
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

GAUSSIAN PROCESSES BASED HYPER-OPTIMALIZATION
OF NEURAL NETWORKS
HYPER-OPTIMALIZACE NEURONOVÝCH SÍTÍ ZALOŽENÁ NA GAUSSOVSKÝCH PROCESECH

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

Be. MARTIN COUFAL

Ing. KAREL BENEŠ

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Computer Graphics and Multimedia Academic year 2019/2020
(DCGM)

Master's Thesis Specification |||||||||||||||||||||||||
22368

Student: Coufal Martin, Be.
Programme: Information Technology Field of study: Intelligent Systems
Title: Gaussian Processes Based Hyper-Optimization of Neural Networks
Category: Artificial Intelligence
Assignment:

1. Get acquainted with Gaussian processes for regression
2. Get acquainted with neural networks, focusing on common hyper-parameters
3. Implement an optimizer based on Gaussian processes
4. Demonstrate its performance on a suitable set of analytical functions
5. Design and implement a toolkit for hyper-parameter search for neural network training
6. Demonstrate its performance on a suitable task

Recommended literature:
• https://static.googleusercontent.eom/media/research.google.com/en//pubs/archive/46180

.pdf
Requirements for the semestral defence:

• Items 1,2,3, and development of item 4.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Beneš Karel, Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 20, 2020
Approval date: November 1, 2019

Master's Thesis Specification/22368/2019/xcoufa08 Strana 1 z 1

https://static.googleusercontent.eom/media/research.google.com/en//pubs/archive/46180
https://www.fit.vut.cz/study/theses/

Abstract
The goal of this thesis is to create a lightweight toolki t for artificial neural network hyper-
parameter opt imisat ion. The optimisat ion toolki t has to be able to optimise mult iple,
possibly correlated hyper-parameters. I solved this problem by creating an optimiser that
uses Gaussian processes to predict the influence of the hyper-parameters on the resulting
neural network accuracy. Based on the experiments on mult iple benchmark functions, the
toolki t is able to provide better results than random search opt imisat ion and thus reduce the
number of necessary optimisat ion steps. The random search opt imisat ion provided better
results only i n the first few optimisat ion steps before Gaussian process optimisat ion creates
sufficient model of the problem. However the experiments on M N I S T dataset show that
random optimisat ion achieves almost always better results than used G P optimiser. These
differences between the experiments results are probably caused by insufficient complexity
of the benchmarks or by selected parameters of the implemented optimiser.

Abstrakt
Cílem t é t o d ip lomové p r á c e je vy tvo řen í n á s t r o j e pro opt imal izaci h y p e r - p a r a m e t r ů u m ě l ý c h
neu ronových sí t í . Tento n á s t r o j mus í bý t schopen optimalizovat více h y p e r - p a r a m e t r ů , k t e ré
mohou bý t nav íc i korelovány. Tento p r o b l é m jsem vyřeši l i m p l m e n t a c í o p t i m a l i z á t o r u ,
k t e r ý využ ívá Gaussovské procesy k predikci v l i v u j edno t l i vých h y p e r p a r a m e t r ů na výsled
nou p řesnos t neu ronové s í tě . Z p rovedených e x p e r i m e n t ů na někol ika benchmark funkcích
jsem zjist i l , že i m p l e m e n t o v a n ý n á s t r o j je schopen d o s á h n o u t lepších výs ledků než opt imal
i zá to ry za ložené na n á h o d n é m p roh l edáván í a sníži t tak v p r ů m ě r u p o č e t p o t ř e b n ý c h k roků
optimalizace. Opt imal izace za ložená na n á h o d n é m p roh l edáván í dosáh l a lepších výs ledků
pouze v p rvn í ch krocích optimalizace, než si o p t i m a l i z á t o r za ložený na Gaussovských pro
cesech vy tvo ř í d o s t a t e č n ě p ře sný model p r o b l é m u . N i c m é n ě t é m ě ř všechny experimenty
p rovedené na datasetu M N I S T p r o k á z a l y lepší výs ledky o p t i m a l i z á t o r u za loženého na n á h o d
n é m p roh ledáván í . T y t o rozdí ly v p rovedených experimentech jsou p r a v d ě p o d o b n ě d á n y
s loži tost í zvolených benchmark funkcí nebo zvolenými parametry i m p l e m e n t o v a n é h o opti
ma l i zá to ru .

Keywords
hyper-parameter tuning, Gaussian processes, neural networks optimisation, regression prob
lem solving, kernels

Klíčová slova
optimalizace h y p e r - p a r a m e t r ů , Gaussovské procesy, optimalizace n e u r o n o v ý c h sít í , řešení
regresních p r o b l é m ů , kernely

Reference
C O U F A L , M a r t i n . Gaussian Processes Based Hyper-Optimalization of Neural Networks.
Brno , 2020. Master 's thesis. Brno Universi ty of Technology, Facul ty of Information Tech
nology. Supervisor Ing. K a r e l Beneš

Rozšířený abstrakt
Neuronová síť je v ý p o č e t n í model insp i rovaný b io logickým neuronem lidské nervové sous
tavy. Tento model je použ íván pro řešení p r o b l é m ů spo jených se s t r o j o v ý m učen ím, jako
jsou n a p ř í k l a d zp racován í řeči, detekce p o d v o d ů nebo med ic ín ská diagnostika.

Neuronová síť se s k l á d á z j e d n o t l i v ý c h vrstev u m ě l ý c h n e u r o n ů , kde k a ž d ý neuron m á
v s t u p n í vektor x = (x \ , x n) T , vektor vah w = (u > i , w n) T , bias O, ak t ivačn í funkci
a v ý s t u p . V ý s t u p neuronu y je d á n jeho ak t ivačn í funkcí / : y = / (x T w + O) . T y t o umělé
neurony jsou ve v r s tvách propojeny tak, že v ý s t u p j e d n é vrs tvy je propojen se vstupem
vrs tvy následuj íc í . P r v n í vrstva neu ronové s í tě je pak označována jako v s t u p n í vrstva,
pos ledn í vrstva je označována jako v ý s t u p n í vrstva a všechny o s t a t n í vrs tvy jsou označovány
jako sk ry t é .

A b y tyto modely mohly s p r á v n ě fungovat, je n u t n é je "naučit" na d o s t a t e č n é m m n o ž s t v í
t rénovac ích dat. Toto učen í je ř ízeno p o m o c í učíc ího algori tmu a funguje na pr incipu ak
tualizace p a r a m e t r ů n e u r o n o v ý c h sí t í - v e k t o r ů vah a b iasů . Učící algoritmus t r énu je neu
ronovou síť p o s t u p n ě , na m n o ž i n á c h t rénovac ích dat k t e r ý m se se ř íká dávky. T y t o t rénovac í
data jsou ne jdř íve p ř i v e d e n a na vstup neu ronové s í tě a dá le p r o p a g o v á n a neuronovou sít í .
V ý s t u p s í tě je ná s l edně p o r o v n á n s c í lovým vektorem d a n ý c h t rénovac ích dat p o m o c í chy
bové (loss) funkce. V ý s t u p t é h o funkce se označuje jako loss nebo chyba s í tě . Nakonec
jsou hodnoty p a r a m e t r ů neu ronové s í tě ak tua l i zovány p o m o c í zvoleného učíc ího algori tmu.
M í r a o kolik jsou parametry neu ronové s í tě upraveny je ř í zena koeficientem učení Celý
proces učen í je pak za úče lem zlepšení p ře snos t i modelu m o ž n o opakovat, p ř i čemž jeden
cyklus učen í p řes v šechna t r énovac í data se nazývá epocha.

Výs ledná p ře snos t neu ronové s í tě je ov l ivněna mnoha faktory, jako jsou s t ruktura neu
ronové sí tě , učící algoritmus, p o u ž i t á t rénovac í data a inicializace p a r a m e t r ů neuronové
sí tě . F a k t o r ů m k t e r é ovlivňují s t rukturu nebo z p ů s o b učen í neu ronové s í tě se ř íká hyper-
parametry a jejich n a s t a v e n í v ý r a z n ě ovlivňuje výs l ednou p řesnos t neu ronové s í tě . Běžné
hyper-parametry ovlivňující s t rukturu neu ronové s í tě jsou n a p ř í k l a d poče t sk ry tých vrstev,
poče t n e u r o n ů ve sk ry tých v r s tvách a ak t ivačn í funkce, z a t í m c o b ě ž n é hyper-parametry
ovlivňující učen í s í tě jsou koeficient učení , velikost dávek nebo p o č e t epoch.

K opt imal izaci h y p e r - p a r a m e t r ů se b ě ž n ě využ ívá m a n u á l n í l aděn í nebo o p t i m a l i z á t o r y
založené na n á h o d n é m proh ledáván í . Ex i s tu j í však i složitější p ř í s tupy , jako Bayesovské
op t ima l i začn í metody nebo j iné op t ima l i začn í algori tmy spo jené se s t r o j o v ý m učen ím.
Zák ladn í s t ruktura Bayesovských o p t i m a l i z á t o r ů je p o p s á n a p o m o c í formalismu Sequen-
tial Model-Based Optimisation (S M B O) , k t e r ý definuje h l avn í smyčku cyk lu optimalizace.
V p r v n í m kroku se vy tvo ř í model rozdě len í p r a v d ě o d o b n o s t i p(y|x,D), kde x je m n o ž i n a
tes tovac ích dat a T> = { (xi , yi),..., (X J , yi)} je m n o ž i n a t rénovac ích dat - m n o ž i n a nas
t aven í h y p e r - p a r a m e t r ů Xj pro k t e r é je j iž chyba s í tě yi z n á m a . V ý b ě r tes tovac ích dat je
ř ízen p o m o c í Domain Search Stratégy (DSS) . V da l š ím kroku vybere akviziční funkce (A F)
p o m o c í v y t v o ř e n é h o p r a v d ě p o d o b n o s t n í h o modelu p(y|x, D) nás leduj íc í n a s t a v e n í hyper-
p a r a m e t r ů , k t e r é je ná s l edně p o u ž i t o pro t r énován í neu ronové s í tě . Nakonec se dvojice
(xj ,yj) p ř i d á do m n o ž i n y t rénovac ích dat V, kde yi je chyba s í tě p ř i n a s t a v e n í hyper-
p a r a m e t r ů Xj.

Pro reprezentaci modelu rozdě len í p r a v d ě p o d o b n o s t i se b ě ž n ě použ ívá G a u s s o v s k ý pro
ces, n á h o d n ý les, nebo Tree-Parzen Es t imat ion . V t é t o p rác i jsou pro tento účel využ i ty
Gaussovské procesy. Z a t í m c o klasické rozdělení p r a v d ě p o d o v n o s t i n á h o d n é p r o m ě n n é po
pisuje vlastnosti ska l á ru nebo vektoru, s tochas t i cký proces popisuje funkce. S tochas t i cký
proces y(x) je definován s d r u ž e n ý m rozdě len ím p r a v d ě p o d o b n o s t i pro k a ž d o u konečnou
m n o ž i n u hodnot y (x i) , . . . , y(x£>). G a u s s o v s k ý proces je s tochas t i cký proces, kde pod-

m í n ě n é rozdělení p r a v d ě p o d o b n o s t i p (y (x i) , . . . , y (x £ >) | x i , . . . , xj j) je L - r o z m ě r n é n o r m á l n í
rozdělení . Toto v íce rozměrné rozdělení p r a v d ě p o d o b n o s t i je p o p s á n o jeho s t ř e d n í hodnotou
\x a kovar iační m a t i c í S . S t ř e d n í hodnota u d á v á s t ř e d rozdělení p r a v d ě p o d o b n o s t i , z a t í m c o
hodnoty na d i agoná le kovar iační matice udáva j í rozptyl pro k a ž d o u dimenzi a zbytek hod
not definuje korelaci mezi k a ž d ý m i d v ě m a n á h o d n ý m i p r o m ě n n ý m i . Hodnota korelace je
d á n a kernelem, k t e r ý definuje tvar tohoto p r a v d ě p o d o b n o s t n í h o rozdělení . P ro účely hyper-
optimalizace je prostor op t ima l i zovaných h y p e r - p a r a m e t r ů v závis lost í na chybové funkci
mode lován p o d m í n ě n ý m rozdě len ím p r a v d ě p o d o b n o s t i p (x | y) , kde x = (x\,..., xn)T je vek
tor n á h o d n ý c h p r o m ě n n ý c h reprezentu j íc ích t es tovac í data a y = (y i , . . . ,ym)T je vektor
n á h o d n ý c h p r o m ě n n ý c h reprezentu j íc ích t r énovac í data..

I m p l e m e n t o v a n ý toolkit je navžen jako knihovna v p r o g r a m o v a c í m jazyce Py thon , k t e r á
využ ívá p o p s a n ý S M B O formalismus s p r a v d ě p o d o b n o s t n í m modelem za loženým na Gausso-
vských procesech za úče lem optimalizace h y p e r - p a r a m e t r ů n e u r o n o v ý c h sí t í . Toolki t je
rozdělen do dvou h lavn ích ba l ičku o p t i m i s e r a n n b r i d g e . Bal íček o p t i m i s e r obsahuje
implementaci Gaussovského procesu, o p t i m a l i z á t o r ů , D S S , A F a kerne lů . Toolki t ob
sahuje t ř i o p t i m a l i z á t o r y : Grid optimiser, Random optimiser a GP optimiser, za ložené
na p roh l edáván í na mř ížce , n á h o d n é m p roh l edáván í a Gaussovských procesech. Implemen
tace D S S obsahuje dvě strategie, grid a random, k t e r é vybí ra j í t es tovac í data z d o m é n y
na zák l adě p roh l edáván í na mř ížce nebo p o m o c í n á h o d n é h o p roh ledáván í . Toolki t dá le ob
sahuje implementaci t ř í akviz ičních funkcí, z nichž dvě jsou za loženy na v ý b ě r u na zák ladě
nejnižší o d h a d o v a n é funkční hodnoty (Lower Confidence Bound) a t ř e t í v y b í r á nás ledu
jící n a s t a v e n í h y p e r - p a r a m e t r ů dle očekávaného zlepšení (Expected Improvement). Dá le
o p t i m i s e r obsahuje implementaci pě t i ke rne lů (konstantní, lineární, RBF, Laplaceovský
a Matérn) a dvou metod pro jejich sk ládán í . Bal íček n n b r i d g e se s t a r á o ko rek tn í propo
jen í o p t i m a l i z á t o r u s neuronovou sí t í . Parametry tohoto p ropo jen í , op t ima l i zované hyper-
parametry a rozsah d o m é n , na k t e r ý c h jsou hyperparametry opt imal izovány, je n u t n é defi
novat p o m o c í konf iguračního souboru. Toolki t dá le poskytuje skript wrapper .py , k t e r ý
slouží jako r o z h r a n í pro s p u š t ě n í optimalizace z př íkazové řádky . I m p l e m e n t o v a n ý opt imal
izá tor dá le umožňu je automatickou opt imal izaci p a r a m e t r ů kerne lů a neu rč i t o s t i v modelu
G P , k t e r á je za ložena na maximal izac i log likelihood funkce G P modelu.

I m p l e m e n t o v a n ý toolkit b y l o t e s tován na dvou různých benchmark funkcích až v p ě t i
d imenz ích a t a k é na neu ronové síti využívaj íc í dataset M N I S T . P r v n í set e x p e r i m e n t ů
na benchmark funkcích b y l z a m ě ř e n na p o r o v n á n í G P o p t i m a l i z á t o r u s o p t i m a l i z á t o r y za
loženými na n á h o d n é m p roh l edáván í a p roh l edáván í na mř ížce , z a t í m c o dalš í experimenty
byly z a m ě ř e n y na p o r o v n á n í i m p l e m e n t o v a n ý c h kernelů , D S S , A F a a u t o m a t i c k é opt imal
izace p a r a m e t r ů G P o p t i m a l i z á t o r u . Exper imenty na benchmark funkcích prokáza ly , že
o p t i m a l i z á t o r založený na Gaussovských processech je schopen d o s á h n o u t lepších výs ledků
než o p t i m a l i z á t o r za ložený na n á h o d n é m proh ledáván í . Exper imenty dá le ukázaly , že
random D S S je lepší strategie pro v ý b ě r tes tovac ích dat než gr id D S S a nav íc dosahuje
lepších výs ledků př i m e n š í m m n o ž s t v í t es tovac ích dat, což urychluje v ý p o č e t n í rychlost
modelu. Dá le bylo u k á z á n o , že na zvolených benchmark funkcích dosahuje nej lepších
výs ledků A F Expected Improvement, jejíž použ i t í vede k v ý r a z n é m u zlepšení již v p rvn í ch
krocích optimalizace. Nejlepších výs ledků mezi t e s t o v a n ý m i kernely dosáh l o p t i m a l i z á t o r
s L a p l a c e o v s k ý m kernelem. Pos l edn í čás t e x p e r i m e n t ů věnovaná a u t o m a t i c k é opt imal izaci
ukáza la , že optimalizace neu rč i t o s t i zá roveň s parametry kerne lů m ů ž e vést k v ý r a z n é m u
zhoršení p ře snos t i modelu. N a druhou stranu a u t o m a t i c k á optimalizace v ý h r a d n ě p a r a m e t r ů
kerne lů vedla k dosažen í lepších výs ledků ve vě tš ině e x p e r i m e n t ů . P ř i experimentech na neu
ronové síti bylo dosaženo nej lepších výs ledků př i p roh l edáván í na mř ížce a n á h o d n é m

proh ledáván í , v závislost i na m n o ž i n ě op t ima l i zovaných h y p e r - p a r a m e t r ů . G P opt imal
izace d o s á h l a o něco horš ích výs ledků , p r a v d ě p o d o b n ě v důs l edku zvolených p a r a m e t r ů G P
o p t i m a l i z á t o r u .

Gaussian Processes Based Hyper-Optimalization
of Neural Networks

Declaration
I hereby declare that this Masters 's thesis was prepared as an original work by the author
under the supervision of Ing. K a r e l Benes. I have listed a l l the l i terary sources, publications
and other sources, which were used dur ing the preparation of this thesis.

M a r t i n Coufal
June 3, 2020

Acknowledgements
I would like to thank my thesis supervisor Ing. K a r e l Benes for professional advice on
the researched topic, helpful notes regarding the text of this thesis and t ips about the
implementation details of the optimisat ion toolki t .

Contents

1 Introduction 2

2 Neura l Networks and their Hyper-parameters 3
2.1 Structure of Neura l Networks 3
2.2 Learning in Neura l Networks 4
2.3 Hyper-parameters of Neura l Networks 6

3 Hyper-parameter Optimisat ion 12
3.1 Methods of Hyper-parameters Tuning 12
3.2 Gaussian Process 17
3.3 Us ing Gaussian Processes for Regression 19
3.4 Parametr izat ion of G P optimiser 22

4 Design and Implementation of Toolkit for Hyper-opt imisat ion of Neura l
Networks 28
4.1 Toolki t Design 28
4.2 Toolki t Implementation 30
4.3 Usage Examples 37
4.4 G P O P Customisat ion 40

5 Experiments 42
5.1 Benchmarks for Hyper-parameter Opt imisa t ion 42
5.2 Testing the Toolki t on Benchmarks 43

5.3 Neura l Networks Experiments 49

6 Conclusion 54

Bibl iography 55

1

Chapter 1

Introduction

Neural networks are computat ional models used to tackle machine learning tasks such as
clustering, classification, regression, density modell ing or data denoising. Specifically, this
includes problems such as image and voice recognition, fraud detection, machine diagnostics,
medical diagnoses and process modell ing and control. For these models to work, they need
to be trained on a sufficient amount of t raining data. The resulting efficiency and accuracy
depend on many factors, such as the type and structure of the used neural network, learning
algori thm, used t ra ining data and network parameter ini t ia l isat ion. The parameters that
define the structure or learning aspects of the neural network are called hyper-parameters
and their effect is often correlated.

The impact of hyper-parameters settings on resulting accuracy of the neural network
is quite substantial and since the t ra ining of the network can take a noticeable amount
of t ime, it is beneficial to find acceptable hyper-parameters i n as few tra ining rounds as
possible. This thesis concerns wi th hyper-parameter opt imisat ion of neural networks, de
sign and implementat ion of the Gaussian process based hyper-optimisation toolkit and its
comparison wi th several methods that are commonly used in hyper-parameter opt imisat ion
to demonstrate its efficiency

There are many approaches that a im to solve the hyper-parameter opt imisat ion prob
lem. M a n u a l tuning of hyper-parameters is s t i l l widely used, but to be effective, it requires
a lot of user's knowledge about the optimised neural network and might be quite t ime con
suming. Automated opt imising solutions, on the other hand, do not require as much user's
t ime and knowledge at the expense of computing t ime. Those solutions might use more
straightforward approaches as gr id search and random search, or more complex solutions
such as Bayesian or Evolu t ionary optimisat ion.

This thesis is d ivided into several chapters as follows: the second chapter contains a
description of neural networks focusing on structural and learning aspects influenced by its
hyper-parameters settings. The th i rd chapter lists common hyper-parameter opt imisat ion
methods, including a detailed description of Gaussian processes based optimisat ion. Chap
ter 4 provides an elaborated description of the design and implementat ion of the toolki t for
hyper-optimisation along wi th possible alterations that can be done by the end user to cus
tomise the optimizer to fit specific neural network. The overview of performed experiments
w i th implemented toolki t and evaluation of its efficiency can be found in Chapter 5.

2

Chapter 2

Neural Networks and their
Hyper-parameters

Art i f i c i a l neural networks (NN) are computat ional models loosely inspired by biological
neural networks. They consist of subsequent layers, where each layer is composed of indi
v idua l artificial neurons. The actual architecture of each network and its learning process
can vary since neural networks is a broad term involving a lot of different neural network
types and learning algorithms that can be applied to various problems. B u t the basic idea
behind a l l neural networks is the same: based on some t ra ining data or feedback from the
environment, the learning algori thm updates the neural network's parameters i n order to
solve the given problem.

Parameters i n N N are coefficients of the model itself and can be estimated or learned
from data. Concretely, parameters are usually input weights and biases of the ind iv idua l
neurons. Hyper-parameters, on the other hand, influence the structure or learning process
of the N N and need to be expl ic i t ly set before t ra ining of the network.

2.1 Structure of Neural Networks

The basic element of the N N is an artificial neuron, also called a unit or a node. It consists of
a number of inputs x\...xn, usually represented by a vector x = { x \ , x n) T , input weights
w = (u > i , w n) T , bias O, activation function / (•) , and output y. The output of the
artificial neuron is determined as follows: a l l input values are mul t ip l ied by corresponding
weights, and together wi th bias form the input of the activation function. The activation
function takes this input and computes the output value y = / (x T w + 0) , as shown in
Figure 2.1. For common activation functions, the power of a single neuron is l imi ted to
solving l inearly separable problems.

More complex problems can be solved by creating layers of neurons, where each layer's
output (except from last layer) is the input of the next subsequent layer. The N N consists of
the input layer, number of hidden layers, and the output layer as shown in Figure 2.2. The
neurons i n the input layer correspond to network's input, while the output layer represents
network's output. The N N has n hidden layers of neurons, where each layer can have
different number of neurons. Connections between two layers can be between every two
nodes (fully connected layer) or just between some subset of nodes (convolutional layer).

3

bias 0

Figure 2.1: Basic structure of artificial neuron.

input layer x n hidden layers output layer y

"11 "21 "n1

layer h-| layer h2 layer h n

Figure 2.2: Basic structure of art if icial neural network wi th i inputs, n hidden convolutional
layers h i , h n (each consisting of j neurons) and output layer w i th k outputs.

The activation function, the number of hidden layers and the number of neurons in
hidden layers are network's most common structural hyper-parameters. Features of these
hyper-parameters and their influence on the N N are described in detail in Section 2.3.1.

2.2 Learning in Neural Networks

Learning in neural networks is a process of updat ing the parameters i n order to achieve
better accuracy. To evaluate this accuracy, network uses an error function and labelled
t ra ining data. Label led means each input vector x has a corresponding target vector t,
which denotes desired network's output. Then, a learning algori thm uses the error function
E(-) to calculate the error and updates the parameters w of the N N . The exact principle
of updat ing the parameters differs i n each algori thm, but i n order to introduce common
hyper-parameters further described in Section 2.3.2, below is described the principle of
t ra ining the N N using Gradient Descent a lgori thm [32].

4

Gradient Descent i n an iterative a lgor i thm that finds a local m i n i m u m by updat ing the
weights by a smal l steps in the opposite direction of the error function's gradient VE:

w (r + 1) = W M - rjVE(w^), (2.1)

where r is the current step and r\ is the learning rate. The learning rate is a hyper-parameter
that controls how much are the weights changed i n each step of the a lgori thm and its effect
is further discussed i n Section 2.3.2.

The gradient VE is a vector that points i n a direction of fastest increase of the function.
B y updat ing the weights i n the opposite direction of VE, Gradient Descent algori thm
approximates to a local m i n i m u m as shown in Figure 2.3. To find better opt imum, more
in i t i a l settings of the weight w can be used, but there is no guarantee that global op t imum
w i l l be found. Another way of getting out of the local op t imum is using momentum hyper-
parameter, which is described i n the next section. Al though , recent studies show that
the local m in ima found by Gradient Descent a lgori thm i n larger, mult i-dimensional loss
space of the N N are not such a problem, since their quali ty is comparable to the global
min imum [10].

E(w)

Wj W2 W3 W4 W5
weight

Figure 2.3: A n example of weight opt imisat ion using Gradient Descent algori thm. Figure
shows the influence of a weight parameter w on the error function E(-), where the points
u>i, u>3 and u>5 are different in i t i a l settings of weight w, resulting i n different progress of
Gradient Descent algori thm. The red arrows represent a change of the error when the
current weight wT is updated to the value w T + 1 . The weight update is i n the opposite
direction to a gradient of the error function E(-) in concrete settings of wT.

The gradient approximately equals to a derivative of the error function E(-) w i th respect
to the weights w mul t ip l ied wi th how much are the weights changed [9]:

dE
VE » — V w (2.2)

aw

Al though the gradient can be calculated direct ly w i th respect to each weight ind iv id
ually, N N s usually have huge amount of parameters and therefore it 's not very usable in

5

practice. Therefore, Backpropagat ion algori thm is commonly used. Backpropagat ion uses
a local message passing scheme i n which the information is sent alternately forwards and
backwards through the network to efficiently evaluate gradient one layer at the t ime using
the chain rule [23].

The error function E(-) denotes a measure that evaluates the difference between net
work's output and target vector and its selection depends solely on the features of the solved
problem. Resul t ing output is called t ra ining or val idat ion loss, depending on whether the
input of the error function was t ra ining or validat ion data. One of the most common forms
of the error function that is used i n regression is sum of squares error function:

where x n (for n = 1, •••,N) is a t ra ining set comprising of iV input vectors, y (x n ,w) is
network's output vector for given input x „ , w is weights vector and t „ is a target vector
corresponding to n- th sample in t ra ining set.

The update of the parameters is done on a smal l sets of the t ra ining data, called batches.
Depending on the size of those batches, Gradient Descent algorithms can be further divided
into Stochastic Gradient Descent (S G D) , Ba t ch Gradient Descent and Min i -ba tch Gradient
Descent, where S G D uses one t ra ining sample at a time, batch methods use whole t raining
set at a t ime and Min i -ba tch methods use between one and a l l samples. One complete cycle
through a l l the t ra ining data is called an epoch and can be repeated in order to increase
the accuracy of the N N .

The number of epochs or the number of samples i n one batch are an important hyper-
parameters of the network, because suitable settings of these hyper-parameters can improve
generalisation and prevent underrat ing or overfitting of the N N . Underra t ing problem is
when the network is not able to make correct predictions on unseen data because it 's
too simple or isn't trained well enough. Overfi t t ing occurs when the N N is too complex
and over-adapted to the t ra ining data. Tha t leads to loosing the abi l i ty of generalisation
and therefore poor accuracy on the testing data. However i n contrast to other hyper-
parameters, a suitable number of epochs can be easily found using t ra ining and validat ion
loss as described i n Section 2.3.2.

Apar t from the mentioned Gradient Descent algorithms, there are many alternatives 1 .
The most used methods are also gradient-based, but others such as Simulated Annea l ing [33]
or Evolu t ionary Programming [15] are derivative-free. These algorithms have their specific
hyper-parameters, but their description is out of the scope of this thesis.

2.3 Hyper-parameters of Neural Networks

A s mentioned before, the hyper-parameters influence the structure or the learning process
of the N N and need to be expl ic i t ly set before t raining the network. They have a significant
influence on the accuracy of the N N , so it is beneficial to know how they influence the N N in
order to optimise them. Even though not a l l N N s share the same structure or use the same
learning algorithms, they frequently use the same common hyper-parameters that have a
similar influence on the resulting behaviour of the N N .

C o m m o n hyper-parameters that define N N structure are number of hidden layers, num
ber of neurons in the hidden layer, and activation function. These hyper-parameters are

xhttps://en. wikipedia.org/wiki/Outline_of_machine_learning#Machine_learning_algorithms

(2.3)
n=l

6

https://en
http://wikipedia.org/wiki/Outline_of

further described i n Section 2.3.1. Learning of the N N s is influenced by hyper-parameters
such as learning rate, dropout, momentum, number of epochs, batch size and weight decay,
further described i n Section 2.3.2. Though features described below have specific charac
teristics, their effect may differ in ind iv idua l networks.

2.3.1 S t r u c t u r e re lated H y p e r - p a r a m e t e r s

T h e number of hidden layers is shown i n Figure 2.2 and it determines the complexity
of a problem that is the N N able to solve. Networks wi th [16]:

• no hidden layers - can solve only l inearly separable problems

• one hidden layer - can solve almost any problem that contains a continuous map
ping from one finite space to another

• two hidden layers - can be used to model data wi th discontinuities such as saw
tooth wave pattern

• more than two layers - have no theoretical reason to be used but i n practice can
achieve better results

So while the higher number of layers can improve the accuracy of the N N , using too many
hidden layers may lead to problems such as overfitting or vanishing gradient.

T h e number of neurons in hidden layer is a main measure i n abi l i ty of N N to
learn a part icular function. Too few hidden neurons can lead to inabi l i ty to learn the
function (underfitting), too many hidden neurons can lead to overfitting and increase of
t ime needed to t ra in the N N [16]. W h i l e it is possible to have different number of units in
each hidden layer, many networks use the same number for every hidden layer. There are
many rule-of-thumb methods, such as [16]:

• The number of hidden neurons should be between the size of the input layer and the
size of the output layer.

• The number of hidden neurons should be 2/3 the size of the input layer, plus the size
of the output layer.

• The number of hidden neurons should be less than twice the size of the input layer.

These suggestions can help wi th the selection of the number of hidden neurons, but they
are more of a start ing point than a rule.

Activat ion function determines the output of each layer i n the network and has a
major influence on network's accuracy, convergence and computat ional efficiency

The activation function can be linear or non-linear. The linear activation functions can
be represented by a straight line and have unconfined output. Because of the fact that
linear combination of mult iple functions is s t i l l a linear function, a l l subsequent layers w i th
linear activation functions collapse into one. That is why the modern N N s use non-linear
activations functions that enable the creation of deep N N s . It is common to use different
activation functions for hidden layers and output layer, depending on what behaviour is
desired. The hidden layers widely use R e L U activation functions for their features, which
are described below. The activation function i n the output layer depends on the desired
output (i.e. whether it is for regression, classification, clustering, ...).

7

Different act ivat ion functions are used for their features which may be better in solving
different problems. Sigmoid act ivation function has smooth gradient and provides clear
predictions. For example as can be seen i n Figure 2.4a, for x values outside of an interval
[—2, 2], y values are pretty close to 1 or 0. The output is confined on the interval between
0 and 1. Disadvantages of sigmoid function are that it 's not zero centred, can lead to
vanishing gradient problem (for very low/h igh x values) and is computat ional ly expensive.
In practice, sigmoid activation function is commonly used i n output layer in classification
problems.

A s can be seen i n Figure 2.4b, hyperbolic tangent function has quite s imilar qualities
as the sigmoid function. B u t it 's zero centred, which means the output is i n range [—1,1],
strongly negative values are mapped to values close to —1, values close to 0 are mapped
to values close to 0 and strongly positive values are mapped to values close to 1. That
makes it easier to model inputs that have strongly negative, neutral and strongly positive
values [24]. Hyperbol ic tangent function is commonly used i n classification problems.

(c) R e L U (d) Other ReLU-like functions

Figure 2.4: C o m m o n non-linear act ivat ion functions

Rectified Lineary Un i t (R e L U) is a function where a l l negative values are mapped to zero
and a l l positive values are mapped to identical values. R e L U is computat ional ly efficient
and the output is half-opened interval [0, oo). The problem of R e L U functions are zero and
negative values, which are immediately mapped to zero (see Figure 2.4c). Tha t decreases
the abi l i ty of the model to fit or t ra in from the data properly [27], which is known as the
dying R e L U problem.

To prevent the dying R e L U problem there are mult iple similar functions such as Leaky
R e L U , Parametr ic R e L U [30] or E L U (Exponent ia l Linear Uni t) [11], which help increase
the output range by having a smal l non-zero slope for negative values. Examples of such
activation functions are in Figure 2.4d.

8

2.3.2 L e a r n i n g re lated H y p e r - p a r a m e t e r s

Learning rate (L R) is used in gradient descent a lgori thm when parameters are updated
according to an optimisat ion function [1]. Typical ly , values of the learning rate are a small
positive numbers between 0 and 1. W h e n optimising the learning rate, its values are usually
sampled from log-space and suitable values are highly dependent on batch normalisat ion [5]
that enables t ra ining wi th larger learning rate. Too low learning rate converges to the
min imum smoothly, but slows down the learning process (Figure 2.5a). Too high learning
rate speeds up the learning process, but may not converge (Figure 2.5b).

w o weight w ° weight

(a) Example of too low learning rate leading (b) Too high learning rate may cause oscil-
to slow convergence. lation around local minimum or even lead to

divergence.

Figure 2.5: Problems of too low or too high learning rate. The red arrow represents single
step i n Gradient Descent algori thm, where each case used the same in i t i a l weight w$.

Dropout is a regularization method that is used to prevent overfitting i n N N s by
randomly ignoring p neurons during the t ra ining phase. It means that for each training
sample and each hidden layer, random fraction of hidden neurons are not considered. Then
in testing phase, activation functions of the entire N N are considered, but each activation
function is reduced by a factor p to account for the neurons ignored in t raining phase [36].

Weight decay is another regularization method that is used to prevent overfitting. It
penalizes large weights by modifying the error function:

E(w) = E(w) + ^ ||w||2 , (2.4)

where ||w||2 = w T w = WQ + w\ + ... + w2

M, and the coefficient A governs the relative im
portance of the regularization term compared w i t h the error term i n error function E(-) [4].
Usua l settings of coefficient A range between logari thmic values of 0 and 0.1. W h e n weight
decay is too high, the model may never fit quite well . W h e n weight decay is too low, it
might not prevent overfitting [37].

M o m e n t u m controls how much the previous weight update influences the current
weight update. Th is can speed up the learning process by making more significant update
of weights when m i n i m u m is i n the opposite direction of gradient. Th is might be especially
helpful when optimisat ion reaches plateau, an area where the error function decreases very
slowly and thus gradient is small . Also , momentum can help overcome local m i n i m u m as

9

shown i n Figure 2.6. M o m e n t u m is a number between 0 and 1 and it is common to use
values close to 1 (0.9, 0.99, etc.) [18]. Too smal l values have negligible effect and too big
values are more l ikely to miss the op t imum and lead to longer learning time.

Figure 2.6: Example of how momentum can help Gradient Descent to get out of local
min imum. Opt imisa t ion begins i n point 1 wi th weight WQ. In this point momentum is 0
(since it is the first step) and the next weight update depends solely on the gradient and
the learning rate. In the next steps, weight update is given by gradient and momentum
addit ion. If momentum was lower that gradient i n step 3, weight would shift back to the
local min imum. B u t i f momentum is significant enough, it can help get to other min ima
(though getting out of local m i n i m u m or getting to global m i n i m u m is not guaranteed).

N u m b e r of epochs is a number of complete cycles of learning algori thm through the
whole dataset, which means it determines number of times the weights are updated. Too
few epochs may cause underfitting, too many may lead to overfitting. Suitable number of
epochs is usually found using t ra ining and validat ion loss, as shown i n Figure 2.7. The
goal is to find the highest possible number of epochs, before validat ion loss starts to grow
because of overfitting.

Batch size defines number of samples used at once while t raining the N N . The range of
batch size is from 1 up to a size of the t ra ining set. Smaller batch size causes more frequent
model updates and allows more robust convergence that can lead to better accuracy, but can
also lead to less accurate estimate of gradient (especially i n more complex datasets) [18].

10

Figure 2.7: A n il lustrative example showing the influence of the number of epochs on the
t ra ining and val idat ion error (Adapted from W i k i m e d i a Commons) . Too many epochs can
lead to overfitting, but it 's possible to set suitable number of epochs based on the t raining
and testing error. Suitable number of epochs is the highest possible number before the
testing error starts to grow.

11

Chapter 3

Hyper-parameter Optimisation

Accuracy of a neural network is considerably influenced by configuration of its hyper-
parameters. In order to improve the accuracy of a neural network, it is important to
find acceptable values for these hyper-parameters. B u t since the t ime of t ra ining of a neu
ral network might be quite substantial, hyper-parameters may be interdependent, and can
acquire values from an infinite set, hyper-optimisation requires more complex solution than
t ry ing to find suitable values manually.

This chapter describes the essentials of neural network hyper-parameter optimisat ion.
Fi rs t section covers the problem of finding the op t imal hyper-parameters of a neural network
and describes different approaches of finding such hyper-parameter values. Next section
covers basic principles of Gaussian processes. Section 3.3 describes how to solve regression
problems using the Gaussian process model . Section 3.4 includes various approaches that
can be used to estimate more accurate solution of the regression problem for given input.

3.1 Methods of Hyper-parameters Tuning

There are mult iple common approaches i n finding suitable hyper-parameter values. F r o m
the most straightforward as manual hyper-parameter tuning, G r i d Search and R a n d o m
Search optimisat ion [3] to more complex as Evolu t ionary opt imisat ion or Sequential-Model
Bayesian opt imisat ion [13]. B u t since each neural network represents a specific problem,
different approaches might fit some neural networks better than others and therefore it is
beneficial for the user to learn about the features of each approach as well as specifics of
optimised neural network to select suitable opt imisat ion technique.

Also , it is important to take into account the amount of t ime the network needs to be
trained. In case t raining the network doesn't take substantially more t ime then t ime needed
to select hyper-parameter values for next opt imisat ion step, it might be more efficient to
use faster opt imisat ion approach such as R a n d o m Search and make more optimisat ion steps
instead.

The hyper-parameter opt imisat ion problem can be defined as follows [21]:
Given a machine learning a lgor i thm A having hyper-parameters x = x\,...,xn w i th

respective domains A i , A n , we define its hyper-parameter space as A = A i x • • • x An.
For each hyper-parameter setting x G A , we use ^4X to denote the learning algori thm A
using this setting. We further use JC(AX, Vtrain,T^valid) to denote the validat ion loss (e.g.,
misclassification rate) that Ax achieves on data Vvaiid when trained on T>train- The hyper-
parameter opt imisat ion problem is then to minimise the blackbox function:

12

fix) — £(AXjT)trainjT)vaii([) (3.1)

The goal of the hyper-optimiser is to solve this problem i n as few optimisat ion rounds
as possible, where one optimisat ion round refers to invocation of the function C w i th hyper-
parameter settings x.

3.1.1 G r i d Search O p t i m i s a t i o n

C o m m o n solution i n opt imising the hyper-parameters is G r i d Search. Based on number of
hyper-parameters n and number of opt imisat ion steps m that w i l l be made, G r i d Search
optimisat ion algori thm selects a set X of m hyper-parameter settings x i , . . . , x m . Each
hyper-parameter setting x represents a point in n-dimensional space corresponding to a
setting of each hyper-parameter. These points should be evenly spaced wi th in predefined
bounds so that visual izat ion of selected points forms a grid, but the actual selection of the
values may differ among various implementations of G r i d Search algori thm. The result of
the opt imisat ion is the hyper-parameter setting x* = a r g m i n / (x) , i f l ,

For example, let's have hyper-parameter h i w i th domain [0, 5] and 5 optimisat ion steps.
Suppose the influence of hyper-parameter h i is given by function y = (x — 2) 2 + l , where
y is network's loss. Then optimizer evenly splits the interval and selects 5 hyper-parameter
settings x i , ...,X5 as shown i n Figure 3.1a and trains the network for each selected setting
of h i . The setting x* = X3 = (2.5) resulting in best N N accuracy is then the result of
optimisat ion. Analogously for opt imisat ion of two or more hyper-parameters. Assume
addi t ional hyper-parameter I12 w i th domain [0, 3] and 25 optimisat ion steps. Then the
optimiser uniformly selects t ra ining points as shown i n Figure 3.1b and trains the network
for each selected setting of the two hyper-parameters. A g a i n , the setting wi th the best
accuracy is the result.

3.0 • • • • •

2.5
• • • • •

2.0

1.0
• • • • •

0.5

0.0 -f • • • *
0 1 2 3 4 5

x_l

(a) Optimisation of function y = (x — 2) 2 + l (b) Visualisation of search space while op-
using Grid Search. timising two hyper-parameters using Grid

Search.

Figure 3.1: Examples of using G r i d Search i n opt imisat ion of one or two hyper-parameters.

3.1.2 R a n d o m Search O p t i m i s a t i o n

R a n d o m Search is an elementary optimisat ion technique, and remarkably, it was empirical ly
and theoretically proved to be more efficient way of hyper-parameter opt imisat ion than G r i d
Search [3]. Analogously as i n G r i d search, R a n d o m Search optimisat ion algori thm selects m
settings x i , . . . , x m , but the settings are selected randomly wi th uniform dis t r ibut ion across

13

A . A n example of settings selection i n opt imisat ion of one or two hyper-parameters is shown
in Figure 3.2.

(a) Optimisation of function y = (x — 2)2-
using Random Search.

3.0

2.5

2.0

Jl.5

1.0

0.5

0.0, 2 3
x 1

(b) Visualisation of search space while opti
mising two hyper-parameters using Random
Search.

Figure 3.2: Examples of using R a n d o m Search in opt imisat ion of one or two hyper-
parameters.

3.1.3 B a y e s i a n O p t i m i s a t i o n M e t h o d s

Bayesian opt imizat ion is a set of powerful methods for opt imiz ing objective functions which
are very costly or slow to evaluate [6]. These methods keep a record of past evaluations
of the objective function and create a probabil ist ic model that helps predict the function
value for parameters that have not been yet evaluated.

The optimisat ion process is defined more closely by Sequential Model -Based Opt imisa
t ion (S M B O) , which is a formalism for Bayesian optimisat ion. Sequential refers to running
trials one after another, where i n each t r i a l new hyper-parameter setting is found using
Bayesian reasoning and updat ing a probabil ist ic regression model M [22]. S M B O process
can be defined by following algori thm [12]:

A l g o r i t h m 1: Sequential Model -Based Opt imisa t ion

Input: f,X,S,M
1 P f - initSamples(f, X)
2 for i <r- \T>\ to T do
3 p (y |x ,V) <- fitModel(M,T>)
4 X J <- a r g m a x x e A . S (x , p (y | x , £ >))
5 Vi<- /(Xj)

6 V ^VU{(xi,yi)}
7 end

Input of the S M B O algori thm is the objective function / (•) , domain X of the function
/ (•) , acquisit ion function S(-) and probabil ist ic regression model M.. O n the first line, a
historical set V = { (x i , y i) , . . . , (X J , y,)} is ini t ial ised w i t h a few samples from the objective
function, which are selected from domain X. Steps on the lines 3-6 are executed i n a cycle
unt i l the l imi t of function evaluations T is not met, including the function evaluations in
initSamples(-) function. F i rs t , the probabil ist ic model p (y |x , T>) is created based on the
regression model M and historical set T> (line 3). Then , this model is used to select new
sample Xj G X by maximis ing the acquisit ion function S(-) (line 4). The method of selection

14

of the samples x £ X for the probabil ist ic model w i l l be further refered to as Doma in Search
Strategy (DSS) and is described i n more detail in Section 3.4.4. Acquis i t ion function (A F)
is a method that is used to find next sample Xj by predict ing which of the selected samples
x w i l l br ing the best acquisit ion. More details about common acquisit ion functions are in
Section 3.4.5. A n d finally, objective function / (X J) is evaluated (line 5) and results is added
to the historical set T>.

Methods i n Bayesian opt imisat ion can be differentiated based on their probabilist ic
regression model M [12]. Three of the most common regression models are Gaussian
Processes (G P) , R a n d o m Forests and Tree-Parzen Est imators (T P E) .

Gaussian processes have become standard surrogate for model l ing objective functions
in Bayesian opt imisat ion [35] and are described i n detail i n Section 3.2.

R a n d o m forests regression [26] is a supervised learning algori thm that uses combina
t ion of mult iple simpler models - regression trees. The approach i n hyper-optimisation
is to construct a set of regression trees B and assume a Gaussian N(y\ji,a) that models
the probabil ist ic dis t r ibut ion p(y|x,X>), where the parameters jj, and a are chosen as the
empirical mean and variance of the regression values r(x) i n the set of regression trees
B[12}:

r e B (3.2)

- L _ ^ (r (x) - A) s

T P E regression models deviate from standard S M B O algori thm, since they apply Bayes
rule to the models p(x,V\y) and p(y), instead of directly using the probabil ist ic model
p(y |x, V). Probabi l i s t ic model p(x, T>\y) can be replaced wi th two non-parametric distr ibu
tions, represented by processes Z(x) and <?(x) [12]:

where y* is predefined threshold. The result is that T P E creates two different distributions
for the parameters, density formed by using the observations Xj such that the corre
sponding loss yi is less than the threshold, and density <?(x) when yi is greater than the
threshold [2].

3.1.4 M o r e H y p e r - o p t i m i s a t i o n A p p r o a c h e s

Apar t from the before mentioned baseline solutions, there are other commonly used and
computat ional ly effective solutions. A lot of them are modifications or combinations of
R a n d o m and G r i d search, such as R a n d o m Walk or R a n d o m G r i d search. Others, such as
Greedy search, optimise hyper-parameters one-by one using some k ind of heuristics.

More complex (and less computat ional ly effective) approaches used to tackle the prob
lem of hyper-parameter optimisat ion, such as Genetic Algor i thms, Par t ic le Swarm O p t i
misation or Simulated Anneal ing , are well known opt imisat ion methods and are common
alternatives to Bayesian optimisat ion.

15

3.1.5 C o m p a r i s o n of H y p e r - o p t i m i s a t i o n M e t h o d s

It's not a t r i v i a l task to compare various hyper-optimisation methods. The efficiency of
each algori thm differs based on the optimised algori thm, type of the solved problem (clas
sification, regression, etc.), specifics of used dataset, provided information about optimised
problem, default a lgor i thm settings etc. Another important th ing to mention is that a many
of available experiments use different optimisers to compare the methods, therefore even
two G P based optimisers w i th the same optimiser parameters might perform differently.
The following paragraphs t ry to capture the trends seen in mult iple studies and general
ize them in order to compare general differences between methods described i n previous
sections.

W h e n considering before mentioned straight-forward methods based on R a n d o m search,
the results of ind iv idua l methods are quite similar. B u t for example in a study [28] focused
on hyper-optimisation of Recommender Systems, simple R a n d o m search and R a n d o m G r i d
search provided better results than R a n d o m Walk or Greedy search on a l l tested datasets.
Also , these solutions are usually less computat ional ly demanding and highly parallelizable,
in contrast to more complex methods. Therefore, it might be beneficial to use these methods
when evaluating less costly functions and make more optimisat ion steps.

In some specific cases, even R a n d o m search can outperform more complex algorithms.
B u t more often, solutions such as Bayesian optimisat ion achieve better results i n hyper-
optimisat ion of different machine learning algorithms [34]. W h e n comparing various Bayesian
and other mentioned more complex methods it 's hard to make any generalisations, because
different methods have proven more efficient in different experiments [13] [29].

One of the key differences between G P and other mentioned hyper-optimisation methods
is in configurability. G P based methods require more knowledge to be configured (i.e. to
find suitable kernel), but provide more control over the created model . In case the general
behaviour of the solved problem is known and the G P parameters are set to fit this model, it
could theoretically provide better results and therefore might be beneficial to use. Na tura l ly
if the G P parameters are set poorly, the model provides worse results.

Since hyper-optimisation is specific to the optimisat ion task, no hyper-optimisation
method has proven to be most efficient i n general and it 's up to the user to select suitable
optimisat ion method.

3.1.6 E x i s t i n g h y p e r - o p t i m i s a t i o n tools

Since each neural network represents a specific problem, different approaches might fit some
neural networks better than others. Therefore, many of available optimisers provide a wide
rage of hyper-optimisation techniques from simplest solutions as gr id search or random
search to a complex parallel computing solutions based on machine learning approaches.

There are many solutions that a im to solve hyper-parameter opt imisat ion p rob lem 1 .
Some of the solutions are specific to certain language or l ibrary (e.g. tales2 or SHERPA''
for Keras) , some provide more general solutions enabling to optimise almost any defined
problem (e.g. Hyperopt). Natural ly, optimisers specific to a l ibrary enable to optimise

1https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-
solutions-88e067fl9d9

2https: //github.com/autonomio/talos
3https: / / github.com/sherpa-ai/sherpa
4https: / / github.com/hyperopt/hyperopt

16

https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-
http://github.com/sherpa-ai/sherpa
http://github.com/hyperopt

only neural networks wri t ten i n such library, but are usually easy to use and might have
more control over optimised network.

Another dist inct ion between available optimisers is whether are they designed to run
on a single machine or rely on cloud computing resources. Optimisers that are heavily
parallelized and use mult iple machines are usually not free to use and are generally harder
to set-up, but provide substantially more computing power and therefore resources to realize
more optimisat ion rounds in the same time.

High-level solution is provided by Google's internal tool Vizier [17], a scalable black-
box optimisat ion engine wi th remote procedure cal l interface, wide selection of opt imisat ion
algorithms and dashboard. Advisor0 is an open-source implementat ion of Google V i z i e r and
offers easy to use A P I wi th J S O N configuration files to define specifics about N N training
and hyper-parameter optimisat ion. It supports running trials on distr ibuted systems, it 's
not l ibrary dependent and provides around 15 optimisat ion methods, including G r i d search,
R a n d o m search, Bayesian optimisat ion, Simulated Annea l ing and others.

Other similar, high-level tools are Microsoft 's Neura l Network Intelligence (NNI) , H i P l o t
from Facebook and R a y Tune. A l l of the mentioned tools provide an A P I for visualisation
of hyper-optimisation results, support running trials on distr ibuted systems and some of
the tools are even open-sourced.

Another widely used hyper-optimisation tool is Hyperopt , which is a P y t h o n l ibrary
that supports parallel ization using M o n g o D B or Apache Spark. The hyper-optimisation
algorithms implemented i n Hyperopt , such as R a n d o m Search or Simulate Anneal ing , are
commonly used by other tools (Advisor , Hyperas).

3.2 Gaussian Process

Whereas a probabil i ty dis t r ibut ion describes random variables which are scalars or vec
tors (for multivariate distributions), a stochastic process describes the properties of func
tions [31]. A stochastic process y(x) is specified by giving the joint probabil i ty dis t r ibut ion
for any finite set of values y (x i) , . . . , y(x^) [4]. A Gaussian process is a stochastic process,
where p (y (x i) , . . . , y (x £ >) | x i , . . . , x£>) is D-dimensional Gaussian distr ibut ion.

3.2.1 M u l t i v a r i a t e G a u s s i a n d i s tr ibut ions

The basic bui ld ing block of a Gaussian process is the multivariate Gaussian dis t r ibut ion,
where each random variable is distr ibuted normal ly and their joint d is t r ibut ion is also
Gaussian [19]. The multivariate Gaussian dis t r ibut ion is defined by mean vector /j, and
covariance mat r ix S . Mean vector /j, defines the centre around which dis t r ibut ion revolves,
while covariance mat r ix S models variance along each dimension and defines correlation
between every two random variables.

Assume a vector X of d random variables x\...Xd that follows normal dis tr ibut ion:

~ A / - (/ x , £) (3.4)

5https://github.com/tobegit3hub/advisor

X

X\
x2

17

https://github.com/tobegit3hub/advisor

Then mean /j, is <i-dimensional vector given by expected value of each respective random
variable xf.

ju = E [X] = (E [x i] , E [x 2] , . . . , E [x d])

and covariance mat r ix E is d x d mat r ix defined as:

(3.5)

E = cov[X] = E [(X - E [X]) (X - E [X]) T] (3.6)

Note that the diagonal of covariance mat r ix S consists of the variance o~f of the i - t h random
variable Xi and the off-diagonal elements ctjj ,i ^ j describe the correlation between random
variables Xi and Xj [19]:

E i j = cov[xi, Xj] = E[(xi - E[xi])(xj - E [x i]) T] (3.7)

The covariance cov[xi,Xj] of two random variables Xi and Xj is defined by a kernel
function, which determines the characteristics of the resulting probabil i ty dis t r ibut ion [19].
Kerne l function is probably the most important parameter of G P and it 's described in more
detail i n Section 3.4.2.

3.2.2 C o n d i t i o n a l A n d M a r g i n a l G a u s s i a n D i s t r i b u t i o n s

There are two important properties of the multivariate Gaussian dis t r ibut ion that are a key
to Gaussian processes - conditioning and marginalisation. B o t h condit ioning and marginal-
isation work wi th joint probabil i ty of two subsets of original random variables, which w i l l
be denoted as:

PXY • A/"(/i, E) = M (ßx

{ ßY

>

E y x E y y _
(3.8)

where X and Y are subsets of original random variables, mean \ix (A*Y) corresponds to
mean vector of subset X (Y) , mat r ix E x x (E y y) corresponds to covariance matr ix cov[X]
(cov[Y]) and matrixes E x y , E y x correspond to covariance matrixes:

cov[X, Y] = E [(X - E [X]) (Y - E [Y]) T]

c o v [Y , X] = E [(Y - E [Y]) (X - E [X]) T]
(3.9)

Gaussian dis t r ibut ion is closed under conditioning, which means that if two sets of ran
dom variables are jo int ly Gaussian, then the condit ional d is t r ibut ion of one set conditioned
on the other is also Gaussian [4]. So i f two subsets X and Y of original random variables
follow normal dis t r ibut ion, then X | Y and Y | X are also Gaussian and are defined as [19]:

S x y S y y E y x) X | Y ~ M(ßX + E X y E y y (Y - pY), E x x

Y | X ~ M(ßY + £ y x £ x x (X ~ ßx), S y y - E y x E x x E x y)
(3.10)

Gaussian dis t r ibut ion is also closed under marginalisation, so the marginal Gaussian
dis tr ibut ion Px and P y from joint d is t r ibut ion Px y is also Gaussian:

Px =M{ßX^xx)
PY=N{ßY,T,YY)

(3.11)

18

3.3 Using Gaussian Processes for Regression

In order to solve regression tasks, G P needs to model an interpolation of observed data.
This model is represented by joint probabil ist ic dis t r ibut ion PX,Y created from two discrete
sets of random variables, where Y = (2/1,2/2, • • • ,Vn)T represents observed (training) data
and X = (xi,X2, • • • ,xm)T represents testing data. The testing data is used to sample a
continuous function w i t h a set of discrete points.

The joint probabil ist ic model Px,Y is a combination of the t ra ining and testing data,
as shown in Equa t ion 3.8. To make predictions about possible values of the testing points,
condit ional Gaussian dis t r ibut ion PX\Y is used. Thanks to the condit ioning on the t raining
data, resulting dis t r ibut ion l imits the values of testing points that are close to any of the
t ra ining points.

Note that in Gaussian processes, it 's often assumed that /t is a zero vector. Th is
assumption simplifies the equations necessary for condit ioning, while correction of mean
can be done after making a predict ion [19].

3.3.1 P r i o r d i s t r i b u t i o n

In case no t ra ining data are available yet, d is t r ibut ion defined by G P w i l l be Px = N(fi, £),
where n = 0 is a zero vector and S is covariance matr ix w i th m x m dimensions. Th is is
called a prior distribution. Its probabi l i ty dis t r ibut ion could be visualised as i n Figure 3.3,
where each random variable x% is normal ly distr ibuted around 0. Functions sampled from
this dis t r ibut ion would be Gaussian and their shape would be dependent on kernel function,
as can be seen in Figure 3.8.

(a) Example of normal distribution. Normal
distribution is centred around mean /x and can
be separated into multiple sectors, based on the
standard deviation a.

1
; \

x] x2 x3 x4

(b) Probability distribution Px, where each
testing point is represented by a random vari
able Xi. Each random variable follows normal
distribution and is centred around mean / i j .
Grey area represents space between fa — 2a\ and
Hi + 2a'i for each random variable Xi.

Figure 3.3: Visual i sa t ion of prior dis t r ibut ion over a set of testing points X.

3.3.2 Pos ter ior d i s t r i b u t i o n

Training data can be added to the G P model by forming a joint d is t r ibut ion Px,Yi where Y

is a set of random variables representing the t ra ining data. Then the posterior dis t r ibut ion
Px\Y = (Px\Y> ^X\Y) defines dis t r ibut ion of testing data conditioned on t ra ining data. A s
can be seen i n Equa t ion 3.10, mean Hx\Y o m Y depends on conditioned variable so the

19

posterior dis t r ibut ion is constrained to the set of functions that pass through the t raining
points [19].

To illustrate, assume a prior dis t r ibut ion Px i n Figure 3.3b and t ra ining data x\ =
3.2,yi = 4.4. Then the condit ional dis t r ibut ion Px\yi models the interpolation of the
t ra ining data, as shown in Figure 3.4. O n l y one t ra ining value does not create a good
interpolation of the data and therefore predicted values of the testing points that are further
from the t ra ining data tend to return back to zero. Th is feature of G P s is further exploited
in hyper-optimisation, because the best possible value of the loss function (error) is 0.

0 1 2 3 4 5 0 1 2 3 4 5

Figure 3.4: Examples of condit ional probabil i ty dis t r ibut ion wi th one t ra ining data point
x\ = 3.2. Note that the shape and size of the dis t r ibut ion is defined by the covariance
matr ix .

3.3.3 G a u s s i a n Processes i n H y p e r - o p t i m i s a t i o n

In order to understand how to use G P s i n hyper-optimisation, let's connect the information
from previous section to S M B O algori thm i n Section 3.1.3. Assume objective function is
a loss function /(•) and no ini t ia l isat ion samples are available, so the historical set T> is
empty. Fi rs t , G P regression model PX,Y is created and D S S (see Section 3.4.4) is used to
select the testing data (line 3). Note that according to the prior assumption, Y = 0. Then ,
A F (see Section 3.4.5) creates condit ional probabil ist ic model PX\Y = Px (there are no
t ra ining data) and uses this model to select next t ra ining point y i (line 4). Loss function
/(•) is evaluated i n selected point y i (line 5) and tuple (y i , / (y i)) is added to the historical
set (line 6).

This is repeated un t i l the l imi t of total function evaluations T is reached. Difference in
following cycles is that the historical set T> is not empty, so the shape of the dis t r ibut ion
can be more helpful i n selection of new tra ining point y i .

In terms of hyper-optimisation, each random variable x% represents hyper-parameter
setting of D hyper-parameters hi...ho- The t ra ining points are vectors of hyper-parameters
values that have been already used to t ra in the network. Therefore, the result of the loss
function for those hyper-parameters settings are known. Testing points (in terms of hyper-
optimisation) are settings of hyper-parameters, whose values is the optimiser t ry ing to
predict using the G P model. Tra in ing the N N represents the objective function, where
t ra ining point is a parameter of the function and function value is resulting loss.

Figure 3.5 shows optimisat ion of one hyper-parameter on domain [0, 5] w i th gr id D S S
and min ima l mean acquisit ion function. F i rs t opt imisat ion step selects new hyper-parameter

20

setting randomly, while next hyper-parameter settings are selected based on predicted value
of mean.

(c) Step 3: next training point will be 2.01 (d) Step 4: best found setting is 2.01

Figure 3.5: Four rounds of G P hyper-optimisation of one hyper-parameter, where dotted
orange line represents real shape of the loss function.

Figure 3.6 shows optimisat ion of two hyper-parameters w i th the same settings as above.
Value of each hyper-parameter is displayed on separate axis, while prediction is on axis z.
Optimisa t ion algori thm works the same, but kernel, D S S and A F have to be able to work
wi th mult idimensional points.

G P s can be used to optimise arbi t rary number of hyper-parameters, but there are
computat ional l imitat ions. The computat ional complexity of G P regression is C (n 3) , where
n is the size of the t ra ining set. Th is is due to the inversion of the covariance mat r ix E y y
in computat ion of condit ional probabil ist ic dis t r ibut ion PX\Y- Moreover, opt imising more
hyper-parameters might lead to a bigger search space, so the model w i l l need more t raining
samples to create reasonable approximation and more testing samples to make more precise
predictions.

21

Figure 3.6: G P prediction after four rounds of opt imisat ion of two hyper-parameters h\

and /i2- Wireframe plot represents the real shape of approximated loss function / (•) , while
red and blue area represents predicted mean values given by condit ional probabil ist ic dis
t r ibut ion PX\Y- Four t raining points y i = (3.2,0), yi = (0,5), 2/3 = (5,5), 2/4 = (0,1) are
marked black dots.

3.4 Parametrization of G P optimiser

A s well as other probabil ist ic regression models in Sequential Model -Based Opt imisa t ion
(S M B O) described i n Section 3.1.3, G P regression model has a number of parameters that
can be changed i n effort to improve the result of the optimisat ion. These parameters include
selection of mean, uncertainty of measurement, kernel function and its parameters, Doma in
Search Strategy (DSS) and Acquis i t ion Funct ion (A F) .

3.4.1 M e a n a n d U n c e r t a i n t y

A s mentioned before, mean is usually set to zero. Tha t means that in prior dis t r ibut ion,
mean /Xj of a l l random variables Xi is zero. In posterior dis tr ibut ion, mean of a l l testing
data w i l l tend to return to zero more and more the further it is from any t ra ining data. In
hyper-optimisation of N N s , zero is usually a good selection of mean. This is because the
opt imal function value of the loss function is zero and its desirable that mean returns to
this value i n space w i t h no t ra ining points.

However, it might be desirable to use another mean value when minimis ing function
wi th op t imum that is lower or much higher than zero. Since assuming mean is a zero vector
simplifies the computat ion of condit ional probabil i ty dis tr ibut ion, it 's pract ical to use zero
mean for prediction and then shift the prediction to correct mean value [19].

It's also possible to edit the probabil i ty dis t r ibut ion in t ra ining points, so the potential
functions do not have to intersect the exact location of the t ra ining point. Th is is done by

22

uncertainty parameter R, which is used to mul t ip ly the variance of each t ra ining point y ,
i n the covariance matr ix:

Ejj = covfyi , yi] • R (3.12)

and is subsequently added to covariance S x x when calculat ing condit ional probabi l i ty
dis tr ibut ion (Equat ion 3.10):

X | Y ~ Af(fix + £ x y £ y y (Y - nY), Y , x x + R - S x y S y y S y x) (3.13)

The effect of uncertainty can be seen in Figure 3.7, where predicted mean no longer
intersects some of the t ra ining points and the grey area given by standard deviat ion is
wider. The bigger the uncertainty R is, the more significant inaccuracies are permit ted by
the probabil i ty dis t r ibut ion. The uncertainty parameter is par t icular ly useful when there's
a j i t ter i n the data, so the probabil ist ic dis t r ibut ion is able to model these deviations.

6

4

2

0

»

~A
»

/ /

c) i 2 : 5 4 I

Figure 3.7: G P predict ion (with uncertainty R = 0.05) after three rounds of opt imisat ion
of one hyper-parameter.

3.4.2 K e r n e l s

The kernel (or kernel function) k is a measure that defines s imilar i ty between two D-
dimensional points and is used to compute values in covariance matr ix E [19]:

fc:KDxlD->l, E i j = fc(x, x) (3.14)

Selection of the kernel determines resulting shape of the probabil ist ic dis t r ibut ion (see
Figure 3.4) as well as the behaviour of the functions sampled from this dis t r ibut ion (see
Figure 3.8). Fol lowing paragraphs describe a few of the common kernel functions and their
features.

Rad ia l Basis Funct ion (R B F) kernels, as the name suggests, are kernels that are based
on radial basis functions. So, the result of such kernel function depends only on distance

23

between the two points. The R B F kernel uses Eucl idean norm to measure the distance and
is defined as follows:

W (x , x ') = a} exp (- ^ E * D = l (* 2 ~ X *) 2) , (3-15)

where x and x ' are tested D-dimensional points and 07 is characteristic length scale pa
rameter. Th is parameter determines how distant the two points x and x ' have to be for
the function value to change significantly [31]. The second kernel parameter Of is signal
standard deviation, which determines the uncertainty of Gaussian probabi l i ty dis t r ibut ion
in G P . Examples of functions sampled from G P wi th R B F kernel are shown i n Figure 3.8a.

Equat ion of Laplac ian kernel is very similar to R B F kernel, but it uses absolute value
instead of Eucl idean norm to determine the distance between the points x and x':

kLaplaciani*, *') = <?} exp ^ - ^ ^ = 1 ^ — ^ (3.16)

Al though as can be seen i n Figure 3.8b, compared to R B F kernel, Laplac ian kernel is more
suitable to model functions wi th rapid local changes and sharp edges.

A s can be seen i n Figure 3.8, Ma te rn A R D kernel is by its behaviour very similar to
R B F kernel. The reason is that Ma te rn kernel also commonly uses Eucl idean norm to
determine the distance of the points, but it 's also altered by some addi t ional constants and
parameters:

kMatemi*, x') =aj [\ + VEr + j ^ r 2 ^ exp (-\/57

1
D s (3.17)

i=l aH

The biggest advantage of this kernel in comparison wi th R B F kernel is its abi l i ty to
reflect more substantial local changes. Also , i t 's a kernel w i th Automat ic Relevance De
terminat ion (A R D) , so it 's able to define different characteristic length scale <Ji for each
function parameter. This is part icular ly useful i n cases when the same change in distinct
hyper-parameters values leads to a different behaviour - i.e. one hyper-parameter changes
the resulting accuracy of the network much more (or less) prominently than the other. A R D
is widely used i n many kernels and can be used in both R B F and Laplac ian kernels.

Two of the most elementary kernels, constant and linear kernel, are not very suitable
to be used separately, but they can be used to construct new kernels. Constant kernels
kconst(x-,~x-') = c return predefined constant c independently on the input, while linear
kernels mul t ip ly constant 9 w i t h the vector inputs:

hinearix,*-') = 6>XTx' (3.18)

Even though above mentioned kernels are just a smal l fraction of the kernels that can be
used, they might not fit some specific model . B u t there are many techniques for constructing
new kernels. These techniques use existing kernel functions and modify them. Kernels
created this way have distinctive features and are named after the modification that was
performed. For example, additive kernels use addi t ion to create new kernel k from two
existing kernels k\ and ki\

24

(a) R B F (b) Laplacian (c) Matern A R D

Figure 3.8: Examples of random function samples using different kernels.

fc(x,x') = fci(x, x ') + /c 2(x, x ') ,

while mult ipl icat ive kernels use kernel mul t ip l icat ion:

fc(x, x ') = fci(x, x ') • fc2(x, x ')

(3.19)

(3.20)

B u t many more bui ld ing methods such as exponentiation and composit ion can be used to
create new kernels. These methods can be used repeatedly or combined together to create
more complex kernel that fits the solved problem better, as shown i n Figure 3.9.

A ji ji

Ml

(a) Additive kernel (R B F
constant)

(b) Multiplicative kernel
(R B F • constant)

(c) Additive multiplicative
kernel ((RBF + constant) •
constant)

Figure 3.9: Examples of kernels created by kernel addit ion, kernel mul t ip l ica t ion or their
combination. B y adding R B F and constant kernel, i t 's possible to stretch the dis t r ibut ion
and move mean to the average function value of t ra ining points, while preserving features
of R G B kernel. Mul t ip l i ca t ive kernel can change the standard deviat ion so the Gaussian
is wider or narrower. A n d by combination of the kernel bui ld ing methods, it 's possible to
combine features of a l l kernels.

3.4.3 A u t o m a t i c T u n i n g of O p t i m i s a t i o n P a r a m e t e r s

The selection of parameters of the optimiser such as kernel and uncertainty might be a
difficult task, but it is possible to automatical ly tune those parameters. The automatic
tuning is bu i ld on evaluation of the log l ikel ihood function p(y\0), where y is a vector
of function values of the t raining points and 6 is a set of tuned parameters [4]. The log

25

l ikel ihood function for a G P model is evaluated using the standard form for a multivariate
Gaussian dis t r ibut ion, given by equation [4]:

In p(y\0) = -\ln\E\ - ^ y T E _ 1 y - y ln (2v r) (3.21)

L o g l ikel ihood of the multivariate Gaussian dis t r ibut ion is then maximised using some
optimisat ion algori thm. In each round of the optimisat ion algori thm, values i n covariance
matr ix S are recalculated using updated parameters 0 and used to calculate log l ikelihood
from Equa t ion 3.21 above. This opt imisat ion is called M a x i m u m Like l ihood Es t imat ion
and can be used to optimise a l l numeric parameters of the optimiser.

3.4.4 D o m a i n Search Strategies

Domain search strategy (DSS) is a method that is used by optimiser to select m testing
samples X = (x o , . . . , x m) . These testing samples are then used to create G P wi th joint
probabilist ic dis t r ibut ion PX,Y- Two most common methods are based on gr id search and
random search.

G r i d search creates a D-dimensional gr id of k points, where k = m®im A k > m and
mdim is the number of samples per dimension. Subsequently, m samples from the grid are
selected. R a n d o m search selects samples randomly wi th uniform dis t r ibut ion. The strategy
as well as the number of selected samples has significant influence on resulting probabilist ic
distr ibut ion.

3.4.5 A c q u i s i t i o n funct ions

A s stated before, an Acquis i t ion function (A F) is a function that is used to find next t raining
point yi from a set of testing points X . A F in G P s uses predictions from condit ional
probabil i ty PX\Y a n d selects the point w i t h best acquisit ion. This acquisit ion is usually
based on exploration-exploitation trade-off. The result of the A F is a point w i th the best
acquisition and is used for t ra ining the N N .

The most straightforward approach is s t r ic t ly improvement based, which means that
the acquisit ion depends only on predicted value. It selects the point x* based on predicted
minimal mean value:

x* = argmin / z (X) (3.22)

This is a special case of confidence bound A F s , such as Sequential Design Opt imisa t ion
function, where the acquisit ion is given by Lower Confidence Bound:

LCB(x) = A*(x) - K C T (X) , (3.23)

and the confidence parameter K is set to zero.
Another acquisit ion function, Probability of Improvement, introduces the exploration-

exploitat ion trade-off parameter £ and is defined as:

P / (X) = $ (M x) - / y) - n (3 2 4)

where x + is so far the best discovered point w i t h value / (x +) and $ is Cumula t ive Dis
t r ibut ion Funct ion (C D F) [7]. The selected point would then be the one wi th the lowest
acquisition PI(-), since the goal is to minimise the function:

26

file://-/ln/E/

x* = argmin P J (X) (3.25)

The most used acquisit ion function is Expected Improvement (EI) , which selects value
wi th the best expected improvement given by equation:

where Z

= , _ , S)$(Z) + «",x)o',Z) i f <r(x) > 0
S n i f a (x) = 0

(3.26)
if CJ(X) > 0

if <T(X) = 0

where <fi is Probabi l i ty Densi ty Funct ion (P D F) [7]. The selected point is again the one
wi th the lowest acquisit ion EI(-):

x* = argmin EI(X) (3.27)

The selection of suitable A F depends on the specific model that is used and problem
that is being solved, therefore i t 's not an elementary task to do. B u t there are strategies
such as portfolio al location that use mult iple A F s and have proven to be almost always
more effective than ind iv idua l A F s [8].

27

Chapter 4

Design and Implementation of
Toolkit for Hyper-optimisation of
Neural Networks

This chapter describes design, implementation, usage and possible customisation of Gaus
sian Process based Opt imiser (G P O P) , a toolkit for hyper-optimisation of neural networks.

A s stated before, commonly available tools for hyper-optimisation can be separated into
two categories: l ibrary specific and universal. E v e n though l ibrary specific approach offers
more control over the optimised N N , I have chosen to design universal hyper-optimiser.
Apa r t from the obvious advantage of being able to optimise almost any N N , this approach
does not require any user's knowledge about the programming language or libraries used
to implement the N N and thus makes the optimiser easier to use.

4.1 Toolkit Design

Apar t from optimising mult iple possibly correlated hyper-parameters, the goal was to design
a toolki t that is lightweight and easy to use. G P O P aims to provide the latter through a
library, that enables control over the opt imisat ion process and creates an interface between
the optimiser and the N N . Moreover, it 's possible to run the optimisat ion using a CLI
wrapper that is controlled through a set of command line arguments making it possible
to run optimisat ion without wr i t ing any code. The usage and structure of the toolki t are
shown i n Figure 4.1 and described in more detail in following paragraphs.

The centrepiece of the toolki t is the optimiser. Opt imiser has no knowledge about what
is optimised and views every optimised problem as a black-box function w i t h a certain
number of parameters specified in the beginning of the opt imisat ion. Opt imiser interacts
w i th the function interface i n order to find the best parameters of the black-box function and
therefore best hyper-parameter settings. The function interface serves only as an interface
for optimised problem that ensures every optimiser's ca l l to evaluate a black-box function
is uniform.

A counterpart component interacting w i t h the function interface is the bridge. The
purpose of the function interface and the bridge is to create an interface between the N N
and the optimiser, so that the optimiser can treat the N N as if it was a function and
receive results of the loss function as a single value. So when the bridge receives parameters
from the optimiser, it creates a new subprocess that trains the N N wi th hyper-parameters

28

corresponding to those parameters. After the subprocess ends, the bridge collects the
output of the training, finds the result (loss) and returns it to the optimiser as a function
cal l result.

Running the subprocess and collecting the result is possible thanks to a user defined
configuration file that contains information about how to run the t raining of the network
and how to get the result. Moreover, the configuration file contains more information about
optimised hyper-parameters, such as domain ranges and numeric types.

For the purpose of experiments w i th behaviour of various optimisat ion techniques, there
is benchmarks component. Th is component contains a set of benchmark functions that
simulate some of the typica l problems that hyper-optimisation incorporates. A n d since the
actual shapes of the functions are known, they can be useful to learn about the features of
the used optimisat ion technique before opt imising hyper-parameters of the actual N N .

User User

Figure 4.1: Usage of the toolki t : G P O P provides user w i th two different methods of usage
- run optimiser from command line w i th C L I wrapper or import the l ibrary i n a custom
user program. Running from command line does not require any custom code except
configuration file, but doesn't provide any extra information about opt imisat ion. L ib ra ry
use, on the other hand, enables user more control over the optimisat ion, including the access
to the G P model and creation of custom kernels i n order to learn and adjust the optimiser
to specific problem.

29

4.2 Toolkit Implementation

The toolkit is implemented as a collection of Py thon3 modules that provide classes and
methods for hyper-optimisation of N N s . Moreover, it contains a python wrapper script
enabling configurable optimisat ion. The toolkit is split i n three P y t h o n packages:

optimiser is core package containing a l l modules needed during the opt imisat ion itself,
including kernels, acquisit ion functions, etc.

nnbridge is a package providing resources to create an interface between the optimiser
and the N N , enabling the optimiser to t ra in the N N and get result of the training.
Furthermore, it contains methods for simple manipulat ion wi th N N configuration files,

tests package contains unit tests for each module of the G P O P toolkit .

Relations between ind iv idua l modules and packages is shown i n Figure 4.2, while detailed
description of a l l modules can be found i n sections below.

optimiser

benchmarks optimiser

kernel 9P kernel 9P acqfun

configuration neural
file network

nnbridae

bridge

tests

test_acqfun all
- modules

tests

Figure 4.2: Dis t r ibu t ion of modules into packages and relations between ind iv idua l modules
and other components. For example module optimiser uses most of the implemented
modules, except kernel and test modules. Module bridge doesn't use any modules, but
other components like configuration file and neural network.

4.2.1 G a u s s i a n Process R e p r e s e n t a t i o n

Module gp contains implementat ion of Gaussian process. They are represented by GP class,
which creates a model of a Gaussian process given by its covariance matr ix S and training
points Y (mean ß is assumed to be a zero vector). Covariance mat r ix is calculated as
follows:

30

1 cov_matrix = np.ones(N, N)
2 for i i n range(N):
3 for j i n range(i, N):
4 cov = k(Y[i] , Y[j])
5 cov_matrix[i][j] = cov
6 cov_matrix[j][i] = cov
7 cov_matrix = cov_matrix + R * np.eye(N)

where iV is the number t ra ining points Y , k selected kernel and R is uncertainty of mea
surement:

The key method is predict (x) , which returns condit ional multivariate Gaussian prob
abil i ty dis t r ibut ion for the point x represented by its mean value mean_x and standard
deviation std_dev_x. Th is probabil i ty dis t r ibut ion is computed using condit ioning from
the covariance mat r ix cov_matrix above:

1 def predict(x):
2 cov = 1 + R * k(x, x)
3 sigma_YX = np.zeros(N, 1)
4 for i i n range(N):
5 sigma_YX[i] = k(Y[i] , x)
6 mean_x = (sigma_YX.T * cov_matrix.I) * Y_val .T
7 std_dev_x = cov + R - (sigma_YX.T * cov_matrix . I) * sigma_YX
8 return mean_x, std_dev_x

Thanks to this prediction, A F is able to determine next t ra ining point. For the detailed
description of covariance matr ix computat ion and predictions of testing points values, see
Sections 3.2 and 3.3.

4.2.2 O p t i m i s e r s

Module optimiser implements G P optimiser and two baseline optimisers that are based on
random search and grid search. Even though the baseline optimisers were pr imar i ly meant
to serve as a comparison to G P based optimisat ion, they can in some cases provide better
results and therefore were included i n the toolki t . The implementat ion of both baseline
optimisers is quite straightforward, as shown i n Figure 4.3.

(a) Gr id (b) Random

Figure 4.3: Structural diagram describing essential parts of each optimiser.

31

The main component of both baseline optimisers is optimiser core. The goal of the core
is to select as many t ra ining points as defined by user. G r i d optimiser uses grid generator
that creates a gr id of m D-dimensional points using Cartesian product of D l inearly spaced
vectors, where D is dimensionality of the solved problem. Since the number of the t raining
points n selected by user can be lower than the number of the points in the grid, the core
selects first n points and passes them successively to the function interface. The point w i th
the lowest function value f{x.\) is returned as the result of the gr id hyper-optimisation.
Since the gr id was formed using Cartesian product, computat ional complexity of the G r i d
optimiser is polynomial w i th respect to the number of t ra ining points.

The R a n d o m optimiser uses random generator instead of grid generator. The core
of the R a n d o m optimiser uses this generator to select as many points as defined by user.
Random generator generates one D-dimensional t ra ining point wi th in dimension space w i th
uniform probabil i ty dis t r ibut ion. Generated t ra ining point Xj is then passed to the function
interface. This random point generation is repeated n times to generate enough training
points. F ina l ly , the point Xj w i th the lowest function value / (x ;) is returned as the result
of the hyper-optimisation. The computat ional complexity of random generator is linear,
w i th respect to the number of t ra ining points.

The required arguments for both G r i d optimiser and R a n d o m optimiser ini t ia l isat ion
are function and dimensions bounds. The function is either benchmark or NeuralNet object
w i th one parameter. Th is parameter is a I D array representing settings of the optimised
hyper-parameters. Dimensions bounds is a 2D list, where each inner list contains two
numbers. They represent min ima l and max ima l values that hyper-parameter can acquire.
B o t h baseline optimisers also have a keyword argument verbose, which if set to True, w i l l
ensure pr int ing of addi t ional hyper-optimisation information to the standard output.

The most complex optimiser is G P optimiser. The parameters of the black-box function
that w i l l be chosen for the next opt imisat ion round depend on selected domain-space search
strategy (DSS) , acquisit ion function (A F) and predictions received from created GP model.
A s shown i n Figure 4.4, the core is responsible for control of other components to find
the best possible parameters of the black-box function. The result of the opt imisat ion is
again the t raining point w i th the lowest loss value, but G P optimiser object stores other
data that are important for hyper-optimisation analysis and visualisation, including current
G P model, used t ra ining points and their values. The computat ional complexity of G P
optimiser is cubic, w i th respect to the number of t ra ining points.

Apar t from a reference to the implemented kernel object, G P optimiser has the same re
quired arguments as baseline optimisers. To specify addi t ional parameters of G P optimiser
such as D S S or A F , any of the keyword arguments described i n Table 4.1 can be used.

4.2.3 K e r n e l s

Kernels are implemented in separate module, along wi th builder methods allowing user
to construct new kernels. It is possible to add new custom kernel, bu i ld new kernel from
existing ones or use one of the five implemented kernels: R B F , Laplac ian , Ma te rn A R D
5/2, constant and linear. A l l implemented kernels are described i n detail in Section 3.4.2.

The parameters of the kernels can be automatical ly tuned during the optimisat ion,
as described in Section 3.4.3. A n d in order to enable automatic parameter tuning, ker
nels work wi th tensors from torch.Tensor. Each kernel is implemented as callable class,
where method c a l l accepts two tensors as parameters representing two Z?-dimensional

32

Table 4.1: K e y w o r d arguments of G P optimiser.

Parameter Descript ion

x _ i n i t

R

nb_sampl

dss

acq_fun

htypes

autotune

autotune_

verbose

es

a l l

I D numpy array representing in i t i a l hyper-parameter configuration. If
not set, random configuration w i l l be used.
Uncertainty of G P model . If not set, default value le—5 w i l l be used.
Number of testing sample per dimension (total number of samples:
nb_samplesD). If not set, default value 50 w i l l be used.
Used D o m a i n Search Strategy. If not set, default strategy random w i l l
be used.
Used Acquis i t ion Funct ion . If not set, default function
Expectedlmprovement w i l l be used.
A list of hyper-parameter types. Permi t ted values are „f loat" for real
numbers or „int" for integers. If not set, a l l hyper-parameters w i l l be
treated as real numbers.
If set to True, automatic tuning of kernel parameters is activated.
Default value is False.
If set to True, automatic tuning of a l l parameters is activated. Default
value is False.
If set to True, addi t ional hyper-optimisation information is printed to
standard output. Default values is False.

points. A l l parameters of the kernels are stored during ini t ia l isat ion to a class variable called
params.

R B F and Laplac ian kernels are implemented based on Equations 3.15 and 3.16 and have
only one parameter - characteristic length scale 07. Signal standard deviat ion is fixed to
value 1.0 and none of the kernels support A R D .

Kerne l Ma te rn A R D 5/2 is implemented based on Equa t ion 3.17 and has D + 1 pa
rameters, first is signal standard deviat ion and the rest corresponds to characteristic length
scale (one for each dimension D).

Last two implemented kernels are linear and constant kernel and each has only one
parameter. Linear kernel is ini t ial ised wi th parameter 9, which is mul t ip l ied wi th kernel
inputs. Constant kernel is ini t ial ised w i t h constant value c, which is also its return value
for every input.

A n y of the kernels can be ini t ial ised directly using its class name or use function
selectKernel(name, params), where name is a string corresponding to a class name of
the kernel and params is a tensor containing the parameters of the kernel.

G P O P also provides two methods to bu i ld new kernels - buildAddKernel and b u i l d -
MultKernel. The first one creates a new kernel by addi t ion of two existing kernels, while
the second method uses mult ipl icat ion.

In case user requires different kernel, it is possible to extend G P O P by implementing
custom kernel or adding a kernel builder, as described in Section 4.4.3.

33

Figure 4.4: St ructura l diagram describing the function of G P optimiser: F i r s t , the core
uses D S S to select a set of m testing points T w i th in dimension space. Number of testing
points depends on number of dimensions (hyper-parameters) to be optimised and number
of samples per dimension defined. Next , acquisit ion function is used to select next t raining
point Xj. To make this selection, a l l acquisit ion functions use G P predictions i n testing
points T . F ina l ly , t raining point x , is passed to function interface, the function value / (x i)
is collected and G P model is updated. Th is whole process is repeated as many times as is
the number of opt imisat ion rounds.

4.2.4 A u t o t u n e

The automatic tuning of parameters of the optimiser is implemented as described i n Sec
t ion 3.4.3 and uses Pytorch framework wi th A d a m optimiser to maximise the log l ikelihood
of the G P model.

Automat ic parameter tuning can be enabled by using command line options —autotune
or —autotune-all in C L I wraper or by enabling one of the keyword arguments autotune
or autotune_all in ini t ia l isat ion of G P O p t i m i s e r . Au tomat ic tuning starts after at least
5 t ra ining samples are present and is repeated for 50 rounds or un t i l the difference of log
l ikel ihood i n two subsequent rounds is not lesser then predefined constant e.

4.2.5 D o m a i n - s p a c e Search Strategies

G P O P toolki t provides user w i th two distinct DSSs to select testing points: grid and
random. These strategies are implemented inside optimiser module i n the same manner
as gr id and random generators described in Section 4.2.2, but generated points are used as
testing samples.

34

D S S can be selected by a keyword argument dom_search_strategy i n ini t ia l isat ion of
GPOptimiser or using a command line option —domain-search-strategy when using the
C L I wrapper described i n Section 4.2.8.

4.2.6 A c q u i s i t i o n F u n c t i o n s

Module acqfun implements three A F s : MinimalMean, LowerConf idence and Expected-
Improvement. Each A F is implemented as callable class w i th four posi t ional parameters.
Fi rs t parameter is a list of testing points from D S S , second is G P model and the last two are
lists of t ra ining points and their function values. A l l A F s use those parameters to predict
mean values [i and standard deviat ion a of the testing points and select the next t raining
point.

MinimalMean selects the point x* w i th the lowest predicted mean value. The second
method, LowerConf idence, selects the next t ra ining point x* w i th min ima l predicted lower
confidence bound corresponding to:

x* = argmin(/x(x) — 2rj(x)) (4.1)

The last method, Expectedlmprovement, selects the point w i th the best expected improve
ment defined i n Equa t ion 3.26.

A n y of the A F s can be ini t ial ised directly using its class name or use function the
selectAcqFun(name), where name is a string corresponding to a class name of the A F . A l l
implemented A F s are described in more detai l in Section 3.4.5.

4.2.7 B r i d g e

Module bridge creates an interface between the optimiser and the N N and also provides
user w i th methods to parse configuration files. F i r s t , the bridge creates callable NeuralNet
objects, which behave like a standard functions, but when called, they actually run a
subprocess in order to t ra in the N N using specific hyper-parameter settings. After the
subprocess ends, the bridge finds the result of the t ra ining i n the output of the subprocess
and returns it to the optimiser. The information needed to do so is stored i n configuration
file w i th following syntax:

SYNTAX:
<command>
<result_regex>
<failure_regex>
<HP-l_switch> <type> <from> <to>
<HP-2_switch> <type> <from> <to>

<HP-n_switch> <type> <from> <to>

EXAMPLE:
python3 ./mnist/main.py —epochs 5
Average loss: ([-+]?\d*\.\d+1\d+)
Average loss: (nan)
— l r f l o a t 0 1
—nb-hidden int 2 512

Firs t line is a command that w i l l be used to run t raining of the N N and it can contain
addi t ional hyper-parameters that won't be optimised. Second line contains a regular ex
pression that identifies desired result of the t ra ining i n the output of the previously run
command. This regular expression needs to specify the number that w i l l be minimised by
capturing it i n a group. If more lines of the output match the regular expression, the bridge
uses the last matched number. In case this regular expression does not match any text of

35

the output, regular expression f ailure_regex is used to identify whether t ra ining was run
successfully. If this regular expression matches any text of the output, predefined default
value is returned to the optimiser. Otherwise, an error indicat ing unsuccessful invocation
of the subprocess is thrown. This safety check is useful when t ra ining is not properly in
voked and therefore it is not necessary to continue hyper-optimisation. Example of such
behaviour might be bad configuration of a hyper-parameter in configuration file, such as
use of inval id value (e.g. negative learning rate). T h e n the t ra ining fails, the optimisat ion
is stopped and the user is notified about the error.

The rest of the lines in the configuration file is reserved for the hyper-parameters that
w i l l be optimised, where each line defines one hyper-parameter and consists of four fields
separated by space. F i rs t field, HP-i_switch, is string value used as a switch to identify
i - th hyper-parameter inside the command. Second field, type, determines which values
are assigned to this hyper-parameter by optimiser. Supported types are int for integer
values and f l o a t for real numbers. Last two fields are reserved for specification of hyper-
parameter's domain range.

This configuration is used to initialise the optimiser and then to run the subprocess
using a command in form:

SYNTAX:
<command> <HP-l_switch> <HP-l_val> ... <HP-n_switch> <HP-n_val>

EXAMPLE:
python3 ./mnist/main.py —epochs 10 — l r 0.5 —nb-hidden 256

where command is the command from the configuration file and fields <HP-l_val>,
<HP-n_val> are values of the respective hyper-parameters selected by optimiser.

Configuration files can be parsed using one of the two ways: either from the standard
output or from a file.

4.2.8 C o m m a n d L i n e W r a p p e r

The C o m m a n d Line Interface (CLI) wrapper wrapper. py is a Py thon3 script that is able
to load and parse the configuration files, create and run the optimiser, plot cumulative
min imum and Gaussian process representation and print hyper-optimisation information
to standard output. To specify what tasks should be executed, C L I wrapper has a number
of command line options that are described i n detai l i n Table 4.2.

The command line option —gaussian-process has zero or two and more arguments.
If no argument is specified, R B F kernel w i th default parameters and default uncertainty is
used. The first argument is a class name of the selected kernel, the second argument is the
uncertainty and the rest of the arguments correspond to kernel parameters in order defined
by ind iv idua l kernels (see Section 4.2.3).

C o m m a n d line option —benchmark (or -b) has D+3 arguments. The first argument is a
string representing the name of the benchmark. The second argument is a str ing containing
an op t imum xopt = (xi,... ,XD), where each element Xi is separated by a space as shown
in usage example in Section 4.3.1. The th i rd argument is the function value i n op t imum
f(xopt). Next D arguments define dimensions bounds for each dimension of the benchmark,
where the m i n i m u m is separated from the m a x i m u m by a colon.

Note that options -b and - f can't be used together and option -s has no effect without
the option —draw. For usage examples of the C L I wrapper, see Section 4.3.1.

36

Table 4.2: C o m m a n d line options of the C L I wrapper script wrapper .py.

Long option Short option Descript ion

—help -h Shows help message wi th usage information and exits.
—rounds -r Number of hyper-optimisation rounds. If not set,

default value 10 w i l l be used.
—grid-search none Use G r i d search optimiser.
—random-search none Use R a n d o m search optimiser.
—gaussian-process none Use G P optimiser.
—domain-search- none Selection of D S S (options: grid, random).
strategy
—acquisition- none A F selection (options: M i n i m a l M e a n ,
function LowerConfidence, Expectedlmprovement) .
—autotune none Enable automatic tuning of kernel parameters.
—autotune-all none Enable automatic tuning of a l l G P parameters (kernel

+ uncertainty).
—benchmark -b Optimise selected benchmark function.
—config-file - f Optimise N N defined by configuration.
—jitter none A d d j i t ter given by option's argument to the

benchmark function.
—draw -d Draw cumulative m i n i m u m and G P model plots.
—verbose -V Pr in t addi t ional hyper-optimisation information to

standard output.
—round-by-round none R u n hyper-optimisat ion one round at a t ime (draw

plots and print output after every round).
—save-fig -s Save plots of cumulative m i n i m u m and G P model

representation to a directory specified by options
argument.

—seed none Set seed for randomised elements in the optimiser.

4.3 Usage Examples

A s stated before, G P O P toolkit can be used either through C L I wrapper, or as a P y t h o n l i
brary. This section contains usage examples of G P O P toolkit w i th implemented benchmark
functions and example M N I S T N N 1 . The complete set of examples is stored i n G P O P git
reposi tory 2 in folder examples.

To run the examples, insta l l G P O P toolkit using setup.py script located i n the root
folder or run the examples from gpop subdirectory.

4.3.1 C o m m a n d L i n e Interface

To run hyper-optimisation from the command line, use Py thon3 script wrapper.py. The
hyper-optimisation task, used optimiser and further options can be selected using script 's
command line options. F u l l description of the wrapper script and it 's command line options
is in Section 4.2.8.

x h t t p s : //github.com/pytorch/examples/tree/master/mnist
2 h t t p s : //gitlab.com/mcouf al/gpop

37

To run benchmark hyper-optimisation, command line option —benchmark has to be
specified. The example below runs 9 optimisat ion rounds of R a n d o m optimiser on E l l i p
soidal benchmark. This benchmark w i l l be two-dimensional, w i th op t imum xopt = (5,5)
and opt imal function value /(x o p t) = 3. B o t h parameters w i l l be optimised wi th in the
interval [0,10]. A l so , addi t ional hyper-optimisation information, such as selected t raining
points in each optimisat ion round, w i l l be printed to standard output.

./wrapper.py \
—rounds 9 \
—random-search \
—benchmark "FnEllipsoidal" "5 5" 3 "0:10" "0:10" \
—verbose
To run N N hyper-optimisation, command line option —conf i g - f i l e has to be specified.

This command line option has one optional argument, which provides a path (relative or
absolute) to the configuration file of the N N . If this command line option is used without
any argument, the configuration is taken from the standard input.

The example below runs 5 rounds of hyper-optimisation on specified N N using G P opti
miser. The N N and optimised parameters are defined i n file mnist_example_config.txt.
The example of such configuration file is i n Section 4.2.7. G P optimiser w i l l use R B F kernel
w i th characteristic length scale 07 = 0.1, 15 testing samples per dimension and uncertainty
R = 0.01. After the hyper-optimisation ends, plots of G P representation and cumulative
min imum over rounds w i l l be shown.

./wrapper.py \
—rounds 5 \
—gaussian-process "KernelRBF" 15 0.01 0.1 \
— c o n f i g - f i l e mnist_example_config.txt \
—draw

4.3.2 U s a g e of G P O P P y t h o n L i b r a r y

The following examples demonstrate how to use G P O P as a l ibrary. Fi rs t , the following
imports need to be made:

import torch
from gpop.optimiser import optimiser as gpo
from gpop.optimiser import kernel
In case only G r i d optimiser or R a n d o m optimiser w i l l be used, only optimiser module

needs to be imported. G P optimiser requires kernel module to create a kernel and torch
module to define the parameters of the kernel.

If the hyper-optimisation task is to optimise a benchmark, benchmarks module has to
be imported and benchmark function created:

38

from gpop.optimiser import benchmarks

benchmark settings
bench_name = "FnSphere"
bench_opt = [2.0, 5.0]
bench_opt_val = 2
create benchmark function
fn = benchmarks.selectBenchmark(bench_name, bench_opt, bench_opt_val)
In case the task is to optimise hyper-parameters of the N N , bridge module has to

be impor ted and NeuralNet object ini t ial ised using a parsing function from the bridge
module:

from gpop.nnbridge import bridge

NN settings
config_path = "./mnist_example_config.txt"
fn, dim_bounds = bridge.parseFileConfig(config_path)

The configuration can be loaded from standard input using parseStdlnConf ig() func
t ion or from a file using parseFileConf ig() function as above. These functions return a
reference to a callable NeuralNet object and a list of dimensions bounds.

Next , the optimiser has to be init ial ised. Us ing its keyword arguments, it 's possible
to specify addi t ional settings such as D S S or A F . F u l l description of available keyword
arguments for each optimiser can be found i n Section 4.2.2. Example below uses G P
optimiser w i th Ma te rn A R D 5/2 kernel. The parameters of the kernel are signal standard
deviation o~f = 1.0 and characteristic length scale <Ji = (1.2,1.5). Note that this kernel
expects two-dimensional points as input:

kernel_name = "KernelMaternARD52"
params = torch.tensor([1.0, 1.2, 1.5], requires_grad=True)
k~= kernel.selectKernel(kernel_name, params)
opt = gpo.GPOptimiser(fn, dim_bounds, k, autotune=True, verbose=True)
Note that i f the parameters of the kernel are supposed to be automatical ly optimised,

the keyword argument requires_grad i n kernel parameters ini t ia l isat ion needs to be set to
True. In case a benchmark is optimised, the dimensions bounds need to be set manually:

dim_bounds = [[0.0, 5.0], [0.0, 5.0]]
Final ly , the optimisat ion can be run for n rounds and the results of the optimisat ion

can be shown:

run optimisation
opt.optimise(n)
print results
print("Best settings: hpl:", opt.best_x[0], "hp2:", opt.best_x[l])
print("Best function value:", opt.best_y)

Optimiser stores the best found settings x* along wi th best found function value /(x*)
in variables best_x and best_y. The optimiser also stores other information, such as every
used t ra ining point, its function value and values of automatical ly tuned parameters.

39

4.4 G P O P Customisation

In order to adjust G P optimiser to specific N N , it 's possible to create custom kernels and
acquisition functions. A l s o , it is possible to create new benchmarks that may help to select
suitable hyper-optimisation parameters that suite specific N N .

To add a new kernel, A F or a benchmark, it 's possible to edit existing P y t h o n modules
kernel, acqfun and benchmarks, or to create a new module. B u t i n order to preserve full
functionality, it 's recommended to use the existing modules.

4.4.1 W r i t i n g new kernels

In order to add a new kernel, create a new class i n module kernel module. Also , it 's
important to mainta in following rules to ensure G P O P works as expected:

• kernel has to be a callable class w i th ini t ia l isat ion parameter params stored as a class
variable

• params is a tensor, where each element or group of elements represents a parameter
of the kernel

• inputs of the kernel are two tensors, representing two Z?-dimensional points

• a l l operations on inputs and parameters have to use torch framework

• the new kernel has to be added to selectKernel() function

It's also possible to create new kernel builders, which should return a new kernel that
follows the same conventions as mentioned above. For examples of kernels builders, see
buildAddKernel () and buildMultKernel () functions in kernel module.

4.4.2 A d d i n g N e w A c q u i s i t i o n F u n c t i o n s

To create a new A F , add a new class to aqfun module that follows rules below:

• A F has to be a callable class

• A F has three required input arguments:

— x_test - an array of Z?-dimensional testing points

— x - a list of Z?-dimensional t ra ining points

— y - a list of function values for each t ra ining point i n list x

• the outputs of A F are:

— x_next - an array representing a Z?-dimensional point that w i l l be used as next
t ra ining point

— mean - a list of predicted mean values of the testing points

— sigma - a list of predicted standard deviations of the testing points

• the new A F has to be added to selectAcqFunO function

Note that the names of the inputs and outputs can be changed, but positions and types
have to be preserved.

40

4.4.3 A d d i n g N e w B e n c h m a r k s

To add a new benchmark, create a new class i n module benchmarks. New benchmarks have
to inherit from the Benchmark class and follow the rules below:

• benchmark has to be a callable class

• benchmark has two required posi t ional ini t ia l isat ion arguments:

— x_opt - a list of D values, representing an op t imum of the benchmark

— f _opt - a function value i n the op t imum of the benchmark

• the input of the benchmark is Z?-dimensional array, representing a point i n space

• the output of the benchmark is a scalar

• the new benchmark has to be added to the function selectBenchmarkO

41

Chapter 5

Experiments

The actual op t imal values of hyper-parameter settings i n neural networks are not known
and moreover, the t ra ining t ime of the N N might be substantial. Therefore, it is common
to test the performance of hyper-optimisat ion on benchmarks first [14]. Benchmarks are
functions that are designed to simulate the typica l difficulties that can occur during hyper-
optimisat ion while searching the hyper-parameters domains [20]. To evaluate the efficiency
of the implemented optimizers and their features, experiments were first conducted on
benchmarks and then on a N N using M N I S T dataset [25].

This chapter contains description of implemented benchmarks and the results of the
conducted experiments.

5.1 Benchmarks for Hyper-parameter Optimisation

Since function parameters can be viewed as a part icular hyper-parameters w i th continuous
domains and the resulting function value as a result of the loss function, the benchmark
functions are applicable substitute for actual N N . The advantage is that the min ima l input
vectors of such functions are known and can be even directly specified i n the benchmark.
Two basic benchmarks, Sphere and El l ipso ida l [20], were used i n the experiments. B o t h
represent unimodal , separable problems and are scalable w i th dimension. U n i m o d a l means
that the function has only one local m i n i m u m (maximum) and it 's the global m i n i m u m
(maximum). The separability of D-dimensional problem means that it can be separated
into D one-dimensional procedures and solved independently.

Defined benchmarks use the following notation: x is D-dimensional input vector, x o p i

is an op t imal solution vector and fopt is m in ima l function value such that fopt = /(x 0 |) ') .

5.1.1 Sphere F u n c t i o n

Sphere function represents easy continuous domain search problem that is un imodal and
highly symmetric. Sphere function is given as:

/ (x) = l l z H 2 + fopt
(5

'
1)

A n example of two-dimensional Sphere function is shown in Figure 5.1.

42

(a) 3D plot (b) contour plot

Figure 5.1: Example of a two-dimensional Sphere benchmark. O p t i m a l function value
f(x°pt) i n op t imum x 0 |) ' = (2.5, 2.5) is shown by a red arrow/cross.

5.1.2 E l l i p s o i d a l F u n c t i o n

El l ipso ida l function represents unimodal , i l l -condit ioned continuous search problem wi th
smooth local irregularities. I l l-conditioned function is a function such that a smal l change
in the input vector of the function may lead to a large change in the resulting function
value. E l l ipso ida l function is defined as [20]:

D

i=l
ropt\ z — T"o s z(x x

where Tosz : HD —> MP is mapped element-wise for each element of the input vector and is
defined as follows:

x i->- s ign(x)exp(x + 0.049(sin(cix) + sin(c2x)))

sign(x) = x
log(|x|) i f x ^ 0

0 otherwise

10

5.5

if x > 0

otherwise
C-2

- 1 if x < 0

0 if x = 0

1 otherwise

7.9 if x > 0

3.1 otherwise

in Fi j mre 5.2.

(5.3)

Example of two-dimensional E l l ipso ida l function is shown in Figure 5.2.

5.2 Testing the Toolkit on Benchmarks

Each of the listed experiments on the before mentioned benchmark functions has been
averaged from over 100 runs wi th different function opt imum. The location of the op t imum

43

5

(a) 3D plot (b) contour plot

Figure 5.2: Example of a two-dimensional E l l ipso ida l benchmark. O p t i m a l function value
f(x°pt) in op t imum x o p* = (2.5,2.5) is shown by a red arrow/cross. A s can be seen, the
benchmark is i l l -condi t ional only in dimension of x\, while x 2 has only a smal l influence on
the resulting function value.

was selected randomly wi th uniform dis t r ibut ion from a subset of available search space, so
the op t imum lies in different sector of the search space in each run. These measures should
provide reasonable assessment in performance of a l l tested features of G P O P .

Each experiment was run on a benchmark wi th different dimensionality, where each
dimension was optimised on interval [0, 5]. Based on the dimensionality of the benchmark,
different number of samples and optimisat ion steps were used to comply wi th the size of
the search space. The number of samples and the number of opt imisat ion steps used for
different Z?-dimensional benchmarks are shown i n Table 5.1. A l l experiments used Ma te rn
A R D 5/2 kernel, random D S S and E I A F , any addi t ional settings or differences are described
in part icular experiments.

Table 5.1: Number of opt imisat ion steps and number of testing samples used i n D-
dimensional benchmark experiments.

Configuration I D 2D 3D 4D 5D

#steps 10 15 20 25 30
^samples 25 20 2 15 3 10 4 5 5

Experiments are divided into five sections, where first section focuses on comparison of
implemented optimisers, next sections are focused on selected kernel, D S S and A F , while
the last part focuses on automatic tuning of the G P parameters.

5.2.1 O p t i m i s e r A c c u r a c y C o m p a r i s o n

The first set of experiments devotes attention to comparison between G P , gr id and random
hyper-optimisation. A l l of the optimisers were tested on up to 5-dimensional benchmarks.
The accuracy of each optimiser is highly influenced by the size of search space and properties

44

of the benchmark function. In this set of experiments, G P optimiser w i t h R B F kernel,
random D S S and Expec ted Improvement A F was used.

Concerning smaller search space and sufficient amount of optimisat ion steps, G r i d opti
miser may provide better results than R a n d o m optimiser. B u t as the number of optimisat ion
steps reduces or search space increases, G r i d optimiser starts to provide worse results than
G P optimiser or R a n d o m optimiser (see Figure 5.3).

step step

(a) ID Sphere (b) 2D Sphere

Figure 5.3: Compar ison of G P , R a n d o m and G r i d optimisers on I D and 2D Sphere bench
marks showing the cumulative m i n i m u m over opt imisat ion steps.

A s can be seen in Figure 5.4, there is a m i l d difference between optimisat ion of Sphere
and El l ipso ida l benchmark considering G P and random optimisat ion. Sphere benchmark
is highly symmetr ical and contains larger space wi th values closer to opt imum. Therefore,
R a n d o m optimiser tends to provide better results i n the first few steps of optimisat ion (first
8 steps i n Figure 5.4a) before G P optimiser creates sufficient model . E l l ipso ida l benchmark
is less symmetr ical and i l l-condit ioned and therefore G P optimiser finds better solution
faster, as can be seen in Figure 5.4b.

step step

(a) 3D Sphere (b) 3D Ellipsoidal

Figure 5.4: Compar ison of G P , R a n d o m and G r i d optimisers on 3D benchmarks showing
the cumulative m i n i m u m over opt imisat ion steps.

The number of steps needed for G P optimiser to beat average values of R a n d o m opti
miser is influenced by the shape of the problem and by the size of the search space. W h e n
searching i n larger or less symmetric space of a benchmark, the chances of random search
to select better values are lesser. Tha t means G P optimisat ion can achieve better results
in just a few steps even when opt imising problems wi th more dimensions, as can be seen in
Figure 5.5.

45

Figure 5.5: Compar ison of G P and R a n d o m optimiser on 5D benchmarks showing the
cumulative m i n i m u m over opt imisat ion steps. R a n d o m optimiser performs very-well on
highly symmetr ical Sphere benchmark and manages to provide better results for about 20
optimisat ion steps, while G P optimiser provides better opt imisat ion results on El l ipso ida l
benchmark.

5.2.2 K e r n e l E x p e r i m e n t s

Kerne l experiments were focused on performance of kernels themselves, without any dif
ferences between the parameters of the kernels. A l l three tested kernels (R B F , Laplac ian
and Ma te rn 5/2) used the same parameters setting i n each conducted experiment, therefore
Ma te rn kernel was used without A R D . Experiments were run on both before mentioned
benchmarks in up to 5-dimensions.

A s shown i n Figure 5.6, kernel selection has a significant influence on the optimisat ion.
The difference between the tested kernels on one and two-dimensional benchmarks is in
conspicuous, but experiments on larger search space and i n more dimensions show that
Laplac ian kernel suites these benchmarks better than the other two kernels. The perfor
mance of R B F and Ma te rn kernel is quite similar, but in most of the experiments R B F
kernel performed slightly better. This is expected, since the behaviour of the kernels is
quite similar and while M a t e r n is more suitable to model more substantial local changes,
both used benchmarks are rather smooth.

Figure 5.6: Compar ison of implemented kernels on 4D Sphere and El l ipso ida l benchmarks
showing the cumulative m i n i m u m over opt imisat ion steps. Ke rne l selection is highly depen
dent on the optimised problem and might reduce the number of opt imisat ion steps quite
significantly.

46

5.2.3 D S S E x p e r i m e n t s

Next set of experiments was focused on implemented domain-space search strategies. The
main objective of this set of experiments was to determine how different D S S strategies
influence the result of hyper-optimisation and how are part icular strategies influenced by
used number of testing samples. Due to the high number of experiments needed to evaluate
the latter, only benchmarks w i t h up to 3-dimensions were tested, while the first set of
experiments was run on up to 5-dimensional benchmarks.

W h e n considering the influence of the number of samples on both D S S strategies, the
opt imal number of samples depends on the optimised benchmark, the number of opt imi
sation steps, the number of dimensions and the size of the search space. A s shown in
Figure 5.7, the average performance of both gr id and random D S S seem to share the same
behaviour on each benchmark, except for smaller number of samples. A l l conducted D S S
experiments i n up to 5D show that start ing from approximately 10D samples (where D is
the number of dimensions), the behaviour of both averages is very similar.

number of samples number of samples

(a) 3D Sphere (b) 3D Ellipsoidal

Figure 5.7: Influence of the number of samples on average error of a l l the optimisat ion
steps. The behaviour of both strategies is quite similar, except for very smal l number of
samples. In comparison w i t h gr id D S S , random D S S achieves surprisingly good results even
for a really smal l number of testing samples. However, this pattern isn't that s t r iking in
I D experiments.

The average values serve as a good guideline for the comparison of a behaviour of both
strategies, but they do not show the actual best achieved results. Figure 5.8 shows the best
achieved results for selected optimisat ion steps i n dependency on the number of samples.
Because the results for each tested number of steps depends on so many factors, it 's hard
to select suitable number of testing samples. B u t it 's obvious that gr id D S S achieves poor
results w i th smal l number of opt imisat ion steps, while random D S S achieves more consistent
results for every tested number of samples and moreover, it performs quite well even wi th
a smal l number of testing samples.

B o t h random D S S and gr id D S S behave analogously when changing the number of sam
ples (except for very smal l values) and therefore experiments focusing on the influence of
D S S strategies on min imiz ing the benchmark functions were run w i t h the same amount
of samples for both strategies. A s results on Figure 5.9 suggest, hyper-optimisation wi th
random D S S achieved better results then grid D S S i n a l l conducted experiments. Further
more, the difference between both approaches is more notable when solving benchmarks
wi th more dimensions and experiments conducted on El l ipso ida l benchmark showed more
substantial differences between tested D S S strategies.

47

number of samples

(a) grid DSS on 3D Sphere

103

102 103

number of samples

(c) grid DSS on 3D Ellipsoidal

io2 io3

number of samples

(b) random DSS on 3D Sphere

io2 io3

number of samples

(d) random DSS on 3D Ellipsoidal

Figure 5.8: Influence of the number of samples on error in some of the optimisat ion steps.
A s can be seen in figures above, the best selected number of testing samples depends on
many factors, such as selected D S S , number of opt imisat ion steps and optimised benchmark.

5.2.4 C o m p a r i s o n of A c q u i s i t i o n F u n c t i o n s

Next set of experiments compared three acquisit ion functions: MinimalMean, LowerConf idence
and Expectedlmprovement. Experiments on one-dimensional benchmarks showed the best
results achieved LowerConf idence A F , while the rest of the experiments (up to 5D for both
benchmarks) showed better convergence to op t imal value while using Expectedlmprovement
A F . A s shown i n Figure 5.10, the difference between used A F was most perceptible i n exper
iments w i th E l l ipso ida l benchmark, while results on Sphere benchmark show only min ima l
difference between used A F s .

5.2.5 E s t i m a t i o n of G P P a r a m e t e r s

The last part of experiments on benchmarks was focused on automatic tuning of G P pa
rameters. Three options were tested: G P opt imisat ion without automatic tuning, w i th
automatic tuning of kernel parameters and wi th automatic tuning of a l l parameters (kernel
and uncertainty).

The best results on most of the benchmarks were achieved wi th automatic tuning of
kernel parameters, as shown i n Figure 5.11. Ment ioned problem wi th tuning the uncertainty
is probably caused because of the automatic tuning algori thm, which is t ry ing to improve the
log l ikel ihood by increasing the uncertainty. That leads to the possibil i ty of also increasing
characteristic length scale, so these two parameters are increased unt i l the model no longer
fits the problem.

18

step step

(a) ID Sphere benchmark (b) 3D Ellipsoidal

Figure 5.9: Compar ison of gr id and random D S S .

step step

(a) 4D Sphere (b) 4D Ellipsoidal

Figure 5.10: Influence of selected A F on the result of the optimisat ion. A l l A F s i n experi
ments on Sphere benchmarks performed almost identically, except Expectedlmprovement
A F was able to converge closer to the benchmark opt imal function value, if given enough
optimisat ion steps. This difference was more significant on El l ipso ida l benchmarks, where
except first few opt imisat ion steps, Expectedlmprovement A F achieved dis t inct ly better re
sults that the other two A F s (note that the results for MinimalMean and LowerConf idence
shown i n Figure b) coincide).

5.3 Neural Networks Experiments

N N experiments were r un on M N I S T dataset, specifically on image classification example
N N 1 . N N i n the example uses Stochastic Gradient Descent a lgori thm and trains the network
for 10 epochs. A l l experiments compare three different optimisers: G r i d optimiser, R a n d o m
optimiser and G P optimiser. G P optimiser was run i n two configurations, once wi th fixed
parameters and once wi th automatic tuning of kernel parameters.

A l l optimised hyper-parameters and used dimension bounds are presented i n Table 5.2.
G P optimiser used random D S S , E I A F , uncertainty of le—3 and Ma te rn A R D 5/2 kernel
w i th signal standard deviation Of = 1.0 and two distinct settings of characteristic length
scale <T;, as defined i n Table 5.3. Used number of opt imisat ion steps and number of samples
is the same as in benchmarks experiments and is described i n Table 5.1.

A l l results show cumulative m i n i m u m of val idat ion loss i n different opt imisat ion steps.
A l l loss values are averaged from only 5 distinct opt imisat ion runs, due to a longer t ra ining
t ime of the N N . This causes noticeable dispersion of the resulting loss values, but it should

1 https: / / github. com / pytorch / examples / tree / master / mnist

49

Figure 5.11: Influence of automatic tuning of G P parameters on a benchmark opt imi
sation. One-dimensional benchmarks show only minor differences, but mult idimensional
benchmarks show that the automatic tuning of kernel parameters performs the best, while
tuning of uncertainty leads in most cases to short improvement followed by significant
deterioration of the opt imisat ion. Though in one case the use of G P optimiser without au
tomatic tuning achieved better results that G P optimiser w i th automatic tuning of kernel
parameters, most experiments show that the latter yields significant improvement of the
optimisation.

provide reasonable estimate to roughly compare the optimisers. Note that every experiment
was run wi th two different settings of kernel parameter characteristic length scale 07.

The a im of the first set of experiments was opt imising a single hyper-parameter. A s
can be seen in Figure 5.12, G r i d optimiser managed to find the best hyper-parameter
setting of learning rate and number of hidden neurons. G r i d optimiser searches the domain
progressively, so the first and the last few opt imisat ion steps search the border of a domain.
Tha t is the reason why the cumulative m i n i m u m of G r i d optimiser usually changes rapidly
in the beginning and maintains the value at the end of the opt imisat ion. R a n d o m optimiser
achieved the best result i n opt imisat ion of the batch size. B u t unlike G r i d optimiser, its
result is not influenced by the locat ion of the op t imum and the therefore the change in
cumulative m i n i m u m is more gradual. G P optimiser needs a few steps before it creates

Table 5.2: Opt imised hyper-parameters and their bounds used in experiments.

Hyper-parameter Type Dimension bounds

learning rate float [0 , 1]
number of neurons in hidden layers int [32,512]
batch size int [1,1024]

50

Table 5.3: Characterist ic length scale settings for optimised hyper-parameters used in ex
periments.

Hyper-parameter
setting 1 setting 2

learning rate 0.1 0.2
number of hidden neurons 48 96
batch size 102 204

sufficient model and then starts to improve it 's optimisation, but was not able to provide
better results than the other optimisers.

0.30

0.25

0.20

g0.15

0.10

0.05

0.00

Grid
Random
GP
GP (autotune)

Grid
Random
GP
GP (autotune)

Grid
Random
GP
GP (autotune)

1 2 i t i ' 1 i ') 10

(a) learning rate
0.40

(b) number of hidden neurons

Grid
Random

— GP
GP (autotune)

Grid
Random

— GP
GP (autotune)

Grid
Random

— GP
GP (autotune)

1 2
! ' > 7 ! i •) 1C

(c) batch size

Figure 5.12: Compar ison of G r i d , R a n d o m and G P optimisers on M N I S T N N , optimising
one hyper-parameter.

The second set of experiments focused on opt imisat ion of two hyper-parameters. A s
can be seen i n Figure 5.13, R a n d o m optimiser achieved better result i n the first few steps
of optimisat ion, while G r i d optimiser managed to find better values in two out of three
experiments. G P optimiser performed similar ly as i n optimisat ion of one hyper-parameter,
but there are more noticeable differences between G P optimiser w i th and without automatic
parameter tuning. These differences are probably more noticeable because of higher number
of opt imisat ion steps wi th automatic parameter tuning.

The last set of experiments was focused on optimisat ion of a l l three hyper-parameters.
A s can be seen i n Figure 5.14, R a n d o m optimiser provided the best results throughout
al l the opt imisat ion steps, while G P optimiser provided better results than G r i d optimiser
the first 13 steps. B u t this is influenced by the number of opt imisat ion steps i n total and
G r i d optimiser might possibly find better hyper-parameter settings even when using fewer

51

0.250

step step

(a) learning rate, number of hidden neurons (b) learning rate, batch size

Grid
Random
GP
GP (autotune)

Grid
Random
GP
GP (autotune)

\
\ \ \

2 4 6 ! ! 10 12 14
step

(c) number of hidden neurons, batch size

Figure 5.13: Compar ison of G r i d , R a n d o m and G P opt imisat ion of two hyper-parameters
of M N I S T N N .

optimisat ion steps. A l so , note that G P optimiser i n Figure 5.14b managed to improve its
results to the same loss values as in Figure 5.14a by using automatic parameter tuning.

The worse results of G P optimiser might be caused by several issues: G P parameter
settings, inconvenient mean or the nature of the loss space. To fix parameters of the G P
model, more knowledge about the behaviour of the optimised hyper-parameters is needed.
Problems wi th mean could arise when the loss values are too close to mean value and
G P optimiser might get stuck i n one place. This issue could be resolved by selection of a
different A F or a loss function. Loss space could cause problems when the domains of the
optimised hyper-parameters are quite large and the characteristic length scale parameter is
set to higher values. Tha t could lead to inabi l i ty to model the subtle differences i n the loss
value.

52

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
step step

(a) ai = (0.1,48,102) (b) <rt = (0.2,96,24)

Figure 5.14: Comparison of G r i d , R a n d o m and G P optimisers on M N I S T N N , opt imising
three hyper-parameters: learning rate, number of hidden neurons and batch size. The
results for two different characteristic length scale settings are shown. Note that both runs
used the same G r i d and R a n d o m optimiser, the differences i n R a n d o m optimiser are caused
only by different seed.

53

Chapter 6

Conclusion

The goal of this thesis was to design and implement a hyper-optimizer based on Gaussian
Processes. I have achieved this goal by implementing a simple G P based hyper-optimisation
l ibrary w i th a C L I wrapper. Furthermore, I compared the efficiency of implemented G P
optimiser w i t h two baseline solutions based on gr id and random search by numerous ex
periments on a few benchmark functions and M N I S T dataset. A l so , I have tested different
parameters of the G P optimiser, such as D S S or A F , to evaluate their influence on the
result of the optimisation.

The experiments on the benchmarks functions proved that the implemented G P op
timiser is in analogous cases able to achieve better results than both grid and random
search optimisat ion techniques and i n some cases may save more that ten optimisat ion
steps. Experiments w i th parameters of the G P optimiser show that best option for D S S is
random D S S . Optimisers w i t h this strategy achieved better result i n a l l tested cases and
since random D S S provides better results w i th fewer testing samples, it also brings notable
improvement in computat ion t ime of G P predictions. Most suitable A F proved to be E I ,
while most suitable kernel on the tested benchmarks was Laplac ian kernel. B o t h E I A F and
Laplac ian kernel led to faster improvement, especially in the first few steps of the opt imi
sation. Experiments w i th automatic tuning of the parameters have shown that tuning only
the parameters of the kernel leads mostly to better results, while tuning kernel parameters
w i t h uncertainty leads to fast deterioration of the optimisat ion results i n most cases.

The experiments on M N I S T dataset show that average loss value achieved i n random
optimisat ion is better than in G P optimisat ion. Though the results of the G P optimiser
can be improved by changing its parameters, it requires better understanding of behaviour
of the optimised hyper-parameters.

In the future, I would like to continue my work and improve the performance and
user interface of the implemented toolki t . Specifically, I would like to improve automatic
tuning of G P parameters i n contrast to their domain size. Also , I would like to further
simplify the way of defining configuration files of neural networks and the addi t ion of custom
benchmark functions. M y work could be further expanded by improving the performance
of G P optimisat ion, adding addi t ional hyper-optimisation methods or by creating a G U I
for visualisation of the optimised hyper-parameters.

54

Bibliography

[1] A L T O , V . Neural Networks: parameters, hyperparameters and optimization strategies
[online]. Towards D a t a Science, July 2019 [cit. 2020-01-20]. Available at:
https: //towardsdatascience.com/neural-networks-parameters-hyperparameters-and-
optimization-strategies-3f0842fac0a5.

[2] B E R G S T R A , J . , B A R D E N E T , R . , B E N G I O , Y . and K E G L , B . Algor i thms for

Hyper-Parameter Opt imiza t ion . In: Proceedings of the 24th International Conference
on Neural Information Processing Systems. R e d Hook, N Y , U S A : C u r r a n Associates
Inc., 2011, p. 2546-2554. N I P S ' l l . I S B N 9781618395993.

[3] B E R G S T R A , J . and B E N G I O , Y . R a n d o m Search for Hyper-parameter Opt imiza t ion .
J. Mach. Learn. Res. J M L R . o r g . february 2012, vol . 13, p. 281-305. Available at:
http://dl.acm.org/citation.cfm?id=2188385.2188395. I S S N 1532-4435.

[4] B I S H O P , C . M . Pattern Recognition and Machine Learning (Information Science and
Statistics). Ber l in , Heidelberg: Springer-Verlag, 2006. I S B N 0387310738.

[5] B J O R C K , J . , G O M E S , C . P . and S E L M A N , B . Understanding Ba tch Normal iza t ion .

CoRR. 2018, abs/1806.02375. Available at: http://arxiv.org/abs/1806.02375.

[6] B R O C H U , E . , B R O C H U , T . and F R E I T A S , N . A Bayesian Interactive Opt imiza t ion
Approach to Procedura l A n i m a t i o n Design. In:. Ju ly 2010, p. 103-112.

[7] B R O C H U , E . , C O R A , V . M . and F R E I T A S , N . de. A Tutor ia l on Bayesian

Opt imiza t ion of Expensive Cost Functions, w i th App l i ca t ion to Act ive User Mode l ing
and Hierarchical Reinforcement Learning. CoRR. 2010, abs/1012.2599. Available at:
http://arxiv.org/abs/1012.2599.

[8] B R O C H U , E . , H O F F M A N , M . and F R E I T A S , N . de. Hedging Strategies for Bayesian
Optimization. ArXiv:1009.5419. Sep 2010. Available at:
http: //cds.cern.ch/record/1295294.

[9] B U S H A E V , V . How do we 'train' neural networks'? [online]. Towards D a t a Science,
2017 [cit. 2020-05-02]. Available at:
https: //towardsdatascience.com/how-do-we-train-neural-networks-edd985562b73.

[10] C H O R O M A N S K A , A . , H E N A F F , M . , M A T H I E U , M . , A R O U S , G . B . and L E C U N , Y . The

Loss Surface of Mul t i layer Networks. CoRR. 2014, abs/1412.0233. Available at:
http://arxiv.org/abs/1412.0233.

[11] C L E V E R T , D . - A . , U N T E R T H I N E R , T . and H O C H R E I T E R , S. Fast and Accurate Deep
Network Learning by Exponent ia l Linear Uni t s (E L U s) . In:. January 2016.

55

http://JMLR.org
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://arxiv.org/abs/1806.02375
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1412.0233

[12] D E W A N C K E R , I., M C C O U R T , M . and C L A R K , S. Bayesian optimization primer. 2015.

[13] E G G E N S P E R G E R , K . Towards an E m p i r i c a l Foundat ion for Assessing Bayesian
Opt imiza t ion of Hyperparameters. In:. 2013.

[14] E G G E N S P E R G E R , K . , H U T T E R , F . , H o o s , H . H . and L E Y T O N B R O W N , K . Surrogate

Benchmarks for H y p er parameter Opt imiza t ion . In: Proceedings of the 2014

International Conference on Meta-Learning and Algorithm Selection - Volume 1201.

Aachen, D E U : C E U R - W S . o r g , 2014, p. 24-31. M L A S T 4 . I S B N 16130073.

[15] F O G E L , D . B . , F O G E L , L . J . and P O R T O , V . W . Evolu t ionary programming for

t ra ining neural networks. In: 1990 IJCNN International Joint Conference on Neural
Networks. 1990, p. 601-605 vol . 1.

[16] G A U R A N G , P. , G A N A T R A , A . , K O S T A , Y . and P A N C H A L , D . Behaviour Analys is of

Mult i l ayer Perceptronswith M u l t i p l e Hidden Neurons and Hidden Layers.
International Journal of Computer Theory and Engineering. January 2011, vol . 3,
p. 332-337.

[17] G O L O V I N , D . , S O L N Í K , B . , M O I T R A , S., K O C H A N S K I , G . , K A R R O , J . E . et a l . , ed.

Google Vizier: A Service for Black-Box Optimization. 2017. Available at:
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-
optimization.

[18] G O O D F E L L O W , I., B E N G I O , Y . and C O U R V I L L E , A . Deep Learning. The M I T Press,

2016. I S B N 0262035618.

[19] G Ö R T L E R , J . , K E H L B E C K , R . and D E U S S E N , O . A V i s u a l Exp lo ra t ion of Gaussian

Processes. Distill. 2019.
https: / / d is t i l l .pub/2019 / visual-exploration-gaussian-processes.

[20] H A N S E N , N . , R O S , R . and A U G E R , A . Real-Parameter B lack -Box Opt imiza t ion
Benchmarking 2009: Noiseless Functions Definitions. In:. 2009.

[21] H U T T E R , F . , L Ü C K E , J . and S C H M I D T T H I E M E , L . Beyond M a n u a l Tuning of

Hyperparameters. KI - Künstliche Intelligenz. July 2015, vol . 29.

[22] K O E H R S E N , W . A Conceptual Explanation of Bayesian Hyperparameter Optimization
for Machine Learning [online]. Towards D a t a Science, 2018 [cit. 2020-05-05]. Available
at: https : //towardsdatascience.com/a-conceptual-explanation-of-bayesian-
model-based-hyperparameter-optimization-for-machine-learning-b8172278050f.

[23] L E C U N , Y . A Theoret ical Framework for Back-Propagat ion, august 2001.

[24] L E C U N , Y . , B O T T O U , L . , O R R , G . B . and M Ü L L E R , K . - R . Efficient BackProp .

In: Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS
Workshop. Ber l in , Heidelberg: Springer-Verlag, 1998, p. 9-50. I S B N 3540653112.

[25] L E C U N , Y . and C O R T E S , C . M N I S T handwri t ten digit database.
[http://yann.lecun.com/exdb/mnist/]. 2010. Available at:
http: / / yann.lecun.com/exdb/mnist/.

56

http://CEUR-WS.org
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/

[26] L I A W , A . , W I E N E R , M . et a l . Classification and regression by randomForest. R news.
2 0 0 2 , vol . 2 , no. 3 , p. 1 8 - 2 2 .

[27] L u , L . , S H I N , Y . , S U , Y . and K A R N I A D A K I S , G . E . D y i n g R e L U and Ini t ial izat ion:
Theory and Numer ica l Examples . ArXiv. 2 0 1 9 , a b s / 1 9 0 3 . 0 6 7 3 3 .

[28] M A T U S Z Y K , P. , C A S T I L L O , R . T . , K O T T K E , D . and S P I L I O P O U L O U , M . A

Comparat ive Study on Hyperparameter Opt imiza t ion for Recommender Systems. In:
L E X , E . , K E R N , R . , F E L F E R N I G , A . , J A C K , K . , K O W A L D , D . et a l . , ed. Workshop on

Recommender Systems and Big Data Analytics (RS-BDA'16) @ iKNOW 2016. 2 0 1 6 .
Available at: http://socialcomputing.know-center.tugraz.at/rs-bda/.

[29] O L O F , S. S. A Comparat ive Study of Black-box Opt imiza t ion Algor i thms for Tuning
of Hyper-parameters i n Deep Neura l Networks. In:. 2 0 1 8 .

[30] R A M A C H A N D R A N , P. , Z O P H , B . and L E , Q . V . Searching for Ac t iva t ion Functions.
CoRR. 2 0 1 7 , a b s / 1 7 1 0 . 0 5 9 4 1 . Available at: http://arxiv.org/abs/1710.05941.

[31] R A S M U S S E N , C . E . and W I L L I A M S , C . K . I. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The M I T Press, 2 0 0 5 .
I S B N 0 2 6 2 1 8 2 5 3 X .

[32] R U D E R , S. A n overview of gradient descent opt imizat ion algorithms. ArXiv preprint

arXiv.1609.0VIVI- 2 0 1 6 .

[33] S E X T O N , R . , D O R S E Y , R . and J O H N S O N , J . Beyond backpropagation: Us ing

simulated annealing for t ra ining neural networks. Journal of End User Computing.
July 1 9 9 9 , vol . 1 1 .

[34] S N O E K , J . , L A R O C H E L L E , H . and A D A M S , R . P . P rac t ica l Bayesian Opt imiza t ion of

Machine Learning Algor i thms. In: P E R E I R A , F . , B U R G E S , C . J . C , B O T T O U , L .
and W E I N B E R G E R , K . Q . , ed. Advances in Neural Lnformation Processing Systems 25.
Cur ran Associates, Inc., 2 0 1 2 , p. 2 9 5 1 - 2 9 5 9 . Available at: h t tp : / / pape r s .n ips . cc /
paper/4522-pract ical-bayesian-optimizat ion-of-machine-learning-algori thms.pdf.

[35] S N O E K , J . , R I P P E L , O. , S W E R S K Y , K . , K I R O S , R . , S A T I S H , N . et a l . Scalable

Bayesian Opt imiza t ion Us ing Deep Neura l Networks. In: Proceedings of the 32nd
International Conference on International Conference on Machine Learning - Volume
37. J M L R . o r g , 2 0 1 5 , p. 2 1 7 1 - 2 1 8 0 . I C M L ' 1 5 .

[36] S R I V A S T A V A , N . , H I N T O N , C , K R I Z H E V S K Y , A . , S U T S K E V E R , I.

and S A L A K H U T D I N O V , R . Dropout : A Simple Way to Prevent Neura l Networks from
Overfi t t ing. Journal of Machine Learning Research. 2 0 1 4 , vol . 1 5 , no. 5 6 ,
p. 1 9 2 9 - 1 9 5 8 . Available at: h t tp : / / jmlr .org /papers/vl5/srivastaval4a .h tml .

[37] V A S A N I , D . This thing called Weight Decay [online]. Towards D a t a Science, 2 0 1 9 [cit.
2020-05-11] . Available at:

ht tps : / / towardsda tasc ience . com/this- th ing-cal led-weight-decay-a7cd4bcfccab.

5 7

http://socialcomputing.know-center.tugraz.at/rs-bda/
http://arxiv.org/abs/1710.05941
http://arXiv.1609.0VI
http://papers.nips.cc/
http://JMLR.org
http://jmlr.org/papers/vl5/srivastaval4a.html
https://towardsdatascience

