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Abstract
Computer systems which must provide their services with a high availability require cer-
tain security measures to remain available even when under packet-based network attacks.
Unwanted packets must be dropped or mitigated as early as possible and as quickly as
possible. This work analyses the eXpress Data Path (XDP) as a technique for early packet
dropping and the extended Berkeley Packet Filter (eBPF) as a mechanism for high-speed
packet analysis. Examples of current firewalling practices on Linux kernel based systems
are observed and a design and the behavioural goals of a system for high-speed packet
filtering based on eBPF and XDP are provided. The implementation of the design is then
described in detail. Finally, results of several performance tests are presented, showing the
XDP solution’s performance advatages over contemporary filtering techniques.

Abstrakt
Počítačové systémy, ktoré musia poskytovať svoje služby s vysokou dostupnosťou vyžadujú
isté bezpečnostné opatrenia na to, aby ostali dostupné aj pod paketovými sieťovými útokmi.
Nevyžiadané pakety musia byť zahodené čo najskôr a čo najrýchlejšie. Táto práca analyzuje
eXpress Data Path (XDP) ako techniku skorého zahodenia paketov a extended Berkeley
Packet Filter (eBPF) ako mechanizmus rýchlej analýzy obsahu packetov. Poskytuje sa po-
hľad na dnešnú prax v oblasti firewallov v systémoch s linuxovým jadrom a navrhne sa
systém rýchlej filtrácie paketov založený na eBPF a XDP. Do detailov popisujeme naim-
plementované filtračné riešenie. Nakoniec sa vyzdvihujú výhody XDP oproti ostatným
súčasným technikám filtrácie paketov na sérii výkonnostných testov.
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Rozšířený abstrakt
Od počiatku medzipočítačovej komunikácie a od vynájdenia celosvetovej siete Internet
sme svedkami čoraz väčšej záťaže sieťových prvkov nielen kvôli prudko rastúcej popularite
streamovaných služieb, ale aj kvôli rastúcim počtom útokov na počítačové siete. Je preto
dôležité, aby počítače, ktoré na Internete poskytujú kritické služby, vydržali záťaž ako
požiadavkov na službu, tak sieťových útokov bez toho, aby prestali svoje služby ponúkať.

V tejto práci sa zaoberáme vývinom systému, ktorý by napomohol počítačom bežiacim
na dostatočne novom linuxovom jadre so znižovaním účinku sieťových útokov, primárne
distribuovaného typu. Ako zvolená je pomerne nová technológia XDP, ktorá definuje isté
rozhranie pre ovládače sieťových kariet pre spracovávanie paketov ešte pre tým, než sa z
pamäti sieťovej karty nakopírujú do jadra. To rozhranie umožňuje zavolať filtračný program
interpretovaný virtuálnym strojom extended Berkeley Packet Filteru.

Najprv skúmame súčasné riešenia firewallov v počítačoch založených na linuxovom
jadre. Kladieme dôraz na nástroj iptables, ktorý dokáže naplniť takzvané chains pomerne
zložitými filtračnými pravidlami. Tieto chains sú konzultované v rozdielnych momentoch
životného cyklu paketov v operačnom systéme. Cez PREROUTING a POSTROUTING chainy
prechádzajú pakety, ktoré do počítača vchádzajú alebo z neho cez niektoré rozhranie vy-
chádzajú, INPUT a OUTPUT chainy sú určené pre pakety, ktoré buď pochádzajú z daného
počítača alebo sú preň určené, a nakoniec FORWARD chain je určený pre pakety, ktoré nie sú
určené pre daný počítač a sú ním smerované. V iptables sú definované tabuľky filter, nat,
mangle, raw a security. Každá z nich obsahuje svoje instancie niektorých zo spomenutých
chainov.

Tento nástroj umožňuje zadávať pravidlá po jednotlivých IP adresách. Preto bol ako do-
provodný program k iptables vyvinutý nástroj ipset, ktorý umožňuje deklarovať rozsahy
adries. Tieto rozsahy špecifikované v zadávaných pravidlách nahrádzajú pôvodne veľké
množstvá potrebných pravidiel pre vytvorenie zhody pre celé rozsahy adries.

V krátkosti spomíname projekt netfilter, ktorý má výkonnosťou prevyšovať iptables
a zároveň má byť jeho oficiálnym nástupcom. Je však založený na ňom, hlavne použitím
chainov.

Následne definujeme Berkeley Packet Filter (BPF) ako základný kameň pre rýchle spra-
covanie paketov. Modelom filteru BPF je acyklický orientovaný graf. Tento graf obsahuje
jeden prvotný uzol, dva cieľové uzly (prijatie a neprijatie paketu) a zvyšné rozhodova-
cie uzly. Necieľové uzly sú abstrahované jednoduchým predikátom nad niektorým poľom
paketu. Ak je tento predikát pravdivý, pokračuje sa uzlom pravým ak je nepravdivý, tak
ľavým, až kým tento proces nepríde k cieľovému uzlu. V implementácii predstavuje každý
uzol sériu jednoduchých inštrukcií načítania dát na adrese a podmieneného skoku a cieľové
uzly predstavujú návratové hodnoty boolovského typu true a false.

Systém BPF bol pridaný do linuxového jadra vo verzii 2.5. Odvtedy sa na ňom nevykoná-
vali žiadne zmeny ani vylepšenia, až kým vo verzii 3.15 bolo vydané jeho rozšírenie s názvom
extended BPF (eBPF). Toto rozšírenie reflektuje zmeny v modernom hardware; Šírka reg-
istrov BPF bola rozšírená na 64 bitov, ich počet bol zvýšený z dva na desať a bolo umožnené
volať istú množinu pomocných funkcií kernelu.

Ďalšie vylepšenia, s ktorými eBPF prišlo boli lepší preklad z virtuálnych inštrukcií
eBPF na inštrukcie danej architektúry hardware, statická verifikácia programov zakazu-
júca napríklad cykly alebo dereferenciu uživateľsky zadaných ukazateľov, systémové volanie
BPF, či takzvané mapy, nové dátové typy, ktoré majú eBPF programy k dispozícii. Mapy
sú dátové štruktúry typu kľúč-hodnota. Existuje viacero typov týchto máp, ako pole či



hashovacia tabuľka, no z hľadiska implementácie filtračného programu nás najviac zaujal
typ strom Longest Prefix Match.

Ďalej je popísané XDP ako rozhranie pre ovládače sieťových rozhraní, ktoré môžu pomo-
cou neho zavolať načítaný eBPF (XDP) program. Ten XDP program má k dispozícii dáta
celého príchodizeho paketu, na základe ktorých ako návratovú hodnotu vstupnej funkcie
vráti verdikt nad daným paketom. Tým verdiktom môže byť zahodenie paketu, posunutie
paketu ďalej kernelu, poslanie paketu von na sieť vstupným rozhraním, či presmerovanie
paketu na iné rozhranie. XDP môže pracovať v jednom z troch módov, a to buď v natívnom
móde, kde XDP program sa nachádza v ovládači, paket sa do jadra nekopíruje a inštrukcie
vykonáva procesor počítača, alebo v offloaded móde, kde inštrukcie sú vykonávané samot-
nou sieťovou kartou, alebo v generickom móde, pre ktorý nie je potrebná podpora ovládača
a je určená primárne pre účely vývoja.

Z predošlých poznatkov bol navrhnutý filtračný systém, ktorého jadrom je eBPF pro-
gram vložený do sieťovej karty, volaný ovládačom pomocou XDP rozhrania. Cieľový op-
eračný systém pre túto filtráciu je platforma routerov NETX vyvíjaná na pôde univerzity
Vysokého Učení Technického v Brně. Definujeme isté požiadavky na výkonnosť riešenia a
na použitie vhodných vlastností, ktoré eBPF a XDP prinášajú.

Následne je do detailu popísaný implementovaný filtračný mechanizmus. Popisujeme,
ako sa daný XDP program implementovaný v jazyku C prekladá v dvoch krokoch prekladač-
mi clang a l lc zo súboru prekladačov projektu Low Level Virtual Machine (LLVM). Druhý
program tohoto riešenia je určený na zavádzanie a odstraňovanie XDP programu zo sieťovej
karty a na manipuláciu s eBPF mapami. Tento program je takisto dopodrobna popísaný
spolu s jeho rozhraním na príkazovom riadku. Potom popisujeme implementáciu samotného
XDP programu a jeho logiku spracovania paketov. eBPF mapy obsahujú jednak informáciu
o cieľovom výstupnom rozhraní, ako aj pravidlá pre samotnú filtráciu. Do filtračnej mapy sa
smie zadať rozsah IP a verdikt, ktorý sa vykoná nad paketmi padajúcimi do toho rozsahu.
Ak príchodzí paket nepadá do žiadneho z rozsahov v mape, použije sa implicitné pravidlo
presmerovať paket na výstupné rozhranie.

Ďalej sa zameriavame na vykonané výkonnostné testy. XDP program bol porovnávaný s
ekvivalentnými nastaveniami v iptables, ipset a smerovacej tabuľke operačného systému,
na ktorom prebiehali testy. Popisujeme metodológiu testov, čiže ako bol umelý tok dát
generovaný a ako bol vykonaný zber dát (hlavne miera spracovaných paketov za sekundu).
Takisto popisujeme stroje, ktoré hrali isté role pri testovaní (generátor, stroj s filterom a
cieľový stroj), ich zapojenie a špecifikáciu hardware. Vrámci zamýšľania sa nad očakávanými
výsledkami predpokladáme, že implementovaný XDP program bude mať o jeden rád lepšiu
výkonnosť v počte spracovaných paketov za sekundu.

Výsledky sú prezentované v štyroch rôznych scenároch, jeden na zahadzovanie paketov,
jeden na ich presmerovanie a dva na meranie času inicializácie filtračných techník, teda
času naplnenia ich dátových štruktúr pre filtračné pravidlá. V prvých dvoch prípadoch sa
taktiež meria výkonnosť na jedno jadro procesoru.

Výkonnostnými testami na jedno jadro procesoru sa ukázalo, že XDP bolo schopné
zahadzovať pakety rýchlosťou až 5,4 miliónov paketov za sekundu (Mpps), respektíve rých-
losťou 2,2 Mpps s prístupom do filtračnej mapy s jedným záznamom. Ostatné riešenia
nepresiahli ani milión paketov za sekundu. Jedno jadro XDP bolo schopné presmerovávať
pakety rýchlosťou až 2,15 Mpps, respektíve rýchlosťou 0,62 Mpps s jedným prístupom do
filtračnej mapy. Smerovací systém linuxového jadra dosiahol sotva 0.32 Mpps. V prípade
využitia všetkých 32 jadier procesoru testovacieho stroja dosahuje XDP výkonnosť približne
11 Mpps ako pre zahadzovanie tak pre presmerovanie. V prvom prípade sa mu výkonnostne



vyrovanávajú všetky techniky okrem iptables, v prípade druhom dosahuje dvakrát vyššiu
výkonnosť ako smerovací systém linuxového jadra.

Testovaním času inicializácie sa ukázalo, že XDP je schopné pokryť veľké rozsahy adries
v rádoch milisekúnd. V prípade, že treba do jeho eBPF mapy pridať veľké množstvo
pravidiel, škáluje pridávanie lineárne s počtom pravidiel na pridanie. XDP takisto vykázalo
najkratší čas potrebný pre pridávanie pravidiel spomedzi ostestovaných techník.

Nakoniec zhodnocujeme, že implementované riešenie splnilo výkonnostné očakávania a
zapodievame sa možnosťou rozšírenia o podporu IPv6.
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Chapter 1

Introduction

Since the advent of inter-computer and inter-network communication and the invention of
the Internet, we have been witnessing an ever-increasing load on our computer network-
ing infrastructures, more so with recent surge in popularity of streaming services and the
emergence of computer network attacks focused on machines connected to the Internet.

It is of high importance that the machines operating on the Internet are able to provide
services under varying amounts of pressure and load, virtually without ever ceasing to
function correctly. Every second that a company can not provide its services to the potential
customer can lead to a significant loss of profit.

Many techniques have been therefore developed as means of hardening a system against
potential threats from the network. In order to be effective, these defence mechanisms must
be built with high performance requirements in mind.

In this work, we take a look at current practices in the field of network traffic filtering,
we analyse the Berkeley Packet Filter and Express Data Path technologies with regards
to their combined capability of packet filtering, and we propose a system for such filtering
based on these technologies.

This work is divided into chapters as follows.
Chapter 2 describes current widespread practices of packet filtering solutions on Linux

kernel based operating systems, then the Berkeley Packet Filter and the extended Berkeley
Packet Filter (eBPF) are described as the packet filtering method of our interest. The
chapter then defines the eXpress Data Path (XDP) as a technique implemented in network
interface device drivers which allows the packet filtering to be performed as soon as an
ingress packet is received on the hardware. At the end of the chapter, an XDP eBPF
program example is provided and a method of loading it into the device driver is shown.

Chapter 3 proposes a system of filtering packets on the NETX router platform leveraging
XDP and eBPF. It states a number of software requirements, such as how should a decision
on a packet be performed, what eBPF data structures shall be used to store rules for packet
filtering, or how its performance should compare to other contemporary packet filtering
solutions.

In chapter 4, we shed light upon our implementation of the XDP filtering program. We
describe what data structures are employed for rule storage, what the compilation process
is for the restricted XDP programs, how to load the program onto a network interface and
how to interact with it. A detailed description of two programs that comprise the filtering
solution is provided here.

The implemented solution is then subjected to a series of performance tests whose
results can be found in chapter 5. The chapter describes the methodology with which

3



the tests were performed, what were the expectations regarding the tests, and the actual
performance results. Four scenarios are presented, two regarding packet filtration and two
regarding filtering system initialisation time.

Finally, a conclusion on the implementation and its performance is drawn in Chapter 6.

4



Chapter 2

Current State of Filtering
Technology and Existing Solutions

The purpose of this chapter is to get acquainted with both packet filtering systems which
have been used in the past and contemporary systems which may typically be seen in
deployment today. Then, the Berkeley Packet Filter and Express Data Path mechanisms
(which will be referred to as BPF and XDP, respectively) are analysed with regards to their
practicality as techniques for packet filtering.

2.1 Mainstream Packet Filtering Solutions
The world of firewalling and packet filtering on systems based on the Linux kernel is dom-
inated by iptables and nftables usage.

2.1.1 iptables

iptables is a user space tool for the manipulation of the Linux firewall which is imple-
mented as a number of Netfilter [18] kernel modules. It utilises tables of the so-called
chains as sequences of rules which are inspected sequentially. Generally, a rule contains a
predicate against which a packed is compared, a verdict which is enforced if the predicate
is true with respect to the processed packet, and an optional target which specifies a kernel
module extension for more extensive packet processing.

Chains

There are five different chains which are inspected at different points of the networking
stack. The PREROUTING chain targets all incoming packets before they are routed, the
INPUT chain targets all packets that are destined to the system, the FORWARD chain is fired
on packets which are being routed, the OUTPUT chain targets all packets originating from
the system, and the POSTROUTING chain targets all packets outgoing from the system. A
diagram of the chains and their interconnection with the operating system can be seen in
Figure 2.1.

Tables

iptables contains the following tables.

5



Figure 2.1: A diagram showing the order of iptables’ chains and their interconnection
with the operating and routing system. Diagram taken from [7].

The filter table is the default table and its purpose is to perform packet filtering on its
INPUT, OUTPUT and FORWARD chains.

The nat table is consulted when the system encounters a packet that creates a new
connection. It consists of the PREROUTING, OUTPUT and POSTROUTING chains [12].

The mangle table is used for packet alteration. Currently, this table has all five chains.
Finally, the raw table is used for creating exceptions from connection tracking and the

security table can be used to enforce Mandatory Access Control networking rules.

ipset

A system administrator may often need to target ranges of IP addresses or ports instead
of specific ones. A tool called ipset may be used in concert with iptables to create such
ranges, drastically reducing the size of chains and increasing the speed of comparing an
entry against a set of IP addresses [18].

2.1.2 nftables

The nftables is another Netfilter project introduced in Linux kernel version 3.13. It is
the official replacement of iptables and its derivatives, presenting a packet filtering and
processing system that is based on iptables (mainly by the use of rule chains).

Its main selling point is the performance increase with the help of a specialised, BPF-
inspired virtual machine bytecode with a limited set of instructions. It also partly removes
the linear complexity of walking the rule sets by aggregating the rules into maps which
reduce the number of rule inspections [18].

2.2 The Berkeley Packet Filter (BPF)
As the technical product of this thesis relies heavily on exploiting the mechanisms which
the Berkeley Packet Filter provides, the following sections provide an overview of the inner
workings of its filtering mechanism.
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Figure 2.2: A CFG filter function that accepts packets from host foo. Taken from [15].

2.2.1 Origins of BPF

The Berkeley Packet Filter was originally introduced in a 1992 paper at the Lawrence
Berkeley Laboratory as a system for filtering incoming packets as early as possible upon
being captured by the receiving machine. This new filtering method had been developed
with efficiency, extensibility and portability in mind; indeed, the filter had been up to
20 times faster than filtering mechanisms of the time and had been able to run on most
BSD-based systems [15].

The introduction of BPF to the Linux kernel development tree has been first seen in
version 2.5 [10].

2.2.2 The Filter Model

It is fair to say that a packet filter is a simple function on a packet, returning a boolean
value. If the packet filter returns true, the packet is copied or forwarded to the kernel
for further processing by the networking stack. If the packet filter returns false, it simply
ignores the packet and drops it [15].

BPF uses a directed acyclic control flow graph (CFG) as its packet filter abstraction. In
such graph, each node represents a predicate on a packet field while the edges, two outgoing
for each node, represent the transfer of control to the next node. Finally, there are two leaf
nodes representing true and false verdicts on the processed packet. Figure 2.2 illustrates a
CFG that only accepts packets with an address foo, inspecting IP, ARP and RARP network
protocol fields.

The CFG model has been preferred to a boolean expression tree, as the former model
maps better into code for a register-based machine, while the latter into code for a stack-
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Figure 2.3: BPF program that accepts packets from host foo. Taken from [15].

based machine. Most computer systems operate as a register-based machine, therefore BPF
is implemented as a CFG [15].

2.2.3 Virtual Machine

The implementation of the control flow graph model consists of two 32-bit registers, an
accumulator and an index register which are mapped to physical registers, a scratch memory
space, an array representing the packet and an implicit program counter, thus turning BPF
into a virtual machine [15].

Various virtual instructions may be executed on the memory elements, such as load,
store, logic, branching, return and miscellaneous instructions [15]. Most of the arithmetic
operations are performed on the accumulator, while the index register provides offsets into
the packet array or into the scratch memory space [9].

Figure 2.3 shows a control flow graph which is an adaptation of Figure 2.2 with virtual
machine instructions instead of abstract predicates.

2.3 The Extended Berkeley Packet Filter (eBPF)
After its integration into the Linux kernel, BPF had remained relatively unchanged for
much time until the 3.0 release of Linux with the addition of a just-in-time (JIT) compiler
for the BPF interpreter [10].

Release 3.15 has brought an improvement of BPF, reflecting advancements in current
hardware [13]. The new changes extend BPF by changing register width to 64 bits, increas-
ing the number of registers from 2 to 10, being able to call a fixed set of in-kernel helper
functions and by improving instruction execution performance, causing fewer cache misses
[20][1].
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Since the 3.15 version, the new BPF implementation has been called extended BPF
(eBPF) and the original implementation classic BPF (cBPF).

2.3.1 The Just-in-time Compiler

Typically, instructions of eBPF are mapped 1:1 to respective assembly instructions of the
system’s hardware architecture. If it is supported by the kernel, the loaded eBPF program
may be just-in-time (JIT) compiled into assembly code of the host system [19].

The simplicity of the eBPF virtual instruction set lends itself to an uncomplicated
JIT translation. It maps every eBPF instruction to a straightforward sequence of x86
instructions and it uses the processor’s registers as placeholders for eBPF’s accumulator
and index registers [9].

Early benchmarks of the JIT compiler have shown a 50 nanosecond save per invocation
of a JITed eBPF program when compared with a program where such translation to machine
code had not been employed [11].

2.3.2 The Static Verifier

As eBPF programs are run inside the kernel, certain precautions must be performed in
order to preserve the security and stability of the kernel. Upon loading the eBPF program
into the kernel, it must be subjected to a static verification.

First, the verification process checks that the program does not contain any loops,
ensuring that it will not take a disproportionate amount of time to run, by executing
a depth-first search on the program’s control flow graph. Also, an eBPF program that
contains unreachable instructions will cause the verifier to fail the analysis [13].

Second, the verifier simulates the execution of the eBPF program one instruction at
a time, checking the virtual machine state after each instruction’s execution. All jumps
must land within the program and all memory accesses must not read or write outside the
kernel-provided memory area. Registers and stack variables with uninitialised contents may
not be accessed, as doing so would fail the verifier [13].

Finally, the verifier prohibits any user without administrative privileges to perform
pointer arithmetic in an eBPF program they load. This is done to protect kernel addresses
from unprivileged user access [13].

The static analysis does not need to walk through all possible paths of a program, as
it performs path pruning based on comparing the current state to its history of accepted
states [5].

2.3.3 The bpf() System Call

The bpf() system call can be used to perform a variety of operations on eBPF filters. It is
defined as

int bpf(int cmd, union bpf_attr *attr, unsigned int size);

Listing 2.1: BPF system call declaration.

The cmd argument specifies which operation will be performed on the attr argument.
Two types of operations are supported. One operation for loading and verifying an

eBPF program, BPF_PROG_LOAD, and several for eBPF maps creation and manipulation,
such as BPF_MAP_CREATE to create a map or BPF_MAP_LOOKUP_ELEM to lookup an element
in a map [1][5]. eBPF maps are explained in more detail in Section 2.3.4.
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Figure 2.4: A graph showing the relation between the number of IP addresses to add to a
hash map and the time it takes to add those addresses to the map. The sizes of the sets
range from 2 addresses (a full /31 subnet; the shortest time), doubling each time up to
32, 768 addresses (a full /17 subnet; the longest time).

2.3.4 Maps

A map, in the context of eBPF, is a generic data structure that can hold different types of
data for the purpose of sharing it between eBPF programs, and between kernel and user
space programs [5]. The maps also provide a persistent storage of data between invocations
of an eBPF program.

From a high-level perspective, a map hides each stored value behind a unique key. The
means of accessing a specific value are implementation-specific, depending on used map
type, such as an array or a hash map.

Using the bpf() system call mentioned in Section 2.3.3, a map can be created or deleted
and a key-pair value of a map can be looked up, created, updated or deleted.

Many map types have been implemented to be used in eBPF programs. Several types
are valuable for programs that implement packet filtering: arrays, hash maps and longest
prefix match (LPM) tries.

The LPM tries are a very attractive option for a packet filtering program which selec-
tively drops packets based on their source or destination IP address. A range of addresses
can be stored in an LPM trie map with a single eBPF helper function, while the same range
would need to be stored as separate addresses in an array map or a hash map. As it can
be seen in Figure 2.4, the time it takes to add a set of IP addresses to a hash map grows
linearly with the size of the set.
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2.3.5 Program Types

When loading an eBPF program with BPF_PROG_LOAD (see Section 2.3.3), the type of the
program limits the number of in-kernel helper functions available to the program. The
program type also specifies where the program can be attached and it dictates the type of
the object which is passed to the program as its first argument [13].

Among all the types of programs, two are relevant for a program which implements a
packet filtering algorithm: BPF_PROG_TYPE_SOCKET_FILTER and BPF_PROG_TYPE_XDP. The
value carrying the type of the program must be passed in the second parameter attr of
the bpf() system call [13].

2.4 The eXpress Data Path (XDP)
Packet processing systems with a focus on high performance require strict constraints on
the time spent processing each packet. Implementations of general purpose network stacks
have lead to the creation of specialised systems for packet processing such as the Dataplane
Development Kit (DPDK) because of their flexibility and thus inability to withstand high
packet loads [14].

Such toolkits typically employ a kernel bypass technique. On one hand, a bypass can
dramatically improve packet filtering performance. On the other hand, the bypass is more
complicated to integrate with the operating system, as it cannot make use of functionality
provided by the system, such as routing tables. Security risks may arise after such separation
from the kernel, as the kernel can no longer enforce its security policies on the bypassing
system [14].

Therefore, the eXpress Data Path (XDP) framework has been created as an alternative
to such systems. It allows high speed packet processing while still letting the kernel enforce
a safe execution environment. XDP works with concert with the extended Berkeley Packet
Filter (eBPF) which provides a method of processing incoming packets before being touched
by the kernel and at the earliest point after the packet is received from the hardware [14].

2.4.1 The Design of XDP

XDP is implemented as a hook in network device drivers immediately after receiving a
packet from the hardware. This design comes with great performance advantages, as the
eBPF program is run in the device driver without the need to switch context to the user
space. The eBPF program is also allowed to modify the packet. Moreover, no socket buffer
is allocated before the program is run, lowering the overhead even more, as the socket buffer
allocation would be unnecessary if the processed packet is dropped.

The XDP hook can be seen in Figure 2.5 as the first action that the device driver
performs. If the packet is destined to be dropped, the respective socket buffer memory does
not need to be allocated. The XDP eBPF program may also decide to pass the packet
to the networking stack for regular packet processing, to transmit it back onto the ingress
network interface, to redirect it to another network interface, or to pass it to a user space
application, bypassing the kernel processing with the use of the AF_XDP socket type. The
AF_XDP is a novel feature of the Linux kernel, first support added in the 4.19 version [14].
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2.4.2 XDP Actions

The ingress packet’s processing path after the XDP hook is communicated from the eBPF
program by specific return codes:

1. XDP_DROP causes the packet to be silently dropped without its data being copied to
the kernel.

2. XDP_ABORTED signals an eBPF program error and should not be returned by any
functional program. This action also causes the packet to be dropped.

3. XDP_PASS indicates that the packet shall be passed to the kernel for regular network
stack processing. The eBPF program may have modified the packet before passing it
to the kernel.

4. XDP_TX causes the packet to be sent back out of the ingress interface.

5. XDP_REDIRECT allows the packet to be redirected to and to be sent from another
network interface.

2.4.3 Operation Modes

There exist three modes in which XDP can operate: the native mode, the offloaded mode,
and the generic mode.

In the native mode, the eBPF program is run in the driver’s early receive path. This
is the default mode and it is supported by many widely-used NICs. This mode has been
explained in Section 2.4.1.

The offloaded mode has the potential to be even faster than the native mode, as eBPF
packet filtering programs are offloaded to the NIC to be executed at an earlier point than
in the native mode. The eBPF program execution is in the hands of the NIC. This mode
is only supported by SmartNICs (by Mellanox1 or Netronome2, for instance) which are
equipped with multi-threaded processors and offer other network functionality offloading.
These pieces of hardware also support the native mode of operation in case that some eBPF
helper functions are not available [8].

Finally, the generic mode is offered by the kernel systems whose NIC device drivers do
not implement the native or the offloaded mode of XDP. Since eBPF programs are run at a
point in the networking stack, this mode operates at a slower rate and is therefore intended
for development purposes [8].

2.5 XDP Example
This section shall present a minimal XDP eBPF program and demonstrate its compilation
with the LLVM toolset and how to load it into the device driver.

The following is a minimal program which drops all incoming traffic on the interface:

1https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
2https://www.netronome.com/products/smartnic/overview/
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Figure 2.5: Design of the integration of XDP into the Linux kernel for ingress packets.
Figure taken from [14].

#include <linux/bpf.h>

#ifndef __section
# define __section(NAME) \

__attribute__((section(NAME), used))
#endif

__section("prog")
int xdp_drop(struct xdp_md *ctx)
{

return XDP_DROP;
}

char __license[] __section("license") = "GPL";

Listing 2.2: A minimal XDP program.
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The program defines the xdp_drop function as the entry point using the __section
macro. That macro causes the compiled program to contain a section called prog which is
the default section name for an entry function. The entry function receives a pointer to the
packet context, containing metadata about the ingress interface and pointers to the actual
packet data.

Without accessing the packet data, the program immediately returns the XDP_DROP
return value, indicating that the received packet will be dropped.

To compile this program, assuming that it is named xdp-example.c, the clang [3] tool
may be used (version 3.9 and higher):

$ clang -O2 -Wall -target bpf -c xdp-example.c -o xdp-example.o

Finally, to load the program into the driver, the ip tool from the iproute2 collection
can be used. The following requires root access to the system, loading the xdp-example.o
file into the device driver of the eth network interface:

# ip link set dev eth xdp obj xdp-example.o

2.6 Summary
In this chapter, we have shown in detail two Linux kernel technologies working in concert
with each other which provide means of high-speed packet processing at the earliest point
after receiving packets from networking hardware.

The extended Berkeley Packet Filter (eBPF) provides a specialised environment for
packet processing, utilising a virtual machine with a specifically tailored instructions set
architecture for accessing and modifying packet data and performing decisions based on
packet fields. This technology is an extension of the Berkeley Packet Filter (BPF) – the
just-in-time compiler, maps as generic data stores and the static verifier are additions to
BPF which allow the creation of more flexible and computationally safe packet filtering
programs.

The eXpress Data Path is more secure kernel bypass technique alternative which is more
secure and works more cooperatively with the kernel with the intention of providing a very
early point of packet processing and a method of bypassing the kernel. It is implemented
as a hook in network interface device drivers where the eBPF program can be run before
any packet data is copied to the kernel.
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Chapter 3

Design of the Proposed System

Based on the knowledge contained in Chapter 2, a design of a packet filtering program
on a specialised routing system is proposed. The target routing system called NETX is
therefore first described. The filtering program serves as a method of DDoS1 protection for
this routing system.

The target platform description is followed by an enumeration of functional requirements
of the proposed system, including how to operate it, what tasks it should be able to perform
and what computer environment constraints must be fulfilled in order for the system to
function properly.

Finally, we describe how XDP and eBPF shall be utilised for maximum efficiency of the
proposed system.

3.1 NETX
NETX is an open-source routing platform developed at Brno University of Technology with
focus on high routing performance and the provision of a rich set of routing features [17].
NETX routers are designed to handle multiple BGP tables, they support a wide variety of
networking protocols and they are capable of routing performance of 60 Gbps [16].

NETX’s operating system is based on GNU/Linux, allowing easy extensibility and
adaptability to various networking tasks. Moreover, the NETX system features a robust
configuration API.

3.2 Software Requirements
Certain requirements for the filtering system have been set in order to maximise the system’s
utility and performance.

3.2.1 Packet Decision

The proposed system shall perform as a highly specialised filtering program. It shall process
all incoming packets on a network interface, inspect the appropriate header fields and
perform an action on the packet based on the header fields and a set of rules. If an

1Distributed denial of service attack is a network-based attack on a computer system where the victim
system is flooded with incoming packets coming from many sources, causing the system to generate very
high amounts of interrupt requests which subsequently cause it to halt and be unresponsive to normal service
requests.
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incoming packet matches a filtering rule, the verdict associated with that rule is applied to
the packet. The verdict shall be specified as one of the following XDP actions: pass, drop
and redirect. If the packet matches no rules, the implicit rule is enforced – to redirect the
packet to the egress network interface.

The mentioned rule set can therefore also be called a whitelist, marking the matching
packets as packets that should not be implicitly redirected, although in the end may be
redirected as an effect of a rule’s verdict.

Unless the packet data is corrupted or an error occurs while parsing an incoming packet,
no packet shall be dropped unless there is a rule that specifies that the matching packets
shall be dropped.

In the remainder of the text, “packet redirection”, “packet forwarding”, “redirection”,
or “forwarding” shall describe the passing of a packet from ingress network interface to
egress network interface without modifying the packet’s contents.

3.2.2 Rule Set Storage

The rules against which the incoming packet’s fields would be compared shall be stored
in a data store that is easily accessible to the filtering program. As XDP programs are
executed separately for each incoming packet and as filtering rules may be changed at any
point in time, there must exist a separation between the XDP program and the data store
for filtering rules. A straightforward solution is provided by eBPF maps, as mentioned
in Section 2.3.4, whose generic structure can be used to store arbitrary data such as the
filtering rules.

Adding to or deleting from the rule set should not interfere with the filtering process in
place, except to the extent of the modified rule. A modification of the rule set should cause
the program to continue filtering seamlessly. However, the program may be unloaded from
the network interface, and the entity responsible for the unloading is also responsible for
clearing the rule set data store, so that when the filtering program is loaded on the network
interface again later, it starts its computation with an empty rule set.

3.2.3 Performance Metrics

With regards to processing speed and CPU intensity, the filtering system should display
marginally better results than three other approaches to packet forwarding:

1. forwarding with iptables,

2. forwarding with iptables and ipset,

3. Linux routing system forwarding.

These approaches shall be compared based on the following metrics:

1. processing speed in packets per second,

2. time it takes to load filtering rules into memory,

3. CPU load.

Results of the performance testing can be found in Chapter 5.
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3.3 eBPF and XDP Involvement
The extended Berkeley Packet Filter (eBPF) and eXpress Data Path (XDP) technologies
shall be utilised for the packet filtering solution.

XDP shall be used as a technique which allows ingress packet analysis at the earliest
possible point in network interface device drivers, redirecting traffic immediately without
the added, unnecessary overhead of copying the packets’ data to the kernel.

In concert with XDP, eBPF will provide an environment for high-speed packet analysis.
The eBPF maps will be utilised for storing packet filtering rules. The longest prefix match
trie eBPF map type shall be employed for this purpose, allowing ranges of IP (or IPv6)
addresses to be stored and single addresses to be checked for a match.

There will be three possible outcomes of processing an ingress packet. The packet can
either be dropped if its data is erroneous or an error occurred during its processing, or it
can be passed to the kernel for normal network stack processing, or it can be redirected to
an outbound networking interface for further analysis by a computer system residing at the
receiving end of the outbound interface. These scenarios correspond with the XDP_ABORTED,
XDP_PASS and XDP_REDIRECT XDP actions, respectively.
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Chapter 4

Implementation Details

This chapter aims to provide a detailed description of the filtering system that has been
implemented as the centrepiece of this thesis.

The following sections shall describe the code base of the filtering system, the compi-
lation process from the source files to the binaries, how the program is loaded into the
network interface driver, and what is the command line interface of the loading program.

Finally, a step-by-step analysis of the filtering XDP program is shown with explanations
of each action it performs.

As mentioned in the following section, the packet filtering implementation consists of
two important programs. One of them is the program that is loaded into the network
interface’s driver and performs packet filtering; This program shall be referred to in this
chapter as the “XDP program”, “(e)BPF program” or “filtering program”. The other one
is responsible for loading and unloading the eBPF program from the driver, and adding
and removing filtering rules from the packet filter; This program shall be referred to as the
“XDP program loader”, “(e)BPF program loader”, or simply the “loader program”1.

4.1 Code Base Layout
The source code is an adaptation and an expansion of the XDP Tutorial2 which was revealed
and presented at the 2019 NetDev conference3. It is completely written in C (and partially
in restricted-C) as a constraint placed upon the implementation by the available compilers
but largely by the BPF library which is implemented in C.

The XDP program must follow the restrictions of its programming logic as dictated by
the constraints of eBPF’s static verifier in Section 2.3.2, e.g., no loops, no out-of-bounds
memory accesses, and others, hence the restricted-C usage. No such constraints are placed
on the loader program which is also written in C.

The source code is divided into four directories:

∙ src contains the core logic of the packet filter – the XDP program and the loader
program. A close look at those programs can be found in Section 4.6 and 4.4, respec-
tively.

1The reasoning behind the naming is that it increases clarity in conveying information, as using the
actual file names could hinder it.

2https://github.com/xdp-project/xdp-tutorial
3https://www.netdevconf.org/0x13/session.html?tutorial-XDP-hands-on
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∙ common contains either header files that are common to the XDP and loader programs,
or files that do not represent the filter’s core logic, such as command line argument
parsing.

∙ headers contains header files containing either BPF forward function declarations or
definitions of macros for the XDP program.

∙ libbpf contains the source code of the libbpf library. The library is utilised to ease
development and to load eBPF programs.

4.2 eBPF Maps as the Rule Set
As mentioned in section 3.2.2, the filtering solution uses eBPF maps to store rules. It
performs a filtering decision in each XDP program invocation (one packet per invocation)
on the basis of these rules. Our solution uses two maps.

The first map, called tx_port stores information about which network interface is the
egress interface. The map is of the BPF_MAP_TYPE_DEVMAP type, meaning its keys and values
are both integers. This map stores only one value, and that is the egress interface number
under key zero.

The second map, called lpm_whitelist is the filtering rule map which stores ranges
of IP addresses. The map is of the BPF_MAP_TYPE_LPM_TRIE, meaning that its entries are
stored in a longest prefix match (LPM) trie, a data structure that allows fast LPM lookups
and which is typically employed in routing tables to store network routes. Its keys are
ranges of IP addresses specified as a tuple of a network address and the prefix length.
Values of the map’s entries are XDP verdicts, i. e., redirect, pass, drop or others. In the
implementation, only the pass verdict is stored in the map, as the filter’s logic is to redirect
all traffic unless the destination address matches an entry in the trie map, in which case
the verdict is to pass the packet for further processing by the kernel.

4.3 Compilation Process
There are not many available compilers that have the capability to compile a restricted-C
file into eBPF byte code stored into an ELF object file. Fortunately, the LLVM compiler
infrastructure contains two compilers which can work together to deliver the desired binary
file. Those two compilers are clang [3] and l lc [6]. The lowest LLVM version required for
the compilation is 3.9 [8].

The compilation of the XDP program’s source code into a binary file is a two-step
process, requiring an intermediary compilation into an LLVM intermediate language as-
sembly file which is, as its name suggests, a file containing the filter’s instructions in an
intermediary format (eBPF bytecode) between compilations of the LLVM toolkit.

This first compilation is performed by the clang compiler. The program’s options re-
quired to create the intermediary file are -S -target bpf -emit-llvm. In the order of
mentioning, these options commend clang to stop the compilation pipeline before produc-
ing a binary file, to target the BPF architecture (in another words, to create eBPF byte
code), and to generate an LLVM intermediate language assembly file. By a naming con-
vention, the intermediary file has the .ll suffix.

The LLVM file containing the eBPF instructions is then compiled into an ELF object
file with the l lc compiler. In order to create the binary file, this program must be sup-
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plied, among others, the following options: -march=bpf -filetype=obj. These options
commend l lc to target the BPF architecture on input, and to emit an ELF object file. By
convention, a file with the .o suffix is generated.

This ELF object file represents the loadable XDP program.

4.4 XDP Program Loader
This section shall describe what is the functionality of the XDP program loader and how it
is achieved. There exist two methods of loading an XDP program onto a network interface
(also loading it into the kernel) on a Linux machine, either using the ip tool from the
iproute2 package, or making use of the libbpf library.

The first method is shown with the intent of showing how the ip tool can be used to load
the XDP program, however this technique is not employed in the final filtering solution.

Then we show the second method which has been chosen for the solution, using the
libbpf library. In the description of this method, we show how the library is leveraged
to not only load the XDP program but also to update the rule set and unload the XDP
program.

4.4.1 The iproute2 Method

The first method involves using the ip utility from the iproute2 package, as mentioned in
Section 2.5, by invoking it as follows. Let eth be the network interface onto which the XDP
program would be loaded, xdp-example.o be the XDP program. By default, the utility
searches for the xdp_prog section in the XDP program as the entry point of the program.
Running this utility with the purpose of loading an XDP program requires running it with
superuser privileges.

# ip link set dev eth xdp obj xdp-example.o

There is one downside to this method; It does not support creating and utilising eBPF
maps because the loader is not based on the libbpf library which does support eBPF maps.
The design of our program requires a persistent data store between the user space and the
kernel, as mentioned in Section 3.2.2, which renders this method insufficient.

4.4.2 The BPF Syscall Method

The second approach leverages the bpf syscall to perform a variety of actions, including
loading and unloading the XDP program onto and from a network interface, or updating
the eBPF maps with rules.

The key component here is the libbpf 4 library which eases the development of eBPF
programs by providing wrapper functions for the syscall and helper functions for the re-
stricted XDP programs, e.g., to perform eBPF map lookup. The library resides in the top
directory of the source code and must be compiled and installed onto the system before its
functions can be invoked.

All mentioned function names belong to the libbpf library unless stated otherwise.
4https://github.com/libbpf/libbpf/
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Loading the XDP Program

Excluding the command line arguments parsing, the loading of an XDP program onto a
network interface consists of the following steps.

∙ Load the eBPF ELF file into the kernel. All XDP programs in the supplied XDP
binary are loaded into the kernel calling the bpf_prog_load_xattr function. In
turn, the kernel evaluates the programs with the static eBPF verifier.

∙ Find a matching eBPF program section name. As multiple programs may be supplied
with one XDP binary, in this step the program whose name matches the user-supplied
name is selected calling the bpf_object__find_program_by_title function.

∙ Get the selected program’s file descriptor. The file descriptor, represented by an inte-
ger number, is required in the next step. It is received by calling the bpf_program__fd
function.

∙ Attach the XDP program described by the file descriptor to the supplied network
interface driver’s XDP hook. For this purpose, the bpf_set_link_xdp_fd func-
tion is called with appropriate flags, specifying whether the XDP program should
be run in the native mode (the XDP_FLAGS_DRV_MODE flag) or in the generic mode
(the XDP_FLAGS_SKB_MODE flag), or in the offloaded mode (the XDP_FLAGS_HW_MODE
flag).

∙ Update the output network interface map with the supplied egress interface number.
First, the bpf_object__find_map_fd_by_name is called, supplying it with the object
returned by the library call in the second step and the map name. This call returns
the file descriptor of the map. Second, the file descriptor is supplied as one of the
parameters of the bpf_map_update_elem function, along with the key (set to zero5)
and the number of the network interface.

∙ Pin the ebpf maps. This step ensures that the ebpf maps are available for updating
even after the loader program finishes loading the xdp program. The maps must be
pinned because the loader program must be run again (albeit with different parame-
ters) to update the contents of the maps – to update the filtering rule set. The maps
are pinned in the /sys/fs/bpf/<if-name> directory. Placing them in the directory
named after the interface prevents potential collisions in map file names if the filtering
program is loaded concurrently on two network interfaces in the same system. The
bpf_object__pin_maps is called and supplied the object returned from the second
step and the path to the target directory as a string.

Adding a Filtering Rule

Adding a rule to the rule set map is a fairly simple process. The loader program must be
supplied the name of the interface on which an XDP program has been loaded, and the IP
network address with a prefix length.

The loader first converts the IP address from a string into an internal representation
compatible with the libbpf library. Then, it tries to open the pinned rule set map file by
calling the bpf_obj_get function, passing it the path of the map file. If successful, it uses

5The reason for this is that the map shall always contain only one output interface.
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the returned file descriptor as a parameter of the bpf_map_update_elem function along
with the key (the IP address and prefix length structure) and the stored value (XDP_PASS).

If the map file cannot be opened, or if the update function fails to add the new rule
to the rule set, the loader program reports the erroneous behaviour as a message on the
standard error file descriptor.

The update function (more precisely, the BPF syscall command logic) does not distin-
guish the successful entry addition where there had been no previous value from a successful
entry addition where there had been a value on that particular key. Therefore, the user is
only notified of errors when adding a rule.

Removing a Filtering Rule

The deletion of a rule from the rule set mirrors the rule addition behaviour almost identi-
cally.

The loader program must be supplied the IP address, the prefix length and the network
interface’s name on which to operate.

After the loader converts the input data into the internal representation, it calls the
bpf_map_delete_elem function. The function, in comparison with the update function,
expects only the rule set map file descriptor and the IP (and prefix length) key as its
parameters.

The loader reports erroneous behaviour on the standard error file descriptor, such as
trying to delete from a non-existent map, trying to delete a non-existent entry or supplying
an invalid IP address.

Unloading the XDP Program

Before the XDP program can be unloaded from a network interface, all maps associated
with this interface must be unpinned and deleted.

Therefore, the loader program must first load the BPF ELF file into memory calling
the bpf_prog_load_xattr function. Do note that this step is the same as the first step
of the loading procedure; The binary file is loaded because it contains information about
maps that are associated with the XDP program and because the structure pointer that is
returned by the function call must be supplied to the following libbpf function call.

The loader then tests if one of the map files exists by calling the access function of the
POSIX operating system API (by including the unistd.h header file). If the test access
was successful, the bpf_object__unpin_maps function is invoked, supplying it the BPF file
structure pointer from the previous step and a string containing the path to the directory
of the pinned maps.

4.5 Loader Command Line Interface
It can be seen that with regards to functionality, the XDP loader is no simple program.
Therefore, an appropriate command line interface has been developed for the loader.

The command line interface consists of a number of options that can be passed to the
loader. What follows is a list of the options accompanied with their descriptions:

∙ -h, --help prints the synopsis of the program to the standard output.

∙ --in <if-name> specifies on which input interface should one of the commands op-
erate. The network interface must be specified by its name.
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∙ --out <if-name> is both a command to load an XDP program onto the input net-
work interface and a specification of the interface to which incoming packets shall be
redirected.

∙ --unload commands the loader to unload the XDP program from the input network
interface specified with --in. It should be accompanied with the same XDP mode
option which was supplied when loading the XDP program.

∙ -a, --add <IP>/<prefixlen> commands the loader to add the IP and mask to the
rule set map associated with the --in interface.

∙ -d, --del <IP>/<prefixlen> commands the loader to remove the IP and mask from
the rule set map associated with the --in interface.

∙ -v, --verdict <action> specifies what action shall be taken if an incoming packet
matches the rule added with --add.

∙ -S, --skb-mode specifies that the XDP program should be operating in the generic
mode. Beware that this mode drastically reduces the performance of the packet filter.

∙ -N, --native-mode specifies that the XDP program should be operating in the native
mode.

∙ -A, --auto-mode lets the loader program decide the mode of operation by itself. It
first tries to load the XDP program in the native mode. If that mode is not supported
by the network interface’s driver, then it tries loading the XDP program in the generic
mode of operation.

∙ --offload-mode specifies that the XDP program should be operating in the offloaded
mode.

∙ -F, --force can be used in combination with the --out option and it directs the
loader to unload any existing XDP programs from the input interface when loading
an XDP program.

∙ -q, --quiet causes the loader to be less verbose in its output.

∙ --filename <file> causes a specific BPF ELF file to be loaded as the XDP program
instead of the default one (xdp_prog_kern.o).

∙ --progsec <section> causes a specific section of the BPF ELF file to be chosen as
the XDP program, instead of the default one (xdp_redirect).

It should be noted that not all combinations of options are valid, i.e., no two “command”
options can be specified simultaneously (--out, --unload, --add, --del) in which case the
loader program will halt with an error message.

The mode of operation flags should not be mixed. This behaviour is however not
enforced, the mode flag supplied as the last one on the command line is taken into account.

Most of the options are optional; The loader program supplies sane default values to
unspecified parameters or it performs a default procedure (for example, it tries to load the
XDP program in the native mode if no mode of operation is specified). The input interface
option is a required one, as well as specifying a command is required.

Finally, some options are ignored, such as --force or a mode of operation specification
when adding or deleting a rule.
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4.6 XDP Filter Program
The XDP filter program is the core of the filtering solution as described in Chapter 3. This
section shall detail the implementation of the program.

As stated before, the computing environment restricts the implementation language
capabilities of the program. Although it is written in C, it lacks certain attributes of the
language. No backward jumps are allowed (although loops with a predetermined number of
iterations can be unrolled with the #pragma unroll preprocessor directive), jumps may not
be performed to user-supplied memory addresses, and all data accesses must be preceded
with a certain check for out-of-memory bounds.

The implemented XDP program consists of three main parts: declarations of eBPF
maps, inline helper functions, and an entry function. Of course, standard include directives
are present, as well as helper structure declarations.

The maps and the entry function must be placed in specific sections of the ELF binary.
Therefore, the built-in __attribute__ can be specified in the declaration of the appropriate
objects, supplying it with the name of the target ELF section. The maps must be placed in
the maps section of the binary, and the entry point must be assigned a section name that
is different from the name of the C function that represents the entry point. The entry
function (the main XDP program) can be then referenced by the section name which is in
the implementation’s case xdp_redirect.

4.6.1 Maps

The maps are declared as instances of libbpf ’s struct map_type_def. The first eBPF map
is the egress network interface map. It is declared as a BPF_MAP_TYPE_DEVMAP map type
and at any given time it holds only one entry at key zero and that entry is the egress
interface number. The map must be updated with the network interface number by the
loader program when the XDP program is loaded into the kernel.

The second eBPF map contains filtering rule entries with IP-prefix keys and verdict
values. It is declared as a map of the BPF_MAP_TYPE_LPM_TRIE type whose key size must
be declared as the size of libbpf ’s struct bpf_lpm_trie_key. As the declaration of the
struct specifies an array of an unknown number of bytes for storing the IP address, the size
must be calculated manually (as opposed to using the sizeof built-in).

More details about the maps can be found in Section 4.2.

4.6.2 The Entry Function

Every XDP program must be declared as a function that accepts a pointer to the struct
xdp_md metadata structure and returns an integer. The implemented XDP redirect pro-
gram follows this interface and extracts two values from the metadata context, namely the
pointers to the beginning of the packet data and to the end of it. These shall be called the
data pointer and the data end pointer, respectively.

These data pointers must be used to check ingress packet memory bounds before ac-
cessing any data in the packet, as the static verifier does not allow packet memory accesses
that had not been previously checked. The memory check works as follows:

1. Calculate what is the maximum data offset (in bytes) of the desired data from the
beginning of the packet data or from a valid pointer to the data (including an already
checked offset).
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2. Add the offset value to the data pointer.

3. If the new value plus one is greater than the data end pointer, abort. This means that
a data access could possibly access data that is outside of its valid memory bounds.
Continue with the packet processing within the checked offset otherwise.

At the beginning of the entry function, the data pointer is checked against the data end
pointer with zero offset. This ensures that the packet data is valid, otherwise the packet is
dropped with the XDP_ABORTED return code.

The program then parses the Ethernet header which is present at the very beginning of
the packet data. The header parsing extracts the layer 3 header version and the offset of
the next header in the packet data. Before the Ethernet header data can be accessed, the
data pointer must be checked against the data end pointer with the Ethernet header size
offset. The Ethernet header structure is included from the linux/if_ether.h header file.

Before the IP version extraction can be performed, the possibility of the packet being
VLAN-tagged must be considered. This can be confirmed by looking at the h_proto field
of the Ethernet header struct. If the packet is tagged, then the VLAN tag is inspected
(after checking the appropriate memory) for the IP version value. If, by any chance, the
packet is VLAN-tagged multiple times, this process is repeated until the packet is no longer
tagged or a limit of VLAN encapsulation is reached. Finally, the IP version is extracted
from the appropriate header field, and the data pointer is moved to the beginning of the
next header.

A similar process is performed with the layer 3 header. The part of the packet data
where the header resides is checked with the appropriate header’s size as the offset. Then,
the packet data at the data pointer is cast to the appropriate header struct.

The source IP address is then extracted from the header to the rule set map’s key struct.
This struct is then supplied to the bpf_map_lookup_elem call, looking up the source address
in the longest prefix match trie. If the lookup ends positively, the returned value replaces
the default verdict on the packet.

Finally, if the packet’s verdict is to redirect it, the bpf_redirect_map function is in-
voked, passing it a pointer to the outbound network interface map and a key that points
to the only network interface number in the map. This causes the packet to be marked
for redirection to the appropriate egress network interface. The default verdict value is
otherwise returned.
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Chapter 5

Performance Testing

In order to understand how effective the filtering solution is, a set of performance tests
has been executed. This chapter dives into the methodology of the benchmarks, what
computing environment has been used to conduct the tests, what were the expectations
regarding the implementation and what results have the tests achieved.

5.1 Methodology
The testing environment consisted of three Linux machines. The first one was responsible
for generating dummy traffic (the generator machine), the second one was the machine on
which the XDP program was loaded (the filter machine), and the third one was target of
packet redirection (the target machine). The second and the third machines were running
the NETX operating system (described in Section 3.1).

In general, the tests were executed as follows. First, the filter machine performed certain
steps to remove any filters from a possible previous test scenario. Then, it applied filters
to the system dictated by the current test scenario. The generator machine started in turn
generating traffic at the highest possible rate towards the filter machine with parameters
also dictated by the scenario. For the duration of the test, either the filter machine or the
target machine were used to collect measurements of the test, e.g., the number of packets
dropped or redirected per second. In some cases, the generator was not employed at all.
In those cases, the filter machine was tasked to measure the time complexity of various
filter initialisations. Finally, after a certain amount of time, the generator machine stopped
generating traffic and the test measurements were collected from the appropriate machine.

The packet rate measurements were performed by repeatedly reading the packet coun-
ters of the appropriate network interface from the /sys/class/net/<device>/statistics
folder’s rx_packets and tx_packets files. The actual packet rate was then calculated as
the difference of the counter’s measurements one second apart. The resulting packet rate
was then calculated as the average of those readings.

Other methods of packet rate measurements were considered, such as reading the above
mentioned statistics of the target machine’s receiving network interface or writing an XDP
program that captures and records all incoming traffic on the receiving interface. However,
due to the nature of some of the filtering scenarios, the redirected traffic could not be
measured those ways on the interface, as the generated packets were redirected with their
original L2 address which caused them to be dropped by the interface even before reaching
the XDP program or being counted in the interface’s statistics.
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Traffic generator Filter machine Target machine

10 Gbps link

100 Gbps link

Figure 5.1: The networking topology that was used in all testing scenarios.

5.1.1 Tested Filtering Technologies

In addition to XDP, three other approaches were tested for performance. The iptables and
ipset tools were used in scenarios where packets were dropped by the filter machine, and
the state-of-the-art Linux kernel routing system approach was used in both packet-dropping
and packet-redirecting scenarios.

On one hand, when filtering packets coming from ranges of IP addresses, the iptables
approach required adding every address of the range as a single rule. On the other hand,
specifying the same range (e.g., subnet) with the help of ipset required marginally fewer
iptables rules. In many testing scenarios the number of such rules was one. The same
number describes the amount of routing table entries required to test the Linux routing
system approach.

5.1.2 Networking Specification

The performance tests used the following network topology.
As can be seen in Figure 5.1, the generator machine was connected to the filter machine

with a single ten gigabit link. A switch lied on this link, however it was able to forward the
traffic from the generator machine to the filter machine at any generated rate.

The generated traffic could possibly be (depending on the scenario) redirected to a
direct link between the filter machine and the target machine. This was a link capable of
carrying traffic of one hundred gigabits per second. This would have been the link onto
which test traffic would be generated, however the interfaces’ drivers did not support our
preferred packet generating solutions.

Allocation of IP addresses in the networks between the machines was mostly irrelevant
for the purposes of most scenarios. Although the source IP address of the generated packets
was always inspected by the filtering machine, delivery of those packets between the two
pairs of machines1 was not dependent on it.

5.1.3 Test Machines Specification

The generator machine was running Red Hat Enterprise Linux (RHEL) version 7.2 with
Linux kernel version 3.10. No modifications were done to the machine except that the out-
bound interface’s driver was substituted with one that allowed line-rate traffic generation.

The filter machine was a NETX router based on RHEL 7.5. The supplied kernel version
was not high enough to support the majority of XDP features and it was updated to kernel
version 4.20 which was sufficient for all used XDP and eBPF features. The machine’s

1As in generator-filter and filter-target.
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processor was an Intel Xeon D-1587 with 16 cores (32 with multithreading) at 1.70GHz
(2.30GHz maximum turbo frequency) and 16 GB of RAM.

Finally, the target was also a NETX router based on RHEL 7.5 with an Intel Xeon
D-1537 CPU with 8 cores (16 with multithreading) and 16 GB RAM. There were no per-
formance or feature constraints placed on the machine, so it was left with its default 3.10
kernel.

5.1.4 Data Generation

It is a common practice to benchmark networking-related applications with the smallest
Ethernet frame size of 64 bytes. With this frame size, the ten gigabit link can potentially
transfer about 16 million of such packets per second. However, Ethernet frames are preceded
with a 12 byte inter-frame gap and an 8 byte MAC preamble which effectively pushes the
minimum Ethernet frame size to 84 bytes [2].

The packet rate of the 84 bytes frames on a ten gigabit per second link can be calculated
as

𝑟 =
10 · 109 𝑏𝑖𝑡𝑠

𝑠

84 · 8 𝑏𝑖𝑡𝑠
(5.1)

which equals to
𝑟 = 14, 880, 952

𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑠
(5.2)

The generator machine utilised the PF_RING project2, a high speed packet capture
and generation library implemented as a kernel module. The library’s pfsend program
was used as the packet generation program for all performed tests and it also supplied a
driver for the outbound interface which was loaded in the kernel for the duration of the
performance tests.

To provide an example, the following pfsend invocation generates traffic on the enp1s0f1
interface (the zc: prefix signifies that the library’s zero copy functionality shall be used),
supplying packets from the test-64.pcap file, rewriting the generated packets’ destination
MAC address to that of the filter machine’s inbound network interface (the -m option).
It shall stop generating after sending ninety million packets in total (-n 90000000). The
source and destination IPv4 addresses shall be rewritten with a range of 254 addresses (-b
254), starting with the appropriate destination (-D) and source (-S) addresses, simulating
communication between hosts of two subnets of prefix length 24. The traffic shall be
generated at ten gigabits per second (-r 10).

pfsend -i zc:enp1s0f1 -f test-64.pcap -m ac:1f:6b:2c:9e:71 \
-n 90000000 -b 254 -D 100.91.0.1 -S 10.0.0.1 -r 10

5.2 Expected Results
The expectations about the tested technologies’ performances were prior to the testing as
follows.

With regards to packet dropping, the XDP program was expected to display the best
per-core performance, as it inspects the incoming packets at an earlier point than the
other technologies do. Then, we expected the Linux kernel routing system and the ipset
technique to display similar performance, as they both operate in the kernel (the latter

2https://github.com/ntop/PF_RING
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via a kernel module) and employ an IP range approach to perform filtering decisions on
incoming packets. Finally, the ipset approach was expected to perform the worst, as it
must contain one rule per IP address, making filtering large IP ranges difficult because of
the sequential nature of its rule matching mechanism.

With regards to packet redirection, the XDP program was again expected to display the
best performance for the same reason as in the packet dropping scenario. The iptables
and ipset approaches could not be utilised for redirection, as they did not support it.
The Linux kernel routing system was expected to have a worse performance than the XDP
program.

5.3 Test Results
Based on the testing methodology and the environment described in Section 5.1, our solu-
tion’s performance was examined in the following scenarios.

In all scenarios, the generator machine generated 64 byte long packets at 10 gigabits
per second, or 14.48 packets per second.

5.3.1 Packet Dropping

In this scenario, the filtering approaches were configured to drop packets coming from a
certain IP network. The size of the source IP space ranged from a /24 network (256 hosts)
to a /18 network (16384 hosts3).

The approaches are first compared in filtering IP ranges and then in a setting with only
one source IP, comparing them on a per CPU core basis.

As can be seen in Figure 5.2, the XDP filter, the ipset technique and Linux routing
achieved dropped packet rates of about 11 million packets per second, while the iptables
solution performed worse with each increase of the source network because of the linear
increase of its filtering rules and the sequential nature of the rule comparison.

The dropped packet rate performance of the former three approaches did not weaken
because the number of entries required to filter the generated traffic could be kept at a
constant number. Also, the approaches, with the exception of iptables, did not need
to utilise all CPU cores to 100%; The XDP program did not use more than 5% of total
processing power while the ipset and Linux routing approaches used about 15% of total
processing power.

Although none of the approaches achieved the potential maximum packet rate (displayed
as the horizontal black bar at 14.88 Mpps at the top of Figure 5.2), the rate they achieved
seemed to be a recurring maximum rate for the system on which the tests were carried
out. Most of the differences can be explained by the need to exclusively access shared data
structures and by a possible failure of the processor’s DDIO facility [4] that places packet
data into the L3 cache [14].

Per CPU Core Performance

The packet dropping scenario was then adjusted. The generator machine kept creating a
constant ten gigabit traffic but with a single source address. This allowed us to compare
the performance of the selected approaches on a per CPU core basis, as the filter machine’s
ingress network interface driver selected the same RX queue (and CPU) for all packets.

3In reality, such subnets would contain two fewer addresses.
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Figure 5.2: Packet drop rate of our XDP filtering solution and three other approaches.
Performance is shown based on the size of the source network, i.e., the number of source
IP addresses to drop.

Drop All traffic One source
XDP 5.4 2.2

iptables 0.88 0.88
ipset - 0.71

Linux - 0.63

Table 5.1: Comparison of per CPU core performance of XDP and three other approaches
when dropping all incoming traffic and traffic from one source. Values are displayed in
million packets per second.

Therefore, the filtering approaches were first configured to drop all incoming packets in
the filter machine’s ingress interface, and then to drop packets coming one specific source
IP address.

The results of the per CPU core testing can be seen in table 5.1. As expected, the XDP
solution displayed the best performance with regards to the number of dropped packets in
both settings. The iptables approach achieve rates of one order of magnitude worse than
XDP, while still outperforming ipset and the operating system’s routing. It also displayed
the same results in the two settings, as both settings required it to employ only one filtering
rule. In all cases, the one CPU core was running at 100% of its processing capability. The
Linux routing table could not be configured to drop all incoming traffic for practical reasons
and ipset was not capable of specifying a universal IP range.
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Figure 5.3: Packet redirection rate of our XDP solution and of Linux’s routing system.
Performance is shown based on the size of the source network, i.e., the number of source
IP addresses to redirect.

5.3.2 Packet Redirection

In the following scenario, the filtering approaches were configured to redirect certain traffic
from the incoming interface of the filter machine to its egress interface towards the target
machine. The traffic ranged, as in the packet dropping scenario in Section 5.3.1, from a
/24 sized source network to a /18 sized network.

The approaches’ redirection performances were first compared with varying source IP
ranges and then in a single source IP setting, comparing them with each other on a per
CPU core basis.

Figure 5.3 shows the performance of our XDP filter and of the routing system of the
Linux kernel. Both seemed to be capped at a certain rate, XDP at about 11 million packets
per second, Linux routing just under 7 million packets per second. Both solutions needed
only one entry in their rule set or routing table, where applicable, allowing maximum
efficiency. They also did not reach the potential maximum redirection rate, shown as the
black bar at 14.88 Mpps, XDP being short of 5 Mpps, Linux routing reaching about half
of the potential.

Reaching such relatively low performance in the Linux routing case could have been
caused by requiring the threads to access the shared routing table in an exclusive manner
which meant that a large proportion of the time the threads were waiting for the routing
table to be unlocked by a thread that had been accessing it.

The performance difference between XDP’s redirection packet rate and the potential
maximum packet rate can also be possibly explained with the shared rule set data structure
to which accesses would have needed to be exclusive.
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Redirect All traffic One Source Empty map
XDP 2.15 0.62 0.64

Linux - 0.32 -

Table 5.2: Per CPU core packet redirection in millions of packets per second. Two ap-
proaches are shown, the XDP implementation and Linux’s routing system. All traffic
denotes redirecting any incoming packets (no map lookup in the case of XDP), one source
means redirecting packets coming from one specific host, and empty map signifies default
XDP redirection of all packets with an empty map lookup.

The CPU load of the XDP program was barely noticeable on the system as it was spread
over all 32 cores of the processor. Linux routing’s load was spread over the cores equally
but because of a high processing overhead, its redirection (or packet forwarding) used about
40% of the CPU’s processing capability.

Per CPU Core Performance

The packet redirection scenario was adjusted so that only one CPU core would have been
assigned to the tested approaches. The generator machine was set to generate packets from
a single source, causing the ingress network interface’s driver to choose the same RX queue
(and the CPU core) to process all incoming packets.

Results of these tests can be seen in Table 5.2.
First, the XDP program was configured to redirect any incoming packets without re-

garding the packets’ source address. Our solution was able to redirect packets at a rate of
2.15 million packets per second. The Linux routing system could not be configured for such
tasks for practical reasons.

Then, the approaches were configured for redirection of packets from a single source
address. In the case of XDP, it meant that its rule set map contained one rule specifying
to drop packets from the one particular address. In the case of Linux’s routing system, a
new route based on a source address was added to the interface-specific routing table. The
performance results of this configuration were worse in comparison with the first configu-
ration. XDP’s performance dropped to about a quarter, 0.62 million packets per second,
because of the need to perform a lookup in the LPM trie (albeit with one rule). Linux’s
routing system displayed a 0.32 million packets per second performance, redirecting packets
at about half the rate of XDP.

Finally, XDP was configured to redirect packets from the one source with an empty rule
set lookup, redirecting the incoming packets as an implicit rule. At 0.64 million redirected
packets per second, its performance increased by about 2% in comparison with the previous
configuration. This increase, although not a significant one, shows that a lookup in an empty
LPM trie is faster than a lookup in a trie with one rule.

5.3.3 Initialisation Time Consumption

The goal of this scenario was to measure the time complexity of the approaches’ initialisa-
tions. This scenario was divided into two parts, measuring the time complexity of initiali-
sations to cover certain network sizes, and measuring the time of adding a number of rules
to the filtering approaches.
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Figure 5.4: Measurements for the amount of time required to initialise the filtering solutions
to cover traffic coming from a network of a size expressed with its prefix length.

Time Complexity of Covering Network Ranges

We measured the time required to setup the approaches so that they were ready to filter
packets coming from a network of a size ranging from 256 hosts (a /24 network) to 16384
hosts (a /18 network). XDP, ipset and Linux’s routing table needed only one addition
to their filtering data structures (ipset also included adding the appropriate IP set to
iptables), while iptables needed to add each source address as a separate rule.

The results of this testing can be seen in Figure 5.4. Because of the nature of their rule
addition, XDP, ipset and the routing table (denoted as Linux in the Figure) performed
extraordinarily well, typically requiring no more than 50 milliseconds in any source network
size to fill their respective filtering data structures with the appropriate data.

In the case of iptables, the time complexity of adding filtering rules grew linearly
(shown as exponential in Figure 5.4 because of the exponential x axis). It would not be
advisable to employ iptables in time-critical situations where the number of addresses that
need to be filtered grows large.

5.3.4 Filtering Entries Addition Time Complexity

In this part, we measured the time required for the filtering approaches to add a number
of filtering entries to their appropriate filtering data structures. These entries represented
a set of non-overlapping IP networks except in the ipset case where one entry represented
one source address.

The measurements are displayed in Figure 5.5. All approaches managed to fit their
initialisations under one second; sizes of up to 64 entries could be initialised in under 10
milliseconds. The approaches display a linear time complexity of entry additions (the x
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Figure 5.5: Time in seconds required to add a number of entries to the approaches’ appro-
priate filtering data structures.

axis is exponential). Out of the solutions, XDP has proved to be the fastest solution even
in the case of rule entry speed. Its addition speed is followed by that of ipset and Linux’s
routing table.

The entry numbers were limited to 512, as that was the maximum number of entries
allowed by the eBPF runtime. Measurements of iptables additions above this number
can be seen in Figure 5.4 from prefix length of 22.
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Chapter 6

Conclusion

This work has presented two technologies, namely the (extended) Berkeley Packet Filter
(eBPF) and the eXpress Data Path (XDP), which have seen many improvements and
increasing support in the latest versions of the Linux kernel. These two technologies can
be used in concert to create a high-speed packet filtering system which processes packets as
soon as they are received from hardware. The iptables, ipset and nftables tools have
been shown as the current widely employed solutions for packet filtering.

A proposal for an eBPF and XDP based packet filtering system has been presented.
This system has been implemented and deployed on the NETX router platform developed
by Brno University of Technology.

It has been shown that the implementation shows better per-core processing rate than
the iptables, ipset and Linux routing approaches on a number of performance tests. XDP
has been able to drop packets at a rate of up to 5.4 million packets per second and to redirect
them at a rate of up to 2.15 million packets per second, both being an order of magnitude
higher rates than the other tested techniques. It has outperformed the other approaches in
all inspected aspects, making it a viable option as a DDoS protection mechanism.

6.1 Future Work
An obvious extension of the filtering solution is the support of processing IPv6 packets. The
implemented XDP program, upon detecting that an incoming packet is an IPv6 packet,
simply passes the packet to the kernel for further processing. The IPv6 implementation is
a straightforward one as the IPv4 approach can be reused with slight alterations to the rule
set data type and the packet inspection logic.

Packet processing does not need to be bound only to the network layer. The complete
packet data is available to the XDP program for inspection, allowing creation of more
complex rules based on certain fields or contents of the transport or the application layers.
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