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Introduction 
Modern communication systems must provide ever-increasing data throughput. This 
demand is usually satisfied by increased communication bandwidth and by devel­
oping more spectrum-efficient modulation schemes. The modern spectrum-efficient 
modulations put stringent demands on transmitters and receivers, especially on 
their hardware imperfections. In the currently developed fifth generation (5G) and 
sixth generation (6G) systems, one of the main concerns is the linearity of radio 
frequency (RF) power amplifiers (PAs) in transmitters [1], because the nonlinear 
distortion leads to a degraded constellation diagram resulting in higher bit error 
rate and to the spectrum regrowth, undesired transmission and potential interfer­
ence in regions close to the communication channel. The linear PAs, however, suffer 
from low power efficiency. They are usually physically larger and require power­
ful cooling systems, which naturally implies their higher manufacturing expenses. 
Therefore, designers tend to prioritise their power efficiency at the expense of their 
linearity and overall transmitter linearity is achieved by linearisation techniques. 

One of the linearisation techniques is digital predistortion. The digital predis-
torter (DPD) modifies a signal going to the nonlinear PA by artificial nonlinearity 
with complementary characteristics to cancel the PA nonlinearity. The digital pre­
distortion is currently the most promising linearisation technique with the highest 
achievable linearisation performance [2]. However, the DPDs, especially their adap­
tation, are very computationally demanding and often require complex feedback 
circuits to track changing PA characteristics. 

The higher computational and hardware complexity represents one of the cur­
rent research challenges. Even though a lot of research has been conducted in this 
direction, e.g. [3-5], there is still plenty of space for improvements. In this the­
sis, therefore, we have oriented to low-complexity methods for DPDs. The goal of 
this thesis is to extend state-of-the-art knowledge of low-complexity methods for 
PA linearisation to make DPDs generally more applicable, less expensive and more 
efficient. We introduce three key methods to lower the computational and hardware 
complexity of the D P D adaptation: 

• real-valued feedback, 
• feedback sample selection, 
• feedback with a level-crossing analogue-to-digital converter (LC-ADC) . 
For the conventional PA adaptation, the PA output is usually down converted 

by an in-phase and quadrature (IQ) mixer and both in-phase and quadrature signals 
are sampled by two analogue-to-digital converters (ADCs). The real-valued feed­
back method enables avoiding one of the two ADCs which reduces the hardware 
complexity, saves power and lowers transmitter costs. 
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Usually the feedback ADCs are required to continually sample the PA output at 
a sampling frequency which covers three to five times of the communication channel 
bandwidth [6,7]. The feedback sample selection naturally allows for feedback un-
dersampling, which significantly decreases the power consumption of the feedback 
ADCs. Additionally, if the feedback samples are carefully selected, only a few sam­
ples are required for successful D P D adaptation. Consequently, calculations with 
lower dimension matrices lead to a significant reduction of computational complex­
ity. Our simulations and analyses show that the computational complexity can be 
reduced up to 400 times compared with the conventional approach. 

The L C - A D C in feedback replaces two conventional feedback ADCs by a simple 
comparator. The principle of this method is based on combining principles of the 
real-valued feedback samples and feedback sample selection. The PA output is 
not continuously sampled and cannot be fully recovered in the digital processing, 
but rather the comparator detects when the PA output is crossing a set reference 
voltage. Knowledge of time instants of the comparator output edges and the set 
reference voltage is sufficient for the D P D adaptation. Our measurements indicate 
performance of D P D adaptation with the proposed feedback comparable to D P D 
adaptation with the conventional feedback with two ADCs. The advantages of the 
L C - A D C are lower power consumption, costs and footprint than of the equivalent 
feedback solution with conventional ADCs. 

The thesis is structured as follows. Chapter 1 introduces theoretical and his­
torical basics of PA linearisation. Mathematical models of PAs and DPDs, signal 
modulations, and performance metrics, which are used throughout this thesis, are 
defined here as well. Chapter 2 reviews the recent advances of PA linearisation, 
especially of the DPDs. We identified several research directions and focused par­
ticularly at low-complexity predistortion methods. In Chapter 3, D P D adaptation 
with real-valued feedback samples by different D P D architectures is described. The 
linearisation performance of the D P D adapted by the real-valued feedback samples 
and the conventional approach are simulated and compared. Feedback sample selec­
tion methods are analysed in Chapter 4. We present a general principle of sample 
selection methods for D P D adaptation in different architectures and later we pro­
pose various sample selection methods. We analyse their computational complexity 
reduction and simulated linearisation performance. Additionally, we confirmed the 
simulation results by measurements. Chapter 5 describes principles of D P D adap­
tation with the L C - A D C in the feedback, and measurements of its performance on 
three different hardware setups. Finally, Chapter 6 summarises the proposed low-
complexity approaches and discusses their limitations, usability, and advantages. 
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1 Theoretical Introduction 

1.1 Basic Principles of Power Amplifier Linearisation 

The basic concepts of linearisation are simple. The transmitted signal or the PA 
parameters are modified to obtain a desired output signal. Ideally, the predistorter 
is set to cancel out the distortion of the transmitter nonlinearity. Its characteristics 
can be seen as a nonlinearity inverse, if the inversion exists. This ideal case is 
depicted in Fig. 1.1. The concept of the D P D with feedback is shown in Fig. 1.2. 

Input magnitude Input magnitude 

Fig. 1.1: Nonlinearity and ideally-inverted predistortion characteristics in A M / A M 
and A M / P M plots. 

DPD 

DPD 
Training 

DAC 

ADC 

Direct path 

Quad. 
Modul. 

L O ® 

Quad. 
Demod. 

Feedback path 

Fig. 1.2: A block diagram of a simplified real system with a digital baseband pre­
distorter. 
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The motivation behind the predistortion is an increased operating range of am­
plifiers. The predistortion allows for a reduction in PA back-off and, as the operation 
moves closer to saturation, an increase in PA efficiency without compromising system 
linearity. Consequently, the PA dimensions and power rating can be decreased, heat 
sinks can be miniaturised, and smaller power supplies are required, which naturally 
results in resource savings and price reduction. 

1.2 Employed Models 

1.2.1 Memory Polynomial Model 

The memory polynomial (MP) model is a basic mathematical model for modelling 
PAs and DPDs [8] The discrete baseband output y of the M P model is given as [8] 

K Q 

y[n] = E E M , , - 9 ] W ) i - ? ] r . ( i - i) 
k=l q=0 

where x is the M P model input, bk,q is the coefficient of the M P model, and K and 
Q represent the maximum nonlinearity order and memory length, respectively. The 
product x[n — q] \x[n — <?]|fc-1 is often called a basis waveform or a basis function. 
We denote the basis function as 

^[n]=x[n-q]\x[n-q]\k-1. (1.2) 

The input samples x, model coefficients bk,q, and the basis waveforms 0j^[Vi] can be 
arranged into vectors and matrices 

ó(x) -
i T 

1]] , 

X = x[0] x[l] ... x[N - 1] T 
i 

y = y[0] y[i] ••• y[N-l{ T 
• 

b = h,o &i,i • • • bl,Q &2,0 bK,Q_ 
T 

ux = >S 4$ ••• <Pl,Q ̂ 2,0 - .. 4> (x) 
K,( 

where 6 is a column vector with P = K(Q + 1) rows, and the size of the matrix Ux 

is N x K(Q + 1). Equation (1.1) can be rewritten into the matrix form 

y = uxb. (1.4) 
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1.2.2 Simplified 2nd-0rder Dynamic Deviation Reduction-Based 
Volterra Model 

The simplified 2nd-order dynamic deviation reduction-based Volterra (DDR2) model 
has been defined as [9] 

2 Q 
v[n\ = E EV,<? \x[n]\2kx[n - q} + 

k=0 q=0 
K-l „ 

2 
+ E J2bhk,q \x[n}\2{k-i] x2[n}x*[n-q] + 

k=l 9=1 
K-l 

2 
;i.s) 

+ E E hk,g \x[n]|2(fc_1) x[n] \x[n - q}\2+ 
k=l q=l 
K-l 

2 + E E & 3 , ^ I x N ^ m ^ ^ x 2 ^ - ? ] , 
k=l q=l 

where b0tk,q, &i,fc,g, ^2,fe,g, &3,fc,g are the model coefficients. We can denote the basis 
function as 

\x[n]\2k x[n — q] if % = 0. 

|x[n] | 2( f c _ 1) x2[n] x*[n — q] if % — 1, 
|x[n]|2( f c _ 1) x[n] |x[n — g]|2 if z = 2. 

^i,k,q n — < ;i.6) 

x n |2(fc-l) * x* [n] x [ra — q\ if z = 3. 

The model coefficients b^q and the basis waveforms <f>k,q[n] can be arranged into 
vectors and a matrix similarly as in (1.3) 

i,k,q >il[o] 42ji] ••• 4 2 J A T - 1 ] 

b = Vl.O 0̂,1,1 • • • &0,1,Q 0̂,2,0 • • • 

ux = ^0,1,0 ^0,1,1 • • • ^0,1,Q ^0,2,0 • 

;i.7) 

where 6 is a column vector with P = K(2Q + \) — Q + \ rows, and the size of the 
matrix Ux is TV x K{2Q + | ) — Q + | . The matrix form of the model equation is 
the same as (1.4). 

1.3 DPD Adaptation Strategies 

1.3.1 Direct Learning Architecture 

A typical approach to obtaining the solution is based on solving the nonlinear func­
tion numerically using Newton's method. Let us assume that the predistortion func­
tion is prescribed by equation (1.4). Throughout the thesis, the iterative damped 
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Newton's method is employed to solve the D P D coefficients. The coefficients are 
updated as [10] 

S = 6'-/xe, (1.8) 

where vectors b, b are new and current solution of the D P D coefficients, \i is the 
iteration step size, and vector e is the coefficient error vector. It is given as the least 
squares (LS) solution of 

A « Uze, (1.9) 

where A = z — y. The solution of e with a pseudoinverse of matrix Uz can be 
written as 

e={U?U,)-1U?A. (1.10) 

The final equation of the coefficient update is given by incorporating equation (1.10) 
into (1.8) as 

b = b'-v(U?Uzy1U?(z-y). (1.11) 

1.3.2 Indirect Learning Architecture 

The indirect learning architecture (ILA) solves the postdistorter instead of the pre-
distorter. The solution of the postdistorter is given by linear algebra as 

b' = (UfUy)-lUfx, (1.12) 

where {U^Uy)~xlJ^ is a pseudoinverse of matrix Uy. The postdistorter coefficients 
are used for the predistorter. 
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2 State-of-the-Art 
In recent publications in the field of predistortion, we have identified the follow­
ing research directions: adaptation methods, analogue and hybrid predistorters, 
analysis, antenna arrays and multiple-input and multiple-output (MIMO) systems, 
Doherty power amplifiers, hardware implementation, low-complexity methods, ma­
chine learning, mathematical models. 

Furthermore, the papers about low-complexity predistortion can be divided based 
on their focus: computational complexity, model pruning and sizing, one-bit feed­
back samples, real-valued feedback samples, subband and multiband predistortion, 
and undersampling methods. 

2.1 Real-Valued Feedback Samples 

Chani-Cahuana et al. [3] proposed a D P D architecture with real-valued feedback 
samples. They estimated the PA forward model similarly to the procedure described 
in Sec. 3.2. Afterwards, they employed the same procedure for the iterative learn­
ing control (ILC)-based D P D adaptation, originally described in [11]. The authors 
reported the same linearisation performance of the proposed ILC with real-valued 
feedback samples as that of the original ILC DPD. 

Guan et al. [5] presented a direct learning architecture (DLA) D P D with one 
undersampling A D C in the feedback path. Basically, they proposed the same idea 
as Chani-Cahuana et al. in [3], but employed the D L A instead of the ILC and added 
undersampling. Both papers seem to be independent. Guan et al. reported, quite 
surprisingly, a higher linearisation performance of their real-valued undersampled 
D L A D P D than that of the conventional full-speed complex-valued DPD. 

Zhang et al. [12] derived the same formula as Guan et al. [5] in a little different 
way and without the undersampling. 

2.2 One-Bit and Signed-Based Feedback Samples 

Wang et al. [4,13] proposed D P D adaptation based on observing the sign of the 
PA output error signal. They observed the sign employing the comparators in the 
feedback path and, in principle, these comparators could be understood as 1-bit 
ADCs. The simplified diagram of their D P D architecture is depicted in Fig. 2.1. 

Pascual Campo et al. [15] presented a comprehensive overview of sign-based 
algorithms for D P D adaptation. The authors compared the complexities and per­
formance of individual algorithms as well as combinations of them. 
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Digital domain [ Analogue domain 

IQ Modulator Main PA 

IQ Demodulator 

Comparators 
(1-bit ADCs) 

Fig. 2.1: The simplified D P D architecture with comparators in the feedback path 
as proposed by Wang et al. in [4, 13]. Grey-coloured parts are not required if 
real-valued feedback principle [14] is employed. 

2.3 Undersampling Methods 

Huang et al. [16] proposed the D P D adaptation with undersampled feedback. They 
employed the D L A and kept every n-th feedback sample. They noted that the 
feedback must be sampled with sufficient bandwidth. 

Prata et al. [17] presented feedback loops employing R F subsampling ADCs 
to improve concurrent dual-band transmitter linearisation. The aliasing between 
upper and lower bands could naturally occur which the authors compensated for 
based on statistical approximated nonoverlapped multisines. The authors reported 
similar performance to the other subsampling techniques but with a lower hardware 
complexity. 

L i et al. [18] focused on time-interleaved DPDs to reduce their sampling rates. 
The authors proposed a few architectures with time-interleaved DPDs and solved 
the aliasing effect. Their proposed low-speed D P D was naturally narrow band and 
compensated only for the distortion close to the communication band. In that region, 
the authors reported performance similar to that of the full high-speed DPDs. 
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3 Real-Valued Feedback 

3.1 Introduction 

In this chapter, we describe a simplification of the feedback circuitry for the D P D 
adaptation by employing only the in-phase or quadrature output of the IQ down-
converting mixer. The in-phase feedback is depicted in a block diagram in Fig. 3.1. 
The main motivation is to avoid one feedback A D C , which is one of the main 
contributors to the total system power consumption. Our contribution has been 
presented in the paper [A3] and is the natural evolution of methods described by 
Chani-Cahuana et al. in [3] and by Guan et al. in [5]. 

DPD 

Q fa u o o 

L T + D A C 

i — T ~ U D A C 

DPD 
Training A D C 

COS CD 4 

Fig. 3.1: The system diagram for the D P D with real-valued feedback. 

3.2 Forward Model Estimation 

For simplicity, we start our derivation of the real-valued feedback with the M P 
model. We can rewrite equation (1.4) with the real and imaginary parts, denoted 
as (-)r and (•);, respectively, as 

yr+3Vi = (Uxr+jUxi)(br+jbi). (3.1) 

Expanding the multiplication on the right-hand side yields 

Vr + JVi = Uxrbr + jUxibr + jUxrbi - Uxibu (3.2) 

which can be split into two systems of equations, one for the real part of y and the 
other one for the imaginary part of y 

yT = Uxrbr - Uxibi A y{ = Uxibr + Uxrbi. (3.3) 
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To obtain the PA coefficient vector b, it is sufficient to solve only one of the two 
systems of equations. Matrix Ux is fully known, as it consists of samples given by 
the transmitted signal x. Therefore, we can obtain b as the LS solution with the 
real feedback samples 

V (Ax Ax) 1AX yr (3.4) 

where we have substituted A, 

3.3 Indirect Learning Architecture 

Direct derivation of the ILA with real-valued feedback cannot be achieved. However, 
we can benefit from [19,20] and employ the forward model indirect learning architec­
ture (FM-ILA) with real-valued feedback. Hereinafter, we will refer to the proposed 
method as the real-valued forward-model indirect learning architecture (R-FM-ILA). 

3.4 Direct Learning Architecture 

The solution for the updated D P D coefficients can be obtained similarly as 

-[i{AH

zAz)-xAH

z{zr-yr). 
br K 

K 
(3.5) 

Hereinafter, the D L A with real feedback samples is referred to as the real-valued 
direct learning architecture (R-DLA). 

3.5 Simulation 

We have implemented and simulated D P D architectures with real-valued feedback 
(R-DLA, R-FM-ILA) to evaluate their linearisation performance. We have per­
formed simulations for conventional architectures with complex feedback (ILA, D L A , 
FM-ILA) and for the system without the D P D to compare all of them with the re­
cently introduced R - F M - I L A and R - D L A . 

The linearisation performance has been evaluated based on the normalised mean 
square error (NMSE) and adjacent channel power ratio (ACPR). We have simu­
lated all architectures with the D P D modelled by the M P model with the maximum 
nonlinearity order of K = 7 and the maximum memory length of Q — 3. In the 
simulation, all the architectures have been computed with 220 iterations. The eval­
uated metrics were averaged over the last 200 iterations, which corresponds to the 
range where the D L A and R - D L A converged. 
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The frequency spectra of the PA output are shown in Fig. 3.2. The spectra for 
all the D P D architectures are almost the same and well improved compared to the 
spectrum for the system without the DPD. 

— No E 
ILA 

PD 

,A 
T A 

— DLA 
R-DI 

PD 

,A 
T A 

— R-FM-ILA 

No DPD 

\ 
ILA , D L A , R-DLA, FM-ILA , R - F M -ILA 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 
Frequency (Fg) 

Fig. 3.2: The frequency spectra of the PA output for all simulated architectures. 
The frequency axis is normalised to the sampling frequency Fs. 

The detailed comparison of linearisation performance for all the architectures 
is given in Tab. 3.1. A l l the ILA-based systems provide very similar linearisation 
performance based on the evaluated metrics. The D L A and R - D L A provide very 
similar results and they are slightly better than the ILA-based systems. 

Tab. 3.1: The linearisation performance of systems with real-valued feedback com­
pared with conventional architectures. 

D P D architecture N M S E (dB) A C P R - l s t (dB) ACPR-2nd (dB) 

No D P D -19.9 -29.6 -46.5 

ILA -40.5 -49.6 -60.3 

D L A -40.8 -49.8 -60.7 

R - D L A -40.7 -49.7 -60.7 

F M - I L A -40.5 -49.6 -60.3 

R-FM-ILA -40.5 -49.6 -60.3 
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4 DPD Adaptation with Sample Selection 

4.1 Introduction 

In this chapter we propose methods for the selection of samples for D P D adap­
tation allowing computational complexity reduction. The block diagram for D P D 
adaptation with sample selection is shown in Fig. 4.1. 

The proposed methods are: a method based on the identification of important 
samples using QR decomposition, a gradient-based sampling method [21], and two 
histogram-based methods. The first histogram method equalises the histogram of 
signal magnitudes to ensure evenly sampled PA characteristics while the second one 
optimises a histogram optimised by a genetic algorithm, which respects both the 
transmitted signal statistical properties and the specific PA characteristics. 

4.2 Basic Principles of Sample Selection 

To identify the unknown coefficients bk,q of the PA model, the conventional methods 
construct a system of equations by taking consecutive input and output baseband 

LPF 1.5B 

DPD 

Adaptation 

Sample 
Selection 

LPF 1.5B 

Fig. 4.1: Linearisation of an R F PA with the D P D using a sample selection method. 
Although the depicted SH circuits as discrete components are one possible approach, 
a more practical implementation would employ ADCs with integrated SH circuits 
and with periodic and equidistant sampling, performing sample selection from a 
sample buffer in the digital domain. 
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samples of the PA and inserting them into the system of equations (1.4). Practically 
to solve the PA model coefficients, the system of equations has to be overdetermined 
to mitigate the imperfections of the PA input generation and of the PA output 
measurement. In the overdetermined system, we can eliminate arbitrary rows as 

' m 

y[2] 

y[5] 
y[6] 
_y[7] 

Advantageously, signal y[n] can be arbitrarily undersampled. This allows for reduc­
ing the hardware requirements, e.g., the sampling rate of the feedback ADCs. 

Hereinafter, the described method is referred to as the sample selection method 
(SSM). In the following sections, we show some possible ways of employing SSMs 
in the D P D identification process. 

4.3 Sample Selection Methods 

The best D P D adaptation can be achieved if the observation errors of the input and 
output are uncorrelated [22]. However, the adjacent samples used by the conven­
tional D P D are not independent, and therefore the observation errors are correlated. 
To minimise the observation errors, the conventional methods without sample selec­
tion require a high number of samples N, usually TV > 1000 [22]. For a small N, the 
subsequent samples cause the system of equations to be ill-conditioned. Further­
more, a limited number of subsequent samples cannot cover the statistical properties 
of the transmitted signal. 

We show that the proposed SSM does not suffer from the mentioned drawbacks 
for small TV if the samples n\, n,2, • • •, n^- are selected carefully. The problem for 
the sample selection method can be defined as the selection of TV samples from all 
samples which were acquired by the feedback ADCs. The number of all acquired 
samples is Nq and corresponds to the acquisition time and hence to the required 
update rate of D P D coefficients. The number of selected samples is naturally limited 
by the condition N < N0. 

rrfef rrf=±t xfOf 
x[l] x[0] x[l] 
x[2] x[l] x[2] 
xf3f arfSj xft\ 
xf4j arfa} xf# 
x[5] x[A] x[5] 
x[6] x[5] x[6] 
x[7] x[6] x[7] 

xfejf 

x[l]\ 
x[2]\ 

x[5]\ 
x[6]\ 
x[7]\ 

x[0] 
x[l] 
xft 
xf9t 
x[4] 
x[5] 
x[6] 

x[0]| 
x[l]\ 

x[4]| 
x[5]| 
x[6]| 

bo,o 

bo,i 

bi,o 
(4.1) 
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4.3.1 Undersampling 

A simple undersampling can be seen as an untargeted sample selection and hence­
forth it is referred to as the undersampling-based sample selection (US). Although 
this method is very simple, it can improve the conditioning of the system of equations 
and can be sufficient for less demanding applications. 

4.3.2 Sample Selection Based on QR Decomposition 

The problem of selecting the samples can be solved analytically using QR decompo­
sition with column pivoting [23], hereinafter referred to as QR-decomposition-based 
sample selection (QRS). 

4.3.3 Gradient Sampling 

Another method for sample selection can be the gradient-based sampling (GS) [21], 
henceforth referred to as GS-based sample selection (GSS). GS is a representative 
of the methods for solving least squares problems of a large sample size. 

4.3.4 Histogram-Based SSMs 

Samples for D P D adaptation are selected randomly such that the j'-th histogram 
bin count reaches the target bin count dj, i.e., cardinality Dj is equal to dj. 

Evenly Distributed Histogram 

The motivation for the evenly distributed histogram (EDH) is to cover the whole am­
plitude/amplitude ( A M / A M ) characteristics of PA. Unfortunately, this simple ap­
proach of setting target bin counts does not respect either the shape of the A M / A M 
characteristics of the used PA nor the statistical properties of the transmitted signal 
which results in a D P D model with similar modelling capabilities in all regions of 
A M / A M characteristics. 

Genetically Optimised Histogram 

The genetically optimised histogram (GOH) is proposed to suppress E D H imperfec­
tions. A n optimised histogram can respect the A M / A M characteristics of the PA 
and the statistics of the transmitted signal, as depicted in Fig. 4.2. We optimise 
target histogram bin counts by the genetic algorithm to minimise the NMSE. 
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W 00 01 02 03 04 05 06 07 08 09 010 
Signal magnitude 

Fig. 4.2: Principle of the sample selection by G O H with J = 10 related to the prob­
ability density function (pdf) of signal magnitude and the A M / A M characteristics 
of the PA. The depicted N = 30 selected samples are placed in regions with strong 
nonlinearity and/or high signal probability. 

4.4 Reduction of DPD Adaptation Complexity 

A few properly selected samples TV significantly reduces the computational com­
plexity of D P D adaptation. We evaluate the computational complexity of D P D 
adaptation with P coefficients and TV samples with respect to the required number 
of real-valued multiplications 0®(N,P) and real-valued additions 0®(N,P). 

Tab. 4.1 shows a comparison of the computational complexity. We can conclude 
that QRS is computationally the most demanding. The least complex methods 
are histogram-based SSMs whose complexity is the same as for conventional D P D 
adaptation using a block of continuous feedback samples. 

The main advantages of the decreased sampling frequency of the feedback ADCs 
are the lower power consumption, the decreased system complexity, and the price. 
Tab. 4.2 gives a comparison of a transmitter with the conventional D P D and a 
transmitter with the undersampled feedback allowed by the proposed SSM. 

4.5 Simulations and Measurements 

The proposed methods have been verified by simulations and measurements. The 
simulated and measured D P D performance in terms of A C P R as a function of num­
ber of selected samples TV is shown in Fig. 4.3 and Fig. 4.4, respectively. We can 
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Tab. 4.1: Comparison of Computational Complexity 

Conv. D P D QRS GSS Hist. SSM 

p = 14 o 0 D N C 3.2 • 106 3.1 • 106 22 • 103 

N = 20 D N C 2.2 • 106 2.0 • 106 26 • 103 

P = 14 o 0 
D N C 3.3 • 106 3.1 • 106 62 • 103 

N = 100 D N C 2.2 • 106 2.1 • 106 74 • 103 

P = 14 5.1 • 106 8.0 • 106 7.8 • 106 5.1 • 106 

N = 104 o e 
6.0 • 106 8.1 • 106 7.9 • 106 6.0 • 106 

Conventional D P D does not converge (DNC) for a low number of selected samples 
N. The complexity in the table is calculated for N0 = 20 000 and the M P model 
with K = 7, and Q — 1. 

Tab. 4.2: Comparison of System Parameters 

Conventional D P D 

2x AD9690 

D P D with SSM 

2x AD9629 

Fs 
1000 MSps 20 MSps 

Max. Bin 500 MHz 700 MHz 

E N O B 10.5 bits 11 bits 

Digital interface JESD204B Parallel 

Power consumption « 4 W ^90 mW 

Price « 720 USD « 20 USD 

observe that the conventional D P D starts to improve the transmitter linearity when 
more than 1300 samples are selected. E D H starts to linearise from 19 selected sam­
ples and slightly improves with an increasing number of selected samples. In the 
region of up to N < 2000 samples, G O H outperforms all other methods. Please re­
call that we have 17 D P D coefficients and taking only 18 samples is almost equivalent 
to solving a fully determined system. 

The trend for the measurement results follows the simulation results. For a very 
small number of selected samples N = 24, G O H provides a linearisation performance 
equivalent to the maximum achievable linearisation performance of the conventional 
DPD. Since the computational complexity is linear with the number of required 
samples, this indicates a 400-times complexity reduction over the conventional DPD. 
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Fig. 4.3: Simulation results of A C P R as a function of the number of selected samples 
N with 95% confidence intervals depicted by coloured dashed lines for the model 
PA1. The black dashed line represents the simulated A C P R of the PA output 
without DPD. 

Meas: No D P D 

Meas: Conv. D P D 
Sim: Conv. D P D 
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Meas: G O H 
Sim: G O H 

102 103 104 
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Fig. 4.4: Measurement results of A C P R as a function of the number of selected 
samples TV compared to the simulation results. The black dashed line represents the 
simulated A C P R of the PA output without DPD. 
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5 DPD Adaptation with Level-Crossing ADC 

5.1 Introduction 

We propose a novel method for predistorter adaptation with an L C - A D C based on a 
comparator and an low-speed digital-to-analogue converter (LSDAC) which replaces 
conventional ADCs in the feedback path (Fig. 5.1). 

Level-Crossing A D C 

Fig. 5.1: Linearisation of a PA by the D P D with a level-crossing A D C . The edge 
time extraction circuit provides the time stamps te[i] of edges at the comparator 
output. 

5.2 Basic Principles of DPD with LC-ADC 

We can easily rewrite equation (1.2) of the M P model into the continuous-time 
domain as 

Vit) = E E h*x(t - qT)\x(t - qT)\k-\ (5.1) 
k=l q=0 

The system of equations for solving the PA coefficients consists of TV equations. 
Assuming that signal x(t) is sampled at distinct arbitrary time instants ti, £2, • • •, tw, 
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we can arrange the system of equations as 

~y(ti)~ "x(ti) 
y(t2) 

= 

.x(tjv) 

x(ti)|s(ti)| x(t! - T)\x(t! - T)\ 
x(t2)\x(t2)\ x(t2 - T)\x(t2 - T)\ 

x(tN)\x(tN)\ x(tN -T)\x(tN -T)\ 

x(ti - QT)\x(ti - QT)\K~l 

x(t2 - QT)\x(t2 - QT)^-1 

x(tN -QT)\x(tN -QT)\K~l 

&i,o 

62.0 
62.1 

6K,Q 
(5.2) 

Considering the D P D feedback with the L C - A D C from Fig. 5.1, the signal yr{t) 
is known only for t = te[i] when the feedback signal equals the set threshold r(t). 
Time stamps te[i] are the instantaneous times of transitions of signal yr(t) over the 
reference voltage r(t). The equation system can be expressed in the matrix form 
by arranging the output samples, model coefficients and the basis functions into 
vectors, i.e. 

<Pk,q 

r ( * i ) r(t2) ... 

bin feil • • 6 fei 

Vr(tN 

Q ^2,0 

(5.3) 

< / > ( z ) 

V U , 0 08 cb(x) 

^ 2 , 0 
< / > ( z ) ' 

The LS solution of the PA model coefficients in the matrix form is expressed as 

(5.4) {Ax A2 

lAH

xr. 

5.3 Measurements 

The linearisation performance of the D P D adapted by a comparator in the feedback 
was evaluated at three distinct setups: narrow-band and high-band setups with a 
Matlab comparator model and a setup with a real hardware L C - A D C . The wide­
band setup (Fig 5.2) provides bandwidth of up to 4096 MHz, but due to its certain 
imperfections the linearisation performance might be degraded. 

The proposed concept was proved on a measurement setup with our custom-
designed feedback module with a real hardware L C - A D C . The module contains the 
comparator, an edge-time extraction circuit, feedback down-converting IQ mixer, 
and the clock distribution system. The measurement setup and the realised feedback 
module are captured in photographs in Fig. 5.3. 
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5.4 Measurement Results 

Fig. 5.4a depict the A M / A M characteristics of the PA with the wide-band setup, 
adapted DPD, and linearised transmitter. The measured power spectral density 
(PSD) for the proposed and conventional D P D compared to the PA output PSD 
without D P D is shown in Fig. 5.4b. The achieved linearisation performance metrics 
are summarised in Tab. 5.1. T The proposed adaptation with a comparator in the 
feedback achieves slightly higher (worse) A C P R and N M S E than the conventional 
D P D adaptation. Both adaptation methods achieve a similar error vector magnitude 
(EVM) of the transmitted signal. 
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Normalised input-signal magnitude (-) Frequency (MHz) 

(a) A M / A M characteristics. (b) Comparison of the power spectral density. 

Fig. 5.4: Measurement results for the wide-band setup. 

Tab. 5.1: Wide-band measurement results of NMSE, E V M , and A C P R . 

P m a i n (dBm) N M S E (dB) E V M (%) A C P R (dB) 

Without D P D 34.8 -17.7 8.31 -26.3 

Conventional 34.8 -22.2 5.01 -36.4 

L C - A D C 34.9 -21.6 5.23 -34.5 

E V M of the generated signal is 1.25% due to the nonorthogonality caused by the 
inherent F - O F D M filtering. 

Fig. 5.6 shows the comparison of the resulting spectra for the conventional D P D 
and the proposed feedback comparator with the spectrum of the PA output without 
the linearisation. Fig. 5.5 show the evolution of A C P R in the iterations throughout 
the measurement. The horizontal black dashed lines depict the individual metrics 
without the D P D for the same main-channel power. 

Tab. 5.2 summarises the D P D linearisation performance. We can observe that 
the proposed method with the feedback comparator did not achieve the linearisa­
tion performance of the conventional method. This could be caused by the limited 
number of points acquired by the comparator and used for the D P D adaptation. 
This limitation is, however, the limitation of our setup rather than the limitation of 
the proposed method. 
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Fig. 5.5: Evolution of the A C P R during the D P D adaptation with the setup with a 
hardware L C - A D C . 
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Fig. 5.6: Comparison of the measured power spectral density on the setup with a 
hardware L C - A D C . 

Tab. 5.2: Measurement results of NMSE, E V M , and A C P R for the D P D with the 
proposed L C - A D C and conventional feedback on the setup with the hardware L C -
A D C . 

^ m a i n (dBm) N M S E (dB) E V M (%) A C P R (dB) 

Without D P D 24.4 -21.9 7.0 -30.4 

Conventional 24.3 -27.2 4.9 -38.5 

L C - A D C 24.2 -26.0 5.2 -37.6 

E V M of the generated signal is 3.1% due to the nonorthogonality caused by the 
inherent F - O F D M filtering. 
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5.5 Conclusion 

In this chapter, we have proposed a novel method for D P D adaptation with the 
L C - A D C replacing the conventional ADCs. We have demonstrated the principle 
of the D P D adaptation with level-crossing detection by a comparator in the feed­
back. We have shown that the proposed architecture reduces power consumption 
by approximately 75% compared with the conventional D P D architectures and by 
approximately 50% compared with the D P D from [4]. The linearisation performance 
has been evaluated by three measurements, where the proposed D P D achieved com­
parable linearisation performance to the conventional D P D architectures. We have 
achieved linearisation of a signal with 500 MHz bandwidth with the wide-band setup 
with the improvement of 10 dB in A C P R and 3.3% in E V M for the conventional ar­
chitecture and 8 dB in A C P R and 3.1 % in E V M for the proposed architecture with 
the L C - A D C . For the last measurement, we designed our feedback module with a 
real comparator and incorporated it into the measurement setup for the predistor-
tion. Despite all the technical limitations of this setup, the adapted predistorter 
achieved an improvement of 8 dB in A C P R and 2.1% in E V M for the conventional 
architecture and 7 dB in A C P R and 1.8% in E V M for the proposed architecture 
with the designed feedback module. 
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6 Conclusion 
Digital predistortion is considered to be the most advanced and best performing 
linearisation technique. However, at the same time, it is one of the most complex 
and computationally demanding techniques. The required extra computational re­
sources and feedback circuits for D P D adaptability represent additional expenses for 
implementing DPDs and the main limiting factors for their wide spread use across 
various applications. Although a lot of research has been conducted in this field, 
there is still plenty of room for improvements in this area. Therefore, we have ori­
ented this thesis toward low-complexity methods for D P D adaptation. The main 
contributions of this thesis are three key methods to lower the complexity of DPDs: 

• real-valued feedback, 
• feedback sample selection, 
• feedback with an L C - A D C . 
The adaptation with real-valued feedback samples enables saving one of two 

conventionally-employed feedback ADCs. We have shown that the proposed method 
achieves the same linearisation performance as the conventional approaches and 
reduces the power consumption and additional expenses on the feedback circuit. 
The real-valued feedback principle is generally applicable without limitations. Even 
already realised transmitters with conventional feedback circuits could turn off one 
feedback A D C , reduce the feedback-circuit power consumption and benefit from 
improved immunity to feedback IQ imbalances. 

The feedback sample selection has been intrinsically based on the undersampling 
feedback methods. We have shown that only a few feedback samples are required for 
successful D P D adaptation if the samples are carefully selected. The limited number 
of required collected samples decreases the size of vectors and matrices entering the 
calculations and, hence, reduces the computational complexity of D P D adaptation. 
We have proposed several methods for feedback sample selection, two of them have 
been driven by respecting a predefined histogram. The proposed histogram-based 
methods respect both nonlinear PA characteristics and statistical properties of the 
transmitted signal. In our simulations and measurements, they have achieved the 
highest reduction of the required number of feedback samples and, consequently, 
the highest computational complexity reduction. Even the undersampling feedback 
alone can lead to a significant reduction 40 times) of the feedback A D C power 
consumption. The sample selection additionally reduces the computational complex­
ity of D P D adaptation. The performed simulations indicate a 400-time reduction in 
computation complexity in the number of required multiplications and additions. 
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The feedback sample selection and undersampling principles are generally appli­
cable and, even more, both principles can be potentially combined with the real-
valued feedback principle to reduce even more power consumption and hardware 
complexity. The feedback sample selection can be applied without any limitations 
in already-realised transmitters, because its implementation requires only firmware 
modification. In certain cases, the undersampling could be potentially implemented 
in already-realised transmitters to reduce the feedback A D C power consumption. 
To achieve this, the hardware would need to allow for a changing A D C sampling 
clock frequency. Of course, maximum benefits can be exploited if a new transmitter 
design is adjusted for all these methods. 

The proposed feedback with an L C - A D C replaces a conventional feedback A D C 
with a simple comparator complemented by a low-speed digital-to-analogue con­
verter (DAC). Its real implementation in the hardware requires a different ap­
proach for time and amplitude calibrations. For this purpose, we have designed 
and tested a method based on duty cycle measurements for amplitude calibration 
which does not require time synchronisation. We have synchronised the time in two 
steps: first coarsely with sample resolution and later finely with subsample resolu­
tion. In both steps, we transmitted an arbitrary signal with edges at different time 
positions and calculated the signal delay by fitting the transmitted signal with the 
observed comparator output. In all the conducted measurements, the D P D with 
L C - A D C adaptation achieved performance similar to that of the conventional DPD. 
A system comparison example has shown that the proposed L C - A D C feedback can 
significantly reduce the feedback power consumption 36 times) or can achieve 
higher linearisation bandwidth with unchanged power consumption. 

The usability of the L C - A D C for D P D adaptation is practically limited to special 
designs. We expect the L C - A D C could replace conventional ADCs in highly inte­
grated feedback circuits. These integrated designs could benefit from the smaller 
footprint and lower power consumption of a simple comparator than that of complex 
high-speed ADCs. Additionally, the presented limitations and required compensa­
tions and calibrations could be more easily achievable as the circuit parameters can 
be better controlled on a chip than in a discrete realisation. The L C - A D C concept, 
therefore, currently seems to be unpractically applicable to designs with discrete 
feedback circuits and is not suitable for already-realised transmitters, in contrast to 
the two previously presented methods. Even though the L C - A D C concept is not 
generally applicable, we demonstrated its funcionality by the first proof-of-concept 
implementation and we consider it the most advanced and interesting technique 
presented in this thesis. We believe its main ideas will be employed or improved in 
the future. 
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6.1 Potential Future Challenges 

Recent review papers [1,2] emphasised the importance of digital predistortion for the 
5G or even 6G high-speed wireless communications and identified some potential fu­
ture challenges. These primarily included improving D P D linearisation performance 
in general, lowering power consumption demands for D P D linearisation by utilising 
hybrids of analogue and digital predistorters, effective predistortion for phased ar­
ray antennas and massive MIMO systems, and increasing linearised bandwidth. In 
addition, due to our experience, the power consumption of the auxiliary circuits 
required for the D P D adaptation might be reduced more. One possible approach, 
which we would like to analyse in the future, is the possibility of avoiding the feed­
back down-converting mixer which is usually a very power demanding component, 
especially in wideband applications. Another potential of reducing digital predis­
tortion complexity could be completely avoiding classic feedback and adapting to 
the PA nonlinearity changes based on a simpler input, e.g. PA temperature. Even 
though this approach seems to be straightforward, due to our best knowledge, the 
current state-of-the-art research lacks a comprehensive study of temperature and 
ageing effects on PA linearity changes and, therefore, it is hard to predict the abili­
ties and performance of simpler DPDs without full adaptability. 

Although there are still unanswered questions and many potential challenges to 
be addressed in the future, we believe that this dissertation thesis satisfies its goal 
and extends the current state-of-the-art knowledge in the field of digital predistor­
tion aiming at low-complexity methods. We hope this thesis will supplement the 
published papers and provide a different view on the presented topics and will be 
one of the starting points for young researchers working on low-complexity digital 
predistortion. 
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