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Abstract

This thesis studies the influence of the quantum-mechanical description of interatomic
interactions on the results of ab initio calculations of magnetic and mechanical properties of
Fe, y-TiAl and Ni;MnGa. Two methods for the description of interactions were examined,
the projector-augmented wave method and the linear combination of atomic orbitals,
implemented in ab initio codes VASP and SIESTA, respectively. The results of the
dependence of the magnetic moments on the volume or tetragonal deformation paths
indicate relative comparability across these two methods. However, calculated elastic
constants also point to the unsuitability of the SIESTA software for calculations of elastic
constants using the stress-strain method. Additionally, as a part of the thesis, a script for the
calculation of elastic constants was created in the programming language Python.

Keywords
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Abstrakt

Tato diplomova prace se zabyva zkoumanim vlivu kvantové-mechanického popisu
mezi-atomarnich interakci na vysledky ab initio vypoctll magnetickych a mechanickych
vlastnosti Fe, y-TiAl a NizMnGa. Zkoumany byly dvé metody pro popis interakci, jmenovité
metoda projektovanych pfidruzenych vin a metoda linedrni kombinace atomovych orbitald,
které jsou implementovany v ab initio softwarech VASP a SIESTA. Hodnoty magnetickych
moment( v zavislosti na objemovych a tetragonalnich deformacnich drahach poukazuji na
relativni srovnatelnost napfi¢ témito metodami. Avsak vysledky elastickych konstant
poukazuji na nevhodnost ab initio softwaru SIESTA pro vypocet elastickych konstant
metodou napéti-deformace (stress-strain metoda). Soucasti praktické ¢dsti této diplomové
prace je vytvoreni skriptu pro vypocet elastickych konstant v programovacim jazyku Python.

Klicova slova

ab initio, metoda projektovanych pridruzenych vin, metoda linearni kombinace atomovych
orbitali, magnetické momenty, elastické konstanty, Python, Zelezo, Ni-MnGa, TiAl



Rozsifeny abstrakt

Metody ab initio jsou progresivni pristupy teoretického studia zdkladnich vlastnosti,
termodynamické stability, nebo elektronové struktury materidll. Jsou zaloZeny na
zakladnich postulatech kvantové mechaniky a kvantové fyziky. PouzZivaji kvantové-
mechanicky model pro popis interakce elektrond. Ab initio vypocty zkoumaji energetické
stavy systému, co muze poskytnout informace of strukturni stabilité zkoumanych material(,
i bez jakychkoli empirickych dat.

Princip ab initio vypoctl je zaloZen na feSeni Schrodingerovi rovnice, ktera definuje
interakce elektron( a jader atomd. JelikoZ potencial plsobici na elektrony je obycejné jen
funkce pozice a ne ¢asu, ¢asové nezdvisla verze Schrodingerovi rovnice je béiné pouZita.
Schrédingerova rovnice je schopna popsat systémy s tisici atomy a jejich elektrony, avsak
analytické FfeSeni Schrodingerovi rovnice je mozné jen pro jeden atom vodiku, jelikozZ
sloZitost vypocCtl roste exponencidalné s poctem elektronld. Proto je potieba pouzit
aproximaci této rovnice. Jedna s nejdulezitéjsSich aproximaci je Born-Oppenheimerova
(adiabatickd) aproximace, ktera uvazuje Ze pohyb elektronl je mnohonasobné rychlejsi nez
pohyb jader atom{, z dlivodu rozdilu hmotnosti.

Metody zaloZzené na vinovych funkcich jsou povazovany za velmi dobfe definované
teoretické pristupy v ab initio vypoctech. Jednim z nich je Hartree-Fockova metoda, ktera
uziva variacnich teorému pro ziskani priblizného rfeSeni. Tato metoda dosahuje uspokojivych
feSeni, nicméné md i nékolik nedostatk(l. Proto se pouzivd komplementarni pfistup
k Hartree-Fockové metodé, teorie funkciondlu hustoty (density functional theory, DFT).
Tento pfistup je zalozen na Hohenberg-Kohnovych teorémech, které tvrdi Ze energie
elektront v zakladnim stavu je urcena elektronovou hustotou. Prvni Hohenberg-Kohnlv
teorém, existencni, fika Ze totdlni energie sytému s mnoha elektrony je jedinecni funkcional
elektronové hustoty. Druhy Hohenberg-KohnUv teorém, variacni princip, rikd Ze je mozné
ziskat zakladni stav variacemi elektronové hustoty a externiho potencidlu. Vyhoda
elektronové hustoty je jeji zavislost jen na 3 proménnych namisto mnoha-elektronové
vinové funkce, ktera je zavisla na 3N® proménnych.

V rdmci DFT se kinetickd energie interagujicich elektront déli na dvé ¢asti. Prvni ¢ast je
uvazuje jako neinteraguijici, co formuje hlavni pfispévek kinetické energie, a druha cast
obsahuje opravu z divodu zvaZeni jejich interakci. Toto je soucdsti vyménné a korelacni
energie. Toto tvrzeni umozZnuje prevod rovnice obsahujici N elektrond na systém jedno-
elektronovych Kohn-Shamovych rovnic, kde pohyb elektrond v mnoha elektronovém
systému je popsan jako pohyb neinteragujicich elektron( v efektivnim potencialu, generujici
stejnou hustotu jako systém interagujicich c¢astic. Systém Kohn-Shamovych rovnic je fesen
self-konzistentnim pristupem, protoZe kazdy potencidl je zavisly na elektronové hustoté,
ktera je uréena jedno-elektronovou vinovou funkci, cozZ je feSeni Kohn-Shamovych rovnic.

Elektronova hustota je potfebna k spravné aproximaci vyménnych a korelaénich
potencialll, které nemaiji explicitni formulaci jen implicitni. Jeden z nejjednodussich pristupt
je lokdlni aproximace hustoty (Local Density Approximation, LDA). Prispévky vyménné a



korelacni energie v libovolném bodé systému jsou urceny jako odpovidajici vyménna a
korelacni energie homogenniho elektronového plynu o stejné elektronové hustoté. Metoda
rozSifujici LDA je generalizovana aproximace gradientu (Gerneralized Gradient
Approximation, GGA), ktera vyuziva lokalni elektronovou hustotu a jeji gradient v blizkosti
pozorovaného bodu.

Bazové funkce hraji dalezitou roli v DFT pro matematicky popis jedno-elektronovych
vinovych funkci. Bazové funkce muzZou byt slozeny z atomovych orbitali, které jsou
vhodnéjsi pro molekuly, materialy s vysoce lokalizovanymi elektrony, nebo rovinnych vin,
které jsou béziné pouzivany k popisu krystall, materiall s delokalizovanymi elektrony.
Vysoce lokalizované bazové funkce trpi nedokonalym popisem intersticidlnich prostor,
zatimco u delokalizovanych bdazovych funkci vznikd problém v blizkosti jadra atomu
v dUsledku oscilaci, zplisobenych vysokou koncentraci elektron(l v blizkosti jadra.

Metoda projektovanych pfidruzenych vin (projector-augmented wave, PAW) je
zaloZzena na principu superpozice k popisu skutecné vinové funkce. Metoda rozdéluje
skute¢nou vinovou funkci na pseudo-vinovou funkci pro valencni elektrony vzdalené od
jaddra atomu a parcialni pravou vinovou funkci pro valencni elektrony v blizkosti jddra atomu.
VétsSina PAW metod vyuziva aproximaci zmrazeného jadra (frozen core approximation),
ktera ale neni inherentni pro PAW metodu jako takovou.

Naproti tomu metoda linedrni kombinace atomovych orbitalG (Linear Combination of
Atomic Orbitals, LCAO) pouzivd rozvoj Kohn-Shamovy pseudo-vinové funkce na mnozinu
atomdrnich orbital(. Nékolik rozdilnych ptistupl bylo vyvinutych k dosazeni pfimérené
pfesné interpretace pomoci malych bazovych funkci, konkrétné Gaussovské orbitaly (GTO),
Slaterovské orbitaly (STO), Ciselné atomové orbitaly (NAO) a pseudo-atomarni orbitaly
(PAO).

Strukturni relaxace nebo strukturni optimalizace je proces, ktery ma za ukol najit
rovnovaziny stav dané struktury. Dosdahnout rovnovazny stav znamena dosazeni minima
totalni energie daného systému s zadnymi silami plsobicimi na atomy struktury a bez napéti
pUsobici na vypocetni buriku. To znamena, Ze proces strukturni relaxace hleda energeticky
nejvyhodnéjsi pozice atomG vzhledem k plisobicim silam a napétim. Plsobici sily a napéti
musi byt tedy znamé pro proces relaxace, a proto se vyuzZiva Hellman-Feynman(v teorém,
ktery umoznuje vypocet plsobicich sil a napéti jako derivaci energie, anebo jako derivaci
Hamiltonidnu v ptipadé DFT. Existuje nékolik algoritm( pro vypocet minima energie dané
struktury. Tyto algoritmy zavisi na pocatecnim odhadu struktury, jelikoZz je zcela moiné
dosahnout fady rlznych energetickych minim. Jeden ztakovych pfistupl je metoda
nejstrméjSiho sestupu (steepest descent, SD), kterda je relativné jednoducha z pohledu
implementace, ale mizZe byt méné presna, nebo pomala ke konvergovani. Princip spociva
v premistovani atomd na zakladé pulsobicich sil pfi kazdé iteraci ve sméru sily. Pokrocilejsi
pristup je metoda konjugovanym gradientem, ktera je zaloZzena na vyvoji optimalni metody
pro minimalizaci obecné kvadratické energetické funkce.

Elastické konstanty jsou pouzivany pro popis elasticity, zakladni vlastnosti krystalickych
material(, ktera popisuje makroskopickou odezvu krystalu na vnéjsi napéti. Pfimo souvisi



s tvrdosti a pevnosti materialu. Elasticita dovoluje analyzu nékolik mikroskopickych procesd,
jako napfiklad interakce dislokaci, nebo propagace mikrotrhlin. Elasticita také predstavuje
dilezité kritérium pro mechanickou stabilitu krystalu. Pro popis elastickych konstant se
pouziva Hook(lv zdkon v tenzorové podobé. JelikoZ takovy zapis je zbytecné komplikovany,
pouziva se zjednodusend verze podle Voigtovi notace, ktera prevede tenzor ¢tvrtého radu
na tenzor druhého fadu. Poclet nezdvislych elastickych konstant zavisi na symetrii
studovaného krystalu, kde triklinickd struktura mda 21 nezdvislych elastickych konstant,
tetragonalni struktura ma 6 a kubickd struktura md jen 3 nezavislé elastické konstanty.
Vypocty elastickych konstant jsou obvykle zaloZeny na energii zdeformovaného krystalu, coz
je vypocetné velmi ndrocny pfistup. Naproti tomu relativné inovativni metoda napéti-
deformace (stress-strain metoda), popsana ve studii, publikované R. Yu et al., je vypocetné
relativné nendrolni a rychla. Metodé stress-strain je také vénovana znacna c¢ast této
diplomové prace.

Zelezo existuje v konfiguracich BCC a FCC a méa nékolik magnetickych fazi. Tato prace
je zamérena predevSim na analyzu zakladniho feromagnetického stavu Zeleza BCC.
Antiferomagneticky stav FCC Zeleza proto neni uvazovan.

Slitiny na bazi aluminidu titanu (TiAl) patfi do skupiny materidll klasifikovanych jako
intermetalika. Intermetalika vyuzivaji principu usporadané krystalografické struktury, ktera
obsahuje kombinaci rliznych kovQ, jez vznikd omezenou rozpustnosti slitin. Takové slitiny
maji obvykle odliSnou strukturu a vlastnosti na rozdil od jejich vychozich materidld.
Intermetalika maji usporadanou krystalografickou strukturu s dlouhym dosahem, coz ma za
nasledek zajimavé mechanické vlastnosti i pfi vysSich teplotach. y-TiAl krystalizuje v
tetragonalni prostorové grupé P4/mmm s plosné centrovanou tetragonalni strukturou typu
CuAu, zndmou jako L1o. Strukturu TiAl lze povaZovat za stfidajici se posloupnost vrstev
titanu a hliniku podél osy c.

Ni;MnGa je feromagnetickd slitina s tvarovou paméti, krystalizujici v kubické
prostorové grupé Fm3m, s kubickou strukturou typu CuzMnAl, zndmou jako L2;. Slitina patfi
do kategorie Heuslerovych slitin. Heuslerovy slitiny jsou obecné terndarni polovodi¢ové nebo
kovové materidly s chemickym sloZzenim X;YZ. Heuslerovy slitiny vyvolavaji zna¢ny zdjem,
predevsim diky jejich pozoruhodné elektronové strukture, kterd ma za nasledek jedinecné
magnetické vlastnosti. Vysokoteplotni austenitickd faze Ni.MnGa je pfi pokojové teploté
kubickd, a feromagneticka. Curieho teplota, a tedy teplota feromagnetického prechodu je
priblizné T, = 376 K. Stechiometrickd Ni2MnGa prochazi martenzitickou transformaci
(transformaci z vysokoteplotni kubické, austenitické, struktury na nizkoteplotni tetragonalni,
martenzitickou, strukturu) pfi teploté T,,, = 210 K. Bylo pozorovano, Ze tato strukturalni
transformace je reverzibilni, coz umoziuje chovani slitiny s tvarovou paméti.

Vypocty zavislosti magnetickych momentd na objemovych a tetragonalnich
deformacnich drahdch, a vypocty elastickych konstant, provedeny pomoci stress-strain
metody popsané ve studii, publikované R. Yu et al., byli provedeny pomoci metod PAW a
LCAO, které jsou implementované v ab initio softwarech VASP a SIESTA



Vysledky téchto vypoctll porovnavaji vliv rozdilného kvantové-mechanického popisu
mezi-atomarnich interakci. Bylo zjisténo, Ze rozdil mezi metodami na zavislost magnetickych
momentl na objemové deformacni drdze je relativné minimadlni. Patrné rozdily jsou
poznatelné jediné ve velmi nizkych objemech, kde vysledky ze softwaru SIESTA jsou lehce
nadhodnocené v porovnani svysledky ze softwaru VASP. Ve vypoctech tetragonalnich
deformacnich drah Zelezo ukdzalo, Ze SIESTA preferuje tzv. high spin state, ktery se
vyznacuje vyssimi magnetickymi momenty, zatim co VASP automaticky nachazi tzv. low spin
state, ktery je energeticky znacné vyhodnéjsi. Vysledky tetragonalni deformacni drahy pro
Ni2MnGa také ukazali, Ze SIESTA uddva znacné energeticky stabilnéjsi NM martenzitickou
fazi.

Vysledky elastickych konstant spoctené metodou stress-strain ukazuji, Ze elastické
konstanty pro NizMnGa a y-TiAl spoctené pomoci softward VASP a SIESTA jsou relativné
srovnatelné s experimentalnimi, nebo vypoctenymi hodnotami elastickych konstant pro oba
materialy, s pomérné minimalnimi odchylkami. AvSak hodnoty elastickych konstant pro
Zelezo  vypoctené softwarem  SIESTA  vykazuji znatné odchylky v porovnani
s experimentalnimi hodnotami.

Z vypoctenych tenzor( tuhosti byli dale spocteny prostorové rozloZzeni Youngova
modulu. Toto ukdzalo znaéné nesrovnalosti napfi¢ metodami, a to zejména u Zeleza. Tyto
vysledky poukazuji na nevhodnost softwaru SIESTA pro vypocet elastickych konstant pomoci
metody stress-strain.
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1 Introduction

Ab initio methods are progressive tools for the theoretical study of materials.
Principles of ab initio calculations are based on basic postulates of quantum physics and
mechanics, namely a solution of the Schrodinger equation which defines interactions of
electrons and atom nuclei. Ab initio calculations do not require any recorded empirical data.
Therefore, these calculations can be performed for any kind of molecular species, which
allows us to examine fundamental properties, structural stability, thermodynamic stability,
or electron structure of materials, which could be otherwise incredibly difficult to produce
and prepare. [1, 2]

Density functional theory (DFT) is a density-based theoretical framework within the ab
initio calculations arising from the Hohenberg-Kohn theorems, which state that the ground-
state electronic energy is determined by the electron density. Electron density is necessary
to approximate exchange and correlation potentials, which can be accomplished through
the local density approximation (LDA), or its expansion generalized gradient approximation
(GGA). Wave-function of a single-electron system is an approximation by the linear
combination of basis functions. Basis functions can be comprised of atomic orbitals,
characterized by the highly localized electrons, or by plane waves, characterized by the
delocalized electrons. Highly localized basis functions suffer from an imperfect description
of interstitial space, while with delocalized basis functions, the problem arises in the vicinity
of the atom nucleus due to oscillations, caused by the high concentration of electrons
around the nucleus. This can be corrected by employing effective core potentials or pseudo-
potentials, which replace the wave-function for electrons in the vicinity of the atom nucleus.

Elastic constants are a system for the description of elasticity, a fundamental property
of crystalline materials, describing a macroscopic response of a crystal to external straining.
It is possible to calculate elastic constants using ab initio methods or measure them
experimentally. Elastic constants are usually described by the Hook’s law in its tensor form,
a fourth-order tensor of stiffness, which then can be further simplified by Voigt notation
into a second-order tensor of stiffness. The number of independent elastic constants is
entirely dependent on the symmetry of the examined structure, where triclinic structures
have twenty-one, tetragonal structures have six, and cubic structures only have three
independent elastic constants.

This thesis examines two different approaches for the description of wave function
within the DFT, and theoretical approaches for calculations of elastic constants, which are
further implemented in a python script. Results then examine the influence of these two
approaches on elastic constants and magnetic moments as a function of volume and
tetragonal deformation paths. These parameters are calculated for three chosen materials,
which are briefly discussed in the theoretical part of this thesis.



2 Thesis objectives

The goal of this thesis is to examine the influence of two different ab initio approaches
to describe interatomic interactions on calculations of mechanical and magnetic properties
of materials. The interactions are described using localized and delocalized wavefunctions.
The extent of the influence will be examined on three materials, Fe, y-TiAl and Ni2MnGa, for
which energy-volume curves, tetragonal deformation paths and elastic constants will be
calculated. Additionally, a practical part of the thesis will include the creation of the script

for the calculation of elastic constants in the programming language Python.



3 Ab Initio methods

Ab initio methods are progressive techniques for the theoretical study of fundamental
properties, thermodynamic stability, or electron structure of materials. Ab initio methods
are based on laws of quantum physics and use a quantum mechanical description of
electron interactions. These methods examine the energy states of systems, which can
provide information about the structural stability of studied materials, even without any
recorded empirical data. This thesis employed one of the most common ab initio
applications known as density functional theory (DFT).

3.1 Schrodinger equation

Principles of ab initio methods are based on the solution of the Schrédinger equation,
defining interactions of atomic nuclei and electrons. As the potential affecting the electrons
is generally just a function of position and not time, the time-independent variation of the
Schrédinger equation is used: [3]

(3.1)

(V) =57 ) () = oo,

2m,

where U(r) is the field of potential energy affecting the electron movement (including
electron-nuclei and electron-electron interactions), # is reduced Planck constant, m, is the
mass of the electron, V2 is an operator, Laplacian, ¥, (r) is the wave function of the whole
electron system and ¢, is the energy of wave function. H, a Hamiltonian, an operator
comprising all the energy contributions of the system from the electron and nuclei
interactions is then defined by the formula:

h? (3.2)
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Systems described by the Schrédinger equation can contain from tens to thousands of
atoms and their respective electrons. However, the analytical solution of the Schrodinger
equation is possible only for one atom of Hydrogen, since the complexity of the calculation
grows exponentially with the number of electrons. Therefore, an approximation of this
equation needs to be employed. One of the most important approximations is the
nonrelativistic Born-Oppenheimer approximation, which assumes that electrons move much
faster than nuclei, due to major differences in mass.[4] This implies, that any changes in the
potential energy of the atom nuclei initiated by the change of their position, causes an
immediate reaction of the electrons. Thus, the motions of atom nuclei and the electrons are
separated. As a result, it is then considered as a movement of electrons in a static potential

generated by atom nuclei. [5]



3.2 Density Functional Theory (DFT)

Wave function-based approaches are considered a well-defined theoretical
framework in ab initio methods. One such is Hartree — Fock method, which uses variational
theorems to attain an approximate solution. It can provide satisfactory results for a number
of properties, however, this method has also several drawbacks. One of them is the neglect
of electron correlation on electronic structure calculations, which suggests that each
electron accounts for the rest of them as a mean field. And the other is a high
computational effort (calculations for a system containing N atoms scale as N*) Therefore a
complementary approach to Hartree-Fock is used. That being Density Functional Theory
(DFT) based on Hohenberg-Kohn theorems, which state that the ground-state electronic
energy is determined by the electron density.[5, 6]

The first Hohenberg-Kohn theorem, the proof of existence, states, that the total
energy of a many-electron system is a unique functional of the electron density. The second
Hohenberg-Kohn theorem, the variational principle, states, that it is possible to obtain a
ground state by variations in electron density and external potential. [7]

Electron density function for general system is defined by the formula:

p(r) = N° f V(1,72 e, Ty ) (1, 1oy oo, et )dTodry oo dT e, (3.3)

Integral is not dependent on which electron is being integrated. Furthermore, in
combination with anti-symmetry and Pauli’s principle, it is possible to equate the density
integral with the number of electrons N¢..

fp(r)dr = N°, 34

The main advantage of the electron density is its dependence on only 3 variables instead of
multi-electron wavefunction, which is dependent on 3N ¢! variables.

Functional of total energy is dependent on external potential of static atom nuclei v,,; and
electron density according to formula:

Bo1 = [ o) veue)r + Tunlp@] + [ 222 arvar + ko)

where second component, T, [p(r)], is kinetic energy of non-interacting electrons, the
third component describes the electron repulsion, and K[p(r)] is non-classical component
of the equation describing main part of the exchange and correlation energy. [1, 6]

The kinetic energy of interacting electrons is divided into two parts. The first part considers
them as non-interacting, which is the main contribution to the kinetic energy, and the
second part, which encompasses a correction by considering their interactions. This is
considered the part of the exchange and correlation energy. This proposition allows the
conversion of equation containing N electrons to a system of one-electron Kohn-Sham
equations, where the movement of electrons in the multi-electron system is described as a



movement of the non-interacting electrons in the effective potential, generating the same
density as system of interacting particles. It is defined by the formula:

(3.6)

h
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where m, is mass of the electron, V¢ (7) is effective potential of non-interacting electrons,
which includes electron interactions and external potential, ¥;(r) is wave function of one
non-interacting electron and ¢; expresses the intrinsic value of the wave function. The
effective potential is defined by three elements according to the formula:

6K[p(r)] (3.7)
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where first component, v,,;(x), contains external potential, the second component
contains Hartree interaction potential, and the third component contains exchange and
corelation potentials. In case of Kohn-Sham equations the contribution to the non-classical
electron interaction is an approximation through the exchange and correlation functional,
which is dependent on the electron density p(r). Electron density of non-interacting
electrons in the N-particle fictitious system is defined according to the formula:

(3.8)

N
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Kohn-Sham equations are a mathematical description based on two Hohenberg-Kohn
theorems, which relate to any system consisting of electrons moving under the influence of
an external potential. The system of Kohn-Sham equations has to employ a self-consistent
approach, as each potential is dependent on electron density p(r), which is determined by
a single-electron wavefunction, the solution of the Kohn-Sham equations. To speed up the
convergence of self-consistent calculations the procedure called density mixing is employed,
which combines the input and output densities at each iteration cycle to estimate a new
input density. [8]

The electron density is necessary to properly approximate the exchange and
correlation potentials, which do not have explicit formulation only implicit formulation. One
of the simplest approaches to exchange and correlation energy is Local Density
Approximation (LDA). The contribution of exchange and correlation energy in any given
point of the system is determined as the corresponding exchange and correlation energy of
homogenous electron gas of the same electron density. Additionally, the method
augmenting the LDA is Generalized Gradient Approximation (GGA), which is utilizing local
electron density and its gradient in the proximity of the observed point. [9]

The value of total energy calculated using DFT represents only the internal energy of the

system in its fundamental state, which includes all the contributions of the kinetic energy of
the electrons, energy of electron interactions with the external potential of atom nuclei and
mutual electron interactions. It carries no further information about the state of the system



in the form of temperature or pressure of the system. Total energy of the system could be
defined by the formula:

Ey =G — Z F, +pV, (1.9)
i

where E, is total energy of given system, G is Gibbs energy, F; are corresponding
temperature dependent contributions to the overall energy of the system, p is pressure of
the system and V is volume of the system. [10]

Wavefunction of single-electron system is an approximation by linear combination of basis
functions:

N (1.10)

Since basis functions play an important role in the calculations, selecting a correct
methodology is necessary. Basis function can be comprised of atomic orbitals, which are
more suitable for molecules, or plane waves, which are more commonly used to describe
crystal structures. While atomic orbitals basis functions are more appropriate for materials
with localized electrons, with plane-wave basis functions problems arise near the atom
nucleus, where oscillations occur, due to the high concentration of electrons close to the
nucleus. That is possible to correct by using effective core potentials, or pseudo-potentials,
which replace the wave functions for electrons near the atom nucleus. Most of the DFT
methods employ a frozen core approximation, in which the orbitals corresponding to the
core electrons remain fixed throughout the calculation. [11] Likewise, the minimization of
the Kohn-Sham DFT energy functional is carried out in the variational space of the valence
electrons. When pseudo-potentials are used, it is possible to use plane waves to only
describe valence electrons further from the atom nuclei, and to describe the valence
electrons closer to the atom nuclei the approximative pseudo-wave functions are used. For
a more accurate description of wave functions, the Projector-Augmented Waves method
(PAW method) is used. This is one of the two methods used in this thesis to examine the
mechanical and magnetic properties of three different materials.

3.3 Projector—Augmented Wave Method (PAW method)

Projector-Augmented Wave (PAW) method uses the principle of superposition to describe
true wave function. The method divides true wave function into pseudo-wavefunction for
valence electrons further from the atom nucleus and partial wavefunctions for valence
electrons in the vicinity of the atom nucleus. True, one electron wavefunction 1, is
therefore derived as a linear transformation of pseudo-orbitals 1,4 :

[ i) = |l/;nk) + Z(l(]bl) - |¢;l)) (ﬁill/;nk>f (1.11)
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where the first element, |1/~)nk) the pseudo-wave function correctly describes conditions
further from the atom nucleus, the second and the third elements Zi(lq,’)l-) - |<51)) are true
partial wavefunction and partial pseudo-wavefunction respectively that describe conditions
in the vicinity of the atom nucleus. Pseudo-orbitals 1,,x, where nk are the band index and
the k-point index respectively, are variational quantities, and they are expanded in plane
waves. Pseudo-orbitals 1, are identical to true orbitals 1, in the interstitial positions
between PAW spheres. However, inside the PAW spheres the pseudo-orbitals are just
computational tool and slightly inaccurate approximations to the true orbitals. [12, 13]

There is exactly one projector function (p;| for every pseudo-partial wave. These projector
functions have to fulfil the condition ¥; |@;) (§;| = 1 within volume Qg, so that the one-
centre expansion ); |<131) (ﬁh/;) of a pseudo-wave function is identical to the pseudo-wave
function |1,y ) itself. Implying: [13, 14]

(Bild)) = 8 (3.12)

PAW method implemented in most of simulation packages can employ the frozen core
approximation, which is not native to the PAW method. The pseudo-orbitals are expanded
in the reciprocal space using plane waves according to formula: [14]

_ 1 . _ (3.13)
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where Q is volume of Wigner-Seitz cell. The all-electron partial waves ¢, are solutions to
the radial Schrodinger equation for a non-spinpolarized reference atom at a specific energy
&g and for a specific angular momentum [,,:

S 1 S
(rld)a) = ua(lr - RaDYa(T - Ra) = mulafa(lr - Ral)Ylama(T - Ra)
a

(3.14)
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where r/—_ﬁa describes that the spherical harmonics, Y, depends on the orientation, but
not on the length of the vector r — R,. The radial component u, is independent of m,, an
angular momentum quantum number, as the partial waves are determined from the
spherical atom. The pseudo-waves ¢, are equivalent to the all-electron partial waves
outside a nuclei radius 7. and match continuously onto ¢, inside the nuclei radius:

s 3 - 1 -
<T|¢a> = ua(lr_Ral)Ya(r_Ra) = |T‘—R |ula£a(|r_Ra|)Ylama(r_Ra)
a

(3.15)
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The nuclei radius 7, is usually approximately around half the nearest neighbour distance.
[12, 13]

Figure 1 contains a graphical representation of the true wavefunction for the molecule
of Cl,. The true wave function is black, the pseudo-wavefunction is blue, the true partial
wavefunction is red and the partial pseudo-wavefunction is green. [15]
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Figure 1- Diagram of projector-augmented wave function, where the true wavefunction is marked in black, pseudo-
wavefunction is marked in blue, the true partial wavefunction is red and the partial pseudo-wavefunction is green [15]

3.4 Linear Combination of Atomic Orbitals Method (LCAO Method)
In contrast to the aforementioned plane-based methods, the DFT LCAO method uses the

expansion of Kohn-Sham whole pseudo-wavefunctions ,,(r) onto a set of atomic-like
orbitals ®,,;,,(r): [16, 17]

Pn(r) = Z Cun®, (1) (3.16)

u

where basis functions are constructed as products of numerical radial functions and
spherical harmonics:

(Dnlm(r) = q)nlm(ra +R%) = Pni (ra)ylm(f'a) (3.17)

where R? is the position of atom nucleus a, and r® = r — R%. This approximation uses the
coefficients c,,, as the variational parameters as opposed to the real space wavefunction.

By using small basis sets for atomic-like orbitals it is possible to reduce computational time
or memory requirements at the possible cost of accuracy. A number of different approaches
have been developed to attain reasonably precise interpretation using small basis sets: [18]

e Linear combinations of Gaussian-type orbitals (GTOs) are commonly used because
the analytical evaluation of numerous expressions is thus possible.



e Slater-type orbitals (STOs) are another possibility, with a form rte=¢" resembling
simple orbitals. Gaussian-based methods commonly approximate slater-type orbitals
using a fixed linear combination of Gaussians in order to attain more orbital-like
behaviour.

e Numerical atomic orbitals (NAOs) are represented on a radial grid numerically rather
than analytically. Even though this increases the difficulty of the calculations and
therefore makes calculations more time consuming, many radial integrations can be
performed beforehand and tabulated. NAOs can be designed with any shape without
any additional computational costs, they can be localized to avoid costly long-range
interactions, therefore achieving better scaling.

e Another possible approach is basis localized pseudo-atomic orbital (PAOs), which are
a variation of NAOs modified to use pseudo-potentials.

EA

Figure 2 Diagram depicting linear combination of two atomic orbitals of hydrogen, which results in bonding orbitals (at
the bottom) and anti-bonding orbitals (at the top) [19]

3.5 Structure relaxation, Hellmann-Feynman theorem

DFT calculations only provide energy at temperature T = 0K for a given atom
distribution, therefore it is necessary to perform a structure relaxation to obtain the energy
minimum of a given structure. Structure relaxation is an optimization process which aims to
achieve the equilibrium state of a given structure. Reaching equilibrium means achieving
minimal total energy of a given system with no forces acting on any of the atoms in the
structure and no stresses acting on the computational cell. Thus, the process of structure
relaxation is searching for the most energetically advantageous displacement of the atoms
based on the acting forces and stresses.

Forces and stress tensors must be known for the structural relaxation process.
Therefore, the Hellman-Feynman theorem is applied, which allows the calculation of forces
and stress tensors acting on the atoms as a derivation of energy, and in the case of DFT as a
derivation of Hamiltonian. [20]

The Hellman-Feynman theorem in DFT is applied through the derivation of wave functions
for the given position of atoms r: [20, 21]

SE; _ (3.18)
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where E; is energy of the given state, H, is operator Hamiltonian dependant on
a parameter A, and ;) is an eigenfunction of the Hamiltonian dependant implicitly on
a parameter A.

&l

Figure 3 Schematic depiction of a 3N - dimensional energy landscape, where darker section are the energy minima, lighter
sections are energy maxima and S indicate saddle points. A and B depict two different minima of a given structure [1]

There are a number of algorithms for calculations of the energy minimum of a given
structure. These algorithms are dependent on the initial estimation of a structure, as it is
entirely possible to reach a number of different energy minima from the initial estimate, as
clearly shown in Figure 3. The steepest descent (SD) method is relatively easy to implement,
however, it is possible that it might be less accurate, or slow to converge. The principle lies
in the displacement of the atoms based on the acting forces at each iteration in the
direction of the force. This creates a physical interpretation of the SD trajectory in the
energy landscape corresponding to the steepest ‘downhill’ direction at any given point. A
more advanced, conjugate gradient (CG), the method is considerably more efficient than the
SD method. It is based on developing an optimal method for minimalizing a general
guadratic energy function. [1]
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4 Elastic constants

Elasticity, one of the fundamental properties of crystalline material, which describes
the macroscopic response of crystal to external strain. It directly correlates to the hardness
and strength of materials. The elasticity of materials allows the analysis of several
microscopic processes, such as the interaction of dislocations or crack propagation.
Additionally, elasticity provides an important criterion for the mechanical stability of a
crystal.

One of the most used systems to describe the elasticity of materials during elastic
deformation are elastic constants Cjy;. These can be determined using Ab Initio methods,
or experimentally. Elastic constants are a measurement of proportionality between strain
and stress in a crystal, provided that the strain is not so large as to violate Hook’s law. Elastic
constants are also important constraints used to create interatomic potentials for large
scale calculations. [22, 23]

To describe elastic constants of anisotropic materials the Hook’s Law in its tensor form is
used, which represents the relation between stress and strain tensors for small
deformations:

0;j = Cijki€n (4.1)

where g;; is stress tensor, g is strain tensor and Cjjy,; is matrix of elastic constants. It states
that each of the six components of the stress tensor is linear combination of six components
of the strain tensor.

C1111 C1122 C1133 C1123 C1113 C1112

62211 C2222 62233 62223 62213 62212

{Cijkl} — g3311 53322 g3333 23323 g3313 23312
2311 2322 2333 2323 2313 2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212

(4.2)

Cijki, a fourth-order tensor of stiffness can be rewritten using Voigt notation to the

form of C;;, a second-order tensor. The principle lies in the conversion of i ,j, k, [ indices

jr
from the Latin-type indices i (1...3) to the Greek-type indices a(1 ...6) according to the
Table 1: [24]

Latin . Greek
indices indices
11 - 1
22 - 2
33 - 3
23=32 - 4
13=31 - 5
12=21 - 6

Table 1 Table of index conversions employed by the Voigt notation [24]

Elastic constants could be calculated by applying strain to a crystal, measuring the energy
compared to the strain. They are then determined as a curvature of this function at a zero

11



strain. Specific strains used to determine elastic constants of a crystal are associated with a
certain linear combination of elastic constants. The elasticity of single-crystal, characterized
by a fourth-rank stiffness tensor, can be represented with a 6x6 matrix thanks to the Voigt
notation: [24]

01 Cir Gz Ciz3 Gy G5 Cie €1

03 Ca1 Cpp (3 Gy (G5 Cye &2

03 [_ | C1 C32 G333 Gz G35 Gz || €3 (4.3)
04 Ca1 Cip Cy3 Cuy Cus Cye || €4 '

)

where ¢; are components of the strain tensor, g; are components of stress tensor and (;;

Os \C51 Csp Cs3 Cs4 Css Cse/\ES
O6 Co1 Coz Co3 Cos Cos Cog €6

are single-crystal elastic (stiffness) constants.

The number of independent elastic constants depends on the symmetry of the examined
crystal structure, and the notation used to describe the elasticity matrix. In case the Voigt
notation is not used, which means that C;j; is the fourth rank tensor and that the symmetry
of the examined structure is non-existent it is possible to obtain 81 independent elastic
constants. However, with increasing symmetry of structure and application of Voigt's
notation, the number of elastic constants decreases. For example, in the case of a triclinic
structure, the number of constants decreases to 21, and due to the plane symmetry of the
monoclinic structure, it further decreases to just 13 constants. Additionally, while tetragonal
structures have 6 constants, cubic systems only have 3 independent elastic constants, C;1,
Cy, and C44. Therefore, matrix notation for cubic single-crystal systems looks like this:

01 Ci1 G € O 0 0 €1

02 Ci Cn Cp O 0 0 €2

03 Ciz C2 €3 O 0 0 €3

|7l 0o 0 0 Cs 0 0 ||& (4.4)
05 0 0 0 0 C4 O €5

Oe 0 0 0 0 0 Cu/ N6

And matrix notation for tetragonal structure looks like this:

01 Ci1 Cip Gz O 0 0 €1

02 Ciz Ci1 Gz O 0 0 &

o3 | _|Cz Ciz C33 O 0 0 €3

a, |71 0 0 0 C4 O 0 €4 (45)
(75/ 0 0 0 0 C4 O €5

06

0 0 0 0 0 Cee/ 6

To determine a full set of elastic constants experimentally, a single macroscopic-sized crystal
is required. On the contrary, it is possible to obtain single-crystal elastic constants from
ab initio calculations (as a non-experimental method). [25]
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4.1.1 Stress-strain method

Most methods for the calculation of elastic constants are based on fitting total
energies or stresses of properly deformed crystals. A stress-based method is much more
efficient compared to the energy-based method, due to each deformation having six stress
components, but only one energy component meant for the fitting. The downside of these
methods is that crystals of different symmetries require specific strain patterns designed for
a given crystal. Energies and stress components are then calculated for every strain pattern.
Calculations are carried out gradually for every strain magnitude. The resulting stresses and
energies are then fitted as a function of said strain magnitude, which gives us elastic
constants. Such methods are computationally very challenging and tedious for anything but
high symmetry crystals. Other methods based on linear response theory or interatomic
force constants can be also used, however, such calculations are even more computationally
challenging than stress and energy-based approaches.

Therefore, R. Yu et al. [26] presented in their study a much simpler stress-strain-based
approach meant to significantly decrease computational time even for crystals with low
symmetry. This method uses matrix notation, stated in (4.3), to describe single-crystal
elastic constants. After calculating all the stresses for each strain, elastic constants are
determined by linear least-squares fitting using singular value decomposition. The
improvements of this method are based on the notions of high efficiency and universality of
the used strains. Strains employed by this method are marked in Table 2. The idea is that
each of the six stress components for a strain could be used as an independent
‘measurement’ of the elasticity of the crystal. [26]

& &, &3 &4 £s &6
U, 1 2 3 4 5 6
U, -2 1 4 -3 6 5
Us 3 5 -1 6 2 4
U, -4 -6 5 1 -3 2
Us 5 4 6 -2 -1 -3
Us -6 3 -2 5 -4 1

Table 2 Table of components of six typical linear-independent coupling strains in 103 [26]

Theoretically, the six stress and strain components can be described as vectors spanning a
six-dimensional “stress and strain space” respectively. Subsequently, the elastic constants
matrix Cj; is mapping between these two spaces. Strain vectors were named “universal
linear-independent coupling-strains” (ULICS) and follow three principles:

e Strain vectors are linearly independent in the “strain space”.

e All elastic constants and stress vectors are coupled, as there are no zero elements in
the strain vectors.

e Strain vectors can be applied to crystals with any symmetry. The only change comes
with the symmetry of examined crystals, as more ULICSs are required for crystals
with lower symmetry. This is noted in Table 3.
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These three principles point to the efficiency of this method.

Crystal system  Number of ULICS required
Cubic 1
Tetragonal
Hexagonal
Rhombohedral
Orthorhombic
Monoclinic
Triclinic 6

Table 3 Number of ULICS required for seven crystal systems [26]

UWINNIN

Stress and stain vectors need to be linearly independent, otherwise only partial sampling of
all the subspaces would be realized. Therefore, angles between vectors are defined by the
formula: [26]

U - U: 4.6
9=arccos< ! ]> (4.6)

|U;i| - U]

Linear independence between ULICS is then marked in Table 4. A greater the angle means
less linear dependence of the vectors.

U, Us U, Us Us
U, 90.0°  90.0°  90.0°  90.0°  90.0°
U, 90.6° 95.7°  68.7° 114.0°
U, 86.9°  98.2°  98.2°
U, 102.1°  80.5°
Us 115.4°

Table 4 The angles between ULICS from Table 1 [26]

Table 3 indicates the high efficiency of the method as six or fewer strain vectors are
required to obtain a full set of single-crystal elastic constants, which is contrary to the
energy-volume fitting method which requires generally at least five volume strains. The
efficiency is due to the linear independence of the strain vectors used, and strain vectors
containing no zero elements. [21]

This method can be implemented and used by a number of different simulation packages,
that provide stress tensor of a crystal, like VASP and SIESTA. In their study, R. Yu et al.
calculated elastic constants of four different structures according to this stress-strain
method using the projector-augmented wave method within the density functional theory
implemented in VASP.
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5 Materials

This thesis examines the mechanical and magnetic properties of three specific materials
with two different approaches (PAW and LCAO). Examined materials are Fe (pure iron), in
its body-centred cubic (BCC) and face-centred cubic (FCC) configurations, and more complex
alloys, an intermetallic alloy y — TiAl and Heusler alloy Ni, MnGa.

51 Fe

Iron in its pure form is not a particularly remarkable material in terms of technical and
industrial applications. Even though the production of iron accounts for 90% of global metal
production, it is almost always combined with another alloying element, due to lacking
mechanical properties.

Figure 4 Fe lattice in its BCC configuration on the left, in its FCC configuration on the right — created in software VESTA

Iron exists in BCC and FCC configurations [Figure 4] and has several magnetic phases.
This thesis is mainly focused on the analysis of the ferromagnetic state of BCC iron.
Therefore, the antiferromagnetic state of FCC iron is not necessarily considered. Lattice
parameters of examined bcc-Fe structure is a = 2.83 A. [27, 28, 29, 30]

5.2 TiAl

Titanium aluminide (TiAl)-based alloys belong to the distinctive group of materials,
classified as intermetallics [Figure 5]. Intermetallics utilize the principle of ordered
crystallographic structure, which contains a combination of different metals, created by the
limited solubility of the alloys. Such alloys usually have different structure and properties in
contrast to their parental materials. Intermetallics have long-range order crystallographic
structure, which results in interesting mechanical properties even at higher temperatures.
TiAl-based alloys specifically generate significant interest due to their potential applications
in high stress, high-temperature environments. [31, 32]
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Figure 5 Binary phase diagram for Ti-Al system [33]

Intermetallic alloys make good candidates for technical, structural, or industrial applications,
where high strength at high temperatures and excellent oxidation resistance are required.
Such applications could include heat treatment fixtures, rolls for hot metal processing,
forging dies, or even new-generation of aero-engine applications. In the temperature range
of 870 ~ 1070 K the y-TiAl alloys can exhibit comparable or even superior specific yield
strength than nickel-based superalloys or titanium-based alloys currently in use. However,
the problem of low fracture toughness and brittleness of titanium aluminides at room
temperature makes their processing and manufacturing complicated, which to some extent
limits their technological applications. [34, 35] It has already been investigated, that the
brittle behaviour of TiAl could be addressed starting from the results of ab initio electronic
structure calculation [36]. This allows the calculation to assign a lattice site for an additional
atom. For instance, vanadium, which enters the structure substitutionally at the titanium
site reduces the brittleness of the TiAl alloy. This was further expanded upon by Matar and
Etourneau, who examined the influence of the carbon within the alloy lattice of TiAl using

the augmented spherical wave method. [37]

y-TiAl crystallizes in tetragonal space group P4/mmm, with the structure according to
the CuAu, L1y, a face-centred tetragonal structure [Figure 6]. The structure of TiAl can be
considered an alternating sequence of titanium and aluminium layers along the c axis.
Atoms of titanium occupy corners of the tetragon and two opposing faces, while aluminium
atoms occupy the remaining four faces, creating an even split in the atom contribution in

the TiAl system.
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Figure 6 L1o lattice of y-TiAl alloy (blue - titanium and grey - aluminium) — created in software VESTA

This thesis examined the L1lo structure of y-TiAl [Figure 6] using PAW and LCAO

approaches. Lattice parameters of relaxed y-TiAl structure are approximately a ~ 3.98 A
and c = 4.08 A.

5.3 NioMnGa

The Ni;MnGa is a ferromagnetic, shape memory alloy, crystalizing in cubic space group
Fm3m, with structure type according to the CuzMnAl (L21). The alloy belongs in the category
of Heusler alloys. Heusler alloys are generally ternary semiconducting or metallic materials
with chemical composition X,YZ (for full-Heusler alloys), or XYZ (for half-Heusler alloys).
Possible structures of Heusler alloys are depicted below, in Figure 7. [38]

Heusler alloys generate considerable interest, mainly due to their remarkable electron
structure, which results in unique magnetic properties. Half-Heusler compounds exhibit only
one magnetic sublattice formed by the atoms in octahedral positions, which can carry
a magnetic moment. On the other hand, full-Heusler compounds exhibit two magnetic
sublattices due to the X atoms occupying the tetrahedral positions, which allows magnetic
interactions of X atoms and the formation of secondary, more delocalized magnetic
sublattice, depicted below in Figure 7. As a result, full-Heusler compounds display a wide
array of magnetic phenomena such as ferromagnetism, ferrimagnetism, or half-metallic
ferromagnetism. [38]

XX #a
ﬁ*#"ﬁ #

PRI S

Figure 7 a) half-Heusler alloy can only exhibit one magnetic sublattice in octahedral positions, while b) full-Heusler alloys
exhibit two magnetic sublattices, that can couple ferromagnetically or antiferromagnetically [38]
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Ni;MnGa in particular generated substantial interest in recent years due to its shape
memory behaviour, and its potential application as a magnetically driven memory shape
alloy. This means that macroscopic deformation can be controlled by external magnetic
fields. [39]

Shape memory alloys (SMA) exhibit polymorphic behaviour dependent on the temperature.
Phase transition between high-temperature, higher symmetry phase, austenite, and low-
temperature, lower symmetry phase, martensite, occurs below the temperature of
martensitic transformation. This transformation is athermal. A number of planar
crystallographic defects, such as twin boundaries, are created during the martensitic
transformation in order to decrease the energy of the interphase boundary, which is
strained due to differences in lattice parameters of martensitic and austenitic lattices. The
twins created during phase transformation have random orientations, which results in an
internal stress of the martensitic structure. [40]

A Austenite

w

Cooling

Temperature
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—>

Twinned martensite Deformed martensite

~,
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Figure 8 Principle of shape memory behaviour, caused by the reorientation of twins under loading [41]

The transformation of randomly oriented twins to a more favourable type of
martensitic twins can be achieved by further loading of the transformed structure and
causing additional strain. This is possible due to the phenomenon, pseudo-plasticity, which
is based on the movement of twin boundaries due to the influence of shear stress being
applied to the structure. The principle of shape memory behaviour is, that by heating up the
deformed martensitic structure above the temperature of martensitic transformation, the
austenitic transformation occurs, thus transforming the structure back to its original shape
and macroscopic dimensions. The process is depicted above in Figure 8.

Furthermore, magnetic shape memory alloys (MSMA) are a special subcategory of
shape memory alloys. The principle of MSMA lies in a large structure deformation induced
by the external magnetic fields (magnetic field induced strain or MFIS). MFIS follows two
principles. The first is characterized as a phase transformation between austenitic and
martensitic phases at constant temperature induced by the applied external field. [42, 43]

The second principle of MFIS observed in the Ni-Mn-Ga MSMA is based on pseudo-
plastic behaviour, which occurs at temperatures lower than the temperature of martensitic
transformation. In this case, no new phase is created and only reorientation of already
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existing twins occurs (magnetic induce reorientation — MIR). In the case of MIR, the
magnetic field induced strain is not reversible by just removing a magnetic field. A driving
force behind reverse reorientation is necessary, therefore the magnetic field of the same
magnitude, but in the perpendicular direction is required. The highest magnetic field
induced strain was measured in Ni-Mn-Ga alloy, with 4 at. % of Co, and 4at. % of Cu at the
expense of Ni and Ga respectively. The relative deformation reached 12%. [41]
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Figure 9 Schematic representation of magnetic field induced reorientation (MIR). Applied magnetic field favours martensitic
twin with their easy axis parallel to given direction, causing MFIS [45]

H

The principle of MIR lies in the reorientation of pre-existing twins in the martensite
with respect to the magnetic anisotropy of the lattice. Reorientation within the MSMA in
the magnetic field occurs due to the high mobility of the twin boundaries. Therefore, it is
easier for the material to react to the change in the magnetic field by macroscopic
deformation than the reorientation of magnetic moments in the lattice. [43, 45, 46]

Low twinning stress (o7s) is not the only criterion for MIR, as this stress has to always be
lower than 6,44, a theoretical maximal stress induced by the magnetic field, defined by the
formula:

C)_l, (5.1)

o, =K (—
mag U a

It is a function of c/a parameter and constant of magnetic anisotropy K;. Materials are
capable of MFIS if this condition is met, due to the high mobility of twin boundaries. The
greater the difference between org and g,,,4 the lower the intensity of the magnetic field is
necessary for the movement of the twin boundaries. [47, 48]

The high-temperature austenitic phase of Ni;MnGa is cubic (L21), with a lattice
parameter approximately a ~ 5.797 A, and it is ferromagnetic at room temperature. The
Curie temperature, and therefore a temperature of ferromagnetic transition is at T, =
376 K. Stoichiometric NiMnGa undergoes a martensitic transformation (transformation
from high-temperature cubic, austenitic, structure to low-temperature tetragonal,
martensitic, structure) at temperature T,,, ® 210 K. This structural transformation has been
observed to be reversible, which allows the shape memory behaviour of the alloy. The Curie
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temperature and the temperature of martensitic transformation are heavily dependent on
stoichiometry of the alloy, thus any change to its chemical composition can impact its
magnetic behaviour. [43]

Figure 10 Cubic lattice of Ni;MnGa alloy (yellow - nickel, grey - manganese and blue - gallium) — created in software VESTA

The martensitic transformation of Ni2MnGa is caused by the electron instability of its
austenitic phase. The simplest martensitic structure, dubbed non-modulated (NM)
martensite [Figure 11], is based on an austenitic L21 space group structure with deformed
geometry. The structure is elongated along the one axis ¢, and it is shortened along the two
remaining axes a, and b in order to preserve the constant volume. The rate of tetragonal
deformation is characterized by the c/a parameter, which depicts the ratio between the
lattice vectors. [49]

Other more complex structures, called modulated, are also based on deformed L2; structure
with a ¢/a < 1. Modulation of the structure means a noticeable decrease in symmetry of
the structure due to the shuffling of atomic planes (110) in the direction [110]. Structure
modulation can be defined using two principles.

The first principle describes the displacement of atomic planes in the direction of the planes,
or perpendicular to it, by means of harmonic function. This function can be proportional, or
disproportional to the crystal lattice.

The second principle is based on the notion of adaptive martensite and uses the principle of
nano-twinning of non-modulated martensite. Nano-twins are the result of a compromise
between the energy of the phase interface between austenite and martensite, and the
energy of the twin boundary. The presence of the nano-twins decreases the energy of the
phase interface.
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Figure 11 Tetragonal lattice of Ni:MnGa alloy (yellow - nickel, grey - manganese and blue - gallium) — created in software
VESTA

In the case of the relaxed non-modulated martensitic structure depicted in [Figure 11] the
value of the c/a parameter lies in the range from 1.20 to 1.25, based on the stoichiometric
composition of the alloy. [49]

21



6 Simulation details

This thesis compared two approaches to describe interatomic interactions, the
projector-augmented wave method (PAW), implemented in VAPS (Vienna Ab initio
Simulation Package), and the method of the linear combination of atomic orbitals (LCAO),
implemented in SIESTA (Spanish Initiative for Electronic Simulations with Thousands of
Atoms). The simulation runs were driven by the Atomic Simulation Environment (ASE)
interface, based on Python programming language.

6.1 Atomic simulation environment

The atomic simulation environment (ASE) is a software package of tools and Python
modules for setting up, running, analysing, and visualizing atomistic simulations. ASE was
created using the programming language Python with the aim to be customizable, very
flexible, and easy to use. ASE allows calculations of even very complex simulation tasks. ASE
provides an interface through which different simulation packages, such as VASP, SIESTA,
LAMMPS, etc., can be implemented. Besides this calculator interface, ASE can provide many
modules for standard simulation tasks, such as structure optimization, molecular dynamics,
etc. ASE version ase-3.22.0 was used for these calculations. [50]

6.1.1 ASE computational details
This thesis used several ASE specific modules, from which a number of distinctive
elements and tools were imported and applied:

Module Description

ase Main module of ASE, containing the most basic objects
required for the simulations.

ase.io Module allows reading and writing of input and output files
from different simulation packages.

ase.calculators.vasp Module contains VASP calculator.

ase.calculators.siesta Module contains SIESTA calculator.

ase.units Module defines physical units like Bohr, Hartree, Rydberg,
kcal, etc.

ase.optimize Module contains tools for local or global structural
relaxation and energy minimization.

ase.constraints Module allows changing the degrees of freedom in the
system for structure relaxation.

ase.parallel Module allows to run calculations in parallel mode.

Table 5 Table of ASE specific modules used for calculations [50]

Structural relaxation within the ASE was performed using Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm, a quasi-Newtonian iterative method for solving nonlinear
optimization problems. In principle, the method approximates the second-order derivate,
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Hessian, to solve the optimization problem, where the solution of the second derivate is
problematic. It is one of the most used algorithms for numerical optimization.

Structural relaxations within this thesis using the BFGS algorithm were performed for
the positions and whole until cells simultaneously, with maximum force condition equal to
0.005 eV/A3. [51, 52, 53, 54]

Object Description

set_initial_magnetic_moments Sets initial magnetic moments of the atoms.

. Retrieves an integer array of atomic numbers in the
get_atomic_numbers

system.
get_potential_energy Calculates potential total energy of the system.
get_magnetic_moment Calculates total magnetic moment of the system.
get_magnetic_moments Calculates local magnetic moments of the atoms.

Retrieves a unit cell parameters (cell vector lengths and

get_cell_lengths_and_angles

UnitCellFilter Filter for optimizing positions and unit cell simultaneously.

One of the minimizers in the ASE package. Determines

BFGS . .
movement of the atoms during structural relaxation.

Table 6 Table of ASE specific methods of an object describing atomic arrangements used for the calculations [50]

6.2 Vienna Ab initio Simulation Package

The Vienna Ab initio Simulation Package (VASP) is a computational software package
for atomic-scale materials modelling, electronic structure calculations and quantum-
mechanical molecular dynamics, from the first principle. VASP calculates an approximate
solution to the many-body Schrédinger equation within DFT, solving the system of Kohn-
Sham equations. For the description of electron and ion interaction, VASP uses the PAW
method. VASP version vasp.5.4.4 was used for these calculations. [55, 56]

6.2.1 VASP computational parameters
Standard VASP calculations use four input files: [55, 56]

e INCAR, which contains the input parameters that control the calculation.

e POSCAR, which contains information about the structure (lattice parameters, Bravais
matrix, names and number of atoms, specification for the coordinate system and
atom positions)

e KPOINTS determines the sampling of the first Brillouin zone

e POTCAR contains the information about the pseudopotentials that are necessary to
run the calculations.

However, due to the use of the atomic simulation environment all the parameters of the
simulations were specified in the ASE script using values in Table 7 below, and only POSCAR,
as a definition of analysed structure, was used.

VASP simulations employed in this thesis used parameters and their values from
Table 7. Parameters specifically not mentioned kept their default settings.
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Calculator - Used
Description

parameter values

ENCUT ENCUT specifies the cut-off energy for the plane-wave-basis set 600
inev.

SIGMA SIGMA specifies the width of the smearing in eV. 0.02

EDIFF EDIFF specifies the global break condition for the electronic self- le-5
consistent loop. It is specified in units of eV.

SYMPREC SYMPREC determines to which accuracy the position in the le-8
POSCAR file must be specified.

GGA GGA specifies an LDA or GGA exchange-correlation functional. PE

PREC PREC specifies the precision-mode Accurate

IALGO IALGO selects the algorithm used to optimize the orbitals 48

ISMEAR ISMEAR determines how the partial occupancies are set for each 1
orbital.

ISPIN ISPIN specifies spin polarization. )

ISTART ISTART determines whether or not to read the WAVECAR file. 0

LORBIT LORBIT, together with an appropriate RWIGS, determines 11
whether PROCAR or PROOUT files are written.

LREAL LREAL determines whether the projection operators are False

evaluated in real-space or in reciprocal space.

Table 7 Table of the VASP parameters used to configure the calculations [55, 56]

6.3 Spanish Initiative for Electronic Simulations with Thousands of Atoms

The Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA) is a
computational software package and method for efficient electronic structure calculations
and ab initio molecular dynamics simulations of molecules and crystals. SIESTA’s efficiency
originates from the use of basis sets of strictly-localized atomic orbitals. In particular, the
double zeta + polarization (DZP) basis functions were used in the thesis. The capabilities of
SIESTA’s code can cover a wide range of possible calculations, from quick and wide
exploratory simulations to highly accurate simulations, matching the quality of other
approaches such as plane-wave-based methods. SIESTA version MaX-1.2.0 was used for
these calculations.

6.3.1 SIESTA computational parameters

Standard SIESTA calculations use an FDF-format file. It contains all the input data
necessary for the calculations similar to the files from VASP like information about the initial
structure, pseudopotentials used for the simulations, sampling of the first Brillouin zone and
parameters controlling the simulations.
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However, similarly to the VASP calculations, ASE was also used to set up and control
the SIESTA calculations. Therefore SIESTA’s FDF-type input file was generated using
parameters from Table 8 with the help of the ASE script, and only a POSCAR-like file was
used to define the analysed structure. [57]

Calculator Parameter Description Used values

MeshCutoff Defines the plane-wave cutoff for the grid. 5442.277 eV

PAO.EnergyShift Modifies the localization of basis function. 0.136 eV

MaxSCFlteration Maximum number of self-consistent field (SCF) 100
iterations.

SCF.DM.Tolerance The self-consistency is achieved, when the 0.0001
maximum difference between the output and
input on each element of the density matrix (DM)
in a SCF cycle is below its value.

SCF.EDM.Tolerance The self-consistency is achieved, when the le-2 eV
maximum absolute change in the energy density
matrix elements is below its value.

SCF.H.Tolerance The self-consistency is achieved, when the le-3eV
maximum absolute change in Hamiltonian matrix
elements is below its value.

SCF.Mixer.History Determines the number of previous SCF steps used 16
in estimating the subsequent inputs.

SCF.Mixer.Method Chooses the mixing algorithm between different Pulay
methods.

SCF.Mix.Spin Controls how the mixing is performed, when spinor
carrying out spin-polarized calculations.

SCF.Mixer.Weight Determines the mixing weight used to mix the 0.4
quantity.

LongOutput By default, not all data sets are written in standard True
outputs. This allows SIESTA to write more
information into the output.

WriteMullikenPop Determines the level of Mulliken population 1

analysis. (1 —to calculate total and local magnetic
moments)

Table 8 Table of the SIESTA parameters used to configure the calculations [57]

6.4 Common calculation parameters
Some parameters were consistent across these two methods:

e For the exchange and correlation energies generalized gradient approximation (GGA)
according to the Pedrew-Burke-Ernzerhof (PBE) was used.
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e The number of k-points, the sampling of the first Brillouin zone, was defined by the
k-point matrix:
14 0 O
[ 0 14 O ]

0o 0 14
Higher k-point matrices were also considered, however, influence on the results has

proven to be extremely minimal.

e Pseudo-potentials used for the VASP calculations were obtained from the VASP
software itself, while PSML pseudo-potentials used for SIESTA calculations were
obtained from the Pseudo-Dojo database.[59]

Element VASP SIESTA
Fe PAW_PBE Fe_sv 23Jul2007 Fe_NC_FR_PBE_PSML
Ti PAW_PBE Ti_pv 07Sep2000 Ti_NC_FR_PBE_PSML
Al PAW_PBE Al 04Jan2001 AI_NC_FR_PBE_PSML
Ni PAW_PBE Ni_pv 06Sep2000 Ni_NC_FR_PBE_PSML
Mn PAW_PBE Mn_pv 02Aug2007 Mn_NC_FR_PBE_PSML
Ga PAW_PBE Ga_d 06Jul2010 Ga_NC_FR_PBE_PSML

Table 9 Table of used pseudo-potentials [13, 58, 59]

6.5 Python

Python is a high-level, general-purpose programming language, which emphasizes
significant code readability. It supports multiple programming paradigms, such as object-
oriented, structured, or functional programming. As previously mentioned, ASE was fully
scripted using the python programming language, therefore implementation of simulations
into the python script was incredibly straightforward. [60]

6.5.1 Scripts for calculation of elastic constants

Scripts for the calculation of elastic constants were written using the programming
language Python, based on the previously mentioned study by R. Yu et al. [26] Two scripts
were written, and both are included in the appendix. The purpose of the first script is to
create strain tensors using Voigt notation, create a deformation matrix, adjust input files,
and create twelve deformed structures. For these twelve deformed structures, the
relaxation of ionic positions is then launched, during which lattice vectors stay unchanged.
The main output from these calculations is stress tensors for all twelve structures. These
stress tensors, together with deformation tensors, then serve as an input for the second
script, which calculates the elastic constants of the examined structure. The output of the
second script is a 6 x 6 elastic constants matrix. Both of the scripts in the Appendix are
modified for VASP simulations, however, with minor alterations to the code it is possible to
use them with other methods as well. Scripts were created with Python3.
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7 Results and discussion

Calculations for our chosen materials, Fe, y-TiAl and Ni2MnGa, were performed and
the results of these simulations are presented and discussed in this chapter.

7.1 Energy-Volume (E-V) curves and dependence of magnetic moments on cell

volume

Calculation of the energy-volume curve allows us to determine the equilibrium
energy, the equilibrium cell volume, the bulk modulus and its derivates. These properties
can be further used to possibly establish an initial prediction of thermodynamic properties.
The main parameter examined by these simulations was the dependence of the total energy
of the system, and magnetic moments per atom on the cell volume. These parameters were
calculated using VASP and SIESTA simulation packages and are shown in Figure 12 through
Figure 17.

7.1.1 Fe

The dependence of relative total energy on the cell volume of Fe is represented in
Figure 12. The energy-volume curve for Fe was calculated for 17 different atomic volumes.
Total energies were then recalculated with respect to the local minimum. The figure depicts
that the equilibrium atomic volume for VASP is approximately 11.33 A3/atom, and the
equilibrium atomic volume for SIESTA is approximately 11.45 A3/atom. Furthermore, it
shows that values of relative total energies for Fe from both VASP and SIESTA are noticeably
comparable.

Comparison of E-V curves for Fe calculated with
VASP and SIESTA
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Figure 12 Comparison of energy-volume curves for Fe
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The reason behind calculations being performed for such small atomic volumes is the
examination of average magnetic moments. Average magnetic moments were calculated
and marked in Figure 13 as a function of atomic volume.

Dependence of magnetic moments per atom on atomic
volume for Fe calculated with VASP and SIESTA
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Figure 13 Comparison of the magnetic moments per atom as a function of cell volume for Fe

The dependence of magnetic moments per atom on atomic volume for Fe calculated
by VASP and SIESTA is represented in Figure 13. It shows comparable results across these
two methods. As previously stated, calculations included very small atomic volumes, where
a sharp drop in the magnetic moment per atom can be observed at an atomic volume of
6.91 A3/atom, which is approximately 60% of equilibrium atomic volume. Any significant
differences below this volume can be attributed to the calculation error at a given point.

7.1.2  TiAl

The dependence of relative total energy on the cell volume of y-TiAl is represented in
Figure 14. The energy-volume curve for y-TiAl was calculated for 13 different atomic
volumes. Total energy was recalculated with respect to the local minimum. The figure shows
that the equilibrium atomic volume of y-TiAl for VASP is approximately 16.32 A3/atom, and
for SIESTA is 16.18 A3/atom. It also shows a noticeable disparity in relative total energy with
changing atomic volume, which can result in different elastic properties calculated by these
two methods.
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Comparison of E-V curves for TiAl calculated with
VASP and SIESTA
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Figure 14 Comparison of energy-volume curves for y-TiAl

Due to the nonmagnetic nature of y-TiAl, depicting the dependence of magnetic
moments on cell volume was deemed unnecessary.

7.1.3 Ni;MnGa

The dependence of relative total energy on the cell volume of NiMnGa austenite is
represented in Figure 15. The energy-volume curve for NizMnGa was calculated for 24
different atomic volumes. Total energy was recalculated with respect to the local minimum.
The figure shows very small differences in relative total energies in the proximity of
equilibrium atomic volume, while the only noticeable differences are present in small
atomic volumes. Due to the inclusion of small atomic volumes in calculations, for the
purpose of the examination of magnetic moments, the equilibrium energy is difficult to
differentiate, therefore the second figure depicting a detail of the energy-volume curves in
the proximity of the minimums was calculated.
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Comparison of E-V curves for Ni,MnGa calculated with
VASP and SIESTA
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Figure 15 Comparison of energy-volume curves for Ni2MnGa

The detail of energy-volume curves in the proximity of the minimums, from Figure 15
is represented in Figure 16. It shows that the equilibrium atomic volume for VASP is
approximately 12.26 A3/atom, while the equilibrium atomic volume for SIESTA s
approximately 12.01 A3/atom. Consequently, it shows that the energy-volume curve for the
SIESTA is shifted slightly towards the smaller atomic volumes.

Comparison of minimums of E-V curves for Ni,MnGa
calculated with VASP and SIESTA
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Figure 16 Comparison of minimums of energy-volume curves for Ni2MnGa
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The dependence of magnetic moments per atom on atomic volume for Ni;MnGa
calculated by VASP and SIESTA is depicted in Figure 17. It once again shows comparable
results across these two methods. Similarly to the Fe calculations, very small atomic
volumes were included, where once again a sharp drop in the magnetic moment per atom
can be observed at small atomic volumes, namely at 5.69 A3/atom for VASP and
4.96 A3/atom for SIESTA. Which is approximately 46.41% of equilibrium atomic volume for
VASP, and 41.30% of equilibrium atomic volume for SIESTA. Any significant differences
below these volumes could be once again attributed to the calculation error in these points.

Dependence of magnetic moments per atom on atomic
volume for Ni,MnGa calculated with VASP and SIESTA
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Figure 17 Comparison of the average magnetic moment as a function of cell volume for Ni2MnGa

7.2 Tetragonal deformation paths

The tetragonal deformation path or Bain’s transformation path describes the
dependence of total energy on a tetragonal distortion of the structure. The degree of
tetragonal distortion, a ¢/a parameter, is characterized as a ratio between ¢ and a lattice
parameters. Figure 18 depicts an example of a tetragonal deformation path for stable,
metastable, or unstable material, while Figure 19 depicts a tetragonal distortion of a cubic
cell.
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Figure 18 Example of tetragonal deformation path, depicting three possible states of the material, stable, metastable, and
unstable [61 - edited|]
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Figure 19 Tetragonal deformation of cubic cell [62]

7.2.1 Fe
The tetragonal deformation path of Fe is depicted in Figure 20. Total energy was

calculated for 29 different c/a parameters, from c/a = 0.9 to c¢/a = 1.6. Total energies were
then recalculated with respect to the energy of the cubic structure (BCC, c/a = 1.0). Results
from VASP calculations depict a tetragonal deformation path for Fe with low spin state
electrons, a metastable state, while results from SIESTA calculations depict a tetragonal
deformation path for Fe with high spin state electrons, an unstable state. The figure depicts

FCC Fe at deformation c/a = /2.
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Relative total energy as a function of c/a parameter of Fe
calculated with VASP and SIESTA
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Figure 20 Tetragonal deformation path for Fe

BCC iron has only one possible electron state, while FCC iron has two. A high spin state,
which results in a higher magnetic moment, while a low spin state results in lower magnetic
moments in comparison. This is possible to be observed in Figure 21. It is apparent that
SIESTA calculations hold this high spin state throughout the whole deformation path, while
VASP automatically finds the low spin state, which is energetically more convenient. Whilst
accounting for the different spin states of the electron across the two methods, the results
could be considered acceptable.

The dependence of magnetic moments per atom on the tetragonal deformation of Fe
calculated with VASP and SIESTA is depicted in Figure 21. It describes the difference
between the high spin electron state of Fe in SIESTA, and low spin state of Fe in VASP. It is
apparent that magnetic moments from SIESTA calculations change very little with the
tetragonal deformation, while magnetic moments from VASP calculations decrease at
c/a =1.275, which corresponds with the occurrence of metastable Fe (FCC) at previously

mentioned c/a = /2.
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Dependence of magnetic moments per atom on of c/a
parameter of Fe calculated with VASP and SIESTA
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Figure 21 Magnetic moments per atom as a function of tetragonal deformation for Fe

7.2.2 TiAl

The tetragonal deformation path of y-TiAl is represented in Figure 22. Total energy
was calculated for 25 different c/a parameters, from c/a = 0.9 to c/a = 1.2. Total energies
were then recalculated with respect to the energy of the cubic structure (c/a = 1). It
indicates that VASP reaches a local minimum at approximately c/a =1.02, while SIESTA
reaches a local minimum at approximately c/a =1.015. This notion, c/a > 1, is consistent
with experimental observations. [63] It appears that the increase of relative energy with
volume in SIESTA is slightly steeper compared to the VASP, which once again points to the
possible difference in the elastic constants.

Relative total energy as a function of c¢/a parameter of Fe
calculated with VASP and SIESTA
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Figure 22 Tetragonal deformation path for y-TiAl
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Similarly to the calculations of energy-volume curves, the paramagnetic nature of y-TiAl
makes portraying the dependence of magnetic moment on tetragonal deformation
unnecessary.

7.2.3 Ni2MnGa

The tetragonal deformation path of Ni;MnGa is represented in Figure 23. Total energy
was calculated for 19 different c/a parameters, from c/a = 0.9 to c¢/a = 1.35. Total energies
were then recalculated with respect to the energy of the austenitic structure (cubic L2
structure, c/a=1). It depicts a stable martensitic phase at tetragonal deformation c/a =~
1.275 for both VASP and SIESTA calculations. It is apparent that SIESTA reports a much more
stable NM martensitic structure compared to the VASP. The austenitic structure reported by
SIESTA exhibits considerably unusual energetic behaviour. The reasons behind such
behaviour are currently unknown, therefore additional analysis should be considered.

Relative total energy as a function of c/a parameter for
Ni,MnGa calculated with VASP and SIESTA
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Figure 23 Tetragonal deformation path for Ni2MnGa

The dependence of magnetic moments per atom on tetragonal deformation of
Ni;MnGa calculated with VASP and SIESTA is depicted in Figure 24. It shows that SIESTA
calculations report higher magnetic moments compared to the VASP calculations while
copying roughly the same path.
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Dependence of magnetic moments per atom on of c/a
parameter for Ni,MnGa calculated with VASP and SIESTA

® VASP (PAW) @ SIESTA (LCAO)

‘e 1100
o
©
~>
=
< 1075
5 ® o
£
o [ ] [
S 1050 ® ° e o o L4
'Y ° °
= * o o ® ¢ ®
& e o o °
o0 ® o
T 1.025 o Y )
> ) ®
° o ° o
°
°
1.000
0.900 0.950 1.000 1.050 1.100 1.150 1.200 1.250 1.300 1.350

c/a/l-]

Figure 24 Magnetic moments per atom as a function of tetragonal deformation for Ni2MnGa

7.3 Elastic constants

Elastic constants are parameters for the description of elasticity, a fundamental
property of crystalline materials, during elastic deformation. Elastic constants are described
by a matrix, using Hook’s law in its tensor form, or its simplified version, due to Voigt
notation. Calculations of elastic constants for this thesis were performed using principles
presented in a study by R. Yu et al. Principle of the calculation lies in the creation of twelve
different deformed structures under predefined strain, for which stress and strain tensors
are calculated. From these stress and strain tensors, elastic constants are then determined.

Bulk modulus is a measure of resistance to compressive straining. It is one of the properties
possible to obtain from the elastic constants. The formula for bulk modulus of cubic
materials is:

B=——
3
while formula for bulk modulus of tetragonal materials is: [64]

1 (7.2)
B = 5 (2C11 + 2C15 +4Cy5 + C33),
7.3.1 Fe

Elastic constants for Fe were calculated using scripts in the Appendix. Due to the cubic
nature of Fe, only three independent elastic constants were expected, while all the other
elements of the elasticity matrix should remain zero. However results from both VASP and
SIESTA calculations show that these elements do not remain zero, which is caused by the
inaccuracies in the calculations of stress tensors. Nevertheless, this is not an issue if the
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variations from zero are relatively minor, which is not the case with the results from SIESTA,

as the variations of the zero elements are far greater than in the results from the VASP.

These variations and the accuracy of the stress tensor calculations can be influenced by the

strain used in the calculations. Therefore, the dependence of elasticity matrices and

subsequently elastic constants on the strain was investigated. Calculations of elastic

constants in VASP and SIESTA were performed for five different strains. The variations on

zero elements were then compiled into Figures 25 and 26. Examples of elasticity matrices in

dependence on the strain, namely relative strain 0.01 and 0.03, are listed inTable 10.

Strain = 0.01
VAPS (PAW) method
239.39 153.96 154.21 0.32 -0.96 0.59
153.96 238.83  155.27 -0.31 1.20 1.50
154.21 155.27  240.16 -0.20 0.91 1.63
0.32 -0.31 -0.2 82.97 0.78 -0.70
-0.96 1.20 0.91 0.78 83.91 0.33
0.59 1.50 1.63 -0.70 0.33 85.46
SIESTA (LCAO) method
272.156 158.028 141.979 29.810 4,727  37.019
158.028 314.520 162.046 1.348 20.041 49.038
141.979 162.046 298.496 13.549 23.743 56.307
29.810 1.348 13.549 112.121 -4.324 -26.439
4,727 20.041 23.743 -4.324 134.383 -25.565
37.019 49.038 56.307 -26.439 -25.565 106.154
Strain = 0.03
VAPS (PAW) method
267.65 150.21 152.94 0.30 -1.33 0.17
150.21 267.95 156.81 -1.46 1.25 1.02
152,94 156.81 271.05 -0.74 1.60 2.38
0.30 -1.46 -0.74 95.87 2.14 0.34
-1.33 1.25 1.60 2.14 96.19 0.90
0.17 1.02 2.38 0.34 0.90 97.9
SIESTA (LCAO) method
257.867 111.66 100.789 2.648 -0.435 3.325
111.660 265.665 100.328 14.300 0.103 12.862
100.789 100.328 246.197 5.361 -4.533 -12.176
2.648 14.300 5.361 96.532  -2.362 1.671
-0.435 0.103  -4.533 -2.362 74.572 6.183
3.325 12.862 -12.176 1.671 6.183  93.483

Table 10 Example of elasticity matrices obtained for different strain calculated with VASP and SIESTA
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Figure 25 Comparison of relative differences of zero members for different strains obtained from VASP calculations
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Figure 26 Comparison of relative differences of zero members for different strains obtained from SIESTA calculation

From Figure 25 it is apparent that calculation of elastic constants using VASP benefits from
lower strains, while in contrast calculations of elastic constants using SIESTA can benefit
from higher strains. Elastic constants calculated using VASP and SIESTA for all different
strains, together with experimental elastic constants are listed in Table 11. Experimental
elastic constants of iron were measured using resonant ultrasound spectroscopy over the
temperature range 3-500 K by J. J. Adams et al. [65]
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Cu Ci2 Caa

[GPa] [GPa] [GPa]
Experimental [60] 239.55 135.75 120.75
Strain = 0.01
VASP (PAW) 239.46 154.48 84.11
SIESTA (LCAOQ) 295.06 154.02 117.55
Strain = 0.021
VASP (PAW) 261.49 155.67 92.57
SIESTA (LCAOQ) 278.34 102.97 64.24
Strain = 0.03
VASP (PAW) 268.88 153.32 96.65
SIESTA (LCAO) 256.58 104.26 88.20
Strain = 0.04
VASP (PAW) 265.62 150.94 100.82
SIESTA (LCAO) 261.47 106.86 79.50
Strain = 0.05
VASP (PAW) 263.71 150.04 104.92
SIESTA (LCAOQ) 260.86 115.66 84.04

Table 11 Table of experimental elastic constants and elastic constants for Fe calculated with VASP and SIESTA for all strains

A comparison of calculated elastic constants to experimental elastic constants shows
that both methods overestimate Ci1, with the only exception of VASP at strain = 0.01.
Furthermore, it shows that element Ci» is overestimated by VASP, while being
underestimated by SIESTE, with the only exception at strain = 0.01 where it is once again
overestimated. Additionally, the last elastic constant Cs4 appears to be underestimated by
both VASP and SIESTA.
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Figure 27 Comparison of spatial dependence of Young’s modulus for elastic constants of Fe calculated using VASP (left) and
SIESTA (right) for strain = 0.021 [70]
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From the elastic constants in Table 11, a spatial dependence of Young’s modulus of Fe
was calculated using The MELASA software tool. [70] Results are depicted and compared in
Figure 27. The spatial representation of Young’s modulus obtained from VASP closely
resembles the spatial representation of Young’s modulus reported by J. J. Adams et al. [65].
However, that can not be said about the spatial representation of Young’s modulus from
SIESTA, where the shape of Young’s modulus seems to be drastically different.

Bulk Modulus
[GPa]
Strain=0.01 UM Gain=0.03 Strain=0.04 Strain = 0.05
0.021
VASP (PAW) 182.81 190.94 191.84 189.17 187.93
SIESTA
(LCAO) 201.03 161.43 155.03 158.40 164.06

Table 12 Table of calculated bulk moduli from elastic constants for Fe obtained from VASP and SIESTA

Form the elastic constants listed in Table 11, bulk moduli for both methods and all the
strains were calculated. The resulting bulk moduli are listed in Table 12. Bulk modulus
obtained experimentally, reported J. J. Adams et al. [65], is B=170.35 GPa. Results show
that all bulk moduli from VASP are moderately overestimated, while bulk moduli from
SIESTA are slightly underestimated, for all but strain = 0.01. [65, 66]

7.3.2 y-TiAl

Calculations of elastic constants for y-TiAl using VASP, and SIESTA were performed,
and the results are listed in Table 13. Experimental elastic constants were measured using
the RPR method in the temperature range 4—298 K by K. Tanaka et al. [67] From Table13 it is
noticeable that elastic constants obtained from SIESTA calculations match the experimental
elastic constants better than the constants obtained from the VASP calculations. However,
both sets of elastic constants can be considered viable.

Cu Ci2 Ci3 Cs3 Caa Ces
[GPa] [GPa] [GPa] [GPa] [GPa] [GPa]
Experimental[] 186.00 72.00 74.00 176.00 101.00 77.00
VASP (PAW) 168.77 89.80 85.47 170.54 112.06 71.06
SIESTA (LCAO) 177.36 90.08 87.35 165.04 113.99 79.60

Table 13 Table of elastic constants for y-TiAl calculated with VASP and SIESTA
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Figure 28 Comparison of spatial dependence of Young’s modulus for elastic constants of y-TiAl calculated using VASP (left)
and SIESTA (right) [70]

From the elastic constants in Table 13, a spatial dependence of Young’s modulus of y-
TiAl was calculated using the MELASA software tool [70]. Results are depicted and
compared in Figure 28. It can be stated that spatial representations of Young’s modulus
calculated with VASP, and SIESTA are fairly similar as opposed to the drastic difference of Fe
previously depicted in Figure 27.

Bulk Modulus
[GPa]
Experimental [61] 112.00
VASP (PAW) 114.40
SIESTA (LCAO) 116.59

Table 14 Table of calculated bulk moduli from elastic constants for y-TiAl obtained from VASP and SIESTA

From the elastic constants listed in Table 13, bulk moduli for both methods were
calculated. The resulting bulk modulus is listed in Table 14. It is apparent that the bulk
modulus from both methods is slightly overestimated compared to the experimentally
obtained bulk modulus by K. Tanaka et al. [67]

7.3.3 Ni2MnGa

Calculations of elastic constants for austenitic NizMnGa using VASP, and SIESTA were
performed, and the results are listed in Table 15. Experimental elastic constants were
measured using the ultrasonic pulse echo technique by J. Worgull et al. [68]
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Cu Ci2 Caa

[GPa] [GPa] [GPa]
Experimental [62] 152.00 143.00 103.00
VASP (PAW) 169.47 159.69 113.97
SIESTA (LCAO) 168.89 169.73 107.40

Table 15 Table of elastic constants for austenitic NiMnGa calculated with VASP and SIESTA

Both sets of elastic constants can be considered slightly overestimated. However, results
from SIESTA point to the instability of the crystals due to C11 < C12. Therefore, owing to the
apparent mechanical instability of a crystal, a set of elastic constants for martensitic
Ni2MnGa was also calculated. Results for NM martensitic NizMnGa are listed in Table 17.

Bulk Modulus
[GPa]
Experimental [62] 146.00
VASP (PAW) 163.13
SIESTA (LCAO) 169.45

Table 16 Table of calculated bulk moduli from elastic constants for austenitic NiMnGa obtained from VASP and SIESTA

From the elastic constants listed in Table 15, bulk moduli for both methods were
calculated. The resulting bulk modulus is listed in Table 16. It is apparent that bulk moduli
from both methods are overestimated compared to the experimentally obtained bulk
modulus by J. Worgull et al. [68]

The set of elastic constants for NM martensitic NizMnGa is listed in Table 18. Elastic
constants for comparison were calculated by VASP with the help of the energy-strain
method by S. Ozdemir Kart et al. [69] show that elastic constants obtained by VASP match
the calculated constants better than the elastic constants obtained by SIESTA, which could
be once again considered slightly overestimated.

C11 Ci12 C13 C33 Ca4 C66
[GPa] [GPa] [GPa] [GPa] [GPa] [GPa]
Calculated [63] 252.00 74.00 144.00 194.00 100.00 55.00
VASP (PAW) 246.24 76.34 148.74 191.58 99.37 53.40
SIESTA (LCAO) 285.46 67.01 142.87 223.95 98.97 43.88

Table 17 Table of elastic constants for martensitic Ni2MnGa calculated with VASP and SIESTA
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Figure 29 Comparison of spatial dependence of Young’s modulus for elastic constants of Ni;MnGa calculated using VASP
(left) and SIESTA (right) [70]

From the elastic constants in Table 17, a spatial dependence of Young’s modulus of
Ni;MnGa was calculated using the MELASA software tool. [70] Results are depicted and
compared in Figure 29. It is apparent that there is a significant disparity between the spatial
representations of Young’s moduli from VAPS and SIESTA.

Bulk Modulus
[GPa]
Calculated 158.00
VASP (PAW) 159.08
SIESTA (LCAO) 166.71

Table 18 Table of calculated bulk moduli from elastic constants for martensitic Ni2MnGa obtained from VASP and SIESTA

From the elastic constants listed in Table 17, bulk moduli for both methods were
calculated. The resulting bulk modulus is listed in Table 18. Results from VASP are closely
comparable to the bulk modulus calculated by S. Ozdemir Kart et al. [69], while results from
SIESTA are slightly overestimated.
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8 Conclusion

The influence of different quantum-mechanical descriptions of the interatomic
interactions in DFT-based ab initio calculations was investigated in this work. In particular,
the highly localized wave functions described by the linear combination of atomic orbitals
(LCAO) implemented within the Spanish Initiative for Electronic Simulations with Thousands
of Atoms (SIESTA) simulation package were compared with the delocalized wave functions
described by the projector-augmented wave method implemented within Vienna ab initio
simulation package (VASP). The influence of these two approaches was explored on three
different materials: Fe, y-TiAl, and Ni;MnGa, for which the dependence of magnetic
moments on the deformation paths, namely the tetragonal deformation path and the
volume deformation, were calculated, as well as the elastic properties described by stiffness
tensor.

The dependence of magnetic moments on the volume deformation path showed
relatively minor divergence across these two calculation approaches, as both methods
reported highly comparable results. A sight change occurred in the calculations of the
dependence of magnetic moments on tetragonal deformation paths, where SIESTA reported
slightly overestimated magnetic moments compared to the VASP calculations. In the
calculation of the tetragonal deformation path for iron, it also demonstrated that SIESTA
prefers the high spin state, exhibiting a higher magnetic moment, which is kept during the
whole deformation path, while VASP automatically finds a low spin state, with a low
magnetic moment, as energetically more favourable. The calculation of the tetragonal
deformation path for Ni;MnGa showed that SIESTA reports significantly more stable
tetragonal NM martensite compared to the results from the VASP calculations.

Elastic constants were calculated using the stress-strain method presented by
R. Yu et al. for all three materials. The results show us that the elastic constants for Ni;MnGa
and y-TiAl calculated by VASP, and SIESTA are relatively comparable with the experimental
or calculated elastic constants for both materials with fairly minimal variations. However,
elastic constants for Fe calculated by SIESTA exhibit greater discrepancies in comparison to
the experimental elastic constants or even elastic constants calculated by VASP. This is
caused by the nature of atomic bonds within the materials. Both NizMnGa and y-TiAl exhibit
higher proportionality of covalent bonds, which is quite suitable for the LCAO method.
While highly delocalized electrons of iron necessitate the use of plane-wave approaches.

Furthermore, calculations of spatial representation of Young’s moduli from calculated
stiffness tensors showed a significant disparity between the methods, especially in the case
of Fe. This points to the unsuitability of the SIESTA for the calculations of elastic constants
using the stress-strain approach. More conventional energy-strain approaches could yield
more appropriate results, however, that is the subject of further study.

The results from SIESTA could become clearer with the further tuning of the
simulation settings. This was however beyond the scope of this thesis. Therefore, VASP
proved itself to be much safer in this regard, as finding the correct simulation settings is far
simpler. As such the use of VASP is in these cases more preferable, despite being more
computationally challenging.
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Symbols and abbreviations

DFT Density functional theory

LDA Local Density Approximation

GGA Generalized Gradient Approximation

PBE Pedrew-Burke-Ernzerhof

BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm
PAW Projector-Augmented Wave

VASP Vienna Ab initio Simulation Package
LCAO Linear Combination of Atomic Orbitals
SIESTA Spanish Initiative for Electronic Calculations with Thousands of Atoms
ASE Atomic Simulation Environment

GTO Gaussian-Type Orbitals

STO Slater-Type Orbitals

NAO Numerical-Type Orbitals

PAO Pseudo-Atomic Orbitals

SD Steepest Decent

CG Conjugate Gradient

ULICS Universal Linear Independent Coupling Strains
BBC Body-Centred Cubic

FCC Face-Centred Cubit

BCT Body-Centred Tetragonal

NM non-modulated

SMA Shape Memory Alloys

MSMA Magnetic Shape Memory Alloys

MFIS Magnetic Field Induced Strain

MIR Magnetic Induced Reorientation

SCF Self-Consistent Field

DM density matrix

EDM energy density matrix

Table 19 Table of abbreviations
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Appendix

Appendix 1: Script prep_nonDiag.py

HHUHHH
####This script was written as a practical part of master’s thesis by Bc. Martin Cavojec. Purpose of this script is to create
#ittttwelve different deformed structures and calculate stress and strain tensors, which later serve as an input for
#it#further calculations.

H####This code is based on works:

HEH#HAYU, R., J. ZHU a H. Q. YE. Calculations of single-crystal elastic constants made simple. Computer Physics
####Communications. 2010, 181(3), 671-675. doi: https://doi.org/10.1016/j.cpc.2009.11.017

H##H#ZHOU, L., D. HOLEC and P. H. MAYRHOFER. First-principles study of elastic properties of cubic Cri—AIN

#it##talloys. Journal of Applied Physics. 2013, 113(4), 043511. doi: https://doi.org/10.1063/1.4789378

HHUHHH

import os

import shutil

import sys

from distutils.dir_util import copy_tree
from subprocess import call

eps = 0.021 #set the degree of relative deformation

maindir = os.getcwd() #maindir - main directory where ‘eq’ folder should be
os.chdir('eq")

eqdir = os.getcwd() #eqdir - 'eq’ directory

if os.path.exists('strain.dat'):
os.remove('strain.dat')

#create the case folder

os.chdir(maindir)

casename=('eps=%s' % (eps))

print('Preparing case %s in %s' % (casename, maindir))
os.mkdir(casename)

os.chdir(casename)

casedir= os.getcwd() #casedir - the 'eps=0.021' directory

#creation of strain vector, using Voigt’s notation
for ninrange(1, 7):
ifn==1:
epsl=1;eps2=-2;eps3=3
epsd =-4; eps5 =5; eps6 =-6
elif n==2:
epsl=2;eps2=1;eps3=-5
epsd =-6; eps5 =4; eps6 =3
elif n==3:
epsl=3;eps2=4;eps3=-1
epsd =5; eps5 =6; eps6 =-2
elif n==4:
epsl=4; eps2=-3;eps3=6
epsd =1; eps5 =-2; eps6 =5
elif n ==5:
epsl=5; eps2=6;eps3 =2
epsd =-3; eps5 =-1; eps6 =-4
elif n==6:
epsl =6; eps2 =-5; eps3 =-4
epsd =2; eps5=-3; eps6 =1

os.chdir(casedir)
eps1="{:.8f}".format((eps*epsl)/6); eps2="{:.8f}".format((eps*eps2)/6); eps3="{:.8f}".format((eps*eps3)/6)
eps4="{:.8f}".format((eps*eps4)/6); eps5="{:.8f}".format((eps*eps5)/6); eps6="{:.8f}".format((eps*eps6)/6)

print(' -> strain vector eps = (%s, %s, %s, %s, %s, %s' % (epsl, eps2, eps3, eps4, eps5, eps6))
with open('strain.dat', 'a') as f:

53



f.writelines('%s %s %s %s %s %s\n' % (epsl, eps2, eps3, eps4, eps5, eps6))

epsl=float(epsl); eps2=float(eps2); eps3=float(eps3)

epsd=float(eps4); eps5=float(eps5); eps6=float(eps6)

#definition of the deformation matrix

eps4d= float((eps4)/2.0); eps5= float((eps5)/2.0); eps6= float((eps6)/2.0)

dll=epsl; d12=eps6; d13=eps5
d21=epsb6; d22=eps2; d23=epssd
d31=eps5; d32=eps4; d33=eps3

os.chdir(casedir)
caseeps=('eps%s' % (n))
os.mkdir(caseeps)
os.chdir(caseeps)
epsdir= os.getcwd()
files = os.listdir(eqdir) ~ #copying to $Scaseeps directory
copy_tree(eqdir, epsdir)
os.chdir(epsdir)
with open("INCAR", 'r') as f: #editing of the INCAR
get_all=f.readlines()
with open("INCAR", 'w') as f: #removal of any ISIF, NSW and IBRION
fori,line in enumerate(get_all,1):
if "ISIF" in line:
f.writelines("")
elif "NSW" in line:
f.writelines(")
elif "IBRION" in line:
f.writelines("")
else:
f.writelines(line)
with open('INCAR', 'a') as f:  #append ISIF, NSW and IBRION to INCAR
f.writelines(' ISIF = 2\n')
f.writelines(' NSW = 60\n')
f.writelines(' IBRION = 1\n')

with open("run.sh",'r') as f:
get_all=f.readlines()
with open("run.sh",'w') as f:
fori,line in enumerate(get_all,1):
ifi ==3:
f.writelines('#PBS -N Xx-eps%s\n' %(n))  #Name of the job
else:
f.writelines(line)

#construction of POSCAR ----- definitions-----
#creating POSCAR - repeating for possitive eps

#getting transformation matrix

#Write eps1-6 to strain.dat

epsli= float("{:.10f}".format(1+d11)); eps12= float("{:.10f}".format(d12)); eps13= float("{:.10f}".format(d13))
eps21= float("{:.10f}".format(d21)); eps22= float("{:.10f}".format(1+d22)); eps23= float("{:.10f}".format(d23))
eps31= float("{:.10f}".format(d31)); eps32= float("{:.10f}".format(d32)); eps33= float("{:.10f}".format(1+d33))

#getting equilibrium unicell shape
with open("POSCAR",'r") as f:
get_all=f.readlines()
with open("POSCAR",'w') as f:
fori,line in enumerate(get_all,1):
ifi==3:
split_line = line.split()

all = float(split_line[0]); al12 = float(split_line[1]); al13 = float(split_line[2])

f.writelines(line)
elif i ==4:
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split_line = line.split()
a21 = float(split_line[0]); a22 = float(split_line[1]); a23 = float(split_line[2])
f.writelines(line)
elif i ==5:
split_line = line.split()
a31 = float(split_line[0]); a32 = float(split_line[1]); a33 = float(split_line[2])
f.writelines(line)
else:
f.writelines(line)

# definition of the new unitcell

b11="{:.10f}".format(epsll*all+epsl2*al2+epsl3*al3);
b12="{:.10f}".format(eps21*all+eps22*al2+eps23*al3)
b13="{:.10f}".format(eps31*all+eps32*al2+eps33*al3)
b21="{:.10f}".format(epsl1*a2l+epsl2*a22+epsli3*a23)
b22="{:.10f}".format(eps21*a2l+eps22*a22+eps23*a23)
b23="{:.10f}".format(eps31*a21+eps32*a22+eps33*a23)
b31="{:.10f}".format(eps11*a31+epsl2*a32+epsl3*a33)
b32="{:.10f}".format(eps21*a31+eps22*a32+eps23*a33)
b33="{:.10f}".format(eps31*a31+eps32*a32+eps33*a33)

#construction of the new POSCAR
with open("POSCAR",'r') as f:
get_all=f.readlines()
with open("POSCAR",'w') as f:
fori,line in enumerate(get_all,1):
if i ==3:
f.writelines('%s %s %s\n' %(b11, b12, b13))
elifi==4:
f.writelines('%s %s %s\n' %(b21, b22, b23))
elifi==5:
f.writelines('%s %s %s\n' %(b31, b32, b33))
else:
f.writelines(line)

gsub_call = "qgsub %s"
call(gsub_call % "run.sh", shell=True)  #launch the job into queue

os.chdir(casedir)
#negative eps

eps1="{:.8f}".format((-1.0)*eps1); eps2="{:.8f}".format((-1.0)*eps2); eps3="{:.8f}".format((-1.0)*eps3)
epsd="{:.8f}".format((-2.0)*eps4); eps5="{:.8f}".format((-2.0)*eps5); eps6="{:.8f}".format((-2.0)*eps6)
print(" -> strain vector eps = (%s, %s, %s, %s, %s, %s' % (epsl, eps2, eps3, eps4, eps5, eps6))
with open('strain.dat’, 'a') as f:
f.writelines('%s %s %s %s %s %s\n' % (epsl, eps2, eps3, eps4, eps5, eps6)) #Write eps1-6 to strain.dat

epsl=float(epsl); eps2=float(eps2); eps3=float(eps3)
epsd=float(eps4); eps5=float(eps5); eps6=float(eps6)

#definition of the deformation matrix
eps4= (eps4)/2.0; eps5= (eps5)/2.0; eps6= (eps6)/2.0

d11=float(epsl); d12=float(eps6); d13=float(eps5)
d21=float(eps6); d22=float(eps2); d23=float(eps4)
d31=float(eps5); d32=float(eps4); d33=float(eps3)

os.chdir(casedir)
caseeps=('eps-%s' % (n))
os.mkdir(caseeps)
os.chdir(caseeps)
epsdir= os.getcwd()
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files = os.listdir(eqdir) ~ #copying to Scaseeps directory
copy_tree(eqdir, epsdir)
os.chdir(epsdir)
with open("INCAR", 'r') as f:
get_all=f.readlines()
with open("INCAR", 'w') as f:
fori,line in enumerate(get_all,1):
if "ISIF" in line:
f.writelines("")
elif "NSW" in line:
f.writelines("")
elif "IBRION" in line:
f.writelines("")
else:
f.writelines(line)
with open('INCAR’, 'a') as f:
f.writelines(' ISIF = 2\n')
f.writelines(' NSW = 60\n')
f.writelines(' IBRION = 1\n')

with open("run.sh",'r') as f:
get_all=f.readlines()
with open("run.sh",'w') as f:
fori,line in enumerate(get_all,1):
ifi ==3:
f.writelines('#PBS -N 32Fe-eps-%s\n' %(n))
else:
f.writelines(line)

#construction of POSCAR ----- definitions-----
#creating POSCAR - repeating for negative eps

#getting transformation matrix

epsll=float("{:.10f}".format(1+d11)); eps12= float("{:.10f}".format(d12)); eps13= float("{:.10f}".format(d13)
eps21= float("{:.10f}".format(d21)); eps22= float("{:.10f}".format(1+d22)); eps23= float("{:.10f}".format(d23)
eps31= float("{:.10f}".format(d31)); eps32= float("{:.10f}".format(d32)); eps33= float("{:.10f}".format(1+d33)

#getting equilibrium unicell shape
with open("POSCAR",'r") as f:
get_all=f.readlines()
with open("POSCAR",'w') as f:
fori,line in enumerate(get_all,1):
ifi==3:
split_line = line.split()
all = float(split_line[0]); a12 = float(split_line[1]); a13 = float(split_line[2])
f.writelines(line)
elifi==4:
split_line = line.split()
a21 = float(split_line[0]); a22 = float(split_line[1]); a23 = float(split_line[2])
f.writelines(line)
elifi==5:
split_line = line.split()
a31 = float(split_line[0]); a32 = float(split_line[1]); a33 = float(split_line[2])
f.writelines(line)
else:
f.writelines(line)

#definition of the new unitcell

b11="{:.10f}".format(epsll*all+epsl2*al2+epsl3*al3)
b12="{:.10f}".format(eps21*all+eps22*al2+eps23*al3)
b13="{:.10f}".format(eps31*all+eps32*al2+eps33*al3)
b21="{:.10f}".format(epsl1*a2l+epsl2*a22+epsl3*a23)
b22="{:.10f}".format(eps21*a21+eps22*a22+eps23*a23)
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b23="{:.10f}".format(eps31*a21+eps32*a22+eps33*a23)
b31="{:.10f}".format(epsl1*a31l+epsl2*a32+epsli3*a33)
b32="{:.10f}".format(eps21*a31l+eps22*a32+eps23*a33)
b33="{:.10f}".format(eps31*a31+eps32*a32+eps33*a33)

#constructon of the new POSCAR
with open("POSCAR",'r') as f:
get_all=f.readlines()
with open("POSCAR",'w') as f:
fori,line in enumerate(get_all,1):
ifi ==3:
f.writelines('%s %s %s\n' %(b11, b12, b13))
elifi==4:
f.writelines('%s %s %s\n' %(b21, b22, b23))
elif i ==5:
f.writelines('%s %s %s\n' %(b31, b32, b33))
else:
f.writelines(line)

gsub_call = "gsub %s"
call(gsub_call % "run.sh", shell=True)  #launch the job into queue

Appendix 2: Script results_Cij_stress-strain.py

HHHHHHHHH R R R R R R R
####This script was written as a practical part of master’s thesis by Bc. Martin Cavojec. Purpose of this script is to
#i#tt#calculate stiffness tensor from stress and strain tensors calculated by previous script.

H#H##This code is based on works:

H#H#HYU, R., J. ZHU a H. Q. YE. Calculations of single-crystal elastic constants made simple. Computer Physics
####Communications. 2010, 181(3), 671-675. doi: https://doi.org/10.1016/j.cpc.2009.11.017

H####ZHOU, L., D. HOLEC and P. H. MAYRHOFER. First-principles study of elastic properties of cubic Cr;—AIkN

#tttalloys. Journal of Applied Physics. 2013, 113(4), 043511. doi: https://doi.org/10.1063/1.4789378

HHHHHHHHH R R R R R R R R R R R R R

import os
from pathlib import Path
import numpy as np

#Setting up directory pathing

eps =0.021 #define the strain to be examined

maindir = os.getcwd(); maindir = Path(maindir)

print("Main directory is: {0}".format(os.getcwd())) #Main directory

os.chdir('eq'); eqdir = os.getcwd(); eqdir = Path(eqdir)
print("Directory of equilibrium structure is: {0}".format(os.getcwd())) #'eq' directrory

os.chdir('../eps=%s' %(eps)); casedir = os.getcwd(); casedir = Path(casedir)
print("Directory of deformed structures is: {0}".format(os.getcwd())) #'eps=0.021' directory

os.chdir(eqdir); print('Searching for the equilibrium strucrute in : %s' %(eqdir))

#Getting equilibrium structure
if os.path.exists('CONTCAR'):

eqgposcar = eqdir/'CONTCAR'; print('Equilibrium structure is read from the: %s' %(eqposcar)) #The equilibrium structure
read from CONTCAR
elif os.path.exists('POSCAR'):

eqgposcar = eqdir/'POSCAR'; print('Equilibrium structure is read from the: %s' %(eqposcar)) #The equilibrium structure
read from POSCAR
else: print('Cannot find equilibrium structure, terminating') #The equilibrium structure is missing

os.chdir(maindir)
file = open(egposcar); content = file.readlines()
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with open('A.mat’, 'w') as f:
f.writelines(content[2]); f.writelines(content[3]); f.writelines(content[4])

#Remove existing strain.dat and stress.dat
if os.path.exists(casedir/'strain.dat'):
os.remove(casedir/'strain.dat')

if os.path.exists(casedir/'stress.dat'):
os.remove(casedir/'stress.dat')

#Collecting data from all eps subfolders
cnt=0
epsarray = np.array([1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6])
for casen in epsarray:
cnt=(cnt+1)
print("'); epsdir = ('eps%s' %(casen)); print(epsdir)
#Calculation of the strain tensor, and adding the strain vector to strain.dat (Voigt's notation)
os.chdir(casedir/epsdir)
epsdirp = Path(os.getcwd())
file = open(epsdirp/'CONTCAR'); content = file.readlines()
os.chdir(maindir)
with open('B.mat', 'w') as f:  #Creating matrix for deformed structure
f.writelines(content[2]); f.writelines(content[3]); f.writelines(content[4])

A = np.loadtxt("A.mat"); B = np.loadtxt("B.mat") #Loading eq and deformed structures as matrices
| = np.identity(3) #ldentity matrix 3x3
C = np.linalg.Istsq(A, B, rcond=None) [0] -| ~ #C=(A\B)-I

C1="{..8f}".format(C[0,0]); C2="{:.8f}".format(C[1,1]); C3="{:.8f}".format(C[2,2])
C4="{..8f}".format(2*C[1,2]); C5="{:.8f}".format(2*C[0,2]); C6="{:.8f}".format(2*C[0,1])

with open(casedir/'strain.dat', 'a') as f: #writing stress tensor
f.writelines('%s %s %s %s %s %s\n' % (C1, C2, C3, C4, C5, C6))
print('Strain vector is: %s %s %s %s %s %s' % (C1, C2, C3, C4, C5, C6))

#read the stresses and add them to stress.dat
with open(epsdirp/'OUTCAR', 'r') as f: #reading from OUTCAR
get_all=f.readlines()
foriline in enumerate(get_all, 1):
if "in kB" in line:
vec = line.replace('in kB', ") #finding the stress tensor
split_line = vec.split()
sv1 = float(split_line[0])/10; sv2 = float(split_line[1])/10; sv3 = float(split_line[2])/10
sv4 = float(split_line[4])/10; sv5 = float(split_line[5])/10; sv6 = float(split_line[3])/10

print('Stress tensor is: %s %s %s %s %s %s' % (svl, sv2, sv3, sv4, sv5, sv6))
with open(casedir/'stress.dat’, 'a') as f:
f.writelines(' %s %s %s %s %s %s\n' % (sv1, sv2, sv3, sv4, sv5, sv6))

print("); print('Total number of deformations: %s' %(cnt))
#calculate the elastic constants
print("); print('Calculating the elastic constants'); print('...")
stress = np.loadtxt(casedir/"stress.dat"); strain = np.loadtxt(casedir/"strain.dat")
Cij=np.linalg.Istsq(-strain, stress, rcond=None) [0]; CijT= np.transpose(Cij); Cij= (Cij+CijT)/2 #Cij=(-strain\stress)
#Cij=(Cij+Cij")/2
Cij=(np.array_str(Cij, precision=3, suppress_small=True).replace(' [',").replace('[',").replace(']',"")) #Formating the tensor
print('Elasticity matrix: '); print(")
with open(maindir/'Cij.dat', 'w') as f:  #creation of stiffness tensor
f.writelines('%s' % (Cij))
print(Cij); os.remove('A.mat'); os.remove('B.mat') #removal of temporary files
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