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Abstract 
Computer systems which must provide their services w i t h a high availabil i ty require cer­
ta in security measures to remain available even when under packet-based network attacks. 
Unwanted packets must be dropped or mit igated as early as possible and as quickly as 
possible. Th is work analyses the eXpress D a t a P a t h ( X D P ) as a technique for early packet 
dropping and the extended Berkeley Packet F i l te r ( e B P F ) as a mechanism for high-speed 
packet analysis. Examples of current firewalling practices on L i n u x kernel based systems 
are observed and a design and the behavioural goals of a system for high-speed packet 
filtering based on e B P F and X D P are provided. T h e implementat ion of the design is then 
described i n detai l . F ina l ly , results of several performance tests are presented, showing the 
X D P solution's performance advatages over contemporary fi ltering techniques. 

Abstrakt 
Počítačové systémy, ktoré musia poskytovať svoje služby s vysokou dostupnosťou vyžadujú 
isté bezpečnostné opatrenia na to, aby ostali dostupné aj p o d paketovými sieťovými útokmi. 
Nevyžiadané pakety musia byť zahodené čo najskôr a čo najrýchlejšie. Táto práca analyzuje 
eXpress D a t a P a t h ( X D P ) ako techniku skorého zahodenia paketov a extended Berkeley 
Packet F i l t e r ( e B P F ) ako mechanizmus rýchlej analýzy obsahu packetov. Poskytuje sa po­
hľad na dnešnú prax v oblasti firewallov v systémoch s linuxovým jadrom a navrhne sa 
systém rýchlej filtrácie paketov založený na e B P F a X D P . D o detailov popisujeme naim-
plementované filtračné riešenie. Nakoniec sa vyzdvihujú výhody X D P oproti ostatným 
súčasným technikám filtrácie paketov na sérii výkonnostných testov. 
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Rozšířený abstrakt 
O d počiatku medzipočítačovej komunikácie a od vynájdenia celosvetovej siete Internet 
sme svedkami čoraz väčšej záťaže sieťových prvkov nielen kvôli prudko rastúcej popularite 
streamovaných služieb, ale aj kvôli rastúcim počtom útokov na počítačové siete. Je preto 
dôležité, aby počítače, ktoré na Internete poskytujú kritické služby, vydržali záťaž ako 
požiadavkov na službu, tak sieťových útokov bez toho, aby prestali svoje služby ponúkať. 

V tejto práci sa zaoberáme vývinom systému, ktorý by napomohol počítačom bežiacim 
na dostatočne novom l inuxovom jadre so znižovaním účinku sieťových útokov, primárne 
distribuovaného t y p u . A k o zvolená je pomerne nová technológia X D P , ktorá definuje isté 
rozhranie pre ovládače sieťových kariet pre spracovávanie paketov ešte pre tým, než sa z 
pamäti sieťovej karty nakopírujú do jadra . To rozhranie umožňuje zavolať filtračný program 
interpretovaný virtuálnym strojom extended Berkeley Packet F i l t e r u . 

N a j p r v skúmame súčasné riešenia firewallov v počítačoch založených na l inuxovom 
jadre. Kladieme dôraz na nástroj iptables, ktorý dokáže naplniť takzvané chains pomerne 
zložitými filtračnými prav id lami . T ie to chains sú konzultované v rozdielnych momentoch 
životného c y k l u paketov v operačnom systéme. Cez PREROUTING a POSTROUTING chainy 
prechádzajú pakety, ktoré do počítača vchádzajú alebo z neho cez niektoré rozhranie vy­
chádzajú, INPUT a OUTPUT chainy sú určené pre pakety, ktoré b u d pochádzajú z daného 
počítača alebo sú preň určené, a nakoniec FORWARD chain je určený pre pakety, ktoré nie sú 
určené pre daný počítač a sú ním smerované. V iptables sú definované tabuľky filter, nat, 
mangle, raw a security. Každá z nich obsahuje svoje inštancie niektorých zo spomenutých 
chainov. 

Tento nástroj umožňuje zadávať pravidlá po jednotlivých IP adresách. Preto bo l ako do­
provodný program k iptables vyvinutý nástroj ipset, ktorý umožňuje deklarovať rozsahy 
adries. T ie to rozsahy špecifikované v zadávaných pravidlách nahrádzajú pôvodne velké 
množstvá potrebných pravidie l pre vytvorenie zhody pre celé rozsahy adries. 

V krátkosti spomíname projekt netf i l t e r , ktorý má výkonnosťou prevyšovať iptables 
a zároveň má byť jeho oficiálnym nástupcom. Je však založený na ňom, hlavne použitím 
chainov. 

Následne definujeme Berkeley Packet F i l t e r ( B P F ) ako základný kameň pre rýchle spra­
covanie paketov. M o d e l o m filteru B P F je acyklický orientovaný graf. Tento graf obsahuje 
jeden prvotný uzol , dva cieľové uzly (prijatie a neprijatie paketu) a zvyšné rozhodova­
cie uzly. Necieľové uzly sú abstrahované jednoduchým predikátom nad niektorým poľom 
paketu. A k je tento predikát pravdivý, pokračuje sa uz lom pravým ak je nepravdivý, tak 
ľavým, až kým tento proces nepríde k cieľovému u z l u . V implementácii predstavuje každý 
uzol sériu jednoduchých inštrukcií načítania dát na adrese a podmieneného skoku a cieľové 
uzly predstavujú návratové hodnoty boolovského t y p u true a false. 

Systém B P F b o l pridaný do linuxového jadra vo verzi i 2.5. O d v t e d y sa na ňom nevykoná­
val i žiadne zmeny ani vylepšenia, až kým vo verzi i 3.15 bolo vydané jeho rozšírenie s názvom 
extended BPF ( e B P F ) . Toto rozšírenie reflektuje zmeny v modernom hardware; Šírka reg­
istrov B P F bola rozšírená na 64 bitov, ich počet bo l zvýšený z dva na desať a bolo umožnené 
volať istú množinu pomocných funkcií kernelu. 

Ďalšie vylepšenia, s ktorými e B P F prišlo bol i lepší preklad z virtuálnych inštrukcií 
e B P F na inštrukcie danej architektúry hardware, statická verifikácia programov zakazu­
júca napríklad cyk ly alebo dereferenciu uživatelsky zadaných ukazateľov, systémové volanie 
B P F , či takzvané mapy, nové dátové typy, ktoré majú e B P F programy k dispozícii. M a p y 
sú dátové štruktúry t y p u kľúč-hodnota. Existu je viacero typov týchto máp, ako pole či 



hashovacia tabulka , no z hľadiska implementácie filtračného programu nás najviac zaujal 
typ s trom Longest Prefix Match. 

Ďalej je popísané X D P ako rozhranie pre ovládače sieťových rozhraní, ktoré môžu pomo­
cou neho zavolať načítaný e B P F ( X D P ) program. Ten X D P program má k dispozícii dáta 
celého príchodizeho paketu, na základe ktorých ako návratovú hodnotu vstupnej funkcie 
vráti verdikt nad daným paketom. Tým verdiktom môže byť zahodenie paketu, posunutie 
paketu ďalej kernelu, poslanie paketu von na sieť vstupným rozhraním, či presmerovanie 
paketu na iné rozhranie. X D P môže pracovať v jednom z troch módov, a to b u d v natívnom 
móde, kde X D P program sa nachádza v ovládači, paket sa do jadra nekopíruje a inštrukcie 
vykonáva procesor počítača, alebo v offloaded móde, kde inštrukcie sú vykonávané samot­
nou sieťovou kartou, alebo v generickom móde, pre ktorý nie je potrebná podpora ovládača 
a je určená primárne pre účely vývoja. 

Z predošlých poznatkov b o l navrhnutý filtračný systém, ktorého j a d r o m je e B P F pro­
gram vložený do sieťovej karty, volaný ovládačom pomocou X D P rozhrania. Cieľový op­
eračný systém pre túto filtráciu je plat forma routerov N E T X vyvíjaná na pôde univerzity 
Vysokého Učení Technického v Brně. Definujeme isté požiadavky na výkonnosť riešenia a 
na použitie vhodných vlastností, ktoré e B P F a X D P prinášajú. 

Následne je do detai lu popísaný implementovaný filtračný mechanizmus. Popisujeme, 
ako sa daný X D P program implementovaný v j a z y k u C prekladá v dvoch krokoch prekladač­
m i clang a llc zo súboru prekladačov projektu L o w Level V i r t u a l Machine ( L L V M ) . Druhý 
program tohoto riešenia je určený na zavádzanie a odstraňovanie X D P programu zo sieťovej 
karty a na manipuláciu s e B P F m a p a m i . Tento program je takisto dopodrobna popísaný 
spolu s jeho rozhraním na príkazovom r i a d k u . P o t o m popisujeme implementáciu samotného 
X D P programu a jeho logiku spracovania paketov. e B P F mapy obsahujú jednak informáciu 
o cieľovom výstupnom rozhraní, ako aj pravidlá pre samotnú filtráciu. D o filtračnej mapy sa 
smie zadať rozsah I P a verdikt , ktorý sa vykoná nad paketmi padajúcimi do toho rozsahu. 
A k príchodzí paket nepadá do žiadneho z rozsahov v mape, použije sa implicitné pravidlo 
presmerovať paket na výstupné rozhranie. 

Ďalej sa zameriavame na vykonané výkonnostné testy. X D P program b o l porovnávaný s 
ekvivalentnými nastaveniami v iptables, ipset a smerovacej tabulke operačného systému, 
na k torom prebiehali testy. Popisujeme metodológiu testov, čiže ako bo l umelý tok dát 
generovaný a ako bo l vykonaný zber dát (hlavne miera spracovaných paketov za sekundu). 
Takisto popisujeme stroje, ktoré hral i isté role p r i testovaní (generátor, stroj s f i l terom a 
cieľový stroj), ich zapojenie a špecifikáciu hardware. Vrámci zamýšľania sa nad očakávanými 
výsledkami predpokladáme, že implementovaný X D P program bude mať o jeden rád lepšiu 
výkonnosť v počte spracovaných paketov za sekundu. 

Výsledky sú prezentované v štyroch rôznych scenároch, jeden na zahadzovanie paketov, 
jeden na ich presmerovanie a dva na meranie času inicializácie filtračných techník, teda 
času naplnenia ich dátových štruktúr pre filtračné pravidlá. V prvých dvoch prípadoch sa 
taktiež meria výkonnosť na jedno jadro procesoru. 

Výkonnostnými testami na jedno jadro procesoru sa ukázalo, že X D P bolo schopné 
zahadzovať pakety rýchlosťou až 5,4 miliónov paketov za sekundu (Mpps) , respektíve rých­
losťou 2,2 M p p s s prístupom do filtračnej mapy s jedným záznamom. Ostatné riešenia 
nepresiahli ani milión paketov za sekundu. Jedno jadro X D P bolo schopné presmerovávať 
pakety rýchlosťou až 2,15 M p p s , respektíve rýchlosťou 0,62 M p p s s jedným prístupom do 
filtračnej mapy. Smerovací systém linuxového jadra dosiahol sotva 0.32 M p p s . V prípade 
využitia všetkých 32 jadier procesoru testovacieho stroja dosahuje X D P výkonnosť približne 
11 M p p s ako pre zahadzovanie tak pre presmerovanie. V prvom prípade sa m u výkonnostne 



vyrovanávajú všetky techniky okrem i p t a b l e s , v prípade d r u h o m dosahuje dvakrát vyššiu 
výkonnosť ako smerovací systém linuxového jadra. 

Testovaním času inicializácie sa ukázalo, že X D P je schopné pokryť veľké rozsahy adries 
v rádoch mil isekund. V prípade, že treba do jeho e B P F mapy pridať veľké množstvo 
pravidiel , škáluje pridávanie lineárne s počtom pravidie l na pridanie. X D P takisto vykázalo 
najkratší čas potrebný pre pridávanie pravidie l spomedzi ostestovaných techník. 

Nakoniec zhodnocujeme, že implementované riešenie splnilo výkonnostné očakávania a 
zapodievame sa možnosťou rozšírenia o p o d p o r u IPv6 . 
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Chapter 1 

Introduction 

Since the advent of inter-computer and inter-network communicat ion and the invention of 
the Internet, we have been witnessing an ever-increasing load on our computer network­
ing infrastructures, more so w i t h recent surge i n popular i ty of streaming services and the 
emergence of computer network attacks focused on machines connected to the Internet. 

It is of high importance that the machines operating on the Internet are able to provide 
services under varying amounts of pressure and load, v i r tua l ly without ever ceasing to 
function correctly. E v e r y second that a company can not provide its services to the potential 
customer can lead to a significant loss of profit . 

M a n y techniques have been therefore developed as means of hardening a system against 
potential threats f rom the network. In order to be effective, these defence mechanisms must 
be bui l t w i t h high performance requirements in m i n d . 

In this work, we take a look at current practices i n the field of network traffic f i l tering, 
we analyse the Berkeley Packet F i l t e r and Express D a t a P a t h technologies w i t h regards 
to their combined capabil i ty of packet f i l tering, and we propose a system for such fi ltering 
based on these technologies. 

This work is d iv ided into chapters as follows. 
Chapter 2 describes current widespread practices of packet f i ltering solutions on L i n u x 

kernel based operating systems, then the Berkeley Packet F i l t e r and the extended Berkeley 
Packet F i l t e r ( e B P F ) are described as the packet f i ltering method of our interest. The 
chapter then defines the eXpress D a t a P a t h ( X D P ) as a technique implemented i n network 
interface device drivers which allows the packet f i ltering to be performed as soon as an 
ingress packet is received on the hardware. A t the end of the chapter, an X D P e B P F 
program example is provided and a method of loading it into the device driver is shown. 

Chapter 3 proposes a system of f i l tering packets on the N E T X router plat form leveraging 
X D P and e B P F . It states a number of software requirements, such as how should a decision 
on a packet be performed, what e B P F data structures shal l be used to store rules for packet 
fi ltering, or how its performance should compare to other contemporary packet f i ltering 
solutions. 

In chapter 4, we shed light upon our implementat ion of the X D P fi l tering program. We 
describe what data structures are employed for rule storage, what the compilat ion process 
is for the restricted X D P programs, how to load the program onto a network interface and 
how to interact w i t h i t . A detailed description of two programs that comprise the fi ltering 
solution is provided here. 

The implemented solution is then subjected to a series of performance tests whose 
results can be found i n chapter 5. The chapter describes the methodology w i t h which 

3 



the tests were performed, what were the expectations regarding the tests, and the actual 
performance results. Four scenarios are presented, two regarding packet f i l t rat ion and two 
regarding fi l tering system ini t ia l isat ion t ime. 

F ina l ly , a conclusion on the implementat ion and its performance is drawn i n Chapter 6. 

1 



Chapter 2 

Current State of Fi l tering 
Technology and Exist ing Solutions 

The purpose of this chapter is to get acquainted w i t h both packet f i ltering systems which 
have been used i n the past and contemporary systems which may typica l ly be seen in 
deployment today. Then , the Berkeley Packet F i l t e r and Express D a t a P a t h mechanisms 
(which w i l l be referred to as B P F and X D P , respectively) are analysed w i t h regards to their 
pract ical i ty as techniques for packet fi ltering. 

2.1 M a i n s t r e a m Packet F i l t e r i n g Solutions 

The world of firewalling and packet f i ltering on systems based on the L i n u x kernel is dom­
inated by iptables and nftables usage. 

2 . 1 . 1 i p t a b l e s 

iptables is a user space tool for the manipula t ion of the L i n u x firewall which is imple­
mented as a number of Netfi l ter [18] kernel modules. It utilises tables of the so-called 
chains as sequences of rules which are inspected sequentially. Generally, a rule contains a 
predicate against which a packed is compared, a verdict which is enforced if the predicate 
is true w i t h respect to the processed packet, and an opt ional target which specifies a kernel 
module extension for more extensive packet processing. 

C h a i n s 

There are five different chains which are inspected at different points of the networking 
stack. The PREROUTING chain targets a l l incoming packets before they are routed, the 
INPUT chain targets a l l packets that are destined to the system, the FORWARD chain is fired 
on packets which are being routed, the OUTPUT chain targets a l l packets originating from 
the system, and the POSTROUTING chain targets a l l packets outgoing from the system. A 
diagram of the chains and their interconnection w i t h the operating system can be seen in 
Figure 2.1. 

T a b l e s 

iptables contains the following tables. 
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INPUT 

('pREROUTINGJ) 

F ~ ~ ^ 
ethX 

incoming packets 

local processes OUTPUT 

routing decision $C FORWARD J » routing decision 

* 

(^PQSTRQUTING^) 

ethY 

outgoing packets 

Figure 2.1: A diagram showing the order of iptables' chains and their interconnection 
w i t h the operating and rout ing system. D i a g r a m taken from [7]. 

The filter table is the default table and its purpose is to perform packet f i l tering on its 
INPUT, OUTPUT and FORWARD chains. 

The nat table is consulted when the system encounters a packet that creates a new 
connection. It consists of the PREROUTING, OUTPUT and POSTROUTING chains [12]. 

The mangle table is used for packet alteration. Current ly , this table has a l l five chains. 
F inal ly , the raw table is used for creating exceptions from connection tracking and the 

security table can be used to enforce M a n d a t o r y Access C o n t r o l networking rules. 

i p s e t 

A system administrator may often need to target ranges of I P addresses or ports instead 
of specific ones. A tool called ipset may be used i n concert w i t h iptables to create such 
ranges, drastical ly reducing the size of chains and increasing the speed of comparing an 
entry against a set of IP addresses [18]. 

2 . 1 . 2 n f t a b l e s 

The nftables is another Netfi l ter project introduced i n L i n u x kernel version 3.13. It is 
the official replacement of iptables and its derivatives, presenting a packet f i ltering and 
processing system that is based on iptables (mainly by the use of rule chains). 

Its m a i n selling point is the performance increase w i t h the help of a specialised, B P F -
inspired v i r t u a l machine bytecode w i t h a l imi ted set of instructions. It also part ly removes 
the linear complexity of walking the rule sets by aggregating the rules into maps which 
reduce the number of rule inspections [18]. 

2.2 T h e Berkeley Packet F i l t e r ( B P F ) 

A s the technical product of this thesis relies heavily on exploit ing the mechanisms which 
the Berkeley Packet F i l te r provides, the following sections provide an overview of the inner 
workings of its f i ltering mechanism. 
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Figure 2.2: A C F G filter function that accepts packets from host foo. Taken f rom [15]. 

2 . 2 . 1 O r i g i n s o f B P F 

The Berkeley Packet F i l te r was originally introduced i n a 1992 paper at the Lawrence 
Berkeley Laboratory as a system for filtering incoming packets as early as possible upon 
being captured by the receiving machine. Th is new filtering method had been developed 
w i t h efficiency, extensibil i ty and portabi l i ty i n m i n d ; indeed, the filter had been up to 
20 times faster than filtering mechanisms of the t ime and had been able to r u n on most 
BSD-based systems [15]. 

The introduct ion of B P F to the L i n u x kernel development tree has been first seen in 
version 2.5 [10]. 

2 . 2 . 2 T h e F i l t e r M o d e l 

It is fair to say that a packet filter is a simple funct ion on a packet, returning a boolean 
value. If the packet filter returns true, the packet is copied or forwarded to the kernel 
for further processing by the networking stack. If the packet filter returns false, it s imply 
ignores the packet and drops it [15]. 

B P F uses a directed acyclic control flow graph ( C F G ) as its packet filter abstraction. In 
such graph, each node represents a predicate on a packet field while the edges, two outgoing 
for each node, represent the transfer of control to the next node. F ina l ly , there are two leaf 
nodes representing true and false verdicts on the processed packet. F igure 2.2 illustrates a 
C F G that only accepts packets w i t h an address foo, inspecting IP, A R P and R A R P network 
protocol fields. 

The C F G model has been preferred to a boolean expression tree, as the former model 
maps better into code for a register-based machine, while the latter into code for a stack-
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Figure 2.3: B P F program that accepts packets from host foo. Taken f rom [15]. 

based machine. Most computer systems operate as a register-based machine, therefore B P F 
is implemented C F G [15]. 

2 . 2 . 3 V i r t u a l M a c h i n e 

The implementat ion of the control flow graph model consists of two 32-bit registers, an 
accumulator and an index register which are mapped to physical registers, a scratch memory 
space, an array representing the packet and an impl ic i t program counter, thus turn ing B P F 
into a v i r t u a l machine [15]. 

Various v i r t u a l instructions may be executed on the memory elements, such as load, 
store, logic, branching, return and miscellaneous instructions [15]. Mos t of the arithmetic 
operations are performed on the accumulator, while the index register provides offsets into 
the packet array or into the scratch memory space [9]. 

Figure 2.3 shows a control flow graph which is an adaptat ion of F igure 2.2 w i t h v i r t u a l 
machine instructions instead of abstract predicates. 

2.3 T h e E x t e n d e d Berkeley Packet F i l t e r ( e B P F ) 

After its integration into the L i n u x kernel, B P F had remained relatively unchanged for 
much t ime u n t i l the 3.0 release of L i n u x w i t h the addi t ion of a just- in-t ime (JIT) compiler 
for the B P F interpreter [10]. 

Release 3.15 has brought an improvement of B P F , reflecting advancements i n current 
hardware [13]. The new changes extend B P F by changing register w i d t h to 64 bits, increas­
ing the number of registers from 2 to 10, being able to cal l a fixed set of in-kernel helper 
functions and by improving instruct ion execution performance, causing fewer cache misses 
[20] [1]. 
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Since the 3.15 version, the new B P F implementat ion has been called extended BPF 
(eBPF) and the original implementat ion classic BPF (cBPF). 

2 . 3 . 1 T h e J u s t - i n - t i m e C o m p i l e r 

Typica l ly , instructions of e B P F are mapped 1:1 to respective assembly instructions of the 
system's hardware architecture. If it is supported by the kernel, the loaded e B P F program 
may be just- in-t ime (JIT) compiled into assembly code of the host system [19]. 

The s implic i ty of the e B P F v i r t u a l instruct ion set lends itself to an uncomplicated 
J I T translat ion. It maps every e B P F instruct ion to a straightforward sequence of x86 
instructions and it uses the processor's registers as placeholders for e B P F ' s accumulator 
and index registers [9]. 

E a r l y benchmarks of the J I T compiler have shown a 50 nanosecond save per invocation 
of a J ITed e B P F program when compared w i t h a program where such translat ion to machine 
code had not been employed [11]. 

2 . 3 . 2 T h e S t a t i c V e r i f i e r 

A s e B P F programs are r u n inside the kernel, certain precautions must be performed in 
order to preserve the security and stabi l i ty of the kernel. U p o n loading the e B P F program 
into the kernel, it must be subjected to a static verification. 

F irs t , the verification process checks that the program does not contain any loops, 
ensuring that it w i l l not take a disproportionate amount of t ime to run , by executing 
a depth-first search on the program's control flow graph. A l s o , an e B P F program that 
contains unreachable instructions w i l l cause the verifier to fai l the analysis [13]. 

Second, the verifier simulates the execution of the e B P F program one instruct ion at 
a t ime, checking the v i r t u a l machine state after each instruction's execution. A l l jumps 
must land w i t h i n the program and a l l memory accesses must not read or write outside the 
kernel-provided memory area. Registers and stack variables w i t h uninit ial ised contents may 
not be accessed, as doing so would fai l the verifier [13]. 

F inal ly , the verifier prohibits any user without administrat ive privileges to perform 
pointer ari thmetic i n an e B P F program they load. This is done to protect kernel addresses 
from unprivi leged user access [13]. 

The static analysis does not need to walk through a l l possible paths of a program, as 
it performs path pruning based on comparing the current state to its history of accepted 
states [5]. 

2 . 3 . 3 T h e b p f ( ) S y s t e m C a l l 

The bpf () system cal l can be used to perform a variety of operations on e B P F filters. It is 
defined as 

int bpf(int cmd, union bpf_attr * a t t r , unsigned int si z e ) ; 
Lis t ing 2.1: B P F system cal l declaration. 

The cmd argument specifies which operation w i l l be performed on the a t t r argument. 
Two types of operations are supported. One operation for loading and verifying an 

e B P F program, BPF_PR0G_L0AD, and several for e B P F maps creation and manipulat ion , 
such as BPF_MAP_CREATE to create a map or BPF_MAP_L00KUP_ELEM to lookup an element 
in a map [1][5]. e B P F maps are explained in more detai l in Section 2.3.4. 
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Figure 2.4: A graph showing the relation between the number of I P addresses to add to a 
hash map and the t ime it takes to add those addresses to the map. The sizes of the sets 
range from 2 addresses (a fu l l /31 subnet; the shortest t ime), doubl ing each t ime up to 
32, 768 addresses (a fu l l /ll subnet; the longest t ime). 

2 . 3 . 4 M a p s 

A map, i n the context of e B P F , is a generic data structure that can hold different types of 
data for the purpose of sharing it between e B P F programs, and between kernel and user 
space programs [5]. The maps also provide a persistent storage of data between invocations 
of an e B P F program. 

F r o m a high-level perspective, a map hides each stored value behind a unique key. The 
means of accessing a specific value are implementation-specific, depending on used map 
type, such as an array or a hash map. 

Using the bpf () system cal l mentioned in Section 2.3.3, a map can be created or deleted 
and a key-pair value of a map can be looked up, created, updated or deleted. 

M a n y map types have been implemented to be used i n e B P F programs. Several types 
are valuable for programs that implement packet f i l tering: arrays, hash maps and longest 
prefix match ( L P M ) tries. 

The L P M tries are a very attractive opt ion for a packet f i ltering program which selec­
t ively drops packets based on their source or destination I P address. A range of addresses 
can be stored i n an L P M trie map w i t h a single e B P F helper function, while the same range 
would need to be stored as separate addresses in an array map or a hash map. A s it can 
be seen i n Figure 2.4, the t ime it takes to add a set of I P addresses to a hash map grows 
linearly w i t h the size of the set. 
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2 . 3 . 5 P r o g r a m T y p e s 

W h e n loading an e B P F program w i t h BPF_PR0G_L0AD (see Section 2.3.3), the type of the 
program l imits the number of in-kernel helper functions available to the program. The 
program type also specifies where the program can be attached and it dictates the type of 
the object which is passed to the program as its first argument [13]. 

A m o n g a l l the types of programs, two are relevant for a program which implements a 
packet f i l tering algori thm: BPF_PROG_TYPE_SOCKET_FILTER and BPF_PROG_TYPE_XDP. The 
value carrying the type of the program must be passed i n the second parameter a t t r of 
the bpf () system cal l [13]. 

2.4 T h e eXpress D a t a P a t h ( X D P ) 

Packet processing systems w i t h a focus on high performance require strict constraints on 
the t ime spent processing each packet. Implementations of general purpose network stacks 
have lead to the creation of specialised systems for packet processing such as the Dataplane 
Development K i t ( D P D K ) because of their f lexibil i ty and thus inabi l i ty to wi thstand high 
packet loads [14]. 

Such toolkits typical ly employ a kernel bypass technique. O n one hand, a bypass can 
dramatical ly improve packet f i l tering performance. O n the other hand, the bypass is more 
complicated to integrate w i t h the operating system, as it cannot make use of functionali ty 
provided by the system, such as rout ing tables. Security risks may arise after such separation 
from the kernel, as the kernel can no longer enforce its security policies on the bypassing 
system [14]. 

Therefore, the eXpress D a t a P a t h ( X D P ) framework has been created as an alternative 
to such systems. It allows high speed packet processing while s t i l l let t ing the kernel enforce 
a safe execution environment. X D P works w i t h concert w i t h the extended Berkeley Packet 
F i l te r ( e B P F ) which provides a method of processing incoming packets before being touched 
by the kernel and at the earliest point after the packet is received from the hardware [14]. 

2 . 4 . 1 T h e D e s i g n o f X D P 

X D P is implemented as a hook i n network device drivers immediately after receiving a 
packet from the hardware. This design comes w i t h great performance advantages, as the 
e B P F program is r u n in the device driver without the need to switch context to the user 
space. The e B P F program is also allowed to modify the packet. Moreover, no socket buffer 
is allocated before the program is run , lowering the overhead even more, as the socket buffer 
al location would be unnecessary if the processed packet is dropped. 

The X D P hook can be seen i n Figure 2.5 as the first act ion that the device driver 
performs. If the packet is destined to be dropped, the respective socket buffer memory does 
not need to be allocated. The X D P e B P F program may also decide to pass the packet 
to the networking stack for regular packet processing, to transmit it back onto the ingress 
network interface, to redirect it to another network interface, or to pass it to a user space 
applicat ion, bypassing the kernel processing w i t h the use of the AF_XDP socket type. The 
AF_XDP is a novel feature of the L i n u x kernel, first support added in the 4.19 version [14]. 
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2 . 4 . 2 X D P A c t i o n s 

The ingress packet's processing path after the X D P hook is communicated f rom the e B P F 
program by specific return codes: 

1. XDP_DR0P causes the packet to be silently dropped without its data being copied to 
the kernel. 

2. XDP_ABORTED signals an e B P F program error and should not be returned by any 
functional program. This act ion also causes the packet to be dropped. 

3. XDP_PASS indicates that the packet shal l be passed to the kernel for regular network 
stack processing. The e B P F program may have modified the packet before passing it 
to the kernel. 

4. XDP_TX causes the packet to be sent back out of the ingress interface. 

5. XDP_REDIRECT allows the packet to be redirected to and to be sent f rom another 
network interface. 

2 . 4 . 3 O p e r a t i o n M o d e s 

There exist three modes in which X D P can operate: the native mode, the offloaded mode, 
and the generic mode. 

In the native mode, the e B P F program is r u n i n the driver's early receive path . Th is 
is the default mode and it is supported by many widely-used N I C s . Th is mode has been 
explained i n Section 2.4.1. 

The offloaded mode has the potential to be even faster than the native mode, as e B P F 
packet filtering programs are offloaded to the N I C to be executed at an earlier point than 
in the native mode. The e B P F program execution is i n the hands of the N I C . This mode 
is only supported by S m a r t N I C s (by M e l l a n o x 1 or Netronome 2 , for instance) which are 
equipped w i t h mult i - threaded processors and offer other network functionali ty offloading. 
These pieces of hardware also support the native mode of operation i n case that some e B P F 
helper functions are not available [8]. 

F inal ly , the generic mode is offered by the kernel systems whose N I C device drivers do 
not implement the native or the offloaded mode of X D P . Since e B P F programs are r u n at a 
point in the networking stack, this mode operates at a slower rate and is therefore intended 
for development purposes [8]. 

2.5 X D P E x a m p l e 

This section shall present a m i n i m a l X D P e B P F program and demonstrate its compilat ion 
w i t h the L L V M toolset and how to load it into the device driver. 

The following is a m i n i m a l program which drops a l l incoming traffic on the interface: 

1 https://www.mellanox.com/related-docs/prod adapter cards /PB BlueField Smart NIC.pdf 
2 l i t tps : / / www.netronome.com / products / smartnic / overview / 
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Figure 2.5: Design of the integration of X D P into the L i n u x kernel for ingress packets. 
Figure taken f rom [14]. 

#include <linux/bpf.h> 

#ifndef section 
# define __section(NAME) \ 

attribute ((section(NAME), used)) 
#endif 

section("prog") 
int xdp_drop(struct xdp_md *ctx) 
{ 

return XDP_DR0P; 
} 

char license[] section("license") = "GPL"; 
Lis t ing 2.2: A m i n i m a l X D P program. 
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The program defines the xdp_drop function as the entry point using the section 
macro. T h a t macro causes the compiled program to contain a section called prog which is 
the default section name for an entry funct ion. The entry function receives a pointer to the 
packet context, containing metadata about the ingress interface and pointers to the actual 
packet data. 

W i t h o u t accessing the packet data , the program immediately returns the XDP_DR0P 
return value, indicat ing that the received packet w i l l be dropped. 

To compile this program, assuming that it is named xdp-example. c, the clang [3] tool 
may be used (version 3.9 and higher): 

$ clang -02 -Wall -target bpf -c xdp-example.c -o xdp-example.o 

Final ly , to load the program into the driver, the ip too l from the i p r o u t e 2 collection 
can be used. The following requires root access to the system, loading the xdp-example. o 
file into the device driver of the eth network interface: 

# ip l i n k set dev eth xdp obj xdp-example.o 

2.6 S u m m a r y 

In this chapter, we have shown i n detai l two L i n u x kernel technologies working i n concert 
w i t h each other which provide means of high-speed packet processing at the earliest point 
after receiving packets from networking hardware. 

The extended Berkeley Packet F i l t e r ( e B P F ) provides a specialised environment for 
packet processing, ut i l i s ing a v i r t u a l machine w i t h a specifically tai lored instructions set 
architecture for accessing and modi fy ing packet data and performing decisions based on 
packet fields. Th is technology is an extension of the Berkeley Packet F i l t e r ( B P F ) - the 
just- in-t ime compiler, maps as generic data stores and the static verifier are additions to 
B P F which allow the creation of more flexible and computat ional ly safe packet filtering 
programs. 

The eXpress D a t a P a t h is more secure kernel bypass technique alternative which is more 
secure and works more cooperatively w i t h the kernel w i t h the intention of providing a very 
early point of packet processing and a method of bypassing the kernel. It is implemented 
as a hook i n network interface device drivers where the e B P F program can be r u n before 
any packet data is copied to the kernel. 
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Chapter 3 

Design of the Proposed System 

Based on the knowledge contained i n Chapter 2, a design of a packet f i ltering program 
on a specialised rout ing system is proposed. The target rout ing system called NETX is 
therefore first described. The f i l tering program serves as a method of D D o S 1 protection for 
this rout ing system. 

The target plat form description is followed by an enumeration of funct ional requirements 
of the proposed system, inc luding how to operate i t , what tasks it should be able to perform 
and what computer environment constraints must be fulfil led in order for the system to 
function properly. 

F inal ly , we describe how X D P and e B P F shal l be uti l ised for m a x i m u m efficiency of the 
proposed system. 

3.1 N E T X 

N E T X is an open-source rout ing plat form developed at B r n o Univers i ty of Technology w i t h 
focus on high rout ing performance and the provision of a r ich set of rout ing features [17]. 
N E T X routers are designed to handle mult iple B G P tables, they support a wide variety of 
networking protocols and they are capable of rout ing performance of 60 Gbps [16]. 

N E T X ' s operating system is based on G N U / L i n u x , al lowing easy extensibil ity and 
adaptabi l i ty to various networking tasks. Moreover, the N E T X system features a robust 
configuration A P I . 

3.2 Software Requirements 

Certa in requirements for the f i l tering system have been set in order to maximise the system's 
ut i l i ty and performance. 

3 . 2 . 1 P a c k e t D e c i s i o n 

The proposed system shall perform as a highly specialised fi ltering program. It shal l process 
al l incoming packets on a network interface, inspect the appropriate header fields and 
perform an action on the packet based on the header fields and a set of rules. If an 

1 Distributed denial of service attack is a network-based attack on a computer system where the vict im 
system is flooded with incoming packets coming from many sources, causing the system to generate very 
high amounts of interrupt requests which subsequently cause it to halt and be unresponsive to normal service 
requests. 
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incoming packet matches a fi ltering rule, the verdict associated w i t h that rule is applied to 
the packet. The verdict shall be specified as one of the following X D P actions: pass, drop 
and redirect. If the packet matches no rules, the impl ic i t rule is enforced - to redirect the 
packet to the egress network interface. 

The mentioned rule set can therefore also be called a whitelist, mark ing the matching 
packets as packets that should not be i m p l i c i t l y redirected, al though i n the end may be 
redirected as an effect of a rule's verdict. 

Unless the packet data is corrupted or an error occurs while parsing an incoming packet, 
no packet shall be dropped unless there is a rule that specifies that the matching packets 
shall be dropped. 

In the remainder of the text, "packet redirect ion" , "packet forwarding" , "redirect ion" , 
or " forwarding" shall describe the passing of a packet from ingress network interface to 
egress network interface without modi fy ing the packet's contents. 

3 . 2 . 2 R u l e S e t S t o r a g e 

The rules against which the incoming packet's fields would be compared shall be stored 
in a data store that is easily accessible to the fi ltering program. A s X D P programs are 
executed separately for each incoming packet and as fi ltering rules may be changed at any 
point i n t ime, there must exist a separation between the X D P program and the data store 
for f i ltering rules. A straightforward solution is provided by e B P F maps, as mentioned 
in Section 2.3.4, whose generic structure can be used to store arbi trary data such as the 
filtering rules. 

A d d i n g to or deleting from the rule set should not interfere w i t h the fi l tering process in 
place, except to the extent of the modified rule. A modif icat ion of the rule set should cause 
the program to continue fi ltering seamlessly. However, the program may be unloaded from 
the network interface, and the entity responsible for the unloading is also responsible for 
clearing the rule set data store, so that when the fi l tering program is loaded on the network 
interface again later, it starts its computat ion w i t h an empty rule set. 

3 . 2 . 3 P e r f o r m a n c e M e t r i c s 

W i t h regards to processing speed and C P U intensity, the fi l tering system should display 
marginal ly better results than three other approaches to packet forwarding: 

1. forwarding w i t h iptables, 

2. forwarding w i t h iptables and ipset, 

3. L i n u x rout ing system forwarding. 

These approaches shal l be compared based on the following metrics: 

1. processing speed in packets per second, 

2. t ime it takes to load fi ltering rules into memory, 

3. C P U load. 

Results of the performance testing can be found i n Chapter 5. 
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3.3 e B P F and X D P Involvement 

The extended Berkeley Packet F i l t e r ( e B P F ) and eXpress D a t a P a t h ( X D P ) technologies 
shall be uti l ised for the packet f i ltering solution. 

X D P shall be used as a technique which allows ingress packet analysis at the earliest 
possible point i n network interface device drivers, redirecting traffic immediately without 
the added, unnecessary overhead of copying the packets' data to the kernel. 

In concert w i t h X D P , e B P F w i l l provide an environment for high-speed packet analysis. 
The e B P F maps w i l l be uti l ised for storing packet f i l tering rules. The longest prefix match 
trie e B P F map type shal l be employed for this purpose, al lowing ranges of I P (or IPv6) 
addresses to be stored and single addresses to be checked for a match. 

There w i l l be three possible outcomes of processing an ingress packet. The packet can 
either be dropped if its data is erroneous or an error occurred dur ing its processing, or it 
can be passed to the kernel for normal network stack processing, or it can be redirected to 
an outbound networking interface for further analysis by a computer system residing at the 
receiving end of the outbound interface. These scenarios correspond w i t h the XDP_ABORTED, 
XDP_PASS and XDP_REDIRECT X D P actions, respectively. 
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Chapter 4 

Implementation Details 

This chapter aims to provide a detailed description of the f i l tering system that has been 
implemented as the centrepiece of this thesis. 

The following sections shall describe the code base of the fi ltering system, the compi­
lat ion process from the source files to the binaries, how the program is loaded into the 
network interface driver, and what is the command line interface of the loading program. 

F inal ly , a step-by-step analysis of the fi ltering X D P program is shown w i t h explanations 
of each action it performs. 

A s mentioned i n the following section, the packet f i ltering implementat ion consists of 
two important programs. One of them is the program that is loaded into the network 
interface's driver and performs packet fi ltering; Th is program shall be referred to i n this 
chapter as the " X D P program" , " ( e ) B P F program" or " f i l ter ing program". The other one 
is responsible for loading and unloading the e B P F program from the driver, and adding 
and removing fi l tering rules f rom the packet filter; Th is program shall be referred to as the 
" X D P program loader", " ( e ) B P F program loader", or s imply the "loader p r o g r a m " 1 . 

4.1 C o d e Base Layout 

The source code is an adaptat ion and an expansion of the X D P T u t o r i a l 2 which was revealed 
and presented at the 2019 N e t D e v conference 3 . It is completely wri t ten in C (and part ia l ly 
in restricted-C) as a constraint placed upon the implementat ion by the available compilers 
but largely by the B P F l ibrary which is implemented i n C . 

The X D P program must follow the restrictions of its programming logic as dictated by 
the constraints of e B P F ' s static verifier i n Section 2.3.2, e.g., no loops, no out-of-bounds 
memory accesses, and others, hence the restricted-C usage. N o such constraints are placed 
on the loader program which is also wri t ten in C . 

The source code is d iv ided into four directories: 

• src contains the core logic of the packet filter - the X D P program and the loader 
program. A close look at those programs can be found in Section 4.6 and 4.4, respec­
tively. 

1 T h e reasoning behind the naming is that it increases clarity in conveying information, as using the 
actual file names could hinder it. 

https: //github.com/xdp-project/xdp-tutorial 
3 h t t p s : //www.netdevconf .org/0xl3/session.html?tutorial-XDP-hands-on 
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• common contains either header files that are common to the X D P and loader programs, 
or files that do not represent the filter's core logic, such as command line argument 
parsing. 

• headers contains header files containing either B P F forward function declarations or 
definitions of macros for the X D P program. 

• libbpf contains the source code of the l ibbpf l ibrary. The l ibrary is uti l ised to ease 
development and to load e B P F programs. 

4.2 e B P F M a p s as the R u l e Set 

A s mentioned i n section 3.2.2, the filtering solution uses e B P F maps to store rules. It 
performs a filtering decision in each X D P program invocation (one packet per invocation) 
on the basis of these rules. O u r solution uses two maps. 

The first map, called tx_port stores information about which network interface is the 
egress interface. The map is of the BPF_MAP_TYPE_DEVMAP type, meaning its keys and values 
are both integers. Th is map stores only one value, and that is the egress interface number 
under key zero. 

The second map, called lpm_whitelist is the filtering rule map which stores ranges 
of IP addresses. The map is of the BPF_MAP_TYPE_LPM_TRIE, meaning that its entries are 
stored i n a longest prefix match ( L P M ) trie, a data structure that allows fast L P M lookups 
and which is typical ly employed in rout ing tables to store network routes. Its keys are 
ranges of IP addresses specified as a tuple of a network address and the prefix length. 
Values of the map's entries are X D P verdicts, i . e., redirect, pass, drop or others. In the 
implementation, only the pass verdict is stored in the map, as the filter's logic is to redirect 
al l traffic unless the destination address matches an entry in the trie map, i n which case 
the verdict is to pass the packet for further processing by the kernel. 

4.3 C o m p i l a t i o n Process 

There are not many available compilers that have the capabi l i ty to compile a restricted-C 
file into e B P F byte code stored into an E L F object file. Fortunately, the L L V M compiler 
infrastructure contains two compilers which can work together to deliver the desired binary 
file. Those two compilers are clang [3] and lie [6]. The lowest L L V M version required for 
the compilat ion is 3.9 [8]. 

The compilat ion of the X D P program's source code into a binary file is a two-step 
process, requiring an intermediary compi lat ion into an L L V M intermediate language as­
sembly file which is, as its name suggests, a file containing the filter's instructions i n an 
intermediary format ( e B P F bytecode) between compilations of the L L V M toolkit . 

This first compilat ion is performed by the clang compiler. The program's options re­
quired to create the intermediary file are -S -target bpf -emit-llvm. In the order of 
mentioning, these options commend clang to stop the compilat ion pipeline before produc­
ing a b inary file, to target the B P F architecture (in another words, to create e B P F byte 
code), and to generate an L L V M intermediate language assembly file. B y a naming con­
vention, the intermediary file has the .11 suffix. 

The L L V M file containing the e B P F instructions is then compiled into an E L F object 
file w i t h the lie compiler. In order to create the binary file, this program must be sup-
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plied, among others, the following options: -march=bpf -filetype=obj . These options 
commend lie to target the B P F architecture on input , and to emit an E L F object file. B y 
convention, a file w i t h the . o suffix is generated. 

This E L F object file represents the loadable X D P program. 

4.4 X D P P r o g r a m Loader 

This section shal l describe what is the functionali ty of the X D P program loader and how it 
is achieved. There exist two methods of loading an X D P program onto a network interface 
(also loading it into the kernel) on a L i n u x machine, either using the ip too l from the 
i p r o u t e 2 package, or making use of the libbpf l ibrary. 

The first method is shown w i t h the intent of showing how the ip tool can be used to load 
the X D P program, however this technique is not employed i n the f inal f i l tering solution. 

T h e n we show the second method which has been chosen for the solution, using the 
libbpf l ibrary. In the description of this method, we show how the l ibrary is leveraged 
to not only load the X D P program but also to update the rule set and unload the X D P 
program. 

4 . 4 . 1 T h e i p r o u t e 2 M e t h o d 

The first method involves using the ip u t i l i t y from the i p r o u t e 2 package, as mentioned in 
Section 2.5, by invoking it as follows. Let eth be the network interface onto which the X D P 
program would be loaded, xdp-example. o be the X D P program. B y default, the ut i l i ty 
searches for the xdp_prog section i n the X D P program as the entry point of the program. 
R u n n i n g this u t i l i ty w i t h the purpose of loading an X D P program requires running it w i t h 
superuser privileges. 

# ip l i n k set dev eth xdp obj xdp-example.o 

There is one downside to this method; It does not support creating and ut i l i s ing e B P F 
maps because the loader is not based on the l ibbpf l ibrary which does support e B P F maps. 
The design of our program requires a persistent data store between the user space and the 
kernel, as mentioned i n Section 3.2.2, which renders this method insufficient. 

4 . 4 . 2 T h e B P F S y s c a l l M e t h o d 

The second approach leverages the bpf syscall to perform a variety of actions, inc luding 
loading and unloading the X D P program onto and from a network interface, or updat ing 
the e B P F maps w i t h rules. 

The key component here is the libbpf1 l ibrary which eases the development of e B P F 
programs by providing wrapper functions for the syscall and helper functions for the re­
stricted X D P programs, e.g., to perform e B P F map lookup. The l ibrary resides in the top 
directory of the source code and must be compiled and installed onto the system before its 
functions can be invoked. 

A l l mentioned function names belong to the libbpf l ibrary unless stated otherwise. 

4 h t t p s : //github.com/libbpf/libbpf / 
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L o a d i n g t h e X D P P r o g r a m 

E x c l u d i n g the command line arguments parsing, the loading of an X D P program onto a 
network interface consists of the following steps. 

• L o a d the e B P F E L F file into the kernel. A l l X D P programs i n the supplied X D P 
binary are loaded into the kernel cal l ing the bpf _prog_load_xattr function. In 
t u r n , the kernel evaluates the programs w i t h the static e B P F verifier. 

• F i n d a matching e B P F program section name. A s mult iple programs may be supplied 
w i t h one X D P binary, i n this step the program whose name matches the user-supplied 
name is selected cal l ing the bpf _object f ind_program_by_title function. 

• Get the selected program's file descriptor. The file descriptor, represented by an inte­
ger number, is required i n the next step. It is received by cal l ing the bpf _program f d 
function. 

• A t t a c h the X D P program described by the file descriptor to the supplied network 
interface driver's X D P hook. For this purpose, the bpf_set_link_xdp_fd func­
t ion is called w i t h appropriate flags, specifying whether the X D P program should 
be r u n i n the native mode (the XDP_FLAGS_DRV_MODE flag) or in the generic mode 
(the XDP_FLAGS_SKB_MODE flag), or in the offloaded mode (the XDP_FLAGS_HW_MODE 
flag). 

• U p d a t e the output network interface map w i t h the supplied egress interface number. 
F i rs t , the bpf_object find_map_fd_by_name is called, supplying it w i t h the object 
returned by the l ibrary cal l i n the second step and the map name. This ca l l returns 
the file descriptor of the map. Second, the file descriptor is supplied as one of the 
parameters of the bpf _map_update_elem function, along w i t h the key (set to zero 5 ) 
and the number of the network interface. 

• P i n the ebpf maps. This step ensures that the ebpf maps are available for updat ing 
even after the loader program finishes loading the x d p program. The maps must be 
pinned because the loader program must be r u n again (albeit w i t h different parame­
ters) to update the contents of the maps - to update the fi ltering rule set. The maps 
are pinned in the /sys/fs/bpf/<if-name> directory. P l a c i n g them in the directory 
named after the interface prevents potential collisions i n map file names if the fi ltering 
program is loaded concurrently on two network interfaces in the same system. The 
bpf_object pin_maps is called and supplied the object returned from the second 
step and the path to the target directory string. 

A d d i n g a F i l t e r i n g R u l e 

A d d i n g a rule to the rule set map is a fair ly simple process. The loader program must be 
supplied the name of the interface on which an X D P program has been loaded, and the IP 
network address w i t h a prefix length. 

The loader first converts the IP address from a str ing into an internal representation 
compatible w i t h the libbpf l ibrary. T h e n , it tries to open the pinned rule set map file by 
call ing the bpf _obj_get function, passing it the path of the map file. If successful, it uses 

5 T h e reason for this is that the map shall always contain only one output interface. 
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the returned file descriptor as a parameter of the bpf _map_update_elem function along 
w i t h the key (the IP address and prefix length structure) and the stored value (XDP_PASS). 

If the map file cannot be opened, or if the update funct ion fails to add the new rule 
to the rule set, the loader program reports the erroneous behaviour as a message on the 
standard error file descriptor. 

The update funct ion (more precisely, the B P F syscall command logic) does not dist in­
guish the successful entry addit ion where there had been no previous value from a successful 
entry addi t ion where there had been a value on that part icular key. Therefore, the user is 
only notified of errors when adding a rule. 

R e m o v i n g a F i l t e r i n g R u l e 

The deletion of a rule f rom the rule set mirrors the rule addit ion behaviour almost identi­
cally. 

The loader program must be supplied the I P address, the prefix length and the network 
interface's name on which to operate. 

After the loader converts the input data into the internal representation, it calls the 
bpf _map_delete_elem funct ion. The function, i n comparison w i t h the update function, 
expects only the rule set map file descriptor and the IP (and prefix length) key as its 
parameters. 

The loader reports erroneous behaviour on the standard error file descriptor, such as 
t ry ing to delete f rom a non-existent map, t r y i n g to delete a non-existent entry or supplying 
an inval id IP address. 

U n l o a d i n g t h e X D P P r o g r a m 

Before the X D P program can be unloaded from a network interface, a l l maps associated 
w i t h this interface must be unpinned and deleted. 

Therefore, the loader program must first load the B P F E L F file into memory call ing 
the bpf _prog_load_xattr funct ion. D o note that this step is the same as the first step 
of the loading procedure; The binary file is loaded because it contains information about 
maps that are associated w i t h the X D P program and because the structure pointer that is 
returned by the function cal l must be supplied to the following libbpf funct ion cal l . 

The loader then tests if one of the map files exists by cal l ing the access function of the 
P O S I X operating system A P I (by inc luding the unistd.h header file). If the test access 
was successful, the bpf _object unpin_maps function is invoked, supplying it the B P F file 
structure pointer from the previous step and a str ing containing the path to the directory 
of the pinned maps. 

4.5 Loader C o m m a n d L i n e Interface 

It can be seen that w i t h regards to functionality, the X D P loader is no simple program. 
Therefore, an appropriate command line interface has been developed for the loader. 

The command line interface consists of a number of options that can be passed to the 
loader. W h a t follows is a list of the options accompanied w i t h their descriptions: 

• -h, — h e l p prints the synopsis of the program to the standard output . 

• — i n <if-name> specifies on which input interface should one of the commands op­
erate. The network interface must be specified by its name. 
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• — o u t <if-name> is bo th a command to load an X D P program onto the input net­
work interface and a specification of the interface to which incoming packets shal l be 
redirected. 

• —unload commands the loader to unload the X D P program from the input network 
interface specified w i t h — i n . It should be accompanied w i t h the same X D P mode 
option which was supplied when loading the X D P program. 

• -a, —add <IP>/<pref ixlen> commands the loader to add the IP and mask to the 
rule set map associated w i t h the — i n interface. 

• -d, — d e l <IP>/<pref ixlen> commands the loader to remove the I P and mask from 
the rule set map associated w i t h the — i n interface. 

• -v, — v e r d i c t <action> specifies what act ion shal l be taken if an incoming packet 
matches the rule added w i t h —add. 

• -S , —skb-mode specifies that the X D P program should be operating i n the generic 
mode. Beware that this mode drastical ly reduces the performance of the packet filter. 

• - N , —native-mode specifies that the X D P program should be operating i n the native 
mode. 

• -A, —auto-mode lets the loader program decide the mode of operation by itself. It 
first tries to load the X D P program i n the native mode. If that mode is not supported 
by the network interface's driver, then it tries loading the X D P program i n the generic 
mode of operation. 

• — o f f load-mode specifies that the X D P program should be operating in the offloaded 
mode. 

• -F, — f o r c e can be used i n combinat ion w i t h the —out opt ion and it directs the 
loader to unload any existing X D P programs from the input interface when loading 
an X D P program. 

• -q, — q u i e t causes the loader to be less verbose in its output . 

• —filename <file> causes a specific B P F E L F file to be loaded as the X D P program 
instead of the default one (xdp_prog_kern.o). 

• —progsec <section> causes a specific section of the B P F E L F file to be chosen as 
the X D P program, instead of the default one (xdp_redirect). 

It should be noted that not a l l combinations of options are va l id , i.e., no two " c o m m a n d " 
options can be specified simultaneously (—out, —unload, —add, — d e l ) i n which case the 
loader program w i l l halt w i t h an error message. 

The mode of operation flags should not be mixed . T h i s behaviour is however not 
enforced, the mode flag supplied as the last one on the command line is taken into account. 

Most of the options are optional ; The loader program supplies sane default values to 
unspecified parameters or it performs a default procedure (for example, it tries to load the 
X D P program in the native mode if no mode of operation is specified). The input interface 
option is a required one, as well as specifying a command is required. 

F inal ly , some options are ignored, such as — f o r c e or a mode of operation specification 
when adding or deleting a rule. 
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4.6 X D P F i l t e r P r o g r a m 

The X D P filter program is the core of the f i l tering solution as described i n Chapter 3. This 
section shall detai l the implementat ion of the program. 

A s stated before, the comput ing environment restricts the implementat ion language 
capabilities of the program. A l t h o u g h it is wri t ten in C , it lacks certain attributes of the 
language. N o backward jumps are allowed (although loops w i t h a predetermined number of 
iterations can be unrol led w i t h the #pragma unr o l l preprocessor directive), jumps may not 
be performed to user-supplied memory addresses, and a l l data accesses must be preceded 
w i t h a certain check for out-of-memory bounds. 

The implemented X D P program consists of three m a i n parts: declarations of e B P F 
maps, inline helper functions, and an entry funct ion. O f course, s tandard include directives 
are present, as well as helper structure declarations. 

The maps and the entry funct ion must be placed in specific sections of the E L F binary. 
Therefore, the b u i l t - i n attribute can be specified i n the declaration of the appropriate 
objects, supplying it w i t h the name of the target E L F section. T h e maps must be placed in 
the maps section of the binary, and the entry point must be assigned a section name that 
is different from the name of the C function that represents the entry point . The entry 
function (the m a i n X D P program) can be then referenced by the section name which is in 
the implementation's case xdp_redirect. 

4 . 6 . 1 M a p s 

The maps are declared as instances of libbpf's struct map_type_def. The first e B P F map 
is the egress network interface map. It is declared as a BPF_MAP_TYPE_DEVMAP map type 
and at any given t ime it holds only one entry at key zero and that entry is the egress 
interface number. The map must be updated w i t h the network interface number by the 
loader program when the X D P program is loaded into the kernel. 

The second e B P F map contains fi ltering rule entries w i t h IP-prefix keys and verdict 
values. It is declared as a map of the BPF_MAP_TYPE_LPM_TRIE type whose key size must 
be declared as the size of libbpf's struct bpf_lpm_trie_key. A s the declaration of the 
struct specifies an array of an unknown number of bytes for storing the IP address, the size 
must be calculated manual ly (as opposed to using the sizeof bui l t - in) . 

More details about the maps can be found i n Section 4.2. 

4 . 6 . 2 T h e E n t r y F u n c t i o n 

Every X D P program must be declared as a function that accepts a pointer to the struct 
xdp_md metadata structure and returns an integer. The implemented X D P redirect pro­
gram follows this interface and extracts two values f rom the metadata context, namely the 
pointers to the beginning of the packet data and to the end of i t . These shall be called the 
data pointer and the data end pointer, respectively. 

These data pointers must be used to check ingress packet memory bounds before ac­
cessing any data i n the packet, as the static verifier does not allow packet memory accesses 
that had not been previously checked. T h e memory check works as follows: 

1. Calculate what is the m a x i m u m data offset (in bytes) of the desired data from the 
beginning of the packet data or f rom a val id pointer to the data ( including an already 
checked offset). 
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2. A d d the offset value to the data pointer. 

3. If the new value plus one is greater than the data end pointer, abort. Th is means that 
a data access could possibly access data that is outside of its val id memory bounds. 
Continue w i t h the packet processing w i t h i n the checked offset otherwise. 

A t the beginning of the entry function, the data pointer is checked against the data end 
pointer w i t h zero offset. Th is ensures that the packet data is va l id , otherwise the packet is 
dropped w i t h the XDP_ABORTED return code. 

The program then parses the Ethernet header which is present at the very beginning of 
the packet data . The header parsing extracts the layer 3 header version and the offset of 
the next header i n the packet data. Before the Ethernet header data can be accessed, the 
data pointer must be checked against the data end pointer w i t h the Ethernet header size 
offset. The Ethernet header structure is included from the l i n u x / i f _ether .h header file. 

Before the I P version extract ion can be performed, the possibil i ty of the packet being 
V L A N - t a g g e d must be considered. This can be confirmed by looking at the h_proto field 
of the Ethernet header struct. If the packet is tagged, then the V L A N tag is inspected 
(after checking the appropriate memory) for the I P version value. If, by any chance, the 
packet is V L A N - t a g g e d mult iple times, this process is repeated u n t i l the packet is no longer 
tagged or a l imi t of V L A N encapsulation is reached. F ina l ly , the I P version is extracted 
from the appropriate header field, and the data pointer is moved to the beginning of the 
next header. 

A s imilar process is performed w i t h the layer 3 header. The part of the packet data 
where the header resides is checked w i t h the appropriate header's size as the offset. T h e n , 
the packet data at the data pointer is cast to the appropriate header struct. 

The source I P address is then extracted f rom the header to the rule set map's key struct. 
Th is struct is then supplied to the bpf _map_lookup_elem cal l , looking up the source address 
in the longest prefix match trie. If the lookup ends positively, the returned value replaces 
the default verdict on the packet. 

F inal ly , if the packet's verdict is to redirect i t , the bpf _redirect_map funct ion is in ­
voked, passing it a pointer to the outbound network interface map and a key that points 
to the only network interface number in the map. This causes the packet to be marked 
for redirection to the appropriate egress network interface. The default verdict value is 
otherwise returned. 
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Chapter 5 

Performance Testing 

In order to understand how effective the f i l tering solution is, a set of performance tests 
has been executed. This chapter dives into the methodology of the benchmarks, what 
computing environment has been used to conduct the tests, what were the expectations 
regarding the implementat ion and what results have the tests achieved. 

5.1 M e t h o d o l o g y 

The testing environment consisted of three L i n u x machines. The first one was responsible 
for generating d u m m y traffic (the generator machine), the second one was the machine on 
which the X D P program was loaded (the filter machine), and the t h i r d one was target of 
packet redirection (the target machine). The second and the t h i r d machines were running 
the N E T X operating system (described i n Section 3.1). 

In general, the tests were executed as follows. F i r s t , the filter machine performed certain 
steps to remove any filters f rom a possible previous test scenario. Then , it applied filters 
to the system dictated by the current test scenario. The generator machine started i n t u r n 
generating traffic at the highest possible rate towards the filter machine w i t h parameters 
also dictated by the scenario. For the durat ion of the test, either the filter machine or the 
target machine were used to collect measurements of the test, e.g., the number of packets 
dropped or redirected per second. In some cases, the generator was not employed at a l l . 
In those cases, the filter machine was tasked to measure the t ime complexity of various 
filter init ial isations. F ina l ly , after a certain amount of t ime, the generator machine stopped 
generating traffic and the test measurements were collected f rom the appropriate machine. 

The packet rate measurements were performed by repeatedly reading the packet coun­
ters of the appropriate network interface from the /sys/class/net/<device>/statistics 
folder's rx_packets and tx_packets files. The actual packet rate was then calculated as 
the difference of the counter's measurements one second apart. The resulting packet rate 
was then calculated as the average of those readings. 

Other methods of packet rate measurements were considered, such as reading the above 
mentioned statistics of the target machine's receiving network interface or w r i t i n g an X D P 
program that captures and records a l l incoming traffic on the receiving interface. However, 
due to the nature of some of the fi ltering scenarios, the redirected traffic could not be 
measured those ways on the interface, as the generated packets were redirected w i t h their 
original L 2 address which caused them to be dropped by the interface even before reaching 
the X D P program or being counted in the interface's statistics. 
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10 Gbps link 

Filter machine 

100 Gbps link 

Target machine Traffic generator 

Figure 5.1: The networking topology that was used i n a l l testing scenarios. 

5 . 1 . 1 T e s t e d F i l t e r i n g T e c h n o l o g i e s 

In addi t ion to X D P , three other approaches were tested for performance. The iptables and 
ipset tools were used i n scenarios where packets were dropped by the filter machine, and 
the state-of-the-art L i n u x kernel rout ing system approach was used in both packet-dropping 
and packet-redirecting scenarios. 

O n one hand, when fi ltering packets coming f rom ranges of IP addresses, the iptables 
approach required adding every address of the range as a single rule. O n the other hand, 
specifying the same range (e.g., subnet) w i t h the help of ipset required marginal ly fewer 
iptables rules. In many testing scenarios the number of such rules was one. T h e same 
number describes the amount of rout ing table entries required to test the L i n u x rout ing 
system approach. 

5 . 1 . 2 N e t w o r k i n g S p e c i f i c a t i o n 

The performance tests used the following network topology. 
A s can be seen in Figure 5.1, the generator machine was connected to the filter machine 

w i t h a single ten gigabit l ink . A switch l ied on this l ink, however it was able to forward the 
traffic f rom the generator machine to the filter machine at any generated rate. 

The generated traffic could possibly be (depending on the scenario) redirected to a 
direct l ink between the filter machine and the target machine. Th is was a l ink capable of 
carrying traffic of one hundred gigabits per second. This would have been the l ink onto 
which test traffic would be generated, however the interfaces' drivers d i d not support our 
preferred packet generating solutions. 

A l l o c a t i o n of I P addresses i n the networks between the machines was mostly irrelevant 
for the purposes of most scenarios. A l t h o u g h the source IP address of the generated packets 
was always inspected by the fi ltering machine, delivery of those packets between the two 
pairs of machines 1 was not dependent on it . 

5 . 1 . 3 T e s t M a c h i n e s S p e c i f i c a t i o n 

The generator machine was running R e d H a t Enterprise L i n u x ( R H E L ) version 7.2 w i t h 
L i n u x kernel version 3.10. N o modifications were done to the machine except that the out­
bound interface's driver was substituted w i t h one that allowed line-rate traffic generation. 

The filter machine was a N E T X router based on R H E L 7.5. The supplied kernel version 
was not high enough to support the major i ty of X D P features and it was updated to kernel 
version 4.20 which was sufficient for a l l used X D P and e B P F features. T h e machine's 

x A s in generator-filter and filter-target. 
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processor was an Intel X e o n D-1587 w i t h 16 cores (32 w i t h multi threading) at 1.70GHz 
(2.30GHz m a x i m u m turbo frequency) and 16 G B of R A M . 

F inal ly , the target was also a N E T X router based on R H E L 7.5 w i t h an Intel X e o n 
D-1537 C P U w i t h 8 cores (16 w i t h multi threading) and 16 G B R A M . There were no per­
formance or feature constraints placed on the machine, so it was left w i t h its default 3.10 
kernel. 

5 . 1 . 4 D a t a G e n e r a t i o n 

It is a common practice to benchmark networking-related applications w i t h the smallest 
Ethernet frame size of 64 bytes. W i t h this frame size, the ten gigabit l ink can potential ly 
transfer about 16 m i l l i o n of such packets per second. However, Ethernet frames are preceded 
w i t h a 12 byte inter-frame gap and an 8 byte M A C preamble which effectively pushes the 
m i n i m u m Ethernet frame size to 84 bytes [2]. 

The packet rate of the 84 bytes frames on a ten gigabit per second l ink can be calculated 
as 

1 Q . 1 Q9 bits 

84 • 8 bits v ' ' 
which equals to 

r = 14, 880, 952 (5.2) 
s 

The generator machine uti l ised the P F R I N G project 2 , a high speed packet capture 
and generation l ibrary implemented as a kernel module. The l ibrary's pfsend program 
was used as the packet generation program for a l l performed tests and it also supplied a 
driver for the outbound interface which was loaded i n the kernel for the durat ion of the 
performance tests. 

To provide an example, the following pfsend invocat ion generates traffic on the enplsOf 1 
interface (the zc: prefix signifies that the l ibrary 's zero copy functionali ty shal l be used), 
supplying packets from the test-64 .pcap file, rewri t ing the generated packets' destination 
M A C address to that of the filter machine's inbound network interface (the -m option). 
It shal l stop generating after sending ninety m i l l i o n packets i n tota l (-n 90000000). The 
source and destination IPv4 addresses shall be rewrit ten w i t h a range of 254 addresses (-b 
254), s tart ing w i t h the appropriate destination (-D) and source (-S) addresses, s imulat ing 
communicat ion between hosts of two subnets of prefix length 24. The traffic shal l be 
generated at ten gigabits per second (-r 10). 

pfsend - i zc:enpls0fl - f test-64.pcap -m ac:If:6b:2c:9e:71 \ 
-n 90000000 -b 254 -D 100.91.0.1 -S 10.0.0.1 -r 10 

5.2 E x p e c t e d Resul ts 

The expectations about the tested technologies' performances were prior to the testing as 
follows. 

W i t h regards to packet dropping, the X D P program was expected to display the best 
per-core performance, as it inspects the incoming packets at an earlier point than the 
other technologies do. Then , we expected the L i n u x kernel rout ing system and the ipset 
technique to display similar performance, as they both operate in the kernel (the latter 

2 h t t p s : //github.com/ntop/PF_RING 
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v i a a kernel module) and employ an I P range approach to perform filtering decisions on 
incoming packets. F ina l ly , the ipset approach was expected to perform the worst, as it 
must contain one rule per IP address, m a k i n g filtering large IP ranges difficult because of 
the sequential nature of its rule matching mechanism. 

W i t h regards to packet redirection, the X D P program was again expected to display the 
best performance for the same reason as i n the packet dropping scenario. The iptables 
and ipset approaches could not be uti l ised for redirection, as they d i d not support it . 
The L i n u x kernel rout ing system was expected to have a worse performance than the X D P 
program. 

5.3 Test Results 

Based on the testing methodology and the environment described i n Section 5.1, our solu­
tion's performance was examined in the following scenarios. 

In a l l scenarios, the generator machine generated 64 byte long packets at 10 gigabits 
per second, or 14.48 packets per second. 

5 . 3 . 1 P a c k e t D r o p p i n g 

In this scenario, the fi ltering approaches were configured to drop packets coming from a 
certain IP network. The size of the source IP space ranged from a /24 network (256 hosts) 
to a /18 network (16384 hosts 3 ) . 

The approaches are first compared in fi ltering I P ranges and then i n a setting w i t h only 
one source IP, comparing them on a per C P U core basis. 

A s can be seen i n Figure 5.2, the X D P filter, the ipset technique and L i n u x routing 
achieved dropped packet rates of about 11 m i l l i o n packets per second, while the iptables 
solution performed worse w i t h each increase of the source network because of the linear 
increase of its f i l tering rules and the sequential nature of the rule comparison. 

The dropped packet rate performance of the former three approaches d i d not weaken 
because the number of entries required to filter the generated traffic could be kept at a 
constant number. A l s o , the approaches, w i t h the exception of iptables, d i d not need 
to utilise a l l C P U cores to 100%; The X D P program d i d not use more than 5% of total 
processing power while the ipset and L i n u x rout ing approaches used about 15% of total 
processing power. 

A l t h o u g h none of the approaches achieved the potential m a x i m u m packet rate (displayed 
as the horizontal black bar at 14.88 M p p s at the top of F igure 5.2), the rate they achieved 
seemed to be a recurring m a x i m u m rate for the system on which the tests were carried 
out. Most of the differences can be explained by the need to exclusively access shared data 
structures and by a possible failure of the processor's D D I O facil i ty [4] that places packet 
data into the L 3 cache [14]. 

P e r C P U C o r e P e r f o r m a n c e 

The packet dropping scenario was then adjusted. The generator machine kept creating a 
constant ten gigabit traffic but w i t h a single source address. T h i s allowed us to compare 
the performance of the selected approaches on a per C P U core basis, as the filter machine's 
ingress network interface driver selected the same R X queue (and C P U ) for a l l packets. 

3 I n reality, such subnets would contain two fewer addresses. 
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Figure 5.2: Packet drop rate of our X D P filtering solution and three other approaches. 
Performance is shown based on the size of the source network, i.e., the number of source 
IP addresses to drop. 

D r o p A l l traffic One source 
X D P 5.4 2.2 

iptables 0.88 0.88 
ipset - 0.71 

L i n u x - 0.63 

Table 5.1: Compar ison of per C P U core performance of X D P and three other approaches 
when dropping a l l incoming traffic and traffic from one source. Values are displayed in 
mi l l ion packets per second. 

Therefore, the filtering approaches were first configured to drop a l l incoming packets in 
the filter machine's ingress interface, and then to drop packets coming one specific source 
IP address. 

The results of the per C P U core testing can be seen in table 5.1. A s expected, the X D P 
solution displayed the best performance w i t h regards to the number of dropped packets in 
both settings. The iptables approach achieve rates of one order of magnitude worse than 
X D P , while s t i l l outperforming ipset and the operating system's rout ing. It also displayed 
the same results in the two settings, as both settings required it to employ only one filtering 
rule. In a l l cases, the one C P U core was running at 100% of its processing capability. The 
L i n u x rout ing table could not be configured to drop a l l incoming traffic for pract ical reasons 
and ipset was not capable of specifying a universal IP range. 
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Figure 5.3: Packet redirection rate of our X D P solution and of L i n u x ' s rout ing system. 
Performance is shown based on the size of the source network, i.e., the number of source 
IP addresses to redirect. 

5 . 3 . 2 P a c k e t R e d i r e c t i o n 

In the following scenario, the fi ltering approaches were configured to redirect certain traffic 
from the incoming interface of the filter machine to its egress interface towards the target 
machine. The traffic ranged, as i n the packet dropping scenario i n Section 5.3.1, from a 
/24 sized source network to a /18 sized network. 

The approaches' redirection performances were first compared w i t h varying source IP 
ranges and then i n a single source I P setting, comparing them w i t h each other on a per 
C P U core basis. 

Figure 5.3 shows the performance of our X D P filter and of the rout ing system of the 
L i n u x kernel. B o t h seemed to be capped at a certain rate, X D P at about 11 m i l l i o n packets 
per second, L i n u x rout ing just under 7 m i l l i o n packets per second. B o t h solutions needed 
only one entry i n their rule set or rout ing table, where applicable, al lowing m a x i m u m 
efficiency T h e y also d i d not reach the potential m a x i m u m redirection rate, shown as the 
black bar at 14.88 M p p s , X D P being short of 5 M p p s , L i n u x rout ing reaching about half 
of the potential . 

Reaching such relatively low performance i n the L i n u x rout ing case could have been 
caused by requiring the threads to access the shared rout ing table i n an exclusive manner 
which meant that a large proport ion of the t ime the threads were wait ing for the rout ing 
table to be unlocked by a thread that had been accessing it . 

The performance difference between X D P ' s redirection packet rate and the potential 
m a x i m u m packet rate can also be possibly explained w i t h the shared rule set data structure 
to which accesses would have needed to be exclusive. 
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Redirect A l l traffic One Source E m p t y map 
X D P 

L i n u x 
2.15 0.62 0.64 

0.32 

Table 5.2: Per C P U core packet redirection in mil l ions of packets per second. Two ap­
proaches are shown, the X D P implementat ion and L i n u x ' s rout ing system. All traffic 
denotes redirecting any incoming packets (no map lookup i n the case of X D P ) , one source 
means redirecting packets coming f rom one specific host, and empty map signifies default 
X D P redirection of a l l packets w i t h an empty map lookup. 

The C P U load of the X D P program was barely noticeable on the system as it was spread 
over a l l 32 cores of the processor. L i n u x routing's load was spread over the cores equally 
but because of a high processing overhead, its redirection (or packet forwarding) used about 
40% of the C P U ' s processing capability. 

P e r C P U C o r e P e r f o r m a n c e 

The packet redirection scenario was adjusted so that only one C P U core would have been 
assigned to the tested approaches. The generator machine was set to generate packets from 
a single source, causing the ingress network interface's driver to choose the same R X queue 
(and the C P U core) to process a l l incoming packets. 

Results of these tests can be seen i n Table 5.2. 
F irs t , the X D P program was configured to redirect any incoming packets without re­

garding the packets' source address. O u r solution was able to redirect packets at a rate of 
2.15 m i l l i o n packets per second. The L i n u x rout ing system could not be configured for such 
tasks for pract ical reasons. 

Then , the approaches were configured for redirection of packets f rom a single source 
address. In the case of X D P , it meant that its rule set map contained one rule specifying 
to drop packets from the one part icular address. In the case of L inux ' s rout ing system, a 
new route based on a source address was added to the interface-specific rout ing table. The 
performance results of this configuration were worse i n comparison w i t h the first configu­
rat ion. X D P ' s performance dropped to about a quarter, 0.62 m i l l i o n packets per second, 
because of the need to perform a lookup i n the L P M trie (albeit w i t h one rule). L i n u x ' s 
routing system displayed a 0.32 m i l l i o n packets per second performance, redirecting packets 
at about half the rate of X D P . 

F inal ly , X D P was configured to redirect packets f rom the one source w i t h an empty rule 
set lookup, redirecting the incoming packets as an impl ic i t rule. A t 0.64 m i l l i o n redirected 
packets per second, its performance increased by about 2% in comparison w i t h the previous 
configuration. Th is increase, al though not a significant one, shows that a lookup i n an empty 
L P M trie is faster than a lookup i n a trie w i t h one rule. 

5 . 3 . 3 I n i t i a l i s a t i o n T i m e C o n s u m p t i o n 

The goal of this scenario was to measure the t ime complexity of the approaches' ini t ial isa­
tions. Th is scenario was div ided into two parts, measuring the t ime complexity of in i t ia l i ­
sations to cover certain network sizes, and measuring the t ime of adding a number of rules 
to the fi ltering approaches. 
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Figure 5.4: Measurements for the amount of t ime required to initialise the fi ltering solutions 
to cover traffic coming from a network of a size expressed w i t h its prefix length. 

T i m e C o m p l e x i t y o f C o v e r i n g N e t w o r k R a n g e s 

We measured the t ime required to setup the approaches so that they were ready to filter 
packets coming from a network of a size ranging from 256 hosts (a /24 network) to 16384 
hosts (a /18 network). X D P , ipset and L i n u x ' s rout ing table needed only one addi t ion 
to their f i l tering data structures (ipset also included adding the appropriate I P set to 
iptables), while iptables needed to add each source address as a separate rule. 

The results of this testing can be seen in Figure 5.4. Because of the nature of their rule 
addit ion, X D P , ipset and the rout ing table (denoted as Linux in the Figure) performed 
extraordinari ly well , typical ly requiring no more t h a n 50 milliseconds in any source network 
size to f i l l their respective fi ltering data structures w i t h the appropriate data. 

In the case of iptables, the t ime complexity of adding fi ltering rules grew linearly 
(shown as exponential i n F igure 5.4 because of the exponential x axis). It would not be 
advisable to employ iptables i n t ime-cr i t ical situations where the number of addresses that 
need to be filtered grows large. 

5 . 3 . 4 F i l t e r i n g E n t r i e s A d d i t i o n T i m e C o m p l e x i t y 

In this part , we measured the t ime required for the fi ltering approaches to add a number 
of f i l tering entries to their appropriate f i l tering data structures. These entries represented 
a set of non-overlapping IP networks except in the ipset case where one entry represented 
one source address. 

The measurements are displayed i n Figure 5.5. A l l approaches managed to fit their 
initialisations under one second; sizes of up to 64 entries could be init ial ised in under 10 
milliseconds. The approaches display a linear t ime complexity of entry additions (the x 
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Figure 5.5: T i m e in seconds required to add a number of entries to the approaches' appro­
priate filtering data structures. 

axis is exponential) . Out of the solutions, X D P has proved to be the fastest solution even 
in the case of rule entry speed. Its addit ion speed is followed by that of ipset and L i n u x ' s 
routing table. 

The entry numbers were l imi ted to 512, as that was the m a x i m u m number of entries 
allowed by the e B P F runtime. Measurements of iptables additions above this number 
can be seen i n Figure 5.4 f rom prefix length of 22. 
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Chapter 6 

Conclusion 

This work has presented two technologies, namely the (extended) Berkeley Packet F i l te r 
( e B P F ) and the eXpress D a t a P a t h ( X D P ) , which have seen many improvements and 
increasing support i n the latest versions of the L i n u x kernel. These two technologies can 
be used in concert to create a high-speed packet filtering system which processes packets as 
soon as they are received from hardware. The iptables, ipset and nftables tools have 
been shown as the current widely employed solutions for packet filtering. 

A proposal for an e B P F and X D P based packet filtering system has been presented. 
This system has been implemented and deployed on the N E T X router p lat form developed 
by B r n o Univers i ty of Technology. 

It has been shown that the implementat ion shows better per-core processing rate than 
the iptables, ipset and L i n u x rout ing approaches on a number of performance tests. X D P 
has been able to drop packets at a rate of up to 5.4 m i l l i o n packets per second and to redirect 
them at a rate of up to 2.15 m i l l i o n packets per second, bo th being an order of magnitude 
higher rates than the other tested techniques. It has outperformed the other approaches in 
al l inspected aspects, making it a viable opt ion as a D D o S protection mechanism. 

6.1 Future W o r k 

A n obvious extension of the filtering solution is the support of processing I P v 6 packets. The 
implemented X D P program, upon detecting that an incoming packet is an I P v 6 packet, 
s imply passes the packet to the kernel for further processing. The I P v 6 implementat ion is 
a straightforward one as the IPv4 approach can be reused w i t h slight alterations to the rule 
set data type and the packet inspection logic. 

Packet processing does not need to be bound only to the network layer. The complete 
packet data is available to the X D P program for inspection, al lowing creation of more 
complex rules based on certain fields or contents of the transport or the applicat ion layers. 
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