

Czech University of Life Sciences

Faculty of Economics and Management

Department of Information Engineering

TRANSPARENT AND IRREVERSIBLE

DATA USING BLOCK CHAIN

BACHELOR THESIS

Marek ŠÍP

© 2016 CULS Prague

Transparent and Irreversible data using Block

chain

This thesis will be dedicated to analysis of Block chain technology as a trust-free system

for transparent and irreversible data exchange and storage. The principles of current and past

distributed transaction ledgers will be provided to accent the huge improvement within the

last years, mainly due to invention of Bitcoin, the decentralized currency system. Since that

time, block chain has been adapted and modified into decentralized voting, token exchange

or domain name registration systems.

Currently, the Block chain technology is considered to be as important as the invention

of internet itself. Block chain is considered to have potential to succeed due to its transparent,

privacy-enhancing, decentralize, trust-free and open-source development nature.

The work will be introducing advantages of decentralized applications used to overcome

imperfections of centralized systems such as, single point of failure and lack of transparency.

More specifically, this thesis will describe the engine and structure behind block chain.

Moreover, how society in general could benefit from its usage. The usage of Block chain

technology will be demonstrated by a smart-contract application built on top of Ethereum

platform.

Key words

Block chain, Ethereum, Bitcoin, dapp, consensus, decentralization, distributed timestamp

database, peer to peer and decentralized computing

Veřejná, neměnná data pomocí block chain

technologie

Tato práce je věnována analýze technologii blockchain, sloužící k trvalému

uchování veřejně přístupných dat uložených v uzlech peer-to-peer sítě. V současné době je

důležitost této technologie, prvně použité pro Bitcoin protokol, přirovnávána k samotnému

vynálezu World Wide Web, protože zcela mění pojem využívání internetu a současnou

architekturu klient-server na bezpečnou peer-to-peer komunikaci za pomocí kryptografie.

Stavebními kameny této technologie jsou vývojářská a uživatelská transparentnost a

decentralizovaná síť bez nutnosti důvěry v centrálního správce.

Od vynálezu Blockchain v roce 2009 byl tento protokol převzat, aby plnil funkci

registrací DNS domén, nebo implementaci transparentních a snadno auditovaných bank.

Velmi zajímavé využití navrhla společnost Ethereum Foundation., která vyvinula

platformu pro úložiště decentralizovaných aplikací. Tato platforma umožňuje využít

blockchain pro jakoukoliv aplikaci, např. finanční či demokratický systém.

Tato práce představí výhody decentralizovaných aplikací, které napravují hlavní

nedostatky současných centralizovaných systému, jako jsou riziko technického nebo

protiprávního selhání poskytovatele služby, MITM útoky a nedostatek transparentnosti.

Klíčová slova

Block chain, Ethereum, Bitcoin, dapp, konsenzus, decentralizace, distribuovaná časově

označená databáze, peer to peer a decentralizovaný výpočetní systémy

Declaration

I declare that I Marek Šíp have worked on my bachelor thesis titled “Transparent and

Irreversible data using Block chain” by myself and I have used only the sources mentioned

at the end of the thesis. As the author of the bachelor thesis, I declare that the thesis does not

break copyrights of any their person.

In Prague on 14.3.2016 ___________________________

Acknowledgement

I would like to thank Ing. Jiří Brožek, Ph.D for supervising my thesis, to ArrowSys s.r.o.

for providing exceptional testing environment and to all participants in block chain related

discussions in Paralelní Polis.

~ 1 ~

Table of Contents

1. Introduction .. 5

2. Objectives and Methodology ... 6

2.1 Objectives .. 6

2.2 Methodology ... 6

3. Account for technology ... 7

3.1 Bitcoin Block chain ... 7

3.1.1 Introduction .. 7

3.1.2 Block .. 8

3.1.3 Proof of work ... 8

3.1.4 Difficulty .. 10

3.1.5 Block structure ... 11

3.1.6 Block rewards .. 13

3.1.7 Merkle Trees .. 15

3.1.8 Transactions ... 16

3.1.9 Addresses ... 18

3.1.10 Hierarchical addresses ... 20

3.1.11 Account to Economic effect .. 20

3.1.12 Smart Contracts .. 20

3.2 Ethereum ... 21

3.2.1 Intention and goals ... 21

3.2.2 Smart contracts .. 22

3.2.3 Accounts .. 25

3.2.4 Transactions ... 25

~ 2 ~

3.2.5 Ethereum Virtual Machine ... 26

3.2.6 Gas policy .. 27

3.2.7 Scripting languages .. 28

3.2.8 Merkle Patricia trees .. 29

3.2.9 Differences from other block chains .. 29

3.2.10 Frontier release .. 30

3.3 Other similar platforms ... 30

3.3.1 Blockstream ... 30

3.3.2 Eris project ... 30

3.3.3 Maidsafe ... 30

3.4 Potential... 31

4. Practical usage of Ethereum Block chain .. 32

4.1 PureVote - Decentralized Voting Application .. 32

4.1.1 Prerequisites ... 33

4.1.2 Classes ... 34

4.1.3 Events ... 34

4.1.4 Methods ... 35

4.1.5 Publishing contract .. 35

4.1.6 Executing contract functions ... 35

4.1.7 Gas usage summary and cost ... 38

4.1.8 Confirmations .. 38

4.1.9 Evaluating results ... 39

5. Used environment .. 41

6. Discussion and Results .. 42

7. Conclusion ... 44

~ 3 ~

8. Bibliography .. 45

9. Appendix .. 47

9.1 Acronyms and used abbreviations .. 47

10. Supplements .. 48

~ 4 ~

List of Equations

Equation 1: Bitcoin block difficulty calculation (ANTONOPOULOS, 2014) 11

Equation 2: Bitcoin block reward halving (Harding, 2015) .. 14

List of Tables

Table 1: SHA256 computation example (Bitcoin Wikipedia community, 2016) 9

Table 2: Structure of block data (Harding, 2015) .. 12

Table 3: Structure of coinbase transaction (Bitcoin Wikipedia community, 2016) 15

Table 4: Gas costs per operation .. 28

Table 5: Contract testing fee overview .. 38

List of Figures

Figure 1: Block chain visualization (Harding, 2015) ... 8

Figure 2: Block chain difficulty historical chart (Blockchain Ltd., 2016) 10

Figure 3: Block #100 data .. 12

Figure 4: Merkle Tree scheme. Scheme drawn by author inspired from (ANTONOPOULOS,

2014) .. 16

Figure 5: Mist interface after publishing contract ... 36

Figure 6: Contract state after termination of Poll .. 40

file:///C:/Users/marek.ARR/Documents/University/bachelor-theses/blockchain-bt2.docx%23_Toc445388475
file:///C:/Users/marek.ARR/Documents/University/bachelor-theses/blockchain-bt2.docx%23_Toc445388477
file:///C:/Users/marek.ARR/Documents/University/bachelor-theses/blockchain-bt2.docx%23_Toc445388478
file:///C:/Users/marek.ARR/Documents/University/bachelor-theses/blockchain-bt2.docx%23_Toc445388478
file:///C:/Users/marek.ARR/Documents/University/bachelor-theses/blockchain-bt2.docx%23_Toc445388480

~ 5 ~

1. Introduction

In 2008 a revolutionary brand new currency system was proposed in a paper called

Bitcoin: Peer-to-Peer Electronic cash system. The system allows participants to transfer

value within a decentralized network, instead of trusting central authority. Thus, it became

obvious that more than a money, the concept that was Bitcoin built on top of, is a

decentralized trust system, rather than ordinary currency, which was in its case just an

application.

Until the invention of Bitcoin a person willing to use their cash electronically had to trust

central authorities such as banks. These entities were trusted to guard and transfer values

according to owner’s decisions and keep the entire history of transactions as a proof of

client’s account balance.

In the Bitcoin system, the transaction records and ownership authentications are proved

and managed by chain of digital signatures within a distributed database called Block chain

(Nakamoto, 2008).

Unlikely from physical token money, Bitcoin developers invented units called bitcoins

that only exists in binary form attached to a particular digital key pair. Lacking of any

physical value, such units can be easily copied and reused if no supervisory system is present.

In a decentralized network, a certain mechanism was needed to be introduced to prevent

the peers that already transferred the ownership, to use the same digital coins for any future

transaction, simply to prevent double-spending problem.

The paper proposed, among many other important algorithms, solution to achieve

consensus about all past transactions, a transparent proof-of-work transaction ledger called

Block chain that will be synchronized across every peer involved in the network.

~ 6 ~

2. Objectives and Methodology

2.1 Objectives

This bachelor thesis will explore the potential of block chain and decentralized

applications that are already, or could be built using this system. Moreover, the huge

development since introduction of Bitcoin in 2009. The thesis will mainly focus on the

Ethereum platform, its implementation of block chain, capabilities and opportunities of

applications that are planned to be built on top of it. Furthermore, main aspects

differentiating decentralized transactions ledgers from each other will be described. Also

how society in general could benefit from using them.

2.2 Methodology

Methodology of this thesis is based on analysis and study of various information sources.

Based on the synthesis of the gained knowledge and overview of available distributed

transaction platforms will be provided, with special focus on the Block chain technology.

The usage of this technology will be demonstrated on an example application. The

application will be tested and deployed and the results gained from deployment will be

evaluated.

~ 7 ~

3. Account for technology

3.1 Bitcoin Block chain

3.1.1 Introduction

The network timestamps the transactions by hashing them into an on-going chain of

hash-based proof-of-work, creating a record that cannot be rewritten without redoing the

proof-of-work (Nakamoto, 2008)

Block chain is a distributed peer to peer timestamp database that stores formatted history

of digital signatures. After the invention of Bitcoin, the block chain was adopted to serve

various purposes other than electronical cash system.

The database could contain any type of additional metadata together with the digital

signatures. In the Bitcoin network, the metadata is the value of coins transferred, Namecoin’s

network metadata contains domain registration info. One of the most interesting usages of

block chain is Ethereum network which stores application bytecodes generated from

Ethereum source code compilers.

In the block chain the transactions are formed into separate blocks. Blocks can be stored

in a plain file or any database engine. Bitcoin Wallet, the original software built according

to proposal from 2009 uses Google’s LevelDB (Bitcoin Wikipedia community, 2016),

nonetheless, the metadata can be stored in any form as long as integrity is kept.

 Each block contains a Merkle root hash of its transactions and the hash of previous

block as a reference, known as the parent block. Thus, the blocks can be visualized stacked

on top of each other. The only block that does not have the reference to its parent is the first

block, called Genesis block that is statically defined within the software (Harding, 2015).

~ 8 ~

Figure 1: Block chain visualization 1 (Harding, 2015)

3.1.2 Block

Block is an element of continuous linear sequence of block chain ledger. Block

contains list of recent transaction data collected from other participating nodes. Each block

is added to the end of the chain as pictured on Figure 1. Blocks are considered irreversible

once they are accepted by all nodes within the network, because their propagation to network

is backed up by CPU proof-of-work.

Blocks are propagated by a single network node that collects the transactions from

other nodes that are not willing to provide CPU proof-of-work to propagate blocks

themselves. The nodes propagating blocks are referenced as “miners”.

The node propagating the block has to provide as much CPU proof-of-work as is

computed according to the time it took to propagate previous blocks. The bitcoin network

adjusts to consistently keep propagation time at 10 minutes, meaning one block is publishes

every ten minutes. Maximum block size is 1 MB (Harding, 2015).

3.1.3 Proof of work

Proof of work is computational hashing power required by the node in order to publish

a block to the network. The hashing is in form of completing enough SHA2561 hashing

computations to satisfy previous block’s conditions. The condition is known as nonce.

Nonce is 32-bit field value included in previous block header. Miners compute many values

to find the value that meets the criteria of number of required leading zero bits – the nonce.

(ANTONOPOULOS, 2014)

1 Secure hashing algorithm (SHA) is a hash function comparing the computed „hash“ to the expected value.

~ 9 ~

SHA256 example

The goal is to find value that has three leading zeroes. The base string for computing

will be “Hello, world!” First column states base string and second the hash itself.

Table 1: SHA256 computation example (Bitcoin Wikipedia community, 2016)

Hello, world!0 1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e

2ec934c64

Hello, world!1 e9afc424b79e4f6ab42d99c81156d3a17228d6e1eef4139be78e948a

9332a7d8

Hello, world!4250 0000c3af42fc31103f1fdc0151fa747ff87349a4714df7cc52ea464e1

2dcd4e9

This took 4251 SHA256 computations2 to find the desired output hash that meets the

condition.

For a record, an exceptional personal computer with superefficient graphical card

ASUS HD7990-6GD5 can do 1518 kHash operations per second, which is 1 518 000 hashes

per second3.

Currently required computational power on Bitcoin network is 144,116,447,847.4

This means that it would take such a computer in average 26 hours to find desired hash that

would match the criteria.

2 Application used for computing SHA256 http://www.movable-type.co.uk/scripts/sha256.html

3 Page with hash computation data https://litecoin.info/Mining_hardware_comparison#NVIDIA

4 Block chain difficulty chart: https://blockchain.info/charts/difficulty

http://www.movable-type.co.uk/scripts/sha256.html
https://litecoin.info/Mining_hardware_comparison#NVIDIA
https://blockchain.info/charts/difficulty

~ 10 ~

Figure 2: Block chain difficulty historical chart (Blockchain Ltd., 2016)

3.1.4 Difficulty

Difficulty measures how difficult is to find a hash complying with certain criteria.

Originally, with the Genesis block difficulty started at 1. New blocks are added to the block

chain if their difficulty is high enough to what is expected by the consensus protocol. In the

Bitcoin network, ideally, 2,016 blocks should take about 1,209,600 seconds (two weeks).

Every 2,016 blocks, network uses timestamps stored in the block headers of the first (1.) and

last (2,016.) block to calculate seconds that elapsed between propagation of these blocks to

calculate new difficulty rate. (Bitcoin Wikipedia community, 2016)

There exists two scenarios

1. It took less than two weeks to generate 2,016 blocks – difficulty value is increased

by as much as 300% so that next 2,016 blocks would take about 14 days to be

generated.

2. It took more than two weeks to generate 2,016 blocks – difficulty value is decreased

by as much as 75%.

~ 11 ~

As stated in official Bitcoin developer documentation5 in official implementation is small

scale bug that currently calculates previous difficulty on data collected from last 2015

blocks. (Harding, 2015)

Bitcoin block difficulty calculation

𝑁𝑒𝑤 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 = 𝑂𝑙𝑑 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 ∗
𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝐿𝑎𝑠𝑡 2016 𝐵𝑙𝑜𝑐𝑘𝑠

20160 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

Equation 1: Bitcoin block difficulty calculation (ANTONOPOULOS, 2014)

3.1.5 Block structure

Block among other metadata coins information about recently collected transactions

and its block header.

For an example let’s take block with height 1006. For a record, at the time of writing

(9.2.2016) the block height is at 397514.

Bitcoin block data can be obtained using Bitcoin daemon API7 distributed with

original Bitcoin Core8 software. The Bitcoin console can be accessed in Debug window.

Fetching block number #100 will require knowing the block’s hash. Command

getblockhash _blocknumber_ will return it. Further command getblock _hash_ will return

parsed block data.

5 https://bitcoin.org/en/developer-guide#proof-of-work

6 http://blockr.io/block/info/100 Parsed information about block #100

7 Original Bitcoin API https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list

8 https://bitcoin.org/en/choose-your-wallet Bitcoin Core download

https://bitcoin.org/en/developer-guide#proof-of-work
http://blockr.io/block/info/100
https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list
https://bitcoin.org/en/choose-your-wallet

~ 12 ~

Block data9

Table 2: Structure of block data (Harding, 2015)

Attribute
Byte

size
Description

Header (H) /

body (B)

size 4 Bytes size of block data – header and transactions B

Magic No. 4 Identifies network ID, value is always

0xD9B4BEF9. Each network has its ow e.g.

bitcoin testnet ID is 0xDAB5BFFA

B

transaction count 1-9 Number of transactions included in the block.

Displayed as array of transactions.

B

9 https://en.bitcoin.it/wiki/Block block structure description

Figure 3: Block #100 data

https://en.bitcoin.it/wiki/Block

~ 13 ~

transactions Non-empty list of transactions – first transaction

is defined by miner - further described in 3.1.6

B

version 4 Version of Bitcoin Core system H

previousBlockHash 32 Previous block header hash H

merkleroot 32 Hash calculated on all data about transactions H

time 4 UNIX timesamp, seconds elapsed since 1st

February 1970.

H

nonce 4 Count of hashes required to produce valid

SHA256 hash.

H

bits 4 Difficulty H

Some attribute descriptions are not provided as they are part of additional block chain

querying such as nextblockhash or number of confirmations.

3.1.6 Block rewards

Miners who collect transactions and provide their hardware computational power to

propagate new blocks are using their own resources such as hardware and electricity. The

network obviously cannot be kept alive as a lossmaking activity without any reward to the

miners.

An incentive was proposed in the original paper to reward each valid block

propagation with the release of brand new coins. This concept was necessary as there is no

other authority to issue them. In the Bitcoin network there is predictable release of new coins

and is defined in the protocol to be steadily decreasing.

Controlled supply started at 50 coins reward per block and being halved every 210,000

blocks – about 4 years if average block takes 10 minutes.

~ 14 ~

Equation 2: Bitcoin block reward halving (Harding, 2015)

10 ∗
210,000

60 ∗ 24 ∗ 365
 = 3,99 𝑦𝑒𝑎𝑟𝑠

Bitcoin protocol was published on 1st of January 2009 with block reward 50 units, first

halving was on 28th of November 2012 when reaching 210,000th block. Next is planned to

be at in the middle of 2016.

Additionally, a transaction fee system was introduced to increase miners’ rewards.

Once, all the predetermined coins are distributed, note that Bitcoin protocol is defined to

have solely 21,000,000 coins distributed, the miners will only be reward from the transaction

fees.

The first transaction in a block is a special transaction that starts a new coin owned by

the creator of the block. (Nakamoto, 2008).

As stated in the block structure, the first transaction specifies additional block data and

output address (3.1.9) of block issuer. Such transaction is called coinbase transaction.

Sometimes when the nonce – number of SHA256 tries overflows the 32bit integer, parameter

extraNonce is added to the Coinbase data attribute.

~ 15 ~

Structure of coinbase transaction

Table 3: Structure of coinbase transaction (Bitcoin Wikipedia community, 2016)

Attribute
Byte

size
Description

Transaction hash 32 Hash containing zero bits as all transaction has no input

UTXO10 3.1.7

Output index 4 All bits are ones: 0xFFFFFFFFF

Coinbase date size 1-2 Length of coinbase data itself

Doinbase data 2-100 2-100 bytes

Sequence number 4 Set to 0xFFFFFFFF

3.1.7 Merkle Trees

Merkle tree is a data structure for minimization of data storage and verification of

integrity. Merkle trees are used to summarize all transaction in block chain through a single

hash called merkle root hash 3.1.2. Every branch except leaves contains hash of previous

two branches.

 As every transaction has transaction identification - hash, merkle root is calculated

by hashing as many times is needed, two previous hashes, starting from transaction hashes

(in Merkle tree scheme called merkle leaves). These initial hashes produce values known as

branches. Two branches are hashed over and over to produce single hash, the merkle root.

These calculations will produce each time same result. SHA256 produces always 64

characters string with only hex characters ([0-9], [A-F])

10 Unspent Transaction output

~ 16 ~

 Because merkle tree is binary, even number of leaf nodes is required. In case of odd

number of transactions, the remaining transaction hash will be duplicated, this is known as

balanced tree.

 This scheme allows light-weight nodes Simplified Payment Verification (SPV)

because they only need to download block’s merkle root in order to check if particular

transaction was included in a block. “Downloading entire block requires over 500,000 bytes

whereas block headers are only 140 bytes” (Harding, 2015).

Merkle trees allow for efficiently verifiable proof that a particular transaction is

included in a block. If a node wants to verify a transaction, it does not have to download the

whole block, but only a branch of a tree. Each branch in a tree is hash of two other branches

below. The goal is to minimize the data that client needs to process in order to find relevant

transaction information.

 This scheme was not introduced with bitcoin, Ralph C. Merkle proposed it in 1979

(Merkle, 1979).

3.1.8 Transactions

Transactions are the most important part of the protocol. Each transaction is publicly

recorded into the block chain. Each transaction composes of output(s), input(s) and digital

signature(s).

Figure 4: Merkle Tree scheme. Scheme drawn by author inspired

from (ANTONOPOULOS, 2014)

~ 17 ~

Transaction inputs are unspent transactions outputs (UTXO) from previous

transactions that couldn’t be used more than once in order to prevent double-spending attack.

Outputs are bitcoins receivable by recipient’s address that will become UTXO after

validating the transaction. One transaction can include arbitrary amount of UTXO and

outputs as far as it provides digital signature and pays fee which is calculated per byte of

data.

UTXO is a fundamental of efficient block composing and transaction verification. “It

represents chunk of bitcoins locked to a specific owner and recorded on block chain”

(ANTONOPOULOS, 2014). This citation clears out common misconception people may

have when encountering bitcoin protocol for the first time. Bitcoin does not store current

balance of an account, whereas the network keeps track of unspent transaction outputs. Each

miner keeps list of currently unspent transaction outputs as it is more efficient than searching

whole block chain each time transaction is received.

In essence, transaction is about 300-400 bytes of data, depending on the amount of

UTXO and destination addresses.

Transaction contains following fields:

- Version of rules (bitcoin core version)

- The amount of transaction inputs (UTXO before propagating) with UTXO data

- The amount of transaction outputs (new UTXO) with UTXO data

- Locktime which allows originator to specify that the transaction shouldn’t be include

into block before specific block height or UNIX11 timestamp passed.

Once transaction is generated, it is broadcasted to connected peers. These nodes check

if all rules are met e.g. UTXO haven’t been yet spent, transaction includes a fee for miners,

data have been digitally signed by private keys corresponding to particular UTXO. If

transaction is validated by one node, it is then propagated to other nodes and finally reaches

11 UNIX timestamp is a number of seconds that passed since 1.1.1970

~ 18 ~

all nodes in the network. “A new validated transaction injected into any node on the network

will be sent to three to four of the neighbouring nodes” (ANTONOPOULOS, 2014).

There exists also extended types of transactions that require more than one signature

for spending UTXO, those are known as M-of-N. M represents threshold that is minimum

of required signees from total N possible signees.

Balances are formed from inputs and outputs rather than subtracting and adding

balance corresponding to specific address. This allows to keep separate storage of unspent

transaction outputs.

3.1.9 Addresses

There are different types of address used in block chains, but all of them are in a form of

asymmetric12 key-pair. Standard address is a key pair that is formed from Public and Private

parts, which is the same form as used for the digital certificates used in Czech Republic to

electronically communicate with government. Those have to be generated from Central

Authorities. Unlikely, key pair for bitcoin address can be generated by available algorithms.

 More complex addresses can combine more than one private key these are called

multi signature addresses and are prefixed with number 3, standard addresses with 1 in the

final format.

 Public key is a derived from the private key, which can be freely shared across the

network, to untrusted entities. Public key serves for common purpose as e-mail address or

bank account, it does not give the recipient of this information the opportunity to unlock the

account funds. Moreover, it becomes mathematically impossible to “rollback” or compute

the private key from public key, even though the value is derived. ECDSA13 formula is used

for generating the public key which ensures high-standard security across “time and space”.

Using private-key that has bit length 100, requires 2100 operations to find out the private key

from public-key (Harding, 2015).

12 Asymmetric cryptography ensures that from the Public key part cannot be resolved the Private part.

13 Elliptic Curve Digital Signature Algorithm

~ 19 ~

Private key is the part that is used to create digital signatures in order to prove third

parties that specific public key corresponds to the person who supplied the digital signature.

Digital signature is a cryptographic scheme for authenticating sender of a message.

Sender usually sings message with his private key giving the recipient opportunity to verify

the signature and thus believe that the sender is the owner of the public key that is usually

attached in unencrypted state.

Several other functions and technical improvements in formatting are used in order to

simply the format as much as possible, those will be described in following datagram.

Generation of Bitcoin address (ANTONOPOULOS, 2014)

1. Generate ECDSA key pair with optional input string to be taken as see

2. Then the result is put through SHA-256 and its result

3. Hash through RIPEMD-16014

4. To this result is attached network specification represented as leading byte.

5. Next SHA-256 is computed

6. On the previous result another SHA-256. The first 4 bytes are stored as later

address checksum.

7. Checksum is attached to the end of result from stage 4. And Bitcoin address is

produced.

Lastly, the result is transformed into the Base58 format which is alphanumerical set

excluding zero, O and I and l (lowercase L), in order to prevent misinterpretation of

characters while reading.

In the Bitcoin console address key pair is generated using command getnewaddress or

addmultisigaddress.

Standard address example: 1Meum86kuhVe4nNeSJo3fgjutqEUnc3bpB, HD wallet

example: 3GyK2Km65tmfG5gXYUAh2DyupYCtSv47Jp

14 RACE Integrity Primitives Evaluation Message Digest is hashing function developed by open academic

community, unlikely from SHA hashing functions developed by NSA

~ 20 ~

3.1.10 Hierarchical addresses

Special type of address schema called Hierarchical Deterministic15 address supports

derivation of sub addresses from either master private key or master public key. Feature of

deriving sub addresses is very useful in scenarios where public key needs to be given to

untrusted third parties without any privileges to manage available funds. (Marek Palatinus,

2014). On the other hand sub addresses generated from master private key gives full control

of funds, limited to particular key, this does not apply to the master key.

3.1.11 Account to Economic effect

With stable and predictable unit supply, bitcoin is considered to have deflationary

attitude, as fixed amount of units would value the units over time, thus decrease the price

level of goods and services purchased by bitcoin.

3.1.12 Smart Contracts

Contracts are transactions recorded in the block chain with a different purpose than

exchanging electronical cash, e.g. to achieve financial agreement.

A simple contract can be written on the bitcoin block chain protocol using nLock (Lock

time) parameter of the transaction, which will propagate transaction only if the expected

amount of time (measured by elapsed blocks) is reached. An example is to propagate

transaction with nLockTime = 400,100, means that the miners will include the transaction

to the block after block 400,099 has been constructed, and no miner would include invalid

transaction because it is not profitable to provide computation power on blocks that will be

declined by the network.

Other extended contracts can be written using Scripts16 that has Fortran-like commands,

but lack of Turing-complete support, which means no loops can be made.

“There is also another, equally important part of the Satoshi’s grand experiment, other

than decentralized electronical-cash: the concept of a proof of work-based block chain to

15 Bitcoin Improvement Proposal (BIP) 32: Hierarchical Deterministic addresses

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

16 https://en.bitcoin.it/wiki/Script using scripts

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://en.bitcoin.it/wiki/Script

~ 21 ~

allow for public agreement on the order of transactions (…) And now, attention is rapidly

starting to shift toward this second part of Bitcoin’s technology, and how the block chain

concept can be used for more than just money”. (Buterin, 2014) According to the White

Paper written by Vitalik Buterin in late 2013, the block chain can be reused to decentralize

digital assets, registries, exchanges, financial derivatives, voting and much more.

3.2 Ethereum

Ethereum is smart contract platform inspired by block chain technology introduced in

2008. Its elemental unit is called ether. Ether (symbol Ξ from Greek alphabet Xi), similarly

to bitcoin is divisible up to 10-18, its smallest subunit is called wei. Due to the fee-by-

computation17 policy, Ether (abbr. ETH) is sometimes referred as the fuel of Ethereum

(ETHEREUM SWITZERLAND GMBH., 2015).

3.2.1 Intention and goals

Ethereum Development team takes the block chain usage onto significantly general

level. The goal as written the White Paper, is to provide Turing-complete programming

language18 that enables developers to create applications with any rules defined by the smart

contract, from finance systems, register systems to democracy voting systems.

The reason behind this was that Bitcoin protocol does not extend its state transition

system which is only limited to “decrease amount on this address and increase it on this

address”.

Vitalik Buterin summarized the reason why he decided not to build such a complex

platform on top of Bitcoin protocol into 4 main insufficiencies the protocol (Buterin, 2014)

1) Lack of Turing-completeness – Mainly missing loop functions

2) Value-blindness – Very difficult to bind real-world values such as BTC/USD

exchange rate into the block chain

17 In ethereum network, the contracts have to pay per processing power required to execute its bytecode.

18 A programming language with complete instruction set including conditional and cycling abilities

~ 22 ~

3) Lack of state - UTXO19 can either be spent or unspent, there is no space for another

stage, and thus it is hard to implement more complex system like DAO20 that

manages the contracts and funds only by rules encoded within the block chain.

4) Block chain-blindness – lack of randomness based on in the nonce and previous

block hash.

The intention of Ethereum is to merge together enhanced scripting possibilities, meta

protocol and time stamped database to allow development of an arbitrary application. As

stated they call this platform an “Ultimate abstract foundation layer: a block chain with a

built-in Turing-complete programming language” (Buterin, 2014). The developers could

write smart contracts by defining all the rules themselves.

This might lead to having the opportunity to decentralize any possible service on

Ethereum layer as boundaries would be unlimited, unlikely from bitcoin protocol.

To summarize, the key difference from other block chain protocols is built-in

programming language, various types of accounts and unlimited variation of application that

can be built on top of it.

3.2.2 Smart contracts

 Similarly to real-life contracts in business and finance, Ethereum enables to digitalize

rules on the block chain that are transparently and globally enforced by participating nodes.

Ethereum allows much broader scale of contracting system known as Distributed

Autonomous Organization. This is a scheme that encodes whole organizational structure

(e.g. reward system tied to specific actions) into block chain.

As an example we can take open source development, where developers are paid from

funds collected by supporters. The funds are publicly and without central authority

19 Unspent transaction output

20 Decentralized Autnomous Organization – type of application that is capable to manage contracts and funds

without human interaction.

~ 23 ~

distributed to the developers by the amount of effort measured in lines of code produced and

validated as meaningful by rest of the nodes.

Vitalik Buterin divides the applications that can be built on top of Ethereum in three

categories (Buterin, 2014):

1) Financial applications – a powerful way for transparently manage their funds using

smart contracts. Can include sub-currencies, financial derivatives, funding

platforms such as Kickstarter, P2P insurance or gambling models.

2) Semi-financial applications – systems where money are involved in form of

tokens. Such sub-currencies can bind current stock value to USD or gold, or any

other property. Fundamentally, these applications are on model of subtract or add

unit from particular account.

3) Democracy applications – decentralized governance such are voting and reputation

systems where no monetary value is present.

From the scope of applications currently built21 we can see one huge category of

applications that use block chain simply to store data. For instance to replicate centrally

controlled systems like Dropbox.

The key differences from current central-based solutions is that this platform based

applications are out-of-the-box public and has open-code. For contract to stay permanently

enforceable, it is necessary that it is not removed from block chain, although its data storage

can be modified by explicitly defined nodes.

Once the application is created, anyone can interact with it by sending transactions

which include the contract address and functions with parameters to be called. This way it

is possible to change states (write to the contract) and invoke functions. The contracts’ code

can be execute by propagating a transaction with destination address of a specific contract

or standard account.

21 http://dapps.ethercasts.com/

http://dapps.ethercasts.com/

~ 24 ~

Contracts are allowed to send ETH to other contracts, read/write storage and call other

contracts. If destination address is standard account, the ETH is simply transferred to other

account managed by private key. Unlikely from accounts, contracts are controlled by

invoking new transaction with their contract hash and if such a transaction is invoked, the

bytecode gets executed.

Every node in the network stores processes of the transactions and stores complete

states of contracts. Nodes executing the contracts code are rewarded by using their resources

for executing the code, from transaction fees.

For each computational step is charged fee from transaction balance. This is also

implemented to prevent infinite cycle loops that would end up in blocking the node from

further transaction processing.

In advance, it is impossible to detect how many computational steps it would take to

fully execute contract’s bytecode. Therefore, a gas limit is specified to state the maximum

amount of gas the sender is willing to consume for code execution. If the gas limit is

exceeded and function cycle is not finished, the process of execution is aborted and contract

state is reverted to previous state. However, the consumed gas is not “refunded”. This

function prevents the sender from running out of funds if incomprehensible or buggy

bytecode is published.

Therefore, each transaction specifies gas price that indicates the number of ETH to be

paid per gas unit for all computation costs incurred as a result of the execution of this

transaction. (Wood, 2013) Such a prevention is included in both contract-initiated messages

and those propagated from standard transaction.

The gas price is also used by miners to rank transactions for inclusion in the block

chain. Furthermore, the miner who propagated the block votes either to up vote or down vote

the current gas limit.

The transaction fields gas is used for maximum computational steps, gasPrice and

value used for ETH balance.

If contract data are not filled, the fee is simply calculated as number of bytes multiplied

by the gasprice.

~ 25 ~

3.2.3 Accounts

In Ethereum, the state is defined by the objects named “accounts”, those are 20-bytes

addresses and the state transitions are the transfers between such accounts.

Example of Ethereum address: 0xc2b1918bc7a2c398ec6f20b754992d7c10d3e2cb

Account contains four elemental fields:

1) The nonce – counter ensuring each transaction is processed only once

2) Ethereum balance

3) Contract code – optional depending if account is used as contract or as a standard

transactions. Contracts specify hash of the bytecode, for standard transaction is used

empty string.

4) Storage – space for contract bytecode

Furthermore, Ethereum has different types of accounts, essentially divided into two

categories. Both of these accounts possesses of ether balance. (ETHEREUM

SWITZERLAND GMBH., 2016)

1) Externally owned accounts (EOE), controlled by private keys

o Has ability to send messages by creating and signing transactions

2) Contract accounts (CA), controlled by their contract code

o Every time the contract receives message from EOE it activates its code and

is allowed to read and write to internal storage.

o It is also capable of sending messages to other contracts or to create new

contracts.

3.2.4 Transactions

In a scope of Ethereum, transactions refer to signed data package to be sent throughout

the network. (Buterin, 2014) There are several important difference from transactions in

bitcoin protocol. First, the message can be broadcasted from either EOE or contract. Second,

it is optional to include the message data. Finally, recipient (CA) has option to response to

the message.

~ 26 ~

Transactions includes message to be sent and digital signature identifying the sender, amount

of ETH and contract data. Particularly, data are divided into nonce, gasprice, startgas, to,

value, data, and ECDSA signature values.

 Unique incrementing nonce specifies the index of transaction sent from specific

account. The values start from 0. Gasprice specifies the cost of computational unit. Startgas

is maximum gas consumable 3.2.2. To sets the address of receiving address. Value is the

amount of ETH sent. Data field of bytes without limit, naturally, the higher the size is higher

will be the transaction cost.

 There are special logs of contract execution called Receipts that are hashed and

included into the block chain. Each transaction has its own receipt. Receipt has Intermediate

state root which is hash of the state after the contract execution. Cumulative gas used with

value of total gas that has been used for the execution. Logs is a special feature designed for

light-weight Ethereum clients, which only parse the block headers in which logs are stored

and obtain information about recent transactions. Logs contain 32 bytes space for data called

“topics” those are intended for easy protocol filtering22 (Buterin, 2014).

Logs is a special storage not accessible by the contract. Unlikely from variables that are set

in contract storage, the logs are append-only for nodes to quickly scan the block chain.

3.2.5 Ethereum Virtual Machine

The EVM can be thought of as a large decentralized computer containing millions of

objects, called "accounts", which have the ability to maintain an internal database, execute

code and talk to each other. (Ethereum Development - Github, 2015)

EVM runs at every node and serves as a global virtual execution environment for

contracts.

Before publish a contract, the code is compiled into stack-based programming

language23. The contract can be written in one of the higher-level languages like Serpent,

22 Bloom filters

23 Language relying on machine (for ethereum its emulated machine) that pushdown stack for registering

operations. E.g. addition of two numbers will be programmed like 3 4 +. (Lin, 2003)

~ 27 ~

which has similar syntax to Python, Solidity (JavaScript based) or LLL (much more low

level and ideal for writing storage-efficient code) (ETHEREUM SWITZERLAND GMBH.,

2015).

 As stated in white paper, the operations executed in EVM have access to three types

of spaces in which to store data

1) Stack

2) Memory – unlimitedly expandable byte array

3) Contract’s irreversible storage. Unlikely from stack and memory, storage persists

after execution of code is finished.

Code can access data included in the incoming message and block header (block number,

time, mining difficulty, etc.), these data are known as Environment variables.

 In order to write sustainable application it is necessary to use a style of programming

that consumes as little of memory as is necessary, since for every computational step is

charged a fee.

3.2.6 Gas policy

Average gas price can be found on Etherscan.io24 Currently the gas price is set to 10 szabo

(10-6 ETH).

Gas costs table25

Operation name Cost (in gas) Description

step 1 Default amount of gas to pay for an

execution cycle.

stop 0 Nothing paid for the STOP operation.

suicide 0 Nothing paid for the SUICIDE operation.

24 https://etherscan.io/charts/gaspri/ce

25 http://ether.fund/tool/gas-fees

https://etherscan.io/charts/gaspri/ce
http://ether.fund/tool/gas-fees

~ 28 ~

sha3 20 Paid for a SHA3 operation.

sload 20 Paid for a SLOAD operation.

sstore 100 Paid for a normal SSTORE operation

(doubled or waived sometimes).

balance 20 Paid for a BALANCE operation.

create 100 Paid for a CREATE operation.

call 20 Paid for a CALL operation.

memory 1 Paid for every additional word when

expanding memory.

txdata 5 Paid for every byte of data or code for a

transaction.

transaction 500 Paid for every transaction.

Table 4: Gas costs per operation

3.2.7 Scripting languages

Ethereum platform supports various programming languages to extend developer

possibilities and also not to support only one language and thus enhance advantage of

choosing the right programming language for different development purpose.

Solidity is a high-level programming language with syntax similar to JavaScript.

Ethereum provides many programming languages

- Umbrella is C++ client 26

26 https://github.com/ethereum/webthree-umbrella

https://github.com/ethereum/webthree-umbrella

~ 29 ~

- EthereumJ is Java implementation27

- Geth is the implementation of Ethereum protocol in Go language 28

- Serpent is Python version of Ethereum29

- Solidity is JavaScript implementation

The code written in any of above mentioned language is compiled into EVM bytecode.

3.2.8 Merkle Patricia trees

Unlikely from Bitcoin, Ethereum uses more complex hashing structure called

“Merkle Patricia trees”.

Merkle Patricia are a combination of Merkle’s scheme of hashing and Patricia

(Radix) tree structure, providing a tree that that has cryptographically authenticated data

structure that can store key-value bind data. (Xie, 2015) It is very efficient for insert, deletes

and especially lookups which is very important for integrity checks made by nodes.

3.2.9 Differences from other block chains

Block propagation time is 17 seconds unlikely from Bitcoin’s 10 minutes. The block

structure is also more complex as following:

Block header

- Transactions

- State – contracts state

- Receipts – hash of state after contract execution

27 https://github.com/ethereum/ethereumj

28 https://ethereum.github.io/go-ethereum/

29 https://github.com/ethereum/serpent

https://github.com/ethereum/ethereumj
https://ethereum.github.io/go-ethereum/
https://github.com/ethereum/serpent

~ 30 ~

3.2.10 Frontier release

Although, the development begun in December 2013 and was granted by open-source

community more than 31,000 bitcoins (by that time roughly 18 million USD), up until 2015

were available only development versions.

The first release of software was named Frontier and its release version was published

on 29th of January, 2015. Following by Genesis block on 30th of January. Since then,

Ethereum network is live. (Ethereum GmbH, 2015)

3.3 Other similar platforms

3.3.1 Blockstream

Blockstream30 is a platform that enhances creation of crypto currencies, smart

contracts and open assets with inbuilt interaction to other systems without central authority

like Bitcoin Block chain. Simply said, it is an extension to other block chains that are

designed to solve specific issue, in bitcoins ecosystem it is currency.

“Blockstream’s core area of innovation is sidechains, a technology focused on

improving on the block chain, the most powerful public utility for distributed trust systems.”

(Blockstream, Inc, 2016)

3.3.2 Eris project

Eris project is in the community considered a “fork of Ethereum pattern”. The

platform enhances the block chain for building smart contracts. Eris is open-source project,

but provides subscription level access to the world’s first smart contract libraries focused on

specific industries. By providing high-quality, tested smart contract primitives and

templates, we greatly reduce the complexity of creating smart contract applications. (Eris

industries, Inc, 2016)

3.3.3 Maidsafe

Maidsafe is a long-term project started in 2006 that takes focus on securing whole

internet, it is more than a block chain platform. The currency of Maidsafe is called SAFEcoin

30 https://blockstream.com/

https://blockstream.com/

~ 31 ~

(abbr. Secure Access for Everyone). Maidsafe network uses the available space of

participating nodes that are paid for providing their storage space.

“Over time, the SAFE vault on your computer will start to fill up with network data,

and as a consequence your virtual wallet will automatically start receiving safecoin. You

can use the safecoin you've earned to pay for other services on the network, or convert

them to another currency via a SAFE currency exchange. (..) MaidSafe's aim is to provide

privacy, security and freedom to everyone on the planet. This has been our unwavering

ambition since we started on this journey in 2006, and it remains our driving force today.

(MaidSafe.net Limited, 2016)

3.4 Potential

From my studies of Ethereum technology, I humbly predict that platform can boost

development and transformation of financial sector as we know it today – centrally

controlled banking.

 Ethereum will mostly be used as a storage for data that are necessary to be kept available

for a lifetime. The platform also allows most secured world-wide available storage.

 The success can be proved by the skyrocketing of ETH price within last months. Based

on Kraken.com ETH/EUR chart31 since 1st January 2016 the price increased from 1 EUR per

ETH to 10 EUR for ETH (at the time of writing 5th of March 2016).

31

https://dwq4do82y8xi7.cloudfront.net/widgetembed/?symbol=ETHEUR&interval=D&symboledit=1&toolba

rbg=f1f3f6&hideideas=1&studies=&theme=White&style=1&timezone=exchange

http://maidsafe.net/safecoin.html
https://dwq4do82y8xi7.cloudfront.net/widgetembed/?symbol=ETHEUR&interval=D&symboledit=1&toolbarbg=f1f3f6&hideideas=1&studies=&theme=White&style=1&timezone=exchange
https://dwq4do82y8xi7.cloudfront.net/widgetembed/?symbol=ETHEUR&interval=D&symboledit=1&toolbarbg=f1f3f6&hideideas=1&studies=&theme=White&style=1&timezone=exchange

~ 32 ~

4. Practical usage of Ethereum Block chain

The following part will be dedicated to practical usage of Ethereum block chain

demonstrated by dapp for voting. Similar platform for voting was suggested by Dominik

Schiener and also used as an example in Solidity programming language reference (Solidity,

2016). Fur purpose of this thesis more than a simple voting mechanism will be provided.

The author suggests more enhanced platform for managing eligible voters through privilege

definitions, extended vote options, moreover results will be permanently stored within the

Ethereum Block chain. Unlikely from Schiener’s first implementation.

“There is currently one smart contract coded in Solidity that is used for placing a poll

into the Block chain and for casting the votes. For display purposes on the website and

making it easy to vote, I’m also storing poll information, votes and the related Ethereum

accounts in MongoDB collections.” (Schiener, 2015)

4.1 PureVote - Decentralized Voting Application

The purpose of this application is to introduce, test and evaluate available functions of

Ethereum platform and also Solidity language that will be used for writing the smart contract

itself.

Dapp shall serve purpose of decentralized voting system where any or specific

addresses controlled by the network peers can participate in voting on a Poll controlled by

smart contract. The participation is only limited to sending publicly defined commands

defined within the smart contract and paying the transaction cost. The commands sent in the

transaction invoke particular parts of the contract’s source code stored on the block chain

and modifies the current state (storage) of the contract. As the transaction is being processed

by the miners, modified state is permanently stored on the block chain and is practically

impossible to be reversed, because total computing power put into the verification would

have to be computed again by every single node in the network.

The application is designed to serve only one poll voting per smart contract.

Nonetheless, the functions of Ethereum enables smart contracts to create and manage other

smart contracts, thus it is possible to design master voting smart contract for creating new

contracts for each poll.

~ 33 ~

The obligation of payment for broadcasting transaction that contains choice being

voted by the node lays on the participants themselves. Each of the participants pays the

transaction cost for their vote. Nonetheless, it is technically possible to let the contract pay

for casted votes as it allows to possess of ETH. But this becomes impractical because the

cost for executing the cost is zero for any peer in the network. This could be easily exploited

by other peers if the list of eligible voters wouldn’t be properly defined.

The application consists of a single file named purevote.sol. Contains contract named

PureVote with below defined classes and methods.

The source code of application is available online at

https://github.com/mareksip/PureVote

4.1.1 Prerequisites

The application is written in Solidity language for its similar syntax to JavaScript that

author is already familiar with. For writing the contract online Solidity editor called Solidity

Browser32 was used. Solidity Browser has interface already prepared for publishing the

contract right after its competition. Nonetheless, PureVote will be published using Ethereum

Mist Wallet. Solidity Browser also checks for internal integrity of source code, which is

really useful as currently there are not many easily available testing environments for smart

contracts.

 Furthermore it was necessary to have ETH cryptocurrency as a form of payment to

miners for deploying the smart contract on the network and for payment of fees for its

execution. Kraken33 was chosen as it is only exchange allowing users to deposit EUR with

SEPA bank transfer. Other exchanging offering ETH trades do the transaction right between

the cryptocurrency Bitcoin and ETH.

32 http://chriseth.github.io/browser-solidity/

33 www.kraken.com

https://github.com/mareksip/PureVote
http://www.kraken.com/

~ 34 ~

On below address 1 ETH withdrawal request was made on Kraken.com website.

0x1ff080d4c538d36160a8c3a9338a949dcd558f1d

0.995 ETH have been received from Kraken.com with transaction34:

0x2867c6d97635549cd780ac54cd1140c8156d720a36a5913a806a945e7d80ed95

Furthermore, for convenience some software for managing funds and contract related

operation was needed. The only available at the time of writing was Mist pre-release

software version 0.3.935. Mist manages private keys and also offers extended interface for

publishing smart contract and invoking its functions.

4.1.2 Classes

1) Poll – Poll object having attributes of header text, deadline, total votes casted,

deadline status and its creator.

2) Voter – eligible addresses allowed to vote, if not specified any address can participate

in voting. Voters can have different voting weight, but for contract simplicity static

value 1 is used.

3) Option – values that can be voted by participants

4.1.3 Events

Perception of events is slightly different from standard programming languages.

Events in Ethereum are built for efficient change storage that can facilitate parsing block

chain data without downloading whole block chain e.g. for SPV nodes.

1) NewVote event lets SPV nodes react efficiently on changes

34 https://etherchain.org/tx/0x2867c6d97635549cd780ac54cd1140c8156d720a36a5913a806a945e7d80ed95

35 https://github.com/ethereum/mist/releases/tag/0.3.9

https://etherchain.org/tx/0x2867c6d97635549cd780ac54cd1140c8156d720a36a5913a806a945e7d80ed95
https://github.com/ethereum/mist/releases/tag/0.3.9

~ 35 ~

4.1.4 Methods

1) NewPoll – Creates new Poll object with certain name, UNIX timestamp deadline,

poll options and optional eligible addresses

2) Vote – Checks if eligible voters are defined, if so the address is validated for voting.

Otherwise anyone can cast a vote. Furthermore, the function checks if Poll deadline

is not passed. Finally, casts a vote from senders address.

3) winningProposal – Poll votes are computed and option with most casted votes is

declared as a constant

4) terminate – Sets Poll status to closed. This can only be performed by the Poll creator.

5) remove – Contract can be deleted from block chain using suicide function. This can

be performed only by the creator of the Poll.

4.1.5 Publishing contract

By the time of publishing current gas cost is 0.04545455 ETH per million gas and all

gas cost calculations will be made with this value.

The contract was created by putting solidity source code to New Contract function in

Mist Browser.

The publishing cost exactly 0.0290845 ETH and has been published within a few

seconds to connected peers. Contract address36 is:

0x1a77eb194c6b85ff55eda03088492ced99ffda86

Total used gas for propagating contract was: 639,859.

4.1.6 Executing contract functions

Now the contract is published, any of its functions can be invoked by propagating

new transaction with above mentioned destination address.

36 http://etherscan.io/address/0x1a77eb194c6b85ff55eda03088492ced99ffda86

http://etherscan.io/address/0x1a77eb194c6b85ff55eda03088492ced99ffda86

~ 36 ~

 Out of the box, after publishing a contract, Mist offers interface for executing the

contract functions. This feature can be noticed on the right panel Write to Contract. By

selecting desired function, the function parameters are loaded accordingly to the list below.

Furthermore, the user has the option to send additional ETH to the contract. This is not

required because transaction cost is paid separately. The contract balance is displayed on top

of the panel, indicating currently disposed ETH balance.

Lastly, for successful code execution it is necessary to choose the Mist wallet account

from which the transaction fee will be deducted from.

Figure 5: Mist interface after publishing contract

~ 37 ~

 Firstly, it is necessary to start new poll. The Poll will be called “Marek Sip” with

deadline timestamp: 1464739199 set to 31.5.2016 23.59.59, with array of options to vote

“Failed” or “Passed”. In order to have the code variables efficient, values are represented as

numbers [0, 1].

Contracts NewPoll function was successfully raised with transaction:

0x7ffa4a289f6da73f55421494f5694b3f59b435d5593fed796182432c63310c0d

The cost paid for code execution was: 0.00777741 ETH for 171,103 used gas.

 Lastly, it is necessary to cast a vote for one of these options. Which is achieved by

selecting Vote function and filling choice value “0” that represents value “Failed”.

This was done on transaction:

0x0b583fc41cdb798c130bbdc19f5137ed99b514e41144db7cf5af5e875009f4b6

The code execution cost 0.00285518 with 62,814 used gas. The data sent with the transaction

are following. First eight bytes are identification of the transaction and last byte is the

function parameter, in this case represented by 0 for voting value “Failed”.

0x0121b93f00

Lastly, it is possible to close the voting with Terminate function that was raised on

transaction:

0xcf5b63e3296e89744210d9d0f3fd36feffaa2fdea2986a9293cc89a4a3578b62

~ 38 ~

The code execution cost 0.00060605 and took 13,333 used gas.

4.1.7 Gas usage summary and cost

Used rate for EUR calculations

 By the time of publishing (6th March 2016) according to Kraken.com 1 ETH is 9.55

EUR. 1 EUR is approx. 27 CZK according to CNB (Česká Národní Banka, 2016). The table

below shows how costly to execute were particular functions of PureVote. Certainly, most

expensive is to publish the contract itself. First transaction for publishing contains whole

smart contract source code. Miners have to be paid for verifying and publishing each byte of

this code. For executing the contract, transaction sent from initiator contains only

identification of method to be invoked, and its required attributes.

Action Gas used Cost ETH Cost EUR Cost CZK

Creating

contract

639,859 0.0290845 0.27 7.29

Creating Poll 171,103 0.00777741 0.07 1.89

Casting Vote 62,814 0.00285518 0.03 0.81

Terminate Poll 13.333 0.00060605 0.005 0.13

Total: 887.109 0.04032314 0.37 10.12

Table 5: Contract testing fee overview

4.1.8 Confirmations

Transaction requesting the network for contract publishing or invoking functions are

broadcasted to the connected nodes immediately. Nonetheless, the transactions credibility is

increasing with the amount of blocks that have been added on top of it.

~ 39 ~

As explained in the chapter Bitcoin Block (3.1.2) each block references the previous

as its validation. In Bitcoin it is considered impossible for transaction to be reverted (and

double spent) after more than 6 blocks are added on top of the block that included given

transaction. (Bitcoin Wikipedia community, 2016).

Ethereum Mist client default settings is waiting for 13 confirmations before

considering the transaction valid. This makes it at the rate 17 seconds per block almost 4

minutes. Each inclusion to block is considered as confirmation, because miners publishing

new blocks are referencing to previous block which they verified.

4.1.9 Evaluating results

The application has been successfully deployed into Ethereum network, its function

tested and results permanently stored on Ethereum Block chain.

Currently, author sees huge obstacle for using Ethereum platform, which lays in

difficulty of obtaining ETH units. The units can be obtained either by mining or purchased

for fiat or cryptocurrency like Bitcoin. Purchasing for ordinary currency was chosen for this

practice for convenience. Nonetheless, it still took more than 2 days, until CZK were

transferred from author’s bank to Kraken.com account and exchanged for ETH units.

Once ETH units are available, the publishing and execution of smart contract, thanks to

tools like Mist is really smooth.

Below figure displays User Interface of Mist browsing current state of the smart contract

after execution of Terminate function.

 Left panel Read from the Contract indicates that the Option 0 has value 0 and one vote

has been casted for that it. Below, the value of Winning proposal is displayed. The P

represents the object of Poll that stores attributes about the contract creator, Poll name, its

expiration and the current status which indicates if voting is open.

~ 40 ~

Figure 6: Contract state after termination of Poll

~ 41 ~

5. Used environment

Author’s laptop used for managing wallet funds and deploying PureVote smart contract onto

Ethereum block chain.

Acer Aspire E 15

Intel CORE i5-5200U

NVIDIA GEFORCE 840M with 2GB Dedicated VRAM

1 GB DDR3 L Memory

1000 GB HDD

OS: Windows 10 Enterprise

Single-board computer was used for secure, offline generation of private keys for remaining

ETH balance.

Raspberry Pi 2 Model B

ARM Cortex-A7 quad-code processor

VideoCore IV

1GB LPDDR2 SDRAM

~ 42 ~

6. Discussion and Results

Ethereum allows anyone to distribute decentralized applications and opens floodgates of

decentralized application development. This is huge improvement after 6 years from

introduction of block chain technology. Ethereum block chain is multi-purpose foundation

layer for any possible system.

The platform has been successfully tested through voting smart contract application

PureVote. The application was deployed on Ethereum block chain and its function invoked

by several transaction.

The concept of PureVote allows to prove that certain activity occurred on a specific time.

This activity cannot be reversed without re-computing the PoW that miners used to verify

and propagate the transactions, and is stored technically forever37.

Proposed application proves that Ethereum is currently stable to handle similar and also

much more complex applications than PureVote.

At the current rate ETH/EUR the propagation and execution of smart contract in the

similar complexity costs 0.3 EUR (0.04 ETH) which is cheaper than renting centrally

managed cloud solutions.

The key question here is what would be the price of gas when ETH/EUR rate reaches

100 EUR. As platform author Vitalik Buterin38 assures it depends solely on miners which

transaction include or not based on the gas price.

Similar application based on block chain are currently being designed for Estonian

government as a solution for e-residency39. Similarly, Ukraine government is looking to

implement block chain for voting40.

37 Whole blockchain PoW would have to be remade. Currently 1st Bitcoin block mined in 1st January 2009

have not been rewritten.

38

https://www.reddit.com/r/ethereum/comments/499a7w/gas_prices_are_already_kinda_down_to_20_shannon/

39 http://www.coindesk.com/nasdaq-shareholder-voting-estonia-blockchain/

40 https://bitcoinmagazine.com/articles/ukraine-government-plans-to-trial-ethereum-blockchain-based-

election-platform-1455641691

https://www.reddit.com/r/ethereum/comments/499a7w/gas_prices_are_already_kinda_down_to_20_shannon/
http://www.coindesk.com/nasdaq-shareholder-voting-estonia-blockchain/
https://bitcoinmagazine.com/articles/ukraine-government-plans-to-trial-ethereum-blockchain-based-election-platform-1455641691
https://bitcoinmagazine.com/articles/ukraine-government-plans-to-trial-ethereum-blockchain-based-election-platform-1455641691

~ 43 ~

The key benefit from block chain based application is decentralized nature in peer-to-

peer network, making it impossible to be restricted by third party. Once deployed, it can only

be modified by the author. Whereas, centrally controlled solutions are more vulnerable for

attackers, making the provider single point of failure where attacker or even the service

provider have ability to intrude to the users content.

In Ethereum network, user contracts and data, even though they are published to the

network, are cryptographically secured and can only be controlled by the user.

From what can be currently seen, the community projects range is from financial

application to democracy platforms like voting. A whole bank can be implemented within

40 lines of code41, domain name registration by 10 lines42.

Lack of middle man enhances credibility of key financial and democracy systems with

no-risk of being intruded by the middle man.

41 https://blog.ethereum.org/2015/12/07/ethereum-in-practice-part-3-how-to-build-your-own-transparent-

bank-on-the-blockchain/

42 https://github.com/ethereum/go-ethereum/wiki/Mutan-0.6-Examples

https://blog.ethereum.org/2015/12/07/ethereum-in-practice-part-3-how-to-build-your-own-transparent-bank-on-the-blockchain/
https://blog.ethereum.org/2015/12/07/ethereum-in-practice-part-3-how-to-build-your-own-transparent-bank-on-the-blockchain/
https://github.com/ethereum/go-ethereum/wiki/Mutan-0.6-Examples

~ 44 ~

7. Conclusion

The goal of analysing block chain timestamped databases with accent to 6 year of

development was provided within the chapter of Account for technology (3), Moreover, an

overview of practical usage of Ethereum block chain was made in chapter Practical usage of

Ethereum Block chain (4) with key benefits for its users and society in general.

Ethereum takes decentralized computing onto broader scale than single-purpose

currency platform Bitcoin. Bitcoin was first application to introduce usage of timestamp

database called block chain. Using block chain the nodes could easily synchronize and

validate data. The key achievement was that untrusted nodes could achieve consensus

without any centrally trusted entity.

Until the invention of Ethereum, many forks of Bitcoin protocol were made to

decentralize systems like domain name registration. Ethereum Inc, designed generally

applicable block chain platform with Turing-complete programming language that lets any

type of application to be deployed on top of it.

The usage of block chain technology is currently being implemented throughout

European state parliaments. Ukraine parliament decided to use block chain based voting

system as a transparent mechanism for passing government proposals43. Similar solution is

being tested in Estonian Stock Market44. According to Great Britain’s Government for Office

Science the technology could prove to have the capacity to deliver a new kind of trust to a

wide range of services (UK: Government for Office Science, 2015).

Thanks to Ethereum it is now possible to build any application trustworthy and

transparently.

43 https://bitcoinmagazine.com/articles/ukraine-government-plans-to-trial-ethereum-blockchain-based-

election-platform-1455641691

44 http://www.coindesk.com/nasdaq-shareholder-voting-estonia-blockchain/

https://bitcoinmagazine.com/articles/ukraine-government-plans-to-trial-ethereum-blockchain-based-election-platform-1455641691
https://bitcoinmagazine.com/articles/ukraine-government-plans-to-trial-ethereum-blockchain-based-election-platform-1455641691
http://www.coindesk.com/nasdaq-shareholder-voting-estonia-blockchain/

~ 45 ~

8. Bibliography

ANTONOPOULOS, A. M. (2014). Mastering Bitcoin (First edition ed.). O'Reilly Media.

Bitcoin Wikipedia community. (2016). Bitcoin Wiki. Retrieved from Bitcoin Wiki:

https://en.bitcoin.it

Blockchain Ltd. (2016). Difficulty. Retrieved from Blockchain.info:

https://blockchain.info/charts/difficulty

Blockstream, Inc. (2016). Retrieved from Blockstream: https://www.blockstream.com/

Buterin, V. (2014, 8). Ethereum Github wiki. Retrieved from Ethereum White Paper: A

NEXT GENERATION SMART CONTRACT & DECENTRALIZED

APPLICATION PLATFORM: https://github.com/ethereum/wiki/wiki/White-Paper

Česká Národní Banka. (2016). Kurzy devizového trhu. Retrieved from Česká Národní

Banka:

http://www.cnb.cz/cs/financni_trhy/devizovy_trh/kurzy_devizoveho_trhu/denni_ku

rz.jsp

Eris industries, Inc. (2016). Products. Retrieved from Eris Indistries:

https://erisindustries.com/products/

Ethereum Development - Github. (2015). Retrieved from Ethereum Development Tutorial:

https://github.com/ethereum/wiki/wiki/Ethereum-Development-Tutorial

Ethereum GmbH. (2015). Ethereum Frontier Guide. Retrieved from Gitbooks.io:

https://www.gitbook.com/book/ethereum/frontier-guide/details

ETHEREUM SWITZERLAND GMBH. (2015, 8 28). Developer documentation. Retrieved

from ETHEREUM.org: https://github.com/ethereum/wiki/wiki

ETHEREUM SWITZERLAND GMBH. (2016). Go-ethereum developer documentation.

Retrieved from Github: Ethereum/go-ethereum: https://github.com/ethereum/go-

ethereum/wiki

Harding, D. A. (2015, 8 28). Developer documentation. Retrieved from BITCOIN:

https://bitcoin.org/en/developer-documentation

~ 46 ~

Lin, C. (2003, 6 22). Charles Lin: Computer organization. Retrieved from Understanding :

https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html

MaidSafe.net Limited. (2016). The New Decentralized Internet. Retrieved from MaidSafe:

http://maidsafe.net

Marek Palatinus, P. R. (2014, 4 24). BIP 44: Multi-Account Hierarchy for Deterministic

wallets. Retrieved from Github.com Bitcoin Improvement proposals:

https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

Merkle, R. C. (1979). A digital signature based on a conventional encryption function.

Retrieved from Barkeley.edu: http://www.eecs.berkeley.edu/~raluca/cs261-

f15/readings/merkle.pdf

Nakamoto, S. (2008, October 1). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved

from http://p2pfoundation.ning.com/: https://bitcoin.org/bitcoin.pdf

Schiener, D. (2015, 10 28). PublicVotes: Ethereum-based Voting Application. Retrieved

from Medium.com: https://medium.com/@DomSchiener/publicvotes-ethereum-

based-voting-application-3b691488b926#.sqrsm4uvu

Solidity. (2016). Retrieved from Solidity language documentation:

http://solidity.readthedocs.org/en/latest/index.html

UK: Government for Office Science. (2015). Distributed Ledger Technology:. Retrieved

from

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/4929

72/gs-16-1-distributed-ledger-technology.pdf

Wood, D. G. (2013, 11). Gavin Wood. Retrieved from Ethereum: A SECURE

DECENTRALIZED GENERALISED TRANSACIION LEDGER, FINAL DRAFT

- UNDER REVIEW.

Xie, J. (2015). Patricia Tree. Retrieved from Ethereum:

https://github.com/ethereum/wiki/wiki/Patricia-Tree

~ 47 ~

9. Appendix

9.1 Acronyms and used abbreviations

EVM – Ethereum Virtual Machine, environment for executing source code

SHA256 – Secure Hash Algorithm

Merkle root – result of hashing through Merkle structure

BTC/Bitcoin – One bitcoin, unit of Bitcoin network

ETH – One Ethereum, crypto currency of Ethereum platform

Wei – 10(-18) of ETH

Szabo – 10(10-6) of ETH

Ethereum – Block chain based platform for smart contracts

Dapp – Decentralized application, smart contract

API – Application Programming Interface

UTXO – Unspent Transaction Output, request send transaction “to”

ECDSA – Elliptic Curve Digital Signature Algorithm

Gas – fuel of Ethereum platform needed as a payment for EVM executions

PoW – Proof of Work, computational power released to publish block

SPV – Simple Payment Verification – abbreviation used for nodes that are storing only

merkle roots and not downloading whole block chain.

~ 48 ~

10. Supplements

~ 49 ~

~ 50 ~

