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Abstract 
The goal of this thesis is to create a lightweight toolki t for artificial neural network hyper-
parameter opt imisat ion. The optimisat ion toolki t has to be able to optimise mult iple, 
possibly correlated hyper-parameters. I solved this problem by creating an optimiser that 
uses Gaussian processes to predict the influence of the hyper-parameters on the resulting 
neural network accuracy. Based on the experiments on mult iple benchmark functions, the 
toolki t is able to provide better results than random search opt imisat ion and thus reduce the 
number of necessary optimisat ion steps. The random search opt imisat ion provided better 
results only i n the first few optimisat ion steps before Gaussian process optimisat ion creates 
sufficient model of the problem. However the experiments on M N I S T dataset show that 
random optimisat ion achieves almost always better results than used G P optimiser. These 
differences between the experiments results are probably caused by insufficient complexity 
of the benchmarks or by selected parameters of the implemented optimiser. 

Abstrakt 
Cílem t é t o d ip lomové p r á c e je vy tvo řen í n á s t r o j e pro opt imal izaci h y p e r - p a r a m e t r ů u m ě l ý c h 
neu ronových sí t í . Tento n á s t r o j mus í bý t schopen optimalizovat více h y p e r - p a r a m e t r ů , k t e ré 
mohou bý t nav íc i korelovány. Tento p r o b l é m jsem vyřeši l i m p l m e n t a c í o p t i m a l i z á t o r u , 
k t e r ý využ ívá Gaussovské procesy k predikci v l i v u j edno t l i vých h y p e r p a r a m e t r ů na výsled­
nou p řesnos t neu ronové s í tě . Z p rovedených e x p e r i m e n t ů na někol ika benchmark funkcích 
jsem zjist i l , že i m p l e m e n t o v a n ý n á s t r o j je schopen d o s á h n o u t lepších výs ledků než opt imal­
i zá to ry za ložené na n á h o d n é m p roh l edáván í a sníži t tak v p r ů m ě r u p o č e t p o t ř e b n ý c h k roků 
optimalizace. Opt imal izace za ložená na n á h o d n é m p roh l edáván í dosáh l a lepších výs ledků 
pouze v p rvn í ch krocích optimalizace, než si o p t i m a l i z á t o r za ložený na Gaussovských pro­
cesech vy tvo ř í d o s t a t e č n ě p ře sný model p r o b l é m u . N i c m é n ě t é m ě ř všechny experimenty 
p rovedené na datasetu M N I S T p r o k á z a l y lepší výs ledky o p t i m a l i z á t o r u za loženého na n á h o d ­
n é m p roh ledáván í . T y t o rozdí ly v p rovedených experimentech jsou p r a v d ě p o d o b n ě d á n y 
s loži tost í zvolených benchmark funkcí nebo zvolenými parametry i m p l e m e n t o v a n é h o opti­
ma l i zá to ru . 
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Rozšířený abstrakt 
Neuronová síť je v ý p o č e t n í model insp i rovaný b io logickým neuronem lidské nervové sous­
tavy. Tento model je použ íván pro řešení p r o b l é m ů spo jených se s t r o j o v ý m učen ím, jako 
jsou n a p ř í k l a d zp racován í řeči, detekce p o d v o d ů nebo med ic ín ská diagnostika. 

Neuronová síť se s k l á d á z j e d n o t l i v ý c h vrstev u m ě l ý c h n e u r o n ů , kde k a ž d ý neuron m á 
v s t u p n í vektor x = ( x \ , x n ) T , vektor vah w = ( u > i , w n ) T , bias O, ak t ivačn í funkci 
a v ý s t u p . V ý s t u p neuronu y je d á n jeho ak t ivačn í funkcí / : y = / ( x T w + O ) . T y t o umělé 
neurony jsou ve v r s tvách propojeny tak, že v ý s t u p j e d n é vrs tvy je propojen se vstupem 
vrs tvy následuj íc í . P r v n í vrstva neu ronové s í tě je pak označována jako v s t u p n í vrstva, 
pos ledn í vrstva je označována jako v ý s t u p n í vrstva a všechny o s t a t n í vrs tvy jsou označovány 
jako sk ry t é . 

A b y tyto modely mohly s p r á v n ě fungovat, je n u t n é je "naučit" na d o s t a t e č n é m m n o ž s t v í 
t rénovac ích dat. Toto učen í je ř ízeno p o m o c í učíc ího algori tmu a funguje na pr incipu ak­
tualizace p a r a m e t r ů n e u r o n o v ý c h sí t í - v e k t o r ů vah a b iasů . Učící algoritmus t r énu je neu­
ronovou síť p o s t u p n ě , na m n o ž i n á c h t rénovac ích dat k t e r ý m se se ř íká dávky. T y t o t rénovac í 
data jsou ne jdř íve p ř i v e d e n a na vstup neu ronové s í tě a dá le p r o p a g o v á n a neuronovou sít í . 
V ý s t u p s í tě je ná s l edně p o r o v n á n s c í lovým vektorem d a n ý c h t rénovac ích dat p o m o c í chy­
bové (loss) funkce. V ý s t u p t é h o funkce se označuje jako loss nebo chyba s í tě . Nakonec 
jsou hodnoty p a r a m e t r ů neu ronové s í tě ak tua l i zovány p o m o c í zvoleného učíc ího algori tmu. 
M í r a o kolik jsou parametry neu ronové s í tě upraveny je ř í zena koeficientem učení Celý 
proces učen í je pak za úče lem zlepšení p ře snos t i modelu m o ž n o opakovat, p ř i čemž jeden 
cyklus učen í p řes v šechna t r énovac í data se nazývá epocha. 

Výs ledná p ře snos t neu ronové s í tě je ov l ivněna mnoha faktory, jako jsou s t ruktura neu­
ronové sí tě , učící algoritmus, p o u ž i t á t rénovac í data a inicializace p a r a m e t r ů neuronové 
sí tě . F a k t o r ů m k t e r é ovlivňují s t rukturu nebo z p ů s o b učen í neu ronové s í tě se ř íká hyper-
parametry a jejich n a s t a v e n í v ý r a z n ě ovlivňuje výs l ednou p řesnos t neu ronové s í tě . Běžné 
hyper-parametry ovlivňující s t rukturu neu ronové s í tě jsou n a p ř í k l a d poče t sk ry tých vrstev, 
poče t n e u r o n ů ve sk ry tých v r s tvách a ak t ivačn í funkce, z a t í m c o b ě ž n é hyper-parametry 
ovlivňující učen í s í tě jsou koeficient učení , velikost dávek nebo p o č e t epoch. 

K opt imal izaci h y p e r - p a r a m e t r ů se b ě ž n ě využ ívá m a n u á l n í l aděn í nebo o p t i m a l i z á t o r y 
založené na n á h o d n é m proh ledáván í . Ex i s tu j í však i složitější p ř í s tupy , jako Bayesovské 
op t ima l i začn í metody nebo j iné op t ima l i začn í algori tmy spo jené se s t r o j o v ý m učen ím. 
Zák ladn í s t ruktura Bayesovských o p t i m a l i z á t o r ů je p o p s á n a p o m o c í formalismu Sequen-
tial Model-Based Optimisation ( S M B O ) , k t e r ý definuje h l avn í smyčku cyk lu optimalizace. 
V p r v n í m kroku se vy tvo ř í model rozdě len í p r a v d ě o d o b n o s t i p(y|x,D), kde x je m n o ž i n a 
tes tovac ích dat a T> = { (xi , yi),..., ( X J , yi)} je m n o ž i n a t rénovac ích dat - m n o ž i n a nas­
t aven í h y p e r - p a r a m e t r ů Xj pro k t e r é je j iž chyba s í tě yi z n á m a . V ý b ě r tes tovac ích dat je 
ř ízen p o m o c í Domain Search Stratégy (DSS) . V da l š ím kroku vybere akviziční funkce ( A F ) 
p o m o c í v y t v o ř e n é h o p r a v d ě p o d o b n o s t n í h o modelu p(y|x, D) nás leduj íc í n a s t a v e n í hyper-
p a r a m e t r ů , k t e r é je ná s l edně p o u ž i t o pro t r énován í neu ronové s í tě . Nakonec se dvojice 
(xj ,yj) p ř i d á do m n o ž i n y t rénovac ích dat V, kde yi je chyba s í tě p ř i n a s t a v e n í hyper-
p a r a m e t r ů Xj. 

Pro reprezentaci modelu rozdě len í p r a v d ě p o d o b n o s t i se b ě ž n ě použ ívá G a u s s o v s k ý pro­
ces, n á h o d n ý les, nebo Tree-Parzen Es t imat ion . V t é t o p rác i jsou pro tento účel využ i ty 
Gaussovské procesy. Z a t í m c o klasické rozdělení p r a v d ě p o d o v n o s t i n á h o d n é p r o m ě n n é po­
pisuje vlastnosti ska l á ru nebo vektoru, s tochas t i cký proces popisuje funkce. S tochas t i cký 
proces y(x) je definován s d r u ž e n ý m rozdě len ím p r a v d ě p o d o b n o s t i pro k a ž d o u konečnou 
m n o ž i n u hodnot y ( x i ) , . . . , y(x£>). G a u s s o v s k ý proces je s tochas t i cký proces, kde pod-



m í n ě n é rozdělení p r a v d ě p o d o b n o s t i p ( y ( x i ) , . . . , y ( x £ > ) | x i , . . . , xj j ) je L - r o z m ě r n é n o r m á l n í 
rozdělení . Toto v íce rozměrné rozdělení p r a v d ě p o d o b n o s t i je p o p s á n o jeho s t ř e d n í hodnotou 
\x a kovar iační m a t i c í S . S t ř e d n í hodnota u d á v á s t ř e d rozdělení p r a v d ě p o d o b n o s t i , z a t í m c o 
hodnoty na d i agoná le kovar iační matice udáva j í rozptyl pro k a ž d o u dimenzi a zbytek hod­
not definuje korelaci mezi k a ž d ý m i d v ě m a n á h o d n ý m i p r o m ě n n ý m i . Hodnota korelace je 
d á n a kernelem, k t e r ý definuje tvar tohoto p r a v d ě p o d o b n o s t n í h o rozdělení . P ro účely hyper-
optimalizace je prostor op t ima l i zovaných h y p e r - p a r a m e t r ů v závis lost í na chybové funkci 
mode lován p o d m í n ě n ý m rozdě len ím p r a v d ě p o d o b n o s t i p ( x | y ) , kde x = (x\,..., xn)T je vek­
tor n á h o d n ý c h p r o m ě n n ý c h reprezentu j íc ích t es tovac í data a y = ( y i , . . . ,ym)T je vektor 
n á h o d n ý c h p r o m ě n n ý c h reprezentu j íc ích t r énovac í data.. 

I m p l e m e n t o v a n ý toolkit je navžen jako knihovna v p r o g r a m o v a c í m jazyce Py thon , k t e r á 
využ ívá p o p s a n ý S M B O formalismus s p r a v d ě p o d o b n o s t n í m modelem za loženým na Gausso-
vských procesech za úče lem optimalizace h y p e r - p a r a m e t r ů n e u r o n o v ý c h sí t í . Toolki t je 
rozdělen do dvou h lavn ích ba l ičku o p t i m i s e r a n n b r i d g e . Bal íček o p t i m i s e r obsahuje 
implementaci Gaussovského procesu, o p t i m a l i z á t o r ů , D S S , A F a kerne lů . Toolki t ob­
sahuje t ř i o p t i m a l i z á t o r y : Grid optimiser, Random optimiser a GP optimiser, za ložené 
na p roh l edáván í na mř ížce , n á h o d n é m p roh l edáván í a Gaussovských procesech. Implemen­
tace D S S obsahuje dvě strategie, grid a random, k t e r é vybí ra j í t es tovac í data z d o m é n y 
na zák l adě p roh l edáván í na mř ížce nebo p o m o c í n á h o d n é h o p roh ledáván í . Toolki t dá le ob­
sahuje implementaci t ř í akviz ičních funkcí, z nichž dvě jsou za loženy na v ý b ě r u na zák ladě 
nejnižší o d h a d o v a n é funkční hodnoty (Lower Confidence Bound) a t ř e t í v y b í r á nás ledu­
jící n a s t a v e n í h y p e r - p a r a m e t r ů dle očekávaného zlepšení (Expected Improvement). Dá le 
o p t i m i s e r obsahuje implementaci pě t i ke rne lů (konstantní, lineární, RBF, Laplaceovský 
a Matérn) a dvou metod pro jejich sk ládán í . Bal íček n n b r i d g e se s t a r á o ko rek tn í propo­
jen í o p t i m a l i z á t o r u s neuronovou sí t í . Parametry tohoto p ropo jen í , op t ima l i zované hyper-
parametry a rozsah d o m é n , na k t e r ý c h jsou hyperparametry opt imal izovány, je n u t n é defi­
novat p o m o c í konf iguračního souboru. Toolki t dá le poskytuje skript wrapper .py , k t e r ý 
slouží jako r o z h r a n í pro s p u š t ě n í optimalizace z př íkazové řádky . I m p l e m e n t o v a n ý opt imal­
izá tor dá le umožňu je automatickou opt imal izaci p a r a m e t r ů kerne lů a neu rč i t o s t i v modelu 
G P , k t e r á je za ložena na maximal izac i log likelihood funkce G P modelu. 

I m p l e m e n t o v a n ý toolkit b y l o t e s tován na dvou různých benchmark funkcích až v p ě t i 
d imenz ích a t a k é na neu ronové síti využívaj íc í dataset M N I S T . P r v n í set e x p e r i m e n t ů 
na benchmark funkcích b y l z a m ě ř e n na p o r o v n á n í G P o p t i m a l i z á t o r u s o p t i m a l i z á t o r y za­
loženými na n á h o d n é m p roh l edáván í a p roh l edáván í na mř ížce , z a t í m c o dalš í experimenty 
byly z a m ě ř e n y na p o r o v n á n í i m p l e m e n t o v a n ý c h kernelů , D S S , A F a a u t o m a t i c k é opt imal­
izace p a r a m e t r ů G P o p t i m a l i z á t o r u . Exper imenty na benchmark funkcích prokáza ly , že 
o p t i m a l i z á t o r založený na Gaussovských processech je schopen d o s á h n o u t lepších výs ledků 
než o p t i m a l i z á t o r za ložený na n á h o d n é m proh ledáván í . Exper imenty dá le ukázaly , že 
random D S S je lepší strategie pro v ý b ě r tes tovac ích dat než gr id D S S a nav íc dosahuje 
lepších výs ledků př i m e n š í m m n o ž s t v í t es tovac ích dat, což urychluje v ý p o č e t n í rychlost 
modelu. Dá le bylo u k á z á n o , že na zvolených benchmark funkcích dosahuje nej lepších 
výs ledků A F Expected Improvement, jejíž použ i t í vede k v ý r a z n é m u zlepšení již v p rvn í ch 
krocích optimalizace. Nejlepších výs ledků mezi t e s t o v a n ý m i kernely dosáh l o p t i m a l i z á t o r 
s L a p l a c e o v s k ý m kernelem. Pos l edn í čás t e x p e r i m e n t ů věnovaná a u t o m a t i c k é opt imal izaci 
ukáza la , že optimalizace neu rč i t o s t i zá roveň s parametry kerne lů m ů ž e vést k v ý r a z n é m u 
zhoršení p ře snos t i modelu. N a druhou stranu a u t o m a t i c k á optimalizace v ý h r a d n ě p a r a m e t r ů 
kerne lů vedla k dosažen í lepších výs ledků ve vě tš ině e x p e r i m e n t ů . P ř i experimentech na neu­
ronové síti bylo dosaženo nej lepších výs ledků př i p roh l edáván í na mř ížce a n á h o d n é m 



proh ledáván í , v závislost i na m n o ž i n ě op t ima l i zovaných h y p e r - p a r a m e t r ů . G P opt imal­
izace d o s á h l a o něco horš ích výs ledků , p r a v d ě p o d o b n ě v důs l edku zvolených p a r a m e t r ů G P 
o p t i m a l i z á t o r u . 
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Chapter 1 

Introduction 

Neural networks are computat ional models used to tackle machine learning tasks such as 
clustering, classification, regression, density modell ing or data denoising. Specifically, this 
includes problems such as image and voice recognition, fraud detection, machine diagnostics, 
medical diagnoses and process modell ing and control. For these models to work, they need 
to be trained on a sufficient amount of t raining data. The resulting efficiency and accuracy 
depend on many factors, such as the type and structure of the used neural network, learning 
algori thm, used t ra ining data and network parameter ini t ia l isat ion. The parameters that 
define the structure or learning aspects of the neural network are called hyper-parameters 
and their effect is often correlated. 

The impact of hyper-parameters settings on resulting accuracy of the neural network 
is quite substantial and since the t ra ining of the network can take a noticeable amount 
of t ime, it is beneficial to find acceptable hyper-parameters i n as few tra ining rounds as 
possible. This thesis concerns wi th hyper-parameter opt imisat ion of neural networks, de­
sign and implementat ion of the Gaussian process based hyper-optimisation toolkit and its 
comparison wi th several methods that are commonly used in hyper-parameter opt imisat ion 
to demonstrate its efficiency 

There are many approaches that a im to solve the hyper-parameter opt imisat ion prob­
lem. M a n u a l tuning of hyper-parameters is s t i l l widely used, but to be effective, it requires 
a lot of user's knowledge about the optimised neural network and might be quite t ime con­
suming. Automated opt imising solutions, on the other hand, do not require as much user's 
t ime and knowledge at the expense of computing t ime. Those solutions might use more 
straightforward approaches as gr id search and random search, or more complex solutions 
such as Bayesian or Evolu t ionary optimisat ion. 

This thesis is d ivided into several chapters as follows: the second chapter contains a 
description of neural networks focusing on structural and learning aspects influenced by its 
hyper-parameters settings. The th i rd chapter lists common hyper-parameter opt imisat ion 
methods, including a detailed description of Gaussian processes based optimisat ion. Chap­
ter 4 provides an elaborated description of the design and implementat ion of the toolki t for 
hyper-optimisation along wi th possible alterations that can be done by the end user to cus­
tomise the optimizer to fit specific neural network. The overview of performed experiments 
w i th implemented toolki t and evaluation of its efficiency can be found in Chapter 5. 

2 



Chapter 2 

Neural Networks and their 
Hyper-parameters 

Art i f i c i a l neural networks (NN) are computat ional models loosely inspired by biological 
neural networks. They consist of subsequent layers, where each layer is composed of indi­
v idua l artificial neurons. The actual architecture of each network and its learning process 
can vary since neural networks is a broad term involving a lot of different neural network 
types and learning algorithms that can be applied to various problems. B u t the basic idea 
behind a l l neural networks is the same: based on some t ra ining data or feedback from the 
environment, the learning algori thm updates the neural network's parameters i n order to 
solve the given problem. 

Parameters i n N N are coefficients of the model itself and can be estimated or learned 
from data. Concretely, parameters are usually input weights and biases of the ind iv idua l 
neurons. Hyper-parameters, on the other hand, influence the structure or learning process 
of the N N and need to be expl ic i t ly set before t ra ining of the network. 

2.1 Structure of Neural Networks 

The basic element of the N N is an artificial neuron, also called a unit or a node. It consists of 
a number of inputs x\...xn, usually represented by a vector x = { x \ , x n ) T , input weights 
w = ( u > i , w n ) T , bias O, activation function / ( • ) , and output y. The output of the 
artificial neuron is determined as follows: a l l input values are mul t ip l ied by corresponding 
weights, and together wi th bias form the input of the activation function. The activation 
function takes this input and computes the output value y = / ( x T w + 0 ) , as shown in 
Figure 2.1. For common activation functions, the power of a single neuron is l imi ted to 
solving l inearly separable problems. 

More complex problems can be solved by creating layers of neurons, where each layer's 
output (except from last layer) is the input of the next subsequent layer. The N N consists of 
the input layer, number of hidden layers, and the output layer as shown in Figure 2.2. The 
neurons i n the input layer correspond to network's input, while the output layer represents 
network's output. The N N has n hidden layers of neurons, where each layer can have 
different number of neurons. Connections between two layers can be between every two 
nodes (fully connected layer) or just between some subset of nodes (convolutional layer). 
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bias 0 

Figure 2.1: Basic structure of artificial neuron. 

input layer x n hidden layers output layer y 

"11 "21 "n1 

layer h-| layer h2 layer h n 

Figure 2.2: Basic structure of art if icial neural network wi th i inputs, n hidden convolutional 
layers h i , h n (each consisting of j neurons) and output layer w i th k outputs. 

The activation function, the number of hidden layers and the number of neurons in 
hidden layers are network's most common structural hyper-parameters. Features of these 
hyper-parameters and their influence on the N N are described in detail in Section 2.3.1. 

2.2 Learning in Neural Networks 

Learning in neural networks is a process of updat ing the parameters i n order to achieve 
better accuracy. To evaluate this accuracy, network uses an error function and labelled 
t ra ining data. Label led means each input vector x has a corresponding target vector t, 
which denotes desired network's output. Then, a learning algori thm uses the error function 
E(-) to calculate the error and updates the parameters w of the N N . The exact principle 
of updat ing the parameters differs i n each algori thm, but i n order to introduce common 
hyper-parameters further described in Section 2.3.2, below is described the principle of 
t ra ining the N N using Gradient Descent a lgori thm [32]. 
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Gradient Descent i n an iterative a lgor i thm that finds a local m i n i m u m by updat ing the 
weights by a smal l steps in the opposite direction of the error function's gradient VE: 

w ( r + 1 ) = W M - rjVE(w^), (2.1) 

where r is the current step and r\ is the learning rate. The learning rate is a hyper-parameter 
that controls how much are the weights changed i n each step of the a lgori thm and its effect 
is further discussed i n Section 2.3.2. 

The gradient VE is a vector that points i n a direction of fastest increase of the function. 
B y updat ing the weights i n the opposite direction of VE, Gradient Descent algori thm 
approximates to a local m i n i m u m as shown in Figure 2.3. To find better opt imum, more 
in i t i a l settings of the weight w can be used, but there is no guarantee that global op t imum 
w i l l be found. Another way of getting out of the local op t imum is using momentum hyper-
parameter, which is described i n the next section. Al though , recent studies show that 
the local m in ima found by Gradient Descent a lgori thm i n larger, mult i-dimensional loss 
space of the N N are not such a problem, since their quali ty is comparable to the global 
min imum [10]. 

E(w) 

Wj W2 W3 W4 W5 
weight 

Figure 2.3: A n example of weight opt imisat ion using Gradient Descent algori thm. Figure 
shows the influence of a weight parameter w on the error function E(-), where the points 
u>i, u>3 and u>5 are different in i t i a l settings of weight w, resulting i n different progress of 
Gradient Descent algori thm. The red arrows represent a change of the error when the 
current weight wT is updated to the value w T + 1 . The weight update is i n the opposite 
direction to a gradient of the error function E(-) in concrete settings of wT. 

The gradient approximately equals to a derivative of the error function E(-) w i th respect 
to the weights w mul t ip l ied wi th how much are the weights changed [9]: 

dE 
VE » — V w (2.2) 

aw 

Al though the gradient can be calculated direct ly w i th respect to each weight ind iv id­
ually, N N s usually have huge amount of parameters and therefore it 's not very usable in 
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practice. Therefore, Backpropagat ion algori thm is commonly used. Backpropagat ion uses 
a local message passing scheme i n which the information is sent alternately forwards and 
backwards through the network to efficiently evaluate gradient one layer at the t ime using 
the chain rule [23]. 

The error function E(-) denotes a measure that evaluates the difference between net­
work's output and target vector and its selection depends solely on the features of the solved 
problem. Resul t ing output is called t ra ining or val idat ion loss, depending on whether the 
input of the error function was t ra ining or validat ion data. One of the most common forms 
of the error function that is used i n regression is sum of squares error function: 

where x n (for n = 1, •••,N) is a t ra ining set comprising of iV input vectors, y (x n ,w) is 
network's output vector for given input x „ , w is weights vector and t „ is a target vector 
corresponding to n- th sample in t ra ining set. 

The update of the parameters is done on a smal l sets of the t ra ining data, called batches. 
Depending on the size of those batches, Gradient Descent algorithms can be further divided 
into Stochastic Gradient Descent ( S G D ) , Ba t ch Gradient Descent and Min i -ba tch Gradient 
Descent, where S G D uses one t ra ining sample at a time, batch methods use whole t raining 
set at a t ime and Min i -ba tch methods use between one and a l l samples. One complete cycle 
through a l l the t ra ining data is called an epoch and can be repeated in order to increase 
the accuracy of the N N . 

The number of epochs or the number of samples i n one batch are an important hyper-
parameters of the network, because suitable settings of these hyper-parameters can improve 
generalisation and prevent underrat ing or overfitting of the N N . Underra t ing problem is 
when the network is not able to make correct predictions on unseen data because it 's 
too simple or isn't trained well enough. Overfi t t ing occurs when the N N is too complex 
and over-adapted to the t ra ining data. Tha t leads to loosing the abi l i ty of generalisation 
and therefore poor accuracy on the testing data. However i n contrast to other hyper-
parameters, a suitable number of epochs can be easily found using t ra ining and validat ion 
loss as described i n Section 2.3.2. 

Apar t from the mentioned Gradient Descent algorithms, there are many alternatives 1 . 
The most used methods are also gradient-based, but others such as Simulated Annea l ing [33] 
or Evolu t ionary Programming [15] are derivative-free. These algorithms have their specific 
hyper-parameters, but their description is out of the scope of this thesis. 

2.3 Hyper-parameters of Neural Networks 

A s mentioned before, the hyper-parameters influence the structure or the learning process 
of the N N and need to be expl ic i t ly set before t raining the network. They have a significant 
influence on the accuracy of the N N , so it is beneficial to know how they influence the N N in 
order to optimise them. Even though not a l l N N s share the same structure or use the same 
learning algorithms, they frequently use the same common hyper-parameters that have a 
similar influence on the resulting behaviour of the N N . 

C o m m o n hyper-parameters that define N N structure are number of hidden layers, num­
ber of neurons in the hidden layer, and activation function. These hyper-parameters are 

xhttps://en. wikipedia.org/wiki/Outline_of_machine_learning#Machine_learning_algorithms 

(2.3) 
n=l 
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further described i n Section 2.3.1. Learning of the N N s is influenced by hyper-parameters 
such as learning rate, dropout, momentum, number of epochs, batch size and weight decay, 
further described i n Section 2.3.2. Though features described below have specific charac­
teristics, their effect may differ in ind iv idua l networks. 

2.3.1 S t r u c t u r e re lated H y p e r - p a r a m e t e r s 

T h e number of hidden layers is shown i n Figure 2.2 and it determines the complexity 
of a problem that is the N N able to solve. Networks wi th [16]: 

• no hidden layers - can solve only l inearly separable problems 

• one hidden layer - can solve almost any problem that contains a continuous map­
ping from one finite space to another 

• two hidden layers - can be used to model data wi th discontinuities such as saw 
tooth wave pattern 

• more than two layers - have no theoretical reason to be used but i n practice can 
achieve better results 

So while the higher number of layers can improve the accuracy of the N N , using too many 
hidden layers may lead to problems such as overfitting or vanishing gradient. 

T h e number of neurons in hidden layer is a main measure i n abi l i ty of N N to 
learn a part icular function. Too few hidden neurons can lead to inabi l i ty to learn the 
function (underfitting), too many hidden neurons can lead to overfitting and increase of 
t ime needed to t ra in the N N [16]. W h i l e it is possible to have different number of units in 
each hidden layer, many networks use the same number for every hidden layer. There are 
many rule-of-thumb methods, such as [16]: 

• The number of hidden neurons should be between the size of the input layer and the 
size of the output layer. 

• The number of hidden neurons should be 2/3 the size of the input layer, plus the size 
of the output layer. 

• The number of hidden neurons should be less than twice the size of the input layer. 

These suggestions can help wi th the selection of the number of hidden neurons, but they 
are more of a start ing point than a rule. 

Activat ion function determines the output of each layer i n the network and has a 
major influence on network's accuracy, convergence and computat ional efficiency 

The activation function can be linear or non-linear. The linear activation functions can 
be represented by a straight line and have unconfined output. Because of the fact that 
linear combination of mult iple functions is s t i l l a linear function, a l l subsequent layers w i th 
linear activation functions collapse into one. That is why the modern N N s use non-linear 
activations functions that enable the creation of deep N N s . It is common to use different 
activation functions for hidden layers and output layer, depending on what behaviour is 
desired. The hidden layers widely use R e L U activation functions for their features, which 
are described below. The activation function i n the output layer depends on the desired 
output (i.e. whether it is for regression, classification, clustering, ...). 
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Different act ivat ion functions are used for their features which may be better in solving 
different problems. Sigmoid act ivation function has smooth gradient and provides clear 
predictions. For example as can be seen i n Figure 2.4a, for x values outside of an interval 
[—2, 2], y values are pretty close to 1 or 0. The output is confined on the interval between 
0 and 1. Disadvantages of sigmoid function are that it 's not zero centred, can lead to 
vanishing gradient problem (for very low/h igh x values) and is computat ional ly expensive. 
In practice, sigmoid activation function is commonly used i n output layer in classification 
problems. 

A s can be seen i n Figure 2.4b, hyperbolic tangent function has quite s imilar qualities 
as the sigmoid function. B u t it 's zero centred, which means the output is i n range [—1,1], 
strongly negative values are mapped to values close to —1, values close to 0 are mapped 
to values close to 0 and strongly positive values are mapped to values close to 1. That 
makes it easier to model inputs that have strongly negative, neutral and strongly positive 
values [24]. Hyperbol ic tangent function is commonly used i n classification problems. 

(c) R e L U (d) Other ReLU-like functions 

Figure 2.4: C o m m o n non-linear act ivat ion functions 

Rectified Lineary Un i t ( R e L U ) is a function where a l l negative values are mapped to zero 
and a l l positive values are mapped to identical values. R e L U is computat ional ly efficient 
and the output is half-opened interval [0, oo). The problem of R e L U functions are zero and 
negative values, which are immediately mapped to zero (see Figure 2.4c). Tha t decreases 
the abi l i ty of the model to fit or t ra in from the data properly [27], which is known as the 
dying R e L U problem. 

To prevent the dying R e L U problem there are mult iple similar functions such as Leaky 
R e L U , Parametr ic R e L U [30] or E L U (Exponent ia l Linear Uni t ) [11], which help increase 
the output range by having a smal l non-zero slope for negative values. Examples of such 
activation functions are in Figure 2.4d. 
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2.3.2 L e a r n i n g re lated H y p e r - p a r a m e t e r s 

Learning rate ( L R ) is used in gradient descent a lgori thm when parameters are updated 
according to an optimisat ion function [1]. Typical ly , values of the learning rate are a small 
positive numbers between 0 and 1. W h e n optimising the learning rate, its values are usually 
sampled from log-space and suitable values are highly dependent on batch normalisat ion [5] 
that enables t ra ining wi th larger learning rate. Too low learning rate converges to the 
min imum smoothly, but slows down the learning process (Figure 2.5a). Too high learning 
rate speeds up the learning process, but may not converge (Figure 2.5b). 

w o weight w ° weight 

(a) Example of too low learning rate leading (b) Too high learning rate may cause oscil-
to slow convergence. lation around local minimum or even lead to 

divergence. 

Figure 2.5: Problems of too low or too high learning rate. The red arrow represents single 
step i n Gradient Descent algori thm, where each case used the same in i t i a l weight w$. 

Dropout is a regularization method that is used to prevent overfitting i n N N s by 
randomly ignoring p neurons during the t ra ining phase. It means that for each training 
sample and each hidden layer, random fraction of hidden neurons are not considered. Then 
in testing phase, activation functions of the entire N N are considered, but each activation 
function is reduced by a factor p to account for the neurons ignored in t raining phase [36]. 

Weight decay is another regularization method that is used to prevent overfitting. It 
penalizes large weights by modifying the error function: 

E(w) = E(w) + ^ ||w||2 , (2.4) 

where ||w||2 = w T w = WQ + w\ + ... + w2

M, and the coefficient A governs the relative im­
portance of the regularization term compared w i t h the error term i n error function E(-) [4]. 
Usua l settings of coefficient A range between logari thmic values of 0 and 0.1. W h e n weight 
decay is too high, the model may never fit quite well . W h e n weight decay is too low, it 
might not prevent overfitting [37]. 

M o m e n t u m controls how much the previous weight update influences the current 
weight update. Th is can speed up the learning process by making more significant update 
of weights when m i n i m u m is i n the opposite direction of gradient. Th is might be especially 
helpful when optimisat ion reaches plateau, an area where the error function decreases very 
slowly and thus gradient is small . Also , momentum can help overcome local m i n i m u m as 
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shown i n Figure 2.6. M o m e n t u m is a number between 0 and 1 and it is common to use 
values close to 1 (0.9, 0.99, etc.) [18]. Too smal l values have negligible effect and too big 
values are more l ikely to miss the op t imum and lead to longer learning time. 

Figure 2.6: Example of how momentum can help Gradient Descent to get out of local 
min imum. Opt imisa t ion begins i n point 1 wi th weight WQ. In this point momentum is 0 
(since it is the first step) and the next weight update depends solely on the gradient and 
the learning rate. In the next steps, weight update is given by gradient and momentum 
addit ion. If momentum was lower that gradient i n step 3, weight would shift back to the 
local min imum. B u t i f momentum is significant enough, it can help get to other min ima 
(though getting out of local m i n i m u m or getting to global m i n i m u m is not guaranteed). 

N u m b e r of epochs is a number of complete cycles of learning algori thm through the 
whole dataset, which means it determines number of times the weights are updated. Too 
few epochs may cause underfitting, too many may lead to overfitting. Suitable number of 
epochs is usually found using t ra ining and validat ion loss, as shown i n Figure 2.7. The 
goal is to find the highest possible number of epochs, before validat ion loss starts to grow 
because of overfitting. 

Batch size defines number of samples used at once while t raining the N N . The range of 
batch size is from 1 up to a size of the t ra ining set. Smaller batch size causes more frequent 
model updates and allows more robust convergence that can lead to better accuracy, but can 
also lead to less accurate estimate of gradient (especially i n more complex datasets) [18]. 
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Figure 2.7: A n il lustrative example showing the influence of the number of epochs on the 
t ra ining and val idat ion error (Adapted from W i k i m e d i a Commons) . Too many epochs can 
lead to overfitting, but it 's possible to set suitable number of epochs based on the t raining 
and testing error. Suitable number of epochs is the highest possible number before the 
testing error starts to grow. 
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Chapter 3 

Hyper-parameter Optimisation 

Accuracy of a neural network is considerably influenced by configuration of its hyper-
parameters. In order to improve the accuracy of a neural network, it is important to 
find acceptable values for these hyper-parameters. B u t since the t ime of t ra ining of a neu­
ral network might be quite substantial, hyper-parameters may be interdependent, and can 
acquire values from an infinite set, hyper-optimisation requires more complex solution than 
t ry ing to find suitable values manually. 

This chapter describes the essentials of neural network hyper-parameter optimisat ion. 
Fi rs t section covers the problem of finding the op t imal hyper-parameters of a neural network 
and describes different approaches of finding such hyper-parameter values. Next section 
covers basic principles of Gaussian processes. Section 3.3 describes how to solve regression 
problems using the Gaussian process model . Section 3.4 includes various approaches that 
can be used to estimate more accurate solution of the regression problem for given input. 

3.1 Methods of Hyper-parameters Tuning 

There are mult iple common approaches i n finding suitable hyper-parameter values. F r o m 
the most straightforward as manual hyper-parameter tuning, G r i d Search and R a n d o m 
Search optimisat ion [3] to more complex as Evolu t ionary opt imisat ion or Sequential-Model 
Bayesian opt imisat ion [13]. B u t since each neural network represents a specific problem, 
different approaches might fit some neural networks better than others and therefore it is 
beneficial for the user to learn about the features of each approach as well as specifics of 
optimised neural network to select suitable opt imisat ion technique. 

Also , it is important to take into account the amount of t ime the network needs to be 
trained. In case t raining the network doesn't take substantially more t ime then t ime needed 
to select hyper-parameter values for next opt imisat ion step, it might be more efficient to 
use faster opt imisat ion approach such as R a n d o m Search and make more optimisat ion steps 
instead. 

The hyper-parameter opt imisat ion problem can be defined as follows [21]: 
Given a machine learning a lgor i thm A having hyper-parameters x = x\,...,xn w i th 

respective domains A i , A n , we define its hyper-parameter space as A = A i x • • • x An. 
For each hyper-parameter setting x G A , we use ^4X to denote the learning algori thm A 
using this setting. We further use JC(AX, Vtrain,T^valid) to denote the validat ion loss (e.g., 
misclassification rate) that Ax achieves on data Vvaiid when trained on T>train- The hyper-
parameter opt imisat ion problem is then to minimise the blackbox function: 
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fix) — £(AXjT)trainjT)vaii([) (3.1) 

The goal of the hyper-optimiser is to solve this problem i n as few optimisat ion rounds 
as possible, where one optimisat ion round refers to invocation of the function C w i th hyper-
parameter settings x. 

3.1.1 G r i d Search O p t i m i s a t i o n 

C o m m o n solution i n opt imising the hyper-parameters is G r i d Search. Based on number of 
hyper-parameters n and number of opt imisat ion steps m that w i l l be made, G r i d Search 
optimisat ion algori thm selects a set X of m hyper-parameter settings x i , . . . , x m . Each 
hyper-parameter setting x represents a point in n-dimensional space corresponding to a 
setting of each hyper-parameter. These points should be evenly spaced wi th in predefined 
bounds so that visual izat ion of selected points forms a grid, but the actual selection of the 
values may differ among various implementations of G r i d Search algori thm. The result of 
the opt imisat ion is the hyper-parameter setting x* = a r g m i n / ( x ) , i f l , 

For example, let's have hyper-parameter h i w i th domain [0, 5] and 5 optimisat ion steps. 
Suppose the influence of hyper-parameter h i is given by function y = (x — 2 ) 2 + l , where 
y is network's loss. Then optimizer evenly splits the interval and selects 5 hyper-parameter 
settings x i , ...,X5 as shown i n Figure 3.1a and trains the network for each selected setting 
of h i . The setting x* = X3 = (2.5) resulting in best N N accuracy is then the result of 
optimisat ion. Analogously for opt imisat ion of two or more hyper-parameters. Assume 
addi t ional hyper-parameter I12 w i th domain [0, 3] and 25 optimisat ion steps. Then the 
optimiser uniformly selects t ra ining points as shown i n Figure 3.1b and trains the network 
for each selected setting of the two hyper-parameters. A g a i n , the setting wi th the best 
accuracy is the result. 

3.0 • • • • • 

2.5 
• • • • • 

2.0 

1.0 
• • • • • 

0.5 

0.0 -f • • • * 
0 1 2 3 4 5 

x_l 

(a) Optimisation of function y = (x — 2) 2 + l (b) Visualisation of search space while op-
using Grid Search. timising two hyper-parameters using Grid 

Search. 

Figure 3.1: Examples of using G r i d Search i n opt imisat ion of one or two hyper-parameters. 

3.1.2 R a n d o m Search O p t i m i s a t i o n 

R a n d o m Search is an elementary optimisat ion technique, and remarkably, it was empirical ly 
and theoretically proved to be more efficient way of hyper-parameter opt imisat ion than G r i d 
Search [3]. Analogously as i n G r i d search, R a n d o m Search optimisat ion algori thm selects m 
settings x i , . . . , x m , but the settings are selected randomly wi th uniform dis t r ibut ion across 
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A . A n example of settings selection i n opt imisat ion of one or two hyper-parameters is shown 
in Figure 3.2. 

(a) Optimisation of function y = (x — 2)2-
using Random Search. 

3.0 

2.5 

2.0 

Jl.5 

1.0 

0.5 

0.0, 2 3 
x 1 

(b) Visualisation of search space while opti­
mising two hyper-parameters using Random 
Search. 

Figure 3.2: Examples of using R a n d o m Search in opt imisat ion of one or two hyper-
parameters. 

3.1.3 B a y e s i a n O p t i m i s a t i o n M e t h o d s 

Bayesian opt imizat ion is a set of powerful methods for opt imiz ing objective functions which 
are very costly or slow to evaluate [6]. These methods keep a record of past evaluations 
of the objective function and create a probabil ist ic model that helps predict the function 
value for parameters that have not been yet evaluated. 

The optimisat ion process is defined more closely by Sequential Model -Based Opt imisa­
t ion ( S M B O ) , which is a formalism for Bayesian optimisat ion. Sequential refers to running 
trials one after another, where i n each t r i a l new hyper-parameter setting is found using 
Bayesian reasoning and updat ing a probabil ist ic regression model M [22]. S M B O process 
can be defined by following algori thm [12]: 

A l g o r i t h m 1: Sequential Model -Based Opt imisa t ion 

Input: f,X,S,M 
1 P f - initSamples(f, X) 
2 for i <r- \T>\ to T do 
3 p (y |x ,V) <- fitModel(M,T>) 
4 X J <- a r g m a x x e A . S ( x , p ( y | x , £ > ) ) 
5 Vi<- /(Xj) 

6 V ^VU{(xi,yi)} 
7 end 

Input of the S M B O algori thm is the objective function / ( • ) , domain X of the function 
/ ( • ) , acquisit ion function S(-) and probabil ist ic regression model M.. O n the first line, a 
historical set V = { ( x i , y i ) , . . . , ( X J , y,)} is ini t ial ised w i t h a few samples from the objective 
function, which are selected from domain X. Steps on the lines 3-6 are executed i n a cycle 
unt i l the l imi t of function evaluations T is not met, including the function evaluations in 
initSamples(-) function. F i rs t , the probabil ist ic model p (y |x , T>) is created based on the 
regression model M and historical set T> (line 3). Then , this model is used to select new 
sample Xj G X by maximis ing the acquisit ion function S(-) (line 4). The method of selection 
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of the samples x £ X for the probabil ist ic model w i l l be further refered to as Doma in Search 
Strategy (DSS) and is described i n more detail in Section 3.4.4. Acquis i t ion function ( A F ) 
is a method that is used to find next sample Xj by predict ing which of the selected samples 
x w i l l br ing the best acquisit ion. More details about common acquisit ion functions are in 
Section 3.4.5. A n d finally, objective function / ( X J ) is evaluated (line 5) and results is added 
to the historical set T>. 

Methods i n Bayesian opt imisat ion can be differentiated based on their probabilist ic 
regression model M [12]. Three of the most common regression models are Gaussian 
Processes ( G P ) , R a n d o m Forests and Tree-Parzen Est imators ( T P E ) . 

Gaussian processes have become standard surrogate for model l ing objective functions 
in Bayesian opt imisat ion [35] and are described i n detail i n Section 3.2. 

R a n d o m forests regression [26] is a supervised learning algori thm that uses combina­
t ion of mult iple simpler models - regression trees. The approach i n hyper-optimisation 
is to construct a set of regression trees B and assume a Gaussian N(y\ji,a) that models 
the probabil ist ic dis t r ibut ion p(y|x,X>), where the parameters jj, and a are chosen as the 
empirical mean and variance of the regression values r(x) i n the set of regression trees 
B[12}: 

r e B (3.2) 

- L _ ^ ( r ( x ) - A ) s 

T P E regression models deviate from standard S M B O algori thm, since they apply Bayes 
rule to the models p(x,V\y) and p(y), instead of directly using the probabil ist ic model 
p(y |x, V). Probabi l i s t ic model p(x, T>\y) can be replaced wi th two non-parametric distr ibu­
tions, represented by processes Z(x) and <?(x) [12]: 

where y* is predefined threshold. The result is that T P E creates two different distributions 
for the parameters, density formed by using the observations Xj such that the corre­
sponding loss yi is less than the threshold, and density <?(x) when yi is greater than the 
threshold [2]. 

3.1.4 M o r e H y p e r - o p t i m i s a t i o n A p p r o a c h e s 

Apar t from the before mentioned baseline solutions, there are other commonly used and 
computat ional ly effective solutions. A lot of them are modifications or combinations of 
R a n d o m and G r i d search, such as R a n d o m Walk or R a n d o m G r i d search. Others, such as 
Greedy search, optimise hyper-parameters one-by one using some k ind of heuristics. 

More complex (and less computat ional ly effective) approaches used to tackle the prob­
lem of hyper-parameter optimisat ion, such as Genetic Algor i thms, Par t ic le Swarm O p t i ­
misation or Simulated Anneal ing , are well known opt imisat ion methods and are common 
alternatives to Bayesian optimisat ion. 
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3.1.5 C o m p a r i s o n of H y p e r - o p t i m i s a t i o n M e t h o d s 

It's not a t r i v i a l task to compare various hyper-optimisation methods. The efficiency of 
each algori thm differs based on the optimised algori thm, type of the solved problem (clas­
sification, regression, etc.), specifics of used dataset, provided information about optimised 
problem, default a lgor i thm settings etc. Another important th ing to mention is that a many 
of available experiments use different optimisers to compare the methods, therefore even 
two G P based optimisers w i th the same optimiser parameters might perform differently. 
The following paragraphs t ry to capture the trends seen in mult iple studies and general­
ize them in order to compare general differences between methods described i n previous 
sections. 

W h e n considering before mentioned straight-forward methods based on R a n d o m search, 
the results of ind iv idua l methods are quite similar. B u t for example in a study [28] focused 
on hyper-optimisation of Recommender Systems, simple R a n d o m search and R a n d o m G r i d 
search provided better results than R a n d o m Walk or Greedy search on a l l tested datasets. 
Also , these solutions are usually less computat ional ly demanding and highly parallelizable, 
in contrast to more complex methods. Therefore, it might be beneficial to use these methods 
when evaluating less costly functions and make more optimisat ion steps. 

In some specific cases, even R a n d o m search can outperform more complex algorithms. 
B u t more often, solutions such as Bayesian optimisat ion achieve better results i n hyper-
optimisat ion of different machine learning algorithms [34]. W h e n comparing various Bayesian 
and other mentioned more complex methods it 's hard to make any generalisations, because 
different methods have proven more efficient in different experiments [13] [29]. 

One of the key differences between G P and other mentioned hyper-optimisation methods 
is in configurability. G P based methods require more knowledge to be configured (i.e. to 
find suitable kernel), but provide more control over the created model . In case the general 
behaviour of the solved problem is known and the G P parameters are set to fit this model, it 
could theoretically provide better results and therefore might be beneficial to use. Na tura l ly 
if the G P parameters are set poorly, the model provides worse results. 

Since hyper-optimisation is specific to the optimisat ion task, no hyper-optimisation 
method has proven to be most efficient i n general and it 's up to the user to select suitable 
optimisat ion method. 

3.1.6 E x i s t i n g h y p e r - o p t i m i s a t i o n tools 

Since each neural network represents a specific problem, different approaches might fit some 
neural networks better than others. Therefore, many of available optimisers provide a wide 
rage of hyper-optimisation techniques from simplest solutions as gr id search or random 
search to a complex parallel computing solutions based on machine learning approaches. 

There are many solutions that a im to solve hyper-parameter opt imisat ion p rob lem 1 . 
Some of the solutions are specific to certain language or l ibrary (e.g. tales2 or SHERPA'' 
for Keras) , some provide more general solutions enabling to optimise almost any defined 
problem (e.g. Hyperopt ). Natural ly, optimisers specific to a l ibrary enable to optimise 

1https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-
solutions-88e067fl9d9 

2https: //github.com/autonomio/talos 
3https: / / github.com/sherpa-ai/sherpa  
4https: / / github.com/hyperopt/hyperopt 
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only neural networks wri t ten i n such library, but are usually easy to use and might have 
more control over optimised network. 

Another dist inct ion between available optimisers is whether are they designed to run 
on a single machine or rely on cloud computing resources. Optimisers that are heavily 
parallelized and use mult iple machines are usually not free to use and are generally harder 
to set-up, but provide substantially more computing power and therefore resources to realize 
more optimisat ion rounds in the same time. 

High-level solution is provided by Google's internal tool Vizier [17], a scalable black-
box optimisat ion engine wi th remote procedure cal l interface, wide selection of opt imisat ion 
algorithms and dashboard. Advisor0 is an open-source implementat ion of Google V i z i e r and 
offers easy to use A P I wi th J S O N configuration files to define specifics about N N training 
and hyper-parameter optimisat ion. It supports running trials on distr ibuted systems, it 's 
not l ibrary dependent and provides around 15 optimisat ion methods, including G r i d search, 
R a n d o m search, Bayesian optimisat ion, Simulated Annea l ing and others. 

Other similar, high-level tools are Microsoft 's Neura l Network Intelligence (NNI) , H i P l o t 
from Facebook and R a y Tune. A l l of the mentioned tools provide an A P I for visualisation 
of hyper-optimisation results, support running trials on distr ibuted systems and some of 
the tools are even open-sourced. 

Another widely used hyper-optimisation tool is Hyperopt , which is a P y t h o n l ibrary 
that supports parallel ization using M o n g o D B or Apache Spark. The hyper-optimisation 
algorithms implemented i n Hyperopt , such as R a n d o m Search or Simulate Anneal ing , are 
commonly used by other tools (Advisor , Hyperas). 

3.2 Gaussian Process 

Whereas a probabil i ty dis t r ibut ion describes random variables which are scalars or vec­
tors (for multivariate distributions), a stochastic process describes the properties of func­
tions [31]. A stochastic process y(x) is specified by giving the joint probabil i ty dis t r ibut ion 
for any finite set of values y ( x i ) , . . . , y(x^) [4]. A Gaussian process is a stochastic process, 
where p ( y ( x i ) , . . . , y ( x £ > ) | x i , . . . , x£>) is D-dimensional Gaussian distr ibut ion. 

3.2.1 M u l t i v a r i a t e G a u s s i a n d i s tr ibut ions 

The basic bui ld ing block of a Gaussian process is the multivariate Gaussian dis t r ibut ion, 
where each random variable is distr ibuted normal ly and their joint d is t r ibut ion is also 
Gaussian [19]. The multivariate Gaussian dis t r ibut ion is defined by mean vector /j, and 
covariance mat r ix S . Mean vector /j, defines the centre around which dis t r ibut ion revolves, 
while covariance mat r ix S models variance along each dimension and defines correlation 
between every two random variables. 

Assume a vector X of d random variables x\...Xd that follows normal dis tr ibut ion: 

~ A / - ( / x , £ ) (3.4) 

5https://github.com/tobegit3hub/advisor 

X 

X\ 
x2 
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Then mean /j, is <i-dimensional vector given by expected value of each respective random 
variable xf. 

ju = E [ X ] = ( E [ x i ] , E [ x 2 ] , . . . , E [ x d ] ) 

and covariance mat r ix E is d x d mat r ix defined as: 

(3.5) 

E = cov[X] = E [ ( X - E [ X ] ) ( X - E [ X ] ) T ] (3.6) 

Note that the diagonal of covariance mat r ix S consists of the variance o~f of the i - t h random 
variable Xi and the off-diagonal elements ctjj ,i ^ j describe the correlation between random 
variables Xi and Xj [19]: 

E i j = cov[xi, Xj] = E[(xi - E[xi])(xj - E [ x i ] ) T ] (3.7) 

The covariance cov[xi,Xj] of two random variables Xi and Xj is defined by a kernel 
function, which determines the characteristics of the resulting probabil i ty dis t r ibut ion [19]. 
Kerne l function is probably the most important parameter of G P and it 's described in more 
detail i n Section 3.4.2. 

3.2.2 C o n d i t i o n a l A n d M a r g i n a l G a u s s i a n D i s t r i b u t i o n s 

There are two important properties of the multivariate Gaussian dis t r ibut ion that are a key 
to Gaussian processes - conditioning and marginalisation. B o t h condit ioning and marginal-
isation work wi th joint probabil i ty of two subsets of original random variables, which w i l l 
be denoted as: 

PXY • A/"(/i, E ) = M ( ßx 

{ ßY 

> 

E y x E y y _ 
(3.8) 

where X and Y are subsets of original random variables, mean \ix (A*Y) corresponds to 
mean vector of subset X ( Y ) , mat r ix E x x ( E y y ) corresponds to covariance matr ix cov[X] 
(cov[Y]) and matrixes E x y , E y x correspond to covariance matrixes: 

cov[X, Y ] = E [ ( X - E [ X ] ) ( Y - E [ Y ] ) T ] 

c o v [ Y , X ] = E [ ( Y - E [ Y ] ) ( X - E [ X ] ) T ] 
(3.9) 

Gaussian dis t r ibut ion is closed under conditioning, which means that if two sets of ran­
dom variables are jo int ly Gaussian, then the condit ional d is t r ibut ion of one set conditioned 
on the other is also Gaussian [4]. So i f two subsets X and Y of original random variables 
follow normal dis t r ibut ion, then X | Y and Y | X are also Gaussian and are defined as [19]: 

S x y S y y E y x ) X | Y ~ M(ßX + E X y E y y ( Y - pY), E x x 

Y | X ~ M(ßY + £ y x £ x x ( X ~ ßx), S y y - E y x E x x E x y ) 
(3.10) 

Gaussian dis t r ibut ion is also closed under marginalisation, so the marginal Gaussian 
dis tr ibut ion Px and P y from joint d is t r ibut ion Px y is also Gaussian: 

Px =M{ßX^xx) 
PY=N{ßY,T,YY) 

(3.11) 
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3.3 Using Gaussian Processes for Regression 

In order to solve regression tasks, G P needs to model an interpolation of observed data. 
This model is represented by joint probabil ist ic dis t r ibut ion PX,Y created from two discrete 
sets of random variables, where Y = (2/1,2/2, • • • ,Vn)T represents observed (training) data 
and X = (xi,X2, • • • ,xm)T represents testing data. The testing data is used to sample a 
continuous function w i t h a set of discrete points. 

The joint probabil ist ic model Px,Y is a combination of the t ra ining and testing data, 
as shown in Equa t ion 3.8. To make predictions about possible values of the testing points, 
condit ional Gaussian dis t r ibut ion PX\Y is used. Thanks to the condit ioning on the t raining 
data, resulting dis t r ibut ion l imits the values of testing points that are close to any of the 
t ra ining points. 

Note that in Gaussian processes, it 's often assumed that /t is a zero vector. Th is 
assumption simplifies the equations necessary for condit ioning, while correction of mean 
can be done after making a predict ion [19]. 

3.3.1 P r i o r d i s t r i b u t i o n 

In case no t ra ining data are available yet, d is t r ibut ion defined by G P w i l l be Px = N(fi, £), 
where n = 0 is a zero vector and S is covariance matr ix w i th m x m dimensions. Th is is 
called a prior distribution. Its probabi l i ty dis t r ibut ion could be visualised as i n Figure 3.3, 
where each random variable x% is normal ly distr ibuted around 0. Functions sampled from 
this dis t r ibut ion would be Gaussian and their shape would be dependent on kernel function, 
as can be seen in Figure 3.8. 

(a) Example of normal distribution. Normal 
distribution is centred around mean /x and can 
be separated into multiple sectors, based on the 
standard deviation a. 

1 
; \ 

x] x2 x3 x4 

(b) Probability distribution Px, where each 
testing point is represented by a random vari­
able Xi. Each random variable follows normal 
distribution and is centred around mean / i j . 
Grey area represents space between fa — 2a\ and 
Hi + 2a'i for each random variable Xi. 

Figure 3.3: Visual i sa t ion of prior dis t r ibut ion over a set of testing points X. 

3.3.2 Pos ter ior d i s t r i b u t i o n 

Training data can be added to the G P model by forming a joint d is t r ibut ion Px,Yi where Y 

is a set of random variables representing the t ra ining data. Then the posterior dis t r ibut ion 
Px\Y = (Px\Y> ^X\Y) defines dis t r ibut ion of testing data conditioned on t ra ining data. A s 
can be seen i n Equa t ion 3.10, mean Hx\Y o m Y depends on conditioned variable so the 
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posterior dis t r ibut ion is constrained to the set of functions that pass through the t raining 
points [19]. 

To illustrate, assume a prior dis t r ibut ion Px i n Figure 3.3b and t ra ining data x\ = 
3.2,yi = 4.4. Then the condit ional dis t r ibut ion Px\yi models the interpolation of the 
t ra ining data, as shown in Figure 3.4. O n l y one t ra ining value does not create a good 
interpolation of the data and therefore predicted values of the testing points that are further 
from the t ra ining data tend to return back to zero. Th is feature of G P s is further exploited 
in hyper-optimisation, because the best possible value of the loss function (error) is 0. 

0 1 2 3 4 5 0 1 2 3 4 5 

Figure 3.4: Examples of condit ional probabil i ty dis t r ibut ion wi th one t ra ining data point 
x\ = 3.2. Note that the shape and size of the dis t r ibut ion is defined by the covariance 
matr ix . 

3.3.3 G a u s s i a n Processes i n H y p e r - o p t i m i s a t i o n 

In order to understand how to use G P s i n hyper-optimisation, let's connect the information 
from previous section to S M B O algori thm i n Section 3.1.3. Assume objective function is 
a loss function /(•) and no ini t ia l isat ion samples are available, so the historical set T> is 
empty. Fi rs t , G P regression model PX,Y is created and D S S (see Section 3.4.4) is used to 
select the testing data (line 3). Note that according to the prior assumption, Y = 0. Then , 
A F (see Section 3.4.5) creates condit ional probabil ist ic model PX\Y = Px (there are no 
t ra ining data) and uses this model to select next t ra ining point y i (line 4). Loss function 
/(•) is evaluated i n selected point y i (line 5) and tuple ( y i , / ( y i ) ) is added to the historical 
set (line 6). 

This is repeated un t i l the l imi t of total function evaluations T is reached. Difference in 
following cycles is that the historical set T> is not empty, so the shape of the dis t r ibut ion 
can be more helpful i n selection of new tra ining point y i . 

In terms of hyper-optimisation, each random variable x% represents hyper-parameter 
setting of D hyper-parameters hi...ho- The t ra ining points are vectors of hyper-parameters 
values that have been already used to t ra in the network. Therefore, the result of the loss 
function for those hyper-parameters settings are known. Testing points (in terms of hyper-
optimisation) are settings of hyper-parameters, whose values is the optimiser t ry ing to 
predict using the G P model. Tra in ing the N N represents the objective function, where 
t ra ining point is a parameter of the function and function value is resulting loss. 

Figure 3.5 shows optimisat ion of one hyper-parameter on domain [0, 5] w i th gr id D S S 
and min ima l mean acquisit ion function. F i rs t opt imisat ion step selects new hyper-parameter 
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setting randomly, while next hyper-parameter settings are selected based on predicted value 
of mean. 

(c) Step 3: next training point will be 2.01 (d) Step 4: best found setting is 2.01 

Figure 3.5: Four rounds of G P hyper-optimisation of one hyper-parameter, where dotted 
orange line represents real shape of the loss function. 

Figure 3.6 shows optimisat ion of two hyper-parameters w i th the same settings as above. 
Value of each hyper-parameter is displayed on separate axis, while prediction is on axis z. 
Optimisa t ion algori thm works the same, but kernel, D S S and A F have to be able to work 
wi th mult idimensional points. 

G P s can be used to optimise arbi t rary number of hyper-parameters, but there are 
computat ional l imitat ions. The computat ional complexity of G P regression is C ( n 3 ) , where 
n is the size of the t ra ining set. Th is is due to the inversion of the covariance mat r ix E y y 
in computat ion of condit ional probabil ist ic dis t r ibut ion PX\Y- Moreover, opt imising more 
hyper-parameters might lead to a bigger search space, so the model w i l l need more t raining 
samples to create reasonable approximation and more testing samples to make more precise 
predictions. 

21 



Figure 3.6: G P prediction after four rounds of opt imisat ion of two hyper-parameters h\ 

and /i2- Wireframe plot represents the real shape of approximated loss function / ( • ) , while 
red and blue area represents predicted mean values given by condit ional probabil ist ic dis­
t r ibut ion PX\Y- Four t raining points y i = (3.2,0), yi = (0,5), 2/3 = (5,5), 2/4 = (0,1) are 
marked black dots. 

3.4 Parametrization of G P optimiser 

A s well as other probabil ist ic regression models in Sequential Model -Based Opt imisa t ion 
( S M B O ) described i n Section 3.1.3, G P regression model has a number of parameters that 
can be changed i n effort to improve the result of the optimisat ion. These parameters include 
selection of mean, uncertainty of measurement, kernel function and its parameters, Doma in 
Search Strategy (DSS) and Acquis i t ion Funct ion ( A F ) . 

3.4.1 M e a n a n d U n c e r t a i n t y 

A s mentioned before, mean is usually set to zero. Tha t means that in prior dis t r ibut ion, 
mean /Xj of a l l random variables Xi is zero. In posterior dis tr ibut ion, mean of a l l testing 
data w i l l tend to return to zero more and more the further it is from any t ra ining data. In 
hyper-optimisation of N N s , zero is usually a good selection of mean. This is because the 
opt imal function value of the loss function is zero and its desirable that mean returns to 
this value i n space w i t h no t ra ining points. 

However, it might be desirable to use another mean value when minimis ing function 
wi th op t imum that is lower or much higher than zero. Since assuming mean is a zero vector 
simplifies the computat ion of condit ional probabil i ty dis tr ibut ion, it 's pract ical to use zero 
mean for prediction and then shift the prediction to correct mean value [19]. 

It's also possible to edit the probabil i ty dis t r ibut ion in t ra ining points, so the potential 
functions do not have to intersect the exact location of the t ra ining point. Th is is done by 
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uncertainty parameter R, which is used to mul t ip ly the variance of each t ra ining point y , 
i n the covariance matr ix: 

Ejj = covfyi , yi] • R (3.12) 

and is subsequently added to covariance S x x when calculat ing condit ional probabi l i ty 
dis tr ibut ion (Equat ion 3.10): 

X | Y ~ Af(fix + £ x y £ y y ( Y - nY), Y , x x + R - S x y S y y S y x ) (3.13) 

The effect of uncertainty can be seen in Figure 3.7, where predicted mean no longer 
intersects some of the t ra ining points and the grey area given by standard deviat ion is 
wider. The bigger the uncertainty R is, the more significant inaccuracies are permit ted by 
the probabil i ty dis t r ibut ion. The uncertainty parameter is par t icular ly useful when there's 
a j i t ter i n the data, so the probabil ist ic dis t r ibut ion is able to model these deviations. 
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Figure 3.7: G P predict ion (with uncertainty R = 0.05) after three rounds of opt imisat ion 
of one hyper-parameter. 

3.4.2 K e r n e l s 

The kernel (or kernel function) k is a measure that defines s imilar i ty between two D-
dimensional points and is used to compute values in covariance matr ix E [19]: 

fc:KDxlD->l, E i j = fc(x, x ) (3.14) 

Selection of the kernel determines resulting shape of the probabil ist ic dis t r ibut ion (see 
Figure 3.4) as well as the behaviour of the functions sampled from this dis t r ibut ion (see 
Figure 3.8). Fol lowing paragraphs describe a few of the common kernel functions and their 
features. 

Rad ia l Basis Funct ion ( R B F ) kernels, as the name suggests, are kernels that are based 
on radial basis functions. So, the result of such kernel function depends only on distance 
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between the two points. The R B F kernel uses Eucl idean norm to measure the distance and 
is defined as follows: 

W ( x , x ' ) = a} exp ( - ^ E * D = l ( * 2 ~ X * ) 2 ) , (3-15) 

where x and x ' are tested D-dimensional points and 07 is characteristic length scale pa­
rameter. Th is parameter determines how distant the two points x and x ' have to be for 
the function value to change significantly [31]. The second kernel parameter Of is signal 
standard deviation, which determines the uncertainty of Gaussian probabi l i ty dis t r ibut ion 
in G P . Examples of functions sampled from G P wi th R B F kernel are shown i n Figure 3.8a. 

Equat ion of Laplac ian kernel is very similar to R B F kernel, but it uses absolute value 
instead of Eucl idean norm to determine the distance between the points x and x': 

kLaplaciani*, *') = <?} exp ^ - ^ ^ = 1 ^ — ^ (3.16) 

Al though as can be seen i n Figure 3.8b, compared to R B F kernel, Laplac ian kernel is more 
suitable to model functions wi th rapid local changes and sharp edges. 

A s can be seen i n Figure 3.8, Ma te rn A R D kernel is by its behaviour very similar to 
R B F kernel. The reason is that Ma te rn kernel also commonly uses Eucl idean norm to 
determine the distance of the points, but it 's also altered by some addi t ional constants and 
parameters: 

kMatemi*, x') =aj [\ + VEr + j ^ r 2 ^ exp (-\/57 

1 
D s (3.17) 

i=l aH 

The biggest advantage of this kernel in comparison wi th R B F kernel is its abi l i ty to 
reflect more substantial local changes. Also , i t 's a kernel w i th Automat ic Relevance De­
terminat ion ( A R D ) , so it 's able to define different characteristic length scale <Ji for each 
function parameter. This is part icular ly useful i n cases when the same change in distinct 
hyper-parameters values leads to a different behaviour - i.e. one hyper-parameter changes 
the resulting accuracy of the network much more (or less) prominently than the other. A R D 
is widely used i n many kernels and can be used in both R B F and Laplac ian kernels. 

Two of the most elementary kernels, constant and linear kernel, are not very suitable 
to be used separately, but they can be used to construct new kernels. Constant kernels 
kconst(x-,~x-') = c return predefined constant c independently on the input, while linear 
kernels mul t ip ly constant 9 w i t h the vector inputs: 

hinearix,*-') = 6>XTx' (3.18) 

Even though above mentioned kernels are just a smal l fraction of the kernels that can be 
used, they might not fit some specific model . B u t there are many techniques for constructing 
new kernels. These techniques use existing kernel functions and modify them. Kernels 
created this way have distinctive features and are named after the modification that was 
performed. For example, additive kernels use addi t ion to create new kernel k from two 
existing kernels k\ and ki\ 
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(a) R B F (b) Laplacian (c) Matern A R D 

Figure 3.8: Examples of random function samples using different kernels. 

fc(x,x') = fci(x, x ' ) + /c 2(x, x ' ) , 

while mult ipl icat ive kernels use kernel mul t ip l icat ion: 

fc(x, x ' ) = fci(x, x ' ) • fc2(x, x ' ) 

(3.19) 

(3.20) 

B u t many more bui ld ing methods such as exponentiation and composit ion can be used to 
create new kernels. These methods can be used repeatedly or combined together to create 
more complex kernel that fits the solved problem better, as shown i n Figure 3.9. 

A ji ji 

Ml 

(a) Additive kernel ( R B F 
constant) 

(b) Multiplicative kernel 
( R B F • constant) 

(c) Additive multiplicative 
kernel ( (RBF + constant) • 
constant) 

Figure 3.9: Examples of kernels created by kernel addit ion, kernel mul t ip l ica t ion or their 
combination. B y adding R B F and constant kernel, i t 's possible to stretch the dis t r ibut ion 
and move mean to the average function value of t ra ining points, while preserving features 
of R G B kernel. Mul t ip l i ca t ive kernel can change the standard deviat ion so the Gaussian 
is wider or narrower. A n d by combination of the kernel bui ld ing methods, it 's possible to 
combine features of a l l kernels. 

3.4.3 A u t o m a t i c T u n i n g of O p t i m i s a t i o n P a r a m e t e r s 

The selection of parameters of the optimiser such as kernel and uncertainty might be a 
difficult task, but it is possible to automatical ly tune those parameters. The automatic 
tuning is bu i ld on evaluation of the log l ikel ihood function p(y\0), where y is a vector 
of function values of the t raining points and 6 is a set of tuned parameters [4]. The log 
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l ikel ihood function for a G P model is evaluated using the standard form for a multivariate 
Gaussian dis t r ibut ion, given by equation [4]: 

In p(y\0) = -\ln\E\ - ^ y T E _ 1 y - y ln (2v r ) (3.21) 

L o g l ikel ihood of the multivariate Gaussian dis t r ibut ion is then maximised using some 
optimisat ion algori thm. In each round of the optimisat ion algori thm, values i n covariance 
matr ix S are recalculated using updated parameters 0 and used to calculate log l ikelihood 
from Equa t ion 3.21 above. This opt imisat ion is called M a x i m u m Like l ihood Es t imat ion 
and can be used to optimise a l l numeric parameters of the optimiser. 

3.4.4 D o m a i n Search Strategies 

Domain search strategy (DSS) is a method that is used by optimiser to select m testing 
samples X = ( x o , . . . , x m ) . These testing samples are then used to create G P wi th joint 
probabilist ic dis t r ibut ion PX,Y- Two most common methods are based on gr id search and 
random search. 

G r i d search creates a D-dimensional gr id of k points, where k = m®im A k > m and 
mdim is the number of samples per dimension. Subsequently, m samples from the grid are 
selected. R a n d o m search selects samples randomly wi th uniform dis t r ibut ion. The strategy 
as well as the number of selected samples has significant influence on resulting probabilist ic 
distr ibut ion. 

3.4.5 A c q u i s i t i o n funct ions 

A s stated before, an Acquis i t ion function ( A F ) is a function that is used to find next t raining 
point yi from a set of testing points X . A F in G P s uses predictions from condit ional 
probabil i ty PX\Y a n d selects the point w i t h best acquisit ion. This acquisit ion is usually 
based on exploration-exploitation trade-off. The result of the A F is a point w i th the best 
acquisition and is used for t ra ining the N N . 

The most straightforward approach is s t r ic t ly improvement based, which means that 
the acquisit ion depends only on predicted value. It selects the point x* based on predicted 
minimal mean value: 

x* = argmin / z (X) (3.22) 

This is a special case of confidence bound A F s , such as Sequential Design Opt imisa t ion 
function, where the acquisit ion is given by Lower Confidence Bound: 

LCB(x) = A*(x) - K C T ( X ) , (3.23) 

and the confidence parameter K is set to zero. 
Another acquisit ion function, Probability of Improvement, introduces the exploration-

exploitat ion trade-off parameter £ and is defined as: 

P / ( X ) = $ ( M x ) - / y ) - n ( 3 2 4 ) 

where x + is so far the best discovered point w i t h value / ( x + ) and $ is Cumula t ive Dis­
t r ibut ion Funct ion ( C D F ) [7]. The selected point would then be the one wi th the lowest 
acquisition PI(-), since the goal is to minimise the function: 
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x* = argmin P J ( X ) (3.25) 

The most used acquisit ion function is Expected Improvement (EI) , which selects value 
wi th the best expected improvement given by equation: 

where Z 

= , _ , S)$(Z) + «",x)o',Z) i f <r(x) > 0 
S n i f a ( x ) = 0 

(3.26) 
if CJ(X) > 0 

if <T(X) = 0 

where <fi is Probabi l i ty Densi ty Funct ion ( P D F ) [7]. The selected point is again the one 
wi th the lowest acquisit ion EI(-): 

x* = argmin EI(X) (3.27) 

The selection of suitable A F depends on the specific model that is used and problem 
that is being solved, therefore i t 's not an elementary task to do. B u t there are strategies 
such as portfolio al location that use mult iple A F s and have proven to be almost always 
more effective than ind iv idua l A F s [8]. 
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Chapter 4 

Design and Implementation of 
Toolkit for Hyper-optimisation of 
Neural Networks 

This chapter describes design, implementation, usage and possible customisation of Gaus­
sian Process based Opt imiser ( G P O P ) , a toolkit for hyper-optimisation of neural networks. 

A s stated before, commonly available tools for hyper-optimisation can be separated into 
two categories: l ibrary specific and universal. E v e n though l ibrary specific approach offers 
more control over the optimised N N , I have chosen to design universal hyper-optimiser. 
Apa r t from the obvious advantage of being able to optimise almost any N N , this approach 
does not require any user's knowledge about the programming language or libraries used 
to implement the N N and thus makes the optimiser easier to use. 

4.1 Toolkit Design 

Apar t from optimising mult iple possibly correlated hyper-parameters, the goal was to design 
a toolki t that is lightweight and easy to use. G P O P aims to provide the latter through a 
library, that enables control over the opt imisat ion process and creates an interface between 
the optimiser and the N N . Moreover, it 's possible to run the optimisat ion using a CLI 
wrapper that is controlled through a set of command line arguments making it possible 
to run optimisat ion without wr i t ing any code. The usage and structure of the toolki t are 
shown i n Figure 4.1 and described in more detail in following paragraphs. 

The centrepiece of the toolki t is the optimiser. Opt imiser has no knowledge about what 
is optimised and views every optimised problem as a black-box function w i t h a certain 
number of parameters specified in the beginning of the opt imisat ion. Opt imiser interacts 
w i th the function interface i n order to find the best parameters of the black-box function and 
therefore best hyper-parameter settings. The function interface serves only as an interface 
for optimised problem that ensures every optimiser's ca l l to evaluate a black-box function 
is uniform. 

A counterpart component interacting w i t h the function interface is the bridge. The 
purpose of the function interface and the bridge is to create an interface between the N N 
and the optimiser, so that the optimiser can treat the N N as if it was a function and 
receive results of the loss function as a single value. So when the bridge receives parameters 
from the optimiser, it creates a new subprocess that trains the N N wi th hyper-parameters 

28 



corresponding to those parameters. After the subprocess ends, the bridge collects the 
output of the training, finds the result (loss) and returns it to the optimiser as a function 
cal l result. 

Running the subprocess and collecting the result is possible thanks to a user defined 
configuration file that contains information about how to run the t raining of the network 
and how to get the result. Moreover, the configuration file contains more information about 
optimised hyper-parameters, such as domain ranges and numeric types. 

For the purpose of experiments w i th behaviour of various optimisat ion techniques, there 
is benchmarks component. Th is component contains a set of benchmark functions that 
simulate some of the typica l problems that hyper-optimisation incorporates. A n d since the 
actual shapes of the functions are known, they can be useful to learn about the features of 
the used optimisat ion technique before opt imising hyper-parameters of the actual N N . 

User User 

Figure 4.1: Usage of the toolki t : G P O P provides user w i th two different methods of usage 
- run optimiser from command line w i th C L I wrapper or import the l ibrary i n a custom 
user program. Running from command line does not require any custom code except 
configuration file, but doesn't provide any extra information about opt imisat ion. L ib ra ry 
use, on the other hand, enables user more control over the optimisat ion, including the access 
to the G P model and creation of custom kernels i n order to learn and adjust the optimiser 
to specific problem. 
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4.2 Toolkit Implementation 

The toolkit is implemented as a collection of Py thon3 modules that provide classes and 
methods for hyper-optimisation of N N s . Moreover, it contains a python wrapper script 
enabling configurable optimisat ion. The toolkit is split i n three P y t h o n packages: 

optimiser is core package containing a l l modules needed during the opt imisat ion itself, 
including kernels, acquisit ion functions, etc. 

nnbridge is a package providing resources to create an interface between the optimiser 
and the N N , enabling the optimiser to t ra in the N N and get result of the training. 
Furthermore, it contains methods for simple manipulat ion wi th N N configuration files, 

tests package contains unit tests for each module of the G P O P toolkit . 

Relations between ind iv idua l modules and packages is shown i n Figure 4.2, while detailed 
description of a l l modules can be found i n sections below. 

optimiser 

benchmarks optimiser 

kernel 9P kernel 9P acqfun 

configuration neural 
file network 

nnbridae 

bridge 

tests 

test_acqfun all 
- modules 

tests 

Figure 4.2: Dis t r ibu t ion of modules into packages and relations between ind iv idua l modules 
and other components. For example module optimiser uses most of the implemented 
modules, except kernel and test modules. Module bridge doesn't use any modules, but 
other components like configuration file and neural network. 

4.2.1 G a u s s i a n Process R e p r e s e n t a t i o n 

Module gp contains implementat ion of Gaussian process. They are represented by GP class, 
which creates a model of a Gaussian process given by its covariance matr ix S and training 
points Y (mean ß is assumed to be a zero vector). Covariance mat r ix is calculated as 
follows: 
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1 cov_matrix = np.ones(N, N) 
2 for i i n range(N): 
3 for j i n range(i, N): 
4 cov = k(Y[i] , Y[j]) 
5 cov_matrix[i][j] = cov 
6 cov_matrix[j][i] = cov 
7 cov_matrix = cov_matrix + R * np.eye(N) 

where iV is the number t ra ining points Y , k selected kernel and R is uncertainty of mea­
surement: 

The key method is predict (x) , which returns condit ional multivariate Gaussian prob­
abil i ty dis t r ibut ion for the point x represented by its mean value mean_x and standard 
deviation std_dev_x. Th is probabil i ty dis t r ibut ion is computed using condit ioning from 
the covariance mat r ix cov_matrix above: 

1 def predict(x): 
2 cov = 1 + R * k(x, x) 
3 sigma_YX = np.zeros(N, 1) 
4 for i i n range(N): 
5 sigma_YX[i] = k(Y[i] , x) 
6 mean_x = (sigma_YX.T * cov_matrix.I) * Y_val .T 
7 std_dev_x = cov + R - (sigma_YX.T * cov_matrix . I ) * sigma_YX 
8 return mean_x, std_dev_x 

Thanks to this prediction, A F is able to determine next t ra ining point. For the detailed 
description of covariance matr ix computat ion and predictions of testing points values, see 
Sections 3.2 and 3.3. 

4.2.2 O p t i m i s e r s 

Module optimiser implements G P optimiser and two baseline optimisers that are based on 
random search and grid search. Even though the baseline optimisers were pr imar i ly meant 
to serve as a comparison to G P based optimisat ion, they can in some cases provide better 
results and therefore were included i n the toolki t . The implementat ion of both baseline 
optimisers is quite straightforward, as shown i n Figure 4.3. 

(a) Gr id (b) Random 

Figure 4.3: Structural diagram describing essential parts of each optimiser. 

31 



The main component of both baseline optimisers is optimiser core. The goal of the core 
is to select as many t ra ining points as defined by user. G r i d optimiser uses grid generator 
that creates a gr id of m D-dimensional points using Cartesian product of D l inearly spaced 
vectors, where D is dimensionality of the solved problem. Since the number of the t raining 
points n selected by user can be lower than the number of the points in the grid, the core 
selects first n points and passes them successively to the function interface. The point w i th 
the lowest function value f{x.\) is returned as the result of the gr id hyper-optimisation. 
Since the gr id was formed using Cartesian product, computat ional complexity of the G r i d 
optimiser is polynomial w i th respect to the number of t ra ining points. 

The R a n d o m optimiser uses random generator instead of grid generator. The core 
of the R a n d o m optimiser uses this generator to select as many points as defined by user. 
Random generator generates one D-dimensional t ra ining point wi th in dimension space w i th 
uniform probabil i ty dis t r ibut ion. Generated t ra ining point Xj is then passed to the function 
interface. This random point generation is repeated n times to generate enough training 
points. F ina l ly , the point Xj w i th the lowest function value / ( x ; ) is returned as the result 
of the hyper-optimisation. The computat ional complexity of random generator is linear, 
w i th respect to the number of t ra ining points. 

The required arguments for both G r i d optimiser and R a n d o m optimiser ini t ia l isat ion 
are function and dimensions bounds. The function is either benchmark or NeuralNet object 
w i th one parameter. Th is parameter is a I D array representing settings of the optimised 
hyper-parameters. Dimensions bounds is a 2D list, where each inner list contains two 
numbers. They represent min ima l and max ima l values that hyper-parameter can acquire. 
B o t h baseline optimisers also have a keyword argument verbose, which if set to True, w i l l 
ensure pr int ing of addi t ional hyper-optimisation information to the standard output. 

The most complex optimiser is G P optimiser. The parameters of the black-box function 
that w i l l be chosen for the next opt imisat ion round depend on selected domain-space search 
strategy (DSS) , acquisit ion function ( A F ) and predictions received from created GP model. 
A s shown i n Figure 4.4, the core is responsible for control of other components to find 
the best possible parameters of the black-box function. The result of the opt imisat ion is 
again the t raining point w i th the lowest loss value, but G P optimiser object stores other 
data that are important for hyper-optimisation analysis and visualisation, including current 
G P model, used t ra ining points and their values. The computat ional complexity of G P 
optimiser is cubic, w i th respect to the number of t ra ining points. 

Apar t from a reference to the implemented kernel object, G P optimiser has the same re­
quired arguments as baseline optimisers. To specify addi t ional parameters of G P optimiser 
such as D S S or A F , any of the keyword arguments described i n Table 4.1 can be used. 

4.2.3 K e r n e l s 

Kernels are implemented in separate module, along wi th builder methods allowing user 
to construct new kernels. It is possible to add new custom kernel, bu i ld new kernel from 
existing ones or use one of the five implemented kernels: R B F , Laplac ian , Ma te rn A R D 
5/2, constant and linear. A l l implemented kernels are described i n detail in Section 3.4.2. 

The parameters of the kernels can be automatical ly tuned during the optimisat ion, 
as described in Section 3.4.3. A n d in order to enable automatic parameter tuning, ker­
nels work wi th tensors from torch.Tensor. Each kernel is implemented as callable class, 
where method c a l l accepts two tensors as parameters representing two Z?-dimensional 
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Table 4.1: K e y w o r d arguments of G P optimiser. 

Parameter Descript ion 

x _ i n i t 

R 

nb_sampl 

dss 

acq_fun 

htypes 

autotune 

autotune_ 

verbose 

es 

a l l 

I D numpy array representing in i t i a l hyper-parameter configuration. If 
not set, random configuration w i l l be used. 
Uncertainty of G P model . If not set, default value le—5 w i l l be used. 
Number of testing sample per dimension (total number of samples: 
nb_samplesD). If not set, default value 50 w i l l be used. 
Used D o m a i n Search Strategy. If not set, default strategy random w i l l 
be used. 
Used Acquis i t ion Funct ion . If not set, default function 
Expectedlmprovement w i l l be used. 
A list of hyper-parameter types. Permi t ted values are „f loat" for real 
numbers or „int" for integers. If not set, a l l hyper-parameters w i l l be 
treated as real numbers. 
If set to True, automatic tuning of kernel parameters is activated. 
Default value is False. 
If set to True, automatic tuning of a l l parameters is activated. Default 
value is False. 
If set to True, addi t ional hyper-optimisation information is printed to 
standard output. Default values is False. 

points. A l l parameters of the kernels are stored during ini t ia l isat ion to a class variable called 
params. 

R B F and Laplac ian kernels are implemented based on Equations 3.15 and 3.16 and have 
only one parameter - characteristic length scale 07. Signal standard deviat ion is fixed to 
value 1.0 and none of the kernels support A R D . 

Kerne l Ma te rn A R D 5/2 is implemented based on Equa t ion 3.17 and has D + 1 pa­
rameters, first is signal standard deviat ion and the rest corresponds to characteristic length 
scale (one for each dimension D). 

Last two implemented kernels are linear and constant kernel and each has only one 
parameter. Linear kernel is ini t ial ised wi th parameter 9, which is mul t ip l ied wi th kernel 
inputs. Constant kernel is ini t ial ised w i t h constant value c, which is also its return value 
for every input. 

A n y of the kernels can be ini t ial ised directly using its class name or use function 
selectKernel(name, params), where name is a string corresponding to a class name of 
the kernel and params is a tensor containing the parameters of the kernel. 

G P O P also provides two methods to bu i ld new kernels - buildAddKernel and b u i l d -
MultKernel. The first one creates a new kernel by addi t ion of two existing kernels, while 
the second method uses mult ipl icat ion. 

In case user requires different kernel, it is possible to extend G P O P by implementing 
custom kernel or adding a kernel builder, as described in Section 4.4.3. 
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Figure 4.4: St ructura l diagram describing the function of G P optimiser: F i r s t , the core 
uses D S S to select a set of m testing points T w i th in dimension space. Number of testing 
points depends on number of dimensions (hyper-parameters) to be optimised and number 
of samples per dimension defined. Next , acquisit ion function is used to select next t raining 
point Xj. To make this selection, a l l acquisit ion functions use G P predictions i n testing 
points T . F ina l ly , t raining point x , is passed to function interface, the function value / (x i ) 
is collected and G P model is updated. Th is whole process is repeated as many times as is 
the number of opt imisat ion rounds. 

4.2.4 A u t o t u n e 

The automatic tuning of parameters of the optimiser is implemented as described i n Sec­
t ion 3.4.3 and uses Pytorch framework wi th A d a m optimiser to maximise the log l ikelihood 
of the G P model. 

Automat ic parameter tuning can be enabled by using command line options —autotune 
or —autotune-all in C L I wraper or by enabling one of the keyword arguments autotune 
or autotune_all in ini t ia l isat ion of G P O p t i m i s e r . Au tomat ic tuning starts after at least 
5 t ra ining samples are present and is repeated for 50 rounds or un t i l the difference of log 
l ikel ihood i n two subsequent rounds is not lesser then predefined constant e. 

4.2.5 D o m a i n - s p a c e Search Strategies 

G P O P toolki t provides user w i th two distinct DSSs to select testing points: grid and 
random. These strategies are implemented inside optimiser module i n the same manner 
as gr id and random generators described in Section 4.2.2, but generated points are used as 
testing samples. 
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D S S can be selected by a keyword argument dom_search_strategy i n ini t ia l isat ion of 
GPOptimiser or using a command line option —domain-search-strategy when using the 
C L I wrapper described i n Section 4.2.8. 

4.2.6 A c q u i s i t i o n F u n c t i o n s 

Module acqfun implements three A F s : MinimalMean, LowerConf idence and Expected-
Improvement. Each A F is implemented as callable class w i th four posi t ional parameters. 
Fi rs t parameter is a list of testing points from D S S , second is G P model and the last two are 
lists of t ra ining points and their function values. A l l A F s use those parameters to predict 
mean values [i and standard deviat ion a of the testing points and select the next t raining 
point. 

MinimalMean selects the point x* w i th the lowest predicted mean value. The second 
method, LowerConf idence, selects the next t ra ining point x* w i th min ima l predicted lower 
confidence bound corresponding to: 

x* = argmin(/x(x) — 2rj(x)) (4.1) 

The last method, Expectedlmprovement, selects the point w i th the best expected improve­
ment defined i n Equa t ion 3.26. 

A n y of the A F s can be ini t ial ised directly using its class name or use function the 
selectAcqFun(name), where name is a string corresponding to a class name of the A F . A l l 
implemented A F s are described in more detai l in Section 3.4.5. 

4.2.7 B r i d g e 

Module bridge creates an interface between the optimiser and the N N and also provides 
user w i th methods to parse configuration files. F i r s t , the bridge creates callable NeuralNet 
objects, which behave like a standard functions, but when called, they actually run a 
subprocess in order to t ra in the N N using specific hyper-parameter settings. After the 
subprocess ends, the bridge finds the result of the t ra ining i n the output of the subprocess 
and returns it to the optimiser. The information needed to do so is stored i n configuration 
file w i th following syntax: 

SYNTAX: 
<command> 
<result_regex> 
<failure_regex> 
<HP-l_switch> <type> <from> <to> 
<HP-2_switch> <type> <from> <to> 

<HP-n_switch> <type> <from> <to> 

EXAMPLE: 
python3 ./mnist/main.py —epochs 5 
Average loss: ([-+]?\d*\.\d+1\d+) 
Average loss: (nan) 
— l r f l o a t 0 1 
—nb-hidden int 2 512 

Firs t line is a command that w i l l be used to run t raining of the N N and it can contain 
addi t ional hyper-parameters that won't be optimised. Second line contains a regular ex­
pression that identifies desired result of the t ra ining i n the output of the previously run 
command. This regular expression needs to specify the number that w i l l be minimised by 
capturing it i n a group. If more lines of the output match the regular expression, the bridge 
uses the last matched number. In case this regular expression does not match any text of 
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the output, regular expression f ailure_regex is used to identify whether t ra ining was run 
successfully. If this regular expression matches any text of the output, predefined default 
value is returned to the optimiser. Otherwise, an error indicat ing unsuccessful invocation 
of the subprocess is thrown. This safety check is useful when t ra ining is not properly in ­
voked and therefore it is not necessary to continue hyper-optimisation. Example of such 
behaviour might be bad configuration of a hyper-parameter in configuration file, such as 
use of inval id value (e.g. negative learning rate). T h e n the t ra ining fails, the optimisat ion 
is stopped and the user is notified about the error. 

The rest of the lines in the configuration file is reserved for the hyper-parameters that 
w i l l be optimised, where each line defines one hyper-parameter and consists of four fields 
separated by space. F i rs t field, HP-i_switch, is string value used as a switch to identify 
i - th hyper-parameter inside the command. Second field, type, determines which values 
are assigned to this hyper-parameter by optimiser. Supported types are int for integer 
values and f l o a t for real numbers. Last two fields are reserved for specification of hyper-
parameter's domain range. 

This configuration is used to initialise the optimiser and then to run the subprocess 
using a command in form: 

SYNTAX: 
<command> <HP-l_switch> <HP-l_val> ... <HP-n_switch> <HP-n_val> 

EXAMPLE: 
python3 ./mnist/main.py —epochs 10 — l r 0.5 —nb-hidden 256 

where command is the command from the configuration file and fields <HP-l_val>, 
<HP-n_val> are values of the respective hyper-parameters selected by optimiser. 

Configuration files can be parsed using one of the two ways: either from the standard 
output or from a file. 

4.2.8 C o m m a n d L i n e W r a p p e r 

The C o m m a n d Line Interface (CLI ) wrapper wrapper. py is a Py thon3 script that is able 
to load and parse the configuration files, create and run the optimiser, plot cumulative 
min imum and Gaussian process representation and print hyper-optimisation information 
to standard output. To specify what tasks should be executed, C L I wrapper has a number 
of command line options that are described i n detai l i n Table 4.2. 

The command line option —gaussian-process has zero or two and more arguments. 
If no argument is specified, R B F kernel w i th default parameters and default uncertainty is 
used. The first argument is a class name of the selected kernel, the second argument is the 
uncertainty and the rest of the arguments correspond to kernel parameters in order defined 
by ind iv idua l kernels (see Section 4.2.3). 

C o m m a n d line option —benchmark (or -b) has D+3 arguments. The first argument is a 
string representing the name of the benchmark. The second argument is a str ing containing 
an op t imum xopt = (xi,... ,XD), where each element Xi is separated by a space as shown 
in usage example in Section 4.3.1. The th i rd argument is the function value i n op t imum 
f(xopt). Next D arguments define dimensions bounds for each dimension of the benchmark, 
where the m i n i m u m is separated from the m a x i m u m by a colon. 

Note that options -b and - f can't be used together and option -s has no effect without 
the option —draw. For usage examples of the C L I wrapper, see Section 4.3.1. 
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Table 4.2: C o m m a n d line options of the C L I wrapper script wrapper .py. 

Long option Short option Descript ion 

—help -h Shows help message wi th usage information and exits. 
—rounds -r Number of hyper-optimisation rounds. If not set, 

default value 10 w i l l be used. 
—grid-search none Use G r i d search optimiser. 
—random-search none Use R a n d o m search optimiser. 
—gaussian-process none Use G P optimiser. 
—domain-search- none Selection of D S S (options: grid, random). 
strategy 
—acquisition- none A F selection (options: M i n i m a l M e a n , 
function LowerConfidence, Expectedlmprovement) . 
—autotune none Enable automatic tuning of kernel parameters. 
—autotune-all none Enable automatic tuning of a l l G P parameters (kernel 

+ uncertainty). 
—benchmark -b Optimise selected benchmark function. 
—config-file - f Optimise N N defined by configuration. 
—jitter none A d d j i t ter given by option's argument to the 

benchmark function. 
—draw -d Draw cumulative m i n i m u m and G P model plots. 
—verbose -V Pr in t addi t ional hyper-optimisation information to 

standard output. 
—round-by-round none R u n hyper-optimisat ion one round at a t ime (draw 

plots and print output after every round). 
—save-fig -s Save plots of cumulative m i n i m u m and G P model 

representation to a directory specified by options 
argument. 

—seed none Set seed for randomised elements in the optimiser. 

4.3 Usage Examples 

A s stated before, G P O P toolkit can be used either through C L I wrapper, or as a P y t h o n l i ­
brary. This section contains usage examples of G P O P toolkit w i th implemented benchmark 
functions and example M N I S T N N 1 . The complete set of examples is stored i n G P O P git 
reposi tory 2 in folder examples. 

To run the examples, insta l l G P O P toolkit using setup.py script located i n the root 
folder or run the examples from gpop subdirectory. 

4.3.1 C o m m a n d L i n e Interface 

To run hyper-optimisation from the command line, use Py thon3 script wrapper.py. The 
hyper-optimisation task, used optimiser and further options can be selected using script 's 
command line options. F u l l description of the wrapper script and it 's command line options 
is in Section 4.2.8. 

x h t t p s : //github.com/pytorch/examples/tree/master/mnist 
2 h t t p s : //gitlab.com/mcouf al/gpop 
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To run benchmark hyper-optimisation, command line option —benchmark has to be 
specified. The example below runs 9 optimisat ion rounds of R a n d o m optimiser on E l l i p ­
soidal benchmark. This benchmark w i l l be two-dimensional, w i th op t imum xopt = (5,5) 
and opt imal function value /(x o p t ) = 3. B o t h parameters w i l l be optimised wi th in the 
interval [0,10]. A l so , addi t ional hyper-optimisation information, such as selected t raining 
points in each optimisat ion round, w i l l be printed to standard output. 

./wrapper.py \ 
—rounds 9 \ 
—random-search \ 
—benchmark "FnEllipsoidal" "5 5" 3 "0:10" "0:10" \ 
—verbose 
To run N N hyper-optimisation, command line option —conf i g - f i l e has to be specified. 

This command line option has one optional argument, which provides a path (relative or 
absolute) to the configuration file of the N N . If this command line option is used without 
any argument, the configuration is taken from the standard input. 

The example below runs 5 rounds of hyper-optimisation on specified N N using G P opti­
miser. The N N and optimised parameters are defined i n file mnist_example_config.txt. 
The example of such configuration file is i n Section 4.2.7. G P optimiser w i l l use R B F kernel 
w i th characteristic length scale 07 = 0.1, 15 testing samples per dimension and uncertainty 
R = 0.01. After the hyper-optimisation ends, plots of G P representation and cumulative 
min imum over rounds w i l l be shown. 

./wrapper.py \ 
—rounds 5 \ 
—gaussian-process "KernelRBF" 15 0.01 0.1 \ 
— c o n f i g - f i l e mnist_example_config.txt \ 
—draw 

4.3.2 U s a g e of G P O P P y t h o n L i b r a r y 

The following examples demonstrate how to use G P O P as a l ibrary. Fi rs t , the following 
imports need to be made: 

import torch 
from gpop.optimiser import optimiser as gpo 
from gpop.optimiser import kernel 
In case only G r i d optimiser or R a n d o m optimiser w i l l be used, only optimiser module 

needs to be imported. G P optimiser requires kernel module to create a kernel and torch 
module to define the parameters of the kernel. 

If the hyper-optimisation task is to optimise a benchmark, benchmarks module has to 
be imported and benchmark function created: 
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from gpop.optimiser import benchmarks 

# benchmark settings 
bench_name = "FnSphere" 
bench_opt = [2.0, 5.0] 
bench_opt_val = 2 
# create benchmark function 
fn = benchmarks.selectBenchmark(bench_name, bench_opt, bench_opt_val) 
In case the task is to optimise hyper-parameters of the N N , bridge module has to 

be impor ted and NeuralNet object ini t ial ised using a parsing function from the bridge 
module: 

from gpop.nnbridge import bridge 

# NN settings 
config_path = "./mnist_example_config.txt" 
fn, dim_bounds = bridge.parseFileConfig(config_path) 

The configuration can be loaded from standard input using parseStdlnConf ig() func­
t ion or from a file using parseFileConf ig() function as above. These functions return a 
reference to a callable NeuralNet object and a list of dimensions bounds. 

Next , the optimiser has to be init ial ised. Us ing its keyword arguments, it 's possible 
to specify addi t ional settings such as D S S or A F . F u l l description of available keyword 
arguments for each optimiser can be found i n Section 4.2.2. Example below uses G P 
optimiser w i th Ma te rn A R D 5/2 kernel. The parameters of the kernel are signal standard 
deviation o~f = 1.0 and characteristic length scale <Ji = (1.2,1.5). Note that this kernel 
expects two-dimensional points as input: 

kernel_name = "KernelMaternARD52" 
params = torch.tensor([1.0, 1.2, 1.5], requires_grad=True) 
k~= kernel.selectKernel(kernel_name, params) 
opt = gpo.GPOptimiser(fn, dim_bounds, k, autotune=True, verbose=True) 
Note that i f the parameters of the kernel are supposed to be automatical ly optimised, 

the keyword argument requires_grad i n kernel parameters ini t ia l isat ion needs to be set to 
True. In case a benchmark is optimised, the dimensions bounds need to be set manually: 

dim_bounds = [[0.0, 5.0], [0.0, 5.0]] 
Final ly , the optimisat ion can be run for n rounds and the results of the optimisat ion 

can be shown: 

# run optimisation 
opt.optimise(n) 
# print results 
print("Best settings: hpl:", opt.best_x[0], "hp2:", opt.best_x[l]) 
print("Best function value:", opt.best_y) 

Optimiser stores the best found settings x* along wi th best found function value /(x*) 
in variables best_x and best_y. The optimiser also stores other information, such as every 
used t ra ining point, its function value and values of automatical ly tuned parameters. 
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4.4 G P O P Customisation 

In order to adjust G P optimiser to specific N N , it 's possible to create custom kernels and 
acquisition functions. A l s o , it is possible to create new benchmarks that may help to select 
suitable hyper-optimisation parameters that suite specific N N . 

To add a new kernel, A F or a benchmark, it 's possible to edit existing P y t h o n modules 
kernel, acqfun and benchmarks, or to create a new module. B u t i n order to preserve full 
functionality, it 's recommended to use the existing modules. 

4.4.1 W r i t i n g new kernels 

In order to add a new kernel, create a new class i n module kernel module. Also , it 's 
important to mainta in following rules to ensure G P O P works as expected: 

• kernel has to be a callable class w i th ini t ia l isat ion parameter params stored as a class 
variable 

• params is a tensor, where each element or group of elements represents a parameter 
of the kernel 

• inputs of the kernel are two tensors, representing two Z?-dimensional points 

• a l l operations on inputs and parameters have to use torch framework 

• the new kernel has to be added to selectKernel() function 

It's also possible to create new kernel builders, which should return a new kernel that 
follows the same conventions as mentioned above. For examples of kernels builders, see 
buildAddKernel () and buildMultKernel () functions in kernel module. 

4.4.2 A d d i n g N e w A c q u i s i t i o n F u n c t i o n s 

To create a new A F , add a new class to aqfun module that follows rules below: 

• A F has to be a callable class 

• A F has three required input arguments: 

— x_test - an array of Z?-dimensional testing points 

— x - a list of Z?-dimensional t ra ining points 

— y - a list of function values for each t ra ining point i n list x 

• the outputs of A F are: 

— x_next - an array representing a Z?-dimensional point that w i l l be used as next 
t ra ining point 

— mean - a list of predicted mean values of the testing points 

— sigma - a list of predicted standard deviations of the testing points 

• the new A F has to be added to selectAcqFunO function 

Note that the names of the inputs and outputs can be changed, but positions and types 
have to be preserved. 
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4.4.3 A d d i n g N e w B e n c h m a r k s 

To add a new benchmark, create a new class i n module benchmarks. New benchmarks have 
to inherit from the Benchmark class and follow the rules below: 

• benchmark has to be a callable class 

• benchmark has two required posi t ional ini t ia l isat ion arguments: 

— x_opt - a list of D values, representing an op t imum of the benchmark 

— f _opt - a function value i n the op t imum of the benchmark 

• the input of the benchmark is Z?-dimensional array, representing a point i n space 

• the output of the benchmark is a scalar 

• the new benchmark has to be added to the function selectBenchmarkO 
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Chapter 5 

Experiments 

The actual op t imal values of hyper-parameter settings i n neural networks are not known 
and moreover, the t ra ining t ime of the N N might be substantial. Therefore, it is common 
to test the performance of hyper-optimisat ion on benchmarks first [14]. Benchmarks are 
functions that are designed to simulate the typica l difficulties that can occur during hyper-
optimisat ion while searching the hyper-parameters domains [20]. To evaluate the efficiency 
of the implemented optimizers and their features, experiments were first conducted on 
benchmarks and then on a N N using M N I S T dataset [25]. 

This chapter contains description of implemented benchmarks and the results of the 
conducted experiments. 

5.1 Benchmarks for Hyper-parameter Optimisation 

Since function parameters can be viewed as a part icular hyper-parameters w i th continuous 
domains and the resulting function value as a result of the loss function, the benchmark 
functions are applicable substitute for actual N N . The advantage is that the min ima l input 
vectors of such functions are known and can be even directly specified i n the benchmark. 
Two basic benchmarks, Sphere and El l ipso ida l [20], were used i n the experiments. B o t h 
represent unimodal , separable problems and are scalable w i th dimension. U n i m o d a l means 
that the function has only one local m i n i m u m (maximum) and it 's the global m i n i m u m 
(maximum). The separability of D-dimensional problem means that it can be separated 
into D one-dimensional procedures and solved independently. 

Defined benchmarks use the following notation: x is D-dimensional input vector, x o p i 

is an op t imal solution vector and fopt is m in ima l function value such that fopt = /(x 0 | ) ') . 

5.1.1 Sphere F u n c t i o n 

Sphere function represents easy continuous domain search problem that is un imodal and 
highly symmetric. Sphere function is given as: 

/ ( x ) = l l z H 2 + fopt 
( 5

'
1 ) 

A n example of two-dimensional Sphere function is shown in Figure 5.1. 
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(a) 3D plot (b) contour plot 

Figure 5.1: Example of a two-dimensional Sphere benchmark. O p t i m a l function value 
f(x°pt) i n op t imum x 0 | ) ' = (2.5, 2.5) is shown by a red arrow/cross. 

5.1.2 E l l i p s o i d a l F u n c t i o n 

El l ipso ida l function represents unimodal , i l l -condit ioned continuous search problem wi th 
smooth local irregularities. I l l-conditioned function is a function such that a smal l change 
in the input vector of the function may lead to a large change in the resulting function 
value. E l l ipso ida l function is defined as [20]: 

D 

i=l 
ropt\ z — T"o s z(x x 

where Tosz : HD —> MP is mapped element-wise for each element of the input vector and is 
defined as follows: 

x i->- s ign(x)exp(x + 0.049(sin(cix) + sin(c2x))) 

sign(x) = x 
log(|x|) i f x ^ 0 

0 otherwise 

10 

5.5 

if x > 0 

otherwise 
C-2 

- 1 if x < 0 

0 if x = 0 

1 otherwise 

7.9 if x > 0 

3.1 otherwise 

in Fi j mre 5.2. 

(5.3) 

Example of two-dimensional E l l ipso ida l function is shown in Figure 5.2. 

5.2 Testing the Toolkit on Benchmarks 

Each of the listed experiments on the before mentioned benchmark functions has been 
averaged from over 100 runs wi th different function opt imum. The location of the op t imum 
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5 

(a) 3D plot (b) contour plot 

Figure 5.2: Example of a two-dimensional E l l ipso ida l benchmark. O p t i m a l function value 
f(x°pt) in op t imum x o p* = (2.5,2.5) is shown by a red arrow/cross. A s can be seen, the 
benchmark is i l l -condi t ional only in dimension of x\, while x 2 has only a smal l influence on 
the resulting function value. 

was selected randomly wi th uniform dis t r ibut ion from a subset of available search space, so 
the op t imum lies in different sector of the search space in each run. These measures should 
provide reasonable assessment in performance of a l l tested features of G P O P . 

Each experiment was run on a benchmark wi th different dimensionality, where each 
dimension was optimised on interval [0, 5]. Based on the dimensionality of the benchmark, 
different number of samples and optimisat ion steps were used to comply wi th the size of 
the search space. The number of samples and the number of opt imisat ion steps used for 
different Z?-dimensional benchmarks are shown i n Table 5.1. A l l experiments used Ma te rn 
A R D 5/2 kernel, random D S S and E I A F , any addi t ional settings or differences are described 
in part icular experiments. 

Table 5.1: Number of opt imisat ion steps and number of testing samples used i n D-
dimensional benchmark experiments. 

Configuration I D 2D 3D 4D 5D 

#steps 10 15 20 25 30 
^samples 25 20 2 15 3 10 4 5 5 

Experiments are divided into five sections, where first section focuses on comparison of 
implemented optimisers, next sections are focused on selected kernel, D S S and A F , while 
the last part focuses on automatic tuning of the G P parameters. 

5.2.1 O p t i m i s e r A c c u r a c y C o m p a r i s o n 

The first set of experiments devotes attention to comparison between G P , gr id and random 
hyper-optimisation. A l l of the optimisers were tested on up to 5-dimensional benchmarks. 
The accuracy of each optimiser is highly influenced by the size of search space and properties 
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of the benchmark function. In this set of experiments, G P optimiser w i t h R B F kernel, 
random D S S and Expec ted Improvement A F was used. 

Concerning smaller search space and sufficient amount of optimisat ion steps, G r i d opti­
miser may provide better results than R a n d o m optimiser. B u t as the number of optimisat ion 
steps reduces or search space increases, G r i d optimiser starts to provide worse results than 
G P optimiser or R a n d o m optimiser (see Figure 5.3). 

step step 

(a) ID Sphere (b) 2D Sphere 

Figure 5.3: Compar ison of G P , R a n d o m and G r i d optimisers on I D and 2D Sphere bench­
marks showing the cumulative m i n i m u m over opt imisat ion steps. 

A s can be seen in Figure 5.4, there is a m i l d difference between optimisat ion of Sphere 
and El l ipso ida l benchmark considering G P and random optimisat ion. Sphere benchmark 
is highly symmetr ical and contains larger space wi th values closer to opt imum. Therefore, 
R a n d o m optimiser tends to provide better results i n the first few steps of optimisat ion (first 
8 steps i n Figure 5.4a) before G P optimiser creates sufficient model . E l l ipso ida l benchmark 
is less symmetr ical and i l l-condit ioned and therefore G P optimiser finds better solution 
faster, as can be seen in Figure 5.4b. 

step step 

(a) 3D Sphere (b) 3D Ellipsoidal 

Figure 5.4: Compar ison of G P , R a n d o m and G r i d optimisers on 3D benchmarks showing 
the cumulative m i n i m u m over opt imisat ion steps. 

The number of steps needed for G P optimiser to beat average values of R a n d o m opti­
miser is influenced by the shape of the problem and by the size of the search space. W h e n 
searching i n larger or less symmetric space of a benchmark, the chances of random search 
to select better values are lesser. Tha t means G P optimisat ion can achieve better results 
in just a few steps even when opt imising problems wi th more dimensions, as can be seen in 
Figure 5.5. 
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Figure 5.5: Compar ison of G P and R a n d o m optimiser on 5D benchmarks showing the 
cumulative m i n i m u m over opt imisat ion steps. R a n d o m optimiser performs very-well on 
highly symmetr ical Sphere benchmark and manages to provide better results for about 20 
optimisat ion steps, while G P optimiser provides better opt imisat ion results on El l ipso ida l 
benchmark. 

5.2.2 K e r n e l E x p e r i m e n t s 

Kerne l experiments were focused on performance of kernels themselves, without any dif­
ferences between the parameters of the kernels. A l l three tested kernels ( R B F , Laplac ian 
and Ma te rn 5/2) used the same parameters setting i n each conducted experiment, therefore 
Ma te rn kernel was used without A R D . Experiments were run on both before mentioned 
benchmarks in up to 5-dimensions. 

A s shown i n Figure 5.6, kernel selection has a significant influence on the optimisat ion. 
The difference between the tested kernels on one and two-dimensional benchmarks is in ­
conspicuous, but experiments on larger search space and i n more dimensions show that 
Laplac ian kernel suites these benchmarks better than the other two kernels. The perfor­
mance of R B F and Ma te rn kernel is quite similar, but in most of the experiments R B F 
kernel performed slightly better. This is expected, since the behaviour of the kernels is 
quite similar and while M a t e r n is more suitable to model more substantial local changes, 
both used benchmarks are rather smooth. 

Figure 5.6: Compar ison of implemented kernels on 4D Sphere and El l ipso ida l benchmarks 
showing the cumulative m i n i m u m over opt imisat ion steps. Ke rne l selection is highly depen­
dent on the optimised problem and might reduce the number of opt imisat ion steps quite 
significantly. 
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5.2.3 D S S E x p e r i m e n t s 

Next set of experiments was focused on implemented domain-space search strategies. The 
main objective of this set of experiments was to determine how different D S S strategies 
influence the result of hyper-optimisation and how are part icular strategies influenced by 
used number of testing samples. Due to the high number of experiments needed to evaluate 
the latter, only benchmarks w i t h up to 3-dimensions were tested, while the first set of 
experiments was run on up to 5-dimensional benchmarks. 

W h e n considering the influence of the number of samples on both D S S strategies, the 
opt imal number of samples depends on the optimised benchmark, the number of opt imi­
sation steps, the number of dimensions and the size of the search space. A s shown in 
Figure 5.7, the average performance of both gr id and random D S S seem to share the same 
behaviour on each benchmark, except for smaller number of samples. A l l conducted D S S 
experiments i n up to 5D show that start ing from approximately 10D samples (where D is 
the number of dimensions), the behaviour of both averages is very similar. 

number of samples number of samples 

(a) 3D Sphere (b) 3D Ellipsoidal 

Figure 5.7: Influence of the number of samples on average error of a l l the optimisat ion 
steps. The behaviour of both strategies is quite similar, except for very smal l number of 
samples. In comparison w i t h gr id D S S , random D S S achieves surprisingly good results even 
for a really smal l number of testing samples. However, this pattern isn't that s t r iking in 
I D experiments. 

The average values serve as a good guideline for the comparison of a behaviour of both 
strategies, but they do not show the actual best achieved results. Figure 5.8 shows the best 
achieved results for selected optimisat ion steps i n dependency on the number of samples. 
Because the results for each tested number of steps depends on so many factors, it 's hard 
to select suitable number of testing samples. B u t it 's obvious that gr id D S S achieves poor 
results w i th smal l number of opt imisat ion steps, while random D S S achieves more consistent 
results for every tested number of samples and moreover, it performs quite well even wi th 
a smal l number of testing samples. 

B o t h random D S S and gr id D S S behave analogously when changing the number of sam­
ples (except for very smal l values) and therefore experiments focusing on the influence of 
D S S strategies on min imiz ing the benchmark functions were run w i t h the same amount 
of samples for both strategies. A s results on Figure 5.9 suggest, hyper-optimisation wi th 
random D S S achieved better results then grid D S S i n a l l conducted experiments. Further­
more, the difference between both approaches is more notable when solving benchmarks 
wi th more dimensions and experiments conducted on El l ipso ida l benchmark showed more 
substantial differences between tested D S S strategies. 
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number of samples 

(a) grid DSS on 3D Sphere 

103 

102 103 

number of samples 

(c) grid DSS on 3D Ellipsoidal 

io2 io3 

number of samples 

(b) random DSS on 3D Sphere 

io2 io3 

number of samples 

(d) random DSS on 3D Ellipsoidal 

Figure 5.8: Influence of the number of samples on error in some of the optimisat ion steps. 
A s can be seen in figures above, the best selected number of testing samples depends on 
many factors, such as selected D S S , number of opt imisat ion steps and optimised benchmark. 

5.2.4 C o m p a r i s o n of A c q u i s i t i o n F u n c t i o n s 

Next set of experiments compared three acquisit ion functions: MinimalMean, LowerConf idence 
and Expectedlmprovement. Experiments on one-dimensional benchmarks showed the best 
results achieved LowerConf idence A F , while the rest of the experiments (up to 5D for both 
benchmarks) showed better convergence to op t imal value while using Expectedlmprovement 
A F . A s shown i n Figure 5.10, the difference between used A F was most perceptible i n exper­
iments w i th E l l ipso ida l benchmark, while results on Sphere benchmark show only min ima l 
difference between used A F s . 

5.2.5 E s t i m a t i o n of G P P a r a m e t e r s 

The last part of experiments on benchmarks was focused on automatic tuning of G P pa­
rameters. Three options were tested: G P opt imisat ion without automatic tuning, w i th 
automatic tuning of kernel parameters and wi th automatic tuning of a l l parameters (kernel 
and uncertainty). 

The best results on most of the benchmarks were achieved wi th automatic tuning of 
kernel parameters, as shown i n Figure 5.11. Ment ioned problem wi th tuning the uncertainty 
is probably caused because of the automatic tuning algori thm, which is t ry ing to improve the 
log l ikel ihood by increasing the uncertainty. That leads to the possibil i ty of also increasing 
characteristic length scale, so these two parameters are increased unt i l the model no longer 
fits the problem. 
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step step 

(a) ID Sphere benchmark (b) 3D Ellipsoidal 

Figure 5.9: Compar ison of gr id and random D S S . 

step step 

(a) 4D Sphere (b) 4D Ellipsoidal 

Figure 5.10: Influence of selected A F on the result of the optimisat ion. A l l A F s i n experi­
ments on Sphere benchmarks performed almost identically, except Expectedlmprovement 
A F was able to converge closer to the benchmark opt imal function value, if given enough 
optimisat ion steps. This difference was more significant on El l ipso ida l benchmarks, where 
except first few opt imisat ion steps, Expectedlmprovement A F achieved dis t inct ly better re­
sults that the other two A F s (note that the results for MinimalMean and LowerConf idence 
shown i n Figure b) coincide). 

5.3 Neural Networks Experiments 

N N experiments were r un on M N I S T dataset, specifically on image classification example 
N N 1 . N N i n the example uses Stochastic Gradient Descent a lgori thm and trains the network 
for 10 epochs. A l l experiments compare three different optimisers: G r i d optimiser, R a n d o m 
optimiser and G P optimiser. G P optimiser was run i n two configurations, once wi th fixed 
parameters and once wi th automatic tuning of kernel parameters. 

A l l optimised hyper-parameters and used dimension bounds are presented i n Table 5.2. 
G P optimiser used random D S S , E I A F , uncertainty of le—3 and Ma te rn A R D 5/2 kernel 
w i th signal standard deviation Of = 1.0 and two distinct settings of characteristic length 
scale <T;, as defined i n Table 5.3. Used number of opt imisat ion steps and number of samples 
is the same as in benchmarks experiments and is described i n Table 5.1. 

A l l results show cumulative m i n i m u m of val idat ion loss i n different opt imisat ion steps. 
A l l loss values are averaged from only 5 distinct opt imisat ion runs, due to a longer t ra ining 
t ime of the N N . This causes noticeable dispersion of the resulting loss values, but it should 

1 https: / / github. com / pytorch / examples / tree / master / mnist 

49 



Figure 5.11: Influence of automatic tuning of G P parameters on a benchmark opt imi­
sation. One-dimensional benchmarks show only minor differences, but mult idimensional 
benchmarks show that the automatic tuning of kernel parameters performs the best, while 
tuning of uncertainty leads in most cases to short improvement followed by significant 
deterioration of the opt imisat ion. Though in one case the use of G P optimiser without au­
tomatic tuning achieved better results that G P optimiser w i th automatic tuning of kernel 
parameters, most experiments show that the latter yields significant improvement of the 
optimisation. 

provide reasonable estimate to roughly compare the optimisers. Note that every experiment 
was run wi th two different settings of kernel parameter characteristic length scale 07. 

The a im of the first set of experiments was opt imising a single hyper-parameter. A s 
can be seen in Figure 5.12, G r i d optimiser managed to find the best hyper-parameter 
setting of learning rate and number of hidden neurons. G r i d optimiser searches the domain 
progressively, so the first and the last few opt imisat ion steps search the border of a domain. 
Tha t is the reason why the cumulative m i n i m u m of G r i d optimiser usually changes rapidly 
in the beginning and maintains the value at the end of the opt imisat ion. R a n d o m optimiser 
achieved the best result i n opt imisat ion of the batch size. B u t unlike G r i d optimiser, its 
result is not influenced by the locat ion of the op t imum and the therefore the change in 
cumulative m i n i m u m is more gradual. G P optimiser needs a few steps before it creates 

Table 5.2: Opt imised hyper-parameters and their bounds used in experiments. 

Hyper-parameter Type Dimension bounds 

learning rate float [ 0 , 1 ] 
number of neurons in hidden layers int [32,512] 
batch size int [1,1024] 

50 



Table 5.3: Characterist ic length scale settings for optimised hyper-parameters used in ex­
periments. 

Hyper-parameter 
setting 1 setting 2 

learning rate 0.1 0.2 
number of hidden neurons 48 96 
batch size 102 204 

sufficient model and then starts to improve it 's optimisation, but was not able to provide 
better results than the other optimisers. 
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Figure 5.12: Compar ison of G r i d , R a n d o m and G P optimisers on M N I S T N N , optimising 
one hyper-parameter. 

The second set of experiments focused on opt imisat ion of two hyper-parameters. A s 
can be seen i n Figure 5.13, R a n d o m optimiser achieved better result i n the first few steps 
of optimisat ion, while G r i d optimiser managed to find better values in two out of three 
experiments. G P optimiser performed similar ly as i n optimisat ion of one hyper-parameter, 
but there are more noticeable differences between G P optimiser w i th and without automatic 
parameter tuning. These differences are probably more noticeable because of higher number 
of opt imisat ion steps wi th automatic parameter tuning. 

The last set of experiments was focused on optimisat ion of a l l three hyper-parameters. 
A s can be seen i n Figure 5.14, R a n d o m optimiser provided the best results throughout 
al l the opt imisat ion steps, while G P optimiser provided better results than G r i d optimiser 
the first 13 steps. B u t this is influenced by the number of opt imisat ion steps i n total and 
G r i d optimiser might possibly find better hyper-parameter settings even when using fewer 
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Figure 5.13: Compar ison of G r i d , R a n d o m and G P opt imisat ion of two hyper-parameters 
of M N I S T N N . 

optimisat ion steps. A l so , note that G P optimiser i n Figure 5.14b managed to improve its 
results to the same loss values as in Figure 5.14a by using automatic parameter tuning. 

The worse results of G P optimiser might be caused by several issues: G P parameter 
settings, inconvenient mean or the nature of the loss space. To fix parameters of the G P 
model, more knowledge about the behaviour of the optimised hyper-parameters is needed. 
Problems wi th mean could arise when the loss values are too close to mean value and 
G P optimiser might get stuck i n one place. This issue could be resolved by selection of a 
different A F or a loss function. Loss space could cause problems when the domains of the 
optimised hyper-parameters are quite large and the characteristic length scale parameter is 
set to higher values. Tha t could lead to inabi l i ty to model the subtle differences i n the loss 
value. 
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(a) ai = (0.1,48,102) (b) <rt = (0.2,96,24) 

Figure 5.14: Comparison of G r i d , R a n d o m and G P optimisers on M N I S T N N , opt imising 
three hyper-parameters: learning rate, number of hidden neurons and batch size. The 
results for two different characteristic length scale settings are shown. Note that both runs 
used the same G r i d and R a n d o m optimiser, the differences i n R a n d o m optimiser are caused 
only by different seed. 
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Chapter 6 

Conclusion 

The goal of this thesis was to design and implement a hyper-optimizer based on Gaussian 
Processes. I have achieved this goal by implementing a simple G P based hyper-optimisation 
l ibrary w i th a C L I wrapper. Furthermore, I compared the efficiency of implemented G P 
optimiser w i t h two baseline solutions based on gr id and random search by numerous ex­
periments on a few benchmark functions and M N I S T dataset. A l so , I have tested different 
parameters of the G P optimiser, such as D S S or A F , to evaluate their influence on the 
result of the optimisation. 

The experiments on the benchmarks functions proved that the implemented G P op­
timiser is in analogous cases able to achieve better results than both grid and random 
search optimisat ion techniques and i n some cases may save more that ten optimisat ion 
steps. Experiments w i th parameters of the G P optimiser show that best option for D S S is 
random D S S . Optimisers w i t h this strategy achieved better result i n a l l tested cases and 
since random D S S provides better results w i th fewer testing samples, it also brings notable 
improvement in computat ion t ime of G P predictions. Most suitable A F proved to be E I , 
while most suitable kernel on the tested benchmarks was Laplac ian kernel. B o t h E I A F and 
Laplac ian kernel led to faster improvement, especially in the first few steps of the opt imi­
sation. Experiments w i th automatic tuning of the parameters have shown that tuning only 
the parameters of the kernel leads mostly to better results, while tuning kernel parameters 
w i t h uncertainty leads to fast deterioration of the optimisat ion results i n most cases. 

The experiments on M N I S T dataset show that average loss value achieved i n random 
optimisat ion is better than in G P optimisat ion. Though the results of the G P optimiser 
can be improved by changing its parameters, it requires better understanding of behaviour 
of the optimised hyper-parameters. 

In the future, I would like to continue my work and improve the performance and 
user interface of the implemented toolki t . Specifically, I would like to improve automatic 
tuning of G P parameters i n contrast to their domain size. Also , I would like to further 
simplify the way of defining configuration files of neural networks and the addi t ion of custom 
benchmark functions. M y work could be further expanded by improving the performance 
of G P optimisat ion, adding addi t ional hyper-optimisation methods or by creating a G U I 
for visualisation of the optimised hyper-parameters. 
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