
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

CONTAINERIZATION OF DATABASE DETECTORS
KONTEJNERIZACE DETEKTORŮ NAD RELAČNÍMI DATABÁZEMI

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MICHAL OBERREITER
AUTOR PRÁCE

SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Vysoké učení technické v Brně
Fakulta informačních technologií

Ústav inteligentních systémů (UITS) Akademický rok 2018/2019

Zadání bakalářské práce lllllllllllllllllllllllll
20386

Student: Oberreiter Michal
Program: Informační technologie
Název: Kontejnerizace detektorů nad relačními databázemi

Containerization of Database Detectors
Kategorie: Analýza a testování softwaru
Zadání:

1. Prostudujte projekty db-reporter a db-detectors v rámci platformy Testos pro detekci dat v relačních
databázích. Nastudujte technologii Docker.

2. Analyzujte požadavky na zapouzdření detektorů dat nad databázemi do Linuxových kontejnerů. Navrhněte
řešení kontejnerizace detektorů v technologii Docker.

3. Implementujte rozhraní REST API k zapouzdřeným aplikacím. Navrhněte pro uživatele přehledný výstupní
formát detekce a implementujte export výsledků detektorů do tohoto formátu.

4. Správnost funkcionality podpořte automatizovanými integračními testy.
Literatura:

• Kropáč, F.: Nástroj pro analýzu obsahu databáze pro účely testování softwaru. 2017. Bakalářská práce
FIT VUT v Brně.

• Ochodek, M.: Nástroj pro analýzu obsahu databáze pro účely testování softwaru. 2017. Bakalářská práce
FIT VUT v Brně.

Pro udělení zápočtu za první semestr je požadováno:
• První dva body zadání

Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/
Vedoucí práce: Smrčka Aleš, Ing., Ph.D.
Vedoucí ústavu: Hanáček Petr, doc. Dr. Ing.
Datum zadání: 1. listopadu 2018
Datum odevzdání: 15. května 2019
Datum schválení: 1. listopadu 2018

Zadání bakalářské práce/20386/2018/xoberr00 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Abstract
This thesis deals w i th containerization of command-line applications including containeriza-
t ion of existing tools for database content analysis. The thesis is a part of Testos platform,
which aims at software testing automation. The goal was to design and implement a solu
t ion that would be bo th universally usable for command-line applications and at the same
time flexible enough to accommodate database detectors and their specific requirements.
Docker was chosen as the containerization platform, on which a management system was
buil t . This system provides both a graphical user interface and an applicat ion program
ming interface. The result allows for easy applicat ion management and output retrieval.
The pr imary contr ibution of this thesis is the streamlining and simplification of running
command-line applications wi th specific dependencies. These features come i n form of
abstracting the underlying mechanisms and providing a graphical user interface.

Abstrakt
Tato p r á c e se zabývá konte jner izac í ap l ikac í pro p ř íkazové řádky , k o n k r é t n ě pak a n a l y z á t o r ů
obsahu d a t a b á z e . P r á c e je ř e šena v kontextu platformy Testos, k t e r á cílí na automatizaci
sof twarového t e s tován í . C í l em řešení je navrhnout a implementovat un ive rzá lně použ i t e lný
n á s t r o j , k t e r ý by t a k é v h o d n ý m z p ů s o b e m řešil specifické p o ž a d a v k y d a t a b á z o v ý c h detek
t o r ů . P r o účely kontejnerizace by l zvolen n á s t r o j Docker, nad k t e r ý m b y l postaven za
pouzdřu j íc í s y s t é m . Dá le bylo v y t v o ř e n o webové uživate lské r o z h r a n í komunikuj íc í s A P I .
Výs ledné řešení umožňu je snadno spravovat aplikace př íkazové ř á d k y a z ískávat z nich
re levan tn í výs tupy . P ř í n o s e m t é t o p r á c e je u s n a d n ě n í p r á c e s aplikacemi, k t e r é vyžaduj í
své specifické závis lost i . U s n a d n ě n í spočívá v z a p o u z d ř e n í specifik n á s t r o j e Docker pod
obecnějš í model p r á c e a t a k é ve v y t v o ř e n í už iva te l sky p ř ívě t ivého grafického rozh ran í .

Keywords
containers, containerization, microservices, Testos, Docker, R E S T , . N E T Core, Flask

Klíčová slova
kontejnery, kontejnerizace, microservices, Testos, Docker, R E S T , . N E T Core, F lask

Reference
O B E R R E I T E R , M i c h a l . Containerization of Database Detectors. Brno , 2019. Bachelor's
thesis. Brno Universi ty of Technology, Facul ty of Information Technology. Supervisor Ing.
Ales Smrcka, P h . D .

Rozšířený abstrakt
Nutnost v y t v á ř e t p o r t a b i l n í sof twarová řešení ve věku c loudových řešení a on-demand s lužeb
se značně zvyšuje . Vývojář i či výzkumníc i v mnoha p ř í p a d e c h nejsou schopni replikovat
ko rek tn í chování d a n ý c h n á s t r o j ů ve svém p r o s t ř e d í a jsou nuceni zd louhavě diagnostikovat
tyto p rob lémy. T y t o a m n o h á j i n á úska l í jsou d ů v o d e m , p r o č kontejnerizace n a b ý v á na
v ý z n a m u .

Tato p ráce se zabývá konte jner izac í ap l ikac í pro př íkazové ř á d k y a snaž í se tak usnad
nit s p o u š t ě n í t ě ch to apl ikac í . J e j ím cí lem bylo navrhnout a implementovat un iverzá lně
použ i t e lný n á s t r o j , k t e r ý by t a k é v h o d n ý m z p ů s o b e m řešil specifické p o ž a d a v k y ana lyzá
t o r ů obsahu d a t a b á z e - d e t e k t o r ů a zároveň poskytoval grafické i H T T P rozh ran í . Tento
nás t ro j - Detection Containers (DeCon) - je řešen v kontextu platformy Testos vyví jeného
na F a k u l t ě In formačních Technologie Vysokého Učení Technického v B r n ě . Testos cílí
na automatizaci sof twarového t e s tován í a jeho n á s t r o j e se snaž í kombinovat r ů z n é ú rovně
t e s tován í - od j e d n o t k o v é h o po a k c e p t a č n í . N á s t r o j e db-detectors a db-reporter, k t e r é jsou
součás t í platformy Testos, jsou p ř e d m ě t e m kontejnerizace a integrace.

P ř i n á v r h u s y s t é m u D e C o n by l kladen d ů r a z na z j ednodušen í p r á c e s kon te jne r izovanými
aplikacemi. Abstrakce spočívá ve vy tvo řen í modelu p r á c e p o d o b n é m u t e s tovac ím p ř í p a d ů m
a s p u š t ě n í m . Obdoba tes tovacích p ř í p a d ů v D e C o n u jsou configurations a jobs jsou ekvi
valentem tes tovac ích spuš t ěn í . Jako konte jner izačn í s y s t é m b y l použ i t Docker, k t e r ý mimo
j iné poskytuje r o b u s t n í r o z h r a n í jak z p ř íkazové řádky , tak i H T T P . D e C o n by l navrhnut
p rávě na zák ladě t ěch to Docker kon te jne rů . S a m o t n ý D e C o n je pak konc ipován jako sada
n a v z á j e m komunikuj íc ích microservices. Opro t i monolitickým aplikacím se ty, k t e r é užívají
pr incipu microservices, vyznačuj í lepší šká lovate lnos t í , j a sně j š ím o d d ě l e n í m závislost í a t aké
možnos t í kombinovat více technologi í v jednom sof twarovém řešen ím.

Kl íčovými komponenty - s l užb ami - řešení jsou Configuration service a Job service.
P r v n í z m í n ě n á zajišťuje s p r á v u n a s t a v e n í pro j edno t l ivé konte jner izované aplikace, z a t í m c o
d r u h á orchestruje jejich s p o u š t ě n í a poskytuje informace o z í skaných datech a a k t u á l n í m
stavu. S p o u š t ě n í jobs je rea l izováno skrze Docker service, k t e r á abstrahuje j edno t l ivá vy
b r a n á volání do Dockeru. Docker service zp r acován ím p o ž a d a v k u s p o u š t í s a m o t n ý Docker
kontejner, ve k t e r é m o k a m ž i t ě startuje tzv. Application wrapper, k t e r ý zajišťuje o d c h y t á v á n í
v ý s t u p u (standard out i standard error) z d a n é z a p o u z d ř e n é aplikace. Zachycený v ý s t u p je
zas í lán do Job service, kde je u ložen do d a t a b á z e . Z p r á v y o chybách či neva l idních datech
jsou zas í lány do Logging service, k t e r á tyto z á z n a m y u k l á d á pa ra l e lně do t e x t o v é h o souboru
i d a t a b á z e . P ř í s t u p k t ě m t o s l u ž b á m je real izován p o m o c í Gateway, k t e r á oddělu je p r i vá tně
a veře jně d o s t u p n á volání s lužeb a t a k é poskytuje funkcionali tu p ř e p í n á n í editovatelnosti
configurations. Tato vlastnost byla v y ž a d o v á n a z d ů v o d u p o t e n c i á l n í h o využ i t í pro veřejné
d e m o n s t r a č n í účely.

REST API p o s k y t o v a n é s lužbou Gateway je k o n z u m o v a n é webovou apl ikací , je j ímž
úče lem je poskytnout už iva te l sky p ř ívě t ivou s p r á v u s y s t é m u D e C o n . Apl ikace klade d ů r a z
na m a x i m á l n í jednoduchost a snaž í se n e b ý t p ř ekážkou v m o ž n é m b u d o u c í m t ý m o v é m
workflow, t u d í ž neimplementuje autentifikaci ani autorizaci . Uživate lské r o z h r a n í jako jed
iné obsahuje specializace pro d a t a b á z o v é detektory (všechny s lužby jsou s t avěné obecně)
ve formě p ř i z p ů s o b e n é h o zadáván í p a r a m e t r ů a exportu zp racovaných výs ledků ve f o r m á t u
JSON. P r o k a ž d o u z a p o u z d ř e n o u apl ikaci uživate lské r o z h r a n í nab íz í m o ž n o s t n á h l e d u stavu
aplikace s automatickou ak tua l i zac í , p ř e h l e d e m a exportem surových v ý s t u p ů . V p ř e h l e d u
je m o ž n é filtrovat i p o m o c í r egu lá rn ích vý razů .

K dosažen í m a x i m á l n í flexibili ty v možnos t i z a p o u z d ř e n í různých ap l ikac í D e C o n im
plementuje podporu pro pub l ikován í p o r t ů z kon te jne rů , specifikaci s ložky k zp ř í s t u p n ěn í ,

nas t aven í časového l i m i t u pro nás i lné ukončen í kontejneru a t a k é d o d á n í v l a s tn ího Docker-
file pro instalaci p o t ř e b n ý c h závis lost í aplikace.

Služby D e C o n u jsou i m p l e m e n t o v á n y v m u l t i p l a t f o r m n í m frameworku .NET Core s vy
už i t ím j azyka C # (Configuration service, Job service, Logging service, Application wrapper)
a t a k é Flask API v P y t h o n u (Gateway, Docker service). V r á m c i v ý b ě r u i m p l e m e n t a č n í
technologie byly zoh ledněny faktory, j a k ý m i jsou nap ř ík l ad : m n o ž s t v í ap l ikačn í logiky, poža
davky na p rác i s v l ákny a a s y n c h r o n n í operace atd. Web o v á aplikace využ ívá technologie
React v jazyce JavaScript.

Výsledek p r á c e by l podroben a u t o m a t i z o v a n é m u t e s tovan í s u ž i t í m různých d r u h ů t e s t ů .
P r o o te s tován í k ó d u na ú rovn i b loků byly v y t v o ř e n y j e d n o t k o v é testy. Tes tování na ú rovn i
s lužby je rea l izováno k o m p o n e n t n í m i testy, jej ichž vy tvo řen í bylo m o ž n é d íky využ i tý pr in
c ipů v k l á d á n í závis lost í a p r o g r a m o v á n í vůči r o z h r a n í . K o t e s tován í celkové funkcionality
poslouži ly in t eg račn í testy, k t e r é komunikovaly p ř í m o s Gateway a testovaly tak s y s t é m
z pohledu vnějš ího a k t é r a .

I m p l e m e n t o v a n ý n á s t r o j D e C o n splňuje k l adené p o ž a d a v k y a s k ý t á p o t e n c i á l pro bu
doucí širší na sazen í v r á m c i platformy Testos.

Containerization of Database Detectors

Declaration
I hereby declare that this bachelor's thesis was prepared as an original author's work under
the supervision of Ing. Ales Smrcka, P h . D . A l l the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

M i c h a l Oberreiter
M a y 14, 2019

Acknowledgements
I would like to express my gratitude for the assistance and support that I have received
from my supervisor Ing. Ales Smrcka, P h . D . A l so I would like to thank h i m for the time
dedicated to the regular Testos meetings.

Contents

1 Introduction 6
1.1 Glossary 6

2 Background 7
2.1 Vi r tua l i za t ion 7

2.1.1 F u l l V i r tua l i za t ion 7
2.1.2 Containerizat ion 9

2.2 Docker P la t form 12
2.2.1 System overview 12
2.2.2 Technical overview 13
2.2.3 Docker security 14
2.2.4 Interfaces 15
2.2.5 Docker on Windows 17
2.2.6 Docker on M a c O S 19

2.3 Hypertext Transfer P ro toco l 19
2.4 Web A P I s 20

2.4.1 Representational state transfer 20
2.4.2 R E S T A P I s 21
2.4.3 H T T P - b a s e d R E S T A P I s 21

2.5 Service-Oriented Archi tecture 21
2.5.1 Microservices 21

2.6 Testos 23
2.6.1 Database detectors 24
2.6.2 Database reporter 24

3 Analysis and Design 25
3.1 Design Goals 25
3.2 Target Product 25
3.3 Ex i s t i ng Solutions w i t h Similar Funct ional i ty 26

3.3.1 Portainer 26
3.3.2 Ki t ema t i c 26

3.4 Requirements 27
3.5 Archi tecture 29

3.5.1 Gateway 32
3.5.2 Configurat ion service 32
3.5.3 Job service 33
3.5.4 Logging service 37
3.5.5 App l i ca t i on wrapper 38

1

3.5.6 Docker service 38
3.5.7 Web applicat ion 38

4 Implementation Details of D e C o n 42
4.1 Technology Choices 42
4.2 General Implementation Principles 43
4.3 Project Structure 44
4.4 User Interface Functionalit ies 44
4.5 Use of Docker Features 44

4.5.1 Cus tom Dockerfile 45
4.6 Runn ing D e C o n 46

4.6.1 Included examples 47
4.7 Integration of Database Reporter and Detectors 48
4.8 Verification of Funct ional i ty 49

4.8.1 U n i t testing 50
4.8.2 Component testing 50
4.8.3 Integration testing 51

4.8.4 Running the tests 51

5 Conclusion 52

Bibl iography 53

Appendices 56

A Contents of the C D 57

A . l B u i l d i n g and Running D e C o n 57

B W e b Appl icat ion 58

C Code Samples 60

D Docker Examples 62

E A P I Models 64
E . l Gateway Models 64
E.2 Other Models 65

2

List of Figures

2.1 Comparison of hypervisor types 8
2.2 Paravi r tual iza t ion 9
2.3 Containerizat ion 10
2.4 Orchestration 11
2.5 Docker overview 12
2.6 Container layers 13
2.7 Docker architecture on L i n u x 14
2.8 Docker components 16
2.9 Docker architecture running natively on Windows 17
2.10 Docker on Windows concurrently running Windows and L i n u x containers . 18
2.11 Testos platform 23

3.1 Container management in Portainer 26
3.2 Ki temat ic ' s container output 27
3.3 D e C o n architecture 31
3.4 Job state diagram 35
3.5 Col labora t ion diagram of a job start 36
3.6 Col labora t ion diagram of a job status retrieval 36
3.7 Col labora t ion diagram of a job update 37
3.8 User interface showing a running job 40
3.9 User interface showing a parsed and displayed result of database detectors . 41
3.10 Comparison of modals for job creation 41

B . l M o d a l window for adding a new job for database detectors 58
B.2 M o d a l window for adding a new job 58
B .3 D e C o n running a database detectors job 59
B.4 Parsed results of a database detectors job 59

3

Listings

2.1 Example of r u n command w i t h capabilities 15
2.2 Docker 's command-line interface 16
2.3 Docker's H T T P interface 16
2.4 Dockerfile example 17
2.5 Example of an H T T P request 19
2.6 Example of an H T T P response 20
3.1 Example of a file for progress reporting specification 34
3.2 Output format of an exported job 39
3.3 Expor t format of a database detectors result 40
4.1 Used Docker commands for container management 45
4.2 Basic template for custom Dockerfiles 46
4.3 Argument list of D e C o n the startup script 46
4.4 Job creation model for running the detectors on the included database . . . 48
4.5 Database detectors output 49
4.6 Un i t tests example i n x U n i t 50
4.7 Configuration of dependency injection 50
4.8 Injected dependency on a controller 51
4.9 Component tests using a test client 51
4.10 Testing script usage 51
C . l Example of controller implementation i n A S P . N E T Core 60
C . 2 Example of controller implementation i n F lask 61
D . l Concrete example of container management in D e C o n 62
D.2 Definit ion of the default Dockerfile for command-line applications 62
D . 3 Cus tom Dockerfile example (demo-dockerfile) 63
E . l F u l l Job entity model example 64
E .2 Job status model example 65
E .3 Job creation model example 65
E.4 Configuration model example 65
E .5 L o g entry model example 65
E.6 Docker service container start model example 66

1

http://ASP.NET

List of Tables

2.1 Example of H T T P methods mapping to C R U D 19

3.1 Requirements 28
3.2 Gateway actions 32
3.3 Configuration service actions 33
3.4 Job service actions 34
3.5 Logger service actions 37
3.6 Docker service actions 38

4.1 Connect ion information for the included database 47

5

Chapter 1

Introduction

In the age of cloud computing, importance of creating environment independent solutions
becomes more apparent. Oftentimes developers manage to get their tools working on their
local machines but others struggle to reproduce expected behavior due to unforeseen differ
ences i n these environments. A l so , the increased difficulty of testing out any dependence-
heavy applicat ion contribute to the rise of containerization.

This thesis aims to provide a solution for containerization of database detectors and
other command-line applications by bui ld ing a container management system on top of
Docker. This system DeCon - Detect ion Containers - offers abi l i ty to easily setup and
run user-specified command-line applications v i a an included graphical user interface or an
application programming interface. D e C o n is tai lored to the specific requirements of the
Testos platform. Users do not need to possess any prior knowledge of the Docker platform
for performing basic tasks i n D e C o n . However for advanced users, D e C o n offers a great
deal of customizabil i ty i n terms of applicat ion dependencies.

Containerizat ion of database detectors is just one of the few included demonstration
examples that aims to highlight the features of D e C o n . Database detectors are treated
as any other command-line applicat ion everywhere, except the web user interface, where
customized controls and result parsing is added. Results collected from database detectors
can be exported for addi t ional processing.

In order to properly define and describe technologies used to implement this system,
Chapter 2 lists related topics which include vir tual izat ion, containerization, Docker plat
form, web A P I s and microservices. Chapter 3 discusses design decisions made during the
design process of D e C o n and attempts to give a technology-independent description of the
system. The specifics of the implementat ion are explained i n Chapter 4, where author
reasons technology choices, gives examples of how the technologies were used and describes
the measures that were undertaken to verify the functionality.

1.1 Glossary

D e C o n
Testos

db-detectors
db-reporter

A P I
Configuration (DeCon)

Job (DeCon)

6

Detection Containers
Test Too l Set platform developed at F I T B U T [22]
Database detectors by Marek Ochodek [14]
Database reporter by F ran t i š ek K r o p á č [10]
App l i ca t ion programming interface, see Section 2.4
En t i t y based on which jobs are spawned
En t i t y holding information about appl icat ion run

Chapter 2

Background

In this chapter, the author describes basic concepts of v i r tual iza t ion while highlighting its
modern-day usage i n enterprise solutions. Specifically, author tries to present an ecosystem-
wide overview of the Docker platform while noting differences between the implementations
across different operating systems. Au tho r views these topics as important to this thesis
subject.

Descript ion of v i r tual iza t ion i n comparison to containerization in Section 2.1 is needed to
convince the reader of the importance of containerization today's applicat ion development
and deployment. Section 2.2 deals w i th Docker description and its technical implementa
t ion. Docker 's cross-platform implementation similarities and differences provide a view
into possible future integration over different platforms. H T T P protocol is outl ined in Sec
t ion 2.3. Section 2.4 deals w i th web A P I s and tries to briefly describe the basics of these
omnipresent technologies, while underpinning the fundamentals for understanding the inner
workings of D e C o n . Service-oriented architecture and microservices i n Section 2.5 help to
understand design principles and choices that have been made when designing D e C o n .

2.1 Virtual izat ion

Vir tua l i za t ion is a process of running a v i r tua l instance of a computer system i n a layer
abstracted from an actual hardware [15]. It is commonly used for running mult iple simulated
and isolated environments on a single system. Three main types of v i r tual iza t ion are:

• full v i r tual iza t ion

• paravir tual izat ion

• operating-system-level v i r tual iza t ion

2.1.1 F u l l V i r t u a l i z a t i o n

In case of full v i r tual izat ion, a v i r tua l machine 1 (V M) simulates enough hardware to allow
for running the operating system inside the V M [26].

A hypervisor (or a v i r tua l machine monitor - V M M) [16, pg. 413] is used to provide
a layer between the host and guest environments and connection to the actual hardware
v i a the host system. Hypervisor is responsible for creating and running v i r tua l machines.

1 E m u l a t i o n of a computer system.

7

-System-

r •Virtual machine-

Application #1

Guest Operating
System

Virtual machine-

Application #2

Guest Operating
System

Hyperv i so r

H a r d w a r e

(a) Bare-metal

-Syste m-
Virtua I machine-

Application #1

Guest Operating
System

r
Virtual machine-

Application #2

Guest Operating
System

Hyperv i so r

Hos t O p e r a t i n g S y s t e m

H a r d w a r e

(b) Hosted

Figure 2.1: Compar ison of hypervisor types

A n y program or operating system running inside a V M should exhibit the same behavior
as i f it was run on the native system and given the same system resources [16, pg. 413].
Hypervisors, as shown i n Figure 2.1, can be classified into two types [16]:

• Type-1 - native hypervisors

This type of hypervisors (also called bare-metal hypervisors) runs directly on the
host's hardware, meaning that instructions are executed without any dependency on
the host O S ; thus min imiz ing a potential attack surface. Examples include: Microsoft
H y p e r - V 2 , V M w a r e E S X / E S X i 3 , X e n 4 , X b o X One system software 5 etc.

• Type-2 - hosted hypervisors

Hypervisors of this type use the host operating system to execute instructions; there
fore degrading the guest system performance by introducing latency caused by in
struction interpretation. Th is type is also vulnerable to threats caused by security
issues of the host system. Examples of Type-2 hypervisors: V M w a r e Works t a t ion 6 ,
V i r t u a l B o x 7 , Q E M U 8 , bhyve 9 , K V M 1 0 etc.

Vi r tua l i za t ion enables many use-cases wi th which a regular user comes into contact
without even realizing. W i t h the emergence of cloud computing, which builds upon securely
isolated environments sharing the same hardware, v i r tual iza t ion became a focus point from
security and performance perspectives.

2https: //docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
3https: //www.vmware.com/cz/products/esxi-and-esx.html
4https://xenproject.org/
5https: //www.xbox.com
6https: //www.vmware.com/cz/products/workstation-pro.html
7https: //www.virtualbox.org/
8https: //www.qemu.org/
9http: / /bhyve. org/

1 0https: //www.linux-kvm.org/page/Main_Page

8

http://www.vmware.com/cz/products/esxi-and-esx.html
https://xenproject.org/
http://www.xbox.com
http://www.vmware.com/cz/products/workstation-pro.html
http://www.virtualbox.org/
http://www.qemu.org/
http://www.linux-kvm.org/page/Main_Page

C l o u d computing technology is buil t around features of v i r tua l iza t ion [28]. Platform as
a Service (PaaS) model utilizes this technology to run client-provided applications on a ven
dor's vir tual ized platform. Similar ly, Infrastructure as a Service (IaaS) model lets clients
manage an operating system running inside a v i r tua l machine. PaaS and IaaS services are
provided by many enterprise vendors such as: A m a z o n (A W S) , Microsoft (Azure) or Google.
The model known as Software as a Service (SaaS) provides the whole package (infrastruc
ture, platform and software) as a cloud service. Regular users may come across SaaS when
using cloud storage services, such as D r o p b o x 1 1 or cloud-enabled software applications like
Office 3 6 5 1 2 or Google S u i t e 1 3 .

Paravirtualization is a technique that aims to improve performance and efficiency
compared to full v i r tual iza t ion by modifying the guest O S kernel to replace non-virtualizable
instructions w i t h calls communicat ing directly w i th the hypervisors' v i r tual iza t ion layer
[23, pg. 5]. Figure 2.2 outlines the system architecture w i t h mult iple paravir tual ized guest
systems. For example the X e n project hypervisor supports paravirtualized L i n u x kernel
apart from support ing full v i r tual izat ion.

-—Syste m
^-Virt ua I m ac hi ne-

Application #1

Modified Guest
Operating System

Virtual mac hin

Application #2

Modified Guest
Operating System

Hypervisor

Host Operating System

Hardware

Figure 2.2: Paravi r tual iza t ion

2.1.2 C o n t a i n e r i z a t i o n

Containerizat ion or operating-system-level v i r tual iza t ion is a feature of operating system's
kernel that allows for existence of mult iple isolated user spaces [24], see Figure 2.3. A con
tainer is then an isolated user space, which shares the host operating system's kernel but
has a restricted access to the resources of that host. Advantages of containerization in
comparison to full v i r tual iza t ion are [2, pg. 2]:

• slimness - container does not include the O S , so it offers a higher environment density

• quick start - since containers share kernel w i th the host system, no boot ing is required

• performance - sharing kernel gives containers performance of a native applicat ion

nhttps: //www.dropbox.com/
1 2https: //www.of fice.com/
1 3https: //gsuite.google, com/

9

http://www.dropbox.com/
http://www.of
http://fice.com/

-System-

Application #1 Application #2

Containerization Platform

Host Operating System

Hardware

Figure 2.3: Containerizat ion

However, the main concern wi th containers is their security, since sharing kernel w i th
the host system may allow an attacker to gain access or compromise the system from inside
the container using a security issue inside the shared kernel [2]. A n another disadvantage
also comes from sharing the kernel - containers cannot run applications which are not
compatible w i th the host kernel.

Containers ' pr imary use-case is to create and deploy lightweight encapsulated environ
ments that are independent of the host system configuration or currently installed libraries
and versions. Also , resource allocation and management can be easier w i th containers
compared to V M s [27, pg. 5]. Over the years many containerization solutions have been
released. Those released include:

ch roo t 1 1 (1982) (change root) is a command on U N I X systems that allows for changing
root directory for the current process and its children.

F reeBSD j a i l 1 5 (2000) improves upon chroot by providing vir tual ized access to the
file system, users and networking. Jai led processes cannot break free on their own,
however an unprivileged user on the host can i n cooperation wi th the jai led user can
obtain elevated access in the host environment.

O p e n V Z 1 6 (2005) is a containerization technology that focuses on sharing resources of
a physical server across mult iple isolated environments called Virtual Private Servers
or Virtual Environments.

L X C 1 7 (2008) (Linux Containers) and its wrapper L X D are technologies for creating
and managing isolated environments - containers. P r io r to Docker v0.9 it was used as
and underlying container management technology but since was replaced by Docker's
own runcls project.

1 4http: //man7.org/linux/man-pages/man2/chroot.2.html
1 5https: //www.freebsd.org/doc/handbook/ jails.html
16https://openvz .org/
1 7https://linuxcontainers.org/
1 8https: //github.com/opencontainers/runc

10

http://www.freebsd.org/
https://openvz
https://linuxcontainers.org/

• D o c k e r 1 9 (2013) aims to provide a high-level solution for mainly applicat ion con-
tainerization targeted at developers and DevOps . Unl ike other competitors, Docker
is available across mult iple platforms (Linux, F reeBSD, Windows, macOS) . Further
description and technical overview is available i n Section 2.2.

• r k t 2 0 (20 14) (Rocket) is a competing solution to Docker, which hopes to solve Docker's
privilege issues (Docker Engine runs as the r o o t user) by allowing for more control
by an unprivileged user, as well as image signing by default. Rocket is also able to
fetch, convert and execute existing Docker images.

The aforementioned technologies by themselves only a im at running containers on a sin
gle physical machine and not deploying and running them across compute clusters consisting
of mult iple nodes. This issue is solved by orchestration which aims to abstract the host
infrastructure and make deploying to a cluster environment transparent to users [4]. Nodes
across the cluster are managed by the scheduler, which orchestrates the whole cluster as
shown i n Figure 2.4. Container orchestration is a process that automates deployment,
management, scaling, networking, and availabil i ty of container-based applications.

c > c >

N o d e # l N o d e #2 N o d e # 3

^ J J v. J

Figure 2.4: Orchestration

Orchestration solutions include:

• Docker S w a r m 2 1 - a native Docker solution for managing container deployments to
clusters. Each machine inside a cluster hosts a full Docker Engine which is controlled
from a swarm manager.

• Kuberne te s 2 2 - originally a Google project aimed at providing a platform for au
tomating deployment and scaling of containers. Kubernetes can be integrated w i t h
Docker containers by overriding the default Docker orchestrator - Docker Swarm.

• A m a z o n E C S 2 3 (Elastic Container Service) - a scalable, high-performance orches
t rat ion service for Docker containers available on Amazon ' s own cloud computing
platform A W S (Amazon Web Services).

1 9https: //www.docker.com/
2 0https: //coreos.com/rkt/
2 1https: //docs.docker.com/engine/swarm/
2 2https: //kubernetes. io/docs/concept s/overview/what-is-kubernetes/
2 3https: //aws.amazon.com/ecs/

11

http://www.docker.com/
http://amazon.com/ecs/

2.2 Docker Platform

Docker is a software tool for creating and managing containers . In contrast to full v i r -
tual izat ion, Docker performs vi r tual iza t ion on the operating system level, meaning that a l l
containers share the same operating system kernel. Docker as a tool was first released in
2013. It is commonly used in conjunction w i t h orchestration tools, such as Docker 's own
Swarm tool or Kubernetes.

2.2.1 S y s t e m overview

Docker as a platform is composed of three integral components: client, host and registry.
Figure 2.5 illustrates the interaction between these components. Docker Engine (also Docker
Daemon) is the backbone of Docker, it manages a l l images and containers related operations.
Docker Engine can pull remote images from a registry and run them local ly or used them
to create new user-defined images. Clients connect to Docker Engine v i a the provided A P I .

A Docker image is a template for instantiat ing containers. G iven image is either pulled
from a registry or can be buil t by specifying a Dockerfile. A Docker container is an instance
of an image, which can be started and managed. Container management is performed v i a
a Docker command-line interface (CLI) or an applicat ion programming interface (A P I) . In
its default conf igura t ion 2 5 a l l changes made to the container during runtime are lost upon
container removal. The isolation level can be changed, so that network connections and/or
sharing files w i t h the host system is enabled. Container outputs (standard output and
standard error) are stored to logs v i a a logging driver which determines a storage method.

Client

docker build

docker pull

docker run —

D0CKER_H0ST>

Docker daemon

Containers)
V
\ Images]—-i 1

\
\

N

®
NGiklX

Figure 2.5: Docker overview, source: [5]

Dockerfile is a text file which defines instructions to be executed against a parent image.
Instructions provided extend the parent image. E a c h instruct ion represents a layer. Layers
are read-only (during runtime) except the last one which is called container layer. A n
example of the layer system i n Docker is demonstrated in Figure 2.6. Th is layer is write-
enabled - it stores a l l the changes made during container runtime.

2 4https: //www.docker.com/
2 5 A volume can mounted, then files i n the volume are shared between the host and the container.

12

http://www.docker.com/

Dockerflle must specify either an entry point (a program or a script that w i l l be always
executed by run or start command) or the cmd instruction which can be used for specifying
entry point arguments and also for setting an overridable entry p o i n t 2 6 .

\
'Thfn R/WJayer_ j L J^in R/WJ_aye_r__J L_J^_n_F/WJ?¥?_r__ J

Figure 2.6: Container layers, source: [6]

If an image has no parent image then it is called a base image. Unl ike base images,
parent images are distinguished by having FROM directive i n their own Dockerflle.

2.2.2 T e c h n i c a l overview

Docker uses a number of technologies to deliver containerization features across multiple
platforms. A s depicted i n Figure 2.7, on Linux-based systems Docker Engine uses rune to
spawn and run containers i n accordance wi th the Open Containers Initiative (OCI) stan
dard. Container management is done through containerd2S, which handles image opera
tions, storage and network management. These tools enable cross-platform and cross-engine
container compatibi l i ty. In the past, L i n u x Containers (L X C) were used for container man
agement (prior to the release of Docker v0.9). In case of Linux-based systems, Docker uses
many kernel features such as these:

• namespaces - encapsulates a global system resource in a way that is invisible to
a process wi th in the namespace. Namespaces used by Docker Engine:

— pid - process isolation

— net - networking

— ipc - interprocess communicat ion

— mnt - mount points

— uts - U n i x Timeshar ing System - isolation of kernel and version identifiers

2 6 O v e r r i d i n g can be performed for example with run command.
2 7 h t t p s : //github.com/opencontainers/runc
2 8 h t t p s : / / c o n t a i n e r d . 10/

13

https://containerd

• cgroups - a feature that organizes processes into hierarchical groups allowing for
hardware resource management (e.g., memory and C P U usage)

• UnionFS variants - union mount file systems enable image layering by presenting mul
tiple file systems as one v i r tua l directory (e.g., AUFS1 branches translate to Docker 's
layers). Docker can use mult iple different storage drivers, such as AUFS, btrfs, vfs or
DeviceMapper. These drivers use stackable image layers and copy-on-write technique.

Docker Client Docker Compose Docker Registry Docker Swarm

1 1
REST API

4
D o c k e r E n g i n e

libcontainerd Ii bn et work plugins graph

contai nerd + rune

I
O p e r a t i n g Sys te m

Control Groups Namespaces Layering
Other OS parts

(cgroups) (pid, net, ipc, mnt, uts) (UnionFS variants)
Other OS parts

L

Figure 2.7: Docker architecture on L i n u x

2.2.3 D o c k e r securi ty

Security in the Docker ecosystem is important i n order to prevent attackers from gaining
control or damaging the host system from inside the container. O n Linux-based systems
security can be hardened using Linux Security Modules (L S M) [2]. Docker supports A p -
p A r m o r and S E L i n u x L S M s which both provide Manda to ry Access Con t ro l (M A C) .

M A C is an access control system where access to a l l resource objects is mandated by
a central authori ty - system administrator - and cannot be overridden, unlike i n Discre
t ionary Access Con t ro l (D A C) , where access permissions can be changed by users.

S E L i n u x 2 9 (Security-Enhanced L inux) is originally a U S Nat iona l Security Agency
(N S A) project which was later picked up by the S E L i n u x community. Access control is
implemented v i a labels which are present on every system object (e.g., file, directory, pro
cess). The role of system administrator is then to define associations between processes and
system objects.

The relationship between Docker and S E L i n u x revolves around securing isolation be
tween containers and isolation from the host. S E L i n u x ' s Type Enforcement rules are based
on a process type label, which restricts read/wri te operations on some system objects inside

2 9https: //selinuxpro ject.org/page/Main_Page

14

http://ject.org/page/Main_Page

containers. Other S E L i n u x feature used by Docker is Multi-Category Security (M C S) en
forcement which is able to isolate containers from each other by creating unique container
identifier on startup.

A p p A r m o r 5 0 is an L S M that uses M A C system to restrict program's access to re
sources. It is currently maintained by Canonical .

Unl ike S E L i n u x which uses labels, A p p A r m o r ' s behavior is defined by profiles, which
l imi t process capabilities. A p p A r m o r supports two modes of behavior: complain and en
forcement. In the complain mode, a l l pol icy violations are permit ted but also logged. In
contrast, the enforcement mode prohibits these violations. The complain mode can be used
for defining new or customizing existing profiles [2, pg. 6]. Docker uses A p p A r m o r to deny
access to key parts of the host kernel. If no profile is specified, Docker uses its default
profile.

Capabilities on L i n u x provide a fine-grained control over permissions; thus el iminat ing
the need for the root user i n cases where only a specific subset of permissions is needed.
Capabil i t ies are a per-thread attribute. Some of the capabilities are:

• NET_ADMIN - network adminis t ra t ion

• SYS _ADMIN - system administrat ion

• SYS_TIME - t ime manipulat ion

• WAKE_ALARM - system wake up

Capabil i t ies can be used wi th Docker to give containers addi t ional permissions. W h e n
pr iv i l eged flag is supplied to docker run command, container w i l l run i n privileged mode,
which gives it by default number of capabilities (SETPCAP, AUDIT_WRITE, NET_RAW, K I L L etc).
Add i t i ona l capabilities can be provided by cap-add and dropped by cap-drop as seen in
L i s t ing 2.1.

$ docker run —cap-add=ALL —cap-drop=MKNOD ...

Lis t ing 2.1: Example of run command wi th capabilities

Docker Reg i s t ry 3 1 is a scalable server-side applicat ion which hosts and enables dis
t r ibut ion of Docker images. The Docker ecosystem has its own public registry - Docker
H u b 3 2 - which hosts m a n y 3 3 official images from authors themselves. Registries can also
be hosted on private servers.

Docker M a c h i n e 3 1 is a part of the Docker ecosystem that allows for Docker Engine
hosts management. It is used for provisioning Docker hosts on remote systems (installing
Docker Engine, configuring client etc.). Alternat ively, it can serve as a way to run Docker
Engine on non-compatible Windows and M a c O S versions, which was i n the past the only
way to run Docker on non-Linux operating systems.

2.2.4 Interfaces

Docker Engine A P I (also called Docker R E S T A P I and Docker Remote A P I) exposes the
Docker Engine functionality v ia H T T P based A P I as shown i n Figure 2.8. O n top of the

3 0https: //gitlab.com/apparmor/apparmor/wikis/home/
3 1https: //docs.docker.com/registry/
3 2https: //hub.docker.com/
3 3 F o r example: Ubuntu, M y S q l , N G I N X , M o n g o D B , NodeJS
3 4https: //docs.docker.com/machine/overview/

15

http://gitlab.com/
http://docker.com/machine/overview/

Engine A P I Docker provides a command-line interface which serves as a wrapper of the
A P I calls. Most of the command-line calls map direct ly to the A P I ones, w i th exception of
docker run command which consists of create and start A P I calls. List ings 2.2 and 2.3
depict a difference between these types of c a l l s 3 5 .

Figure 2.8: Docker components, source: [5]

$ docker b u i l d . - t api
$ docker run api

Lis t ing 2.2: Docker 's command-line interface

POST /b u i l d
POST /containers/create
POST /containers/start

Lis t ing 2.3: Docker 's H T T P interface

Docker Compose 3 6 is a tool i n the Docker ecosystem for creating and managing
multi-container environments. Defini t ion of the composure is done by specifying a YAML
file docker-compose.yml, example of which can be seen L i s t i ng 2.4. A Dockerfile usually
contains list of services, volumes and networks and their respective configurations. Services
can specify features such as port exposures, dependency on other services 3 7 , commands
to be executed etc. Docker Compose is typical ly used to host web applications w i t h their
databases. In such environment one container hosts the web applicat ion and the second one
is used for a database management system (D B M S) . These two are by default connected
to their internal network, on which both can be accessed by their respective service names
(e.g., mongodb://mongodb:27017).

3 5 I t should be noted that command-line interface also has the create and start commands.
3 6https: //docs.docker, com/ compose/overview/
3 7 Dependency ensures the startup order of services, however does not wait for the actual service to be

ready.

16

version: "3"
services:
web:

bu i l d : .
ports:

- '${WEB_P0RT}:8080'
depends_on:

- db
db:

image: mongodb

Lis t ing 2.4: Dockerfile example

2.2.5 D o c k e r o n W i n d o w s

Docker on Windows (DoW) can run both native Windows containers and L i n u x containers.
Each of these types has its specifics and can use mult iple technologies to achieve the desired
level isolation and performance.

Windows containers can be categorized by their level of isolation. F i rs t type is Windows
Server Containers which architecturally resembles container technology present on L inux-
based systems. A s a replacement for containerd and rune, Windows implements Hosted
Compute Service (HCS) for low-level container manipula t ion (Figure 2.9). H C S is also able
to create H y p e r - V isolated containers [20].

Docker Client Docker Compose Docker Registry Docker Swarm

1 1 1 i
REST API

i
Docker Engine

libcontainerd Ii bn et work plugins graph

_
i

contained + runhes

Operating System

Host Compute Service

Control Groups
[Job Objects]

Namespaces
[Object Namespace, Proces

Table, Networking]

Layering
[Registry, Union FS-like

extensions]

Other OS parts

Figure 2.9: Docker architecture running natively on Windows

Unl ike Windows Server Containers, the second type - Hyper- V isolation - runs contain
ers inside a v i r tua l machine; therefore gaining security benefits of a v i r tua l machine, while
s t i l l retaining some advantages of containers.

Windows containers are based on the Nano Server or Server Core images. B o t h images
are derivatives of the Windows Server operating system, though Nano Server is much more
slimmed-downed version, c la iming 93 % lower v i r tua l hard-disk size and 80 % fewer reboots
than Server Core [21].

17

Docker on Windows is also capable of running L i n u x containers. Th is is beneficial in
cases when users want to u se 3 8 Docker inside Windows Subsystem for Linux39, which at
the moment does not natively support Docker. The only way is to connect a Docker client
to the Docker on Windows v ia an H T T P bridge.

L i n u x containers can run on Windows i n two different ways [3]. F i r s t of them consists
of having a full Moby v i r tua l machine (Docker's own v i r tua l machine inside H y p e r - V , i.e.
L i n u x container host) whose kernel is shared w i t h a l l L i n u x containers. In this mode only
a chosen type of containers can be run at the same time and a reconfiguration is needed to
switch between L i n u x and Windows containers.

For use-cases when Windows and L i n u x containers need to run at the same time or
H y p e r - V isolation is needed between the ind iv idua l L i n u x containers (and not only on the
L i n u x container host level), users can choose to enable experimental feature (as of Spring
2019) to run L i n u x containers directly without M o b y V M , as shown i n Figure 2.10. This
feature is called Linux containers on Windows (L C O W) .

Windows Container Host

Docker Client

LCOW with Hyper-V

Docker Engine

Windows Container

Windows Kernel

gRPC

Linux Container

Linux Kernel

Hypervisor

Figure 2.10: D o W concurrently running Windows and L i n u x containers using H y p e r - V

This approach spawns a new H y p e r - V isolated environment for each container; thus
sandboxing the container inside its own v i r tua l machine. A L i n u x kernel w i th min ima l
dependencies is present inside the V M , which performs container management v i a receiv
ing calls through gRPC - a remote procedure cal l f ramework 1 0 . The embedded L i n u x
dis tr ibut ion is buil t using LinuxKit .

Most of DeCon was developed using Docker on Windows.
9https: //docs.microsoft.com/en-us/windows/wsl/about
°https: //grpc.io/
xhttps: //github.com/linuxkit/linuxkit

18

http://microsoft.com/en-us/windows/wsl/about

2.2.6 D o c k e r o n M a c O S

Similar to Windows, Docker for M a c uses vi r tual iza t ion to run L i n u x containers. In case
of M a c O S , Docker includes its own hosted hypervisor Hyperkit , which is based on bhyve
- a B S D hyperv i so r 1 3 . The dis t r ibut ion of L i n u x inside the v i r tua l machine is also based
on L i n u x K i t .

2.3 Hypertext Transfer Protocol

Hypertext Transfer P ro toco l (H T T P) is an application-level protocol for distr ibuted, col
laborative, hypermedia information systems [8].

H T T P is a stateless protocol running i n a client-server model . Requests made by clients
are processed and responses are sent by servers. E a c h request has to adhere to the format
specified by the H T T P standard [8, pg. 35]. A request is composed of a request-line (H T T P
method, U R I of the resource and H T T P version), headers, an empty line and an optional
message body. L i s t i ng 2.5 shows an example of such request. A n H T T P method indicates
the desired action to be performed for a given request. Table 2.1 depicts an example of
H T T P methods mapping to the C R U D 4 4 operations.

H T T P method C R U D operation
G E T Read resource
P O S T Create resource
P U T Update/replace (complete resource needed)
P A T C H Upda te /modi fy (only changes required)

Table 2.1: Example of H T T P methods mapping to C R U D

POST /api/values HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
Host: www.testos.org
Content-Type: application/x-www-form-urlencoded
Content-Length: length
Accept-Language: en-tis
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

name=John&surname=Doe

Lis t ing 2.5: Example of an H T T P request

Each response contains a status-line (H T T P version, H T T P status code and reason
phrase) followed by zero or more headers, an empty line and an optional message body
(Lis t ing 2.6). A status code, a three digit number, indicates the outcome of the request
and can be categorized into 5 groups: informational, success, redirection, client error and
server error. Reason phrases give human-understandable information about status codes,
for example: 200 - O K , 404 - Not Found.

4 2https: //github.com/moby/hyperkit
4 3http: //bhyve. org/
4 4 C R U D - Create, Read, Update, Delete - basic operations with a resource.

19

http://www.testos.org

HTTP/1.1 404 Not Found
Date: F r i , 10 May 2019 23:49:20 GMT
Server: Apache/2.4.39 (Win64)
Content-Length: 42
Connection: Closed
Content-Type: text/html; charset=iso-8859-2

Lis t ing 2.6: Example of an H T T P response

2.4 Web A P I s

Appl i ca t ion programming interface (A P I) is a set of functions and procedures that allows
for accessing features of an operating system, applicat ion, service or a software library. In
a web environment, A P I s can be used for manipula t ing documents, fetching data from the
server, manipula t ing graphics [12] etc.

M a n y web A P I s adhere to principle of R E S T . Thus it is important to present an overview
of R E S T A P I principles, since this thesis deals w i th such A P I s .

2.4.1 R e p r e s e n t a t i o n a l state transfer

Representational state transfer (R E S T) is an architectural style that conforms to a set of
constraints [7, pg. 76-85]. These constraints are:

• Client-Server - separation of concerns, meaning that user interface can be decou
pled from the data storage; therefore improving portabil i ty, scalabil i ty and enabling
independent redeployment of both components.

• Stateless - the client-server communicat ion must be stateless - a l l data needed to
understand a request must be a part of the request and no communicat ion context
can be stored on the server. Statelessness contributes to vis ibi l i ty (all data is i n the
request), rel iabil i ty (no state can be corrupted on the server) and scalabili ty (server
does not need to keep any context for the ind iv idua l clients).

• Cache - responses can be marked as cacheable or non-cacheable, so clients can reuse
responses for later equivalent requests. Th is results in an improvement i n efficiency,
scalability and client performance.

• Uniform interface - uniformity of interfaces decouples implementations from the pro
vided services. Such interface is defined by these constraints: resource identification
(e.g., U R I system), resource manipulat ion through representations, self-descriptive
messages, hypermedia as the engine of appl ica t ion state (H A T E O A S , dynamic dis
coverability of l inks to other actions which hold contextual data - s imilar to l inks on
a website).

• Layered system - constraints of layered system enable for existence of network-based
intermediaries to be deployed between client and server i n order to provide security,
caching or load balancing features.

• Code on demand - an opt ional constraint for extending functionality by executing
a downloaded code like Java applets or a JavaScript code.

20

D a t a elements of R E S T can be summarized to [7, pg. 89]:

• Resource - abstraction of information

• Resource identifier - typical ly a U R L

• Resource metadata

• Representation - J S O N , X M L , H T M L , J P E G etc.

• Representation metadata - content type, alternates

• Cont ro l data - usually H T T P headers

2.4.2 R E S T A P I s

Web services can expose themselves through web A P I s to clients. Web A P I s that adhere
to the principles of R E S T are called R E S T A P I s , then a web service wi th a R E S T A P I is
a R E S T f u l service [11, pg. 6].

2.4.3 H T T P - b a s e d R E S T A P I s

Though R E S T was outl ined wi th web in mind , it is predominantly but not exclusively' 1 5

used wi th H T T P . H T T P offers features such as U R I s , H T T P methods, caching headers that
directly map to properties of R E S T . Usage of H T T P wi th R E S T is based on conventions
and design guidelines [11].

2.5 Service-Oriented Architecture

Service-oriented architecture (S O A) is an approach to software applicat ion design [9]. In
stead of developing single monoli thic applicat ion, mult iple smaller components are used to
achieve the same functionality. This improves maintainabi l i ty and ensures better separation
of concerns when implemented correctly.

A common pattern in S O A is an enterprise service bus (E S B) , which handles point-to-
point communicat ion. E S B s attempt to decouple service from each other by a standardized
way of communicat ion. E S B s are i n nature similar to message buses such as D - B u s 4 6 or
Testos B u s ' 1 7 . D a t a storage is usually shared between a l l services, which l imits the scalabili ty
of such storage.

S O A pattern is typical ly used i n large enterprise solutions, where services can represent
whole legacy applications or i n cases where monoliths cannot be split due to the existing
infrastructure.

2.5.1 M i c r o s e r vices

Microservices are a software development style for designing and running smal l loosely cou
pled autonomous services w i th bounded contexts - domain boundaries. Richards [17] defines
microservices as a specific approach to the service-oriented architecture, because S O A in
general does not provide specifics on how to split services so that the outcome produces

4 5See https: //github.com/swagger-api/swagger-socket
4 6https: //www.freedesktop.org/wiki/Software/dbus/
4 7https: //paj da.fit.vutbr.cz/testos/testos-bus

21

http://www.freedesktop.org/wiki/Software/dbus/
http://vutbr.cz/testos/testos-bus

desired benefits over a single monoli thic applicat ion. In contrast to S O A , microservices
l imi t sharing of data storage. Microservices are usually smaller i n size, compared to S O A
services. M a i n principles of microservices as stated by Newman [13, pg. 246]:

• hidden internal implementation details

• decentralized

• deployed independently

• failure isolation

• highly observable

• business concept as the focus point

• automation of tasks

Mot iva t ion for using microservices comes from the need for highly scalable and agile
infrastructure and development. Tradi t ional ly used monoli thic approach to bui lding ap
plications is not suited for solving these issues. Scaling a monoli thic applicat ion means
that the entire appl icat ion host hardware needs to be scaled, while w i th microservices only
specific services could be scaled.

Another big concern wi th developing monoliths is their high-risk deployment. W i t h
every code modification, the entire appl icat ion has to be bui l t , tested and then deployed.
Therefore i f large applications are i n question, this process can be t ime consuming; thus
reducing the abi l i ty to quickly iterate over new versions. Redeploying monol i th also comes
wi th a risk of breaking the functionality since many changes are put into product ion at
once.

Deconstructing monol i th into microservices also comes wi th the benefit that smal l de
veloper teams can own the whole lifecycle (from development and testing to deploying) of
their service. Hav ing smal l autonomous services also makes them immune to implementa
t ion changes i n other services. Microservices usually do not make use of a shared codebase
as it is considered anti-pattern, since it creates a tight coupling among the services which
defeats the purpose of microservices. This also means that DRY'18 principle is not s t r ic t ly
enforced across services.

Handl ing databases i n microservices does not follow the same principles as i n monoli thic
applications. To ensure loose coupling, a shared database should not be used, as it couples
the connected services w i th current database schema and any change to the schema can
potentially break the services. Instead database-per-service pat tern is more suitable and
better scalable [19], since many instances of the same service can be active at the same
time.

The absence of a shared database prohibits the ACID (Atomici ty , Consistency, Isolation,
Durabi l i ty) principles to be retained. This fact poses challenges summarized i n Brewer's
C A P theorem [1]:

• Consistency - consistency equivalent to having a single up-to-date copy of the data

• Availability - high availabil i ty of that data without guaranteeing that the information
is updated

4 8 D R Y - Don't Repeat Yourself

22

• Partitions - tolerance to network partit ions (delays or lost messages)

A t most two of these properties can be applied to any distr ibuted data system. In
microservices, high availabil i ty directly contradicts consistency (e.g., mult iple services in
volved i n a transaction). Therefore eventual consistency is introduced, which provides
BASE semantics: Basical ly Available, Soft state, Eventua l consistency. B A S E consistency
is achieved v ia convergence that is usually implemented by data replication across the
services.

The use of technology-agnostic inter-service communicat ion protocols (e.g., H T T P)
achieves decoupling any specific technology from the actual implementation. Language and
framework choice can vary service by service. B y using different technologies, developers
can choose the one that the best.

B y maintaining mult iple smal l isolated services, errors and failures can be contained
in a way that no other services w i l l be affected; therefore preventing cascade failures. M i
croservices on its own do not guarantee this feature but a proper robust design can help
wi th mit igat ing such system-wide failures. A technique of circuit breakers can be applied
to „fail fast" i n case of repeated service failures so that failures do not cascade over to other
services [18].

In real life, microservices are used for variety of applications, ranging from e-shops to
on-demand video platforms, such as Netfl ix . For implementing aforementioned features,
mainly scaling, orchestration tools like Kubernetes in conjunction wi th Docker can be used.

2.6 Testos

Testos (Test Too l Set) [22] is a platform developed in Facul ty of Information Technology
at Brno Universi ty of Technology. Testos supports automation of software testing. Tools
wi th in the platform (Fig . 2.11) combine different levels of testing (from unit to acceptance
testing) w i t h different categories of testing, such as model-based testing, requirement-based
testing, G U I testing, data-based testing and execution-based testing wi th dynamic analysis.

Model-based

~i r Requirement-based

Wirec,
widget

recognition

Web Toolkit
driver drivers

Aggt,
GUI rule
checker

Golem
modeller

Intest, UI
testgen

Data/control flow
extraction

NC P P C MC DC

Spectra, Spec,
translation

C E G
editor+solver

Mögen, Mock
generator

Afret. RBT
assistant

Automated test design TMT. Test
management

Dataster
generator

DB reporter

Fixit, SUT
fixture

Testos
database

Forst synthesis

Tree reporter

Grid Manager

VMs executors

Dyan probes

Dyan monitoring

Runtime
Verification

Execution-based

Figure 2.11: Testos platform, source: [22]

https: //www.netf lix.com/

23

http://www.netf
http://lix.com/

2.6.1 D a t a b a s e detectors

Database detectors or db-detectors is a tool for database content analysis authored by
Marek Ochodek [14]. The goal was to detect data restrictions i n an already created re
lat ional database by implementing a set of detectors for database exploration. Database
detectors communicate w i t h the database reporter which orchestrates the process of detec
t ion. A s stated by the author, its current implementat ion is l imi ted by only one database
per program instance and suffers from poor error handling [14, pg. 33].

2.6.2 D a t a b a s e repor ter

Database reporter or db-reporter a is tool for orchestrating database content analysis au
thored by Fran t i šek K r o p á č [10]. Reporter aimed to provide means to organize, schedule
and manage lifecycle of database detectors. Communica t ion wi th the detectors is imple
mented using D - B u s 5 0 - a low level message bus. K r o p á č states that the main shortcomings
are: l imi t to one database per instance and lack of code documentation [10, pg. 31].

'https: //www.freedesktop.org/wiki/Software/dbus/

24

http://www.freedesktop.org/wiki/Software/dbus/

Chapter 3

Analysis and Design

Design process of any software product poses challenges, requiring a precise and concrete
analysis of existing solutions and requirements on the new solution. The need for analysis
is further accentuated i n cases where the solution includes numerous interacting parts, such
as this thesis. In this chapter author attempts to offer an insight into the thought process
concerning the architecture of this system - D e C o n .

3.1 Design Goals

The original purpose of D e C o n was to containerize database detectors and reporter using
Docker containers. After discussions w i th the supervisor, the goal was extended to present
a user-friendly means of interacting wi th containers and include the abi l i ty to run arbi trary
command-line applications inside the containers. A u t h o r t r ied to follow design principles
of microservices and general rules concerning design and implementat ion of R E S T A P I s ,
so that the overall system adheres to the most recent trends in designing complex systems.

Since Testos is a collection of testing tools and, i n the future, D e C o n is expected to
containerize some of these tools, it seemed only logical to design D e C o n in resemblance to
test cases and test runs. DeCon ' s configurations are counterparts to test cases and jobs are
equivalent to test runs.

3.2 Target Product

The final product should be composed of mult iple microservices that are, through a gateway,
accessible v i a a web A P I . This A P I w i l l be consumed by a simple graphical user interface,
which should provide a user-friendly way to interact w i th D e C o n . Users should be able
to start and manage jobs, review, filter and download logs. Pub l i c ly facing D e C o n A P I
and the microservices should be designed without dist inct ion between database detectors
and other command-line applications. The only specialized part for the detectors w i l l be
the G U I , which should provide customizations to enable easier and more streamlined user
experience. N o knowledge of Docker should be required for basic operations. However,
advanced users should be able to provide their own custom Dockerfiles. D e C o n w i l l adapt
to hosting scenarios (local hosting or public server) when appropriate startup flags are
specified.

25

3.3 Exist ing Solutions with Similar Functionality

Since D e C o n builds on top of Docker, some similar solutions already exist. These solutions
focus on providing a user interface on top of Docker, which, i n principle, share similar
functionalities w i th D e C o n . However, it should be noted that D e C o n is not merely a G U I
to Docker containers. Its backend architecture, test case-like job execution and customized
parsing are custom-tailored to the needs of Testos platform. In spite of this, author regards
mentioning these existing solutions as important .

3.3.1 P o r t a i n e r

Por ta iner 1 is an open-source Docker management tool available on L inux , Windows and
M a c O S . It runs directly on top Docker Engine A P I and exposes the Docker functionality
through a graphical interface as shown in Figure 3.1. Portainer supports Docker features
such as networking, volumes, secrets, Swarm mode etc. Feature-wise it covers most of
Docker. Therefore users can mostly avoid the command-line interface.

jjportainerio HI

CsE-iboord ft
i m i ffi ii- • • M U M i 1 • • i F i c g r g s a

CsE-iboord ft

A jp T.rr fIDIBS <tf

31«; ki ii
SlIVKH •

cenuimri =

irna_«e m

cenuimri =

irna_«e m

NHworki i3i

Volume! &

5

NHworki i3i

Volume! &

5

St.ntti™ M«- M -HH.*>«

NHworki i3i

Volume! &

5

Reg-si ri ei 3

5«tings «

Figure 3.1: Container management i n Portainer

3.3.2 K i t e m a t i c

K i t e m a t i c 2 is an open-source container management tool acquired by Docker. This solution
focuses solely on container management. Unl ike Portainer, it offers a greatly simplified user
interface (Figure 3.2). Thus it loses some of the functionality of Portainer, but it makes
the user experience easier for users w i t h no previous experience wi th the Docker platform.

xhttps: //www.portainer.io/
2https: //kitematic.com/

26

http://www.portainer.io/

Figure 3.2: Ki temat ic ' s container output

3.4 Requirements

M a n y of the requirements were outl ined prior to design and implementat ion of D e C o n . F r o m
these requirements a detailed analysis was conducted. B o t h funct ional 3 and non-funct ional 1

requirements were specified.

Identifier Name Category
req auth Token based authorization Security
Author iza t ion w i l l be token based.
req logging Logging Reliabil ity
Relevant information and exceptions w i l l be logged.
req code style Code style consistency Code
Code style w i l l be consistent and w i l l adhere to language specifics.
req code doc Code documentation Code
Code w i l l be documented i n a way usual for the given programming language.
req testing Testing Code
Testing w i l l be done where deemed necessary.
req unit tests Uni t tests Code
K e y parts of the codebase w i l l be covered by unit tests.
req integrat ion tests Integration tests Code
Testing across services w i l l be performed.
req code struct Code structure Code
Code w i l l be structured i n a clear and easy to understand way.
req code patterns Design patterns Code

requirements describing actual system behavior or features,
requirements defining general system characteristics.

27

Services w i l l use well-known design patterns where applicable.
req request t ime Fast request response Performance
N o request w i l l take longer than it is needed for the relevant response to be returned.
req parallel jobs Parallel jobs Performance
M u l t i p l e command-line applicat ion can run at the same time.
req log persistence Job output persistence Reliabil ity
Output produced by the command-line applications has to persist Docker cache,
container and images wipes.
req install inst ruct ions Install and run instructions Documentat ion
Clear and concise instructions w i l l be given on how to run D e C o n .
req http H T T P communication Interoperability
A l l web A P I s w i l l be H T T P based.
req portabil ity Plat form independence Portabil i ty
A l l services should be platform independent.
req api gui G U I and A P I Functionality
D e C o n w i l l provide both an A P I and a G U I to manage jobs.
req job configurations Job configurations Functionality
Configurations w i l l hold general information about the command-line applications.
req mounting M o u n t i n g Functionality
A d d i t i o n a l folder/file can be mounted for applicat ion to access.
req locking Lock mode Functionality
Configurat ion edit ing could be disabled by an option for demo purposes.
req ar bit rary cli A r b i t r a r y applications Functionality
D e C o n w i l l be able to run both database detectors and any arbi t rary command-
line appl icat ion
req gui export import Session state export / import Functionality
State of user's session can be exported to a file and imported back.
req cli specialization Specializations in G U I Functionality
O n l y the G U I w i l l include features specific to the detectors, other components w i l l
make no dis t inct ion between detectors and any other command-line applicat ion.
req percentage report Progress reporting Functionality
Command-l ine applications can report their progress by sending messages i n a
specified format.
req detectors output Parsed output of detectors Functionality
Output from the detectors w i l l be parsed and presented i n a clear and understand
able way.
req containers Docker containers Functionality
Docker containers w i l l be used for service containerization.

Table 3.1: Requirements

28

3.5 Architecture

Given the requirements imposed on the final product, it was clear from the in i t i a l design
phase that it would be impract ical to develop D e C o n as a monoli thic applicat ion. Th is
emerges pr imar i ly from the following reasons:

• having both command-line and graphical interface inside any monol i th could result
in an inconsistent behavior

• applications that have long execution t ime (or indefinite) would be unmaintainable
in a monoli thic web applicat ion - a background service is needed

• combining different technologies and frameworks would be hard to achieve

Instead, D e C o n was designed as a set of services running inside Docker containers.
Service-oriented architecture was considered and at one point even par t ia l ly implemented.
S O A solution would split the system into a few separate services; thus resolving the afore
mentioned issues of a monoli thic approach. However, for the actual implementation, mi -
croservices were chosen as a result of certain later identified key disadvantages of the S O A
approach. These included insufficient service granularity and publ ic /pr iva te service separa
t ion. Facing the requirements i n question, the following advantages offered by microservices
are of great importance:

• separation to smal l independent units that are easier to containerize and orchestrate
v ia Kubernetes or s imilar tools

• communicat ion between services is encouraged to be simple, usually using H T T P -
based R E S T A P I s

• adding and testing new features, as they are conceived, is a relatively low-risk opera
t ion i n terms of impact on other services

In pract ical applications, correct data separation in microservices might prove difficult,
as data are usually stored in databases. A s mentioned i n Section 2.5.1, sharing databases
between mult iple microservices could be considered an anti-pattern, since database creates
a dependency between services and a possible single point of failure. In order to mitigate
these hazards, D e C o n uses one database per service. However, this introduces problems
of eventual consistency, that have to be managed manua l ly ' by making calls to related
services. Advantages of this approach are mainly i n better separation, abi l i ty to change
database schemas independently and distribute the load more evenly, since database does
not have to bear the load of mult iple services. Th is is greatly beneficial i n cases where
services sharing the databases are heavily loaded wi th incoming traffic.

Communica t ion between services is implemented by H T T P R E S T A P I s (req_http).
H T T P was chosen for its ubiqui ty and support by applicat ion frameworks. Since H T T P
usual ly 6 runs on T C P / I P protocol, communicat ion is considered reliable on the packet
level. Communica t ion however can fail when one or more services go offline. In these
circumstances, D e C o n availabil i ty w i l l be affected, however, where possible, system w i l l
apply appropriate measures (job timeout, opt imist ic container k i l l ing - when not sure,

5See Section 3.5.2, deletion of a configuration has to trigger cascade deletion of jobs.
6See HTTP / 3 over QUIC https://http3-explained.haxx.se/en/h3.html

29

https://http3-explained.haxx.se/en/h3.html

D e C o n w i l l attempt to k i l l the container, even when host system was restarted and no such
container exists) to eventually achieve consistency.

A l l services are designed wi th por tabi l i ty in m i n d (req_portability), so a l l of them
should be able to run under any supported operating sys tem' . Since Docker is supported
on a l l mainstream O S types (Windows, L inux , M a c O S) , D e C o n can be run on any of these
systems. However, it should be noted that inconsistencies exist across Docker implemen
tations.

W h e n dealing wi th authentication and authorizat ion i n applications where the end
user is expected to be either developer (self-hosted scenario) or a team member (hosted
scenario), it is important consider the obtrusiveness of the authentication and authorizat ion
process, since introducing a complex authentication and authorizat ion system could prove
as redundant. In accordance wi th the requirement (req_auth), authorizat ion w i l l be token
based, meaning that only an unguessable universally unique identifier (U U I D) w i l l be used.
The knowledge of the token w i l l authorize users to perform any action allowed given the
current D e C o n configuration (e.g. modifiabil i ty of job configurations). Authent ica t ion on
the A P I is not present, only i n the case of web application, browser's local storage is used
to store known job and configuration identifiers/tokens.

It is important to mention why author chose not to use native Docker logs and instead
resolved to sending the outputs v ia H T T P directly to a D e C o n service. The reasons for
doing so were:

• native logs and status (see docker inspect) retrieval is request based

Given that a container would be started, no subsequent status request would be made
and container would be deleted, a l l logs would be lost, since they were present only
in Docker. Hav ing a wrapping applicat ion that listens for the outputs and actively
streams data back to a D e C o n service ensures that data are stored i n a permanent
storage almost immediately.

• every request for a job status would result in a ca l l to Docker for new logs

Ca l l ing Docker w i th every request (especially when the G U I or large number of clients
would make frequent requests) could cause noticeably load on Docker Engine. B y
sending the output data, as they are captured, to a D e C o n service, Docker is spared
the load. Under this architecture the service has to only retrieve logs from its database.

A s for regular logging of events and errors from D e C o n services, author also chose to
implement custom logging mechanisms. The reasons for custom logging were mainly:

• different technologies used across services

Having a diverse set of technologies used i n D e C o n and not having single point for
logging, would greatly increase difficulty of searching the logs.

• lack of a standard log format

A s mentioned i n the first point, diverse technologies produce different log formats,
which would further decrease searchability of the logs.

supported operating system of the multi-platform framework.
8For example DNS record for the host system differs, however future versions of Docker are expected to

fix this issue.

30

• inconsistent for custom logging attributes

Having custom logging attributes can help services to determine whether any errors
occurred dur ing the job execution.

W h e n designing D e C o n an important choice had to be made - where to differentiate
between generalization and specialization in terms of database detectors. Accord ing to the
requirement (req_cli_specialization) a choice was made to specialize only i n G U I . The
differences between detectors and any other command-line applicat ion are i n the means
of data input and presentation, namely to what extent the inputs and outputs are user-
friendly. The rest of the process of managing jobs is identical, therefore it was decided to
keep the specializations in the G U I . In the future, if D e C o n would integrate other Testos
tools, having a generalized backend infrastructure might prove helpful to avoid unnecessary
issues.

D e C o n components (Fig. 3.3)

• Gateway - public endpoint

• Job service - handl ing jobs and their lifecycle

• Configuration service - managing configurations

• Logging service - log storage and retrieval

• Application wrapper - capturing output from the command-line applicat ion

• Docker service - wrapper around Docker commands specific for D e C o n

• Web application (the G U I) - user interface for managing D e C o n

Private Docker Network

D o c k e r S e r v i c e

W e b A p p l i c a t i o n — i

A n y C l i en t A p p l i c a t i o n — 1

A p p l i c a t i o n W r a p p e r

J o b S e r v i c e

G a t e w a y -> L o g g i n g S e r v i c e

C o n f i g u r a t i o n Se rv i ce

TXT

Figure 3.3: D e C o n architecture

31

Name U R L H T T P method
Create a configuration /conf igurat ion/ P O S T
F r o m the passed model a new configuration w i l l be created.
Get a configuration /configuration/{token} G E T
Configuration wi th a matching token w i l l be returned.
Update a configuration /configuration/{token} P U T
Configuration wi th a matching token w i l l be updated.
Delete a configuration /configuration/{token} D E L E T E
Configuration wi th a matching token w i l l be deleted along wi th a l l associated jobs.
Start a job / j o b / P O S T
Job w i l l be created and started according to the passed model.
Get a job /job/{token} G E T
Job wi th a matching token w i l l be returned.
Delete a job /job/{token} D E L E T E
Job wi th a matching token w i l l be deleted.
K i l l a job / job /k i l l / { token} G E T
Job wi th a matching token w i l l be ki l led, i f it is running.
Get status of a job / j ob/status/{token} G E T
Status information about a job matching the token w i l l be returned.
Configuration modifiability /modifiable G E T
Returns a boolean value depending on whether configurations can be modified.

Table 3.2: Gateway actions

3.5.1 G a t e w a y

Gateway is the only publ ic ly accessible A P I . Its role is to abstract internal A P I calls which
may or may not direct ly 1:1 to the public ones. The available actions/calls are listed in
Table 3.2. Hav ing the A P I as the singular point for public access also simplifies access
control, since private actions are s imply not exposed through Gateway. It interacts w i th
Job and Configurat ion services, depending on the type of request. Logging information are
sent to Logging service for further processing.

To be able to run D e C o n on a product ion server or in a public demonstration environ
ment, D e C o n has to mitigate the threat of remote code execution, because by giving users
access to any executable present on the host system, while having an internet connection,
would effectively open the container and the host system to any malevolent entity. The
danger lies i n the users' abi l i ty to add new configurations; thus toggleability of this feature
is required (req_locking). Since this is a purely permission related issue, it is a part of
Gateway.

3.5.2 C o n f i g u r a t i o n service

Configuration service handles retrieving and managing configurations - templates from
which jobs are spawned (req_job_configurations). Configurat ion is identified by its
unique name. Opt iona l ly a mount to a directory or a file can be specified (req_mounting).
Mount ing is done v ia Docker Volumes. Delet ing a configuration w i l l cause a ca l l to Job

32

Name U R L H T T P method
Create a configuration / P O S T
Get a configuration /{token} G E T
Update a configuration /{token} P U T
Delete a configuration /{token} D E L E T E

Table 3.3: Configuration service actions

service for a l l jobs created from this configuration and then another ca l l for deleting them
along wi th this configuration. Table 3.3 shows actions of this service.

Configuration attributes

• Name - unique configuration name

• FilePath - path to the executable

• WorkingDirectory - working directory of the executable

• Mount - file or directory that w i l l be mounted to /app/mount

• Dockerf i l e - optional , path to a Dockerfile for instal l ing dependencies

• ContainerPort - port inside the container which w i l l be exposed

• JobTimeout - timeout after which job (without any act ivi ty for that amount time)
w i l l be ki l led

D e C o n can optionally expose a port from the container to the host system. Th i s can
enable usecases where the command-line applicat ion would be accessible from the host
system and act as a server. W h e n creating a configuration, the port can be specified to
indicate which port from the container w i l l be exposed. M a p p i n g of this port to the host
is indiv idual ly specified when creating jobs. However, it should be noted, when an already
used port is specified, job will fail to start. Th is can be avoided by setting the port to 0 (or
null) thus Docker w i l l pick any port available, then the actual port is updated on the job
entity. If no port is specified wi th the configuration, container w i l l not be exposed.

Job timeouts are essential when dealing wi th potential ly unstable applications that could
cause unwanted resource consumption due to hangups. B y default, job w i l l be ki l led after
900 seconds of no standard output and error activity. Th is can be configured by specifying
the timeout when creating new configurations. If t imeout 0 is entered, no timeout w i l l be
applied. Th is feature is handled at Configurat ion service level, since it is expected that this
setting is the same for a l l jobs under given configuration.

3.5.3 J o b service

Job service is responsible for managing a l l activities associated wi th running and managing
jobs. It manages the whole job lifecycle, see Table 3.4.

For a job to be started, a configuration name must be provided, optionally any number
of command line arguments can be passed as a string array or a port on the host system

33

can specified for exposing the command-line applicat ion. If a configuration wi th a matching
identifier is found, then the job is scheduled for execution.

Since this service indirect ly works w i th Docker containers (whose startup t ime can
be noticeable), it adheres to req_request_time requirement by making calls to Docker
service asynchronous (if a request to Docker service would fail, job timeout would cancel
the job after the specified interval). The number of concurrently running jobs is not l imited
(req_parallel_jobs). Though the host system w i l l eventually run out of the system
resources, since wi th every job a new container is created.

Name U R L H T T P method
Start a job / P O S T
Get a job /{token} G E T
Delete a job /{token} D E L E T E
K i l l a job /k i l l / { token} G E T
Get a status of a job /status/{token} G E T
Get all job IDs by a conf. / l i s tbyconfigurat ion/{conf} G E T
A d d a new status update / l o g G E T

Table 3.4: Job service actions

A l l jobs can report their current progress i n a percentage value by output t ing a spe
cialized message (req_percentage_report). Th i s feature enables the G U I to render the
progress bar given that the command-line applicat ion supports this reporting. Regular
expressions for parsing the progress percentage can be specified by a text file. Expressions
are expected to be del imited by a U N I X line ending. W h e n parsing the output lines, Job
service checks each line whether any of the provided regular expressions matches the current
line. If a match is found, it is parsed to double. If successful, job's ProgressPercentage
property is updated wi th the parsed value. If mult iple matches are found, only the first
one is parsed, the rest is ignored. The file w i th regular expressions can contain for example
lines depicted in L i s t ing 3.1.

(?<=\[PR0GRESS\]).+
(?<=\[PROGRESSX_SOMETHING_ELSE\]).+

Lis t ing 3.1: Example of a file for progress reporting specification

Job entity attributes

• Id - universally unique identifier

• Created - t imestamp when the entity was created

• Started - t imestamp when the job State switched from Scheduled to Running

• Finished - t imestamp when the job State switched from Running to Success

• State - job state, see Job state lifecycle

• Configuration - name of the associated configuration

• Arguments - serialized command-line arguments

34

• StdOut - collection of StreamEntries sent from App l i ca t ion wrapper

• StdErr - collection of StreamEntries sent from App l i ca t ion wrapper

• Last A c t i v i t y - the most recent t imestamp received

• ProgressPercentage - reported progress of the command-line applicat ion

• ExitCode - exit code of the command-line applicat ion

StreamEntry entity

• Timestamp - t imestamp when the entry was captured by App l i ca t ion wrapper

• Value - actual line value

Job state lifecycle (Fig. 3.4)

Figure 3.4: Job state diagram

• Scheduled - job is wait ing to be started (Docker container is being started or the
Appl i ca t ion wrapper is i n process of start ing the command-line application). If any
errors occur during startup, the job changes its state to Failure.

• Running - the command-line applicat ion is running and the App l i ca t i on wrapper is
capturing the output. A n y error directly from the App l i ca t i on wrapper terminates the
job. Subsequently the presumably running container is k i l led and the job is marked

Failure.

• Success - the appl icat ion has exited.

• Killed - job was ki l led expl ici t ly or impl ic i t ly after a set timeout (default 900 seconds,
see Section 4.6) when no act ivi ty has been detected.

• Failure - an internal error occurred or the Docker container failed to start.

35

Interactions when starting a new job (Fig. 3.5)

1: startJob(args)

:Client Job Service — 5: startContainer(args) :Docker Wrapper

8:status

2: getConfigurationO
4: new Job()

3: configuration

1
6: start(args)

:Application Wrapper

:Database

1
7: start(args)

:EntryPoint

Figure 3.5: Col labora t ion diagram of a job start

1. A request is made to start a new job.

2. A request for the specified configuration is made to Configuration service.

3. The configuration is returned.

4. The job entity is created in the database.

5. A request for starting a new Docker container is made (asynchronous to 3.).

6. The container is started wi th the App l i ca t i on wrapper inside (asynchronous to 3.).

7. App l i ca t ion wrapper starts the command-line applicat ion (asynchronous to 3.).

8. Job Status is passed back to the client (on a startJob request Job service returns
only a H T T P status code, Gateway then makes a getStatus request (see Figure 3.6)
which then adds actual job status information).

Interactions when getting a job status (Fig. 3.6)

1: getStatusf)

:Cl ient J o b Serv ice 2: getlobQ — ^ :Database

3: status

Figure 3.6: Col labora t ion diagram of a job status retrieval

1. A request is made by the client for the job status.

2. The job entity is retrieved from the database.

3. The job status is passed back to the client.

36

Interactions when sending output data (Fig. 3.7)

J o b S e r v i c e

3: u p d a t e J o b Q

: D a t a b a s e

^ 2: s e n d D a t a O — a p p l i c a t i o n W r a p p e r

1: o u t p u t

: E n t r y P o i n t

Figure 3.7: Col labora t ion diagram of a job update

1. Standard output or error is produced and captured by App l i ca t i on wrapper.

2. Captured data are sent to Job service.

3. Job service updates the associated job entity.

3.5.4 L o g g i n g service

Logging service provides a simple log storage for a l l D e C o n services w i t h the option of
D e C o n specific logging information and filtering (req_logging). Service saves the logs to
both a database and a text file. Act ions supported by this service are listed i n Table 3.5.
L o g entry format

• Id - universally unique identifier

• LogLevel - log severity

• Event Id - identifier associated wi th the log entry i n the source service

• Name - point of origin (service or part of a service)

• Message - actual message

• Time st amp - t imestamp when the log entry was created i n the source service

Name U R L H T T P method
Get logs / G E T
A d d a log /{token} P O S T

Table 3.5: Logger service actions

37

3.5.5 A p p l i c a t i o n w r a p p e r

Appl i ca t ion wrapper encapsulates command-line applications (req_arbitrary_cl i) . It
provides abi l i ty to start a command-line applicat ion wi th given arguments and capture the
output streams line by line. E a c h captured line is then sent to Job service, where it is stored
w i t h the corresponding job entity. Message types originating from applicat ion wrapper:

• StdOut - line containing standard output message

• StdErr - line containing standard error message

• Error - internal error (f.e. failed applicat ion start, job switches to Failure)

• Start - successful start (causes job to go from Scheduled to Running)

• Exit - successful exit (causes job to go from Running to Success), exit code is returned

This applicat ion is started wi th every new job and receives a token (job identifier),
a file pa th to the executable and a working directory for the executable. W h e n the started
executable exits, App l i ca t ion wrapper also terminates, subsequently the encapsulating con
tainer is also terminated. If a k i l l request is made, the encapsulating container is terminated.

3.5.6 D o c k e r service

Docker service is the only service running outside of Docker containers, since its purpose is
to execute only predetermined Docker commands (req_containers). Hav ing this service
outside of Docker was necessary because it has to be able to access a l l of the host file
system, since it needs to copy working directories inside containers. This was the only
factor preventing this service from being hosted inside a Docker container.

Service receives requests for s ta r t ing /k i l l ing (Table 3.6) containers from Job service,
which are then parsed and transformed to Docker commands for execution. Docker service
is able to bu i ld and run any Docker container; therefore it is completely independent of
other D e C o n services.

Name U R L H T T P method
Start a Docker container / P O S T
K i l l a Docker container /{token} D E L E T E

Table 3.6: Docker service actions

3.5.7 W e b app l i ca t i on

The graphical user interface for D e C o n was designed i n order to provide a user-friendly
way of interaction wi th D e C o n (req_api_gui). Implementation as a web applicat ion was
chosen because web interface provides many benefits, such as:

• no addi t ional user environment dependencies

• faster development t ime than comparable solutions (desktop or mobile application)

• accessibility across operating systems

38

The design was focused on communicat ing a l l the information clearly, s imply and in
a modern-looking web environment. P r io r to creating wireframes, author studied solutions
containing features such as test automation or integration of console-like interfaces i n web
applications. These solutions included Microsoft A z u r e 9 and G i t L a b 1 0 .

A s mentioned i n Section 3.2, web applicat ion is the only specialized part of D e C o n .
Specialization was done i n order to simplify argument input for database detectors. Since
DeCon 's authorizat ion (req_auth) is purely token based, users intentionally cannot obtain
lists of existing entities. Instead they rely on other users providing them wi th tokens to
configurations/jobs or creating the entities by themselves. Therefore, a l l tokens known to
the current user are stored in his browser's local storage, from where they can be exported
and later impor ted back. Users can share their tokens v i a the share functionality which
creates a hyperl ink which w i l l import the token to the recipient's local storage.

B o t h job and configuration can be deleted. In addi t ion to deleting them permanently,
user can choose to delete them locally; thus allowing other users to s t i l l access them.

General layout of the applicat ion is conceived as single-page website, meaning that
no complete page reload is necessary when performing interactions wi th the interface.

The navigation bar is placed in the top part of the interface and contains the applicat ion
name and a l ink to the A P I documentation. The left side is occupied by the menu wi th
buttons to add a new configuration, export and import the session state. This menu is
collapsable; thus, it can allow for better output readabili ty from the ma in window. The
window houses a l l of the job meta information and outputs. In the upper part, buttons for
job management are placed along wi th the job name and configuration name. Act ions , such
as job k i l l ing , sharing, refreshing or forking (creating a new job wi th the same arguments),
can be performed through these buttons. M e t a information is outputted to a clearly format
ted table. If the currently shown job is running and D e C o n is able to determine percentage
of progress 1 1 , an animated progress bar is rendered as seen i n Figure 3.8.

The main output panel is situated beneath the meta information section. If the job
is based on database detectors, a specialized tab called Results is rendered, otherwise
only a single panel w i th stream toggling and filtering is shown. F i l t e r ing works i n two
modes - standard and regular expressions. Users can toggle between these modes and only
lines matching the filter w i l l be shown. The panel below renders outputted standard output
and error line along wi th timestamps. The entire output can be scrolled through. W h e n
the auto-refreshing of the job window is enabled, the panel is automatical ly refreshed. Per
user request, the entire output can be exported to a standardized format shown i n L i s t ing
3.2, where STREAM_TYPE is either STDOUT or STDERR, TIMESTAMP is in the ISO 8601 format
and VALUE represents actual output value.

STREAM_TYPE TIMESTAMP: VALUE
STDOUT 2019-04-16T21:17:10.689Z: [INFO] Starting detectors...

Lis t ing 3.2: Output format of an exported job

The Results tab contains the parsed output from database detectors (req_detect_out)
as seen in Figure 3.9. Output logs are dynamical ly parsed, so that easy-to-understand
representation can be rendered. For each table, a l l the detected columns are shown, along

9https: //azure.microsoft.com/en-us/
1 0https: //about.gitlab.com/
11Supported with db-detectors and any other command-line application that implements progress report

ing.

39

http://crosoft.com/en-us/
http://gitlab.com/

Detection Containers | APIDOCS |

Jobs in session | < | Configuration name # 1 : Job name # 1 | m || Fork || share || Refresh

Configuration nameffl

Time-Job name #1

Time-Job name #2

+ AddJob

Configuration name #2

Job information

Log Results

© A l l ® Stdout ® Stderr @ Standard © Regex | Filter... [Filter Export log

Add configuration 1 1 Export 1 1 Import 1

2019-04-16T21:17:04.15IZ Oulput line
2019-04-16T21:17:04.15 IZ Oulput line
2019-04-16T21:17:04.15IZ Oulput line
2019-04-16T21:17:04.15IZ Oulput line

Figure 3.8: User interface showing a running job

wi th their respective column type and detector names that returned the highest weight .
If mult iple detectors report the same weight, a l l values are displayed. W h e n the result is
expanded, a l l weights reported are shown. The parsed result can be exported i n the format
seen in L i s t ing 3.3.

{
"table_name": {
"column_name: {

"type": "C0LUMN_TYPE",
"weights": [
{

"weight": 0.9,
"detector": "Detector#l"

},
{

"weight": 0.2,
"detector": " Detector#2"

}

]

}

}

}

Lis t ing 3.3: Expo r t format of a database detectors result

Weight is converted to percentage.

40

Detection Containers

Jobs in session

Ccfifiguration name#l

Time-Job nam #1

Time-Job nam H2

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂

| Add configuration""] | Export ~| | Import "|

Configuration name # 1 : Job name # 1 Kill Fork Share Refresh

Job information

DETECTOR 1 (42%)

DETECTOR 1 (42%), DETECT0R2 (10%), DETECT0R3 (0%)

DETECTOR 1

DETECTOR 1

DETECTOR 1

DETECTOR 1

H I
JZL
H i
_GD
m
m

Figure 3.9: User interface showing a parsed and displayed result of database detectors

Add job: Co n fig u rati or

• m
• • •

| Close j | Add |

Add job: Configuratio

New Existing

Connection String

Close | Add

(a) Job creation for a generic C L I application (b) Job creation for db-detectors

Figure 3.10: Compar ison of modals for job creation

Modals or moda l windows are chi ld windows of their parent window and their pr imary
function is to communicate new information or to provide addi t ional functionality to the
applicat ion. Modals are used i n D e C o n for creating configurations, start ing jobs, sharing
etc.

Notable example of moda l window i n D e C o n is the A d d job modal . Th is moda l greatly
differs based on whether it is created for database detectors or not. For a regular command-
line applicat ion, users can input command-line arguments one-by-one or specify a port
on which the command-line applicat ion w i l l be exposed on the host system. In the case
of detectors a specialized user interface is displayed (req_cli_specialization). Th is
interface contains a list box of known detectors, which can be selected (or any custom text
can be input ted and then confirmed v i a the enter key) and set of text boxes and drop-
downs for specifying the connection str ing to the target database. The difference is shown
in Figure 3.10, see Append ix B for screenshots of the actual user interface implementation.

41

Chapter 4

Implementation Details of DeCon

In this chapter author w i l l at tempt to describe details of D e C o n implementat ion wi th focus
on technology-specific aspects of this solution. Notable implementat ion details w i l l be
mentioned and integration of database detectors w i l l be discussed.

4.1 Technology Choices

W h e n making decisions regarding choices of implementat ion language or framework, ease-
of-use, product iv i ty and suitabil i ty should be considered. Since D e C o n is implemented using
microservice architecture, it allows for usage of diverse technologies. A m o n g the services,
two subgroups wi th different requirements were identified:

• services using databases and having similar A P I s (Configuration, Job and Logging
services)

• simple services not using databases (Gateway and Docker service)

For the first set of services A S P . N E T C o r e 1 Web A P I framework using C # language
was chosen. Th is framework was selected mainly because it provides a robust A P I bui lding
system based on a language that has well-designed threading and asynchronous support.
Unl ike the full . N E T framework, . N E T Core is compatible w i t h mult iple operating systems:
therefore it can run on Linux-based systems. The database type of choice for these services
was M o n g o D B which was selected for its s implic i ty and flexibility. Thi rd-par ty libraries
(NuGet packages) used in . N E T services:

• M o n g o D B dr iver 2 - interface to M o n g o D B

• N S w a g 3 - Swagger support

• CommandLinePa r se r 1 - parsing command-line arguments (Appl ica t ion wrapper only)

• J s o n . N E T ' ' - J S O N serialization/deserialization framework

xhttps: //dotnet.microsoft.com/apps/aspnet
2https: //docs.mongodb.com/ecosystem/drivers/csharp/
3https: //github.com/RicoSuter/NSwag
https: //github.com/commandlineparser/commandline

5https: //www.newtonsoft.com/json

42

http://ASP.NET
http://Json.NET''
http://crosoft.com/apps/aspnet
http://mongodb.com/ecosystem/drivers/csharp/
http://www.newtonsoft.com/json

• Res tSharp 6 - simple H T T P A P I client

• M o q ' - l ibrary for creating mock objects

• X U n i t 8 - unit testing framework

The second type of services d id not require some of the mentioned features and codebase
was expected to be much smaller. Therefore, F lask A P I on P y t h o n was the framework
of choice, because it contains v i r tua l ly no boilerplate code 9 and much smaller container
footprint (only P y t h o n and a few packages required). Packages used i n F lask A P I s :

• F l a s k - R E S T P l u s 1 0 - Swagger support

• F l a s k - C O R S 1 1 - Cross-origin resource sharing support

• Reques ts 1 2 - simple H T T P request l ibrary

B o t h frameworks are compared on a short code sample i n Append ix C .
For App l i ca t ion wrapper, . N E T Core was used, as it offered greater s implic i ty as far

as capturing of standard output and process error is concerned, and an easily configurable
H T T P client.

For the web applicat ion mult iple approaches were considered. Eventual ly a frontend-
only web applicat ion was implemented, because the singular role of the web applicat ion
is to consume DeCon ' s public A P I ; therefore no backend code was required. F r o m a l l
the frontend technologies, R e a c t 1 3 (a JavaScript l ibrary) was selected since it offers a fast
v i r tua l D O M and can be easily combined wi th other JavaScript libraries, such as j Q u e r y 1 4 .

A reverse p r o x y 1 5 was used to forward the requests to Gateway and the user interface.
N G I N X 1 6 was chosen as the reverse proxy functionality provider.

4.2 General Implementation Principles

The implementat ion across different services follows the same standards. Code style and
formatting adheres to the usual practices and standards of given programming language
(req_code_style). A l l relevant sections including a l l public method signatures are doc
umented (req_code_doc). The D e C o n implementation, where applicable, tries to follow
the S O L I D 1 ' design principles (req_code_struct). S O L I D is manifested in D e C o n main ly
by using dependency in jec t ion 1 8 to inject implementations of interfaces. Where applicable,
design patterns (such as repository pattern) are used (req_code_patterns).

6http://restsharp.org/
7https: //github.com/Moq/moq4/wiki/Quickstart
8https: //xunit.net/
9Code required to setup the framework, often no changes are made to the template.

1 0https: //f lask-restplus.readthedocs. 10/en/stable/
n h t t p s : / / f lask-cor s.readthedocs.io/en/lat est/
1 2 https: //2.python-requests.org/en/master/
1 3 https: / /react j s.org/
1 4https://jquery.com/
1 5 Type of a proxy server that retrieves resources on behalf of client [25].
1 6https: //www.nginx.com/
17Single responsibility principle, Open-closed principle, Liskov substitution principle, Interface segregation

principle, Dependency inversion principle.
18Technique that injects object's dependencies usually by passing them to a constructor.

43

http://restsharp.org/
https://jquery.com/
http://www.nginx.com/

4.3 Project Structure

Each service is implemented as a separate project. In case of A S P . N E T - b a s e d services
a shared project is included i n the service. Th is could seem as a viola t ion of one the
microservices principles - no dependencies should exist between microservices. However,
in this case, the shared project is included inside the service folder as a G i t 1 9 submod-
ule. Therefore it enables control over pulling new changes for each service independently.
The shared project is not a set of part icular files shared between services but instead it is a
version-controlled snapshot of the included files. The project includes a common infrastruc
ture used across the A S P . N E T services, such as a database access v i a repository pattern or
a base controller w i th support for logging and exception handling.

4.4 User Interface Functionalities

The behavior of the web applicat ion is buil t around the concept of browser local storage. It
stores a l l the visible configuration names and job identifiers - everything else is dependent
on the A P I . D a t a are stored i n J S O N and their format is equivalent to the one that of
the exported state. In fact, impor t ing and export ing of the state only replaces/downloads
the actual value of the local storage. B y default, the storage is ini t ia l ized to include a l l
demos (db-detectors, demo-mount, demo-flask etc.). To reset the local storage to the default
state, users can import the in i t ia l iz ing file located i n /data/gui_initial_state .dcx. W i t h
every import , a backup file is downloaded, which contains the appl icat ion state before it
was replaced by the uploaded one.

Separation of local and server storage was done because of the expectation of D e C o n
deployment and sharing between mult iple users, for example a project team. Because every
browser's storage has its state and the exported files can be shared, D e C o n tries not to
interfere w i th the actual team workflow; therefore maximiz ing its adaptabi l i ty to potential
future deployments.

4.5 Use of Docker Features

Services are placed each in its separate Docker container which is then managed by Docker
Compose uti l i ty. A p a r t from using Docker to run the D e C o n services, Docker is also used
to start new jobs. Th is process is implemented i n Docker service which encapsulates Docker
calls.

Container startup is implemented v i a 5 separate calls to Docker - build, create,
copy to container, start and port retrieval, see L i s t ing 4.1 for example calls. A n al
ternative, more common approach, is to cal l start directly, but since the requirement
(req_parallel_jobs) states that mult iple containers need to run i n parallel, the usage of
Docker volumes for the command-line applicat ion directory would not be sufficient. V o l
umes are problematic, as they are essentially only mounts to the host directory. Therefore
file locking and concurrent write access to files could potential ly result i n an unexpected
behavior. Th is problem is solved by copying the entire working directory to the container.
Copying files however comes both wi th upsides and downsides. Benefits of this approach
are that a l l changes made to the command-line appl icat ion are reflected on every new job
start and no conflicts occur between the running jobs on the file system level. However,

1 9https: //git-scm.com/

44

http://ASP.NET

copying also has some downsides. Slower startup time (files need to be copied) and loosing
file changes i n the working d i r ec to ry 2 0 are the main ones. B y default, files from the working
directory are copied, but users also can opt- in to mount the working directory as a volume.
This comes w i t h the mentioned downsides but can also allow for usecases where user would
edit the files and i n real t ime changes were propagated to the running app l i ca t i on 2 1 . A l l
the created containers are automatical ly removed by Docker when they exit, i n order to
free the system resources.

Persistence of D e C o n databases is implemented using Docker volumes, which provide
a permanent storage. These volumes are mounted to the data directory inside M o n g o D B
containers. Th is ensures that database data persist Docker image and container wipes

$ docker b u i l d -f=DOCKERFILE -t=IMAGE_NAME S0URCE_F0LDER
$ docker create —rm —network=NETWORK_NAME —name=CONTAINER_NAME

—volume=SOURCE_FOLDER:TARGET_FOLDER IMAGE_NAME
$ docker cp S0URCE_F0LDER CONTAINER_NAME:/app/cli/
$ docker start CONTAINER_NAME
$ docker port CONTAINER_NAME

$ docker stop CONTAINER_NAME

Lis t ing 4.1: Used Docker commands for container management

Container creation arguments

• network - name of a Docker network (for D e C o n it is decon_internal) to which a l l
D e C o n services are connected

• name- container name, D e C o n uses the job identifier (U U I D)

• volume - file/folder to mount, mount point specified i n job's configuration, mounted
as /app/mount/ i n the conta iner 2 2

• rm- remove the container after it exits

Arguments for Appl icat ion wrapper passed with create command

• token - job identifier w i th which App l i ca t ion wrapper w i l l send output back to Job
service

• f i l e - executable to start

• working directory - working directory of the executable

• arguments - command line arguments encoded

4.5.1 C u s t o m Dockerf i le

D e C o n provides an option to customize the container environment. The default Dockerfile
uses the official Debian i m a g e 2 3 w i th preinstalled bu i ld -e s sent ia l package and Py thon .

^'Configuration's mount argument can be used to preserve the file changes.
2 1 For example running a Flask API with debug mode enabled.
2 2 Configuration's mount option is designed for reading/writing to shared files, not for executables.
2 3https: //hub.docker.com/_/debian

45

If the command-line applicat ion needs addi t ional dependencies, custom Dockerfile can be
provided. Examples of base and custom Dockerfiles are listed in Append ix D . The custom
Dockerfile (see L i s t ing 4.2 for a basic template) must follow these rules:

• the result image must be based on decon-app-wrapper image or the entire /app/
folder has to be moved to the desired container

• /app/app-wrapper/publish/ApplicationWrapper has to be the container entry-
p o i n t 2 1

FROM decon-app-wrapper

... # Your commands

ENTRYPOINT ["/app/app-wrapper/publish/ApplicationWrapper"]

Lis t ing 4.2: Basic template for custom Dockerfiles

Provided Dockerfile has its bu i ld context set to the specified working directory. In the
final image the working directory w i l l be copied to / a p p / c l i / directory dur ing the container
start. Since App l i ca t i on wrapper is a self-contained . N E T Core applicat ion that targets
linux-x64, moving the binary to a different d is t r ibut ion is possible but functionality is not
always guaranteed. For each configuration a new image is created, but the bu i ld starts only
after the first job request is made. D u r i n g the bu i ld , job is stuck i n Scheduled state. B u i l d
can take up to a several minutes (depending on the system performance and Dockerfile
complexity) . W h e n the bu i ld t ime exceeds 15 minutes, the started job w i l l fail , however
when the bu i ld is finished you can start a new job that w i l l begin its execution almost
immediately.

4.6 Running DeCon

To run D e C o n following dependencies need to be installed on the host machine:

• Docker 18.03+

• P y t h o n 3.7+

• Doxygen

The host machine can use any operating system supported by Docker 18.03+ versions.
DeCon 's start is encapsulated i n the startup script run. sh which builds and starts a l l the
necessary services. Complete instal l and run instructions are specified in the README.md
file (req_install_instructions).
Startup script usage (Listing 4.3)

$./run.sh [—build] [—port=P0RT] [—docker-service-port=DOCKER_PORT]
[—os-type=TYPE] [—preserve-jobs] [—no-configuration-modifiable]
[—db-recreate] [—job-progress-regex-file=PATH_TO_FILE] [—help]

Lis t ing 4.3: Argument list of D e C o n the startup script

24Executable that will be started inside the container.

46

• b | build - forces to bu i ld a l l dependencies

• p | port - port on which D e C o n G U I and A P I w i l l run, default 80

• d | docker-service-port - port on which Docker service w i l l run, by default 6002
(to prevent possible conflicts w i th port assignment on the host, since Docker service
runs directly on the host machine)

• o | os-type - operating system on which Docker Engine runs, defaults to value from
docker info - OperatingSystem, other possible values: linux, windows, macos

• n | no-configuration-modifiable - configurations editing, enabled by default

• r | db-recreate - recreate a l l databases

• g | job-progress-regex-f i l e - regular expressions values for matching progress
reports, del imited wi th newline, defaults to /data/job-progress-regex.txt

• j | preserve-jobs - running jobs are not k i l led upon exit, by default ki l led

• h | help - help is displayed

Dur ing startup, services are buil t (if b u i l d argument is specified or D e C o n was not
previously buil t) and Docker Compose is started. W h i l e Docker Compose is running,
Ctrl+C command can be sent to gracefully terminate the services (to forcefully k i l l ser
vices, another Ctrl+C can be used). After startup, the web applicat ion is available at
http://localh.ost/ and A P I at http://localh.ost/api/. D o x y g e n 2 5 documentation is
located i n doc/html/index, html. Swagger specification is available at the following U R L s :

• Gateway - http://localhost/api/swagger (Swagger UI)

• Job service - http://localhost/swagger/job/

• Configuration service - http: //localhost/swagger/configuration/

• Logger service - http://localhost/swagger/logger/

• Docker service - http://localhost:6002/swagger/ (Swagger UI)

4.6.1 I n c l u d e d examples

In order to easily demonstrate D e C o n functionality, a database w i t h sample data is provided
for running database detectors. Connect ion information for this database is listed in Table
4.1. Database is hosted inside a M y S Q L container which is part of DeCon ' s internal Docker
network. L i s t ing 4.4 depicts an example of a request body for starting a new job based on
database detectors.

Database type MySQL Host name mysql Por t 3306
Database name testdb Username root Password root

Table 4.1: Connect ion information for the included database

'http: //www.doxygen.nl/

47

http://localh.ost/
http://localh.ost/api/
http://localhost/api/swagger
http://localhost/swagger/job/
http://localhost/swagger/logger/
http://localhost:6002/swagger/
http://www.doxygen.nl/

{
"configuration": "db-detectors",
"Arguments": [

"structural FloatDet StringDet",
"-CV'typeV :\"mysql\" , \"host\" :\"mysql\" , \"port\" :\"3306\" ,

\"name\":\"testdb\", \"user\":\"root\", \"pass\":\"root\",
\"path\":\"\"}"

]
}

Lis t ing 4.4: Job creation model for running the detectors on the included database

Other included examples

• demo-mount - example of the mounting functionality, optionally arguments w i l l be
displayed

• demo-progress - demonstration of the progress bar reporting from C code

• demo-dockerfile - demonstration of adding a custom Dockerfile

• demo-flask - F lask A P I running from a custom Dockerfile w i th exposed port to the
host system, optionally the configuration can be changed to use volumes and live
script reloading can be performed

A l l examples are loaded into the Configuration database on the first start and then every
t ime the database is recreated. Between recreations a l l these examples can be deleted.
Database is ini t ia l ized by services/configuration_service/initial. json file, which
contains an array of configurations.

4.7 Integration of Database Reporter and Detectors

A s mentioned i n the previous chapters, DeCon ' s A P I does not dist inguish between database
detectors and any other containerized command-line applicat ion, only specialization hap
pens in the user interface w i th specialized argument input t ing and output parsing. The
detectors had to be integrated into D e C o n i n a seamless way. K e y integration parts were:

• database detectors configuration is by defaul t 2 6 present i n the database

• database detectors configuration is hard-coded to the default state of the G U I

To allow for this smooth integration, number of changes had to be made to db-detectors
and db-reporter projects. F i r s t of a l l , an integration bash script (run_detectors. sh) was
implemented, because no such script was part of either thesis and as stated the submitted
code was not tested together. The necessary knowledge for creation of this script had to be
extracted from the provided undocumented files, since l i t t le or no instructions were given
in any of the theses.

2 6 This configuration can be deleted, however via the db-recreate option, db-detectors and other examples
will be restored

18

Actions performed by the startup script

• starting db-reporter

• starting db-detectors

• sending a D - B u s message to db-reporter

Dur ing the integration, it was discovered that db-detectors and db-reporter both ex
pected that the other party would provide the database connection string, therefore it had
to be manually inserted to the D - B u s communicat ion as if the message originated from
db-detectors [10, pg. 20] [11, pg. 14].

Furthermore, the format of the structural detector result differed between thesis' text
and actual implementat ion - this caused db-detectors to fatally crash. In addi t ion to these
disparities, U U I D detector contained an incorrect method cal l and faulty condit ion.

These errors were not the only ones, since after integration it became apparent that only
few detectors were actually working. Out of the 28 detectors, only 5 of them are working
(string, integer, float, U U I D , datetime), the rest is unable to start. After a deep dive into
the code, author of this thesis concluded that the issue is most l ikely inside the dependency
manager, since only the detectors which depend only on the structural detector are working.
T ry ing to identify the exact root problem without a proper technical documentation was
not possible.

F rom a l l the supported database types 2 7 , only M y S Q L and M a r i a D B is verified to work,
since it was the only database type that was tested by the authors of db-detectors and db-
detector.

It was also necessary to refactor the way how the results were collected. Previously they
were wri t ten into a file, but because D e C o n is focused on retrieving the console o u t p u t 2 8 ,
db-reporter was modified to output the results to standard output i n a format seen in
L i s t ing 4.5.

[RESULT][DetectorName]ActualResult
[RESULT][StringDet]{"name": "col_mac_address", "table_name": "M0CK_DATA", "type":

"VARCHAR(500)", "weight": 1.0}

Lis t ing 4.5: Database detectors output

This format is later parsed i n the user interface for the purposes of knowledge extrac
t ion. Apa r t from modifying the output, author decided to par t ia l ly refactor db-detectors,
since some logic errors were identified in the code and overall code maintainabi l i ty was
considered inadequate. Refactoring also introduced configurable log verbosity and stream
lined log messages which were previously hard to understand without a prior complete code
knowledge.

4.8 Verification of Functionality

In accordance wi th the requirement for testing (req_testing), mult iple suites of tests were
created i n order to properly verify the functionality of D e C o n . These automated tests range
from testing ind iv idua l code blocks to testing the complete functionality on the system level.

2 7 M y S Q L (MariaDB), SQLite, PostgreSQL, Oracle, SQL Server
2 8Writing to files requires a configured mount point.

49

4.8.1 U n i t tes t ing

Uni t tests were created to verify the functionality on the method level. (req_unit_tests)
Since most of the D e C o n services do not include any considerable amount of code, the only
service, where it was deemed necessary to create unit tests, was Job service. U n i t tests in
Job service focus on testing custom method extensions, model val idat ion and correct return
codes. These tests are implemented using x U n i t framework, L i s t i ng 4.6 depicts an example
test in this framework.

using Xunit;

namespace Tests
{

public class ExampleTests
{

[Fact]
public void OrwellTestQ
{

Assert.Equal(5, (2 + 2));
}

}
>

Lis t ing 4.6: Un i t tests example i n x U n i t

4.8.2 C o m p o n e n t test ing

Unlike unit testing, component testing aims at testing ind iv idua l services separately without
an actual interaction wi th any external entity. In an environment, where the services depend
on others for their correct functionality, new requirements surfaced for the code structure
and usage of design patterns.

Because only wi th patterns like dependency injection and use of interfaces, communi
cation wi th external services can be achieved without modifying the code that is being
tested. Configuration of dependency injection is done i n the Startup class, where applica
t ion services are set up. Dependencies can be added, as seen i n L i s t ing 4.7, by specifying
an interface and a class that implements the interface. Thus a l l controllers expecting the
interface in their constructor are provided wi th an instance of the specified class (Lis t ing
4.8). Th is instance can be either shared across a l l controllers - singleton - or unique to
that given controller - transient.

public void ConfigureServices(IServiceCollection services) {

services.AddTransient<IConnector, HttpConnector>();
}

Lis t ing 4.7: Configurat ion of dependency injection

50

[ApiController]
public class JobController : BaseController {

public JobController(IConnector connector) : base(connector) {

}

>

Lis t ing 4.8: Injected dependency on a controller

The component tests take advantage of this feature by using A S P . N E T TestServer
package, which starts the A P I and creates a client. The A P I is started using a modified
Startup class which uses mock interface implementations, as seen i n L i s t i ng 4.9. Compo
nent testing in Job service includes verification of correct routing, response checking and
chaining mult iple requests together.

c l i e n t = new TestServer(new
WebHostBuilderO .UseStartup<MockStartup>()) .CreateClientO ;

var statusld = await GetStatusIdO ;
var response = await client.GetAsync($"/kill/{statusld}");
Assert.Equal(HttpStatusCode.OK, response.StatusCode);

Lis t ing 4.9: Component tests using a test client

4.8.3 Integrat ion test ing

For testing the overall functionality of D e C o n , a set of integration tests were created
(req_integration_tests). These tests are used to verify the correct behavior of Gateway
service (and a l l of the services behind) including the N G I N X reverse proxy. Integration
tests are implemented using Test service i n P y t h o n . After the in i t ia l izat ion of D e C o n , Test
service begins its execution by sending requests to the D e C o n public A P I . Tests are per
formed from the host network. Testing includes creating new configurations, updat ing and
deleting them, job creation, execution and output retrieval. A c t u a l execution of database
detectors is also performed. Database detectors target the included M y S Q L database - see
section 4.6.1.

4.8.4 R u n n i n g the tests

A l l of the previously described tests can be executed using tests.sh script which shares
the argument options w i t h run.sh script. Th is script requires D e C o n dependencies to be
installed (Docker, Py thon , Doxygen), since the integration tests need to start a l l the D e C o n
services to verify the expected functionality. L i s i tng 4.10 shows how to start the tests.

$./tests.sh

Lis t ing 4.10: Testing script usage

In the first step unit and component test are executed. After that Docker Compose
starts a l l services and integration tests begin their execution. After each step, a summary
is printed wi th information about the test results. Overa l l D e C o n includes over 70 tests.

51

http://ASP.NET

Chapter 5

Conclusion

The goal of this thesis was to design and implement containerization of command-line
applications including database detectors. The final product - D e C o n - offers abstraction
over underlying container technology by simplifying the setup and providing configurations
and jobs - s imilar to test cases and test runs. For basic tasks D e C o n does not require any
knowledge of Docker. However i f needed, D e C o n offers a great deal of configurability in
terms of required dependencies.

D e C o n was implemented as a set of microservices communicat ing wi th each other using
H T T P - b a s e d R E S T A P I s . O n top of the services, a light-weight web user interface was
created. This user interface was not part of the original thesis assignment and adds ben
efits of user-friendliness. A l l the microservices do not make distinctions between database
detectors and any other command-line applications, therefore any detectors specific logic
is l imi ted to the user interface, where users have customized dialogs, result parsing and
export ing features. Despite the l imitat ions of the current implementat ion of database de
tectors, best efforts were made to integrate the detectors, even i f some of the functionality
does not work as expected.

The final product was subjected to testing by a number of automated tests which
ranged from unit , component to integration tests. These tests helped to ensure the correct
functionality of the final product. To demonstrate this functionality, examples of different
types of applications were included.

In the future D e C o n can be modified to run in clustered environments where it would
greatly benefit from the microservices architecture i n terms of scalability. Furthermore,
the A P I and the user interface could be expanded to accommodate more fine-grained job
management, however these and other future improvements would arise when D e C o n would
be used to containerize other Testos tools. Subsequently D e C o n could be used to a great
effect i n integrating the whole Testos platform.

52

Bibliography

[1] Brewer, E . : Towards Robust Distributed Systems. In Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed Computing. A C M . Ju ly 2000.
page 45. doi:10.1145/343477.34350.

[2] B u i , T . : Analysis of Docker Security. arXiv preprint arXiv:1501.02967. January 2015.

[3] Cooley, S.; Lang , P. ; Mastrean, A . ; et a l . : Linux Containers on Windows. [Online:
accessed 30.04.2019].
Retrieved from: https: //docs.microsoft.com/en-us/virtualization/
windowscontainers/deploy-containers/linux-containers

[4] Container Orchestration — Devopedia. [Online; accessed 30.04.2019].
Retrieved from: https://devopedia.org/container-orchestration

[5] Docker Overview — Docker Documentation. [Online; accessed 04.05.2019].
Retrieved from: https://docs.docker.com/engine/docker-overview/

[6] About Storage Drivers — Docker Documentation. [Online; accessed 04.05.2019].
Retrieved from: https://docs.docker.com/storage/storagedriver/

[7] F ie ld ing , R . T . : Architectural Styles and the Design of Network-based Software
Architectures. P h D . Thesis. Univers i ty of Cal i fornia , Irvine. 2000.

[8] F ie ld ing , R . T . ; Gettys, J . ; M o g u l , J . O; et a l . : Hypertext Transfer Protocol -
HTTP/1.1. R F C 2616. R F C Edi to r . June 1999.
Retrieved from: https://www.rfc-editor.org/rfc/rfc2616.txt

[9] Service-Oriented Architecture (SOA) — IBM Knowledge Center. [Online; accessed
30.04.2019].
Retrieved from: https://www.ibm.com/support/knowledgecenter/en/
SSMQ79_9.5.1/ com.ibm.egl.pg.doc/topics/pegl_serv_overview.html

[10] K r o p á č , F . : Nástroj pro analýzu obsahu databáze pro účely testování softwaru.
B a k a l á ř s k á p ráce . Vysoké učen í technické v Brně , Faku l ta in formačních technologi í .
2017.
Retrieved from: http: //www.f it.vutbr.cz/study/DP/BP.php?id=19446

[11] Masse, M . : REST API Design Rulebook. O ' R e i l l y Med ia . October 2011. I S B N
978-1449310509. 116 pp.

[12] Introduction to Web APIs — Mozilla Developer Network Web Docs. [Online; accessed
30.04.2019].

53

http://docs.microsoft.com/
https://devopedia.org/container-orchestration
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/storage/storagedriver/
https://www.rfc-editor.org/rfc/rfc2616.txt
https://www.ibm.com/support/knowledgecenter/en/
http://www.f

Retrieved from: https: //developer.mozilla.org/en-US/docs/Learn/JavaScript/
Client-side_web_APIs/Introduction#What_can_APIs_do

[13] Newman, S.: Building Microservices: Designing Fine-Grained Systems. O ' R e i l l y
M e d i a . February 2015. I S B N 978-1491950340. 280 pp.

[14] Ochodek, M . : Nástroj pro analýzu obsahu databáze pro účely testování softwaru.
B a k a l á ř s k á p ráce . Vysoké učen í technické v Brně , Faku l ta in formačních technologi í .
2017.
Retrieved from: http: //www.f it.vutbr.cz/study/DP/BP.php?id=19259

[15] What Is Virtualization? — OpenSource.com. [Online; accessed 30.04.2019].
Retrieved from: https://opensource.com/resources/virtualization

[16] Popek, G . J . ; Goldberg, R . P. : Formal Requirements for Virtualizable Third
Generation Architectures. Communications of the ACM. vol . 17. Ju ly 1974: page
412-421. doi : 10.1145/361011.361073.

[17] Richards, M . : Microservices vs. Service-Oriented Architecture. O ' R e i l l y M e d i a . A p r i l
2016. I S B N 978-1491975657. 55 pp.

[18] Richardson, Chr is : Pattern: Circuit Breaker — Microservices.io. [Online; accessed
30.04.2019].
Retrieved from:
https: //microservices. i o / p a t t e r n s / r e l i a b i l i t y / c i r cuit-breaker.html

[19] Richardson, Chr is : Pattern: Database per Service — Microservices.io. [Online;
accessed 30.04.2019].
Retrieved from:
https: //microservices. io/patterns/data/dat abase-per-service.html

[20] Slack, J . : Introducing the Host Compute Service (HCS) — Microsoft Tech
Community. [Online; accessed 30.04.2019].
Retrieved from: https: //techcommunity.microsoft.com/t5/Containers/
Introducing-the-Host-Compute-Service-HCS/ba-p/382332

[21] Snover, J . ; Mason, A . ; Back, A . : Microsoft Announces Nano Server for Modern Apps
and Cloud — Windows Server Blog. [Online; accessed 30.04.2019].
Retrieved from: https: //cloudblogs.microsoft.com/windowsserver/2015/04/08/
microsoft-announces-nano-server-for-modern-apps-and-cloud/

[22] Testes Group: Testos. [Online; accessed 30.04.2019].
Retrieved from: http://testos.org/

[23] V M w a r e : Understanding Full Virtualization, Paravirtualization, and Hardware
Assist. Technical report. V M w a r e . M a r c h 2008.
Retrieved from: https: //www.vmware.com/techpapers/2007/understanding-full-
virtualization-paravirtualizat-1008.html

[24] OS-level Virtualisation — Wikipedia, The Free Encyclopedia. [Online; accessed
30.04.2019].
Retrieved from: https: //en.wikipedia.org/wiki/OS-level_virtualisation

54

http://developer.mozilla.org/
http://www.f
http://OpenSource.com
https://opensource.com/resources/virtualization
http://cloudblogs.microsoft.com/windowsserver/2015/04/08/
http://testos.org/
http://www.vmware.com/techpapers/2007/understanding-full-

[25] Reverse Proxy — Wikipedia, The Free Encyclopedia. [Online; accessed 01.05.2019].
Retrieved from: https://en.wikipedia.org/wiki/Reverse_proxy

[26] Virtual Machine — Wikipedia, The Free Encyclopedia. [Online; accessed 30.04.2019].
Retrieved from: https://en.wikipedia.org/wiki/Virtual_machine

[27] Zhang, Q. ; L i u , L . ; P u , C ; et al . : A Comparative Study of Containers and Virtual
Machines in Big Data Environment. arXiv preprint arXiv:1807.01842. Ju ly 2018.

[28] Zissis, D . ; Lekkas, D . : Addressing Cloud Computing Security Issues. Future
Generation Computer Systems, vol . 28. M a r c h 2012: page 583-592. doi:
10.1016/j.future .2010.12.006.

55

https://en.wikipedia.org/wiki/Reverse_proxy
https://en.wikipedia.org/wiki/Virtual_machine

Appendices

56

Appendix A

Contents of the C D

Directory structure of the included C D :

• /decon D e C o n source files

• /text Source files for the thesis text

• xoberrOO-decon.pdf Text of the thesis

A . l Bui lding and Running DeCon

It is recommended to follow instructions i n the README file. However, given that a l l depen
dencies (Docker, Py thon , Doxygen - see README) are installed, D e C o n can be started using
this commands:

$ cd ./decon
$./run.sh

If no prior bu i ld was performed, the script starts the bu i ld operation. Depending on the
system performance, this operation could take more than 30 minutes to complete. Dur ing
the bui ld , Docker base images are downloaded, D e C o n images are buil t and databases
ini t ial ized. After the bu i ld is finished, D e C o n services are started and users can access the
web applicat ion at http://localhost/.

57

http://localhost/

Appendix B

Web Applicat ion

The Screenshots represent the final implementat ion of the D e C o n graphical user interface.

Add job: db-detectors x

New Existing

<structural][xStringDet]| x FloatDet ItitDet DatetimeDet

Database type Host name Port

MySQL T \ mysql 3306

Database name Username Password

testdb root root

Figure B . l : M o d a l window for adding a new job for database detectors

Add job: demo-mount

New Existing

(Optional) Port to be as.signed for this job on trie host (0-65535, 0 or blank will assign random port)

3Z783

CLI Arguments

arg1

arg 2

Add argument

Figure B .2 : M o d a l window for adding a new job

58

Detection Containers Howto Swagger API docs

2 C19 - 0 5 - C7 "2 2: OC: C1.19 7Z - a' 5 51800

2C19-05-C'7~21:EC:2ü.ESZ - 20203463

demo-mount

dcmo-p rogrcss

demo-doc kerf ile

demo-flask

db -de tec to r s : a 1 5 5 1 8 0 0 - 8 e d 7 - 4 4 d 3 - 9 8 4 5 - 2 5 9 5 a c 2 f 4 e 6 b [W] [^] [e j [a] A u t o a B

Created 2019-05-07T22:00:01 197Z Last activity 2019-05-07722:00:20.569

Status Running Assigned po r t

Exit code Finished

Argument "structural S:ringDet HoatUet IntDet Datet meDet" "

[\"type\":\"mysql\",\"host\":\"mysql\",\"port\":\"3306\" JVname ":\"testdb\",\"user\":\"rootV ,A"pass\":\"root\ ,A"pa"ri\":\ \T

Log Results

1 All Stdout Stderr 1 Standard Regex 1 [i Export og |

IRBULTJIDate t imeDet j r tab le name": " M O C K DATA" , "type": "VARCHAR{500 } \ "weight": 0, "na lRESULT][DatetimeDetJt"table

" c o L s h a 2 5 6 "]

).E38Z [RESULT][DatetimeDet]("table.

).^44Z [RESULT][DatetimeDet]("table.

[RESULT] [DatetimeDet]("table.

"col_cis lo_popisne"f

[RESULT] [Dateti meDet] ["table.

[RESULT] [DatetimeDet]{"table.

J.E63Z [RESULT] [Dateti meDet]{"table.

"col _re peati ng _e le m e nt"}

: " M O C K _ D A T A " , "type": " T E X T , "weight": 0, "name": "coLur l ")

: " M O C K . D A T A " , "type": "VARCHAR(500) " , "weight": 0, "name ' : " c o L b o o l ' j

: " M O C K _ D A T A " , "type": "VARCHAR(500) " , "weight": 0, "name ' :

: " M O C K _ D A T A " , "type": "VARCI IAR(500)", "weight": 0, "name ' : "coL json"]

: " M O C K _ D A T A " , "type": "VARCHAR(500) " , "weight": 0, "name": " c o L b l a n k " !

: " M O C K _ D A T A " , "type": "VARCHAR(SOO)" , "weight": 0, "name":

Figure B .3 : D e C o n running a database detectors job while sending data to the output
console

*i3> Detection Containers

db -de tec to r s : a 1 5 5 1 8 0 0 - 8 e d 7 - 4 4 d 3 - 9 8 4 5 - 2 5 9 5 a c 2 f 4 e 6 b [ä~\ [ä]

How to Swagger API dot

Created 201S-05-07T22:00:01.197Z Last activity 2019-05-07T22:00:22.168Z

Statu; Success Assigned port

Exit code 0 Finished 2019-05-07T22:00:22.168Z

Arguments "structural StringDct FloatDct IntDet DatctiT cDct ' "^"type\"A"mysql\"A"host\ , ,:\"mysqN"A>or1\ , -:\ , -3306\",\ , ,narrie\ , -:\"testdb\",\ , -user\ \"root\ , ,;\"pas3\":V ,root\ ,

r\ , ,path\ , ,:\ , ,y} 1

M O C K . D A T A
£ Export lesults

c o l j d INTEGERI11) st-ing (100%), float (100%), nt (100%), datetime (100%) •
string (100%) float (100%), int (100%), datetime (100%)

col email VARCHAR(500) string (100%) s
co l jban VARCHAR(500) string (100%) s
coLgyid VARCHAR(400) string (100%) a
coLmac_address VARCHAR(500) string (100%) s
C o l J p v 4 VARCHAR(200) string (100%) Fl

Figure B .4 : Parsed results of a database detectors job

59

Appendix C

Code Samples

The following examples compare controller definition i n A S P . N E T Core Web A P I and Flask
A P I . B o t h examples define Swagger attributes that are used for generation of Swagger
specification.

/// <summary>
/// Controller for Configuration requests
/// </summary>
[ApiController]
public class ConfigurationController : BaseController {

/// <summary>
/// Configuration c o n t r o l l e r ctor
/// </summary>
/// <param name="repository">Repository patter</param>
/// <param name="logger">Logger</param>
/// <param name="connector">HTTP connector</param>
/// <param name="contextAccessor">HTTP context accessor</param>
public ConfigurationController(IRepository repository,

ILogger<ConfigurationController> logger, IConnector connector,
IHttpContextAccessor contextAccessor) : base(repository, logger,
connector, contextAccessor) {

}
/// <summary>
/// Retrieve configuration by name
/// </summary>
/// <param name="configuration">Configuration</param>
/// <returns>Configuration model</returns>
[Route("{conf iguration}")]
[HttpGet]
[SwaggerResponse(200, typeof(ConfigurationExternal), Description =

"Configuration")]
[SwaggerResponse(400, typeof(void), Description = "Invalid model state")]
[SwaggerResponse(500, typeof(void), Description = "An exception has occurred

during r e t r i e v a l of configuration")]
public ActionResult<ConfigurationExternal> GetCongfiguration([FromRoute]

s t r i n g configuration) {
return 0k(...);

}

}

Lis t ing C . l : Example of controller implementat ion in A S P . N E T Core

60

http://ASP.NET
http://ASP.NET

Oconf igurations.route("/<id>")
@api.doc(params={.'id': 'ConfigurationID'})
class ConfigurationsParam(Resource):

it it it

Configuration actions with parameters
n n n

@api.response(200, 'Success', configurationModel)
©configurations.doc(responses={

200: 'Success',
404: 'Not found',
500: 'Error r e t r i e v i n g configuration' »

def g e t (s e l f , i d) :
ii ii ii

Configuration r e t r i e v a l
II M n

return "", status.HTTP_200_0K

Lis t ing C.2 : Example of controller implementation i n Flask

61

Appendix D

Docker Examples

These examples represent usage of Docker in this thesis and give samples of Dockerfiles
used to bu i ld D e C o n images.

$ docker create —rm —network=decon_internal
—name=d548e996-4eda-4343-9405-f5a2e87d411e —volume=:/app/mount/
decon-image-dbdetectors — t o k e n "d548e996-4eda-4343-9405-f5a2e87d411e" — f i l e
"/app/cli/db-reporter/run_detectors.sh" —workingDirectory "/app/cli/"
—arguments "EncodedArguments"

$ docker cp /home/user/decon/db-detection/
d548e996-4eda-4343-9405-f5a2e87d411e:/app/cli/

$ docker start d548e996-4eda-4343-9405-f5a2e87d411e

$ docker stop d548e996-4eda-4343-9405-f5a2e87d411e

Lis t ing D . l : Concrete example of container management in D e C o n

FROM microsoft/dotnet:2.2-sdk as dotnet-builder
WORKDIR /app/app-wrapper/
COPY ./ApplicationWrapper.sin /app/app-wrapper/
COPY ./src/ApplicationWrapper.csproj /app/app-wrapper/src/
RUN dotnet restore - r linux-x64
COPY . /app/app-wrapper/
RUN dotnet publish "ApplicationWrapper.sin" —no-restore — s e l f - c o n t a i n e d -c

release -o /output

FROM debian
LABEL maintainer="xoberrOO@stud.f it.vutbr.cz"

RUN apt-get update && apt-get i n s t a l l -y —no-install-recommends a p t - u t i l s
b u i l d - e s s e n t i a l python3-pip python3-setuptools python3-dev

RUN pip3 i n s t a l l wheel

RUN mkdir -p /app/app-wrapper

COPY —from=dotnet-builder /output/ /app/app-wrapper/publish/

WORKDIR /app/app-wrapper/publish
ENTRYPOINT ["/app/app-wrapper/publish/ApplicationWrapper"]

Lis t ing D.2 : Defini t ion of the default Dockerfile for command-line applications

62

FROM mysql
LABEL maintainer="xoberrOO@stud.f it.vutbr.cz"

RUN apt-* ;cet update & £& apt-get i n s t a l l -y —no-install-recommends apt-ut
RUN apt-* ;cet i n s t a l l -y dbus
RUN apt-* ;cet i n s t a l l -y dbus-x11
RUN apt-* ;cet i n s t a l l -y python3
RUN apt-* ;cet i n s t a l l -y python3-pip
RUN apt-* ;cet i n s t a l l -y python3-dev
RUN apt-* ;cet i n s t a l l -y wget
RUN apt-* ;cet i n s t a l l -y telnet
RUN apt-* ;cet i n s t a l l -y i p u t i l s - p i n g

RUN apt-* ;cet i n s t a l l -y b u i l d - e s s e n t i a l libdbus-l-dev nlohmann-json-dev
libspdlog-dev libglib2.0-dev

RUN apt-get i n s t a l l -y python3-levenshtein python3-mysqldb libdbus-l-dev
nlohmann-json-dev libspdlog-dev libglib2.0-dev unixodbc-dev

RUN pip3 i n s t a l l lxml pandas fuzzywuzzy python-dateutil SQLAlchemy NumPy pyodbc

RUN mkdir -p /app/cli/db-reporter/
COPY ./db-reporter /app/cli/db-reporter/
RUN cd /app/cli/db-reporter/ && make

COPY —from=decon-app-wrapper /app/ /app/
ENTRYPOINT ["/app/app-wrapper/publish/ApplicationWrapper"]

Lis t ing D .3 : Cus tom Dockerfile example (demo-dockerfile)

63

Appendix E

A P I Models
Examples of the models used for communicat ion wi th clients or between microservices.

E . l Gateway Models

"Id":"20203463-a9ce-4a56-ac9f-ad4be8ceb4a7",
"Created":"2019-05-07T21:50:20.58Z",
"Started":"2019-05-07T21:54:01.925Z",
"Finished":"2019-05-07T21:54:15.957Z",
"State":"Success",
"ProgressPercentage":100,
"Configuration":"db-detectors",
"Arguments":"EncodedArguments",
"lastActivity":"2019-05-07T21:54:15.957Z",
"StdOut":[

timestamp":"2019-05-07T21:54:14.042Z",
value":"[RESULT][StringDet]{\"type\": \"VARCHAR(500)\", \"name\":

\"col_iban\", \"table_name\": \"M0CK_DATA\", \"weight\": 1.0}"
}

] ,

"StdErr":[

],
"ExitCode":0,
"HostPort":null

Lis t ing E . l : F u l l Job entity model example

{

{

}

64

"Id": "72c894b3-0036-4e06-92f4-e067e5914807",
"Started": "2019-04-22T18:51:28.113Z",
"State": "Running",
"LastActivity": "2019-04-22T18:51:28.113Z",
"ProgressPercentage": 42

Lis t ing E .2 : Job status model example

"Configuration":"demo-mount",
"Arguments":[

"ar g l " ,
"arg2"

] ,
"HostPort":null

Lis t ing E .3 : Job creation model example

"Name":"db-detectors",
"FilePath":"/decon/apps/db-detection/run_detectors.sh",
"WorkingDirectory":"/decon/apps/db-detection/",
"Mount":null,
"Dockerfile":"/decon/apps/db-detection/Dockerfile",
"ContainerPort":null,
"JobTimeout":300,
"IsVolumeMounted":false

Lis t ing E.4 : Configurat ion model example

E.2 Other Models

"Id":"41ffb383-80b2-4487-allc-704ca8a65654",
"LogLevel":"Error",
"Eventld":"5e819f2c-8d29-47a8-aa9e-cdla73a2afdd",
"Name":"DetectionContainersAPI.Assets.ProcessWrapper",
"Message":"Container start f a i l e d " ,
"Timestamp":"2019-04-16T12:09:13.7370525+00:00"

Lis t ing E .5 : L o g entry model example

65

"Image":"decon-image-dbdetectors",
"Dockerfile":"/decon/apps/db-detection/Dockerfile",
"Cmd": [

"—token",
"7a71d0de-f6bf-4136-8e63-8da3f0910351",
" — f i l e " ,
"/app/cli/run_detectors.sh",
"—workingDirectory",
"/a p p / c l i / " ,
"—arguments",
"EncodedArguments"

].
"HostConfig":{

"NetworkMode":"decon_internal"
>,
"Containerld":"7a71d0de-f6bf-4136-8e63-8da3f0910351",
"SourceFolder":"/decon/apps/db-detection/",
"TargetFolder":"/app/cli",
"PortMapping":"0:6000",
"IsVolumeMounted":"false"

Lis t i ng E.6: Docker service container start model example

66

