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Abstract

The goal of this thesis is to create a lightweight toolkit for artificial neural network hyper-
parameter optimisation. The optimisation toolkit has to be able to optimise multiple,
possibly correlated hyper-parameters. I solved this problem by creating an optimiser that
uses Gaussian processes to predict the influence of the hyper-parameters on the resulting
neural network accuracy. Based on the experiments on multiple benchmark functions, the
toolkit is able to provide better results than random search optimisation and thus reduce the
number of necessary optimisation steps. The random search optimisation provided better
results only in the first few optimisation steps before Gaussian process optimisation creates
sufficient model of the problem. However the experiments on MNIST dataset show that
random optimisation achieves almost always better results than used GP optimiser. These
differences between the experiments results are probably caused by insufficient complexity
of the benchmarks or by selected parameters of the implemented optimiser.

Abstrakt

Cilem této diplomové prace je vytvoreni nastroje pro optimalizaci hyper-parametri umélych
neuronovych siti. Tento nastroj musi byt schopen optimalizovat vice hyper-parametrii, které
mohou byt navic i korelovany. Tento problém jsem vyftesil implmentaci optimalizatoru,
ktery vyuziva Gaussovské procesy k predikci vlivu jednotlivych hyperparametrt na vysled-
nou presnost neuronové sité. Z provedenych experimentti na nékolika benchmark funkcich
jsem zjistil, Ze implementovany nastroj je schopen dosdhnout lepsich vysledkt nez optimal-
izatory zalozené na nahodném prohleddvani a snizit tak v prumeéru pocet potfebnych krokt
optimalizace. Optimalizace zaloZend na ndhodném prohledavani dosdhla lepsich vysledku
pouze v prvnich krocich optimalizace, nez si optimalizator zalozeny na Gaussovskych pro-
cesech vytvori dostatecné presny model problému. Nicméné témér vSechny experimenty
provedené na datasetu MNIST prokézaly lepsi vysledky optimalizatoru zalozeného na nahod-
ném prohledavani. Tyto rozdily v provedenych experimentech jsou pravdépodobné dény
slozitosti zvolenych benchmark funkci nebo zvolenymi parametry implementovaného opti-
malizatoru.
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Rozsireny abstrakt

Neuronova sit je vypocetni model inspirovany biologickym neuronem lidské nervové sous-
tavy. Tento model je pouzivan pro feseni problémul spojenych se strojovym ucenim, jako
jsou naptiklad zpracovani feci, detekce podvodl nebo medicinska diagnostika.

Neuronova sit se sklada z jednotlivych vrstev umélych neuront, kde kazdy neuron ma
vstupni vektor x = (x1,...,2,)7, vektor vah w = (w1, ..., w,)", bias O, aktivacni funkci
a vystup. Vystup neuronu y je dan jeho aktivacni funkci f: y = f(x"w + ©). Tyto umélé
neurony jsou ve vrstvach propojeny tak, ze vystup jedné vrstvy je propojen se vstupem
vrstvy nésledujici. Prvni vrstva neuronové sité je pak oznacovana jako vstupni vrstva,
posledni vrstva je oznacovana jako vystupni vrstva a vSechny ostatni vrstvy jsou oznacovany
jako skryté.

Aby tyto modely mohly spravné fungovat, je nutné je "naucit" na dostateéném mnozstvi
trénovacich dat. Toto uceni je fizeno pomoci ucictho algoritmu a funguje na principu ak-
tualizace parametri neuronovych siti — vektord vah a biasd. Ucici algoritmus trénuje neu-
ronovou sit postupné, na mnozinach trénovacich dat kterym se se rika ddvky. Tyto trénovaci
data jsou nejdiive privedena na vstup neuronové sité a dale propagovana neuronovou siti.
Vystup sité je nasledné porovnan s cilovym vektorem danych trénovacich dat pomoci chy-
bové (loss) funkce. Vystup tého funkce se oznacuje jako loss nebo chyba sité. Nakonec
jsou hodnoty parametrii neuronové sité aktualizovany pomoci zvoleného uciciho algoritmu.
Mira o kolik jsou parametry neuronové sité upraveny je Tizena koeficientem uceni. Cely
proces uceni je pak za ucelem zlepseni presnosti modelu mozno opakovat, pricemz jeden
cyklus ucéeni pres vSechna trénovaci data se nazyva epocha.

Vysledna presnost neuronové sité je ovlivnéna mnoha faktory, jako jsou struktura neu-
ronové sité, ucici algoritmus, pouzitd trénovaci data a inicializace parametri neuronové
sité. Faktortm které ovliviiuji strukturu nebo zptisob uceni neuronové sité se rika hyper-
parametry a jejich nastaveni vyrazné ovliviiuje vyslednou presnost neuronové sité. Bézné
hyper-parametry ovliviiujici strukturu neuronové sité jsou napriklad pocet skrytych vrstev,
pocet neuront ve skrytych vrstvach a aktivacni funkce, zatimco bézné hyper-parametry
ovlivnujici uéeni sité jsou koeficient uceni, velikost davek nebo pocet epoch.

K optimalizaci hyper-parametrt se bézné vyuziva manualni ladéni nebo optimalizatory
optimaliza¢ni metody nebo jiné optimaliza¢ni algoritmy spojené se strojovym ucenim.
Zéakladni struktura Bayesovskych optimalizatori je popsana pomoci formalismu Sequen-
tial Model-Based Optimisation (SMBO), ktery definuje hlavni smycku cyklu optimalizace.
V prvnim kroku se vytvori model rozdéleni pravdéodobnosti p(y|x, D), kde x je mnozina
testovacich dat a D = {(x1,¥1),...,(Xi,y;)} je mnozina trénovacich dat — mnozina nas-
taveni hyper-parametru x; pro které je jiz chyba sité y; znama. Vybér testovacich dat je
fizen pomoci Domain Search Strategy (DSS). V dalsim kroku vybere akvizicni funkce (AF)
pomoci vytvofeného pravdépodobnostniho modelu p(y|x, D) nasledujici nastaveni hyper-
parametri, které je nasledné pouzito pro trénovani neuronové sité. Nakonec se dvojice
(xi,y;) pridd do mnoziny trénovacich dat D, kde y; je chyba sité pri nastaveni hyper-
parametru x;.

Pro reprezentaci modelu rozdéleni pravdépodobnosti se bézné pouziva Gaussovsky pro-
ces, ndhodny les, nebo Tree-Parzen Estimation. V této préaci jsou pro tento ucel vyuzity
Gaussovské procesy. Zatimco klasické rozdéleni pravdépodovnosti ndhodné proménné po-
pisuje vlastnosti skalaru nebo vektoru, stochasticky proces popisuje funkce. Stochasticky
proces y(x) je definovdn sdruzenym rozdélenim pravdépodobnosti pro kazdou koneénou
mnozinu hodnot y(x1),...,y(xp). Gaussovsky proces je stochasticky proces, kde pod-



minéné rozdéleni pravdépodobnosti p(y(x1),...,y(xp)|x1,-..,Xp) je D-rozmérné normalni
rozdéleni. Toto vicerozmérné rozdéleni pravdépodobnosti je popsano jeho stiedni hodnotou
p a kovaria¢ni matici 3. Stifedni hodnota udava stred rozdéleni pravdépodobnosti, zatimco
hodnoty na diagonéle kovaria¢ni matice udavaji rozptyl pro kazdou dimenzi a zbytek hod-
not definuje korelaci mezi kazdymi dvéma ndhodnymi proménnymi. Hodnota korelace je
déna kernelem, ktery definuje tvar tohoto pravdépodobnostniho rozdéleni. Pro tcely hyper-
optimalizace je prostor optimalizovanych hyper-parametru v zavislosti na chybové funkci
modelovan podminénym rozdélenim pravdépodobnosti p(x|y), kde x = (x1,...,2,)7 je vek-
tor ndhodnych proménnych reprezentujicich testovaci data a y = (y1,...,ym)’ je vektor
nahodnych proménnych reprezentujicich trénovaci data..

Implementovany toolkit je navzen jako knihovna v programovacim jazyce Python, ktera
vyuziva popsany SMBO formalismus s pravdépodobnostnim modelem zalozenym na Gausso-
vskych procesech za Ucelem optimalizace hyper-parametrii neuronovych siti. Toolkit je
rozdélen do dvou hlavnich balickii optimiser a nnbridge. Balicek optimiser obsahuje
implementaci Gaussovského procesu, optimalizatori, DSS, AF a kerneli. Toolkit ob-
sahuje tii optimalizatory: Grid optimiser, Random optimiser a GP optimiser, zalozené
na prohledavani na mfizce, ndhodném prohledavani a Gaussovskych procesech. Implemen-
tace DSS obsahuje dvé strategie, grid a random, které vybiraji testovaci data z domény
na zakladé prohledavani na miizce nebo pomoci ndhodného prohledavani. Toolkit dale ob-
sahuje implementaci t¥i akvizi¢nich funkei, z nichz dvé jsou zaloZeny na vybéru na zdkladé
jici nastaveni hyper-parametri dle o¢ekavaného zlepSeni (Exzpected Improvement). Déle
optimiser obsahuje implementaci péti kernelu (konstantni, linedrni, RBF, Laplaceovsky
a Matérn) a dvou metod pro jejich skladdni. Bali¢ek nnbridge se stard o korektni propo-
jeni optimalizatoru s neuronovou siti. Parametry tohoto propojeni, optimalizované hyper-
parametry a rozsah domén, na kterych jsou hyperparametry optimalizovany, je nutné defi-
novat pomoci konfigura¢niho souboru. Toolkit déale poskytuje skript wrapper.py, ktery
slouzi jako rozhrani pro spusténi optimalizace z prikazové fadky. Implementovany optimal-
izator dale umoznuje automatickou optimalizaci parametru kernelu a neurcitosti v modelu
GP, kterd je zaloZena na maximalizaci log likelihood funkce GP modelu.

Implementovany toolkit byl otestovan na dvou ruznych benchmark funkcich az v péti
dimenzich a také na neuronové siti vyuzivajici dataset MNIST. Prvni set experimentt
na benchmark funkcich byl zaméien na porovnani GP optimalizatoru s optimalizatory za-
lozenymi na nahodném prohledévani a prohledavani na mriZzce, zatimco dalsi experimenty
byly zaméfeny na porovnani implementovanych kernelii, DSS, AF a automatické optimal-
izace parametri GP optimalizatoru. Experimenty na benchmark funkcich prokéazaly, ze
optimalizator zaloZzeny na Gaussovskych processech je schopen dosdhnout lepsich vysledku
nez optimalizdtor zaloZzeny na nahodném prohledavani. Experimenty déale ukazaly, ze
random DSS je lepsi strategie pro vybeér testovacich dat nez grid DSS a navic dosahuje
lepsich vysledkl pfi mensim mnozstvi testovacich dat, coz urychluje vypocetni rychlost
modelu. Dale bylo ukézano, ze na zvolenych benchmark funkcich dosahuje nejlepsich
vysledki AF Expected Improvement, jejiz pouziti vede k vyraznému zlepSeni jiz v prvnich
krocich optimalizace. Nejlepsich vysledkt mezi testovanymi kernely dosahl optimalizator
s Laplaceovskym kernelem. Posledni ¢ast experimentt vénovand automatické optimalizaci
ukazala, ze optimalizace neurcitosti zdroven s parametry kernelu muze vést k vyraznému
zhorseni presnosti modelu. Na druhou stranu automatické optimalizace vyhradné parametri
kernelu vedla k dosazeni lepsich vysledki ve vétsiné experimentti. Pfi experimentech na neu-
ronové siti bylo dosazeno nejlepsich vysledki pii prohleddavani na mrizce a nadhodném



prohledavani, v zavislosti na mnoziné optimalizovanych hyper-parametri. GP optimal-
izace dosahla o néco horsich vysledkti, pravdépodobné v dusledku zvolenych parametra GP
optimalizdtoru.
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Chapter 1

Introduction

Neural networks are computational models used to tackle machine learning tasks such as
clustering, classification, regression, density modelling or data denoising. Specifically, this
includes problems such as image and voice recognition, fraud detection, machine diagnostics,
medical diagnoses and process modelling and control. For these models to work, they need
to be trained on a sufficient amount of training data. The resulting efficiency and accuracy
depend on many factors, such as the type and structure of the used neural network, learning
algorithm, used training data and network parameter initialisation. The parameters that
define the structure or learning aspects of the neural network are called hyper-parameters
and their effect is often correlated.

The impact of hyper-parameters settings on resulting accuracy of the neural network
is quite substantial and since the training of the network can take a noticeable amount
of time, it is beneficial to find acceptable hyper-parameters in as few training rounds as
possible. This thesis concerns with hyper-parameter optimisation of neural networks, de-
sign and implementation of the Gaussian process based hyper-optimisation toolkit and its
comparison with several methods that are commonly used in hyper-parameter optimisation
to demonstrate its efficiency.

There are many approaches that aim to solve the hyper-parameter optimisation prob-
lem. Manual tuning of hyper-parameters is still widely used, but to be effective, it requires
a lot of user’s knowledge about the optimised neural network and might be quite time con-
suming. Automated optimising solutions, on the other hand, do not require as much user’s
time and knowledge at the expense of computing time. Those solutions might use more
straightforward approaches as grid search and random search, or more complex solutions
such as Bayesian or Evolutionary optimisation.

This thesis is divided into several chapters as follows: the second chapter contains a
description of neural networks focusing on structural and learning aspects influenced by its
hyper-parameters settings. The third chapter lists common hyper-parameter optimisation
methods, including a detailed description of Gaussian processes based optimisation. Chap-
ter 4 provides an elaborated description of the design and implementation of the toolkit for
hyper-optimisation along with possible alterations that can be done by the end user to cus-
tomise the optimizer to fit specific neural network. The overview of performed experiments
with implemented toolkit and evaluation of its efficiency can be found in Chapter 5.



Chapter 2

Neural Networks and their
Hyper-parameters

Artificial neural networks (NN) are computational models loosely inspired by biological
neural networks. They consist of subsequent layers, where each layer is composed of indi-
vidual artificial neurons. The actual architecture of each network and its learning process
can vary since neural networks is a broad term involving a lot of different neural network
types and learning algorithms that can be applied to various problems. But the basic idea
behind all neural networks is the same: based on some training data or feedback from the
environment, the learning algorithm updates the neural network’s parameters in order to
solve the given problem.

Parameters in NN are coefficients of the model itself and can be estimated or learned
from data. Concretely, parameters are usually input weights and biases of the individual
neurons. Hyper-parameters, on the other hand, influence the structure or learning process
of the NN and need to be explicitly set before training of the network.

2.1 Structure of Neural Networks

The basic element of the NN is an artificial neuron, also called a unit or a node. It consists of
a number of inputs ...z, usually represented by a vector x = (1, ..., ,)7, input weights
w = (wy,...,w,)T, bias O, activation function f(-), and output y. The output of the
artificial neuron is determined as follows: all input values are multiplied by corresponding
weights, and together with bias form the input of the activation function. The activation
function takes this input and computes the output value y = f(x’w + ©), as shown in
Figure 2.1. For common activation functions, the power of a single neuron is limited to
solving linearly separable problems.

More complex problems can be solved by creating layers of neurons, where each layer’s
output (except from last layer) is the input of the next subsequent layer. The NN consists of
the input layer, number of hidden layers, and the output layer as shown in Figure 2.2. The
neurons in the input layer correspond to network’s input, while the output layer represents
network’s output. The NN has n hidden layers of neurons, where each layer can have
different number of neurons. Connections between two layers can be between every two
nodes (fully connected layer) or just between some subset of nodes (convolutional layer).
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Figure 2.1: Basic structure of artificial neuron.

input layer x n hidden layers output layer y
- o

layer hq layer ho layer hp

Figure 2.2: Basic structure of artificial neural network with ¢ inputs, n hidden convolutional
layers hy, ..., hy,, (each consisting of j neurons) and output layer with k& outputs.

The activation function, the number of hidden layers and the number of neurons in
hidden layers are network’s most common structural hyper-parameters. Features of these
hyper-parameters and their influence on the NN are described in detail in Section 2.3.1.

2.2 Learning in Neural Networks

Learning in neural networks is a process of updating the parameters in order to achieve
better accuracy. To evaluate this accuracy, network uses an error function and labelled
training data. Labelled means each input vector x has a corresponding target vector t,
which denotes desired network’s output. Then, a learning algorithm uses the error function
E(+) to calculate the error and updates the parameters w of the NN. The exact principle
of updating the parameters differs in each algorithm, but in order to introduce common
hyper-parameters further described in Section 2.3.2, below is described the principle of
training the NN using Gradient Descent algorithm [32].



Gradient Descent in an iterative algorithm that finds a local minimum by updating the
weights by a small steps in the opposite direction of the error function’s gradient VE:

w(™D = w() — v E(w™), (2.1)

where 7 is the current step and 7 is the learning rate. The learning rate is a hyper-parameter
that controls how much are the weights changed in each step of the algorithm and its effect
is further discussed in Section 2.3.2.

The gradient VFE is a vector that points in a direction of fastest increase of the function.
By updating the weights in the opposite direction of VE, Gradient Descent algorithm
approximates to a local minimum as shown in Figure 2.3. To find better optimum, more
initial settings of the weight w can be used, but there is no guarantee that global optimum
will be found. Another way of getting out of the local optimum is using momentum hyper-
parameter, which is described in the next section. Although, recent studies show that
the local minima found by Gradient Descent algorithm in larger, multi-dimensional loss
space of the NN are not such a problem, since their quality is comparable to the global
minimum [10].

error

W1 Wy W3 Wy W3 "
weight

Figure 2.3: An example of weight optimisation using Gradient Descent algorithm. Figure
shows the influence of a weight parameter w on the error function E(-), where the points
w1, wy and ws are different initial settings of weight w, resulting in different progress of
Gradient Descent algorithm. The red arrows represent a change of the error when the
current weight w” is updated to the value w™™!'. The weight update is in the opposite
direction to a gradient of the error function F(-) in concrete settings of w”.

The gradient approximately equals to a derivative of the error function F(-) with respect
to the weights w multiplied with how much are the weights changed [9]:

OF

Although the gradient can be calculated directly with respect to each weight individ-
ually, NNs usually have huge amount of parameters and therefore it’s not very usable in



practice. Therefore, Backpropagation algorithm is commonly used. Backpropagation uses
a local message passing scheme in which the information is sent alternately forwards and
backwards through the network to efficiently evaluate gradient one layer at the time using
the chain rule [23].

The error function F(-) denotes a measure that evaluates the difference between net-
work’s output and target vector and its selection depends solely on the features of the solved
problem. Resulting output is called training or validation loss, depending on whether the
input of the error function was training or validation data. One of the most common forms
of the error function that is used in regression is sum of squares error function:

1 N
E(w) = §ley(xn,W) —tn)?, (2.3)
n=1

where x,, (for n = 1,...,N) is a training set comprising of N input vectors, y(x,,w) is
network’s output vector for given input x,, w is weights vector and t,, is a target vector
corresponding to n-th sample in training set.

The update of the parameters is done on a small sets of the training data, called batches.
Depending on the size of those batches, Gradient Descent algorithms can be further divided
into Stochastic Gradient Descent (SGD), Batch Gradient Descent and Mini-batch Gradient
Descent, where SGD uses one training sample at a time, batch methods use whole training
set at a time and Mini-batch methods use between one and all samples. One complete cycle
through all the training data is called an epoch and can be repeated in order to increase
the accuracy of the NN.

The number of epochs or the number of samples in one batch are an important hyper-
parameters of the network, because suitable settings of these hyper-parameters can improve
generalisation and prevent underfitting or overfitting of the NN. Underfitting problem is
when the network is not able to make correct predictions on unseen data because it’s
too simple or isn’t trained well enough. Overfitting occurs when the NN is too complex
and over-adapted to the training data. That leads to loosing the ability of generalisation
and therefore poor accuracy on the testing data. However in contrast to other hyper-
parameters, a suitable number of epochs can be easily found using training and validation
loss as described in Section 2.3.2.

Apart from the mentioned Gradient Descent algorithms, there are many alternatives'.
The most used methods are also gradient-based, but others such as Simulated Annealing [33]
or Evolutionary Programming [15] are derivative-free. These algorithms have their specific
hyper-parameters, but their description is out of the scope of this thesis.

2.3 Hyper-parameters of Neural Networks

As mentioned before, the hyper-parameters influence the structure or the learning process
of the NN and need to be explicitly set before training the network. They have a significant
influence on the accuracy of the NN, so it is beneficial to know how they influence the NN in
order to optimise them. Even though not all NNs share the same structure or use the same
learning algorithms, they frequently use the same common hyper-parameters that have a
similar influence on the resulting behaviour of the NN.

Common hyper-parameters that define NN structure are number of hidden layers, num-
ber of neurons in the hidden layer, and activation function. These hyper-parameters are

https://en.wikipedia.org/wiki/Outline_of _machine_learning#Machine_learning_algorithms
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further described in Section 2.3.1. Learning of the NNs is influenced by hyper-parameters
such as learning rate, dropout, momentum, number of epochs, batch size and weight decay,
further described in Section 2.3.2. Though features described below have specific charac-
teristics, their effect may differ in individual networks.

2.3.1 Structure related Hyper-parameters

The number of hidden layers is shown in Figure 2.2 and it determines the complexity
of a problem that is the NN able to solve. Networks with [16]:

e no hidden layers — can solve only linearly separable problems

e one hidden layer — can solve almost any problem that contains a continuous map-
ping from one finite space to another

e two hidden layers — can be used to model data with discontinuities such as saw
tooth wave pattern

e more than two layers — have no theoretical reason to be used but in practice can
achieve better results

So while the higher number of layers can improve the accuracy of the NN, using too many
hidden layers may lead to problems such as overfitting or vanishing gradient.

The number of neurons in hidden layer is a main measure in ability of NN to
learn a particular function. Too few hidden neurons can lead to inability to learn the
function (underfitting), too many hidden neurons can lead to overfitting and increase of
time needed to train the NN [16]. While it is possible to have different number of units in
each hidden layer, many networks use the same number for every hidden layer. There are
many rule-of-thumb methods, such as [16]:

e The number of hidden neurons should be between the size of the input layer and the
size of the output layer.

e The number of hidden neurons should be 2/3 the size of the input layer, plus the size
of the output layer.

e The number of hidden neurons should be less than twice the size of the input layer.

These suggestions can help with the selection of the number of hidden neurons, but they
are more of a starting point than a rule.

Activation function determines the output of each layer in the network and has a
major influence on network’s accuracy, convergence and computational efficiency.

The activation function can be linear or non-linear. The linear activation functions can
be represented by a straight line and have unconfined output. Because of the fact that
linear combination of multiple functions is still a linear function, all subsequent layers with
linear activation functions collapse into one. That is why the modern NNs use non-linear
activations functions that enable the creation of deep NNs. It is common to use different
activation functions for hidden layers and output layer, depending on what behaviour is
desired. The hidden layers widely use ReLU activation functions for their features, which
are described below. The activation function in the output layer depends on the desired
output (i.e. whether it is for regression, classification, clustering, ...).



Different activation functions are used for their features which may be better in solving
different problems. Sigmoid activation function has smooth gradient and provides clear
predictions. For example as can be seen in Figure 2.4a, for x values outside of an interval
[—2, 2], y values are pretty close to 1 or 0. The output is confined on the interval between
0 and 1. Disadvantages of sigmoid function are that it’s not zero centred, can lead to
vanishing gradient problem (for very low/high x values) and is computationally expensive.
In practice, sigmoid activation function is commonly used in output layer in classification
problems.

As can be seen in Figure 2.4b, hyperbolic tangent function has quite similar qualities
as the sigmoid function. But it’s zero centred, which means the output is in range [—1, 1],
strongly negative values are mapped to values close to —1, values close to 0 are mapped
to values close to 0 and strongly positive values are mapped to values close to 1. That
makes it easier to model inputs that have strongly negative, neutral and strongly positive
values [24]. Hyperbolic tangent function is commonly used in classification problems.
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Figure 2.4: Common non-linear activation functions

Rectified Lineary Unit (ReLU) is a function where all negative values are mapped to zero
and all positive values are mapped to identical values. ReLU is computationally efficient
and the output is half-opened interval [0, 00). The problem of ReL.U functions are zero and
negative values, which are immediately mapped to zero (see Figure 2.4c¢). That decreases
the ability of the model to fit or train from the data properly [27], which is known as the
dying ReLLU problem.

To prevent the dying ReLLU problem there are multiple similar functions such as Leaky
ReLU, Parametric ReLU [30] or ELU (Exponential Linear Unit) [11], which help increase
the output range by having a small non-zero slope for negative values. Examples of such
activation functions are in Figure 2.4d.



2.3.2 Learning related Hyper-parameters

Learning rate (LR) is used in gradient descent algorithm when parameters are updated
according to an optimisation function [1]. Typically, values of the learning rate are a small
positive numbers between 0 and 1. When optimising the learning rate, its values are usually
sampled from log-space and suitable values are highly dependent on batch normalisation [5]
that enables training with larger learning rate. Too low learning rate converges to the
minimum smoothly, but slows down the learning process (Figure 2.5a). Too high learning
rate speeds up the learning process, but may not converge (Figure 2.5b).

A A

error
error

»
!

v

Wo weight o weight
(a) Example of too low learning rate leading (b) Too high learning rate may cause oscil-
to slow convergence. lation around local minimum or even lead to
divergence.

Figure 2.5: Problems of too low or too high learning rate. The red arrow represents single
step in Gradient Descent algorithm, where each case used the same initial weight wy.

Dropout is a regularization method that is used to prevent overfitting in NNs by
randomly ignoring p neurons during the training phase. It means that for each training
sample and each hidden layer, random fraction of hidden neurons are not considered. Then
in testing phase, activation functions of the entire NN are considered, but each activation
function is reduced by a factor p to account for the neurons ignored in training phase [36].

Weight decay is another regularization method that is used to prevent overfitting. It
penalizes large weights by modifying the error function:

B(w) = B(w) + 5 [wl?. (2.4)
where ||w|> = w'w = w2 + w? + ... + w?,, and the coefficient A governs the relative im-
portance of the regularization term compared with the error term in error function E(-) [4].
Usual settings of coefficient A range between logarithmic values of 0 and 0.1. When weight
decay is too high, the model may never fit quite well. When weight decay is too low, it
might not prevent overfitting [37].

Momentum controls how much the previous weight update influences the current
weight update. This can speed up the learning process by making more significant update
of weights when minimum is in the opposite direction of gradient. This might be especially
helpful when optimisation reaches plateau, an area where the error function decreases very
slowly and thus gradient is small. Also, momentum can help overcome local minimum as



shown in Figure 2.6. Momentum is a number between 0 and 1 and it is common to use
values close to 1 (0.9, 0.99, etc.) [18]. Too small values have negligible effect and too big
values are more likely to miss the optimum and lead to longer learning time.
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Figure 2.6: Example of how momentum can help Gradient Descent to get out of local
minimum. Optimisation begins in point 1 with weight wg. In this point momentum is 0
(since it is the first step) and the next weight update depends solely on the gradient and
the learning rate. In the next steps, weight update is given by gradient and momentum
addition. If momentum was lower that gradient in step 3, weight would shift back to the
local minimum. But if momentum is significant enough, it can help get to other minima
(though getting out of local minimum or getting to global minimum is not guaranteed).

Number of epochs is a number of complete cycles of learning algorithm through the
whole dataset, which means it determines number of times the weights are updated. Too
few epochs may cause underfitting, too many may lead to overfitting. Suitable number of
epochs is usually found using training and validation loss, as shown in Figure 2.7. The
goal is to find the highest possible number of epochs, before validation loss starts to grow
because of overfitting.

Batch size defines number of samples used at once while training the NN. The range of
batch size is from 1 up to a size of the training set. Smaller batch size causes more frequent
model updates and allows more robust convergence that can lead to better accuracy, but can
also lead to less accurate estimate of gradient (especially in more complex datasets) [18].
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Figure 2.7: An illustrative example showing the influence of the number of epochs on the
training and validation error (Adapted from Wikimedia Commons). Too many epochs can
lead to overfitting, but it’s possible to set suitable number of epochs based on the training
and testing error. Suitable number of epochs is the highest possible number before the
testing error starts to grow.
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Chapter 3

Hyper-parameter Optimisation

Accuracy of a neural network is considerably influenced by configuration of its hyper-
parameters. In order to improve the accuracy of a neural network, it is important to
find acceptable values for these hyper-parameters. But since the time of training of a neu-
ral network might be quite substantial, hyper-parameters may be interdependent, and can
acquire values from an infinite set, hyper-optimisation requires more complex solution than
trying to find suitable values manually.

This chapter describes the essentials of neural network hyper-parameter optimisation.
First section covers the problem of finding the optimal hyper-parameters of a neural network
and describes different approaches of finding such hyper-parameter values. Next section
covers basic principles of Gaussian processes. Section 3.3 describes how to solve regression
problems using the Gaussian process model. Section 3.4 includes various approaches that
can be used to estimate more accurate solution of the regression problem for given input.

3.1 Methods of Hyper-parameters Tuning

There are multiple common approaches in finding suitable hyper-parameter values. From
the most straightforward as manual hyper-parameter tuning, Grid Search and Random
Search optimisation [3] to more complex as Evolutionary optimisation or Sequential-Model
Bayesian optimisation [13]. But since each neural network represents a specific problem,
different approaches might fit some neural networks better than others and therefore it is
beneficial for the user to learn about the features of each approach as well as specifics of
optimised neural network to select suitable optimisation technique.

Also, it is important to take into account the amount of time the network needs to be
trained. In case training the network doesn’t take substantially more time then time needed
to select hyper-parameter values for next optimisation step, it might be more efficient to
use faster optimisation approach such as Random Search and make more optimisation steps
instead.

The hyper-parameter optimisation problem can be defined as follows [21]:

Given a machine learning algorithm A having hyper-parameters x = 1, ..., T, with
respective domains Ay, ..., A,, we define its hyper-parameter space as A = Ay x -+ X A,,.
For each hyper-parameter setting x € A, we use Ax to denote the learning algorithm A
using this setting. We further use L(Az, Dirain, Dvatid) to denote the validation loss (e.g.,
misclassification rate) that Ax achieves on data Dyqpq when trained on Dyyg4n. The hyper-
parameter optimisation problem is then to minimise the blackbox function:
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f(l’) - ‘C(Axa Dirain, Dvalid) (3.1)

The goal of the hyper-optimiser is to solve this problem in as few optimisation rounds
as possible, where one optimisation round refers to invocation of the function £ with hyper-
parameter settings x.

3.1.1 Grid Search Optimisation

Common solution in optimising the hyper-parameters is Grid Search. Based on number of
hyper-parameters n and number of optimisation steps m that will be made, Grid Search
optimisation algorithm selects a set X of m hyper-parameter settings xi,...,Xmym. Each
hyper-parameter setting x represents a point in n-dimensional space corresponding to a
setting of each hyper-parameter. These points should be evenly spaced within predefined
bounds so that visualization of selected points forms a grid, but the actual selection of the
values may differ among various implementations of Grid Search algorithm. The result of
the optimisation is the hyper-parameter setting x* = argminf(x),z € X.

For example, let’s have hyper-parameter hy with domain [0, 5] and 5 optimisation steps.
Suppose the influence of hyper-parameter hy is given by function y = (z — 2)? 4 1, where
y is network’s loss. Then optimizer evenly splits the interval and selects 5 hyper-parameter
settings x1, ..., x5 as shown in Figure 3.1a and trains the network for each selected setting
of hy. The setting x* = x3 = (2.5) resulting in best NN accuracy is then the result of
optimisation. Analogously for optimisation of two or more hyper-parameters. Assume
additional hyper-parameter hy with domain [0,3] and 25 optimisation steps. Then the
optimiser uniformly selects training points as shown in Figure 3.1b and trains the network
for each selected setting of the two hyper-parameters. Again, the setting with the best
accuracy is the result.

12 3.0{ = N N N -
10 2.5
8 2.0 L] L] L] L] L]
> 6 11.5 = N - N =
ol | ‘ 1.0
| | : i 0.0/ = . . . .
0% i 3 3 1 5 0 1 2 3 3 5
x_1 x_1
(a) Optimisation of function y = (x —2)? +1 (b) Visualisation of search space while op-
using Grid Search. timising two hyper-parameters using Grid
Search.

Figure 3.1: Examples of using Grid Search in optimisation of one or two hyper-parameters.

3.1.2 Random Search Optimisation

Random Search is an elementary optimisation technique, and remarkably, it was empirically
and theoretically proved to be more efficient way of hyper-parameter optimisation than Grid
Search [3]. Analogously as in Grid search, Random Search optimisation algorithm selects m
settings X7, ..., Xm, but the settings are selected randomly with uniform distribution across
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A. An example of settings selection in optimisation of one or two hyper-parameters is shown
in Figure 3.2.
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(a) Optimisation of function y = (z —2)?+1 (b) Visualisation of search space while opti-
using Random Search. mising two hyper-parameters using Random
Search.

Figure 3.2: Examples of using Random Search in optimisation of one or two hyper-
parameters.

3.1.3 Bayesian Optimisation Methods

Bayesian optimization is a set of powerful methods for optimizing objective functions which
are very costly or slow to evaluate [6]. These methods keep a record of past evaluations
of the objective function and create a probabilistic model that helps predict the function
value for parameters that have not been yet evaluated.

The optimisation process is defined more closely by Sequential Model-Based Optimisa-
tion (SMBO), which is a formalism for Bayesian optimisation. Sequential refers to running
trials one after another, where in each trial new hyper-parameter setting is found using
Bayesian reasoning and updating a probabilistic regression model M [22]. SMBO process
can be defined by following algorithm [12]:

Algorithm 1: Sequential Model-Based Optimisation
Input: f, X, S, M

1 D+ initSamples(f, X)

2 for i < |D| to T do

3 | ply|x,D) « fitModel(M,D)

4 X; ¢ argmax,yS(x, p(y|x, D))

5 | v+ f(xi)

6

7

D+ DU{(xi, i)}
end

Input of the SMBO algorithm is the objective function f(-), domain X" of the function
f(+), acquisition function S(-) and probabilistic regression model M. On the first line, a
historical set D = {(x1,y1), - - ., (X, ¥;) } is initialised with a few samples from the objective
function, which are selected from domain X. Steps on the lines 3-6 are executed in a cycle
until the limit of function evaluations T is not met, including the function evaluations in
initSamples(-) function. First, the probabilistic model p(y|x, D) is created based on the
regression model M and historical set D (line 3). Then, this model is used to select new
sample x; € X by maximising the acquisition function S(-) (line 4). The method of selection
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of the samples x € X for the probabilistic model will be further refered to as Domain Search
Strategy (DSS) and is described in more detail in Section 3.4.4. Acquisition function (AF)
is a method that is used to find next sample x; by predicting which of the selected samples
x will bring the best acquisition. More details about common acquisition functions are in
Section 3.4.5. And finally, objective function f(x;) is evaluated (line 5) and results is added
to the historical set D.

Methods in Bayesian optimisation can be differentiated based on their probabilistic
regression model M [12]. Three of the most common regression models are Gaussian
Processes (GP), Random Forests and Tree-Parzen Estimators (TPE).

Gaussian processes have become standard surrogate for modelling objective functions
in Bayesian optimisation [35] and are described in detail in Section 3.2.

Random forests regression [26] is a supervised learning algorithm that uses combina-
tion of multiple simpler models — regression trees. The approach in hyper-optimisation
is to construct a set of regression trees B and assume a Gaussian N (ylji, ) that models
the probabilistic distribution p(y|x, D), where the parameters i and & are chosen as the
empirical mean and variance of the regression values r(x) in the set of regression trees
BJ[12]:

(3.2)

TPE regression models deviate from standard SMBO algorithm, since they apply Bayes
rule to the models p(x,D|y) and p(y), instead of directly using the probabilistic model
p(y|x, D). Probabilistic model p(x, D|y) can be replaced with two non-parametric distribu-
tions, represented by processes I(x) and g(x) [12]:

I(x) ify<y*
g(x) ify >y
where y* is predefined threshold. The result is that TPE creates two different distributions
for the parameters, density [(x) formed by using the observations x; such that the corre-

sponding loss y; is less than the threshold, and density g(x) when y; is greater than the
threshold [2].

p(y’x,’D) = { (33)

3.1.4 More Hyper-optimisation Approaches

Apart from the before mentioned baseline solutions, there are other commonly used and
computationally effective solutions. A lot of them are modifications or combinations of
Random and Grid search, such as Random Walk or Random Grid search. Others, such as
Greedy search, optimise hyper-parameters one-by one using some kind of heuristics.

More complex (and less computationally effective) approaches used to tackle the prob-
lem of hyper-parameter optimisation, such as Genetic Algorithms, Particle Swarm Opti-
misation or Simulated Annealing, are well known optimisation methods and are common
alternatives to Bayesian optimisation.
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3.1.5 Comparison of Hyper-optimisation Methods

It’s not a trivial task to compare various hyper-optimisation methods. The efficiency of
each algorithm differs based on the optimised algorithm, type of the solved problem (clas-
sification, regression, etc.), specifics of used dataset, provided information about optimised
problem, default algorithm settings etc. Another important thing to mention is that a many
of available experiments use different optimisers to compare the methods, therefore even
two GP based optimisers with the same optimiser parameters might perform differently.
The following paragraphs try to capture the trends seen in multiple studies and general-
ize them in order to compare general differences between methods described in previous
sections.

When considering before mentioned straight-forward methods based on Random search,
the results of individual methods are quite similar. But for example in a study [28] focused
on hyper-optimisation of Recommender Systems, simple Random search and Random Grid
search provided better results than Random Walk or Greedy search on all tested datasets.
Also, these solutions are usually less computationally demanding and highly parallelizable,
in contrast to more complex methods. Therefore, it might be beneficial to use these methods
when evaluating less costly functions and make more optimisation steps.

In some specific cases, even Random search can outperform more complex algorithms.
But more often, solutions such as Bayesian optimisation achieve better results in hyper-
optimisation of different machine learning algorithms [34]. When comparing various Bayesian
and other mentioned more complex methods it’s hard to make any generalisations, because
different methods have proven more efficient in different experiments [13][29].

One of the key differences between GP and other mentioned hyper-optimisation methods
is in configurability. GP based methods require more knowledge to be configured (i.e. to
find suitable kernel), but provide more control over the created model. In case the general
behaviour of the solved problem is known and the GP parameters are set to fit this model, it
could theoretically provide better results and therefore might be beneficial to use. Naturally
if the GP parameters are set poorly, the model provides worse results.

Since hyper-optimisation is specific to the optimisation task, no hyper-optimisation
method has proven to be most efficient in general and it’s up to the user to select suitable
optimisation method.

3.1.6 Existing hyper-optimisation tools

Since each neural network represents a specific problem, different approaches might fit some
neural networks better than others. Therefore, many of available optimisers provide a wide
rage of hyper-optimisation techniques from simplest solutions as grid search or random
search to a complex parallel computing solutions based on machine learning approaches.
There are many solutions that aim to solve hyper-parameter optimisation problem'.
Some of the solutions are specific to certain language or library (e.g. talos’ or SHERPA®
for Keras), some provide more general solutions enabling to optimise almost any defined
problem (e.g. Hyperopt®). Naturally, optimisers specific to a library enable to optimise

"https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-
solutions-88e067f19d9

Zhttps://github.com/autonomio/talos

3https://github.com/sherpa-ai/sherpa

“https://github.com/hyperopt/hyperopt
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only neural networks written in such library, but are usually easy to use and might have
more control over optimised network.

Another distinction between available optimisers is whether are they designed to run
on a single machine or rely on cloud computing resources. Optimisers that are heavily
parallelized and use multiple machines are usually not free to use and are generally harder
to set-up, but provide substantially more computing power and therefore resources to realize
more optimisation rounds in the same time.

High-level solution is provided by Google’s internal tool Vizier [17], a scalable black-
box optimisation engine with remote procedure call interface, wide selection of optimisation
algorithms and dashboard. Advisor® is an open-source implementation of Google Vizier and
offers easy to use API with JSON configuration files to define specifics about NN training
and hyper-parameter optimisation. It supports running trials on distributed systems, it’s
not library dependent and provides around 15 optimisation methods, including Grid search,
Random search, Bayesian optimisation, Simulated Annealing and others.

Other similar, high-level tools are Microsoft’s Neural Network Intelligence (NNI), HiPlot
from Facebook and Ray Tune. All of the mentioned tools provide an API for visualisation
of hyper-optimisation results, support running trials on distributed systems and some of
the tools are even open-sourced.

Another widely used hyper-optimisation tool is Hyperopt, which is a Python library
that supports parallelization using MongoDB or Apache Spark. The hyper-optimisation
algorithms implemented in Hyperopt, such as Random Search or Simulate Annealing, are
commonly used by other tools (Advisor, Hyperas).

3.2 Gaussian Process

Whereas a probability distribution describes random variables which are scalars or vec-
tors (for multivariate distributions), a stochastic process describes the properties of func-
tions [31]. A stochastic process y(x) is specified by giving the joint probability distribution
for any finite set of values y(x1),...,y(xq) [4]. A Gaussian process is a stochastic process,
where p(y(x1),...,y(xp)|x1,...,Xxp) is D-dimensional Gaussian distribution.

3.2.1 Multivariate Gaussian distributions

The basic building block of a Gaussian process is the multivariate Gaussian distribution,
where each random variable is distributed normally and their joint distribution is also
Gaussian [19]. The multivariate Gaussian distribution is defined by mean vector p and
covariance matrix . Mean vector pu defines the centre around which distribution revolves,
while covariance matrix ¥ models variance along each dimension and defines correlation
between every two random variables.

Assume a vector X of d random variables x1 ... x4 that follows normal distribution:

X=||~Ng3) (34)

Shttps://github.com/tobegit3hub/advisor
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Then mean p is d-dimensional vector given by expected value of each respective random
variable x;:

p = E[X] = (E[z1], E[z2], ..., E[z4]) (3.5)

and covariance matrix ¥ is d X d matrix defined as:

% = cov[X] = E[(X — E[X])(X — E[X))7] (3.6)

Note that the diagonal of covariance matrix X consists of the variance UZ»Q of the i-th random
variable z; and the off-diagonal elements ;5,7 # j describe the correlation between random
variables z; and x; [19]:

i = covlzy, z;] = B[(z; — E[z])(x; — Elz;])"] (3.7)

The covariance cov(z;,z;] of two random variables z; and x; is defined by a kernel
function, which determines the characteristics of the resulting probability distribution [19].
Kernel function is probably the most important parameter of GP and it’s described in more
detail in Section 3.4.2.

3.2.2 Conditional And Marginal Gaussian Distributions

There are two important properties of the multivariate Gaussian distribution that are a key
to Gaussian processes — conditioning and marginalisation. Both conditioning and marginal-
isation work with joint probability of two subsets of original random variables, which will
be denoted as:

o[ von (@ B ) e

py | | Byx Yyy

where X and Y are subsets of original random variables, mean py (py) corresponds to
mean vector of subset X (Y), matrix ¥ xx (Xyy) corresponds to covariance matrix cov[X]
(cov[Y]) and matrixes X xy, Xy x correspond to covariance matrixes:

cov[X, Y] = E[(X ~ E[X])(Y ~ E[Y])"]

. (3.9)
cov[Y,X] = E[(Y — E[Y]))(X — E[X])7]

Gaussian distribution is closed under conditioning, which means that if two sets of ran-
dom variables are jointly Gaussian, then the conditional distribution of one set conditioned
on the other is also Gaussian [4]. So if two subsets X and Y of original random variables
follow normal distribution, then X|Y and Y|X are also Gaussian and are defined as [19]:

X|Y ~ N(px +ExvE5 (Y — py), Exx — BxyEyyEyx)

Y Y (3.10)
Y[X ~ Npy +ByxEy (X — px). Byy — By xExxExy)

Gaussian distribution is also closed under marginalisation, so the marginal Gaussian
distribution Px and Py from joint distribution Px y is also Gaussian:

Px =N(px,Exx)

3.11
Py = N(uy,Eyy) (3.11)
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3.3 Using Gaussian Processes for Regression

In order to solve regression tasks, GP needs to model an interpolation of observed data.
This model is represented by joint probabilistic distribution Py y created from two discrete
sets of random variables, where Y = (y1,%2,...,yn)" represents observed (training) data
and X = (v1,22,...,7;,)" represents testing data. The testing data is used to sample a
continuous function with a set of discrete points.

The joint probabilistic model Py y is a combination of the training and testing data,
as shown in Equation 3.8. To make predictions about possible values of the testing points,
conditional Gaussian distribution Px|y is used. Thanks to the conditioning on the training
data, resulting distribution limits the values of testing points that are close to any of the
training points.

Note that in Gaussian processes, it’s often assumed that p is a zero vector. This
assumption simplifies the equations necessary for conditioning, while correction of mean
can be done after making a prediction [19].

3.3.1 Prior distribution

In case no training data are available yet, distribution defined by GP will be Px = N (p, X),
where g = 0 is a zero vector and ¥ is covariance matrix with m x m dimensions. This is
called a prior distribution. Its probability distribution could be visualised as in Figure 3.3,
where each random variable x; is normally distributed around 0. Functions sampled from
this distribution would be Gaussian and their shape would be dependent on kernel function,
as can be seen in Figure 3.8.

x1 X2 X3 x4

p-30 p-20 -0 u o 20 3o

(a) Example of normal distribution. Normal  (b) Probability distribution Px, where each

distribution is centred around mean p and can  testing point is represented by a random vari-

be separated into multiple sectors, based on the  able x;. Each random variable follows normal

standard deviation o. distribution and is centred around mean p;.
Grey area represents space between p; —20; and
w; + 20; for each random variable x;.

Figure 3.3: Visualisation of prior distribution over a set of testing points X.

3.3.2 Posterior distribution

Training data can be added to the GP model by forming a joint distribution Px y, where Y
is a set of random variables representing the training data. Then the posterior distribution
Pxy = (1x|y,Zx|y) defines distribution of testing data conditioned on training data. As
can be seen in Equation 3.10, mean pxy only depends on conditioned variable so the
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posterior distribution is constrained to the set of functions that pass through the training
points [19].

To illustrate, assume a prior distribution Px in Figure 3.3b and training data x; =
3.2,y1 = 4.4. Then the conditional distribution Px|y; models the interpolation of the
training data, as shown in Figure 3.4. Only one training value does not create a good
interpolation of the data and therefore predicted values of the testing points that are further
from the training data tend to return back to zero. This feature of GPs is further exploited
in hyper-optimisation, because the best possible value of the loss function (error) is 0.

5 5
4 4
3] 3
21 2
11 11
01 0
-1 -1
25 1 2 3 4 5 25 1 2 3 4 5

Figure 3.4: Examples of conditional probability distribution with one training data point
x1 = 3.2. Note that the shape and size of the distribution is defined by the covariance
matrix.

3.3.3 Gaussian Processes in Hyper-optimisation

In order to understand how to use GPs in hyper-optimisation, let’s connect the information
from previous section to SMBO algorithm in Section 3.1.3. Assume objective function is
a loss function f(-) and no initialisation samples are available, so the historical set D is
empty. First, GP regression model Py y is created and DSS (see Section 3.4.4) is used to
select the testing data (line 3). Note that according to the prior assumption, Y = (). Then,
AF (see Section 3.4.5) creates conditional probabilistic model Pyy = Px (there are no
training data) and uses this model to select next training point y1 (line 4). Loss function
f(+) is evaluated in selected point y1 (line 5) and tuple (y1, f(y1)) is added to the historical
set (line 6).

This is repeated until the limit of total function evaluations 7' is reached. Difference in
following cycles is that the historical set D is not empty, so the shape of the distribution
can be more helpful in selection of new training point yj.

In terms of hyper-optimisation, each random variable z; represents hyper-parameter
setting of D hyper-parameters hi...hp. The training points are vectors of hyper-parameters
values that have been already used to train the network. Therefore, the result of the loss
function for those hyper-parameters settings are known. Testing points (in terms of hyper-
optimisation) are settings of hyper-parameters, whose values is the optimiser trying to
predict using the GP model. Training the NN represents the objective function, where
training point is a parameter of the function and function value is resulting loss.

Figure 3.5 shows optimisation of one hyper-parameter on domain [0, 5] with grid DSS
and minimal mean acquisition function. First optimisation step selects new hyper-parameter
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setting randomly, while next hyper-parameter settings are selected based on predicted value
of mean.

12.51 12.51
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(a) Step 1: training point 3.2 selected randomly, (b) Step 2: next training point will be 5
next training point will be the one with minimal
mean — 0
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(¢c) Step 3: next training point will be 2.01 (d) Step 4: best found setting is 2.01

Figure 3.5: Four rounds of GP hyper-optimisation of one hyper-parameter, where dotted
orange line represents real shape of the loss function.

Figure 3.6 shows optimisation of two hyper-parameters with the same settings as above.
Value of each hyper-parameter is displayed on separate axis, while prediction is on axis z.
Optimisation algorithm works the same, but kernel, DSS and AF have to be able to work
with multidimensional points.

GPs can be used to optimise arbitrary number of hyper-parameters, but there are
computational limitations. The computational complexity of GP regression is O(n3), where
n is the size of the training set. This is due to the inversion of the covariance matrix Xyy
in computation of conditional probabilistic distribution Pxy. Moreover, optimising more
hyper-parameters might lead to a bigger search space, so the model will need more training
samples to create reasonable approximation and more testing samples to make more precise
predictions.
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Figure 3.6: GP prediction after four rounds of optimisation of two hyper-parameters hq
and hy. Wireframe plot represents the real shape of approximated loss function f(-), while
red and blue area represents predicted mean values given by conditional probabilistic dis-
tribution Px|y. Four training points y1 = (3.2,0), y2 = (0,5), y3 = (5,5), y4 = (0,1) are
marked as a black dots.

3.4 Parametrization of GP optimiser

As well as other probabilistic regression models in Sequential Model-Based Optimisation
(SMBO) described in Section 3.1.3, GP regression model has a number of parameters that
can be changed in effort to improve the result of the optimisation. These parameters include
selection of mean, uncertainty of measurement, kernel function and its parameters, Domain
Search Strategy (DSS) and Acquisition Function (AF).

3.4.1 Mean and Uncertainty

As mentioned before, mean is usually set to zero. That means that in prior distribution,
mean p; of all random variables x; is zero. In posterior distribution, mean of all testing
data will tend to return to zero more and more the further it is from any training data. In
hyper-optimisation of NNs, zero is usually a good selection of mean. This is because the
optimal function value of the loss function is zero and its desirable that mean returns to
this value in space with no training points.

However, it might be desirable to use another mean value when minimising function
with optimum that is lower or much higher than zero. Since assuming mean is a zero vector
simplifies the computation of conditional probability distribution, it’s practical to use zero
mean for prediction and then shift the prediction to correct mean value [19].

It’s also possible to edit the probability distribution in training points, so the potential
functions do not have to intersect the exact location of the training point. This is done by

22



uncertainty parameter R, which is used to multiply the variance of each training point y;
in the covariance matrix:

Zn’ = cov[yi, yi] -R (3.12)

and is subsequently added to covariance ¥ xx when calculating conditional probability
distribution (Equation 3.10):

X‘Y ~ N(MX + Exyz;%/(Y — ﬂy), Yxx +R-— Exyz;%/zyx) (3.13)

The effect of uncertainty can be seen in Figure 3.7, where predicted mean no longer
intersects some of the training points and the grey area given by standard deviation is
wider. The bigger the uncertainty R is, the more significant inaccuracies are permitted by
the probability distribution. The uncertainty parameter is particularly useful when there’s
a jitter in the data, so the probabilistic distribution is able to model these deviations.

12 °

10

Figure 3.7: GP prediction (with uncertainty R = 0.05) after three rounds of optimisation
of one hyper-parameter.

3.4.2 Kernels

The kernel (or kernel function) k is a measure that defines similarity between two D-
dimensional points and is used to compute values ¥;; in covariance matrix X [19]:

k:RP xRP R, % = k(x,%) (3.14)

Selection of the kernel determines resulting shape of the probabilistic distribution (see
Figure 3.4) as well as the behaviour of the functions sampled from this distribution (see
Figure 3.8). Following paragraphs describe a few of the common kernel functions and their
features.

Radial Basis Function (RBF) kernels, as the name suggests, are kernels that are based
on radial basis functions. So, the result of such kernel function depends only on distance
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between the two points. The RBF kernel uses Euclidean norm to measure the distance and
is defined as follows:

15°P (s — )2
krpr(x,X') = 0} exp <—2W> ; (3.15)
I

where x and x’ are tested D-dimensional points and o; is characteristic length scale pa-
rameter. This parameter determines how distant the two points x and x’ have to be for
the function value to change significantly [31]. The second kernel parameter oy is signal
standard deviation, which determines the uncertainty of Gaussian probability distribution
in GP. Examples of functions sampled from GP with RBF kernel are shown in Figure 3.8a.

Equation of Laplacian kernel is very similar to RBF kernel, but it uses absolute value
instead of Euclidean norm to determine the distance between the points x and x':

152 |2 —
kLaplacian (X, X') = UJ% exp <—2ZZI|0212|> (3.16)
l

Although as can be seen in Figure 3.8b, compared to RBF kernel, Laplacian kernel is more
suitable to model functions with rapid local changes and sharp edges.

As can be seen in Figure 3.8, Matérn ARD kernel is by its behaviour very similar to
RBF kernel. The reason is that Matérn kernel also commonly uses Euclidean norm to
determine the distance of the points, but it’s also altered by some additional constants and
parameters:

5
kntatern (X, X') :U]% (1 + V5 + 37"2) exp <—\/5r)
(3.17)

The biggest advantage of this kernel in comparison with RBF kernel is its ability to
reflect more substantial local changes. Also, it’s a kernel with Automatic Relevance De-
termination (ARD), so it’s able to define different characteristic length scale a; for each
function parameter. This is particularly useful in cases when the same change in distinct
hyper-parameters values leads to a different behaviour — i.e. one hyper-parameter changes
the resulting accuracy of the network much more (or less) prominently than the other. ARD
is widely used in many kernels and can be used in both RBF and Laplacian kernels.

Two of the most elementary kernels, constant and linear kernel, are not very suitable
to be used separately, but they can be used to construct new kernels. Constant kernels
keonst(x,%’) = ¢ return predefined constant ¢ independently on the input, while linear
kernels multiply constant 6 with the vector inputs:

klinear(xyxl) = HXTX/ (318)

Even though above mentioned kernels are just a small fraction of the kernels that can be
used, they might not fit some specific model. But there are many techniques for constructing
new kernels. These techniques use existing kernel functions and modify them. Kernels
created this way have distinctive features and are named after the modification that was
performed. For example, additive kernels use addition to create new kernel k from two
existing kernels k1 and ko:
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(a) RBF (b) Laplacian (¢) Matérn ARD

Figure 3.8: Examples of random function samples using different kernels.

k(x,x') = k1 (x,x") + ka(x,x), (3.19)

while multiplicative kernels use kernel multiplication:

k(x,x') = k1(x,x) - ka(x, x") (3.20)

But many more building methods such as exponentiation and composition can be used to
create new kernels. These methods can be used repeatedly or combined together to create
more complex kernel that fits the solved problem better, as shown in Figure 3.9.

(¢) Additive multiplicative
kernel ((RBF + constant) -
constant)

(a) Additive kernel (RBF + (b)  Multiplicative  kernel
constant) (RBF - constant)

Figure 3.9: Examples of kernels created by kernel addition, kernel multiplication or their
combination. By adding RBF and constant kernel, it’s possible to stretch the distribution
and move mean to the average function value of training points, while preserving features
of RGB kernel. Multiplicative kernel can change the standard deviation so the Gaussian
is wider or narrower. And by combination of the kernel building methods, it’s possible to
combine features of all kernels.

3.4.3 Automatic Tuning of Optimisation Parameters

The selection of parameters of the optimiser such as kernel and uncertainty might be a
difficult task, but it is possible to automatically tune those parameters. The automatic
tuning is build on evaluation of the log likelihood function p(y|@), where y is a vector
of function values of the training points and 6 is a set of tuned parameters [4]. The log
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likelihood function for a GP model is evaluated using the standard form for a multivariate
Gaussian distribution, given by equation [4]:

1 1 _ N
In p(y|@) = —§ln\2| — §yT2 ly — Eln(Zﬂ') (3.21)

Log likelihood of the multivariate Gaussian distribution is then maximised using some
optimisation algorithm. In each round of the optimisation algorithm, values in covariance
matrix X are recalculated using updated parameters # and used to calculate log likelihood
from Equation 3.21 above. This optimisation is called Maximum Likelihood Estimation
and can be used to optimise all numeric parameters of the optimiser.

3.4.4 Domain Search Strategies

Domain search strategy (DSS) is a method that is used by optimiser to select m testing
samples X = (xq,...,X,). These testing samples are then used to create GP with joint
probabilistic distribution Py y. Two most common methods are based on grid search and
random search.

Grid search creates a D-dimensional grid of k£ points, where k = mﬁm Ak > m and
Mgim is the number of samples per dimension. Subsequently, m samples from the grid are
selected. Random search selects samples randomly with uniform distribution. The strategy
as well as the number of selected samples has significant influence on resulting probabilistic
distribution.

3.4.5 Acquisition functions

As stated before, an Acquisition function (AF) is a function that is used to find next training
point y; from a set of testing points X. AF in GPs uses predictions from conditional
probability Pxy and selects the point with best acquisition. This acquisition is usually
based on exploration-exploitation trade-off. The result of the AF is a point with the best
acquisition and is used for training the NN.

The most straightforward approach is strictly improvement based, which means that
the acquisition depends only on predicted value. It selects the point x* based on predicted
minimal mean value:

x* = argmin p(X) (3.22)

This is a special case of confidence bound AFs, such as Sequential Design Optimisation
function, where the acquisition is given by Lower Confidence Bound:

LCB(x) = u(x) — ko (x), (3.23)

and the confidence parameter k is set to zero.
Another acquisition function, Probability of Improvement, introduces the exploration-
exploitation trade-off parameter £ and is defined as:

px) = J(xH) = ), 20

(%)

PI(x) = ® <

where xT is so far the best discovered point with value f(x*) and ® is Cumulative Dis-
tribution Function (CDF) [7]. The selected point would then be the one with the lowest
acquisition PI(-), since the goal is to minimise the function:
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x* = argmin PI(X) (3.25)

The most used acquisition function is Ezpected Improvement (EI), which selects value
with the best expected improvement given by equation:

El(x) = (m(x) — f(X+) —OV(Z) +o(x)p(Z) if o(x) >0
0 if o(x) =0 526

where Z = {W if o(x) >0 :
0 if o(x) =0

where ¢ is Probability Density Function (PDF) [7]. The selected point is again the one
with the lowest acquisition EI(-):

x* = argmin E1(X) (3.27)

The selection of suitable AF depends on the specific model that is used and problem
that is being solved, therefore it’s not an elementary task to do. But there are strategies
such as portfolio allocation that use multiple AFs and have proven to be almost always
more effective than individual AFs [8].
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Chapter 4

Design and Implementation of
Toolkit for Hyper-optimisation of
Neural Networks

This chapter describes design, implementation, usage and possible customisation of Gaus-
sian Process based Optimiser (GPOP), a toolkit for hyper-optimisation of neural networks.

As stated before, commonly available tools for hyper-optimisation can be separated into
two categories: library specific and universal. Even though library specific approach offers
more control over the optimised NN, I have chosen to design universal hyper-optimiser.
Apart from the obvious advantage of being able to optimise almost any NN, this approach
does not require any user’s knowledge about the programming language or libraries used
to implement the NN and thus makes the optimiser easier to use.

4.1 Toolkit Design

Apart from optimising multiple possibly correlated hyper-parameters, the goal was to design
a toolkit that is lightweight and easy to use. GPOP aims to provide the latter through a
library, that enables control over the optimisation process and creates an interface between
the optimiser and the NN. Moreover, it’s possible to run the optimisation using a CLI
wrapper that is controlled through a set of command line arguments making it possible
to run optimisation without writing any code. The usage and structure of the toolkit are
shown in Figure 4.1 and described in more detail in following paragraphs.

The centrepiece of the toolkit is the optimiser. Optimiser has no knowledge about what
is optimised and views every optimised problem as a black-box function with a certain
number of parameters specified in the beginning of the optimisation. Optimiser interacts
with the function interface in order to find the best parameters of the black-box function and
therefore best hyper-parameter settings. The function interface serves only as an interface
for optimised problem that ensures every optimiser’s call to evaluate a black-box function
is uniform.

A counterpart component interacting with the function interface is the bridge. The
purpose of the function interface and the bridge is to create an interface between the NN
and the optimiser, so that the optimiser can treat the NN as if it was a function and
receive results of the loss function as a single value. So when the bridge receives parameters
from the optimiser, it creates a new subprocess that trains the NN with hyper-parameters
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corresponding to those parameters. After the subprocess ends, the bridge collects the
output of the training, finds the result (loss) and returns it to the optimiser as a function
call result.

Running the subprocess and collecting the result is possible thanks to a user defined
configuration file that contains information about how to run the training of the network
and how to get the result. Moreover, the configuration file contains more information about
optimised hyper-parameters, such as domain ranges and numeric types.

For the purpose of experiments with behaviour of various optimisation techniques, there
is benchmarks component. This component contains a set of benchmark functions that
simulate some of the typical problems that hyper-optimisation incorporates. And since the
actual shapes of the functions are known, they can be useful to learn about the features of
the used optimisation technique before optimising hyper-parameters of the actual NN.

User User

) i %
‘
run

rogram
A\import
poesesmeeee e e L L L L PR \ --------------------- CLI wrapper |-------------mmmmmmnnnins

function value

call result

............................

output | |

function

\~ ! Neural Network | !
interface - |

Figure 4.1: Usage of the toolkit: GPOP provides user with two different methods of usage
— run optimiser from command line with CLI wrapper or import the library in a custom
user program. Running from command line does not require any custom code except
configuration file, but doesn’t provide any extra information about optimisation. Library
use, on the other hand, enables user more control over the optimisation, including the access
to the GP model and creation of custom kernels in order to learn and adjust the optimiser
to specific problem.
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4.2 Toolkit Implementation

The toolkit is implemented as a collection of Python3 modules that provide classes and
methods for hyper-optimisation of NNs. Moreover, it contains a python wrapper script
enabling configurable optimisation. The toolkit is split in three Python packages:

optimiser is core package containing all modules needed during the optimisation itself,
including kernels, acquisition functions, etc.

nnbridge is a package providing resources to create an interface between the optimiser
and the NN, enabling the optimiser to train the NN and get result of the training.
Furthermore, it contains methods for simple manipulation with NN configuration files.

tests package contains unit tests for each module of the GPOP toolkit.

Relations between individual modules and packages is shown in Figure 4.2, while detailed
description of all modules can be found in sections below.

configuration

neural

file network
A T
optimiser nnbridge
benchmarks [« optimiser > bridge
A
tests
kernel < f
erne 9P acqtun test_acqfun
l€—— all
modules
tests

Figure 4.2: Distribution of modules into packages and relations between individual modules
and other components. For example module optimiser uses most of the implemented
modules, except kernel and test modules. Module bridge doesn’t use any modules, but
other components like configuration file and neural network.

4.2.1 Gaussian Process Representation

Module gp contains implementation of Gaussian process. They are represented by GP class,
which creates a model of a Gaussian process given by its covariance matrix ¥ and training
points Y (mean p is assumed to be a zero vector). Covariance matrix is calculated as
follows:
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cov_matrix = np.ones(N, N)
for i in range(N):
for j in range(i, N):
cov = k(Y[i]l, Y[jD)
cov_matrix[i] [j] = cov
cov_matrix[j]l[i] = cov
7 cov_matrix = cov_matrix + R * np.eye(N)

S Tk W N

where IV is the number training points Y, k selected kernel and R is uncertainty of mea-
surement:

The key method is predict (x), which returns conditional multivariate Gaussian prob-
ability distribution for the point x represented by its mean value mean_x and standard
deviation std_dev_x. This probability distribution is computed using conditioning from
the covariance matrix cov_matrix above:

1 def predict(x):
2 cov =1 + R * k(x, x)

3 sigma_YX = np.zeros(N, 1)

4 for i in range(N):

5 sigma_YX[i] = k(Y[i], x)

6 mean_x = (sigma_YX.T * cov_matrix.I) * Y_val.T

7 std_dev_x = cov + R - (sigma_YX.T * cov_matrix.I) * sigma_YX
8 return mean_x, std_dev_x

Thanks to this prediction, AF is able to determine next training point. For the detailed
description of covariance matrix computation and predictions of testing points values, see
Sections 3.2 and 3.3.

4.2.2 Optimisers

Module optimiser implements GP optimiser and two baseline optimisers that are based on
random search and grid search. Even though the baseline optimisers were primarily meant
to serve as a comparison to GP based optimisation, they can in some cases provide better
results and therefore were included in the toolkit. The implementation of both baseline
optimisers is quite straightforward, as shown in Figure 4.3.

--------------------------------------------------------------------------------------------------------------------

Random
optimiser

s N

[ random | -

( g:nedr(;tor ) optimiser core
N\ /

)

Pox
.. function
optimiser core interface
b

Xi

function
interface

Figure 4.3: Structural diagram describing essential parts of each optimiser.
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The main component of both baseline optimisers is optimiser core. The goal of the core
is to select as many training points as defined by user. Grid optimiser uses grid generator
that creates a grid of m D-dimensional points using Cartesian product of D linearly spaced
vectors, where D is dimensionality of the solved problem. Since the number of the training
points n selected by user can be lower than the number of the points in the grid, the core
selects first n points and passes them successively to the function interface. The point with
the lowest function value f(x;) is returned as the result of the grid hyper-optimisation.
Since the grid was formed using Cartesian product, computational complexity of the Grid
optimiser is polynomial with respect to the number of training points.

The Random optimiser uses random generator instead of grid generator. The core
of the Random optimiser uses this generator to select as many points as defined by user.
Random generator generates one D-dimensional training point within dimension space with
uniform probability distribution. Generated training point x; is then passed to the function
interface. This random point generation is repeated n times to generate enough training
points. Finally, the point x; with the lowest function value f(x;) is returned as the result
of the hyper-optimisation. The computational complexity of random generator is linear,
with respect to the number of training points.

The required arguments for both Grid optimiser and Random optimiser initialisation
are function and dimensions bounds. The function is either benchmark or NeuralNet object
with one parameter. This parameter is a 1D array representing settings of the optimised
hyper-parameters. Dimensions bounds is a 2D list, where each inner list contains two
numbers. They represent minimal and maximal values that hyper-parameter can acquire.
Both baseline optimisers also have a keyword argument verbose, which if set to True, will
ensure printing of additional hyper-optimisation information to the standard output.

The most complex optimiser is GP optimiser. The parameters of the black-box function
that will be chosen for the next optimisation round depend on selected domain-space search
strategy (DSS), acquisition function (AF) and predictions received from created GP model.
As shown in Figure 4.4, the core is responsible for control of other components to find
the best possible parameters of the black-box function. The result of the optimisation is
again the training point with the lowest loss value, but GP optimiser object stores other
data that are important for hyper-optimisation analysis and visualisation, including current
GP model, used training points and their values. The computational complexity of GP
optimiser is cubic, with respect to the number of training points.

Apart from a reference to the implemented kernel object, GP optimiser has the same re-
quired arguments as baseline optimisers. To specify additional parameters of GP optimiser
such as DSS or AF, any of the keyword arguments described in Table 4.1 can be used.

4.2.3 Kernels

Kernels are implemented in separate module, along with builder methods allowing user
to construct new kernels. It is possible to add new custom kernel, build new kernel from
existing ones or use one of the five implemented kernels: RBF, Laplacian, Matérn ARD
5/2, constant and linear. All implemented kernels are described in detail in Section 3.4.2.

The parameters of the kernels can be automatically tuned during the optimisation,
as described in Section 3.4.3. And in order to enable automatic parameter tuning, ker-
nels work with tensors from torch.Tensor. Each kernel is implemented as callable class,
where method __call__ accepts two tensors as parameters representing two D-dimensional
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Table 4.1: Keyword arguments of GP optimiser.

Parameter Description

x_init 1D numpy array representing initial hyper-parameter configuration. If
not set, random configuration will be used.

R Uncertainty of GP model. If not set, default value 1le—5 will be used.

nb_samples Number of testing sample per dimension (total number of samples:
nb_samples?). If not set, default value 50 will be used.

dss Used Domain Search Strategy. If not set, default strategy random will
be used.

acq_fun Used Acquisition Function. If not set, default function
ExpectedImprovement will be used.

htypes A list of hyper-parameter types. Permitted values are ,float" for real

numbers or ,int" for integers. If not set, all hyper-parameters will be
treated as real numbers.

autotune If set to True, automatic tuning of kernel parameters is activated.
Default value is False.

autotune_all If set to True, automatic tuning of all parameters is activated. Default
value is False.

verbose If set to True, additional hyper-optimisation information is printed to
standard output. Default values is False.

points. All parameters of the kernels are stored during initialisation to a class variable called
params.

RBF and Laplacian kernels are implemented based on Equations 3.15 and 3.16 and have
only one parameter — characteristic length scale ;. Signal standard deviation is fixed to
value 1.0 and none of the kernels support ARD.

Kernel Matérn ARD 5/2 is implemented based on Equation 3.17 and has D + 1 pa-
rameters, first is signal standard deviation and the rest corresponds to characteristic length
scale (one for each dimension D).

Last two implemented kernels are linear and constant kernel and each has only one
parameter. Linear kernel is initialised with parameter 6, which is multiplied with kernel
inputs. Constant kernel is initialised with constant value ¢, which is also its return value
for every input.

Any of the kernels can be initialised directly using its class name or use function
selectKernel (name, params), where name is a string corresponding to a class name of
the kernel and params is a tensor containing the parameters of the kernel.

GPOP also provides two methods to build new kernels — buildAddKernel and build-
MultKernel. The first one creates a new kernel by addition of two existing kernels, while
the second method uses multiplication.

In case user requires different kernel, it is possible to extend GPOP by implementing
custom kernel or adding a kernel builder, as described in Section 4.4.3.
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Figure 4.4: Structural diagram describing the function of GP optimiser: First, the core
uses DSS to select a set of m testing points T within dimension space. Number of testing
points depends on number of dimensions (hyper-parameters) to be optimised and number
of samples per dimension defined. Next, acquisition function is used to select next training
point x;. To make this selection, all acquisition functions use GP predictions in testing
points T. Finally, training point x; is passed to function interface, the function value f(x;)
is collected and GP model is updated. This whole process is repeated as many times as is
the number of optimisation rounds.

4.2.4 Autotune

The automatic tuning of parameters of the optimiser is implemented as described in Sec-
tion 3.4.3 and uses Pytorch framework with Adam optimiser to maximise the log likelihood
of the GP model.

Automatic parameter tuning can be enabled by using command line options ——autotune
or ——autotune-all in CLI wraper or by enabling one of the keyword arguments autotune
or autotune_all in initialisation of GPOptimiser. Automatic tuning starts after at least
5 training samples are present and is repeated for 50 rounds or until the difference of log
likelihood in two subsequent rounds is not lesser then predefined constant e.

4.2.5 Domain-space Search Strategies

GPOP toolkit provides user with two distinct DSSs to select testing points: grid and
random. These strategies are implemented inside optimiser module in the same manner
as grid and random generators described in Section 4.2.2, but generated points are used as
testing samples.
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DSS can be selected by a keyword argument dom_search_strategy in initialisation of
GPOptimiser or using a command line option --domain-search-strategy when using the
CLI wrapper described in Section 4.2.8.

4.2.6 Acquisition Functions

Module acqfun implements three AFs: MinimalMean, LowerConfidence and Expected-
Improvement. Each AF is implemented as callable class with four positional parameters.
First parameter is a list of testing points from DSS, second is GP model and the last two are
lists of training points and their function values. All AFs use those parameters to predict
mean values g and standard deviation o of the testing points and select the next training
point.

MinimalMean selects the point x* with the lowest predicted mean value. The second
method, LowerConfidence, selects the next training point x* with minimal predicted lower
confidence bound corresponding to:

x* = argmin(u(x) — 20(x)) (4.1)

The last method, ExpectedImprovement, selects the point with the best expected improve-
ment defined in Equation 3.26.

Any of the AFs can be initialised directly using its class name or use function the
selectAcqFun(name), where name is a string corresponding to a class name of the AF. All
implemented AFs are described in more detail in Section 3.4.5.

4.2.7 Bridge

Module bridge creates an interface between the optimiser and the NN and also provides
user with methods to parse configuration files. First, the bridge creates callable NeuralNet
objects, which behave like a standard functions, but when called, they actually run a
subprocess in order to train the NN using specific hyper-parameter settings. After the
subprocess ends, the bridge finds the result of the training in the output of the subprocess
and returns it to the optimiser. The information needed to do so is stored in configuration
file with following syntax:

SYNTAX: EXAMPLE:

<command> python3 ./mnist/main.py --epochs 5
<result_regex> Average loss: ([-+]7\d*\.\d+|\d+)
<failure_regex> Average loss: (nan)

<HP-1_switch> <type> <from> <to> --1r float 0 1

<HP-2_switch> <type> <from> <to> --nb-hidden int 2 512

<HP-n_switch> <type> <from> <to>

First line is a command that will be used to run training of the NN and it can contain
additional hyper-parameters that won’t be optimised. Second line contains a regular ex-
pression that identifies desired result of the training in the output of the previously run
command. This regular expression needs to specify the number that will be minimised by
capturing it in a group. If more lines of the output match the regular expression, the bridge
uses the last matched number. In case this regular expression does not match any text of
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the output, regular expression failure_regex is used to identify whether training was run
successfully. If this regular expression matches any text of the output, predefined default
value is returned to the optimiser. Otherwise, an error indicating unsuccessful invocation
of the subprocess is thrown. This safety check is useful when training is not properly in-
voked and therefore it is not necessary to continue hyper-optimisation. Example of such
behaviour might be bad configuration of a hyper-parameter in configuration file, such as
use of invalid value (e.g. negative learning rate). Then the training fails, the optimisation
is stopped and the user is notified about the error.

The rest of the lines in the configuration file is reserved for the hyper-parameters that
will be optimised, where each line defines one hyper-parameter and consists of four fields
separated by space. First field, HP-i_switch, is string value used as a switch to identify
i-th hyper-parameter inside the command. Second field, type, determines which values
are assigned to this hyper-parameter by optimiser. Supported types are int for integer
values and float for real numbers. Last two fields are reserved for specification of hyper-
parameter’s domain range.

This configuration is used to initialise the optimiser and then to run the subprocess
using a command in form:

SYNTAX:

<command> <HP-1_switch> <HP-1_val> ... <HP-n_switch> <HP-n_val>
EXAMPLE:

python3 ./mnist/main.py --epochs 10 --1lr 0.5 --nb-hidden 256

where command is the command from the configuration file and fields <HP-1_val>, ...,
<HP-n_val> are values of the respective hyper-parameters selected by optimiser.

Configuration files can be parsed using one of the two ways: either from the standard
output or from a file.

4.2.8 Command Line Wrapper

The Command Line Interface (CLI) wrapper wrapper.py is a Python3 script that is able
to load and parse the configuration files, create and run the optimiser, plot cumulative
minimum and Gaussian process representation and print hyper-optimisation information
to standard output. To specify what tasks should be executed, CLI wrapper has a number
of command line options that are described in detail in Table 4.2.

The command line option --gaussian-process has zero or two and more arguments.
If no argument is specified, RBF kernel with default parameters and default uncertainty is
used. The first argument is a class name of the selected kernel, the second argument is the
uncertainty and the rest of the arguments correspond to kernel parameters in order defined
by individual kernels (see Section 4.2.3).

Command line option —-benchmark (or -b) has D+3 arguments. The first argument is a
string representing the name of the benchmark. The second argument is a string containing
an optimum Xt = (21,...,2p), where each element x; is separated by a space as shown
in usage example in Section 4.3.1. The third argument is the function value in optimum
f(Xopt). Next D arguments define dimensions bounds for each dimension of the benchmark,
where the minimum is separated from the maximum by a colon.

Note that options -b and -f can’t be used together and option -s has no effect without
the option --draw. For usage examples of the CLI wrapper, see Section 4.3.1.
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Table 4.2: Command line options of the CLI wrapper script wrapper.py.

Long option Short option  Description

--help -h Shows help message with usage information and exits.

--rounds -r Number of hyper-optimisation rounds. If not set,
default value 10 will be used.

--grid-search none Use Grid search optimiser.

--random-search none Use Random search optimiser.

--gaussian-process none Use GP optimiser.

--domain-search- none Selection of DSS (options: grid, random).

strategy

--acquisition- none AF selection (options: MinimalMean,

function LowerConfidence, ExpectedImprovement).

--autotune none Enable automatic tuning of kernel parameters.

--autotune-all none Enable automatic tuning of all GP parameters (kernel
+ uncertainty).

--benchmark -b Optimise selected benchmark function.

--config-file -f Optimise NN defined by configuration.

--jitter none Add jitter given by option’s argument to the
benchmark function.

--draw -d Draw cumulative minimum and GP model plots.

--verbose -V Print additional hyper-optimisation information to
standard output.

--round-by-round  none Run hyper-optimisation one round at a time (draw
plots and print output after every round).

--save-fig -s Save plots of cumulative minimum and GP model
representation to a directory specified by options
argument.

--seed none Set seed for randomised elements in the optimiser.

4.3 Usage Examples

As stated before, GPOP toolkit can be used either through CLI wrapper, or as a Python li-
brary. This section contains usage examples of GPOP toolkit with implemented benchmark
functions and example MNIST NN !. The complete set of examples is stored in GPOP git
repository” in folder examples.

To run the examples, install GPOP toolkit using setup.py script located in the root
folder or run the examples from gpop subdirectory.

4.3.1 Command Line Interface

To run hyper-optimisation from the command line, use Python3 script wrapper.py. The
hyper-optimisation task, used optimiser and further options can be selected using script’s
command line options. Full description of the wrapper script and it’s command line options
is in Section 4.2.8.

"https://github.com/pytorch/examples/tree/master/mnist
“https://gitlab.com/mcoufal/gpop
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To run benchmark hyper-optimisation, command line option --benchmark has to be
specified. The example below runs 9 optimisation rounds of Random optimiser on Ellip-
soidal benchmark. This benchmark will be two-dimensional, with optimum x,, = (5,5)
and optimal function value f(xop) = 3. Both parameters will be optimised within the
interval [0,10]. Also, additional hyper-optimisation information, such as selected training
points in each optimisation round, will be printed to standard output.

./wrapper.py \

--rounds 9 \

--random-search \

--benchmark "FnEllipsoidal" "5 5" 3 "0:10" "0:10" \
--verbose

To run NN hyper-optimisation, command line option ——config-file has to be specified.
This command line option has one optional argument, which provides a path (relative or
absolute) to the configuration file of the NN. If this command line option is used without
any argument, the configuration is taken from the standard input.

The example below runs 5 rounds of hyper-optimisation on specified NN using GP opti-
miser. The NN and optimised parameters are defined in file mnist_example_config.txt.
The example of such configuration file is in Section 4.2.7. GP optimiser will use RBF kernel
with characteristic length scale o; = 0.1, 15 testing samples per dimension and uncertainty
R = 0.01. After the hyper-optimisation ends, plots of GP representation and cumulative
minimum over rounds will be shown.

./wrapper.py \

--rounds 5 \

--gaussian-process "KernelRBF" 15 0.01 0.1 \
--config-file mnist_example_config.txt \
--draw

4.3.2 Usage of GPOP Python Library

The following examples demonstrate how to use GPOP as a library. First, the following
imports need to be made:

import torch
from gpop.optimiser import optimiser as gpo
from gpop.optimiser import kernmel

In case only Grid optimiser or Random optimiser will be used, only optimiser module
needs to be imported. GP optimiser requires kernel module to create a kernel and torch
module to define the parameters of the kernel.

If the hyper-optimisation task is to optimise a benchmark, benchmarks module has to
be imported and benchmark function created:
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from gpop.optimiser import benchmarks

# benchmark settings

bench_name = "FnSphere"

bench_opt = [2.0, 5.0]

bench_opt_val = 2

# create benchmark function

fn = benchmarks.selectBenchmark(bench_name, bench_opt, bench_opt_val)

In case the task is to optimise hyper-parameters of the NN, bridge module has to
be imported and NeuralNet object initialised using a parsing function from the bridge
module:

from gpop.nnbridge import bridge

# NN settings
config path = "./mnist_example_config.txt"
fn, dim_bounds = bridge.parseFileConfig(config_path)

The configuration can be loaded from standard input using parseStdInConfig() func-
tion or from a file using parseFileConfig() function as above. These functions return a
reference to a callable NeuralNet object and a list of dimensions bounds.

Next, the optimiser has to be initialised. Using its keyword arguments, it’s possible
to specify additional settings such as DSS or AF. Full description of available keyword
arguments for each optimiser can be found in Section 4.2.2. Example below uses GP
optimiser with Matérn ARD 5/2 kernel. The parameters of the kernel are signal standard
deviation o = 1.0 and characteristic length scale o; = (1.2,1.5). Note that this kernel
expects two-dimensional points as input:

kernel_name = "KernelMaternARD52"

params = torch.tensor([1.0, 1.2, 1.5], requires_grad=True)

k~= kernel.selectKernel (kernel_name, params)

opt = gpo.GPOptimiser(fn, dim_bounds, k, autotune=True, verbose=True)

Note that if the parameters of the kernel are supposed to be automatically optimised,
the keyword argument requires_grad in kernel parameters initialisation needs to be set to
True. In case a benchmark is optimised, the dimensions bounds need to be set manually:

dim_bounds = [[0.0, 5.0], [0.0, 5.0]]

Finally, the optimisation can be run for n rounds and the results of the optimisation
can be shown:

# run optimisation

opt.optimise(n)

# print results

print("Best settings: hpl:", opt.best_x[0], "hp2:", opt.best_x[1])
print("Best function value:", opt.best_y)

Optimiser stores the best found settings x* along with best found function value f(x*)
in variables best_x and best_y. The optimiser also stores other information, such as every
used training point, its function value and values of automatically tuned parameters.
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4.4 GPOP Customisation

In order to adjust GP optimiser to specific NN, it’s possible to create custom kernels and
acquisition functions. Also, it is possible to create new benchmarks that may help to select
suitable hyper-optimisation parameters that suite specific NN.

To add a new kernel, AF or a benchmark, it’s possible to edit existing Python modules
kernel, acqfun and benchmarks, or to create a new module. But in order to preserve full
functionality, it’s recommended to use the existing modules.

4.4.1 Writing new kernels

In order to add a new kernel, create a new class in module kernel module. Also, it’s
important to maintain following rules to ensure GPOP works as expected:

e kernel has to be a callable class with initialisation parameter params stored as a class
variable

e params is a tensor, where each element or group of elements represents a parameter
of the kernel

e inputs of the kernel are two tensors, representing two D-dimensional points
e all operations on inputs and parameters have to use torch framework
e the new kernel has to be added to selectKernel () function

It’s also possible to create new kernel builders, which should return a new kernel that
follows the same conventions as mentioned above. For examples of kernels builders, see
buildAddKernel () and buildMultKernel () functions in kernel module.

4.4.2 Adding New Acquisition Functions

To create a new AF, add a new class to agfun module that follows rules below:
e AF has to be a callable class
e AF has three required input arguments:

— X_test — an array of D-dimensional testing points
— x — a list of D-dimensional training points

— y — a list of function values for each training point in list x
e the outputs of AF are:

— x_next — an array representing a D-dimensional point that will be used as next
training point

— mean — a list of predicted mean values of the testing points

— sigma — a list of predicted standard deviations of the testing points

e the new AF has to be added to selectAcqFun() function

Note that the names of the inputs and outputs can be changed, but positions and types
have to be preserved.
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4.4.3 Adding New Benchmarks

To add a new benchmark, create a new class in module benchmarks. New benchmarks have
to inherit from the Benchmark class and follow the rules below:

e benchmark has to be a callable class

benchmark has two required positional initialisation arguments:

— x_opt — a list of D values, representing an optimum of the benchmark

— f_opt — a function value in the optimum of the benchmark

the input of the benchmark is D-dimensional array, representing a point in space

the output of the benchmark is a scalar

the new benchmark has to be added to the function selectBenchmark()
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Chapter 5

Experiments

The actual optimal values of hyper-parameter settings in neural networks are not known
and moreover, the training time of the NN might be substantial. Therefore, it is common
to test the performance of hyper-optimisation on benchmarks first [14]. Benchmarks are
functions that are designed to simulate the typical difficulties that can occur during hyper-
optimisation while searching the hyper-parameters domains [20]. To evaluate the efficiency
of the implemented optimizers and their features, experiments were first conducted on
benchmarks and then on a NN using MNIST dataset [25].

This chapter contains description of implemented benchmarks and the results of the
conducted experiments.

5.1 Benchmarks for Hyper-parameter Optimisation

Since function parameters can be viewed as a particular hyper-parameters with continuous
domains and the resulting function value as a result of the loss function, the benchmark
functions are applicable substitute for actual NN. The advantage is that the minimal input
vectors of such functions are known and can be even directly specified in the benchmark.
Two basic benchmarks, Sphere and Ellipsoidal [20], were used in the experiments. Both
represent unimodal, separable problems and are scalable with dimension. Unimodal means
that the function has only one local minimum (maximum) and it’s the global minimum
(maximum). The separability of D-dimensional problem means that it can be separated
into D one-dimensional procedures and solved independently.

Defined benchmarks use the following notation: x is D-dimensional input vector, x°P
is an optimal solution vector and f,,; is minimal function value such that f,,; = f(x°?).

t

5.1.1 Sphere Function

Sphere function represents easy continuous domain search problem that is unimodal and
highly symmetric. Sphere function is given as:

F(x) = lzll* + fopt

7z =x — xP

An example of two-dimensional Sphere function is shown in Figure 5.1.
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Figure 5.1: Example of a two-dimensional Sphere benchmark. Optimal function value
f(x°P') in optimum x°" = (2.5,2.5) is shown by a red arrow/cross.

5.1.2 Ellipsoidal Function

Ellipsoidal function represents unimodal, ill-conditioned continuous search problem with
smooth local irregularities. Ill-conditioned function is a function such that a small change
in the input vector of the function may lead to a large change in the resulting function
value. Ellipsoidal function is defined as [20]:

(5.2)

where T,,, : RP — RP is mapped element-wise for each element of the input vector and is
defined as follows:

x — sign(x)exp(zZ + 0.049(sin(c12) + sin(cad)))

-1 ifz<0
 flog(le) a0 |
= i sign(x) =< 0 ifz=0
0 otherwise . (5.3)
1 otherwise
10 ifz>0 79 ifx>0
C1 = . Cy = .
5.5  otherwise 3.1 otherwise

Example of two-dimensional Ellipsoidal function is shown in Figure 5.2.

5.2 Testing the Toolkit on Benchmarks

Each of the listed experiments on the before mentioned benchmark functions has been
averaged from over 100 runs with different function optimum. The location of the optimum
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(a) 3D plot (b) contour plot

Figure 5.2: Example of a two-dimensional Ellipsoidal benchmark. Optimal function value
f(x°P") in optimum x°* = (2.5,2.5) is shown by a red arrow/cross. As can be seen, the
benchmark is ill-conditional only in dimension of x1, while xo has only a small influence on
the resulting function value.

was selected randomly with uniform distribution from a subset of available search space, so
the optimum lies in different sector of the search space in each run. These measures should
provide reasonable assessment in performance of all tested features of GPOP.

Each experiment was run on a benchmark with different dimensionality, where each
dimension was optimised on interval [0, 5]. Based on the dimensionality of the benchmark,
different number of samples and optimisation steps were used to comply with the size of
the search space. The number of samples and the number of optimisation steps used for
different D-dimensional benchmarks are shown in Table 5.1. All experiments used Matérn
ARD 5/2 kernel, random DSS and EI AF, any additional settings or differences are described
in particular experiments.

Table 5.1: Number of optimisation steps and number of testing samples used in D-
dimensional benchmark experiments.

Configuration 1D 2D 3D 4D 5D

#steps 10 15 20 25 30
#samples 25 202 153 10* 5°

Experiments are divided into five sections, where first section focuses on comparison of
implemented optimisers, next sections are focused on selected kernel, DSS and AF, while
the last part focuses on automatic tuning of the GP parameters.

5.2.1 Optimiser Accuracy Comparison

The first set of experiments devotes attention to comparison between GP, grid and random
hyper-optimisation. All of the optimisers were tested on up to 5-dimensional benchmarks.
The accuracy of each optimiser is highly influenced by the size of search space and properties
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of the benchmark function. In this set of experiments, GP optimiser with RBF kernel,
random DSS and Expected Improvement AF was used.

Concerning smaller search space and sufficient amount of optimisation steps, Grid opti-
miser may provide better results than Random optimiser. But as the number of optimisation
steps reduces or search space increases, Grid optimiser starts to provide worse results than
GP optimiser or Random optimiser (see Figure 5.3).

—— Grid optimiser
—— Random optimiser
—— GP optimiser 4

—— Grid optimiser
—— Random optimiser
—— GP optimiser

5 6 7 8 9 10 6 8 10 12 14
step step

(a) 1D Sphere (b) 2D Sphere

Figure 5.3: Comparison of GP, Random and Grid optimisers on 1D and 2D Sphere bench-
marks showing the cumulative minimum over optimisation steps.

As can be seen in Figure 5.4, there is a mild difference between optimisation of Sphere
and Ellipsoidal benchmark considering GP and random optimisation. Sphere benchmark
is highly symmetrical and contains larger space with values closer to optimum. Therefore,
Random optimiser tends to provide better results in the first few steps of optimisation (first
8 steps in Figure 5.4a) before GP optimiser creates sufficient model. Ellipsoidal benchmark
is less symmetrical and ill-conditioned and therefore GP optimiser finds better solution
faster, as can be seen in Figure 5.4b.

7
—— Grid optimiser \ —— Grid optimiser
6 —— Random optimiser 1000 \\ —— Random optimiser
—— GP optimiser \\ —— GP optimiser
5 800| |
4 . \
g 2 600{ |
[ 3 (7]
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2 Dt
1 *\< ] 200 .
S 6 8 0 12 12 16 18 20 Ea— 6 8 10 12 14 16 18 20
step step
(a) 3D Sphere (b) 3D Ellipsoidal

Figure 5.4: Comparison of GP, Random and Grid optimisers on 3D benchmarks showing
the cumulative minimum over optimisation steps.

The number of steps needed for GP optimiser to beat average values of Random opti-
miser is influenced by the shape of the problem and by the size of the search space. When
searching in larger or less symmetric space of a benchmark, the chances of random search
to select better values are lesser. That means GP optimisation can achieve better results

in just a few steps even when optimising problems with more dimensions, as can be seen in
Figure 5.5.
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Figure 5.5: Comparison of GP and Random optimiser on 5D benchmarks showing the
cumulative minimum over optimisation steps. Random optimiser performs very-well on
highly symmetrical Sphere benchmark and manages to provide better results for about 20
optimisation steps, while GP optimiser provides better optimisation results on Ellipsoidal
benchmark.

5.2.2 Kernel Experiments

Kernel experiments were focused on performance of kernels themselves, without any dif-
ferences between the parameters of the kernels. All three tested kernels (RBF, Laplacian
and Matérn 5/2) used the same parameters setting in each conducted experiment, therefore
Matérn kernel was used without ARD. Experiments were run on both before mentioned
benchmarks in up to 5-dimensions.

As shown in Figure 5.6, kernel selection has a significant influence on the optimisation.
The difference between the tested kernels on one and two-dimensional benchmarks is in-
conspicuous, but experiments on larger search space and in more dimensions show that
Laplacian kernel suites these benchmarks better than the other two kernels. The perfor-
mance of RBF and Matérn kernel is quite similar, but in most of the experiments RBF
kernel performed slightly better. This is expected, since the behaviour of the kernels is
quite similar and while Matérn is more suitable to model more substantial local changes,
both used benchmarks are rather smooth.

12 — RBF —— RBF
—— Laplacian 10000 —— Laplacian
10 —— Matérn —— Matérn
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8
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> xx"""”*w——-.7-,,.,“ 2000 \ +
0 0 s====
3 6 9 12 15 18 21 24 3 6 9 12 15 18 21 24
step step
(a) 4D Sphere (b) 4D Ellipsoidal

Figure 5.6: Comparison of implemented kernels on 4D Sphere and Ellipsoidal benchmarks
showing the cumulative minimum over optimisation steps. Kernel selection is highly depen-
dent on the optimised problem and might reduce the number of optimisation steps quite
significantly.
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5.2.3 DSS Experiments

Next set of experiments was focused on implemented domain-space search strategies. The
main objective of this set of experiments was to determine how different DSS strategies
influence the result of hyper-optimisation and how are particular strategies influenced by
used number of testing samples. Due to the high number of experiments needed to evaluate
the latter, only benchmarks with up to 3-dimensions were tested, while the first set of
experiments was run on up to 5-dimensional benchmarks.

When considering the influence of the number of samples on both DSS strategies, the
optimal number of samples depends on the optimised benchmark, the number of optimi-
sation steps, the number of dimensions and the size of the search space. As shown in
Figure 5.7, the average performance of both grid and random DSS seem to share the same
behaviour on each benchmark, except for smaller number of samples. All conducted DSS
experiments in up to 5D show that starting from approximately 10” samples (where D is
the number of dimensions), the behaviour of both averages is very similar.

6.0

* —— grid average —— grid average
5.51 N\ random average 103 random average
5.0 N

=45 o
o o
5.0 5 N
: . 6 x 102
35 - —
3.0
4 %102
10t 102 103 104 10t 10? 103 104
number of samples number of samples
(a) 3D Sphere (b) 3D Ellipsoidal

Figure 5.7: Influence of the number of samples on average error of all the optimisation
steps. The behaviour of both strategies is quite similar, except for very small number of
samples. In comparison with grid DSS, random DSS achieves surprisingly good results even
for a really small number of testing samples. However, this pattern isn’t that striking in
1D experiments.

The average values serve as a good guideline for the comparison of a behaviour of both
strategies, but they do not show the actual best achieved results. Figure 5.8 shows the best
achieved results for selected optimisation steps in dependency on the number of samples.
Because the results for each tested number of steps depends on so many factors, it’s hard
to select suitable number of testing samples. But it’s obvious that grid DSS achieves poor
results with small number of optimisation steps, while random DSS achieves more consistent
results for every tested number of samples and moreover, it performs quite well even with
a small number of testing samples.

Both random DSS and grid DSS behave analogously when changing the number of sam-
ples (except for very small values) and therefore experiments focusing on the influence of
DSS strategies on minimizing the benchmark functions were run with the same amount
of samples for both strategies. As results on Figure 5.9 suggest, hyper-optimisation with
random DSS achieved better results then grid DSS in all conducted experiments. Further-
more, the difference between both approaches is more notable when solving benchmarks
with more dimensions and experiments conducted on Ellipsoidal benchmark showed more
substantial differences between tested DSS strategies.
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Figure 5.8: Influence of the number of samples on error in some of the optimisation steps.
As can be seen in figures above, the best selected number of testing samples depends on
many factors, such as selected DSS, number of optimisation steps and optimised benchmark.

5.2.4 Comparison of Acquisition Functions

Next set of experiments compared three acquisition functions: MinimalMean, LowerConfidence
and ExpectedImprovement. Experiments on one-dimensional benchmarks showed the best
results achieved LowerConfidence AF, while the rest of the experiments (up to 5D for both
benchmarks) showed better convergence to optimal value while using ExpectedImprovement
AF. As shown in Figure 5.10, the difference between used AF was most perceptible in exper-
iments with Ellipsoidal benchmark, while results on Sphere benchmark show only minimal
difference between used AFs.

5.2.5 Estimation of GP Parameters

The last part of experiments on benchmarks was focused on automatic tuning of GP pa-
rameters. Three options were tested: GP optimisation without automatic tuning, with
automatic tuning of kernel parameters and with automatic tuning of all parameters (kernel
and uncertainty).

The best results on most of the benchmarks were achieved with automatic tuning of
kernel parameters, as shown in Figure 5.11. Mentioned problem with tuning the uncertainty
is probably caused because of the automatic tuning algorithm, which is trying to improve the
log likelihood by increasing the uncertainty. That leads to the possibility of also increasing
characteristic length scale, so these two parameters are increased until the model no longer
fits the problem.
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Figure 5.9: Comparison of grid and random DSS.
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Figure 5.10: Influence of selected AF on the result of the optimisation. All AFs in experi-
ments on Sphere benchmarks performed almost identically, except ExpectedImprovement
AF was able to converge closer to the benchmark optimal function value, if given enough
optimisation steps. This difference was more significant on Ellipsoidal benchmarks, where
except first few optimisation steps, ExpectedImprovement AF achieved distinctly better re-
sults that the other two AFs (note that the results for MinimalMean and LowerConfidence
shown in Figure b) coincide).

5.3 Neural Networks Experiments

NN experiments were run on MNIST dataset, specifically on image classification example
NN'. NN in the example uses Stochastic Gradient Descent algorithm and trains the network
for 10 epochs. All experiments compare three different optimisers: Grid optimiser, Random
optimiser and GP optimiser. GP optimiser was run in two configurations, once with fixed
parameters and once with automatic tuning of kernel parameters.

All optimised hyper-parameters and used dimension bounds are presented in Table 5.2.
GP optimiser used random DSS, EI AF, uncertainty of 1le—3 and Matérn ARD 5/2 kernel
with signal standard deviation oy = 1.0 and two distinct settings of characteristic length
scale oy, as defined in Table 5.3. Used number of optimisation steps and number of samples
is the same as in benchmarks experiments and is described in Table 5.1.

All results show cumulative minimum of validation loss in different optimisation steps.
All loss values are averaged from only 5 distinct optimisation runs, due to a longer training
time of the NN. This causes noticeable dispersion of the resulting loss values, but it should

Thttps://github.com /pytorch/examples/tree/master /mnist
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Figure 5.11: Influence of automatic tuning of GP parameters on a benchmark optimi-
sation. One-dimensional benchmarks show only minor differences, but multidimensional
benchmarks show that the automatic tuning of kernel parameters performs the best, while
tuning of uncertainty leads in most cases to short improvement followed by significant
deterioration of the optimisation. Though in one case the use of GP optimiser without au-
tomatic tuning achieved better results that GP optimiser with automatic tuning of kernel
parameters, most experiments show that the latter yields significant improvement of the
optimisation.

provide reasonable estimate to roughly compare the optimisers. Note that every experiment
was run with two different settings of kernel parameter characteristic length scale o7;.

The aim of the first set of experiments was optimising a single hyper-parameter. As
can be seen in Figure 5.12, Grid optimiser managed to find the best hyper-parameter
setting of learning rate and number of hidden neurons. Grid optimiser searches the domain
progressively, so the first and the last few optimisation steps search the border of a domain.
That is the reason why the cumulative minimum of Grid optimiser usually changes rapidly
in the beginning and maintains the value at the end of the optimisation. Random optimiser
achieved the best result in optimisation of the batch size. But unlike Grid optimiser, its
result is not influenced by the location of the optimum and the therefore the change in
cumulative minimum is more gradual. GP optimiser needs a few steps before it creates

Table 5.2: Optimised hyper-parameters and their bounds used in experiments.

Hyper-parameter Type Dimension bounds
learning rate float [0, 1]

number of neurons in hidden layers int [32,512]

batch size int [1,1024]
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Table 5.3: Characteristic length scale settings for optimised hyper-parameters used in ex-
periments.

g

Hyper-parameter
setting 1  setting 2

learning rate 0.1 0.2
number of hidden neurons 48 96
batch size 102 204

sufficient model and then starts to improve it’s optimisation, but was not able to provide
better results than the other optimisers.
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Figure 5.12: Comparison of Grid, Random and GP optimisers on MNIST NN, optimising
one hyper-parameter.

The second set of experiments focused on optimisation of two hyper-parameters. As
can be seen in Figure 5.13, Random optimiser achieved better result in the first few steps
of optimisation, while Grid optimiser managed to find better values in two out of three
experiments. GP optimiser performed similarly as in optimisation of one hyper-parameter,
but there are more noticeable differences between GP optimiser with and without automatic
parameter tuning. These differences are probably more noticeable because of higher number
of optimisation steps with automatic parameter tuning.

The last set of experiments was focused on optimisation of all three hyper-parameters.
As can be seen in Figure 5.14, Random optimiser provided the best results throughout
all the optimisation steps, while GP optimiser provided better results than Grid optimiser
the first 13 steps. But this is influenced by the number of optimisation steps in total and
Grid optimiser might possibly find better hyper-parameter settings even when using fewer
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Figure 5.13: Comparison of Grid, Random and GP optimisation of two hyper-parameters
of MNIST NN.

optimisation steps. Also, note that GP optimiser in Figure 5.14b managed to improve its
results to the same loss values as in Figure 5.14a by using automatic parameter tuning.

The worse results of GP optimiser might be caused by several issues: GP parameter
settings, inconvenient mean or the nature of the loss space. To fix parameters of the GP
model, more knowledge about the behaviour of the optimised hyper-parameters is needed.
Problems with mean could arise when the loss values are too close to mean value and
GP optimiser might get stuck in one place. This issue could be resolved by selection of a
different AF or a loss function. Loss space could cause problems when the domains of the
optimised hyper-parameters are quite large and the characteristic length scale parameter is
set to higher values. That could lead to inability to model the subtle differences in the loss
value.
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Figure 5.14: Comparison of Grid, Random and GP optimisers on MNIST NN, optimising
three hyper-parameters: learning rate, number of hidden neurons and batch size. The
results for two different characteristic length scale settings are shown. Note that both runs
used the same Grid and Random optimiser, the differences in Random optimiser are caused
only by different seed.
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Chapter 6

Conclusion

The goal of this thesis was to design and implement a hyper-optimizer based on Gaussian
Processes. I have achieved this goal by implementing a simple GP based hyper-optimisation
library with a CLI wrapper. Furthermore, I compared the efficiency of implemented GP
optimiser with two baseline solutions based on grid and random search by numerous ex-
periments on a few benchmark functions and MNIST dataset. Also, I have tested different
parameters of the GP optimiser, such as DSS or AF, to evaluate their influence on the
result of the optimisation.

The experiments on the benchmarks functions proved that the implemented GP op-
timiser is in analogous cases able to achieve better results than both grid and random
search optimisation techniques and in some cases may save more that ten optimisation
steps. Experiments with parameters of the GP optimiser show that best option for DSS is
random DSS. Optimisers with this strategy achieved better result in all tested cases and
since random DSS provides better results with fewer testing samples, it also brings notable
improvement in computation time of GP predictions. Most suitable AF proved to be EI,
while most suitable kernel on the tested benchmarks was Laplacian kernel. Both EI AF and
Laplacian kernel led to faster improvement, especially in the first few steps of the optimi-
sation. Experiments with automatic tuning of the parameters have shown that tuning only
the parameters of the kernel leads mostly to better results, while tuning kernel parameters
with uncertainty leads to fast deterioration of the optimisation results in most cases.

The experiments on MNIST dataset show that average loss value achieved in random
optimisation is better than in GP optimisation. Though the results of the GP optimiser
can be improved by changing its parameters, it requires better understanding of behaviour
of the optimised hyper-parameters.

In the future, I would like to continue my work and improve the performance and
user interface of the implemented toolkit. Specifically, I would like to improve automatic
tuning of GP parameters in contrast to their domain size. Also, I would like to further
simplify the way of defining configuration files of neural networks and the addition of custom
benchmark functions. My work could be further expanded by improving the performance
of GP optimisation, adding additional hyper-optimisation methods or by creating a GUI
for visualisation of the optimised hyper-parameters.
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