like Visual Studio with an extension like ReSharper 1 providing a test runner. The NUnit
also provides a console runner.

using NUnit.Framework;

namespace Test.Project

{

[TestFixture]

public class Tests

{
[Test]

public void Test()

{

x

https: //validator.w3.org/nu/
2

https: / / j igsaw.w3.org/ess-validator/
3

https: //nunit.org/

https: //www. jetbrains.com/resharper/

41

http://w3.org/nu/
http://igsaw.w3.org/
http://jetbrains.com/resharper/

Assert.AreEqual(4, 2+2);

}
}

}

Listing 5.1: Writing unit test with NUnit 3.

These tests cover R Inputs and R Config.

5.2 End-To-End Tests

To verify the overall functionality of the application, a suite of end-to-end (E2E) tests was
created. Similarly to the unit tests, they were developed using the NUnit framework. Addi­
tionally, Selenium 5 was chosen as browser automation project with WebDriver 6 implemen­
tations for Google Chrome (ChromeDriver 7), Mozilla Firefox (GeckoDriver 8, Mozilla Public
License), Opera (OperaDriver 9), and the new Microsoft Edge (Microsoft Edge Driver 1 0) ,
all under BSD-3-Clause License, except for GeckoDriver. Figure 3.3 served also another
purpose than its original one: it was used as a source for defining a test suite for E2E
testing. A l l browsers passed the test suites. For specific versions tested, refer to Table 5.1
in the next section.

During E2E testing, which consisted of a total of 36 test cases, several minor defects in
the application were discovered and addressed. The problems resided in wrongly leaving
action buttons allowed when they should be disabled. These tests also discovered a slightly
different interpretation of some JavaScript features by different browsers, like static class
fields.

The E2E test category covers R Validate and R Editors.

5.3 Exploratory Testing

On top of the automated test suites, manual exploratory testing was required for verification
of the part of the application's workflow, mainly the use-cases tied with the interaction with
files. The main reason was the lack of possibility to test the uploading of files. This also
included functionality of the tabs. The configuration was also tested manually due to the
nature of the editor's implementation since it does not provide easy access to its content
for automated testing.

Manual testing was required to cover R Error, R Syntax, R Invalid, R Inputs,
R Upload, and R Drop. The test scenarios included:

• uploading and dropping JSON file(s)—successful loading in editors,

• uploading and dropping non-JSON file(s)—ignored, skipped their loading,

• downloading the editors' contents—successful saving with correct file name and con­
tent,

5

https: //www.selenium.dev/documentation/en/
6

https: //w3c.github.io/webdriver/
7

https: //chromedriver.chromium.org/
8

https: //github.com/mozilla/geckodriver
9

https: //github.com/operasoftware/operachromiumdriver
10

https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/

42

http://www.selenium.dev/documentation/en/
http://chromedriver.chromium.org/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/

• copying the editors' contents to the clipboard,

• creating, switching, and closing tabs of the editor for inputs—predictable switching
to another tab when closing the currently active one,

• appearance and automatic hiding of toast messages after timeout,

• displaying and stacking of multiple toast messages in a natural manner,

• marking an invalid or not corresponding part of the JSON document/schema,

• appearance and content of the error messages displayed upon hovering mouse over an
invalid or not corresponding part of the JSON document/schema, and

• generating code snippets for JSON validators for the current schema

5.3.1 Demonstration of the Application's Functionality

A n artificial use cases demonstrating the functionality of the application were preformed
and the results are saved in plain text files. Each of these files represent a single use case.
These files contain a short description of the given example, the generation request, i.e. all
input instances and the whole configuration, and the resulting schema as the output. The
results are saved in the examples folder (see the project folder structure in Appendix A) .

5.4 Compatibili ty Testing

The application was tested on the following browsers with their versions as depicted by
Table 5.1.

Browser Version
Google Chrome 81
Mozilla Firefox 75
Opera 67
Microsoft Edge (Chromium) 81

Table 5.1: Verified browsers and tested version.

Microsoft Internet Explorer can not be used as it does not implement JavaScript classes,
which are used in the application. Similarly, the legacy Microsoft Edge browser, using the
EdgeHTML engine, does not support class fields and thus does not provide enough features
for the application to function properly.

The application was developed on the Windows platform, while R Multiplatform
was verified by running the application inside a Linux container.

43

Chapter 6

Conclusion

The goal of this thesis was to design and implement a single-page application for manip­
ulation with JSON schemas, including generating them and validating JSON documents.
After researching existing solutions with a similar purpose, the application fills a gap in
the market. The innovative feature is the ability to produce a JSON Schema from multiple
JSON instances at once while supporting the draft version 07 of the JSON Schema.

The project was implemented with portability in mind, which influenced the selec­
tion of the technologies to use. The most important operations—that are validating and
generating—are implemented as web A P I endpoints. This allows for easy replacement of
the presentation layer, should it be required in the future. Also, the endpoints can be used
by external tools and programs, e.g. to validate incoming JSON data. The web interface
takes advantage of the powerful Monaco editor, known from the most popular and free VS
Code environment.

The functionality of the application was verified throughout the development by au­
tomated tests of multiple levels, like the unit and end-to-end tests. Additionally, manual
interaction was performed with different browsers to ensure compatibility and the same
behaviour across them. Sample outputs of the applications are included to demonstrate
the functionality, see included storage media.

To further develop and enrich the application, several possible enhancements come to
mind. These could include reverse inferring of a sample JSON document from the schema,
to quickly illustrate its structure by an example. Another useful feature could be extending
the supported versions of the JSON Schema draft, and the eventual standard, should it be
released. The desired version would be selected as part of the configuration.

6.1 Unfinished Functionality

In the final stages of the semester, I started to develop a feature beyond the assignment
which would allow the user to select and load publicly available JSON Schemas from the
schema store1. Unfortunately, it could not be finished due to certificate issue on the schema
store's website and the lack of time to solve or workaround it. Because of this, plexSON's
JavaScript code was not able to fetch the schemas. Nevertheless, the code is present, but
commented-out. The preview of this feature can be found in Figure B.5.

x

http: //s chemastore. org/ j son/

44

Bibliography

[1] A L B A H A R I , J . and A L B A H A R I , B . C# 7.0 in a Nutshell. 7th ed. O'Reilly Media, Inc.,
2017. ISBN 978-1-491-98765-0.

[2] A P I G E E C O R P . Web API Design: The Missing Link [online]. Google, L L C , 2018 [cit.
2020-04-04]. Available at: https://pages.apigee.com/rs/351-WXY-166/images/Web-

design-the-missing-link-ebook-2016-ll.pdf.

[3] B R A Y , T . The JavaScript Object Notation (JSON) Data Interchange Format
[Internet Requests for Comments]. R F C 7159. R F C Editor, March 2014 [cit.
2020-06-02]. http://www.rfc-editor.org/rfc/rfc7159.txt. Available at:
http ://www.rf c-editor.org/rfc/rfc7159.txt.

[4] C H A N D , B . Difference between Client-Server and Peer-to-Peer Network [online]. 2019
[cit. 2020-04-04]. Available at: https://bimalchand.com.np/difference-between-

client-server-and-peer-to-peer-network/.

[5] D R O E T T B O O M , M . Understanding JSON schema [online]. 2020 [cit. 2020-03-17].
Available at: https: / / j son-schema.org/understanding-j son-schema/index.html.

[6] F I E L D I N G , R. and R E S C H K E , J . Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing [Internet Requests for Comments]. R F C 7230. R F C Editor, June
2014 [cit. 2020-04-04]. Available at: http://www.rfc-editor.org/rfc/rfc7230.txt.

[7] F I E L D I N G , R. and R E S C H K E , J . Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content [Internet Requests for Comments]. R F C 7231. R F C Editor, June 2014
[cit. 2020-04-04]. Available at: http://www.rfc-editor.org/rfc/rfc7231.txt.

[8] F L A N A G A N , D . JavaScript: The Definitive Guide. 6th ed. O'Reilly Media, Inc., 2011.
ISBN 978-0-596-80552-4.

[9] J A C O B S O N , D . , B R A I L , G. and W O O D S , D . APIS: A Strategy Guide. 1st ed. O'Reilly
Media, Inc., 2011. ISBN 978-1-449-30892-6.

[10] L A N D E R , R. Announcing .NET Core 1.0 [online]. Microsoft, June 2016 [cit.
2020-03-13]. Available at:
https: //devblogs. microsoft.com/dotnet/announcing-net-core-1-0/.

[11] L A N D E R , R. Introducing .NET 5 [online]. Microsoft, may 2019 [cit. 2020-03-13].
Available at: https://devblogs.microsoft.com/dotnet/introducing-net-5/.

[12] L I E , H . W . Cascading HTML style sheets - a proposal [online]. 1994 [cit. 2020-04-12].
Available at: https://www.w3.org/People/howcome/p/cascade.html.

45

https://pages.apigee.com/rs/351-WXY-166/images/Web-
http://www.rfc-editor.org/rfc/rfc7159.txt
http://www.rf
http://c-editor.org/rfc/rfc7159.txt
https://bimalchand.com.np/difference-between-
http://son-schema.org/understanding-
http://www.rfc-editor.org/rfc/rfc7230.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
http://microsoft.com/dotnet/announcing-net-
https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://www.w3.org/People/howcome/p/cascade.html

[13] L U B B E R S , P., A L B E R S , B . and S A L I M , F . Pro HTML5 Programming: Powerful APIs
for Richer Internet Application Development. 1st ed. Apress L . P . , 2010. ISBN
978-1-430-22790-8.

[14] M I C R O S O F T C O R P O R A T I O N . Monaco Editor [online]. 2020 [cit. 2020-03-13]. Available
at: https : //microsoft.github.io/monaco-editor/index.html.

[15] M O Z I L L A C O N T R I B U T O R S . About JavaScript [online]. 2020 [cit. 2020-03-13]. Available
at: https://developer. mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript.

[16] M O Z I L L A C O N T R I B U T O R S . Fetch API [online]. 2020 [cit. 2020-04-12]. Available at:
https: //developer.mozilla.org/en-US/docs/Web/API/Fetch_API.

[17] R A U S C H M A Y E R , A . Speaking JavaScript. 1st ed. O'Reilly Media, Inc., 2014. ISBN
978-1-449-36503-5.

[18] W O O T T O N , J . JSONschema.Net [online]. 2020 [cit. 2020-04-01]. Available at:
https: / / j sonschema.net/home.

[19] W R I G H T , A . and A N D R E W S , H . JSON Schema: A Media Type for Describing JSON
Documents [Working Draft]. Internet-Draft draft-handrews-json-schema-01. I E T F
Secretariat, March 2018 [cit. 2020-06-02]. Available at:
http://www. ietf.org/internet-drafts/draft-handrews-j son-schema-01.txt.

[20] W R I G H T , A . , A N D R E W S , H . and L U F F , G . JSON Schema Validation: A Vocabulary
for Structural Validation of JSON [Working Draft]. Internet-Draft
draft-handrews-json-schema-validation-01. I E T F Secretariat, March 2018 [cit.
2020-06-02]. Available at: http:

//www. ietf.org/internet-drafts/draft-handrews-j son-schema-validation-01.txt.

46

https://developer
http://mozilla.org/en-US/docs/Web/
http://sonschema.net/home
http://www
http://ietf.org/
http://ietf.org/

Appendix A

Contents of the Included Storage
Media

The attached C D contains the following folder structure:

• examples/ - reports of the artificial use cases demonstrating the application's func­
tionality

• src/

— PlexSON.API/ - project containing the server-side implementation

— ess/ - contains the style sheet definitions

— js/ - client-side implementation and jQuery minified source

— monaco-editor/ - sources of the Monaco editor component

— index. html - mark-up of the web page

• out/ - compiled, executable computer program

• thesis/ - source files of the thesis text with figures and assignment

• tests/ - project containing automated tests

• xfujacOO-plexson.pdf - Text of the technical report

Refer to the README.md for instructions on how to build, run, test, deploy, and use
PlexSON.

47

Appendix B

Screenshots of the Web
Application

Figure B.2 is a preview of the final visual appearance of the application. This specific
screenshot was chosen because it presents the most features on a single screen. A l l actions
are possible to execute at this point.

The details of validation failures are presented in Figure B . l . Hovering the mouse on
the yellow-underlined text in the editor displays the messages.

A n example of a validation code snippet for JavaScript language can be seen in Fig­
ure B.3.

Even thought the feature for loading and using schemas from the schema store is not
part of the final version, here is a preview of how it would look like. Figure B.5 captures the
top-right corner of the page, where above the editor for the schema would be a select-box
with public schemas. The default Custom schema option would be automatically selected
upon any manipulation with the schema editor not to mislead the users that they still have
the original schema loaded.

3SON does n o t ma tch schema f r o m ' e l s e ' .
Schema p a t h : h t t p : / / e x a m p l e . e o m / e x a r a p l e . j s o n # / e l s e

R e q u i r e d p r o p e r t i e s a r e m i s s i n g f r o m o b j e c t : s t r e e t a d d r e s s .
Schema p a t h : h t t p : / / e x a m p l e . c o m / e x a m p l e . j s o n

Peek Problem No quick fixes available

S t r i n g ' 1 0 0 0 0 ' does n o t ma tch r e g e x p a t t e r n ' [A - Z] [0 - 9] [A - Z]
[0 - 9] [A - Z] [0 - 9] " .
Schema p a t h :

h t t p : / / e x a m p l e . c o m / e x a m p l e . j so n # / e l s e / p r o p e r t i e s / p o s t a l _ c od e

Peek Problem No quick fixes available

Figure B . l : Sample details of each validation error from Figure B.2.

18

http://example.eom/exaraple.json%23/else
http://example.com/example.json
http://example.com/example.j

plexSON ©

C O

Input JSON

example.json Untit led-1

2 "country": "Canada"j
3 "postalcode": " 1 0 0 0

.or choose file(s)

x Your JSON is invalid against the schema.

JSON Schema

"$schema": "http://json-schema.org/draft-07 /scr ieiTia",
3 "type": "object",
4 "properties": {
5 "street address": {
6 "type": " s t r i n g "

7 } ,

S "country": {
9 "enuni": ["united states of America", "Canada"]

10 }

11 }j

12 "if": {
13 "properties": { "country": { "const": "United States of

14 },
15 "then": {
16 "properties": { "postal_code": { "pattern": "[0-9]{5}(-[

18 "else": §
19 "properties": { "postalcode": { "pattern": "[A-Z][0-9][

..or choose a file Browse

B q a a

Figure B.2: The final layout of the application with an example of a failed validation.

http://json-schema.org/draft-07/scrieiTia

Validation snippet

Python

$ pip i n s t a l l jsonschema
from jsonschema import Draft7Validator

class Validator:
def i n i t (s e l f) :

self.schema - {'^schema": "http://json-schena.org/draft-07/sthema" ; F"type ,•:
tr y :

Draft7Validator.check_schema(self.schema)
except jsonschema.exceptions.SchemaError:

print('Invalid schema")

def v a l i d a t e (s e l f , json):
v = Draft7Validator{self.schema)
errors = []
for error i n v.iter_errors{json):

errors.append(error)
v a l i d - len(errors) — a
return self.ValidationResult(valid, errors)

class ValidationResult:
def i n i t { s e l f , v a l i d , e r r o r s) :

s e l f . v a l i d = v a l i d
self.errors - errors

Figure B.3: Preview of the validation snippet modal dialog for Python.

JSON Schema SUCCESS

Copied to cl ipboard.

Figure B.4: Example of a notification toast message.

JSON Schema

Custom schema S

2 " í s c h e m a " : " h t t p : / / j s o n - s c h e m a . o r g / d r a f t - e 7 / 5 c h e m a " ,

Figure B.5: Preview of the unfinished schema store support.

50

http://json-schena.org/draft
http://json-schema.org/draft-e7/5chema

Configuration

Schema version

draft-07

Absolute URI

i(B_.J $id in sub-schemas

Reac Only

Write Only

Annotations

• ' Title

• • Description

O Default

AD Examples

Objects

f) All properties
required

• • Allow additional
properties

Arrays

• • Allow additional
terns

Figure B.6: Modal dialog with configuration options.

51

