
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

MONITORINGTHEOPENSTACKSWIFTOBJECT STORE
USING BEANSTALK EVENTS
SLEDOVÁNÍ OBJEKTOVÉHO ÚLOŽIŠTĚ OPENSTACK SWIFT POMOCÍ BEANSTALK UDÁLOSTÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. NEMANJA VASILJEVIĆ
AUTOR PRÁCE

SUPERVISOR RNDr. MAREK RYCHLÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2021/2022

 Master's Thesis Specification

Student: Vasiljević Nemanja, Bc.
Programme: Information Technology and Artificial Intelligence
Specialization: Information Systems and Databases
Title: Monitoring the OpenStack Swift Object Store Using Beanstalk Events
Category: Databases
Assignment:

1. Explore OpenStack Swift object storage, especially its architecture and activities. Study also
MinIO object storage. Learn about the object storage OpenIO Software Defined Storage and
in which way it uses Beanstalk to monitor and distribute events over the storage.

2. Design a service that will monitor activities in OpenStack Swift and, following the pattern of
OpenIO, publish Swift events using the Beanstalk protocol. Consider also the ability to
monitor and publish events from MinIO.

3. After consulting with the supervisor, implement the proposed service over OpenStack
Swift/MinIO so that compatibility with OpenIO is guaranteed. For verification, also implement
a sample client that will be able to subscribe to events using Beanstalk from both OpenIO
and OpenStack Swift/MinIO.

4. Test the solution, evaluate and discuss the results. Publish the resulting software as open-
source.

Recommended literature:
Raúl GRACIA-TINEDO, Josep SAMPÉ, Gerard PARÍS, Marc SÁNCHEZ-ARTIGAS, Pedro
GARCÍA-LÓPEZ and Yosef MOATTI: Software-defined object storage in multi-tenant
environments. Future Generation Computer Systems. 99, 54-72, 2019. ISSN 0167-739X.
Available at [https://doi.org/10.1016/j.future.2019.03.020]
OpenStack Docs: Object Storage monitoring. The OpenStack project [online]. 2021 [seen
2021-09-29]. Available at
[https://docs.openstack.org/swift/ussuri/admin/objectstorage-monitoring.html]
Send notifications on PUT/POST/DELETE requests - swift-specs 0.0.1.dev82
documentation. OpenStack Foundation [online]. 2016 [seen 2021-09-29]. Available at
[https://specs.openstack.org/openstack/swift-specs/specs/in_progress/notifications.html]

Requirements for the semestral defence:
Items 1 and 2 finished and item 3 in progress.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Rychlý Marek, RNDr., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: October 21, 2021

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/23587/2021/xvasil03 Page 1/1

Abstract
The goal of this thesis is to create software that can monitor and publish event notifi-

cations from Openstack Swift and OpenIO Software-Defined Storage (SDS) to a Beanstalk
queue. In addition, this thesis also proposes a solution for publishing event notifications
from MinIO to a Beanstalk queue.

In order to accomplish this goal, new middleware is proposed that can be run inside
a pipeline of Proxy Server in OpenStack Swift and inside the pipeline of OIO-Swift inside
OpenIO SDS.

Proposed middleware allows users to specify if they are interested in publishing event
notifications for specific objects/containers using metadata. For example, users can specify
a set of rules involving object properties, such as name (prefix, suffix) and size, and only
events satisfying those rules will be published.

The contribution of this thesis is unique software capable of event monitoring from both
OpenIO SDS and Openstack Swift.

Abstrakt
Cílem této práce je vytvořit software, který je schopen monitorovat a publikovat noti-

fikace o události z Openstack Swift i z OpenIO Software-Defined Storage (SDS) do fronty
Beanstalk. Tato práce také navrhuje řešení pro publikování notifikaci o událostech z MinIO
do fronty Beanstalk.

K dosažení tohoto cíle je navržen nový middleware, který lze spouštět uvnitř pipeline
proxy serveru v OpenStack Swift a uvnitř pipeline OIO-Swift serveru v OpenIO SDS.

Navržený middleware umožňuje uživatelům určit, zda mají zájem o publikování noti-
fikaci o události pro konkrétní objekty/kontejnery pomocí metadat. Uživatel může specifiko-
vat sadu pravidel zahrnující vlastnosti objektu, jako je název (prefix, přípona, podřetězec)
a velikost, a budou publikovány pouze události splňující tato pravidla.

Přínosem této práce je unikátní software schopný monitorování událostí z OpenIO SDS
i Openstack Swift.

Keywords
OpenIO Software-Defined Storage, Openstack Swift, MinIO, Beanstalk queue, Event mon-
itoring, Event notification, Amazon S3 event notification, Object storage

Klíčová slova
OpenIO Softwarově definované úložiště, Openstack Swift, MinIO, Beanstalk fronta, Mon-
itorování událostí, Oznámení o událostech, Amazon S3 oznámení o události, Objektové
úložiště

Reference
VASILJEVIĆ, Nemanja. Monitoring the OpenStack Swift Object Store Using Beanstalk
Events. Brno, 2022. Master’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor RNDr. Marek Rychlý, Ph.D.

Rozšířený abstrakt
Současný stav je že uživatelé v OpenStack Swift nemají možnost získat informace když
se provede určitá událost v častí objektovém úložišti které vlastni, nebo ke kterým máji
přístupová práva. Například, OpenStack Swift neumožňuje odeslat notifikaci uživateli když
dojde k smazání, nahrávání nebo čtení objektu.

Výsledkem teto práce je program pojmenovaný jako ENOSS - Event Notifications in
OpenStack. ENOSS je implementován ve tvaru Python WSGI middleware a je zaražen do
popelíne výchozí brány(gateway) objektového úložišta Swift a OpenIO SDS. Toto umístění
umožňuje ENOSS programu přístup ke všem vstupním (uživatelské žádostí) a výstupním
(odpovědí objektových úložišť) informaci.

Program umožňuje každém uživateli specifikovat o které události má zájem, tj které
události se máji publikovat. Middleware silně využívá metadata vyšších vrstev (container a
account). Konfigurace definující které události se máji publikovat se ukládá do systémových
metadata, která jsou přístupna jen v interních procesech objektového úložišta. ENOSS
rozšiřuje Swift API o koncový body pro vkládání nových konfiguraci a čtení uložených.

Uživatel může specifikovat typ události (čtení, aktualizace, zápis, mazání) a/nebo může
definovat sadu filtrovacích pravidel která musí byt splněna aby událost byla publikována.
Momentálně ENOSS podporuje filtrovací pravidla na prefix, sufix, maximální velikost, min-
imální velikost, typ internetového media, uživatelé a HTTP kód odpovědí objektového
úložišta. ENOSS umožňuje publikaci notifikaci do následujících cílů: Beanstalkd fronta,
Apache Kafka a Elasticsearch. Uživatelům je umožněno vybrat do kterého cíle se notifikace
má odeslat.

Klíčova vlastnost ENOSS programu je podpora vlastních cílů, filtrovacích pravidel a
obsahu notifikace. ENOSS specifikuje rozhraní a pravidla, která pokud se dodržuji vedou
ke snadné integraci nové vlastni třídí s ENOSS systémem.

Další klíčová vlastnost je kompatibilita s Amazon S3 Event Notifications. Specifikování
událostech které se májí publikovat je realizováno pomoci konfigurace která je kompatibilní
s S3. Zároveň, výchozí struktura a obsah notifikace je taky kompatibilní s AWS S3.

Výchozí nastaveni ENOSS programu publikuje jenom úspěšně ukončené událostí. Oproti
AWS S3, ENOSS lze konfigurovat aby publikovat události které nebyly úspěšně ukončené
(např. neoprávněný přístup, interní chyba).

Z analýzy chování ENOSS programu lze vyvést že pří zjištění konfiguraci notifikaci,
uložených ve vyšších vrstev v architektuře, ENOSS má všechna potřebná data v cache
pamětí. To znamená ze ENOSS nemá dopad na latence žádostí uživatelů který nemají
nastavené notifikace. Při vytvoření obsahu notifikace a provedeni filtru ENOSS nemusí
mít všechny nutné informace dostupné, a musí přečíst data z objektového úložišti, což
zvyšuje latence. Ovšem získaná data z objektového úložišti jsou vložena do cache pamětí,
a diky tomu lze dojit k maximálně jednom dodatečném čtení dat z objektového úložišti pří
publikování události.

Výsledný program má velké množství použití. ENOSS umožňuje detekci anomálii (vy-
filtrovat události které mají návratový kód 5xx), odcizeni dat (notifikace když došlo k
přístupu dat uživatelem který by nemel mít právo přístupu), prevence odcizeni dat (noti-
fikace filtrující událostí s návratovým kódem 401) a postprocessing (např odeslání metadat
do Elasticsearch a následné vyhledavání objektu pomoci metadata).

Monitoring the OpenStack Swift Object Store Us-
ing Beanstalk Events

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of RNDr. Marek Rychlý Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Nemanja Vasiljević

May 18, 2022

Acknowledgements
I would like to thank my thesis supervisor, RNDr. Marek Rychlý Ph.D. for professional
leadership, time, willingness and valuable advice. The door to RNDr. Marek Rychlý Ph.D.
office was always open whenever I ran into a problem or had questions regarding my research
or writing.

I would also like to thank Mr. Christian Schwede, a principal engineer working at Red
Hat, core reviewer and contributor to Swift, for providing me with additional information
and guidance.

Finally, I would like to express my gratitude to my parents and my family for providing
me with support and continuous encouragement throughout my years of study and thought
process of writing this thesis.

Contents

1 Introduction 3

2 Background 5
2.1 Object storage . 5
2.2 Software-Defined storage . 7
2.3 Beanstalk queue . 8

2.3.1 Beanstalkd elements . 9
2.3.2 Job Lifecycle . 9
2.3.3 Key characteristics . 10

2.4 Event notifications . 11
2.4.1 CloudEvents . 11
2.4.2 Amazon S3 event notifications . 12

3 Object storages 14
3.1 OpenIO SDS . 14

3.1.1 Key characteristics . 14
3.1.2 Data organization . 15
3.1.3 Serverless computing . 16
3.1.4 OIO-Swift . 18

3.2 OpenStack Swift . 19
3.2.1 Key characteristics . 19
3.2.2 Data model . 20
3.2.3 Middlewares . 21

3.3 MinIO . 24
3.3.1 Introduction . 24
3.3.2 Key features . 24
3.3.3 Architecture . 25
3.3.4 Event notifications . 27

4 Solution draft 28
4.1 Current state . 28

4.1.1 OpenIO SDS . 28
4.1.2 OpenStack Swift . 28
4.1.3 MinIO . 29

4.2 Middleware for OpenStack Swift and OpenIO SDS 29
4.2.1 Location . 29
4.2.2 Design . 29
4.2.3 Structure of published event . 33

1

4.2.4 Event Notification configuration . 35
4.3 Proxy for MinIO . 35

5 Implementation 38
5.1 ENOSS . 38

5.1.1 Middleware . 38
5.1.2 Notification configuration . 42
5.1.3 Filters . 43
5.1.4 Notification payload . 44
5.1.5 Destinations . 45
5.1.6 Custom filters/payloads/destinations 46
5.1.7 OpenIO SDS compatibility . 47

5.2 MinIO proxy . 48

6 Testing, benchmark and possible applications 49
6.1 Testing . 49

6.1.1 Unit tests . 49
6.1.2 Functional tests . 50

6.2 Performance analysis . 51
6.3 Experiments . 52
6.4 Use cases and applications . 57

7 Conclusion 59

Bibliography 61

A Contents of the included storage media 64

B Repository and Usage Guide 65

C Excel@FIT Article 67

2

Chapter 1

Introduction

In the current world, cloud computing has become the most popular way of delivering
different services on the Internet. One of the most popular cloud services is cloud storage,
allowing users to store data in remote locations maintained by a third party. Based on how
cloud storage manages data, cloud storage can be divided into three types: Block storage,
File storage, and Object storage. Object storage manages data as objects, and each object
typically includes data itself and some additional information stored in object metadata.
Since data are stored in remote locations, to which users do not have direct and complete
access, some users or external services might want to receive information about specific
events (for example, change of content) in storages where their data are located.

The importance of this thesis is to provide event information to users in OpenIO SDS and
OpenStack Swift, which will allow users to react to those events, create more sophisticated
backend operations and postprocessing, or possibly prevent/detect unwanted actions. In
addition, providing event notifications will allow users to have a better picture of what is
going on in their storage and improve monitoring in these object storages.

There were two attempts[20][22] to solve this issue within OpenStack Swift which were
not officially accepted, and their solution is outdated. So currently, there is no official
solution for publishing event notifications in OpenStack Swift nor OpenIO Software-Defined
Storage (from now on SDS).

My interest in this topic stems from its possible impact on the extensive amount of users
that OpenStack Swift and OpenIO have. Furthermore, I have always wanted to contribute
to open-source projects. The possibility to improve user experience in OpenStack Swift
and OpenIO SDS and allow these storags to be even more competitive against commercial
storage (Amazon, Google, ...) is another reason why I choose this topic.

This thesis aims to create a program/middleware which will publish event notifications
to user-specified destinations. One of the supported destinations will be the Beanstalk
queue, but the program can be easily configured to support other destinations (for example,
Kafka) using a predefined interface. The proposed program will allow users to specify, using
object metadata (such as name prefix/suffix and object size) and type of event, which event
notification should be published. The program will be able to run within OpenStack Swift
and OpenIO SDS. This thesis will strive to find such a solution that could be officially
accepted as part of OpenStack Swift and OpenIO SDS.

This work consists of six chapters. Chapter 1 introduces the motivation, objectives, and
proposed solutions of this work. Chapter 2 briefly describes the technologies and general
areas that this work relates to. Chapter 3 covers object storage used in this work. Chap-
ter introduces OpenIO SDS and describes its data organization and key services providing

3

events. Chapter 3 introduces OpenStack object storage Swift, its data model, server pro-
cesses and describes middlewares within OpenStack Swift. Lastly, chapter 3 briefly covers
MinIO storage and how publishes event notifications. Chapter 4 describes the current state
of event notifications in OpenIO SDS, OpenStack Swift, and MinIO, proposes a solution
for publishing event notifications in OpenIO SDS and OpenStack Swift, and a solution for
publishing event notifications from MinIO to Beanstalk queue. Chapter 5 describes the pro-
cess of implementation, validation notification configurations, supported filters, notification
payloads, and destinations. Furthermore, chapter 5, explains compatibility issues between
OpenIO SDS and Swift and explains the implementation process of the proxy program al-
lowing publishing notifications from MinIO to beanstalkd. Chapter 6 describes the testing
process, benchmarking, and applied experiments. Last chapter 7 describes the overview of
the achieved results.

4

Chapter 2

Background

This chapter introduces Object storage, its core concepts, and the underlying technologies.
After introducing the Object storage, for sufficient understanding of this master thesis topic,
it is essential to explain how Software-defined storage manages data and what event types
can occur inside. The last part of this chapter describes the concept of event notifications,
why they are essential, and the current interfaces for publishing them to users.

2.1 Object storage
Object storage, also known as object-based storage (OBS), handles data as objects instead of
the hierarchical methods used in file systems[37]. The object storage is designed to handle
data as whole objects, making it an ideal solution for any unchanging data. Data in object
stores are changed by replacing objects or files, and therefore object stores are the preferred
mechanism for storing such files[38].

Key concepts

Key concepts of object storage are[39]:

• Objects - An object typically consist of user data and metadata uploaded to object
storage.

• Containers/Buckets - represents logical abstraction used to provide a data con-
tainer in object storage. An object with the same name in two different containers
represents two different objects. This concept segregates data using bucket owner-
ship and a combination of public and secret keys bound to object storage accounts,
allowing users and applications to manipulate with authorized data for specific types
of manipulation (read/write/update).

• Metadata - Additional information about data, such as date of creation and last
modification, size, and hash.

• Access Control Lists(ACLs) - used as primary security construct in object storage,
stored in account or bucket level, and allows owners to grant permissions for certain
operations based on UUID, email, ...

• Object Data protection - two primary data protection schemes in object storage
are Replication and Erasure Coding.

5

Replication is a method used to ensure data resilience. Data are copied into multiple
locations/disks/partitions. In case of failure, data are used from a secondary copy to
recreate the original copy or as a primary copy.
Erasure coding is a process through which the data is separated into fragments.
Then fragments are expanded and encoded with redundant pieces and stored across
different storage devices. Erasure coding adds redundancy and allows object storage
to tolerate failures.

Object data

With object storage techniques, each object contains[39]:

• Data - user-specified data that needs to be stored in persistent storage. Such data
can be binary data, text file, image, etc.

• Metadata - additional data that describe objects data. Metadata can be divided
into two types: Device-managed metadata is additional information maintained by a
storage device and used as part of object management in physical storage[37]. The
second type is Custom metadata, where users can store additional information in key
and value pairs. In object storage, metadata is stored together with the object.

• A universally unique identifier (UUID) - This ID, created using a hashing pro-
cess based on object name and other additional information, is assigned to each object
in object storage. Using ID object storage systems can tell apart objects from one
another. ID is also used to extract data in a system without knowing their physical
location/drive and offset.

Access to object storage

Object storage services provide a RESTful interface [41] over HTTP protocol to store and
access objects. This approach allows users to create, read, delete, update, or even query
objects anytime and anywhere simply by referencing UUID (or using specific attributes
for querying), usually with a proper authentication process. The most popular interfaces
for communicating with object storages are Amazon S3 (Simple Storage Service) API and
OpenStack Swift API.

Pros and cons of object storage

Pros:

• Capable of handling a large amount of unstructured data

• Reduced TCO and cheap COTS - Object storage is designed to utilize cheap COTS(Commercial
off-the-shelf) components. As a result Total Cost of Ownership(TCO) is lower than
owning homemade Network-Attached Storage(NAS)[38].

• Unlimited scalability - Since object storages are built on distributed systems, they
scale very well compared to traditional storages, where they often have an upper
limit[34].

• Wide-open metadata - allows users to store custom metadata and the possibility of
creating metadata-driven policies, such as compression and tiering.

6

Cons:

• No in-place update - object must be manipulated as a whole unit.

• No locking mechanism - object storage does not manage object-level locking, and it
is up to applications to solve concurrent PUT/GET.

• Slower - this makes object storages a poor choice for applications that need rapid and
frequent access to data.

2.2 Software-Defined storage
Software-Defined Storage(SDS) is a storage architecture that separates software storage
from hardware allowing greater scalability, flexibility, and control over the data storage
infrastructure. With the growth of Software-Defined Networks(SDN) and the need for
Software-Defined Infrastructure(SDI), which aims to virtualize network resources and sep-
arate the control plane from the data plane, this principle was needed to be applied on
Object storage as well[32].

To overcome limitations of traditional storage infrastructures, the Software-Defined
Storage is imposed as a proper solution to simplify data and configuration management
while improving the end-to-end control functionality of conventional storage systems[36].
Furthermore, while traditional storages like storage area networks (SAN) and network-
attached storage (NAS) provides scalability and reliability, SDS provides it with much
lower cost by utilizing industry-standard or x86 system and therefore removing dependency
on expensive hardware[26].

Principles

There is no clear definition on criteria for defining software-defined storage, although several
fundamental principles can be deducted[30]:

• Scale-out - SDS should enable low-cost horizontal scaling (by adding new commodity
hardware to existing infrastructure) compared to vertical scaling with more powerful
(and expensive) hardware.

• Customizable - SDS should offer system storage customization to meet specific
storage QoS requirements. This will allow users to choose storage solution based on
their requirements/performance and avoid unnecessary overpaying.

• Automation - once QoS is defined process of deployment and monitoring on object
storage should be automated and done without the need for human resources.

• Masking - SDS can mask an underlying storage system and distributed system as
long as they provide common storage API and meet required QoS. SDS can offer
Block or File API even though data are saved in object storage (like Ceph1 does).

• Police Management - SDS Software must manage storage according to specified
policies and QoS requirements despite being in multi-tenant space. SDS must be
capable of handling failures and autoscale in case of change in workloads.

1Ceph - distributed object, block, and file storage platform https://ceph.io

7

https://ceph.io

Architecture

As previously described, the main characteristic of SDS is to separate storage functions into
a control plane and data plane.

Control plane - the control plane is a software layer with the main goal to virtualize
storage resources. The control plane manages data provision and provides orchestration
of data services across object storage. Solutions that are part of the control plane allow
policy automation, analytics and optimization, backup and copy management, security, and
integration with the API services, including other cloud provider services[31].

Data plane - the data plane encompasses the infrastructure where data is processed.
The data plane provides an interface to the hardware infrastructure and defines how the
storage is accessed. It provides access methods to storage, such as Block I/O (for example,
iSCSI), File I/O (NFS, SMB, or Hadoop Distributed File System (HFDS)), and object
storage. It defines storage management functions, such as virtualization, RAID protection,
tiering, encryption, compression, and data deduplication that can be requested by the
control plane[31].

Performance Security Availability

Data services

Shared storage pool

DAS SAN NAS Object

Data plane

Control plane

API

S
to

ra
g

e

p
o

li
c

ie
s

storage storage storage

Block File Object

Figure 2.1: SDS data and control plane (source: [23], remade).

2.3 Beanstalk queue
Beanstalk queue or shorter beanstalkd is a fast, simple and lightweight working queue[3].
The primary use case is to manage workflow between different parts of workers of application

8

through working queues and messages. Beanstalkd was developed for the need of Facebook
application in order to reduce average response time[3]. Provided by simple protocol design,
heavily inspired by Memcached, implemented in programming language C, Beanstalkd offers
lean architecture, which allows it to be installed and used very simply, making it perfect
for many use cases[19].

2.3.1 Beanstalkd elements

Beanstalkd is a priority queue with server-client architecture. The server represents queues
where jobs are saved based on priority. Beanstalkd architecture is composed of several
components:

• Jobs - tasks stored by the client

• Tubes - used for storing tasks, each tube contains a ready queue and a delay queue.

• Producer - creates and sends jobs to beanstalkd using command put.

• Consumer - process ”listening“ on an assigned tube, reserves and consumes jobs
from the tube.

2.3.2 Job Lifecycle

Each job is uniquely assigned to one worker at a time. The client creates a job and inserts
it into a beanstalkd tube using the put command. While being in the tube, the job can be
in next states[4]:

• Ready - the task is free and can be executed immediately by the Consumer.

• Delayed - the task has assigned delay time that needs to expire before execution.
After delay time expires, beanstalkd will automatically change its state to Ready.

• Reserved - the task is reserved and is being executed by the Consumer. Beanstalkd
is responsible for checking whether the task is completed in time (TTR - Time to
run).

• Buried - reserved task, the task will not be removed nor executed until the client
decides. This state is often used for further inspection in debugging process when
failure or undefined behavior occurs during task execution.

• Deleted - the task is deleted from the tube, beanstalkd no longer maintains these
jobs.

Figure 2.2 describes the life cycle of a job in a beanstalkd tube. Job is created by
Producer using put command. Beanstalkd allows the Producer to add delay time before
the task is ready for execution, setting the job state to Delayed. After delay time expires,
beanstalkd will automatically change job state to Ready. The Producer can specify job
priority and jobs with the Ready state are stored in the priority queue. A job with the
biggest priority is reserved and executed by a Consumer. After successfully executing the
task, the Consumer will delete the job from beanstalkd. If some error occurs, the Consumer
can bury the task. The Consumer can decide that he is not interested in completing the
reserved task. Using the release command (with optional delay) job state will be changed

9

back to Ready (or Delay if delay exists). Jobs with the Burried state will not be touched
by the beanstalkd server until the client ”kicks“ them to READY state.

Ready

Delayed

Reserved

Burried

put

put with delay

delete

delete

release

release with delay(time passes)

reserve

bury

kick

Visual Paradigm Standard(xvasil03(Brno University of Technology))

Figure 2.2: State machine diagram of job in Beanstalkd tube.

2.3.3 Key characteristics

Key beanstalkd characteristics are:

Asynchronous - beanstalkd allows producers to put jobs in the queue, and workers can
process them later.

Distributed - in the same way as Memcached2, beanstalkd can be distributed, although
this distribution is handled by clients. The beanstalkd server does not know anything about
other beanstalkd running instances.

Persistent - beanstalkd offers support for persistent jobs during which all jobs are written
to binlog. In case of a power outage, after restarting a beanstalkd instance, it will recover
jobs content from the logs.

Not secured - beanstalkd is designed to be run in a private/secure network. Therefore
it does not support authentication or authorization.

Scalability - beanstalkd can be scaled horizontally, although it must be done on the
client side, where each client would connect to multiple servers and then use specific algo-
rithms(e.g., Round-robin) to switch between the different servers.

2Memcached - in-memory key-value store https://memcached.org/

10

https://memcached.org/

2.4 Event notifications
An event is a runtime operation executed by a software element, representing a significant
change or occurrence in a system. Event is created in order to make some information
available to other software elements not specified by the operation[40].

Event notification is a message created by a system in order to notify other parts
of the system that an event has taken place[27]. Event notifications are usually used for
monitoring and asynchronous job processing.

In object storage, event notifications are used to notify users or tenants about specific
changes and occurrences in their bucket or account. Typical event notifications include
creating new (or updating existing) objects in the bucket. In addition, most object vendors
offer publish/subscribe notifications, allowing users to subscribe to certain types of event
notifications using predefined rules. Information about rules specifying event notifications
is usually stored in the upper-level metadata (bucket or account).

2.4.1 CloudEvents

Publishers tend to describe event data differently due to non-existing standards or formats.
The lack of a common way to describe events means developers have to learn how to handle
events from each event source. To solve this problem, CloudEvents was created.

CloudEvents is a specification for describing event data in common way[5] hosted by
CNCF3. CloudEvents goal is to dramatically simplify event specification and delivery across
services, platforms and beyond. CloudEvents has been integrated by many popular object
storage vendors, such as Oracle Cloud, IBM Cloud Code Engine, Azure, Google Cloud, etc.

Attributes in CloudEvents specification can be divided into three categories:

Required attributes - set of attibures that are required to be included in all events[6]:

• id (string) - event identifier, must not be empty.

• source (URI-reference) - identifies context in which event occured, must not be empty.

• specversion (string) - the version of CloudEvents specification, must not be empty.

• type (string) - value describing the type of occurred event. Often this attribute is
used for policy enforcement, routing and monitoring.

Event data attirbutes - attibures containing and describing event data:

• datacontenttype (string) - content type of data value (allows data to carry any type
of content).

• dataschema (URI) - identifies the schema that data adheres to.

• data - data payload
3CNCF - Cloud Native Computing Foundation https://www.cncf.io/

11

https://www.cncf.io/

Optional attributes :

• time - timestamp

• subject (string) - the subject of the event in the context of the event producer.

• extension attributes - custom attibutes allowing external systems to attach metadata
to an event.

{
"specversion" : "1.0",
"type" : "com.github.pull_request.opened",
"source" : "https://github.com/cloudevents/spec/pull",
"subject" : "123",
"id" : "A234-1234-1234",
"time" : "2018-04-05T17:31:00Z",
"comexampleextension1" : "value",
"comexampleothervalue" : 5,
"datacontenttype" : "text/xml",
"data" : "<much wow=\"xml\"/>"

}
Listing 2.1: Example of event described using CloudEvents specification in JSON format.

2.4.2 Amazon S3 event notifications

Amazon Simple Storage Service (S3) is one of the most popular cloud object storages
providing a REST web service interface. Amazon S3 is reliable, scalable, commercial and
one of the most popular object storage that manages Web-Scale computing by itself[33].
As a result, Amazon S3 has a big impact on object storage and most other object storage
vendors crated compatible S3 API for their services.

One of the monitoring features that Amazon S3 provides is Event Notification, which
offers users to receive notifications when certain events happen in their S3 bucket. To
enable such notifications, users need to create a notification configuration that identifies
which events Amazon S3 should publish[2]. Notifications are configured at the bucket level
and then applied to each object in the bucket.

Amazon S3 provides limited event destinations to which event notification messages can
be send[1]:

• Amazon Simple Notification Service (Amazon SNS) - flexible, fully managed push
messaging service, can be used to send messages to mobile phones or distributed
services.

• Amazon Simple Queue Service (Amazon SQS) queues - reliable and scalable hosted
queues for storing messages as they travel between computers.

• AWS Lambda - serverless, event-driven compute service. Lambda can run custom
code in response to the Amazon S3 bucket event (if the lambda function writes to the
same bucket that triggers the notification, it can create an execution loop).

• Amazon EventBridge - serverless event bus service used to receive events from AWS.
It allows users to define rules to match events and deliver them to defined targets.

12

By this date, Amazon S3 does not support CloudEvents specification and describes
event data in its own way. Some of the event types that Amazon S3 can publish are
displayed in table 2.1.

Event type Desription

s3:TestEvent after enabling the event notifications, Amazon S3 publishes
a test notification to ensure that topic exist and bucket
owner has permissions to publish specified topic.

s3:ObjectCreated:* An object was created (regardless on operation).

s3:ObjectCreated:Put An object was created by an HTTP PUT operation.

s3:ObjectCreated:Post An object was created by HTTP POST operation.

s3:ObjectCreated:Copy An object was created an S3 copy operation.

s3:ObjectCreated:
CompleteMultipartUpload

An object was created by the completion of a S3 multi-part
upload.

s3:ObjectRemoved:* An object was removed (regardless on operation).

s3:ObjectRemoved:Delete An object was deleted by HTTP DELETE operation.

s3:ObjectRemoved:
DeleteMarkerCreated

An versioned object was marked for deletion.

Table 2.1: Subset of Amazon S3 Event Types [1]

13

Chapter 3

Object storages

3.1 OpenIO SDS
This section introduces OpenIO Software-defined storage, its key features, its data organi-
zation along with the underlying technologies. Furthermore, this section introduces Grid
For Apps framework (3.1.3) and event publishing in OpenIO (3.1.3).

OpenIO Software-defined storage is open source object storage that is perfectly capable
of traditional use cases (such as archiving, big data, cloud). However, at the same time,
combined with Grid for Apps (3.1.3), it opens the door for users to create an application that
needs much more sophisticated back-end operations. These applications include industrial
IoT, machine learning and artificial intelligence, as well as any other applications whose
workflow can benefit from automated jobs or tasks[25]. In addition, OpenIO SDS is event-
driven storage with the ability to intercept events seamlessly and transparently to the rest
of the stack.

3.1.1 Key characteristics

Hardware agnostic OpenIO SDS is fully software-defined storage capable of running
on x86 or ARM hardware with minimal requirements. Cluster nodes can be different from
each other, allowing different generations, types, and capacities to be combined without
affecting a performance or efficiency[11]. OpenIO has built-in support for heterogeneous
hardware allowing every node to be used at its maximum performance.

No SPOF architecture Every single service used to serve data is redundant from object
chunks stored in a disc to the directory level, every information is duplicated. As a result,
there is no single point of failure (SPOF) in the cluster and a node can be shut down
without affecting overall availability or integrity[21].

Cluster organization Instead of a traditional cluster ring-like layout, OpenIO SDS is
based on a grid of nodes 3.1. It is flexible and resource-conscious. Compared to other object
storage solutions, cluster organization is not based on static data allocation that usually use
Chord peer-to-peer distributed hash table algorithm. Instead, OpenIO SDS uses distributed
directory for organizing data and metadata hash tables, which allows the software to attain
the same level of scalability but with better and more consistent performance[11].

14

Figure 3.1: Layered view on OpenIO SDS architecture (source: [18]).

Tiering With tiering, OpenIO SDS offers users to configure a pool containing a group of
hardware that can then be used to store specific types of objects. For example, users can
create a pool of high-performance hard disks (e.g. SSDs) and use the pool to store objects
that require low latency. This feature is realized by a mechanism called storage policies.
Multiple storage policies can be defined in one particular namespace. Storage policies can
also be used for specifying how many replicas should be created for a specific dataset[21].

ConsciousGrid ConsciousGrid is an OpenIO technology that uses real-time metrics from
the nodes(CPU, I/O, capacity) automatically discover and place data in the most appro-
priate place. It provides load balancing and computes a score for each node and then
provides weighted random selection[13].

3.1.2 Data organization

Multi-tenancy is one of the core concepts in OpenIO SDS. Data objects are stored within fol-
lowing hierarchy: Namespace/Account/Container/Object 3.2. Multiple namespaces can
be configured in each cluster, providing multi-region/zone logical layouts for applications
and segregated workloads depending on a tenant or geo-distribution need[12]. There is no

15

classic subdirectory tree. Instead, objects are stored in a flat structure in the container
level. However, like many other object storages, there is a way to emulate a filesystem.

Figure 3.2: Object data organization in OpenIO SDS (source: [21]).

Namespace A coherent set of network services working together to run OpenIO’s solu-
tions. It hosts services and provides operations such as service configuration and monitoring.

Account An account usually represents a tenant and is the top level of data organization.
Each account owns and manages a collection of containers. In addition, the account keeps
track of namespace usage for each customer (i.e. bytes occupied by all of a customer’s
objects)[21].

Container Container represents an object bucket. Each container belongs to one (and
only one) account and is identified by a unique name within the account. The container
carries additional information specifying how to manage its objects (e.g. how to secure
them)[21].

Object Object is the smallest data unit visible by a customer and represents a named
BLOB with metadata. OpenIO SDS allows several objects to be stored in a container and
are considered versions of the same object. Classic API operations (PUT/GET/DELETE) will
be directed towards an object with the latest version. If the size of an object is larger than
the specified limit at the namespace level, the object will be divided into chunks of data.
This behavior allows capacity optimization as well as distributed reads that could be
particularly useful for high-speed video streaming of large media[21].

3.1.3 Serverless computing

OpenIO offers Serverless computing in object storage cluster nodes using the framework
Grid For Apps.

Grid For Apps Like Amazon AWS Lambda, OpenIO offers an event-driven compute
service called Grid for Apps that works on top of OpenIO.

Grid for Apps intercepts all the events that happen in the storage layer, and based on
user configuration, triggers specific applications or scripts to act on data (metadata) stored

16

in object storage[25]. The application is executed in cluster nodes and utilizes free unused
resources available in the cluster. This improves efficiency (fewer data moving since object
data are already available) and saves money (no need for external resources)[25].

Grid for Apps allows customers to perform operations such as metadata enrichment,
data indexing and search (e.g. indexing metadata to Elasticsearch), pattern recognition,
machine learning, data filtering, monitoring, etc[25].

Grid for Apps in OpenIO is realized using service event-agent and beanstalkd queue.

Event-agent Event-agent is an OpenIO service responsible for handling asynchronous
jobs. It relies on beanstalkd backend to manage jobs. Event-agent key characteristics
are[13]:

• Stateless

• CPU intensive

• Must be deployed on every server of the cluster

Every event that occurs in OpenIO is inserted in a beanstalkd tube. Event-agent is
listening to the beanstalkd tube and consumes jobs from it. Consumers are produced using
Eventlet Network Library [8]. The number of workers can be configured.

In event-agent, users can specify handlers for each type of event in event-handler.conf.
Some of the event types in OpenIO are storage.content.new (e.g., new object in storage),
storage.container.deleted (e.g., object has been deleted), etc.

Events handler is defined as a pipeline containing applications that will react to
the event. In example 3.1, deleting an object will invoke storage.content.deleted event.
Event-agent will handle the event using content_cleaner application, which deletes objects
chunks from object storage.

OpenIO offers users to process events outside of the event-agent. In order to do that,
users can use the application notify which will send an event to a specified beanstalkd
tube. Then a user can create a custom consumer process that will execute the job from
beanstalkd tube. An example of such configuration is displayed in listing 3.1.

[handler:storage.content.deleted]
pipeline = content_cleaner

[handler:storage.content.new]
pipeline = notify

[filter:content_cleaner]
use = egg:oio#content_cleaner

[filter:notify]
use = egg:oio#notify
tube = oio-rebuild
queue_url = ${QUEUE_URL}

Listing 3.1: Example of event-agent handler configuration

17

3.1.4 OIO-Swift

One of the key components in OpenIO SDS system is OIO-Swift service, which acts like
gateway. Main responsibility of this component is to handle Swift/S3 user requests. Imple-
mentation of OIO-Swift is based on OpenStack Swift Proxy server. OIO-Swift key features
include:

• Operations on objects, containers and accounts.

• Authentication support (using OpenStack Keystone).

• Metadata support - enables usage of system metadata.

• Swift Middleware support - allow running Swift middlewares within OpenIO SDS
system.

18

3.2 OpenStack Swift
This section introduces OpenStack object storage (code name Swift) and describes its key
features. Furthermore, this section elaborates OpenStack Swift architecture, introduces its
main services and interfaces for communication with object storage.

OpenStack Swift is open-source object storage developed by Rackspace, a company
that, together with NASA, created the OpenStack project. After becoming an open-source
project, Swift became the leading open-source object storage supported and developed by
many famous IT companies, such as Red Hat, HP, Intel, IBM, and others.

OpenStack Swift is a multi-tenant, scalable, and durable object storage capable of stor-
ing large amounts of unstructured data at low cost[29].

3.2.1 Key characteristics

Besides standard object storage characteristics (like scalability, durability, hardware agnos-
tic, etc.), some of the keys OpenStack Swift characteristics:

Multi-regional capability OpenStack Swift has distributed architecture. Data can be
distributed and replicated into multiple data centers, although the negative effect could
be higher latency between them. Distribution can provide high availability of data and
recovery site[29].

No SPOF With all data being replicated and distributed, there is no single proof of
failure in OpenStack Swift architecture.

Developer-friendliness OpenStack Swift offers many built-in features that developers
and users can use. some of the most interesting built-in features are[29]:

• Automatically expiring objects - Objects can be given expiration time, after
which objects become invalid and deleted from object storage.

• Quotas - Storage limits can be configurated on container/account level.

• Versioned objects - User can store a new version of an object, while object storage
keeps previous (older) versions.

• Access control lists - Users can configure access to their data to give or deny
permission for reading or writing data to other users.

Middleware support - OpenStack Swift allows adding custom middlewares, which will
be run directly on storage system[34]. This feature can be used for monitoring purposes, for
example, informing users or other applications about new objects in storage using Webhook
middleware.

Large object support - By default, OpenStack Swift has a limit on a single uploaded
object, which is 5GB. However, using segmentation, the size of a single object can be
virtually unlimited. This option offers a possible higher upload speed, in case of parallel
upload[15].

19

Partial object retrival Users can retrieve part of an object, for example, just a portion
of a movie object file[35].

3.2.2 Data model

OpenStack Swift allows users to store unstructured data objects with a canonical name
containing account, container and object in given order[29]. The account names must be
unique in the cluster, the container name must be unique in the account space, and the
object names must be unique in the container. Other than that, if containers have the same
name but belong to a different account, then they represent different storage locations. The
same principle applies to objects. If objects have the same name but not the same container
and account name, then these objects are different.

Account Accounts are root storage locations for data. Each account contains a list of
containers within the account and metadata stored as key-value pairs. Accounts are stored
in the account database. In OpenStack Swift, account is storage account (more like
storage location) and do not represent a user identity[29].

Container Containers are user-defined storage locations in the account namespace where
objects are stored. Containers are one level below accounts, therefore they are not unique
in the cluster. Each container has a list of objects within the container and metadata stored
as key-value pairs. Containers are stored in container database[29].

Object An object represents data stored in OpenStack Swift. Each object belongs to one
(and only one) container. An object can have metadata stored as key-value pairs. Swift
stores multiple copies of an object across the cluster to ensure durability and availability.
Swift does this by assigning an object to partition, which is mapped to multiple drives, and
each driver will contain object copy[29].

Server Processes The path towards data in OpenStack Swift consists of four main soft-
ware services: Proxy server, Account server, Continaer server and Object server.
Typically Account, Container and Object server are located on same machine creating
Storage node.

Proxy server The proxy server is the service responsible for communication with external
clients. For each request, it will look up storage location(node) for an account, container, or
object and route the request accordingly[14]. The proxy server is responsible for handling
many failures. For example, when a client sends a PUT request to OpenStack Swift, the
proxy server will determine which nodes store the object. If some node fails, a proxy server
will choose a hand-off node to write data. When a majority of nodes respond successfully,
then the server proxy will return a success response code[29].

Account server Account server stores information about containers in a particular ac-
count to SQL database. It is responsible for listing containers. It does not know where
specific containers are, just what containers are in an account[14].

Container server Container server is similar to account server, except it is responsible
for listing objects and also does not know where specific objects are[14].

20

Object server The Object Server is blob storage capable of storing, retrieving, and delet-
ing objects. Objects are stored as binary files to a filesystem, where metadata are stored
in the file’s extended attributes (xattrs). This requires a filesystem with support of such
attributes. Each object is stored using a hash value of object path (account/container/ob-
ject) and timestamp. This allows storing multiple versions of an object. Since last write
wins (due to timestamp), it is ensured that the correct object version is served[14].

Storage

Proxy server

node

node

Account

server

Container

server

Object

server

Account

DB

Container

DB

Object

storage

Figure 3.3: OpenStack Swift servers architecture.

3.2.3 Middlewares

Using Python WSGI middleware, users can add functionalities and behaviors to OpenStack
Swift. Most middlewares are added to the Proxy server but can also be part of other servers
(account server, container server, or object server).

Middlewares are added by changing the configuration of servers. In example 3.2 webhook
middleware is added into the proxy server by changing its pipeline (pipeline:main). Mid-
dlewares are executed in the given order (first will be called webhook middleware, then
proxy-server middleware).

Some of the middlewares are required and will be automatically inserted by swift
code[16].

[DEFAULT]
log_level = DEBUG
user = <your-user-name>

[pipeline:main]
pipeline = webhook proxy-server

[filter:webhook]

21

use = egg:swift#webhook

[app:proxy-server]
use = egg:swift#proxy

Listing 3.2: Example of proxy server configuration (proxy-server.conf).

Interface OpenStack Swift servers are implemented using Python WSGI applications.
Therefore only Python WSGI middlewares are accepted in OpenStack Swift.

In listing 3.3 is example of simplified healthcheck middleware. The constructor takes
two arguments, the first is a WSGI application, and the second is a configuration of middle-
ware defined using Python Paste framework in proxy-server.conf. Middleware must have
a call method containing the request environment information and response from previously
called middleware. Middleware can perform some operations and call the next middleware
in the pipeline or intercept a request. In the healtcheck example, if the path directs to
/healtcheck , the middleware will return HTTP Response, and other middlewares in the
pipeline will not be called.

Method filter_factory is used by the Python Paste framework to instantiate middle-
ware.

1 import os
2 from swift.common.swob import Request, Response
3

4 class HealthCheckMiddleware(object):
5 def __init__(self, app, conf):
6 self.app = app
7

8 def __call__(self, env, start_response):
9 req = Request(env)

10 if req.path == ’/healthcheck’:
11 return Response(request=req, body=b"OK", content_type="text/plain")(env,

start_response)
12 return self.app(env, start_response)
13

14 def filter_factory(global_conf, **local_conf):
15 conf = global_conf.copy()
16 conf.update(local_conf)
17

18 def healthcheck_filter(app):
19 return HealthCheckMiddleware(app, conf)
20 return healthcheck_filter

Listing 3.3: Example of healthcheck middleware in OpenStack Swift

Metadata OpenStack Swift separates metadata into 3 categories based on their use:

• User Metadata - User metadata takes form X-<type>-Meta-<key>: <value>, where
<type> represent resource type(i.e. account, container, object), and <key> and <value>
are set by user. User metadata remain persistent until are updated using new
value or removed using header X-<type>-Meta-<key> with no value or a header
X-Remove-<type>-Meta-<key>: <ignored-value>.

• System Metadata - System metadata takes the form of X-<type>-Sysmeta-<key>:
<value>, where <type> represent resource type(i.e. account, container, object) and

22

<key> and <value> are set by internal service in Swift WSGI Server. All headers
containing system metadata are deleted from a client request.
System metadata are visible only inside Swift, providing a means to store potentially
sensitive information regarding Swift resources.

• Object Transient-Sysmeta - System metadata takes the form of
X-Object-Transient-Sysmeta-<key>:<value>. Transient-sysmeta has a similar be-
havior as system metadata and can be accessed only within Swift, and headers con-
taining Transient-sysmeta are dropped. If middleware wants to store object metadata,
it should use transient-sysmeta[16].

23

3.3 MinIO
This section introduces MinIO object storage, describes its key features, most essential
components, and event notifications in MinIO.

3.3.1 Introduction

MinIO is software-defined object storage that provides high performance and scalability.
MinIO was designed to be the standard in private/hybrid cloud object storage. It runs on
industry-standard hardware and is 100% open source[10].

MinIO software-defined object storage suite consists of a MinIO server and optional
components.

MinIO Server - MinIO Server is distributed object storage server.

MinIO Client - Service provoding familiar UNIX commands like ls, cat, cp, diff in
MinIO storage.

MinIO Console - Browser-based GUI offering all commands from MinIO Client in a
design that feels more intuitive for DevOps and IT admins.

MinIO Kubernetes Operator - plugin allowing easy deployment and operation of
MinIO object storage on Kubernetes.

3.3.2 Key features

MinIO was designed to multiple benefits to object storage:

Ease of use MinIO can be installed simply by downloading a single binary file and
executing it. The configuration setup has been kept to a bare minimum. Upgrading to a
newer version is done with a single command, which is non-disruptive and does not provoke
any downtime[24].

Encryption and WORM MinIO provides per-object encryption using a unique object
key protected by a master key managed key-management system (KMS).

MinIO supports object locking by enforcing Write-Once-Read-Many(WORM) immutabil-
ity until the lock is expired or lifted. This mode prevents tempering with data once
written[28].

Metadata architecture MinIO does not provide separate storage for metadata. All
operations are performed on object-level granularity. This approach isolates any failures
and does not allow any spillover to larger system failures[24].

High availability MinIO design allows a server to lose up to half its drivers and a cluster
to lose up to half its servers, and MinIO will still be able to successfully process requests
and serve objects. This is achieved by erasure code that protects data with redundancy[24].

24

3.3.3 Architecture

MinIO is designed to be cloud-native object storage to be run in lightweight containers
managed by external orchestration service such as Kubernetes. The entire server is 40MB
static binary and is highly effective in its use of CPU and memory resources. This allows
co-hosting multiple numbers of tenants on shared hardware[10].

Usually, storages are built using multi-layer storage architecture, with a durable block
layer at the bottom, a virtual file system in the middle layer, and multiple API gateways
providing multiple protocols for emulating file, block, and object manipulation. The prob-
lem with this approach is that it has too many compromises[24].

MinIO decided on a completely different approach compared to other storage systems.
Since MinIO’s primary purpose is to serve only objects, it was built using single-layer ar-
chitecture that provides all necessary functionalities without compromises. The advantage
of this approach is object storage with high performance and lightweight[24].

In MinIO single-layer architecture, there is no such thing as Metadata server, but objects
data and metadata are stored together, which eliminates the need for a metadata database.
In addition, MinIO performs all functions (erasure code, bitrot check, encryption) as inline,
strictly consistent operations. This metadata design allows, in case of damage of an object,
the damage can be healed/corrected for the individual object[28].

Figure 3.4 visualize MinIO cluster architecture. Each MinIO cluster is a collection of
distributed MinIO servers attached to local drivers (JBOD/JBOF). Drivers are grouped
into erasure sets and objects are stored into these sets using a hashing algorithm[10].

25

Figure 3.4: Overview of MinIO cluster architecture (source: [10], modified).

26

3.3.4 Event notifications

MinIO supports event notification for an event occurring to objects. MinIO provides Ama-
zon S3 like events structure and API for defining which events will be published. Adminis-
trators can define bucket-level notification rules using MinIO client or provided MinIO SDK
API, around which S3 events and objects will MinIO publish event notifications. MinIO
Lambda Notifications are built into the MinIO object storage service and only require access
to the remote notification target [9].

Supported event notification targets are AMQP, Redis, MySQL, LMQTT, NATS, Apache
Kafka, Elasticsearch, PostgreSQL, Webhooks, and NSQ. Figure 3.5 provides an overview
of events triggering and event publishing in MinIO.

Beside events occred on objects such as s3:ObjectCreated:* and s3:ObjectRemoved:*,
MinIO offers event notification for access to storage s3:ObjectAccessed:* and event no-
tification when bucket is created s3:BucketCreated and deleted s3:BucketRemoved.

Figure 3.5: Overview of event notification in MinIO storage (source: [9]).

27

Chapter 4

Solution draft

This chapter describes the current state of event notifications in OpenIO SDS, OpenStack
Swift, and MinIO. It describes proposed solutions for OpenIO SDS and OpenStack Swift
in the form of middleware and for publishing events notification from MinIO to Beanstalkd
in the form of an proxy application.

4.1 Current state

4.1.1 OpenIO SDS

OpenIO Software-Defined storage has event-driven architecture, capable of publishing events
to Beanstalkd using event-agent service and Notify filter. The main disadvantage of the
current event publishing state is that configuration describing what type of events should be
published is applied to the whole storage. Since OpenIO SDS is a multi-tenant space, some
tenants might be interested in different events inside storage. The best use-case solution
would be to let tenants decide what kind of events should be published in storage assigned
to them.

Second disadvantage is lack of event filters. Tenants might be interested in events
involving specific objects or buckets that satisfy specific rules (e.g., object prefix, size).

The third disadvantage is that events are published only to a beanstalkd queue. OpenIO
SDS does not support any other destinations for event publishing. Since events can be used
for monitoring, there should be a proper interface, allowing users to define the destination
to which events will be published (e.g., Kafka, Prometheus, MySQL).

4.1.2 OpenStack Swift

Currently, there is support for event publishing in OpenStack Swift. For example, there is
no way to detect changes in a given container except by listing its content and comparing
timestamps.

To partially solve this problem, OpenStack Swift created a specification1 of middleware
that would send out notifications to users if a new object was created, metadata updated, or
data has been deleted. Two proposed solutions[20][22] lacked a standard interface for event
publishing (no support for either Amazon S3 or CloudEvents), which were not accepted
and are outdated.

1OpenStack Swift: Send notifications on PUT/POST/DELETE requests https://specs.openstack.org/
openstack/swift-specs/specs/in_progress/notifications.html

28

https://specs.openstack.org/openstack/swift-specs/specs/in_progress/notifications.html
https://specs.openstack.org/openstack/swift-specs/specs/in_progress/notifications.html

4.1.3 MinIO

MinIO supports event publishing in the form of Bucket notifications. It can inform a user
when an object is created, updated, or deleted. Besides events regarding objects, MinIO
provides events notifications for replication events and evens regarding creating and deleting
buckets. Furthermore, MinIO allows users to configure which events will be published using
the Amazon S3 event notification structure.

MinIO offers various notification targets (e.g., MySql, Redis, Elasticsearch) but does
not offer Beanstalkd as a notification target.

Minio is open-source object storage but does not provide custom middlewares.
However, since MinIO is implemented in the Go programming language, any custom changes
(tweaks) in MinIO source code means that the whole project needs to be compiled, which
can result in incompatibility in future versions of MinIO.

4.2 Middleware for OpenStack Swift and OpenIO SDS
The goal is to create common application/middleware capable of running within OpenStack
Swift and OpenIO SDS. The middleware will allow users to configure: which types of
events will be published and a destination where given events will be published. Proposed
middleware will be called ENOSS - Event Notifications in OpenStack Swift.

4.2.1 Location

For OpenIO SDS ideal place to run new middleware is inside the pipeline of event-agent.
The main reason is that the event-agent has access to every event that occurs in OpenIO
SDS and processes jobs in asynchronous mode, which means it will not impact the latency
of client requests.

Most of the middlewares within OpenStack Swift are placed in the Proxy server since
they can react to every client request. Therefore, the new proposed middleware will also
be placed inside the Proxy server pipeline.

4.2.2 Design

The proposed middleware heavily utilizes containers/buckets and accounts metadata. In-
formation about which event should be published and where will be stored in metadata of
upper level. For publishing events regarding objects, the configuration will be stored in a
container/bucket metadata (for container/bucket events, the configuration will be stored
in the account level).

Compared to Amazon S3 Notifications, ENOSS middleware will publish events regarding
containers/buckets. Furthermore, ENOSS middleware will publish events regarding access
to object storage (HTTP GET/HEAD), where Amazon S3 only offers notifications about
changes (PUST/POST) in a bucket.

ENOSS middleware can be configured so that specific even types will be forbidden for
publishing in whole object storage. This option could be beneficial when there are many
reads from object storage, and publishing those events could significantly impact object
storage performance. Therefore such event types can be disabled for whole object storage.

Activity diagram of ENOSS middleware in container level is shown in figure 4.1. Con-
tainer metadata contains event notification configuration for publishing objects in a given

29

container. Therefore the first step is to parse and validate such metadata. If the event noti-
fication configuration is not valid, then such configuration will be removed from metadata.

The next step is deciding if the event should be published. Since metadata about
event publishing is stored in the upper level, ENOSS needs to read account metadata from
storage. After reading and parsing account metadata, ENOSS middleware checks if the event
satisfies a rule in configuration retrieved from account metadata. If yes, the event will be
published to a specified destination in account metadata. A similar process is done for
events involving objects, except objects do not carry information about event publishing,
and configuration is stored in a proper container’s metadata.

The figure 4.2 shows simplified class diagram of ENOSS middleware. ENOSS defines
EventDestination inteface , which simply sends created event notification to specified
destination. This allow new types of event destination to be added easily in future. Class
ENOSSMiddleware is the core of middleware. Since OpenIO Proxy is compatible with
OpenStack Proxy server, there is no need to divide ENOSS middleware into subclasses.

30

Read metadata from

request

Validate

metadata

scheme

Get account

metadata

Validate rules

Validate noti�cation

destionation

delete event

noti�cation

metadata

Read event noti�cation

con�guration from the account

metadata

Publish event to

speci�ed

destination

POST/PUT container

[event does not satisfy rule in the con�guration]

[event satis�es rule in the con�guration]

valid con�gration

[not valid con�gration]

[does now have noti�cation metadata]

[has event noti�cation metadata]

Visual Paradigm Standard(xvasil03(Brno University of Technology))

Figure 4.1: Activity diagram of ENOSS middleware.
31

 p
ay

lo
ad

 :
di

ct

 c
re

at
e_

s3
_p

ay
lo

ad
()

 :
vo

id
 c

re
at

e_
cl

ou
de

ve
nt

s_
pa

yl
oa

d(
)

: v
oi

d
 g

et
_c

on
fig

ur
at

io
n_

fr
om

_e
ve

nt
_m

et
ad

at
a(

)
: B

oo
le

an
 r

em
ov

e_
co

nf
ig

ur
at

io
n_

fr
om

_e
ve

nt
_m

et
ad

at
a(

)
: v

oi
d

 s
to

re
_c

on
fig

ur
at

io
n(

)
: b

oo
le

an
 s

ho
ul

d_
no

tif
y(

)
: b

oo
le

an

E
N

O
S

S
M

id
d

le
w

ar
e

B
ea

n
st

al
kd

E
ve

n
tD

es
ti

n
at

io
n

Z
aq

ar
E

ve
n

tD
es

ti
n

at
io

n

 s
en

d_
ev

en
t_

no
tif

ic
at

io
n(

)
: b

oo
le

an

<
<

In
te

rf
ac

e>
>

E
ve

n
tD

es
ti

n
at

io
n

 o
pe

ra
to

r
: E

ve
nt

R
ul

eO
pe

ra
to

r
 r

ul
e_

va
lu

e

 s
at

is
fy

(E
ve

nt
)

: B
oo

le
an

E
ve

n
tR

u
le

 E
ve

nt
C

on
fig

ur
at

io
n(

)

E
ve

n
tC

o
n

fi
g

u
ra

ti
o

n

 ty
pe

 :
E

ve
nt

T
yp

e
 r

eq
ue

st
_d

at
a

: d
ic

t
 m

et
ad

at
a

: d
ic

t

E
ve

n
t

s3
:O

bj
ec

tC
re

at
ed

:<
m

et
ho

d>
s3

:O
bj

ec
tR

em
ov

ed
:<

m
et

ho
d>

s3
:O

bj
ec

tA
cc

es
se

d:
<

m
et

ho
d>

s3
:B

uc
ke

tC
re

at
ed

s3
:B

uc
ke

tR
em

ov
ed

s3
:B

uc
ke

tA
cc

es
se

d

<
<

en
um

er
at

io
n>

>
E

ve
n

tT
yp

e

pr
ef

ix
 :

fu
nc

tio
n

su
ffi

x
: f

un
ct

io
n

si
ze

: f
un

ct
io

n
ev

en
t_

ty
pe

: f
un

ct
io

n

<
<

en
um

er
at

io
n>

>
E

ve
n

tR
u

le
O

p
er

at
o

r

0.
.*

1

0.
.*

1
1

1.
.*

0.
.*

1

co
nf

ig
ur

at
io

n

lo
ad

s

de
st

in
at

io
n

ru
le

s

V
is

ua
l P

ar
ad

ig
m

 S
ta

nd
ar

d(
xv

as
il0

3(
B

rn
o

U
ni

ve
rs

ity
 o

f T
ec

hn
ol

og
y)

)

Figure 4.2: Class diagram of ENOSS middleware.32

4.2.3 Structure of published event

ENOSS can publish event notification in Amazon S3 like structure and in structure following
CloudEvents standard. Listing 4.1 and 4.2 describes event notification structure in JSON
format.

{
"specversion" : "1.0",
"type" : "event type",
"objectstorage" : "name of object storage (swift, openiosds)",
"source" : "URI-reference where an event occured",
"id" : "request id",
"time" : "the time, in ISO-8601 format when event occured",
"datacontenttype" : "application/json",
"data": {

"userid": "id of user that created event",
"useripaddress": "ip addres of user that created event",
"requestid": "request id",
"transactionid": "transaction id",
"configurationid": "id configuration that trigged notification",
"resource": {

"name": "name of the resource that triggered event (name of
an object, container or account)",

"hash": "hash value / internal id of resource",
"metadata": "user metadata"

}
}

}

Listing 4.1: CloudEvents structure of event notification published by ENOSS middleware.

33

{
"Records":[

{
"eventVersion":"2.2",
"eventSource":"aws:s3",
"eventTime":"The time, in ISO-8601 format, for example,

1970-01-01T00:00:00.000Z, when an object storage finished
processing the request",

"eventName":"event-type",
"userIdentity":{

"principalId":"id of user who caused the event"
},
"requestParameters":{

"sourceIPAddress":"ip address where request came from"
},
"responseElements":{

"x-amz-request-id":"request ID"
},
"s3":{

"s3SchemaVersion":"1.0",
"configurationId":"ID found in the bucket notification

configuration",
"bucket":{

"name":"bucket-name",
"ownerIdentity":{

"principalId":"if od bucket owner"
},
"arn":"bucket-ARN in format arn:aws:s3:::<bucket-name>"

},
"object":{

"key":"object key/name",
"size":"object-size in bytes",
"eTag":"object eTag/hash",
"versionId":"object version if bucket is versioning-

enabled, otherwise null",
"sequencer": "a string representation of a hexadecimal

value used to determine event sequence, only used with
PUTs and DELETEs"

}
}

}
]

}

Listing 4.2: Amazon S3 structure of event notification published by ENOSS middleware.

34

4.2.4 Event Notification configuration

User can store event notification configuration using metadata with key
EventNotificationConfiguration where value is configuration. EvenNotifcation middle-
ware offers Amazon S3 like structure for configuring event notifications.

Listing 4.3 describes event notification configuration. <Target> represent targeted desti-
nation where event notifications will be sent (e.g., Beanstalkd, Elasticsearch). <FilterKey>
is a unique name of a filter containing rules that must be satisfied in order to publish events.

Event type takes form s3:<Type><Action>:<Method> and are compatible with Ama-
zon S3 event types. Type represents resource type (object, bucket), action represent action
preformed by user and can have values: Created, Removed, Accessed. The method rep-
resents the REST API method performed by a user: Get, Put, Post, Delete, Copy,
Head. For example, if a new object was created, even type would be described as
s3:ObjectCreated:Put. To match event type regardless of API method assign value * to
<Method>.

{
"<Target>Configrations": [

{
"Id": "configration id",
"TargetParams": "set of key-value pairs, used specify dynamic

parameters of targeted destination (e.g., name of beanstalkd
tube or name of the index in Elasticsearch)",

"Events": "array of event types that will be published",
"PayloadStructure": "type of event notification structure: S3 or

CloudEvents (default value S3)",
"Filter": {

"<FilterKey>": {
"FilterRules": [

{
"Name": "filter operations (i.e. prefix, sufix, size)",
"Value": "filter value"

}
...

]
}

}
}
...

]
}

Listing 4.3: Strucute of event notification configuration

4.3 Proxy for MinIO
MinIO has support for event notifications. The main problem is that it does not support
Beanstalkd as an event notification destination. Since any change in MinIO source code
could lead to incompatibility with future versions and with no support for custom appli-

35

cations/middlewares inside MinIO, the safest solution to publish event notifications from
MinIO to Beanstalkd would be a proper proxy application.

The proposing proxy application would connect to some of the supported event notifi-
cations destinations (e.g., MQTT2), subscribe to events coming from MinIO, and forward
them to Beanstalkd.

P
ro

x
y

M
Q

T
T

B
e
a
n
s
ta

lk
d

M
in

IO
U

s
e
r

2
:

s
u
b
s
c
ri

b
e
 t

o
 M

in
IO

 m
e
s
s
a
g
e
s

3
:

s
e
n
d
 e

v
e
n
t

n
o
ti

fc
a
ti

o
n

4
:

s
e
n
d
 M

in
IO

 e
v
e
n
t

n
o
ti

fa
c
ti

o
n
 t

o
 s

u
b
s
c
ri

b
e
rs

5
:

fo
rw

a
rd

M
in

IO

e
v
e
n
t

n
o
ti

fc
a
ti

o
n

1
:

c
o
n

�

g
u
re

 e
v
e
n
t

n
o
ti

fc
a
ti

o
n
s
 t

o
 M

Q
T
T

V
is

u
a
l
P
a
ra

d
ig

m
 S

ta
n
d
a
rd

(x
v
a
s
il
0

3
(B

rn
o
 U

n
iv

e
rs

it
y

o
f

Te
c
h
n
o
lo

g
y
))

Figure 4.3: Sequence diagram of proxy application allowing publishing events from MinIO
to Beanstalkd.

2MQTT - extremely lightweight publish/subscribe messaging protocol https://mqtt.org/

36

https://mqtt.org/

Figure 4.3 shows a sequence diagram of the proposed proxy application for MQTT.
The user configures MinIO event notifications using MinIO client or MinIO SDKs. Proxy
application subscribes for MinIO messages in MQTT. Once event notification is sent from
MinIO to MQTT, MQTT will send the event notification to subscribers, in this case Proxy
application. Proxy application will receive a message containing an event notification from
MinIO and forward it to Beanstalkd.

37

Chapter 5

Implementation

This chapter discusses the implementation of a new OpenStack middleware - ENOSS. Frist,
it summarises the implementation of the central middleware and describes the new API for
user communication. The chapter then describes notification configuration processing and
it’s validation process in ENOSS. Furthermore, this chapter covers the implementation of
handlers for different types of payloads, filters, and destinations with a big emphasis on
ENOSS ”openness“ to new custom handlers. The last part of this chapter discusses the
possibility of running ENOSS inside OpenIO SDS.

The implementation of OpenStack middleware ENOSS is publicly avaliable at Github1

and at official software repository for Python - Pypi2.

5.1 ENOSS
ENOSS (Event notifications in OpenStack Swift) is implemented in the form of Python
WSGI middleware and is located in the Proxy server pipeline. ENOSS is implemented
using the flake8 coding style with the OpenStack hacking module.

5.1.1 Middleware

Central ENOSS component is middleware located in in source file enoss/enoss.py. Since
WSGI middleware ”wraps“ incoming user request and OpenStack Swift response, all infor-
mations about user request (user ip address, headers, request body, etc) and Swift response
(headers, body, HTTP code, etc) are avaliable to ENOSS.

ENOSS workflow can be divided into 6 logical stages:

1. Storing new notification configuration (fig. 5.1) - Before incoming user request
is passed on to the Proxy server pipeline, ENOSS needs to determine if user is trying
to store notification configuration to OpenStack Swift. In order to allow users to store
new notification configuration ENOSS offers API POST /<account>?notification
for enabling notifications on accounts level and POST /<account>/<container>?notification
for enabling notifications on containers level, where body of such requests contains no-
tification configuration. Storing notification configuration to object level is forbidden
and on such user request ENOSS will return HTTP Forbidden (401).

1ENOSS Github repo https://github.com/xvasil03/enoss
2ENOSS package published on Pypi https://pypi.org/project/enoss

38

https://github.com/xvasil03/enoss
https://pypi.org/project/enoss

If the incoming user request fits the specified API, ENOSS will read the request body
and check if it contains a valid notification configuration. If body contains invalid
configuration, ENOSS will return HTTP Bad Request (400), otherwise ENOSS will
modify user request by storing notification configuration appropriate system metadata
header - ”X-<type>-Sysmeta-notifications“ where <type> is either Account or
Container. After this, the user’s request will be passed down to the pipeline, and
ENOSS will receive Swift’s response to the user’s request.
Since system metadata can be accessed only by applications running within Swift,
users cannot change notification configuration on their own (by updating metadata
using POST request) and must use ENOSS API.
ENOSS API uses the HTTP POST method; Swift will store notification configuration
only if a user has write rights. This approach allows ENOSS to avoid ACL user
checking and enforces that only users with write rights will be able to configure event
notifications.

ENOSS stage 1

valid

400 Bad request
invalid

validate
config

pass request
to Swift

read config

from request body

move config
to sysmeta

ENOSS

PUT API

other

check

target API

User
request

Figure 5.1: ENOSS middleware stage 1 - Storing new notification configuration.

2. Reading notification configurations of upper levels (fig. 5.2) - Swift processed
a user’s request, and ENOSS received Swift’s response to the user request, which
means that event occurred in Swift. The main task of this stage is to collect all
notification configurations stored in the upper levels of the hierarchy. Admin notifica-
tion configuration is already available (read during initialization of middleware) and
remains to read configuration stored in accounts and containers level.
Proxy server uses per request cache - internally called infocache, to which stores
all metadata read from object storage during the processing of user’s request. For
reading informations(metadata) about containers and accounts Swift internally offers
functions get_account_info() and get_container_info(). Those functions first
check if wanted information is available in infocache, then check Memcache(if it is
available), and only then do functions create another request to Swift for wanted
information.
In this specific case, metadata of upper levels are available in infocache. In addition,
Admin’s configuration is also available. Therefore, ENOSS does not need to create
an additional request to the object storage and reads configurations from fully cached
data.

39

Swift response

= event occurred

get container
info

read conf from
container
sysmeta

get account
info

get admin conf

read conf from
account
sysmeta

ENOSS stage 2

Figure 5.2: ENOSS middleware stage 2 - Reading notification configurations of upper levels.

3. Evaluate satisfied configurations (fig. 5.3) - Each notification configuration of
the upper-level ENOSS needs to evaluate if the event should be published. In this
stage, ENOSS checks if even type and filter rules are satisfied. In addition, ENOSS
checks if a notification configuration allows publishing unsuccessful events (ENOSS
by default publishes only successful events). It is important to note that some of the
filters might need information that is not currently available(cached), resulting in an
additional request to object storage.
The results of this stage are configurations for whom an occurred event satisfies all
rules and filters.

for each

conf

check event
type

apply filters

check if can publish
unsuccesful events satisfied

configurations

add to

if satisfies

all

ENOSS stage 3

Figure 5.3: ENOSS middleware stage 3 - Evaluation of satisfied configurations.

4. Creating notification payload (fig. 5.4) - In this stage, ENOSS creates a payload
of notification for the occurred event based on a specified type of payload in the
notification configuration. By default payload type is AWS S3, but a user can specify
other types. Like the previous stage, some information might not be available in the
cache, and an additional object storage request might occur.

5. Sending notification (fig. 5.4) - Notification payload was created, and ENOSS will
select a proper destination to where a notification will be sent. The target destination
is specified in the notification configuration, which triggers a notification.

40

read payload
type from conf create payload read destination

from conf
send notification

to destination

ENOSS stages 4
 ENOSS stages 5

Figure 5.4: ENOSS middleware stages 4 and 5 - Creating notification payload and sending
notification to destination.

6. Reading stored configuration (fig. 5.5) - In the last stage, ENOSS checks if a user’s
request was targeted towards ENOSS, i.e., if a user wanted to read stored notification
configuration. For this purpose, ENOSS offers API: POST /<account>?notification
and POST /<account>/<container>?notification. Suppose Swift responded suc-
cessfully (HTTP 200). In that case, a user was successfully authorized to perform a
read operation. Therefore ENOSS is ”allowed“ to send user asked information with-
out worrying about a security breach. ENOSS will read account/container metadata
using swift functions get_account_info() or get_container_info() (similarly to
stage 1), and extract notification configuration from system metadata. Extracted
notification configuration will be stored in a response’s body of user request.

ENOSS stage 6

succesfulswift
response

return swift
response

read stored
config from

sysmeta

ENOSS

GET API

other

check

target API

put config to
response body

Figure 5.5: ENOSS middleware stages 6 - Reading stored configration.

Configuration - during the runtime process, the middleware needs to validate new
notification configurations, create different types of notification payloads, and send no-
tifications to various destinations. In order to do so, the middleware needs information
about available destinations and destination connection configurations. Furthermore, the
middleware needs information about available payload types and the validation process
of a new notification configuration. Lastly, since ENOSS allows Swift admins to publish
notifications, the middleware also needs access to the admin’s notification configuration.

Part of the needed information is stored in the Proxy server’s configuration. Listing 6.2
shows an example of middleware configuration, where:

41

• destinations_conf_path - is a path to a configuration file containing all information
needed for ENOSS to connect to various destinations (mandatory).

• use_destinations - is a list of destinations (separated by a comma) that can be
used during ENOSS runtime. Since ENOSS supports multiple destinations, not all of
them must be used during run time. Therefore, ENOSS will create connections only
to destinations specified in this list (mandatory).

• s3_schema - path to file containing JSON schema used during the validation process
of new notification configurations (mandatory).

• admin_s3_conf_path - path to file containing admins notification configuration for
publishing notifications (optional).

[filter:enoss]
destinations_conf_path = /etc/swift/enoss/destinations.conf
use_destinations=beanstalkd,elasticsearch
s3_schema = /etc/swift/enoss/configuration-schema.json
admin_s3_conf_path = /etc/swift/enoss/admin_s3_conf.json
paste.filter_factory = enoss.enoss:enoss_factory

Listing 5.1: Example ENOSS middleware configuration stored in the Proxy server configu-
ration (proxy-server.conf).

During the initialization process, the middleware loads destinations configuration
(destinations_conf_path), uses loaded configuration to initialize destinations handlers
(which create connections to destinations), loads admin’s notification configuration (admin_s3_conf_path),
and initialize handlers used for the creation of different types of notification payloads.

5.1.2 Notification configuration

Before storing a new notification configuration, ENOSS checks if the configuration is valid.
For this purpose, ENOSS uses class S3ConfigurationValidator located in enoss/configurationṗy.
Middleware provides S3ConfigurationValidator with information about available des-
tinations, payload, and new notification configuration that needs to be validated. The
validation process is divided into five steps:

1. Schema validation - new notification configuration is validated using JSON schema
validator.

2. Event type validation - since a user can specify for which even types notification
should be published, it is needed to validate if specified event types are supported
and named correctly.

3. Filter validation - a user can filter events by setting various rules that must be sat-
isfied in order to send a notification. This step checks if specified filter rule operators
are supported and if their input value is valid.

4. Destination validation - S3ConfigurationValidator checks if for specified des-
tinations in a new configuration exists an available destination handler in ENOSS
capable of publishing notifications to specified destinations.

42

5. Payload validation - Similar to the previous step, S3ConfigurationValidator
checks if there is an available payload handler capable of creating a notification’s
payload type specified in a new notification configuration.

If a new notification configuration is invalid, S3ConfigurationValidator will raise an
exception ConfigurationInvalid, which results in ENOSS returning HTTP Bad Request.

Once an event occurs in Swift, middleware reads notification configurations stored
in system metadata of upper levels(containers or accounts). In order to easily manipu-
late notification configurations, middleware represents notification configuration using class
S3NotifiationConfiguration, located in enos/configuration.py.

S3NotifiationConfiguration offers function get_satisfied_destinations(), which
for an occurred event in Swift computes destination configurations where all specified cri-
teria for publishing notification are satisfied. This function needs to:

• Checks if occurred event type matches specified event types.

• Performs event filtering using specified event rules.

• In case of unsuccessful events (Swift response HTTP code is not 2xx), check if a user
allowed publishing notification for unsuccessful events.

5.1.3 Filters

ENOSS allows users to filter events using filter rules. Only events satisfying specified rules
are published. ENOSS defines the interface of classes that perform various types of filtering.
All filter rules classes are located in enoss/filter_rules/. It is essential to notice that
in some cases filter rule might need information that is not available/not cached and it can
result in an additional request to Swift storage.

RuleI - is an interface specifying class representing user-specified rules that must be
satisfied in order to publish event notifications. The constructor receives a value, which
is read from the notification configuration. The call method has access to all information
about the request, which allows implementing rules about, e.g., user IP address, return code,
object prefix/suffix/length. Function validate() is used during the validation process of
new notification configurations. Its task is to validate if an input value can be used to
initialize a given filter rule. This function can be used for data type checking and if an
input value has a correct format.

1 @six.add_metaclass(abc.ABCMeta)
2 class IRule(object):
3 def __init__(self, value):
4 self.value = value
5

6 @abc.abstractmethod
7 def __call__(self, app, request):
8 raise NotImplementedError(’__call__ is not implemented’)
9

10 @staticmethod
11 def validate(value):
12 raise NotImplementedError(’validate is not implemented’)
13

Listing 5.2: Interface of class representing filter rule.

Currently, ENOSS offers the following filter rules:

43

• Suffix: input value is a string. Checks if user’s request target(account/container/object)
has specified suffix.

• Prefix: input value is a string. Similar to Suffix, except it checks targets prefix.

• Maxsize: input value is int representing size in bytes. If a request’s target is an ob-
ject, then checks if the object’s size is not bigger than the specified size. In the case of
an account or container, it checks if its used space (metadata X-<target>-Bytes-Used)
is not bigger than the specified size.

• Minsize: input value is int representing size in bytes. Similar to Maxsize, except
target’s size must not be lower then specified size.

• Contenttype: input value is a string representing content type. If a request target
is an object, then checks object type. In the case of PUT, GET or HEAD methods, the
object’s content type will be read from headers. Otherwise, an object’s type will be
read from object storage (if it is not in the infocache, it will result in an additional
request to Swift).

• Httpcodes: input value is a list of strings representing HTTP code or group of
HTTP codes (e.g. [”200“, ”404“, ”4xx“]). Checks if Swift response’s HTTP code
matches any of the input values. Users can use the wildcard character ”x“ to specify
a group of HTTP codes.

• Usersin: input value is a list of strings representing a list of users. If a user who
created an event in Swift is in the input list, the rule is satisfied.

• Usersout: input value is a list of strings representing a list of users. Similar to
Userin, except rule is satisfied in user that created event is not in the input list.

5.1.4 Notification payload

ENOSS is flexible regarding a payload of notifications. Notification payload might dif-
fer based on ENOSS applications and destination types to which notification should be
sent. ENOSS specifies the interface of classes that create notification payload, and classes
realizing defined interface are located in enoss/payload/.

PayloadI - is an interface specifying classes used for creating notification payload.
When event notifications are configured on a container or account, ENOSS sends test
notifications to all specified destinations in configuration. This way, it allows users to check
if they successfully configured event notifications. Method create_test_payload() is used
for this purpose. One of the parameters is request,which contains all information about
the incoming request(e.g., user IP address, incoming headers) and information about Swift
response(e.g., headers, status code). The invoking_configuration contains information
about stored notifications configuration. When an event occurs on a container/account
with enabled notifications, ENOSS checks if notification for such event should be published
based on event notification configuration. If yes, the method create_payload() will be
used to create a notification payload. Similar to filter rules, if a payload needs information
that is currently not available/not in the cache, an additional request to Swift storage might
occur.

1 @six.add_metaclass(abc.ABCMeta)
2 class IPayload(object):

44

3 def __init__(self, conf):
4 self.conf = conf
5

6 @abc.abstractmethod
7 def create_test_payload(self, app, request, invoking_configuration):
8 raise NotImplementedError(’create_test_payload is not implemented’)
9

10 @abc.abstractmethod
11 def create_payload(self, app, request, invoking_configuration):
12 raise NotImplementedError(’create_payload is not implemented’)
13

Listing 5.3: Interface of class used to create notification payload

Currently ENOSS support notification payload types:
• S3Payload - this class creates a notification payload compatible with Amazon AWS

S3 notifications described in the listing 4.2. Class is optimized to read all needed infor-
mation from available sources (infocache, headers, etc.). In some cases, for example,
updating objects metadata using the PUT method, some information (i.e., object
size) is not available in infocache or headers. Such cases will result in an additional
request to Swift storage in order to retrieve needed information.

5.1.5 Destinations

ENOSS supports sending notifications to various types of destinations. Similar to filter
rules and payloads, ENOSS defines interface class for this purpose. During ENOSS runtime,
all available destination classes are initialized at the start of ENOSS, and their life ends
with middlewares lifetime. All classes implementing destinations interface are located in
enoss/destinations/.

DestinationI - is an interface specifying classes used for sending event notifications
to the desired destination. The constructor receives configuration(dict), which can contain
information needed for creating a connection with the desired destination(address, port,
authentication,...). Configuration is loaded from ENOSS middleware configuration, which
is loaded by the Proxy server. Method
send_notification() receives notification payload(dict), and its task is to send a notifi-
cation to a desired destination.

1 @six.add_metaclass(abc.ABCMeta)
2 class IDestination(object):
3 @abc.abstractmethod
4 def __init__(self, conf):
5 raise NotImplementedError(’__init__ is not implemented’)
6

7 @abc.abstractmethod
8 def send_notification(self, notification):
9 raise NotImplementedError(’send_notification is not implemented’)

10

Listing 5.4: Interface of class used for sending notification message to desired destination

Available destinations - ENOSS currently supports the following destinations:
• BeanstalkdDestination - the destination is responsible for publishing notifica-

tions to Beanstalkd work queue. The destination is implemented using Python3
client library Greenstalk3. Beanstalkd server connection configuration is stored

3Greenstalk - Beanstalkd Python Client https://github.com/justinmayhew/greenstalk.

45

https://github.com/justinmayhew/greenstalk

in the destination configuration file(which is specified in ENOSS section in proxy-
server.conf) under section [beanstalkd]. From this section, information about server
address, port, and beanstalkd tube are read and used to initialize the connection us-
ing the Greenstalk library. Sending notification to Beanstalkd is relatively simple,
BeanstalkdDestination receives notification in the form of dict, transforms it to
string, and sends it to a queue using Greenstalk connection.

• KafkaDestination - the destination is responsible for publishing notifications to
Apache Kafka distributed event streaming platform. The destination is implemented
using Kafka Python client library 4. Library provides a high-level asynchronous mes-
sage producer - KafkaProducer. Similar to BeanstalkdDestination, KafkaDestination
reads server configuration from the destination configuration file and reads the name
of Kafka topic to which notifications will be published. Before sending a notification,
KafkaDestination transforms the notification from dict to bytes datatype and then
sends it using KafkaProducer instance.

• ElasticsearchDestination - the destination is responsible for publishing notifica-
tions to Elasticsearch search engine. The destination uses official Python Client li-
brary 5. ElasticsearchDestination supports HTTPS connection to Elasticsearch
server. During the initialization phase, ElasticsearchDestination reads server con-
nection configuration from the destination configuration file and makes a connection
to Elasticsearch. After making a connection, ElasticsearchDestination will ping
the Elasticsearch server to verify that the connection was successful. If not, an ex-
ception will be raised, and Proxy server will not be initialized. Information about
targeted index and index mapping is also read from configuration. After a success-
ful ping to the Elasticsearch server, ElasticsearchDestination will check if the
targeted index exist. If it does not exist, an index will be created with specified
index mapping(optional). In order to send a notification to Elasticsearch server,
ElasticsearchDestination transforms the notification to a string and then uses
Elasticsearch Index API with a specified index name.

5.1.6 Custom filters/payloads/destinations

Classes that implement individual rules, payloads, and destinations can be interpreted as
handlers that handle/perform specific jobs - create notification payloads, filter events, or
send notifications to desired destinations. Each handler type has its module. For exam-
ple, filter rule handlers are located in module enoss/filter_rules, payload handlers in
enoss/payloads, and destination handlers in enoss/destination.

ENOSS middleware imports handlers only from specified modules; therefore, all handler
classes must be imported in __init__.py of specified modules. For ENOSS middleware to
assign jobs to proper handlers, ENOSS defines the following rules:

• Handlers must implement/use predefined handler interfaces. For example, inn the case
of filter rules, that is RuleI, for payload creation PayloadI and for sending notification
to specific destination handler class must implement interface DestinationI.

4Kafka Python client https://github.com/dpkp/kafka-python
5Elasticsearch Python Client https://www.elastic.co/guide/en/elasticsearch/client/python-api/

current/index.html

46

https://github.com/dpkp/kafka-python
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html

• Handler’s name must be in format <Type><Handler suffix>, where handler suffix
represents a type of job that handler performs. In particular, for payload creation
handler suffix is Payload, for filter rules Rule and for sending notification to desired
destination handler suffix is Destination. <Type> must correspond with a type of
individual filter rule/payload/destination that a handler performs and is used by
ENOSS during the handler selection process.

• All handlers must be imported in __init__.py file of a specified handler module.

Handler selection - during the initialization phase, ENOSS middleware will load all
available handlers and separate them based on the type of the handler. ENOSS expects
that the names of handlers match values in notification configuration. Figure 5.6 illustrates
the handler section process and how names in notification configuration are connected to
specific handlers. For example, if a user-specified notification payload is ”s3“, ENOSS will
select handler S3Payload from module enoss/payloads. The same principle is applied to
filter rules and destinations. It is essential to notice that loaded handlers are used during
the validation process of new notification configurations. ENOSS will declare notification
configuration as invalid if the handler cannot be found.

{"BeanstalkdConfigrations": [

 {

 "Id": "test",

 "Events": ["*"],

 "PayloadStructure": "s3",

 "Filter": {

 "Key": {

 "FilterRules": [

 {

 "Name": "maxsize",

 "Value": ".json"

 }

] } } }]}

Extract destination
name

Extract payload
name

Extract filter rule
name

add handler suffix
= Rule

add handler suffix
= Payload

add handler suffix
= Destionation

handler class=
BeanstalkdDestination

handler class =

S3Payload

handler class =
MaxsizeRule

Figure 5.6: Process of handler selection for given notification configuration.

The creation of custom filters/payloads/destinations can be interpreted as a
creation of a new handler, and its process is simple and intuitive. A new handler must
follow the specified rules(interface, name, and location). Once a new handler is implemented
and imported into a proper module, a custom filter/payload/destination can be used in
notification configuration using the handler selection described above.

5.1.7 OpenIO SDS compatibility

OpenIO SDS allows running Swift middleware using the OIO-Swift gateway. Compared
to the Swift Proxy server, OpenIO SDS offers a service called oio-proxy. oio-proxy is, in
fact, a modified Swift Proxy server that allows communication with internal object storage
services needed to handle user requests. The main difference between Swift and OpenIO
Proxy server is that oio-proxy is implemented using Python 2.7 while Swift proxy runs
on Python 3.

47

ENOSS middleware, notification configuration, and validation, payload, and filter han-
dlers implementation are compatible with Python 2 and Python 3. For this purpose, im-
plementation was based on Python library six, which allows writing Py2/3 compatible
codes.

The Problem arises in the implementation of destinations handlers, which utilize
third-party libraries, where compatibility with Python 2 is not guaranteed. Since support
for Python 2 has officially ended, all new client libraries are mainly implemented only using
Python 3.

Kafka Python library is compatible with both Python 2 and Python 3. Therefore
Kafka destination can be used when ENOSS is running within OpenIO SDS.

Beanstalkd destination will use Python library greenstalk when ENOSS is running
in Swift. Since greenstalk offers only support for Python 3, Beanstalkd needed to use
another library for OpenIO SDS. For this purpose, library pybeanstalk was used (offers
only support for Python 2). Therefore, ENOSS needs to use two different libraries in order
to publish notifications to beanstalkd, from Swift and OpenIO SDS.

Elasticsearch destination is compatible with Elasticsearch release version 8.2. How-
ever, this Elasticsearch release offers only Python 3 client library and is incompatible with
lower versions of the Elasticsearch Python library. Therefore, when ENOSS runs in OpenIO,
ENOSS cannot send notifications to Elasticsearch.

5.2 MinIO proxy
Since publishing notifications directly from MinIO to Beanstalkd queue is not possible due
to possible incompatibility in newer versions of MinIO, a proxy program is needed.

The main idea of the proposed solution is that MinIO will publish notifications to
supported destination, in this case, MQTT queue, the roxy program will read notification
from MQTT and send it to Beanstalkd queue.

Proxy program was written in Python3. For communication with MQTT, program uses
Eclipse Paho library, and for communication with Beanstalkd program utilizes Greenstalk
library.

The program expects one argument - path to the configuration file in INI format. Con-
figuration file must contain two sections:

• beanstalkd - information needed to connect to beanstalkd queue (address, port, and
tube name).

• mqtt - information needed to connect to MQTT (broker, port, username, password,
topic)

The program will read the configuration from the input file and then create connections
to Beanstalkd and MQTT. MQTT API allows the definition of on_message() callback
function, which will be called whenever a new message is read from MQTT. This function
is defined to read incoming message payload from MQTT and forwards it to Beanstalkd
queue.

Lastly, using function loop_forever(), the program will be run in the infinite loop,
while reading messages from MQTT and forwarding to the Beanstalkd queue.

48

Chapter 6

Testing, benchmark and possible
applications

This chapter testing ENOSS middleware to determine whether ENOSS behavior matches
its specification. This process is done using two types of tests: unit and functional tests.
Furthermore, this chapter explains the process of benchmarking, analyzes ENOSS latency
for each stage, provides information about benchmark scenarios, and compares performance
between different types of destinations.

6.1 Testing
OpenStack Swift project provides three types of tests: unit, functional, and probe tests. The
first two types(unit and functional tests) are used to verify ENOSS’s correct behavior, while
probe tests are not used since they are designed to test much of Swift’s internal processes.
Tests in OpenStack Swift are standardized and automated using TOX automation project1.

6.1.1 Unit tests

Swift’s unit tests are designed to test small parts of the code in isolation [7]. Unit tests
check that a small selection of the code is behaving correctly. Unit tests are implemented in
Python using unittest framework. ENOSS unit test is located in test/unit/common/middleware/test_enoss.py.

Since the goal of unit tests is testing in isolation, all communication with external
services should be excluded. In order to achieve this, all destination handlers are replaced
with mock handler MockDestination(listing 6.1) using unittest.mock.patch decorator.

1 class MockDestination(object):
2 def __init__(self, conf):
3 self.reset()
4

5 def reset(self):
6 self.state = ’notification not sent’
7

8 def send_notification(self, notification):
9 self.state = ’notification sent’

10

Listing 6.1: Mock class used to replace destination handlers in unit tests.
1tox automation project https://tox.wiki/en/latest/

49

https://tox.wiki/en/latest/

ENOSS unit test contains:

1. Initialization test - checks if ENOSS can be initialized.

2. Handlers interface test - checks if all available handler classes implement specified
interfaces.

3. Configuration validation tests - checks if the validation process of notification
configuration is behaving correctly. It uses various invalid configurations(unsupported
event type, payload, destination, missing filter rule value, etc.) to verify the correct
validation process.

4. New valid notification configuration - simulates a user trying to store a new valid
notification configuration to Swift using ENOSS API. Test checks if new notification
configuration is stored into system metadata.

5. New invalid notification configuration - simulates a user trying to store a new
invalid notification configuration to Swift using ENOSS API. Test checks if return
response from ENOSS is HTTP Bad request.

6. Reading stored notification configuration - a user wants to read a notification
configuration from object storage. Test checks if Swift response body contains notifi-
cation configuration.

7. Invoke notification from containers level - notification configuration is stored in
the container level, and an event occurs in the object level. Test checks if notification
is sent to Beanstalk queue using mocked handler MockDestination.

8. Invoke notification from account level - notification configuration is stored in the
account level, and an event occurs in the containers level. Test checks if notification
is sent to Beanstalk queue using mocked MockDestination.

6.1.2 Functional tests

The functional Swift tests are designed to validate that the entire Swift system is working
correctly from an external perspective (they are ”black-box“ tests). In the ENOSS testing
context, functional tests are run against public Swift(and ENOSS) API endpoints. ENOSS
functional test is located in test/functional/test_enoss.py.

Similar to unit tests, functional tests are implemented using unittest module. ENOSS
functional test contains:

1. Storing new notification configuration - sends to Swift ENOSS API request with
new valid notification configuration and checks if notification configuration is stored
using additional request to Swift (using ENOSS GET API).

2. Deleting existing notification configuration - deletes stored notification configu-
ration and check if notification configuration is indeed deleted using the same principle
as the previous test.

3. Storing invalid notification configuration - sends to Swift ENOSS API request
with invalid notification configuration, checks if Swift(ENOSS) responds with HTTP
Bad request, and checks that notification configuration was not stored in Swift.

50

4. ALC test for reading stored notification configuration - simulates an unau-
thorized user trying to read stored a notification configuration without read rights.
Expects HTTP Unauthorized response from Swift. The exact process is repeated
for an authorized user, where the test expects that the user will receive notification
configuration in Swift’s response body.

5. ALC test for storing new notification configuration - simulates an unautho-
rized user trying to store a new notification configuration without write rights. Ex-
pects HTTP Unauthorized response from Swift. Then the same process does for an
authorized user, where the test expects that the notification configuration will be
successfully stored.

6.2 Performance analysis
As described in subsection 5.1.1, ENOSS can be divided into 6 logical stages. In order to
understand how to measure ENOSS performance, firstly, an analysis of each logical stage
is needed. The analysis mainly consists of determining whether ENOSS has all needed
information to perform tasks in a stage. If not, where can ENOSS obtain such information,
and how long would it approximately take for ENOSS to obtain or perform the given task.

Stages analysis:

1. Storing new notification configuration - information about new notification con-
figuration is available in a user’s request. ENOSS will either return HTTP Bad Re-
quest (if the configuration is invalid) or copy the configuration to the system metadata
of the request. Therefore ENOSS performs this stage extremely fast, and no perfor-
mance issue can occur during this stage.

2. Reading notification configurations of upper levels - while Swift processes
incoming request, information about account and container are read from storage and
then stored in infocache. ENOSS has access to infocache and will read configurations
from infocache. Therefore, no performance issues can occur in this stage as well.

3. Evaluate satisfied configurations - in this stage, ENOSS performs event filtering
based on stored notification configuration obtained in the previous stage. Some filter
rules might need information that is not currently cached and available. For example,
updating an object’s metadata is done using the POST API method. The object size
is not available in incoming request headers, Swift response headers, or infocache.
If notification configuration contains an object size filter, ENOSS will obtain needed
information using an additional request to object storage, which can cause additional
latency.

4. Creating notification payload - similarly to the previous stage, in order to create
a notification payload, ENOSS might need information that is not cached, and to
obtain such information, ENOSS will have to make an additional request to object
storage.

5. Sending notification - in this stage, ENOSS sends a notification to a specified
destination using third-party libraries. The speed at which this task is performed
depends on the type of connection with a destination (HTTP/HTTPS), the type of
destination, and whether sending notifications is synchronous or asynchronous.

51

6. Reading stored configuration - similarly to the first stage, information about
stored notification configuration is available in infocache. ENOSS will copy the con-
figuration from infocache to the response body. Therefore no performance issues can
occur in this stage.

Additionally, performance issues can occur during DELETE events. Since ENOSS creates
event notifications after an event occurs, ENOSS needs to obtain information before it is
deleted from object storage.

If ENOSS obtains information from object storage, such information will be saved into
infocache. This results in a maximum of one additional request to object storage per
user’s request.

Therefore, computing ENOSS latency can be defined as:

𝐸𝑁𝑂𝑆𝑆_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡𝑖𝑚𝑒(𝑜𝑏𝑡𝑎𝑖𝑛𝑖𝑛𝑔_𝑛𝑒𝑒𝑑𝑒𝑑_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) + 𝑡𝑖𝑚𝑒(𝑠𝑒𝑛𝑑𝑖𝑛𝑔_𝑛𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)

where obtaining needed information in the best scenario can be entirely from cached data,
or in the worst scenario can result in maximum one additional request to object storage.

6.3 Experiments
Benchmarking was carried out on the FIT VUT university Kubernetes cluster. Each sup-
ported destination(Beanstalkd, Kafka, Elasticsearch) was created as a Kubernetes pod
and service. OpenStack Swift was deployed using Nvidia Dockerfile for OpenStack Swift
AIO(All in One), where Proxy, Account, Container, and Object servers are located on the
same machine. OpenStack Swift pod was configured to have 16 VCPU (CPU Model: AMD
EPYC 7282), 16GB RAM, and 50GB disk storage.

Since the goal is to benchmark ENOSS middleware, which is located in the Proxy server,
the Proxy server was configured to have only one worker in order to saturate the Proxy
server CPU. Furthermore, in order to avoid bottlenecks on other servers, four workers were
assigned(12 in total) to each of the other servers(Account, Container, and Object servers).

The benchmarking process is done using the benchmark tool ssbench, designed by
SwiftStack(Nvidia) for OpenStack Swift object storage system. ssbench has two main
components - ssbench-master and ssbench-worker.The master component is in charge
of creating and distributing benchmark jobs while workers preforms received jobs. A Bench-
mark test is defined using a scenario(sometimes called a “CRUD scenario”), which is a
JSON-formatted file. The scenario contains the following information [17]:

• name - scenario’s name

• sizes - list of ”object size“ classes. Each object size class has a name, minimum and
maximum size of objects in bytes.

• initia_files - dictionary of initial file-counts per size class. Defines probability dis-
tribution of object sizes during the benchmark run itself.

• run_seconds - number of seconds the benchmark scenario should be run.

• container_count - number of containers in Swift used during the benchmark run.

• user_count - determines the maximum client concurrency during the benchmark
run.

52

• crud_profile - determines the distribution of each kind of CRUD operations.

{
"name": "Small test scenario",
"sizes": [{

"name": "tiny",
"size_min": 4096,
"size_max": 65536

}, {
"name": "small",
"size_min": 100000,
"size_max": 200000

}],
"initial_files": {

"tiny": 100,
"small": 10

},
"run_seconds": 300,
"crud_profile": [3, 4, 2, 2],

}
Listing 6.2: Example of ssbench scenario.

All experiments were done using one ssbench master and 5 ssbench workers. During
benchmarking, information about CPU and RAM usage used by the Proxy server worker
was tracked. Connections to Beanstalkd and Kafka queue are done without authorization
and using an unsecured connection, while the connection with Elasticsearch is made using
TLS/HTTPS connection using a CA certificate.

Experiment 1: in order to fully saturate proxy CPU and avoid disk bottleneck, for
this experiment ssbench scenario contains only tiny documents(size 4-6KB) and only read
operations. This way, data will be serviced entirely from the buffer cache, and the disk
bottleneck will be avoided. In this benchmark test, ENOSS is configured, with an admin
notification configuration, to create and send notifications for all events to one destina-
tion during the benchmark test. In this scenario, ENOSS has all needed information(in
infocache) and does not need to make additional requests to object storage.

The benchmark test is repeated for each supported destination, as well as when notifi-
cation configuration is not enabled, and when ENOSS is enabled in the Proxy server. Each
benchmark test during this experiment was run for 60 minutes.

Figure 6.1 contains information about the used CPU and RAM by the Proxy server
worker(where ENOSS is located). In all cases, CPU usage was saturated, and maximum
output from the Proxy server was achieved. Using information about RAM usage, a con-
clusion can be drawn that when ENOSS is enabled, the Proxy server worker will use about
20MB more RAM for this hardware configuration.

Table 6.1 contains benchmark results for this experiment. The first row(ENOSS dis-
abled) in the table shows results when ENOSS is not enabled in the Proxy server pipeline.
The second row(No notifications) contains benchmark results when ENOSS is enabled
but was not configured to publish any notification. Other rows show results when ENOSS
is enabled and configured to publish notifications to the specified destination.

When ENOSS is enabled but is not configured to publish notifications, ENOSS mid-
dleware still needs to read notification configurations of upper levels(stage 2 described in

53

subsection 5.1.1). Since there are no notification configurations in upper levels, ENOSS
will return the received Swift response. Therefore, the latency of this example can be in-
terpreted as the latency of the second stage. Comparing average latency when ENOSS is
not enabled and when ENOSS is enabled but does not publish notifications, the statement
that no performance issues can occur during reading notification configurations of upper
levels is confirmed.

Comparing the results of each supported destination, a conclusion can be drawn that
the beanstalkd queue outperforms the Kafka queue. At the same time, Elasticsearch has
the worst performance, partially due to the HTTPS connection. Using results when ENOSS
publishes notifications and when ENOSS is not enabled, the latency of publishing notifica-
tions can be computed.

In this experiment, when ENOSS had all needed information cached, ENOSS on average,
took between 0.04(beanstalkd) and 0.16(Elasticsearch) seconds to publish a notification.

0 10 20 30 40 50 60
50

60

70

80

90

100

time(min)

C
PU

us
ag

e(
%

)

0 10 20 30 40 50 60
0

20

40

60

80

time(min)

R
A

M
(M

B)

Beanstalkd Elasticsearch Kafka
No notifications ENOSS disabled

Figure 6.1: Left: CPU usage by Proxy server worker during experiment 1. Right: RAM
usage by Proxy server worker during experiment 1.

Destination Requests
count

Requests
per sec

Latency(seconds)
min max std dev 95%-idle avg

ENOSS disabled 1 328 729 369 0.003 0.926 0.016 0.026 0.018

No notifications 1 159 416 322 0.003 1.138 0.018 0.030 0.021

Beanstalkd 1 140 780 316 0.003 0.861 0.015 0.031 0.022

Apache Kafka 916 787 254 0.004 0.953 0.017 0.039 0.027

Elasticsearch(https) 722 446 200 0.009 8.990 0.021 0.048 0.034

Table 6.1: Benchmark results for experiment 1.

54

Experiment 2: similarly to experiment 1, the ssbench scenario contains only tiny
documents, and ENOSS is configured to create notifications for all events to one destination
per event. This experiment targets situations when ENOSS does not have all needed
information and needs to create one additional request to Swift.

Figure 6.2 contains information about CPU and RAM usage by the Proxy server worker.
Comparing CPU and RAM usage during this experiment with the previous experiment, a
conclusion can be drawn that CPU and RAM usage remained the same. Therefore, ENOSS
did not need more RAM to gather needed information from object storage.

From table 6.2, containing benchmark results for Experiment 2, a deduction can be
made that making an additional request to object storage impacts latency. The worst per-
formance occurred when ENOSS published notifications to Elasticsearch, while Beanstalkd
outperformed Kafka queue, the same as the previous experiment.

0 10 20 30 40 50 60
50

60

70

80

90

100

time(min)

C
PU

us
ag

e(
%

)

0 10 20 30 40 50 60
0

20

40

60

80

time(min)

R
A

M
(M

B)

Beanstalkd Elasticsearch Kafka
No notifications ENOSS disabled

Figure 6.2: Left: CPU usage by Proxy server worker during experiment 2. Right: RAM
usage by Proxy server worker during experiment 3.

Destination Requests
count

Requests
per sec

Latency(seconds)
min max std dev 95%-idle avg

ENOSS disabled 1 328 729 369 0.003 0.926 0.016 0.026 0.018

No notifications 1 159 416 322 0.003 1.138 0.018 0.030 0.021

Beanstalkd 732 845 203 0.006 0.638 0.016 0.046 0.034

Apache Kafka 570 528 158 0.007 0.909 0.018 0.056 0.043

Elasticsearch(https) 498 556 138 0.011 0.870 0.023 0.069 0.050

Table 6.2: Benchmark results for experiment 2.

55

Experiment 3: this experiment aims to simulate real-life usage of OpenStack Swift
object storage. Scenario contains tiny(1-10KB), small(100KB) and medium(1MB) objects,
CRUD operations distribution is 36% create, 27 % read, 18% update and 18% delete, where
52% of operations were with tiny objects, 35% with small and 13% with medium objects.
The duration of each benchmark test during this experiment is 30 minutes.

In figure 6.3 can be seen that no CPU saturation was achieved since the scenario in-
volves larger objects and non-read operations, which led to disks(and other components)
bottlenecks. Figure 6.3 shows that during benchmark tests, when ENOSS was enabled,
CPU usage increased. Computing(and then comparing) average CPU usage during differ-
ent benchmark tests in this experiment was discovered that CPU usage increases from 10
to 13% when ENOSS is enabled.

In table 6.3 can be seen that the latency trend is similar to other experiments. Again,
Beanstalkd shows the best performance and outperforms Kafka queue, while Elasticsearch
is last.

0 5 10 15 20 25 30
0

20

40

60

80

100

time(min)

C
PU

us
ag

e(
%

)

0 5 10 15 20 25 30
0

20

40

60

80

time(min)

R
A

M
(M

B)

Beanstalkd Elasticsearch Kafka
No notifications ENOSS disabled

Figure 6.3: Left: CPU usage by Proxy server worker during experiment 3. Right: RAM
usage by Proxy server worker during experiment 3.

Destination Requests
count

Requests
per sec

Latency(seconds)
min max std dev 95%-idle avg

ENOSS disabled 223 618 124 0.004 6.239 0.044 0.097 0.039

No notifications 204 998 113 0.004 3.682 0.042 0.105 0.043

Beanstalkd 204 894 113 0.004 3.866 0.046 0.102 0.042

Apache Kafka 193 471 107 0.004 5.104 0.047 0.104 0.045

Elasticsearch(https) 172 672 95 0.009 1.924 0.049 0.104 0.050

Table 6.3: Benchmark results for experiment 3.

56

Experiments results tracking average request count per second, and latency are com-
bined and displayed in figures 6.4 and 6.5. From provided results can be concluded that:

• Beanstalkd has the best performance, while Elasticsearch is the slowest.

• ENOSS has a relatively small impact on latency for users that do not have enabled
notifications.

• Making an additional request to Swift, in order to retrieve needed information, in-
creases latency (in these experiments by 12-16 ms).

• Creating notification for each event in Swift resulted in only a 10-15 % performance
decrease for Beanstalk and Kafka queue.

experiment1 experiment2 experiment3
0

100

200

300

400

316

203

113

200

138

95

254

158

107

322

114

369

124R
eq

ue
st

s
co

un
t

Beanstalkd Elasticsearch Kafka No notifications ENOSS disabled

Figure 6.4: Combined experiments results tracking average number of requests per second.
Bigger value is better.

6.4 Use cases and applications
ENOSS has multiple use cases. Some of possible use case scenarios where ENOSS can be
applied are:

• Event monitoring and alerting - ENOSS can be expanded to publish notifications
to more sophisticated event monitoring services with alerting (like Prometheus).

• Anomaly detection - since ENOSS is capable of publishing unsuccessful events,
using filter httpcodes admin can set ENOSS to publish notifications about events
involving internal errors (HTTP code 5xx) or any other unsuccessful HTTP codes.

• Data theft detection - user has a designated container for sensitive data. The
container owner can ”tell“ ENOSS which users should have access to the container,

57

experiment1 experiment2 experiment3

20

30

40

50

60

22

34

42

34

50 50

27

43
45

21

43

18

39

La
te

nc
y(

m
s)

Beanstalkd Elasticsearch Kafka No notifications ENOSS disabled

Figure 6.5: Combined experiments results tracking latency. Smaller value is better.

and if some unknown users, that are not in the list of users specified by the container’s
owner, somehow gain access to the container, then ENOSS will publish a notification
about such event.

• Data theft prevention - user configures ENOSS to publish unauthorized events,
which can result in the detection of the possible attempt of data theft.

• Postprocessing - user wants to search stored data using their metadata. The user
configures ENOSS to publish events that store, modify and delete data in object
storage. The destination of published events would be Elasticsearch or some other
custom destination capable of full-text search.

58

Chapter 7

Conclusion

This thesis aimed to provide a way for users to retrieve information about events occurring
in parts of object storage that they own/have access to. The primary destination for such
information was the Beanstalkd queue. This goal was achieved by creating OpenStack Swift
middleware called ENOSS(Event Notifications in OpenStack Swift).

ENOSS allows users to specify which event types should be published. Furthermore,
ENOSS offers users additional even filtering using filter rules such as prefix, suffix, size,
returned HTTP status code, and users list. All these filters, including event type, can be
combined, allowing users to specify events that need to be published more precisely.

ENOSS offers several destinations to which notifications can be published. From popular
stream-processing platform Apache Kafka to lightweight and extremely fast Beanstalkd
working queue. ENOSS also supports publishing notifications to Elasticsearch, with many
applications (from simple logging to more complex usage like indexing metadata).

Another ENOSS feature is the support of different payload types. Since ENOSS sup-
ports multiple destinations and has multiple applications, notification payloads may differ
based on ENOSS usage.

One of the key advantages and ENOSS features is support for custom destinations,
payloads, and filters. In addition, ENOSS offers effortless creation and integration of new
destinations, payloads, and filters using predefined interfaces and rules.

ENOSS configuration and notification payload are compatible with AWS S3 Event No-
tification. This key feature will allow future users to easily manipulate ENOSS since S3
Notifications are well documented and widely used. Additionally, OpenStack Swift and
OpenIO SDS will be more competitive in the market since notifications were not supported
in these object storages until now. S3 compatibility will also allow more accessible transition
users from AWS S3 to OpenStack Swift or OpenIO SDS.

Benchmarking showed that even during stress tests when all events were published,
sending notifications had a pretty minor impact on object storage performance. In the
worst-case scenario, ENOSS needs to make an additional request to object storage to decide
if an event should be published or to create a notification payload. From the experiment
results simulating everyday daily use of object storage, it was concluded that publishing
notifications had a pretty minor impact on latency - between 3ms (for Beanstalkd queue)
and 11ms for Elasticsearch.

The work of the thesis was presented at the student conference of innovation, technology,
and science Excel@FIT2022 under the name ”ENOSS - Event Notifications in OpenStack
Swift“. The work received an award by the expert commission for the beneficial extension
of the platform OpenStack.

59

Possible future work and ENOSS improvements include creating support for new desti-
nations(MQTT, Redis, NSQ), payloads, and filters. One of the current ENOSS limitations
is that some supported destinations can publish notifications to a single server address.
Support for secondary destination servers would be beneficial.

60

Bibliography

[1] Amazon S3 Event notification types and destinations [online]. [cit. 2021-12-27].
Available at: https://docs.aws.amazon.com/AmazonS3/latest/userguide/
notification-how-to-event-types-and-destinations.html.

[2] Amazon S3 Event Notifications [online]. [cit. 2021-12-27]. Available at:
https://docs.aws.amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html.

[3] Beanstalkd [online]. [cit. 2021-12-27]. Available at: https://beanstalkd.github.io/.

[4] Beanstalkd protocol [online]. [cit. 2021-12-27]. Available at: https:
//raw.githubusercontent.com/beanstalkd/beanstalkd/master/doc/protocol.txt.

[5] CloudEvents [online]. [cit. 2021-12-27]. Available at: https://cloudevents.io/.

[6] CloudEvents Specification [online]. [cit. 2021-12-27]. Available at:
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md.

[7] Contributing to OpenStack Swift [online]. [cit. 2022-05-11]. Available at:
https://docs.openstack.org/swift/latest/contributor/contributing.html.

[8] Eventlet [online]. [cit. 2021-12-27]. Available at: https://eventlet.net/.

[9] MinIO - Object Storage Monitoring [online]. [cit. 2021-12-27]. Available at:
https://min.io/product/object-storage-performance-monitoring.

[10] MinIO Object Storage [online]. [cit. 2021-12-27]. Available at:
https://min.io/product/overview.

[11] OpenIO - Key Characteristics [online]. [cit. 2021-12-27]. Available at:
https://docs.openio.io/latest/source/arch-design/overview.html.

[12] OpenIO SDS: Core Concepts [online]. [cit. 2021-12-27]. Available at:
https://docs.openio.io/latest/source/arch-design/sds_concepts.html.

[13] OpenIO Services [online]. [cit. 2021-12-27]. Available at:
https://docs.openio.io/latest/source/arch-design/sds_services.html.

[14] Swift Architectural Overview [online]. [cit. 2021-12-27]. Available at:
https://docs.openstack.org/swift/xena/overview_architecture.html.

[15] Swift: Large object support [online]. [cit. 2021-12-27]. Available at:
https://docs.openstack.org/swift/xena/admin/objectstorage-large-objects.html.

61

https://docs.aws.amazon.com/AmazonS3/latest/userguide/notification-how-to-event-types-and-destinations.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/notification-how-to-event-types-and-destinations.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html
https://beanstalkd.github.io/
https://raw.githubusercontent.com/beanstalkd/beanstalkd/master/doc/protocol.txt
https://raw.githubusercontent.com/beanstalkd/beanstalkd/master/doc/protocol.txt
https://cloudevents.io/
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md
https://docs.openstack.org/swift/latest/contributor/contributing.html
https://eventlet.net/
https://min.io/product/object-storage-performance-monitoring
https://min.io/product/overview
https://docs.openio.io/latest/source/arch-design/overview.html
https://docs.openio.io/latest/source/arch-design/sds_concepts.html
https://docs.openio.io/latest/source/arch-design/sds_services.html
https://docs.openstack.org/swift/xena/overview_architecture.html
https://docs.openstack.org/swift/xena/admin/objectstorage-large-objects.html

[16] Swift Middleware and Metadata [online]. [cit. 2021-12-27]. Available at:
https://docs.openstack.org/swift/xena/development_middleware.html.

[17] SwiftStack Swift Benchmarking Suite [online]. [cit. 2022-05-11]. Available at:
https://pypi.org/project/ssbench/.

[18] Teratec OpenIO [online]. [cit. 2021-12-27]. Available at:
https://teratec.eu/gb/qui/membres_Openio.html.

[19] How To Install and Use Beanstalkd Work Queue on a VPS [online]. 2013 [cit.
2021-12-27]. Available at: https://www.digitalocean.com/community/tutorials/how-
to-install-and-use-beanstalkd-work-queue-on-a-vps.

[20] OpenStack Swift proposed solution 1 [online]. 2015 [cit. 2021-12-27]. Available at:
https://review.opendev.org/c/openstack/swift/+/196755.

[21] OpenIO Core Solution Description. OpenIO, 2016. Available at:
https://www.openio.io/resources/.

[22] OpenStack Swift proposed solution 2 [online]. 2016 [cit. 2021-12-27]. Available at:
https://review.opendev.org/c/openstack/swift/+/388393.

[23] Software Defined Storage (SDS) [online]. 2016 [cit. 2021-12-27]. Available at:
http://www.sjaaklaan.com/?e=167.

[24] Build a High-Performance Object Storage-as-a-Service Platform with Minio. Intel
Corporatio, 2017. Available at:
https://min.io/resources/docs/CPG-MinIO-reference-architecture.pdf.

[25] OpenIO Next-Generation Object Storage and Serverless Computing Explained.
OpenIO, 2018. Available at: https://www.openio.io/wp-content/uploads/2018/03/
OpenIO-NextGenObjectStorageAndServerlessComputingExplained.pdf.

[26] What is software-defined storage? [online]. 2018 [cit. 2021-12-27]. Available at:
https://www.redhat.com/en/topics/data-storage/software-defined-storage.

[27] What is event-driven architecture? [online]. 2019 [cit. 2021-12-27]. Available at:
https://www.redhat.com/en/topics/integration/what-is-event-driven-architecture.

[28] High Performance Object Storage. MinIO Inc., 2021. Available at:
https://min.io/resources/docs/MinIO-high-performance-object-storage.pdf.

[29] Arnold, J. OpenStack Swift: Using and Administering and and Developing for Swift
Object Storage. O’Reilly Media, Inc., 2014. ISBN 978-1-4919-0082-6.

[30] Chen and Robin, Y.-F. The Growing Pains of Cloud Storage. IEEE Internet
Computing. 2015, vol. 19, no. 1, p. 4–7. DOI: 10.1109/MIC.2015.14.

[31] Coyne, L., Dain, J., Forestier, E., Guaitani, P., Haas, R. et al. IBM
Software-Defined Storage Guide. IBM, 2018. ISBN 0738457051. Available at:
https://www.redbooks.ibm.com/redpapers/pdfs/redp5121.pdf.

62

https://docs.openstack.org/swift/xena/development_middleware.html
https://pypi.org/project/ssbench/
https://teratec.eu/gb/qui/membres_Openio.html
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-beanstalkd-work-queue-on-a-vps
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-beanstalkd-work-queue-on-a-vps
https://review.opendev.org/c/openstack/swift/+/196755
https://www.openio.io/resources/
https://review.opendev.org/c/openstack/swift/+/388393
http://www.sjaaklaan.com/?e=167
https://min.io/resources/docs/CPG-MinIO-reference-architecture.pdf
https://www.openio.io/wp-content/uploads/2018/03/OpenIO-NextGenObjectStorageAndServerlessComputingExplained.pdf
https://www.openio.io/wp-content/uploads/2018/03/OpenIO-NextGenObjectStorageAndServerlessComputingExplained.pdf
https://www.redhat.com/en/topics/data-storage/software-defined-storage
https://www.redhat.com/en/topics/integration/what-is-event-driven-architecture
https://min.io/resources/docs/MinIO-high-performance-object-storage.pdf
https://www.redbooks.ibm.com/redpapers/pdfs/redp5121.pdf

[32] Gracia Tinedo, R., Sampé, J., París, G., Sánchez Artigas, M., García
López, P. et al. Software-defined object storage in multi-tenant environments.
Future Generation Computer Systems. 2019, vol. 99, p. 54–72. DOI:
https://doi.org/10.1016/j.future.2019.03.020. ISSN 0167-739X. Available at:
https://www.sciencedirect.com/science/article/pii/S0167739X18322167.

[33] Gulabani, S. Amazon S3 Essentials. Packt Publishing, 2015. ISBN 9781783554898.

[34] Kapadia, A., Rajana, K. and Varma, S. OpenStack Object Storage (Swift)
Essentials. Packt Publishing, 2015. ISBN 978-1-78528-359-8.

[35] Kapadia, A., Varma, S. and Rajana, K. Implementing Cloud Storage with
OpenStack Swift. Packt Publishing, 2014. ISBN 9781782168058.

[36] Macedo, Ricardo, Paulo, ao, J., Pereira et al. A Survey and Classification of
Software-Defined Storage Systems. New York, NY, USA: Association for Computing
Machinery. 2020, vol. 53, no. 3. DOI: 10.1145/3385896. ISSN 0360-0300. Available
at: https://doi.org/10.1145/3385896.

[37] Mesnier, M., Ganger, G.R., Riedel et al. Object-based storage. IEEE
Communications Magazine. 2003, vol. 41, no. 8, p. 84–90. DOI:
10.1109/MCOM.2003.1222722.

[38] O’Reilly, J. Network Storage: Tools and Technologies for Storing Your Company’s
Data. Elsevier, 2017. ISBN 9780128038635; 0128038632.

[39] Patil, A., Rangarao, D., Seipp, H., Lasota, M. and Santos..., R. M. dos. Cloud
Object Storage as a Service: IBM Cloud Object Storage from Theory to Practice.
IBM, 2017. ISBN 0738442453.

[40] Raj, P., Raman, A. and Subramanian, H. Architectural Patterns. Packt
Publishing, 2017. ISBN 9781787287495.

[41] Zheng, Qing, Chen, Haopeng, Wang et al. COSBench: A Benchmark Tool for
Cloud Object Storage Services. 2012. 998-999 p. ISBN 978-1-4673-2892-0.

63

https://www.sciencedirect.com/science/article/pii/S0167739X18322167
https://doi.org/10.1145/3385896

Appendix A

Contents of the included storage
media

/
thesis –– thesis documentation source codes
xvasil03.pdf –– Thesis document
src –– source codes

enoss –– ENOSS repository
benchmark –– benchmark results

expr1 –– benchmark resuls for experiment 1
expr2 –– benchmark resuls for experiment 2
expr3 –– benchmark resuls for experiment 3
k8s –– k8s sources used for benchmarking

demo –– OpenIO SDS and OpenStack Swift demo with enabled ENOSS
enoss –– ENOSS source codes

enoss.py –– ENOSS middleware
destinations –– destination handlers
payloads –– payload handlers
filter_rules –– filter rule handlers

etc/swift/enoss –– configuration
test –– ENOSS tests

functional
unit

examples –– Several examples of notifications configurations
mqtt-to-beanstalkd –– source codes for MinIO proxy from MQTT to Beanstalkd

64

Appendix B

Repository and Usage Guide

ENOSS repository is publicly avaliable at the Github https://github.com/xvasil03/
enoss.

ENOSS demo is stored in enoss/demo. Demo contains following containers:

• Beanstalkd listener - contains beanstalkd service, receives notifications from OpenIO
SDS and Swift and prints then to stdout (docker logs).

• ENOSS Swift - container with OpenStack Swift with enabled ENOSS. Can pub-
lish notifications to beanstalkd. After container init runs UNIT and FUNCTIONAL
ENOSS tests.

• ENOSS OpenIO - container with OPENIO SDS with enabled ENOSS. Can publish
notifications to beanstalkd.

• Demo worker - waits 2 minutes for other containers to initialize then runs demo
scripts enoss/demo/demo_openio.sh and enoss/demo/demo_swift.sh Demo scripts
will enable notifications on specific container, read stored configuration from object
storage, and then create event which will trigger notification. Connect to this con-
tainer and communicate with OpenStack Swift using hostname swift-service and
with OpenIO SDS using hostname openio-service.

Run demo using docker-compose up.
Mqtt-to-Beanstalkd Demo

1. cd mqtt-to-beanstalkd

2. docker-compose build

3. docker-compose run

ENOSS Build - output located in enoss/dist

1. cd enoss

2. pip3 install -U setuptools

3. pip3 install wheel

4. python3 setup.py sdist bdist_wheel

65

https://github.com/xvasil03/enoss
https://github.com/xvasil03/enoss

Instalation - OpenIO SDS(Python 2) - requires pip2.

1. cd enoss

2. pip install ./dist/*whl

3. pip install -r ./requirements-py2.txt

4. store configurations files from enoss/etc (needed for ENOSS configuration)

Instalation - OpenStack Swift (Python 3)

1. cd enoss

2. pip3 install enoss/

3. pip3 install -r ./requirements.txt

4. store configurations files from enoss/etc (needed for ENOSS configuration)

Adding ENOSS to Proxy server - enoss/etc contains example of ENOSS config-
uration for OpenStack Swift.

1. Add enoss to proxy server pipeline (behind s3api and bulk middleware)
in proxy-server.conf./

2. Configure ENOSS using section [filter:enoss] in proxy-server.conf.

3. Configure destinations configuration using file speicified in
destinations_conf_path.

4. Restart proxy server (swift-init proxy restart).

Adding ENOSS to Proxy server

1. Add enoss to proxy server pipeline (behind s3api and bulk middleware)
in proxy-server.conf.

2. Configure ENOSS using section [filter:enoss] in oio-proxy-server.conf.

3. Configure destinations configuration using file speicified in
destinations_conf_path.

4. Restart oio-proxy server.

Enabling notification configuration on a container

1. Store notification configuration using ENOSS POST API.

2. Check if test event was sent to specified destination
in stored configuration.

66

Appendix C

Excel@FIT Article

Article with title: ”ENOSS - Event Notifications in OpenStack Swift“ published and pre-
sented on April 30, 2022 at student conference Excel@FIT2022.

67

http://excel.fit.vutbr.cz

ENOSS - Event Notifications in OpenStack Swift
Nemanja Vasiljević*

Abstract

Currently, object storage OpenStack Swift does not provide any pieces of information to users
about events that occurred in storage they own/have access to. For example, users do not have
information when the content of their object storage is accessed, changed, created, or deleted. This
paper aims to create a solution that will send notifications about events that occurred in OpenStack
Swift to user-specified destinations. The proposed solution, using metadata, allows users to specify
where and which event should be published based on even types (read, create, modify, delete) and
other properties such as object prefix, suffix, size. It also offers multiple destinations(Beanstalkd
queue, Kafka, etc.) to which notifications can be published. The solution is fully compatible with
AWS S3 Event Notifications and, compared to AWS, supports more destinations, event types, filters
and allows unsuccessful events to be published. Event notification can be used for monitoring,
automatization, and serverless computing (similar to AWS Lambda).

Keywords: Event — Notifications — OpenStack Swift

Supplementary Material: Github repository

*xvasil03@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
Object storage is a data storage architecture that man-
ages data as objects, and each object typically includes
data itself and some additional information stored in
objects metadata. Since object storage is often used in
cloud computing, data are stored in remote locations
where users do not have direct and complete access.
Some users or external services might want to receive
information about specific events in storage where
their data are located. For example, there is no easy
way to detect changes in a specific container except to
list its content and compare timestamps, which can be
complex, slow, and inefficient if there are many objects
in storage.

The importance of this work is to provide event
information to users in OpenStack Swift, which will

allow users to react to those events, create more so-
phisticated backend operations, postprocessing and
automatization, or possibly prevent/detect unwanted
actions. In addition, providing event notifications will
allow users to have a better picture of what is going
on in their storage and improve monitoring in object
storage.

Users can be interested in only specific events, for
example, creating new objects in the container. There-
fore, the proposed solution must allow event filtering
based on event type and other properties (e.g., object
name prefix/suffix/size). Furthermore, since object
storage has multiple users, each user can have different
requirements for event notification, and the proposed
solution must be prepared for it.

Application of event notifications varies from sim-

ple monitoring or webhook to more sophisticated ap-
plications such as serverless computing like AWS
Lambda. Therefore the structure of event notification
may differ based on the application and destination to
which it is published. Therefore, the proposed solution
must be ready to publish event notifications to different
destinations and event notification structures.

AWS S3 object storage is one of the most popu-
lar storage with their API, supported by many other
object storages, including OpenStack Swift. Since
AWS S3 supports event notifications, it would be ideal
if the proposed solution in OpenStack is compatible
with the S3 event notification protocol. As a result,
not only that OpenStack Swift would offer the same
functionality as AWS S3 (that currently lacks), but the
protocol would be compatible with AWS S3, which
would allow more accessible transfer users from AWS
S3 to OpenStack Swift. Therefore, users would not
have to learn additional protocols, instead can follow
the existing AWS S3, which is most popular and well
documented.

This work consists of six chapters. Chapter 1 intro-
duces the motivation, defines problems and desired ob-
jectives. Chapter 2 describes object storage OpenStack
Swift, its data model, main processes, and describes
middlewares and metadata within OpenStack Swift.
Chapter 3 analyzes and compares existing solution for
given problem. Chapter 4 describes proposed solution
- ENOSS, its key features, configuration and interfaces.
Chapter 5 summarize proposed solution, highlights
results of this work and its contributions. Chapter 5
contains acknowledgments to people that helped me
to create this paper.

2. OpenStack Swift
OpenStack Swift is open-source object storage devel-
oped by Rackspace, a company that, together with
NASA, created the OpenStack project. After becom-
ing an open-source project, Swift became the leading
open-source object storage supported and developed
by many famous IT companies, such as Red Hat, HP,
Intel, IBM, and others.

OpenStack Swift is a multi-tenant, scalable, and
durable object storage capable of storing large amounts
of unstructured data at low cost[1].

2.1 Data model
OpenStack Swift allows users to store unstructured
data objects with a canonical name containing account,
container and object in given order[1]. The account
names must be unique in the cluster, the container
name must be unique in the account space, and the

object names must be unique in the container. Other
than that, if containers have the same name but belong
to a different account, they represent different storage
locations. The same principle applies to objects. If
objects have the same name but not the same container
and account name, then these objects are different.

Accounts are root storage locations for data. Each
account contains a list of containers within the account
and metadata stored as key-value pairs. Accounts are
stored in the account database. In OpenStack Swift, ac-
count is storage account (more like storage location)
and do not represent a user identity[1].

Containers are user-defined storage locations in
the account namespace where objects are stored. Con-
tainers are one level below accounts; therefore, they
are not unique in the cluster. Each container has a list
of objects within the container and metadata stored
as key-value pairs. Containers are stored in container
database[1].

Objects represent data stored in OpenStack Swift.
Each object belongs to one (and only one) container.
An object can have metadata stored as key-value pairs.
Swift stores multiple copies of an object across the
cluster to ensure durability and availability. Swift
does this by assigning an object to partition, which is
mapped to multiple drives, and each driver will contain
object copy[1].

2.2 Main processes
The path towards data in OpenStack Swift consists of
four main software services: Proxy server, Account
server, Continaer server and Object server. Typi-
cally Account, Container and Object server are located
on same machine creating Storage node.

Proxy server is the service responsible for com-
munication with external clients. For each request, it
will look up storage location(node) for an account, con-
tainer, or object and route the request accordingly[2].
The proxy server is responsible for handling many fail-
ures. For example, when a client sends a PUT request
to OpenStack Swift, the proxy server will determine
which nodes store the object. If some node fails, a
proxy server will choose a hand-off node to write data.
When a majority of nodes respond successfully, then
the server proxy will return a success response code[1].

Account server stores information about contain-
ers in a particular account to SQL database. It is
responsible for listing containers. It does not know
where specific containers are, just what containers are
in an account[2].

Container server is similar to the account server,
except it is responsible for listing objects and also does
not know where specific objects are[2].

Storage

Proxy server

node

node

Account

server

Container

server

Object

server

Account

DB

Container

DB

Object

storage

Figure 1. OpenStack Swift servers architecture.

Object Server is blob storage capable of storing,
retrieving, and deleting objects. Objects are stored
as binary files to a filesystem, where metadata are
stored in the file’s extended attributes (xattrs). This
requires a filesystem with support of such attributes.
Each object is stored using a hash value of object path
(account/container/object) and timestamp. This allows
storing multiple versions of an object. Since last write
wins (due to timestamp), it is ensured that the correct
object version is served[2].

2.3 Middleware
Using Python WSGI middleware, users can add func-
tionalities and behaviors to OpenStack Swift. Most
middlewares are added to the Proxy server but can
also be part of other servers (account server, container
server, or object server).

Middlewares are added by changing the config-
uration of servers. Listing 1 is shows how to add
webhook middleware to proxy server by changing its
pipeline (pipeline:main). Middlewares are executed in
the given order (first will be called webhook middle-
ware, then proxy-server middleware).

Some of the middlewares are required and will be
automatically inserted by swift code[3].

Listing 1. Example of proxy server configuration
(proxy-server.conf).
[DEFAULT]
log_level = DEBUG
user = <your-user-name>

[pipeline:main]
pipeline = webhook proxy-server

[filter:webhook]
use = egg:swift#webhook

[app:proxy-server]
use = egg:swift#proxy

Interface - OpenStack Swift servers are imple-
mented using Python WSGI applications. Therefore
only Python WSGI middlewares are accepted in Open-
Stack Swift.

Listing 2 provides example of simplified healthcheck
middleware. The constructor takes two arguments, the
first is a WSGI application, and the second is a con-
figuration of middleware defined using Python Paste
framework in proxy-server.conf. Middleware must
have a call method containing the request environment
information and response from previously called mid-
dleware. Middleware can perform some operations
and call the next middleware in the pipeline or inter-
cept a request. In the healthcheck example, if the path
directs to /healthcheck , the middleware will re-
turn HTTP Response, and other middlewares in the
pipeline will not be called.

Method filter factory is used by the Python
Paste framework to instantiate middleware.

1import os
2from swift.common.swob import Request,

Response
3

4class HealthCheckMiddleware(object):
5def __init__(self, app, conf):
6self.app = app
7

8def __call__(self, env, start_response):
9req = Request(env)
10if req.path == ’/healthcheck’:
11return Response(request=req, body=b"

OK", content_type="text/plain")(env,
start_response)

12return self.app(env, start_response)
13

14def filter_factory(global_conf, **
local_conf):

15conf = global_conf.copy()
16conf.update(local_conf)
17

18def healthcheck_filter(app):
19return HealthCheckMiddleware(app, conf)
20return healthcheck_filter

Listing 2. Example of healthcheck middleware in
OpenStack Swift

2.4 Metadata
OpenStack Swift separates metadata into 3 categories
based on their use:

User Metadata - User metadata takes form
X-<type>-Meta-<key>:<value>

where <type> represent resource type(i.e. account,
container, object), and <key> and <value> are set
by user. User metadata remain persistent until are
updated using new value or removed using header
X-<type>-Meta-<key> with no value or a header

X-Remove-<type>-Meta-<key>:<ignored-
-value>.

System Metadata - System metadata takes
form X-<type>-Sysmeta-<key>:<value>
where <type> represent resource type(i.e. account,
container, object) and <key> and <value> are set
by internal service in Swift WSGI Server. All headers
containing system metadata are deleted from a client
request. System metadata are visible only inside Swift,
providing a means to store potentially sensitive infor-
mation regarding Swift resources.

Object Transient-Sysmeta - This type of
metadata have form of X-Object-Transient-
-Sysmeta-<key>:<value>. Transient-sysmeta
is similar to system metadata and can be accessed
only within Swift, and headers containing Transient-
sysmeta are dropped. If middleware wants to store
object metadata, it should use transient-sysmeta[3].

3. Existing solutions
There is no official OpenStack solution that satisfies all
requirements mentioned in section 1, although some
of the existing programs can be used to solve some of
the problems partially.

Webhook middleware described in 2.3 can be
used for detection of new objects in specific container.
With some tweaks, it could detect object deletion and
modification too. One of the many limitations of this
middleware is the lack of support for different desti-
nations (it can publish notification only to one type of
destination), no filtering, a single type of event notifi-
cation structure, and incompatibility with AWS S3.

OpenStack Swift attempts - OpenStack Swift is
aware of the lack of event notifications, and in order
to solve it, they crated specification for this problem
[4]. This specification was mainly focused on detec-
tion changes inside the specific container (creation,
modifying, and deletion of objects). There were two
attempts to solve this problem.

• First attempt [5] - allowed sending notifications
only to Zaqar queue1 and had very simple event
notification strucuture. Notification contained
only informations about names of account, con-
tainer and object on which event occured and
name of HTTP method.

• Second attempt [6] - was more sophisticated
solution that was design to support multiple des-
tinations to which notification can be published.
The event notification structure was expanded

1Zaqar queue - OpenStack Messaging https://wiki.
openstack.org/wiki/Zaqar

for information such as eTag (MD5 checksum)
and transaction id. The author introduced the
concept of ”notification policy” which repre-
sented the configuration of event notifications.
One of the main critiques made by code review-
ers was incompatibility with AWS S3 storage.

Both attempts are outdated, and due to a lack of
interest from users/operators, OpenStack Swift halted
development for this problem.

ENOSS - my solution, code name ENOSS, satis-
fies all requirements specified in section 1. Key fea-
tures are events filtering, support of multiple destina-
tions, AWS S3 compatibility, different event notifica-
tion structure, the definition of interfaces for future
expansions of filters, destinations, and event notifi-
cation structure, and design that allows its effortless
expansions.

4. ENOSS
ENOSS (Event Notifications in OpenStack Swift) is a
program that enables publishing notifications contain-
ing information about occurred events in OpenStack
Swift. It is implemented in the form of Python WSGI
middleware and is located in the Proxy server pipeline.
Since the Proxy server communicates with external
users, by placing ENOSS in its pipeline, ENOSS can
react to every user request to OpenStack Swift, which
makes the Proxy server an ideal place for ENOSS.

4.1 Key featrues
The proposed middleware heavily utilizes container-
s/buckets and accounts metadata. Information spec-
ifying which event should be published and where
is stored in metadata of upper level. For publishing
events regarding objects, the configuration is stored
in container metadata, and for container events, the
configuration is stored at an account level.

Multi user environment - since many different
users communicate with OpenStack Swift, each of
them can be interested in different event notifications.
ENOSS solves this problem by allowing each container
and account to have its notification configuration.

Event filtering - one of the main requirements
for event notifications is allowing users to specify for
which events should notifications be published - i.e.,
event filtering. ENOSS allows users to specify which
types of events should be published (object/container
creation, deletion, access, ...). ENOSS goes a little
further and allows users to specify rules that must be
satisfied for event notification to be published. Some
rule operators are object/container name prefix/suf-
fix and object size. For example, using this feature,

users can select only events regarding objects bigger
than 50Mb (operator: object size) or events regarding
pictures (operator: object suffix).

Multiple destinations - since event notifications
have multiple applications, from monitoring to autom-
atization, it is essential that the proposed solution can
publish a notification to multiple different destinations.
ENOSS is fully capable of publishing event notifica-
tions to many different destinations (e.g., Beanstalkd
queue, Kafka). In ENOSS, publishing notifications
about a single event is not limited to only one destina-
tion. If a user wishes, it can be published to multiple
destinations per single event. This feature allows event
notification to be used for multiple applications simul-
taneously.

Event notification structure - depending on the
application of event notification structure of notifica-
tion may differ. Therefore, ENOSS supports several
different notification structures, and using event notifi-
cation configuration, ENOSS allows users can select a
type of event notification structure.

AWS S3 compatibility - ENOSS puts a big em-
phasis on support and compatibility with AWS S3.
The structure of event configuration and event names
in ENOSS is compatible with AWS S3. ENOSS also
supports all filtering rules from AWS S3, and the de-
fault event notification structure is compatible with
AWS S3. This is all done to ease transfer users from
AWS S3 to OpenStack Swift. Using the existing, well-
documented protocol, users will have an easier time
learning and using event notifications in OpenStack
Swift.

4.2 Configuration
Setting event notification configuration - in order to
enable event notifications on specific container, first
step is to store its configuration. For this purpose
ENOSS uses API:
POST /v1/<acc>/<cont>?notification

Figure 2 describes process of storing event configura-
tion. Authorized user sends event notification configu-
ration using request body, ENOSS perform validation,
if configuration is valid, ENOSS will store configura-
tion to container system metadata, otherwise it will
return unsuccessful HTTP code.

Reading stored event notification configuration -
Event notifications configuration can contain sensitive
information. Since ENOSS stores configuration to
storage using system metadata, which can be accessed
only by application within OpenStack Swift, it disables
reading stored configuration by simple GET/HEAD
requests. For this purpose ENOSS offer API
GET /v1/<acc>/<cont>?notification

Update container

S3 config

Metadata

Container

Obj

validate
config

store

if valid

Metadata

Rules

Destionations

S3 config

User

Event Notification

Middleware

Swift

Figure 2. Process of setting event notification
configuration in ENOSS.

For security reasons, ENOSS allow only users with
write rights to read stored configuration.

Configuration structure - Listing 3 describes
event notification configuration. <Target> represent
targeted destination where event notifications will be
sent (e.g., Beanstalkd, Elasticsearch). <FilterKey>
is a unique name of a filter containing rules that must
be satisfied in order to publish events.

Event type takes form :
s3:<Type><Action>:<Method>

and are compatible with Amazon S3 event types. Type
represents resource type (object, bucket), action rep-
resent action preformed by user and can have values:
Created, Removed, Accessed. The method
represents the REST API method performed by a user:
Get, Put, Post, Delete, Copy, Head. For
example, if a new object was created, even type would
be described as s3:ObjectCreated:Put. To match
event type regardless of API method assign value * to
<Method>.

{
"<Target>Configrations": [

{
"Id": "configration id",
"TargetParams": "set of key-value

pairs, used specify dynamic
parameters of targeted
destination (e.g., name of
beanstalkd tube or name of the
index in Elasticsearch)",

"Events": "array of event types that
will be published",

"PayloadStructure": "type of event
notification structure: S3 or
CloudEvents (default value S3)",

"Filter": {
"<FilterKey>": {

"FilterRules": [
{
"Name": "filter operations (i

.e. prefix, sufix, size)
",

"Value": "filter value"
}, ...

}

Listing 3. Strucute of event notification configuration

4.3 Interfaces
One of the use cases of ENOSS can be publishing
event notifications to custom destinations / currently
unsupported destinations. In order to ease future de-
velopment and support of new destinations, as well
as different message structures and filters, ENOSS de-
fined class interfaces and a set of rules needed to be
followed in order to integrate new destination/message
structure/filter to ENOSS.

DestinationI - is an interface specifying class that
will be used for sending event notifications to the de-
sired destination. The constructor receives configu-
ration(dict), which can contain information needed
for creating a connection with the desired destina-
tion(address, port, authentication,...). Configuration is
loaded from ENOSS middleware configuration, which
is loaded by the Proxy server. Method
send notification receives notification(dict) and
its task is to send notification to desired destination.

1class DestinationI(object, metaclass=abc.
ABCMeta):

2@abc.abstractmethod
3def __init__(self, conf):
4raise NotImplementedError(’__init__

is not implemented’)
5

6@abc.abstractmethod
7def send_notification(self,

notification):
8raise NotImplementedError(’

send_notification is not implemented’)

Listing 4. Interface of class used for sending
notification message to desired destination

PayloadI - is an interface specifying class that will
be used for creating notification payload. When event
notifications are configured on a container or account,
ENOSS sends test notifications to all specified des-
tinations in configuration. This way, it allows users
to check if they successfully configured event notifi-
cations. Method create test payload is used
for this purpose. One of the parameters is request,
which contains all information about the incoming re-
quest(e.g., user IP address, incoming headers) as well
as information about Swift response(e.g., headers, sta-
tus code). invoking configuration contains
informations about stored event notifications configu-
ration. When an event occurs on a container/account
with enabled event notifications, ENOSS checks if no-
tification for such event should be published based
on event notification configuration. If yes, method
create payload will be used to create notification
payload.

1class PayloadI(object, metaclass=abc.
ABCMeta):

2def __init__(self, conf):
3self.conf = conf
4

5@abc.abstractmethod
6def create_test_payload(self, app,

request, invoking_configuration):
7raise NotImplementedError(’

create_test_payload is not implemented’
)

8

9@abc.abstractmethod
10def create_payload(self, app, request,

invoking_configuration):
11raise NotImplementedError(’

create_payload is not implemented’)

Listing 5. Interface of class used to create notification
payload

RuleI - is an interface specifying class that rep-
resents user-specified rule which must be satisfied in
order to publish event notification. The constructor re-
ceives value, which is read from the event notification
configuration. The call method has access to all infor-
mation about the request, which allows implementing
rules about, e.g., user IP address, return code, object
prefix/suffix/length, etc.

1class RuleI(object, metaclass=abc.ABCMeta):
2def __init__(self, value):
3self.value = value
4

5@abc.abstractmethod
6def __call__(self, app, request):
7raise NotImplementedError(’__call__

is not implemented’)

Listing 6. Interface of class representing filter rule.

4.4 Integration of new class implementing in-
terface

- Often, implementation of new classes is way easier
than its integration with a given system.

In the ENOSS case, where everything moves around
event notifications configuration, which users specify,
this problem can be challenging. ENOSS was designed
with this problem in mind. In order to effortlessly inte-
grate new classes that implement interfaces specified
in 4.3, several steps/rules must be followed:

Class naming - To integrate classes with ENOSS
and allow users to use them in event notifications con-
figuration, the class name must have a proper suffix.
Name of classes implementing interface
DestinationI must have suffix Destination
(e.g. name of class sending notifications to Kafka
would be KafkaDestination). Same principle ap-
plies for other interfaces, for payload suffix is Payload
and for filter rule suffix is Rule

Names in event notifications configuration - since
class names in ENOSS must follow the above-specified
rules, they are automatically integrated into ENOSS.
Classes are connected with event notifications config-
uration using the class prefix name, i.e., without the
class suffix described above.

In listing 7, KafkaConfigurations means
that class KafkaDestinationwill be used for send-
ing notification, "PayloadStructure": "S3"
means that S3Payload will be used for creating
notification payload, and filter rule with "Name":
"suffix" will use class SuffixRule.

{
"KafkaConfigurations": [
{

"Id": "kafka - example",
"Events": "*",
"PayloadStructure": "S3",
"Filter": {

"FilterExample": {
"FilterRules": [
{

"Name": "suffix",
"Value": ".jpg"

}
]}}}]}

Listing 7. Example of event notifications
configuration

4.5 Notification payload structure
Default notification payload structure is compatible
with AWS S3. Listing 8 shows example of published
S3 notification. It contains information about:

• event - name(type), time and source
• user - id and ip address
• request id
• container/bucket - name and owner
• object - name(key), size, eTag(id), version and

sequencer

The sequencer key allows a way to determine the
sequence of events. Since event notifications aren’t
guaranteed to arrive in the same order that the events
occurred, sequencer can be used to determine the order
of events for a given object key. Therefore events
that create objects (PUTs) and delete objects contain a
sequencer[7].

{
"Records":[

{
"eventVersion":"2.2",
"eventSource":"swift:s3",

"eventTime":"2022-04-12T14
:04:48.189110",

"eventName":"s3:ObjectCreated:Put",

"userIdentity":{
"principalId":"test,test:tester,

AUTH_test"
},
"requestParameters":{

"sourceIPAddress":"::ffff
:127.0.0.1"

},
"responseElements":{

"x-amz-request-id":"
tx9a657c6753dd475699128
-0062558700"

},
"s3":{

"s3SchemaVersion":"1.0",
"configurationId":"admin_conf",
"bucket":{

"name":"current2",
"ownerIdentity":{

"principalId":"AUTH_test"
},
"arn":"arn:aws:s3:::current2"

},
"object":{

"key":"curr_my_object",
"size":"16",
"eTag":"

a87ff679a2f3e71d9181a67b7542122c
",

"versionId":"1649772288.14729",
"sequencer":"1649772288.14729"

}
}}]}

Listing 8. Example of published S3 notification

4.6 Use Cases and Scenarios
ENOSS has multiple use cases. Some of possible use
case scenarios where ENOSS can be applied are:

Anomaly detection - since ENOSS is capable of
publishing unsuccessful events, using filter httpcodes
admin can set ENOSS to publish notifications about
events involving internal errors (HTTP code 500) or
any other nonstandard HTTP codes.

Data theft detection - user has a designated con-
tainer for sensitive data. The container owner can
”tell” ENOSS which users should have access to the
container, and if some unknown users, that are not
in the list of users specified by the container’s owner,
somehow gain access to the container, then ENOSS
will publish a notification about such event.

Data theft prevention - user configures ENOSS
to publish unauthorized events, which can result in the
detection of the possible attempt of data theft.

Postprocessing - user wants to search stored data
using their metadata. The user configures ENOSS to
publish events that store, modify and delete data in
object storage. The destination of published events

would be Elasticsearch or some other custom destina-
tion capable of full-text search.

5. Conclusions
This paper presents a solution for publishing notifica-
tions about events that occurred in OpenStack Swift.

ENOSS is fully compatible with AWS S3 Event
Notifications, offers multiple destinations to which
notifications can be published, allows users to spec-
ify, using filters, which event notifications should be
published. Furthermore, users can choose different
types of notification payload (from standard AWS S3
payload structure to custom-defined structure) and of-
fers a way for effortless expansions of new types of
destinations, notification payloads, and filters.

ENOSS can be used for monitoring events in Open-
Stack Swift, automatization and postprocessing, and
serverless computing capable of reacting to events
that occurred in OpenStack Swift(similarly to AWS
Lambda).

In the future, new destinations(Elasticsearch, MySql,
Redis, etc.) will be added. A further plan is the sup-
port of various new filters (filtering using time when
an event occurred, stored metadata, etc.). Last but not
least, support of different notification standards, such
as CloudEvents.

Acknowledgements

I would like to thank my supervisor RNDr. Marek
Rychlý Ph.D. for his valuable advice and support dur-
ing the creation of this work.

References
[1] Joe Arnold. OpenStack Swift: Using, Adminis-

tering, and Developing for Swift Object Storage.
O’Reilly Media, Inc., 2014.

[2] Swift architectural overview. online.
https://docs.openstack.org/swift/
xena/overview_architecture.html.

[3] Swift middleware and metadata. online.
https://docs.openstack.org/swift/
xena/development_middleware.html.

[4] Send notifications on put/post/delete requests.
online. https://specs.openstack.org/
openstack/swift-specs/specs/in_
progress/notifications.html.

[5] Openstack swift - event notification first attempt.
online. https://review.opendev.org/
c/openstack/swift/+/196755.

[6] Openstack swift - event notification second at-
tempt. online. https://review.opendev.
org/c/openstack/swift/+/388393.

[7] Event message structure - amazon s3. on-
line. https://docs.aws.amazon.
com/AmazonS3/latest/userguide/
notification-content-structure.
html.

	Introduction
	Background
	Object storage
	Software-Defined storage
	Beanstalk queue
	Beanstalkd elements
	Job Lifecycle
	Key characteristics

	Event notifications
	CloudEvents
	Amazon S3 event notifications

	Object storages
	OpenIO SDS
	Key characteristics
	Data organization
	Serverless computing
	OIO-Swift

	OpenStack Swift
	Key characteristics
	Data model
	Middlewares

	MinIO
	Introduction
	Key features
	Architecture
	Event notifications

	Solution draft
	Current state
	OpenIO SDS
	OpenStack Swift
	MinIO

	Middleware for OpenStack Swift and OpenIO SDS
	Location
	Design
	Structure of published event
	Event Notification configuration

	Proxy for MinIO

	Implementation
	ENOSS
	Middleware
	Notification configuration
	Filters
	Notification payload
	Destinations
	Custom filters/payloads/destinations
	OpenIO SDS compatibility

	MinIO proxy

	Testing, benchmark and possible applications
	Testing
	Unit tests
	Functional tests

	Performance analysis
	Experiments
	Use cases and applications

	Conclusion
	Bibliography
	Contents of the included storage media
	Repository and Usage Guide
	Excel@FIT Article

