
Západočeská univerzita v Plzni
Fakulta aplikovaných věd

Katedra informatiky a výpočetní techniky

Testování zabezpečení v sítích
pro bezpečnostně kritické aplikace

Disertační práce

Nils Weiß M . Sc.

Školitel: Prof. Ing. Václav Matoušek, CSc.

Skolitel-specialista: Prof. Dr. rer. nat. Jürgen Mottok

Plzeň, květen 2021

University of West Bohemia in Pilsen
Faculty of Applied Sciences

Department of Computer Science and Engineering

Security Testing
in Safety-Critical Networks

Doctoral Thesis

Nils Weiß M.Sc.

Supervisor: Prof. Ing. Vaclav Matousek, CSc.

Supervisor-specialist: Prof. Dr. rer. nat. Jürgen Mottok

Plzeň, May 2021

Abstrakt

Současný vývoj vozidel směřující od čistě mechanických systémů k systémům řízeným
specializovanými procesory vytváří nové požadavky na oblast bezpečnosti automo
bilů. V dnešní době je každé moderní vozidlo vybaveno bezpečnostně kritickou real
time komunikační sítí, která zajišťuje a kontroluje všechny funkce automobilu. Neu
stále rostoucí konektivita automobilových systémů je ale ve stále větší míře ohrožena
možnými kybernetickými útoky. Ačkoli se bezpečnostní inženýrství v této oblasti
rozvíjí již několik desetiletí, zajištění bezpečnosti těchto systémů stále více vyžaduje
velmi intenzivní výzkum.

Tato práce seznamuje čtenáře s procesem "black-box" analýzy existujících elektro
nických automobilových systémů a jejich součástí a popisuje možnosti zranitelnosti
bezpečnostních systémů na základě výsledků testování čtyř různých elektronických
řídicích jednotek. Z hodnocení dosavadního výzkumu bezpečnosti vnitřní počítačové
sítě automobilu je spolehlivost, resp. zranitelnost, celého elektronického systému
uváděna jako největší hrozba pro bezpečnost vozidla, a proto mimořádné automo-
tivní schopnosti interních sítí automobilu jsou rozebírány v druhé části práce.

Při koncepci automatových prostředků pro automotivní sítě automobilů je ne
zbytné vytvořit komplexní softwarové prostředky emulující logické systémy speciální
ho účelu. Proto jako další část této práce byl vyvinut, implementován a též již
nabízen obsáhlý open-source programový paket pro testování bezpečnosti speciali
zovaných automobilových sítí. Další výzkumné činnosti v tomto směru jsou pak za
měřeny na výzkum bezpečnosti vozidlových sítí založené na otevřeném, popř. volně
dostupném programovém vybavení.

Moderní prostředky pro zjišťování a automatickou identifikaci zdrojů kybernetic
kých útoků jsou vytvořeny a hodnoceny v rámci navržené a realizované implementace
automotivního diagnostického protokolu. Tyto prostředky umožňují vytvoření spe
ciální metriky pro hodnocení úrovně útoku prostřednictvím "black-box" scanování

libovolné elektronické řídicí jednotky. Učící se automaty a reverzní techniky vyhod
nocování stavu systému dále značně rozšiřují možnosti vytvořených programových
prostředků. Navržený algoritmus byl testován na třinácti různých řídicích jednot
kách, získaná data byla rozsáhle testována v laboratorních i reálných podmín-kách,
objektivně vyhodnocena a výsledky testování jsou uvedeny zčásti v poslední části
práce, zčásti pak v přílohách.

V závěru práce jsou pak diskutovány dosud otevřené problémy návrhu takových
systémů a zaměření dalšího výzkumu založeného na výše uvedených výsledcích.

Abstract

The evolution of cars from mechanical systems to rolling computers creates new re
quirements for safety and security engineering. Nowadays, every vehicle contains a
safety-critical real-time communication network to fulfill its function. Especially the
increasing connectivity of automotive systems enlarged the attack surface for cyber-
attacks. Safety engineering in this area is well understood and studied for decades,
though the security engineering of these systems needs further research.

This thesis introduces a black-box investigation process to analyze existing auto
motive systems and components and identifies security vulnerabilities in four differ
ent ECUs. Combined with a survey of published security research, vehicle-internal
networks are identified as an extraordinary threat to the vehicle's safety and secu
rity. The outstanding automation capabilities of security tests for these networks are
leveraged in the second part of this thesis.

In order to create automated tools for automotive networks, a software foundation
is necessary. As part of this thesis, a comprehensive open-source software framework
for security testing in vehicular networks was developed and published. This aims
to support further security research based on open and free software.

Novel tools for the automated identification and exploration of attack surfaces in
automotive diagnostic protocol implementations are created and evaluated. These
tools allow the creation of comparable attack surface metrics through black-box
scans of arbitrary ECUs. Automata learning and system state reverse-engineering
techniques highly increase the exploration capabilities of the presented tools. The
exploration algorithm is tested on thirteen different ECUs from independent OEMs.
Al l gathered results are evaluated and discussed in the final part of this thesis.

Finally, open issues and further research based on this contribution are discussed.

Zusammenfassung

Die Entwicklung des Autos von einem mechanischen System zu einem rollenden Com
puter schafft neue Anforderungen an die Sicherheit der Fahrzeugsoftware. Heutzutage
enthält jedes Fahrzeug ein sicherheitskritisches Echtzeit-Kommunikationsnetzwerk,
um seine Funktionen zu erfüllen. Vor allem die zunehmende Konnektivität der au
tomobilen Systeme vergrößert die Angriffsfläche für Cyber-Attacken. Die Software
zuverlässigkeit in diesem Bereich ist seit Jahrzehnten gut verstanden und erforscht,
die Softwaresicherheit gegen Angriffe auf diese Systeme bedarf jedoch weiterer For
schung.

Diese Arbeit führt einen Black-Box-Untersuchungsprozess zur Analyse bestehen
der Automobilsysteme und -komponenten ein und identifiziert Sicherheitsschwach
stellen in vier verschiedenen Steuergeräten. Kombiniert mit einer Ubersicht über die
veröffentlichte Sicherheitsforschung werden fahrzeuginterne Netzwerke als außerge
wöhnliche Bedrohung für die Sicherheit des Fahrzeugs identifiziert. Die herausragen
den Automatisierungsmöglichkeiten von Sicherheitstests für diese Netzwerke werden
im zweiten Teil dieser Arbeit genutzt.

Um automatisierte Werkzeuge für automobile Netzwerke zu erstellen, ist ein Soft
wareframework notwendig. Im Rahmen dieser Arbeit wurde ein umfassendes Open-
Source-Software-Framework für Sicherheitstests in Fahrzeugnetzwerken entwickelt
und veröffentlicht. Damit soll Sicherheitsforschung auf Basis von offener und freier
Software unterstützt werden.

Es werden neuartige Werkzeuge zur automatisierten Identifikation und Explorati
on von Angriffsflächen in automobilen Diagnoseprotokoll-Implementierungen erstellt
und evaluiert. Diese Werkzeuge ermöglichen die Erstellung von vergleichbaren An
griffsflächenmetriken durch Black-Box-Scans beliebiger Steuergeräte. Automatisches
Lernen und Systemzustands-Reverse-Engineering-Techniken erhöhen die Explorati-
onsfähigkeiten der vorgestellten Werkzeuge erheblich. Der Explorationsalgorithmus

wird auf dreizehn verschiedenen Steuergeräten von unabhängigen OEMs getestet.
Alle gesammelten Ergebnisse werden im letzten Teil dieser Arbeit ausgewertet und
diskutiert.

Abschließend werden offene Fragen und weitere Forschung auf Basis dieser Arbeit
diskutiert.

Prohlašuji, že jsem tuto disertační práci vypracoval samostatně a výhradně s použitím
citovaných pramenů, literatury a dalších odborných zdrojů. Beru na vědomí, že se
na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb.,
autorského zákona v platném znění, zejména skutečnost, že Západočeská univerzita
v Plzni má právo na uzavření licenční smlouvy o užití této práce jako školního díla
podle §60 odst. 1 autorského zákona.

I hereby declare that this thesis has been written only by the undersigned and without
any assistance from third parties.

Furthermore, I confirm that no sources have been used in the preparation of this
thesis other than those indicated in the thesis itself.

In Pilsen on May 2021

Author's signature

Contents

I Introduction and Background 1

1 Introduction 2
1.1 Goals of the Thesis 3
1.2 Thesis Outline 3

2 Vehicular Networks 5
2.1 Physical Protocols 5

2.1.1 LIN 6
2.1.2 C A N 6
2.1.3 FlexRay 6
2.1.4 Automotive Ethernet 6

2.2 Topologies 7
2.2.1 Line-Bus 7
2.2.2 Central Gateway 8
2.2.3 Central Gateway and Domain Controller 8
2.2.4 Summary 10

2.3 Automotive Communication Protocols 10
2.3.1 C A N 11
2.3.2 ISO-TP (ISO 15765-2) 13
2.3.3 DoIP 15
2.3.4 Diagnostic Protocols 15
2.3.5 SOME/IP 17
2.3.6 C C P / X C P 17

i i CONTENTS

II Manual Security Investigations 19

3 Investigation-Process and Vulnerability Metrics for Automotive Sys
tems 20
3.1 Investigation Process 20
3.2 Vulnerability Scoring System 23
3.3 Vulnerability Description 25

4 Security Investigation and Survey of Safety-Critical Systems 26
4.1 Manual Investigations of Electronic Control Units 26

4.1.1 Central Gateway Controller 27
4.1.2 Body Domain Controller 32
4.1.3 Telematics Control Unit 36
4.1.4 Airbag Control Unit 40

4.2 Survey of Published Attacks on Automotive Systems 43
4.2.1 Dieter Spaar: Beemer, Open Thyself! 43
4.2.2 Miller & Valasek: Remote Exploitation 43
4.2.3 Nie et al.: Free-Fall 44
4.2.4 Cai et a l : 0-days & Mitigations 44
4.2.5 Computest: The Connected Car 45

5 Analysis of Identified Vulnerabilities and Attack-Surfaces 46
5.1 Evaluation of Identified Vulnerabilities 47

5.1.1 Analysis of Vulnerability Ratings 47
5.1.2 Analysis of Vulnerability Chains 50

5.2 Analysis of Automation Capabilities 52
5.2.1 External Memories 52
5.2.2 Debug Interfaces 53
5.2.3 On-Board Interfaces 53
5.2.4 External Interfaces 53
5.2.5 Wireless Interfaces 54
5.2.6 Operating Systems 54

5.3 Summary 55

CONTENTS iii

III Automated Security Investigations 56

6 Tools for Security Investigations of Safety-Critical Networks 57
6.1 Selection of a Software Framework 57
6.2 Automotive Diagnostic Protocol Stack 59

6.2.1 Media Access Layer Contributions 60
6.2.2 Transport Layer Contributions on C A N 60
6.2.3 Transport Layer Contributions on IP networks 61
6.2.4 Application Layer Contributions 61

6.3 Summary of Contributions to Scapy 62

7 Automated Security Investigations of Safety-Critical Networks 63
7.1 Threats for Automotive Diagnostic Protocols 63

7.1.1 Demonstrated attacks 64
7.1.2 Threat Definitions 65

7.2 Automotive Diagnostic Protocol Scanner 68
7.2.1 System States 69
7.2.2 Transitions in the System State Graph 69
7.2.3 Exploration Algorithm 73

7.3 Attack Surface Model 74

8 Evaluation 77
8.1 Hardware Architecture and Test Setup 77
8.2 Scan Duration 78
8.3 Automated System State Reverse-Engineering 79
8.4 Detection of Bootloaders 79
8.5 Attack Surface Increase 81
8.6 Threats over Lifetime 83
8.7 Summary 86

9 Conclusion 88
9.1 Open Issues 88

9.1.1 Proprietary Systems and Security by Obscurity 88
9.1.2 Custom Implementations of Diagnostic Protocols 89

9.2 Future Work 89
9.3 Final Conclusion 90

9.3.1 Major Contributions 90
9.3.2 Review of Aims of the Ph.D. Thesis 90

iv CONTENTS

List of Authors Publications 92

List of Authors Presentations 92

Bibliography 94

Appendix A Identified Vulnerabilities 102
A . l Central Gateway Controller 102
A.2 Body Domain Controller 105
A.3 Telematics Control Unit 107
A.4 Airbag Control Unit 108
A.5 Dieter Spaar: Beemer, Open Thyself! 110
A.6 Miller & Valasek: Remote Exploitation I l l
A.7 Nie et a l : Free-Fall 113
A.8 Cai et al.: 0-days &; Mitigations 115
A.9 Computest: The Connected Car 118

Appendix B Contributions to Scapy 121

Appendix C UDS / G M L A N Service Request Identifiers 125

List of Figures

2.1 Line-Bus network topology 8
2.2 Network topology with C G W E C U 9
2.3 Network topology with Automotive-Ethernet backbone and DC . . . 9
2.4 Overview of used topology, vehicle price, and year of manufacturing . 10
2.5 Automotive diagnostic protocol stack 11
2.6 C A N bus states on transmission errors 12
2.7 Complete C A N data frame structure 12
2.8 C A N frame defined by SocketCAN 13
2.9 ISO-TP fragmented communication 14
2.10 ISO-TP frame types 14
2.11 UDS ReadDataByldentifier service definition 16
2.12 G M L A N ReadDataByParameterldentifier service definition 16
2.13 X C P communication model 18

3.1 Detailed overview of an automotive component 21
3.2 Overview of the investigation process for automotive components. . . 21

4.1 P C B of BDC and C G W E C U 27
4.2 P C B of BDC 32
4.3 P C B of T C U 36
4.4 P C B of A C U 40

5.1 Distribution of exploitability and impact of attack surfaces 50

6.1 Evaluation of commits per year 58

8.1 Reverse-engineered system state graphs 81
8.2 System state graph of E C U E10 83
8.3 Example of attack surface evaluation over lifetime 86

v

List of Tables

3.1 Definition of the investigation process for automotive components. . . 22
3.2 Definition of impact score 24
3.3 Definition of exploitability score 24
3.4 Template for a vulnerability fact sheet 25

4.1 Investigation of the B M W C G W 28
4.2 Investigation of a G M BDC 32
4.3 Investigation of a G M T C U 37
4.4 Investigation of a G M A C U 40

5.1 Summary of attack surfaces 47
5.2 Summary of vulnerability chains 49
5.3 Comparison of exploitation risk 51

7.1 List of measurands and units for C V E flaw types 65
7.2 Threat definitions for UDS and G M L A N 66
7.3 Summary of state modifying services in UDS and G M L A N 70

8.1 Overview of investigated ECUs 78
8.2 Captured runtime metrics of all performed scans 79
8.3 Captured duration metrics of all performed scans 80
8.4 Overview of reverse-engineered system state machine complexities . . 82
8.5 Average response times 82
8.6 The detailed threat model for E C U E10 83
8.7 Overview of identified potential attack surface per E C U 84
8.8 Protected Attack surface metrics 85

A . l Summary of vulnerability VI 102
A.2 Summary of vulnerability V2 103
A.3 Summary of vulnerability V3 103

vi

LIST OF TABLES vii

A.4 Summary of vulnerability V4 104
A.5 Summary of vulnerability V5 104
A.6 Summary of vulnerability V6 105
A.7 Summary of vulnerability V7 105
A.8 Summary of vulnerability V8 106
A.9 Summary of vulnerability chain CI 106
A. 10 Summary of vulnerability V9 107
A. 11 Summary of vulnerability VI0 107
A. 12 Summary of vulnerability VI1 108
A. 13 Summary of vulnerability VI2 108
A. 14 Summary of vulnerability V13 109
A. 15 Summary of vulnerability chain C2 109
A. 16 Summary of vulnerability V14 110
A. 17 Summary of vulnerability V15 110
A. 18 Summary of vulnerability chain C3 I l l
A. 19 Summary of vulnerability VI6 I l l
A.20 Summary of vulnerability V17 112
A.21 Summary of vulnerability chain C4 112
A.22 Summary of vulnerability V18 113
A.23 Summary of vulnerability V19 113
A.24 Summary of vulnerability V20 114
A.25 Summary of vulnerability V21 114
A.26 Summary of vulnerability chain C5 115
A.27 Summary of vulnerability V22 115
A.28 Summary of vulnerability V23 116
A. 29 Summary of vulnerability V24 116
A.30 Summary of vulnerability V25 117
A.31 Summary of vulnerability chain C6 117
A.32 Summary of vulnerability chain C7 118
A.33 Summary of vulnerability V26 118
A.34 Summary of vulnerability V27 119
A.35 Summary of vulnerability V28 119
A. 36 Summary of vulnerability chain C8 120

B. l Summary of contributions to the Scapy project 121

C. l Service identifiers of UDS and G M L A N 125

Acronyms

A C U Airbag Control Unit. 40

A P N Access Point Name. 38, 43, 45

ASIC Application-Specific Integrated Circuit. 33

A U T O S A R Automotive Open System Architecture. 13, 15

B C M Body Control Module. 78

B D C Body Domain Controller. 27, 28, 32, 33, 35, 78

BTS Base Transceiver Station. 43, 110, 111, 117, 118

C A L Calibration. 18

C A N Controller Area Network, xi, 5-8, 10-13, 15, 17, 28 31, 33-35, 37-39, 41-45,
50, 54, 59-61, 64, 67, 77, 80, 103, 105, 106, 111, 112, 114-116, 119-122, 124

C A N FD Controller Area Network Flexible Data-Rate. 12, 17

C C P C A N Calibration Protocol. 17, 123

C D F Cumulative Distribution Function. 74-76, 85

C G W Central Gateway Controller. 27-31, 44, 116

C M D Command Packet. 18

CPS Cyber-Physical System. 24, 55, 116-118, 120

C R C Cyclic Redundancy Check. 13

C T O Command Transfer Object. 17, 18

viii

Acronyms ix

C V E Common Vulnerabilities and Exposures. 65

CVSS Common Vulnerability Scoring System. 23

DAQ Data Acquisition. 17, 18

D B C Data Base C A N . 121

D C Domain Controller. 8, 9

DoIP Diagnostic over IP. 15, 16, 61, 77, 123

DoS Denial of Service. 11, 38, 66, 67

D T O Data Transfer Object. 18

E C U Electronic Control Unit. 3, 5-11, 13, 15-17, 20 23, 25-45, 49, 50, 53-55, 61,
64-72, 74, 75, 77-83, 85, 86, 89-91, 105, 106, 108, 109, 111, 114, 116 120, 122,
123

E D G E Enhanced Data Rates for GSM Evolution. 117, 118

E E P R O M Electrically Erasable Programmable Read-Only Memory. 22, 29, 30, 33,
34, 102, 105

E R R Error. 18

E V Event Packet. 18

FoD Feature on Demand. 9

G M L A N General Motor Local Area Network. 15, 16, 34, 61, 64, 65, 68-70, 79,
105, 123

GPS Global Positioning System. 36-38

G S M Global System for Mobile Communications. 36 38, 117, 118

G W Gateway. 8-10, 15

HSFZ High-Speed-Fahrzeug-Zugang (High-Speed Car Access). 28, 29, 61, 77, 122

I2C Inter-Integrated Circuit. 29

x Acronyms

IC Integrated Circuit. 22, 29, 41, 42

IoT Internet of Things. 2

IP Internet Protocol. 15, 28, 29, 43, 61, 111

ISO-TP Transport Layer. 13-16, 28, 30, 57, 60, 61, 77

J T A G Joint Test Action Group. 29, 30, 33, 34, 37, 39, 48, 53, 107

LIN Local Interconnect Network. 5, 6, 29, 30, 33, 34

L T E Long Term Evolution. 37, 38

M C U Microcontroller Unit. 45, 48, 104

M E M S Micro-Electro-Mechanical System. 41

M M U Multimedia Unit. 28, 29, 31, 44, 45, 111 115, 117, 119

M O S T Media Oriented Systems Transport. 5

N A D Network Access Device. 37, 38

N D A Non-Disclosure Agreement. 74, 89

N G T P Next Generation Telematics Protocol. 43, 44, 48, 110, 111, 117, 118

OBD On-Board Diagnostic. 28, 31, 34, 35, 62, 105, 106, 109, 123

O E M Original Equipment Manufacturer. 5 10, 15, 16, 49, 50, 64, 69, 71, 74-77,
81, 88, 89

OS Operating System. 77

OSI Open Systems Interconnection. 6

P C Personal Computer. 17

P C B Printed Circuit Board. 22, 23, 28, 29, 31, 33, 37, 41, 50, 52, 53, 102, 104, 105,
107, 108, 110

P G M Programming. 18

Acronyms xi

R A M Random Access Memory. 33, 37, 106, 107

R C E Remote Code Execution. 48, 109

R E C Receive Error Counter. 12

RES Command Response Packet. 18

RFID Radio-Frequency Identification. 34

SBC System Basis Chip. 33

SERV Service Request Packet. 18

SIM Subscriber Identity Module. 37, 38

SOME/IP Scalable service-Oriented MiddlewarE over IP. 17

SPI Serial Peripheral Interface. 17, 29, 33, 41, 42, 112

STIM Stimulation. 18

S W C A N Single Wire Controller Area Network (CAN). 33, 34, 37, 39, 41, 108, 109

T A R A Threat Assessment & Remediation Analysis. 24

T C P Transmission Control Protocol. 28, 29, 77, 122, 123

T C U Telematics Control Unit. 36-39, 43, 44, 47, 78, 110, 117

T E C Transmit Error Counter. 12

T O C T O U time-of-check to time-of-use. 44, 48, 67, 116, 117

U A R T Universal Asynchronous Receiver Transmitter. 33, 39, 53, 104

U D P User Datagram Protocol. 77

UDS Unified Diagnostic Service. 15, 16, 30, 44, 48, 61, 64, 65, 69, 70, 80, 103, 114,
116 118, 123

USB Universal Serial Bus. xi, 17, 37, 39, 108

U S B - O T G Universal Serial Bus (USB) On-The-Go. 37, 108

xii Acronyms

VIN Vehicle Identification Number. 66

W L A N Wireless Local Area Network. 2, 37, 38, 45, 54, 113, 115, 118, 120

X C P Universal Measurement and Calibration Protocol. 17, 18, 61, 124

Acknowledgment

I like to thank everyone who has supported me along the way. My special thanks
go to my supervisors, Professor Mottok and Professor Matousek, as well as to my
colleague Enrico Pozzobon, and last but not least, to my wife, Julia.

xiii

xiv Acknowledgment

Part I

Introduction and Background

i

Chapter 1

Introduction

The increasing connectivity of our modern world exponentially creates safety-critical
networks. Every connected computer or microcontroller participates in a commu
nication network to deliver intelligent services. The security of a network is not
inheritable, leading to the fact that two individual secure networks will not form a
secure network after their connection. Every new connection of a system can be used
as an attack surface. If at least one of the participants in a network is a safety-critical
component, the combined network forms a not secure safety-critical network. This
process happens countless times, every day, and at an ever-increasing rate. A smart-
phone connects to a car, a car connects to a Wireless Local Area Network (WLAN),
a W L A N connects to a pacemaker, and industrial control systems get remotely main
tained over the Internet. Even if a connection is not persistent, it does not mean
that this connection can not be used as an attack surface to a safety-critical system.

Nowadays, formal proof of a system's security is only possible on minimal and
limited systems. If we consider the complexity of the latest Internet of Things (IoT)-
microcontrollers, this already rules out any possibility for formal security verification,
inheriting this problem into any network such a microcontroller may get connected.

To conquer this increasing problem of our modern world, automated security test
ing of safety-critical networks becomes necessary. Semi- and fully-automated security
testing of safety-critical networks can identify bugs, vulnerabilities, and exploits of
a system. The focus of this thesis lies on automotive networks as safety-critical
systems. A modern vehicle has various remote attack surfaces and safety-critical
communication networks for its internal functions. Security vulnerabilities in this
context can lead to devastating results. Even the next step in automotive technol-

2

1.1. GOALS OF THE THESIS 3

ogy, autonomous vehicles, is only achievable if a specific safety and security level can
be guaranteed. This thesis summarized different approaches and methods for semi-
automated and fully-automated security testing of safety-critical vehicular networks.

• to analyze current security flaws and vulnerabilities in automotive systems,

• to evaluate existing open-source software projects regarding their suitability
for security testing in safety-critical networks,

• to analyze automation capabilities for security testing in automotive systems,

• to devise software tools for semi- and fully-automated security testing in safety-
critical networks,

• to find comparable metrics for the evaluation of possible attack surfaces in
automotive components.

This thesis is structured as follows. Chapter 2 serves as an introduction to vehic
ular networks, containing relevant physical protocols (Section 2.1), general network
topologies (Section 2.2), and related automotive communication protocols (Section
2.3).

Chapter 3 defines an investigation-process (Section 3.1), a vulnerability scoring
system (Section 3.2), and a standardized description of vulnerabilities (Section 3.3)
for black-box security investigations of automotive systems.

Chapter 4 contains the application of the previously defined investigation-process,
as well as the scoring system to four different Electronic Control Units (ECUs) (Sec
tion 4.1), and a survey of published security research targeting automotive systems
(Section 4.2).

Chapter 5 analyzes 28 identified vulnerabilities and eight vulnerability chains
from the previous chapter. This analysis reveals joint attack surfaces of automotive
components. Furthermore, the automation capabilities for security testing of each

1.1 Goals of the Thesis

1.2 Thesis Ou t l ine

4 CHAPTER 1. INTRODUCTION

identified attack surface are discussed.

Chapter 6 compares existing open-source tools for security testing (Section 6.1)
and summarizes necessary contributions to obtain tools with automation capabilities
for security testing of vehicular networks (Section 6.2).

Chapter 7 describes an attack surface metric for automotive diagnostic protocols
(Section 7.1) and a novel security scanner with system state reverse-engineering ca
pabilities (Section 7.2). This scanner is built upon the developed tool for security
testing.

Chapter 8 discusses gathered results from conducted security scans of the devised
automotive diagnostic protocol scanner with automated system state reverse engi
neering.

Finally, Chapter 9 concludes the thesis and discusses the achievements of the
thesis.

Chapter 2

Vehicular Networks

Modern vehicles are more similar to a computer than to a mechanical device. Up to
100 different computers, called ECUs, connected by hundreds of cables (more than
two kilometers of cable on average), shape a modern vehicle's internal network. Ad
ditionally to these wired connections, multiple ECUs support wireless connectivity,
mainly for convenience and emergency functionalities.

This chapter introduces relevant protocols and existing network topologies of re
cent vehicles. Used protocols in a vehicle's network are introduced, and the relevance
for security-evaluations is discussed briefly.

2.1 P h y s i c a l P ro toco l s

More than 20 different communication protocols exist for the vehicle's internal wired
communication. Most vehicles make use of five to ten different protocols for their
internal communication. The decision which communication protocol is used from an
Original Equipment Manufacturer (OEM) is usually made by the trade-off between
the costs for communication technology, the final car price, and the desired features.
The four major communication technologies for inter-ECU communication are C A N ,
FlexRay, Local Interconnect Network (LIN), and Automotive Ethernet. For security
considerations, these are the most relevant protocols for wired communication in
vehicles. Since Media Oriented Systems Transport (MOST) networks are only used
to communicate multimedia payloads, MOST networks are not discussed in this
thesis. Usually, safety-critical data is not communicated through MOST networks.

Protocols on
the the Media
Access Layer
of the OSI
model

5

6 CHAPTER 2. VEHICULAR NETWORKS

Connects
ECUs with

actuators and

2.1.1 LIN

LIN is a single wire communication protocol for low data rates. Actuators and
sensors of a vehicle exchange information with an E C U , acting as a LIN master.
Software updates over LIN are possible, but the LIN slaves usually do not need
software updates because of their limited functionality. This thesis excludes LIN
as a protocol for security-relevant considerations. Attacks on LIN are possible [54],
but the attack range is very limited. An attack propagation through LIN into a
topologically higher network is unlikely and was not shown yet.

2.1.2 C A N

C A N is by far the most used communication technology for inter-ECU communica-
Interconnects tion in vehicles. In older or cheaper vehicles, C A N is still the primary protocol for

^ ^ s a vehicle's backbone communication. Safety-critical communication during a vehi
cle's operation, diagnostic information, and software updates are transferred between
ECUs over C A N . The lack of security features in the protocol itself, combined with
the general use, makes C A N the primary protocol for security investigations.

Interconnects
safety-critical

ECUs

2.1.3 FlexRay

The FlexRay consortium designed FlexRay as a successor of C A N . Modern vehicles
have higher demands on communication bandwidth. By design, FlexRay is a fast and
reliable communication protocol for inter-ECU communication. FlexRay components
are more expensive than C A N components, leading to a more selective use by OEMs.
The lack of open-source hardware and software for FlexRay communication rules out
the consideration of FlexRay in this thesis.

2.1.4 Automotive Ethernet

Recent upper-class vehicles implement Automotive Ethernet, the new backbone tech-
Acts as nology for internal vehicle communication. The rapidly grown bandwidth demands

already replace FlexRay [48]. The primary reasons for these demands are driver-
assistant and autonomous-driving features. Only the physical layer (layer 1) of the
Open Systems Interconnection (OSI) model distinguishes Ethernet (IEEE 802.3)
from Automotive Ethernet (BroadR-Reach). This design decision leads to multiple
advantages. For example, communication stacks of high-level operating systems can

vehicle
backbone

2.2. TOPOLOGIES 7

be used without modification and routing, filtering, and firewall systems. Automo
tive Ethernet components are already cheaper than FlexRay components, which will
lead to vehicle topologies, where C A N and Automotive Ethernet are the most used
communication protocols.

2.2 Topologies

The used topology of a vehicle network depends mainly on the O E M and the vehi
cle's price category. OEMs implement vehicle topologies through construction kits
for different vehicle categories, which means vehicle models from the same O E M
with comparable selling prices have very similar, sometimes even identical, EC Us
and network topologies.

Depending on the vehicle topology, the overall vehicle's attack-ability can be
completely different [05]. A l l participating ECUs must be analyzed regarding their
functionalities to distinguish if a network or a sub-network is a safety-critical network.
A vehicle's attack-ability can be rated lower if a network separation between safety-
critical ECUs and ECUs with remote attack surfaces exists [37]. The same applies
vice versa.

2.2.1 Line-Bus

The first vehicles with C A N bus used a single network with a line-bus topology, as
illustrated from figure 2.1. Some lower-priced vehicles still use one or two shared
C A N bus networks for their internal communication nowadays. The downside of
this topology is its vulnerability and the lack of network separation. A l l ECUs of 0uer cars
a vehicle are connected on a shared bus. Since C A N does not support security
features from its protocol definition, any participant on this bus can communicate
directly with all other participants, which allows an attacker to affect all ECUs, even
safety-critical ones, by compromising one single E C U . The overall security level of
this network is given from the security level of the weakest participant. The famous
attack from Miller and Valasek was possible because this topology was used in the
car they attacked [38]. Attackers can escalate an attack of a vulnerable E C U over
the network to interfere directly with safety-critical ECUs.

Low security
level, used in
cheaper or

8 CHAPTER 2. VEHICULAR NETWORKS

E C U E C U E C U E C U

CAN - Bus

E C U
J

r \

E C U
r ^

E C U E C U E C U

Figure 2.1: Line-Bus network topology

Medium
security level,

standard in
most current

cars

2.2.2 Central Gateway

The central Gateway (GW) topology can be found in higher-priced older cars and
medium- to lower-priced recent cars. A centralized G W E C U separates domain-
specific sub-networks, as shown in figure 2.2. This allows an O E M to encapsulate
all ECUs with remote attack surfaces in one sub-network. ECUs with safety-critical
functionalities are located in an individual C A N network. Next to C A N , FlexRay
might also be used as a communication protocol inside a separate network domain.
The security of a safety-critical network in this topology depends mainly on the
central G W ECU's security. This architecture increases the overall security level of a
vehicle through domain separation. After an attacker successfully exploited an E C U
through an arbitrary attack surface, a second exploitable vulnerability or a logical
bug is necessary to compromise a different domain, a safety-critical network, inside
a vehicle. This second exploit or logical bug is necessary to overcome the network
separation of the central G W E C U .

2.2.3 Central Gateway and Domain Controller

A new topology with central G W and Domain Controllers (DCs) can be found in
High security ^ e latest higher-priced vehicles. The general structure of this topology is shown

in figure 2.3. The increasing demand for bandwidth in modern vehicles with au
tonomous driving and driver assistant features led to this topology. An Automotive
Ethernet network is used as a communication backbone for the entire vehicle. Indi
vidual domains, connected through a DC with the central GW, form the vehicle's
backbone. The individual DCs can control and regulate the data communication
between a domain and the vehicle's backbone. This topology achieves a very-high

level, used in
latest

higher-priced
cars

2.2. TOPOLOGIES

GW

E C U — E C U E C U E C U

CQ *

E C U E C U
3 (J

3

E C U E C U

(J

E C U — E C U E C U E C U

Figure 2.2: Network topology with central G W E C U

GW

DC DC DC DC

ECU —

ECU —

ECU —4— ECU

ECU

ECU — — ECU

ECU

ECU

— ECU

— ECU

ECU —

— ECU

— ECU

— ECU

Figure 2.3: Network topology with Automotive-Ethernet backbone and DC

security level through a strong network separation with individual DCs, acting as
gateway and firewall, to the vehicle's backbone network. OEMs have the advantage
of dynamic information routing next to this security improvement, an enabler for
Feature on Demand (FoD) services.

10 CHAPTER 2. VEHICULAR NETWORKS

Vehicle Price

Year of Manufacturing

Figure 2.4: Overview of used topology, vehicle price, and year of manufacturing

2.2.4 Summary

The topology of a vehicle's network has a very high impact on a vehicle's security
and safety properties. Figure 2.4 shows the dependencies between a vehicle's price,
a vehicle's age, and the used network topology. Only a few vehicles from the lower
price segment or higher age are still using one or two CANs for their internal commu
nication. Most vehicles are equipped with a central G W E C U . After the publication
of Miller and Valasek, even the cheapest cars received an upgrade of their internal
network topology, and OEMs made use of central G W ECUs as mitigation for cyber-
attacks [38]. Only a few vehicles from the higher price segment already implement
a network architecture with Automotive Ethernet as a communication backbone.
Nevertheless, this group will rapidly grow soon since the advantages will compensate
for the higher prices for the communication equipment.

This section provides an overview of relevant communication protocols for security
evaluations in automotive networks. In contrast to section 2.1, this section focuses on
properties for data communication. Figure 2.5 provides an overview of the network
layer a protocol serves its function.

2.3 A u t o m o t i v e C o m m u n i c a t i o n Pro toco ls

2.3. AUTOMOTIVE COMMUNICATION PROTOCOLS 11

Application UDS
[22]

OBD XCP
[24, 21]J ^ [13] J

Transport ISO-TP [26]

GM-
L A N
[15]

Application UDS
[23]

OBD
[21]

XCP
[13]

Transport DoIP [27] / HSFZ

{J
Network Access C A N [25] Network Access IEEE 802.3 [19]

Figure 2.5: Automotive diagnostic protocol stack for C A N (left) and IEEE 802.3
(right) based networks. This figure provides an overview of relevant protocols and
their location in the automotive diagnostic protocol stack.

2.3.1 C A N

The C A N communication technology was invented in 1983 as a message-based ro
bust vehicle bus communication system. The Robert Bosch GmbH designed multiple
communication features into the C A N standard to achieve a robust and computation
efficient protocol for controller area networks. Remarkable for the communication
behavior of C A N is the internal state machine for transmission errors. This state
machine implements a fail silent behavior to protect a safety-critical network from
babbling idiot nodes. If a specific limit of reception errors (REC) or transmission
errors (TEC) occurred, the C A N driver changes its state from error-active to error-
passive and finally to bus-off.

Error
handling can
be abused for
DoS attacks

In recent years, this protocol specification was abused for Denial of Service (DoS)
attacks and information gathering attacks on the C A N network of a vehicle. Cho
et al. demonstrated a DoS attack against C A N networks by abusing the bus-off
state of ECUs [8]. Injections of communication errors in C A N frames of one specific
node caused a high transmission error count in the node under attack, forcing the
attacked node to enter the bus-off state, seen in figure 2.6. In 2019 Kulandaivel et
al. combined this attack with statistical analysis to achieve a fast and inexpensive
network mapping in vehicular networks [30]. They combined statistical analysis of
the C A N network traffic before and after the bus-off attack was applied to a node.
Al l missing C A N frames in the network traffic after an E C U was attacked could now
be mapped to the E C U under attack, helping researchers identify the origin E C U of
a C A N frame. Ken Tindell published a comprehensive summary of low level attacks
on CANs in 2019 [56].

Figure 2.7 shows a C A N frame and its fields as it is transferred over the network.

12 CHAPTER 2. VEHICULAR NETWORKS

Arbitration Field
11 bit identifier

9 9

Data lengih

code

0 0 0 0 1

Complete CAN Data Frame

Oati
1 to S bytes

nit l i r id [is biis)

TT — 'I

£ £ Si

rbiu

Figure 2.7: Complete C A N data frame structure [33]

For information exchange, only the fields arbitration, control, and data are relevant.
These are the only fields to which a usual application software has access. A l l other
fields are evaluated on a hardware-layer and, in most not forwarded to
an application. The data field has a variable length and can hold up to 8 bytes.
The length of the data field is specified by the data length code inside the control
field. Important variations of this example are CAN-frames with extended arbitra
tion fields and the Controller Area Network Flexible Data-Rate (CAN FD) protocol.
On Linux, every received C A N frame is passed to SocketCAN. SocketCAN allows the
C A N handling via network sockets of the operating system. SocketCAN was created
by Oliver Hartkopp and added to the Linux Kernel version 2.6.25 [17]. Figure 2.8
shows the frame structure, how C A N frames are encoded if a user-land application
receives data from a C A N socket.

2.3. AUTOMOTIVE COMMUNICATION PROTOCOLS 13

flags identifier

length reserved

payload

CAN-Header

Figure 2.8: C A N frame defined by SocketCAN [1]

Figure 2.7 and figure 2.8 are using different field names which can be mapped
as follows: Arbitration Field maps to identifier, Control to flags and length, Data
to payload. The comparison of figure 2.7 and figure 2.8 clearly shows the loss of
information during the C A N frame processing from a physical layer driver. Almost
every C A N driver acts in the same way, whether an application code runs on a mi
crocontroller or a Linux kernel. This also means that a standard application does
not have access to the Cyclic Redundancy Check (CRC) field, the acknowledgment
bit, or the end-of-frame field.

Through the C A N communication in a vehicle or a separated domain, ECUs
exchange sensor-data and control inputs; this data is mainly not secured and can
be modified by assailants. Attackers can easily spoof sensor values on a C A N bus
to trigger malicious reactions of other ECUs. Miller and Valasek described this
spoofing attack during their studies on automotive networks [36]. To prevent attacks
on safety-critical data transferred over C A N , Automotive Open System Architecture
(AUTOSAR) released a secure onboard communication specification [4].

2.3.2 ISO-TP (ISO 15765-2)

The C A N protocol supports only eight bytes of data. Use-cases like diagnostic oper
ations or E C U programming require much higher payloads than the C A N protocol
supports. For these purposes, the automotive industry standardized the Transport
Layer (ISO-TP) (ISO 15765-2) protocol [26]. ISO-TP is a transportation layer pro
tocol on top of C A N . Payloads with up to 4095 bytes can be transferred between
ISO-TP endpoints fragmented in C A N frames. The ISO-TP protocol handling re
quires four special frame types.

OSI
Transport
Layer
protocol for
addressed
communica
tion in
CANs

CHAPTER 2. VEHICULAR NETWORKS

Source Destination

First Frame

Flow Control

Consecutive Frame

Consecutive Frame

Consecutive Frame

Figure 2.9: ISO-TP fragmented communication

31 24 23 16 15 8 7 0

type 0 len

data

31 24 23 16 15 8 7 0

type 1 len

data

31 24 23 16 15 8 7 0

type 2 seqn

data

31 24 23 16 15 8 7 0

type 3 status block size sep. time

> Single Frame

> First Frame

Consecutive
Frame

l Flow Control
J Frame

Figure 2.10: ISO-TP frame types

2.3. AUTOMOTIVE COMMUNICATION PROTOCOLS 15

The different types of ISO-TP frames are shown in figure 2.10. The payload of
a C A N frame, shown in figure 2.8, gets replaced by one of the four ISO-TP frames
from figure 2.10. Each individual ISO-TP frame type has a different purpose. A
single frame can transfer between 1 and 7 bytes of ISO-TP message data. The len
field of a Single Frame or a First Frame indicates the ISO-TP message length. Every
message with more than 7 bytes of payload data must be fragmented into a First
Frame, followed by multiple Consecutive Frames. This communication is illustrated
in figure 2.9. After the First Frame is sent from a sender, the receiver has to commu
nicate its reception capabilities through a Flow Control Frame to the sender. Only
after this Flow Control Frame is received, the sender is allowed to communicate the
Consecutive Frames according to the receiver's capabilities.

ISO-TP acts as a transport protocol with the support of directed communication
through addressing mechanisms. In vehicles, ISO-TP is mainly used as a transport
protocol for diagnostic communication. In rare cases, ISO-TP is also used to ex
change larger data between ECUs of a vehicle. Security measures have to be applied
to the application layer protocol transported through ISO-TP since ISO-TP has no
capabilities to secure its transported data.

diagnostic
communica
tion over

2.3.3 DoIP

Diagnostic over IP (DoIP) was first implemented on automotive networks with a Q^J
centralized gateway topology. A centralized G W functions as a DoIP endpoint that Transport
routes diagnostic messages to the desired network, allowing manufacturers to pro- Layer
gram or diagnose multiple ECUs in parallel. Since the Internet Protocol (IP) com- protocol for
munication between a repair-shop tester and the G W is many times faster than the
communication between the G W E C U and a target E C U connected over C A N , the
remaining bandwidth of the IP communication can be used to start further DoIP IP-based
connections to other ECUs in different C A N domains. DoIP is specified as part of protocols
AUTOSAR and in ISO 13400-2. Similar to ISO-TP, DoIP does not specify special
security measures. The responsibility regarding secured communication is delegated
to the application layer protocol.

2.3.4 Diagnostic Protocols

Two examples of diagnostic protocols are General Motor Local Area Network (GM- Q^J
LAN) and Unified Diagnostic Service (UDS) (ISO 14229-2). The General Motors Co- Application
operation uses G M L A N . German OEMs mainly use UDS. Both protocols are very Layer

protocols

16 CHAPTER 2. VEHICULAR NETWORKS

Table 129 — Request message definition

A Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDataByldentif er Request Service Id M 22 RDBI

#2
#3

dataldentiflerD #1 = [
byte#1 (MSB)
byte#2]

M
M

00-FF
00-FF

DID
HB
LB

#n-1
#n

dataldentifierQ #m = [
by1e#1 (MSB)
byte#2]

U
U

00-FF
00-FF

DID
HB
LB

Figure 2.11: UDS ReadDataByldentifier service definition [22]

Table 80: ReadDataByParameterldentifier Request Message

Data Byte Parameter N a m e " " * 1 Cvt Hex Value Mnemonic

#1 ReadDataByParameterldentifier Request Service Id M 22 SIDRQ

#2
#3

parameterldentifier#1 =[
byte 1 (MSB)
byte 2 (LSB)]

M
00 thru FF
00 Ihr u FF

PID
B1
B2

#4
#5

parameterldentifier#2 = [
byte 1 (MSB)
byte 2 (LSB)]

U
00 thru FF
00 thru FF

PID
B1
B2

#n-1
#n

parameterldentifier #k = [
byte 1 (MSB)
byte 2 (LSB)]

U
00 thru FF
00 thru FF

PID
B1
B2

Note 1: MSB = Most Significant Byte. LSB = Least Significant Byte.

Figure 2.12: G M L A N ReadDataByParameterldentifier service definition [15]

similar from a specification point of view, and both protocols use either ISO-TP
or DoIP messages for a directed communication with a target E C U . Since different
OEMs use UDS, every manufacturer adds its custom additions to the standard. Also,
every manufacturer uses individual ISO-TP addressing for the directed communica
tion with an E C U . G M L A N includes more precise definitions about E C U addressing
and an ECUs internal behavior compared to UDS.

UDS and G M L A N follow a tree-like message structure, where the first byte iden
tifies the service. Every service is answered by a response. Two types of responses
are defined in the standard. Negative responses are indicated through the service
0x7F. Positive responses are identified by the request service identifier incremented
with 0x40. Figure 2.11 and figure 2.12 are given as an example of how similar both
diagnostic protocols are. The service identifier and the further specification of these
request messages are identical.

2.3. AUTOMOTIVE COMMUNICATION PROTOCOLS 17

Layer
protocols

Ethernet-
based
networks

2.3.5 S O M E / I P

Scalable service-Oriented MiddlewarE over IP (SOME/IP) defines a new philoso- OSI
phy of data communication in automotive networks. As described in section 2.2.3, Application
SOME/IP is used to exchange data between network domain controllers in the lat
est vehicle networks. SOME/IP supports subscription and notification mechanisms,
allowing domain controllers to dynamically subscribe to data provided by another Replacement
domain controller dependent on the vehicle's state. SOME/IP transports data be- for CAN in
tween domain controllers and the gateway that a vehicle needs during its regular
operation. The use-cases of SOME/IP are similar to the use-cases of C A N commu
nication. The main purpose is the information exchange of sensor and actuator data
between ECUs. This usage emphasizes SOME/IP communication as a rewarding
target for cyber-attacks.

2.3.6 C C P / X C P

Universal Measurement and Calibration Protocol (XCP), the C A N Calibration Pro- OSI
tocol (CCP) successor, is a calibration protocol for automotive systems, standardized Application
by A S A M e.V. in 2003. The primary usage of X C P is during the testing and cal
ibration phase of E C U or vehicle development. C C P is designed for use on C A N .
No message in C C P exceeds the 8-byte limitation of C A N . To overcome this restric
tion, X C P was designed to aim for compatibility with a wide range of transport
protocols. X C P can be used on top of C A N , C A N FD, Serial Peripheral Interface
(SPI), Ethernet, USB, and FlexRay. The features of C C P and X C P are very simi
lar; however, X C P has a larger functional scope and optimizations for data efficiency.

Both protocols have a session-based communication procedure and support au
thentication through seed and key mechanisms between a master and multiple slave
nodes. A master node is typically an engineering Personal Computer (PC). In ve- Protocols for
hides, slave nodes are ECUs for configuration. X C P also supports simulation. A ECU
vehicle engineer can debug a M A T L A B Simulink model through X C P . In this case, development
the simulated model acts as the X C P slave node. C C P and X C P can read and write
to the memory of an E C U . Another main feature is data acquisition. Both protocols
support a procedure that allows an engineer to configure a so-called data acquisi
tion list with memory addresses of interest. A l l memory specified in such a list will
be read periodically and be broadcast in a C C P or X C P Data Acquisition (DAQ)
packet on the chosen communication channel. Figure 2.13 gives an overview of all
supported communication and packet types in X C P . In the Command Transfer Ob-

Layer
protocol

and
configuration

18 CHAPTER 2. VEHICULAR NETWORKS

X C P Master

X C P Driver

C M D

CTO
RES ERR EV SERV

D T O

DAQ STIM

Command / Response / Error /
Event / Service Request Processor I DAQ STIM

Processor Processor

X C P Handler Bypass

Figure 2.13: X C P communication model between X C P Master and X C P Slave. This
model shows the communication direction for CTO/Data Transfer Object (DTO)
packages [14].

ject (CTO) area, all communication follows a request and response procedure always
initiated by the X C P master. A Command Packet (CMD) can receive a Command
Response Packet (RES), an Error (ERR) packet, an Event Packet (EV), or a Service
Request Packet (SERV) as a response. After the configuration of a slave through
CTO CMDs, a slave can listen for Stimulation (STIM) packets and periodically send
configured DAQ packets. The resources section of figure 2.13 indicates the possible
attack surfaces of this protocol (Programming (PGM), Calibration (CAL), DAQ,
STIM) which an attacker could abuse. It is crucial for a vehicle's security and safety
that such protocols, which have their use only during calibration and development
of a vehicle, are disabled or removed before a vehicle is shipped to a customer.

Part II

M a n u a l Security Investigations of
Safety-Critical Systems

19

Chapter 3

Investigation-Process and
Vulnerabil i ty Metr ics for
Automotive Systems

Without a defined process, a security investigation of a target system is neither com
prehensive nor comparable. This chapter introduces a black-box investigation process
for embedded safety-critical systems customized for automotive components. Follow
ing manual investigations will be based on this investigation process. Preparatory
to this general investigation process of automotive components, a model for threat
analysis and risk estimation of ransomware for automotive systems was developed
and published [05]. In this publication, a theoretical risk model was verified through
a showcase implementation of automotive ransomware.

3.1 Invest igat ion Process

The goal of later investigations, and therefore the goal of this process, is the com-
Identifies vul- prehensive identification of vulnerabilities in automotive components. The necessary
nerabilities in s ^ e p S Q f this process are defined on an abstracted automotive system, which guar-

automotive r
systems a n ^ e e s the applicability to any safety-critical automotive system. Figure 3.1 shows

an abstracted automotive system and all relationships of its hardware- and software-
components to generic properties, later called E C U properties. A high-level (system-
level) overview is shown on the left side of figure 3.1, which treats the investigated
component as a black-box, and only considers interfaces from a vehicle network or a
wireless network to the investigation target. Furthermore, an inspection of an ECU's

20

3.1. INVESTIGATION PROCESS 21

Figure 3.1: Left: System-level overview of an automotive component and the indi
cation of E C U properties inside the investigation process. Right: Component-level
overview of an automotive component and the indication of E C U properties inside
the investigation process.

properties on a component-level is necessary to perform a comprehensive analysis.
An abstracted E C U with its component-level properties is illustrated on the right side
of figure 3.1. These generic E C U properties are a key element for a subsequent at
tack surface and vulnerability analysis since, through their broad definition, they can
be applied to any component. An overview of the entire process is given in figure 3.2.

Identification Attack Summary of
Role inside the of ECU Surface identified
vehicle properties analysis Vulnerabilities

Figure 3.2: Overview of the investigation process for automotive components.

22 CHAPTER 3. INVESTIGATION-PROCESS AND METRICS

The process contains four steps. It starts with a high-level perspective on the
entire investigation component and their duties in a complex safety-critical network.
Next, all generic E C U properties are mapped to actual hard- and software compo
nents and interfaces, which results in a comprehensive list of all security-relevant
entities. In the following step, each entity's possible attack surfaces are analyzed,
and finally, vulnerabilities of each component can be identified. Each investigation
of a unique E C U will be performed according to this process which guarantees com
parable and comprehensive results. Table 3.1 contains a detailed description of the
individual process steps.

Table 3.1: Definition of the investigation process for automotive components.

Step 1: Role inside the vehicle
Initially, it is necessary to understand the capabilities and responsibilities of
a component inside the vehicle network. This analysis helps to estimate the
possible impacts of vulnerabilities on the overall safety-critical system. In step
four of this process, the impact of identified vulnerabilities can be estimated,
taking safety- and security-critical side effects onto the entire vehicle into
account.

Step 2: Identification of ECU properties
A l l technical information of the component is gathered, which guarantees the
completeness of the attack surface analysis's in step three.
Processors and Controllers

A l l active components on an E C U .
External Memories

A l l memories, which are connected through an On-Board Interface to a
Processor or Controller. Usually, these memories are external Electrically
Erasable Programmable Read-Only Memory (EEPROM) Integrated Cir
cuits (ICs) or Flash memory ICs, which may store security-relevant data.

Debug Interfaces
These interfaces give access to special debug functionalities and may leak
sensitive information. Such interfaces are usually only used during the de
velopment process, and their functionality should be removed in a release-
version of an E C U .

On-Board Interfaces
Communication interfaces between processors, controllers, or memories.
These interfaces are necessary for information exchange or control func
tionalities between active components on a Printed Circuit Board (PCB).

3.2. VULNERABILITY SCORING SYSTEM 23

External Interfaces
Wired connections for communication with other ECUs or diagnostic sys
tems. These interfaces can be accessed over a network. No physical access
to the P C B of an E C U is required.

Wireless Interfaces
Interfaces for communication with wireless networks. These interfaces are
accessible without physical access to the P C B of an E C U .

Operating System
Used software architecture and operating system structure of an E C U ,
including all individual software and firmware components, such as appli
cation software, bootloader software, and even device drivers for special
hardware.

Step 3: Attack Surface analysis
Based on the collection of E C U properties, possible attack surfaces are ana
lyzed.
Remote attack surfaces

Remote attack surfaces can be exploited over a remote connection, wired
or wireless. No physical access to the component itself is required.

Local attack surfaces
Local attack surfaces require physical access to the component. Modifi
cations may need to be applied to exploit a local attack surface.

Step 4: Summary of identified Vulnerabilities
A fact sheet describes every identified vulnerability. Such a list of vulnera
bilities for an E C U does not necessarily contain all possible vulnerabilities.
Every investigation is performed within a limited time frame. Therefore only
vulnerabilities found during the available investigation time will be listed.
Finally, the impact of every vulnerability is evaluated with respect to the
components role inside the vehicle.

3.2 V u l n e r a b i l i t y Scor ing Sys tem

Security-metrics are a challenging research field on their own [28]. A simple and
satisfying solution for all aspects of a system is not easily achievable, which should Rates vulner
be considered for exotic computer systems and networks found in the automotive
domain. To further analyze identified vulnerabilities, a definition of the exploita
tion risk will be based on the Common Vulnerability Scoring System (CVSS), the
de-facto standard for software vulnerabilities [35]. In recent years, automotive devel-

abilities,
allows
comparisons

24 CHAPTER 3. INVESTIGATION-PROCESS AND METRICS

opers started to use the Threat Assessment & Remediation Analysis (TARA) system
for risk assessments during their development processes. Since the conducted inves
tigations during this research were performed as black-box analyses of automotive
components, proprietary system knowledge required to perform a T A R A was not
available. The exploitation risk of a vulnerability is dependent on the exploit ability
and the impact factor. A general description of these factors is provided by Younis et
al. [58]. The impact factor describes the possible consequences of an existing vulner
ability, and the exploitability factor describes the accessibility of a vulnerability to
an attacker. For the application to automotive systems, the impact factor is defined
in table 3.2, the exploitability factor in table 3.3. The multiplication of both factors
can obtain a score for the exploitation risk.

Table 3.2: Definition of a suitable impact score for a black-box analysis of automotive
components, allowing the application of a basic vulnerability scoring system during
later investigations.

Score Definition

(1) Low An attacker gains internal information to prepare for further at
tacks.

(2) Medium An attacker gains privileges for local code execution or gains access
to one further possible target or attack surface.

(3) High An attacker gains privileges for local code execution and access to
multiple possible targets or control over Cyber-Physical Systems
(CPSs).

Table 3.3: Definition of a suitable exploitability score for a black-box analysis of
automotive components, allowing the application of a basic vulnerability scoring
system during later investigations.

Score Definition

(1) Low An attacker needs physical access to the target.
(2) Medium An attacker needs physical access to a network connected to a

target or wireless access and user interaction.
(3) High An attacker can exploit this vulnerability through wireless access

and without user interaction.

3.3. VULNERABILITY DESCRIPTION 25

3.3 V u l n e r a b i l i t y Desc r ip t ion

As a final step of the introduced investigation process, every identified vulnerabil
ity should be described in a standardized way. A template fact sheet for identified
vulnerabilities is shown in table 3.4. This fact sheet shows the minimum of required
information to describe the effects and the location of a vulnerability. For every
vulnerability, a description explains technical details. Preconditions necessary for
exploitation of the vulnerability help to understand Impact and Exploitability
ratings. If these two ratings do not follow the standard definitions or require ad
ditional considerations, the Rating Explanation contains further information and
explains exceptions from the definitions. Essential for later analysis is an attribution
of the vulnerability to an Attack Surface. The fact sheet for vulnerability chains
will be identical to the fact sheet of single vulnerabilities, except for one additional
field. Since vulnerability chains consist of multiple vulnerabilities, the additional field
Involved Vulnerabilities contains a list of all related vulnerabilities of a chain.

Defined docu
mentation of
vulnerabili
ties

Table 3.4: Template for a vulnerability fact sheet

VO Vulnerability Name
Vulnerability description containing further details.

Preconditions: Preconditions, required to abuse this vulnerability.
Impact: (2) Medium Exploitability: (2) Medium

Rating Explanation: Further information on why certain ratings for the
impact and exploitability factors were chosen.

Attack Surface: The attack surface on which the vulnerability can
be abused. This surface is based on one E C U char
acteristic out of the list of E C U properties.

Chapter 4

Security Investigation and Survey
of Safety-Critical Systems

This chapter examines safety-critical components in automotive systems and their
possible attack surfaces. Manual investigations were performed to identify individual
attack surfaces and exemplary vulnerabilities in four different ECUs, each with a
unique role in an automotive network. Additionally, publicly available information
on proven attacks against automotive systems was collected and analyzed to extract
further vulnerabilities and vulnerability chains. During this information gathering
step, the most relevant attack surfaces in automotive systems are discussed with real-
world examples. Technical insights show the implications of certain attack surfaces
on the security of the entire vehicle. A l l identified vulnerabilities are rated with the
previously defined vulnerability scoring system.

4.1 M a n u a l Investigations of E lec t ron ic C o n t r o l
U n i t s

This section provides an overview of manually investigated components inside ve
hicle networks and shows investigation results for each component. Four different
E C U types were chosen for manual analysis to demonstrate the variety of automotive
systems. Every E C U type represents an E C U category with a unique role inside a
vehicle's network. The performed analyses are based on the proposed investigation
process from section 3.1; ratings of vulnerabilities follow the definitions in section 3.2.
A l l manual investigations cover an ECU's embedded-security analysis, identify pos
sible attack surfaces, and an exemplary list of identified vulnerabilities, documented

26

4.1. MANUAL INVESTIGATIONS OF ELECTRONIC CONTROL UNITS 27

according to the definitions in section 3.3.

4.1.1 Central Gateway Controller

As a representative for gateway ECUs in vehicular networks, a gateway E C U for Bundles the
B M W cars was investigated. This ECU's main application is in lower volume B M W entire corn-
models, for example, the i3, X I , and Mini cars. Independently from this investiga- m u m c a t l ° n

tion, KeenLabs also published an analysis of this E C U [32]. °̂ a v e f l i c ^ e

Figure 4.1: P C B of the Body Domain Controller (BDC) and Central Gateway Con
troller (CGW) E C U , model LR01. Only the components of the C G W are highlighted.
The following color scheme is used for the indication of E C U properties. Processors
and Controllers are blue, External memories are red, Debug Interfaces are orange,
On-Board Interfaces are yellow, and External Interfaces are green.

28 CHAPTER 4. SECURITY INVESTIGATION AND SURVEY

Table 4.1: Investigation of the B M W CGW, following the defined process.

Step 1: Role inside the vehicle
This E C U fulfills two different functionalities inside the vehicle. The PCB
contains two processors, which act as two independent ECUs in the same
housing. One processor is used as CGW; the other processor acts as BDC.
The BDC part of this E C U is in charge of controlling all body electronics
components inside the car, for example, the lighting system, the horn, the
wash and wipe system, and power window regulators. The following security
analysis focuses on the functionalities of the C G W part of this E C U .
The main purpose of this controller is the network separation and message
routing between individual networks. A l l communications from one sub
network to another subnetwork are routed through the C G W . Furthermore,
the C G W can act as a firewall to block illegitimate communication between
networks. Through a dedicated diagnostic network connected to the On-
Board Diagnostic (OBD) interface, the C G W provides diagnostic access from
OBD to all subnetworks, dependent on the target E C U location for diagnos
tic communication. As a gateway control unit, this E C U has access to all
communication on the vehicle's internal networks. It fulfills safety-critical
functionalities through its control over network communication and acts as a
FlexRay master node. Two IEEE 802.3 Ethernet interfaces are connected to
an Ethernet-Switch controller. One Ethernet line is connected to the vehi
cle's OBD connector; the other line is connected to the vehicle's Multimedia
Unit (MMU). The C G W can route IP traffic from the OBD connector to the
M M U , which is useful for large software updates of the vehicle's multimedia
system, for example, navigation system data. Furthermore, the C G W can
route ISO-TP messages from any subnetwork of the vehicle to the OBD con
nector. ISO-TP messages get encapsulated in the B M W proprietary protocol
High-Speed-Fahrzeug-Zugang (High-Speed Car Access) (HSFZ) and sent as
a Transmission Control Protocol (TCP) packet to a repair shop tester.

Step 2: Identification of ECU properties
The following properties could be identified.
Processors and Controllers

This E C U contains one FlexRay controller, one Ethernet-Switch con
troller, and seven C A N controllers. The central processor is an N X P
MPC5668G controller with a Power Architecture e200z6 core. One At-
mel microcontroller is used for the passive entry system of the vehicle.

4.1. MANUAL INVESTIGATIONS OF ELECTRONIC CONTROL UNITS 29

External Memories
Per processor, one external E E P R O M could be identified. These memo
ries store persistent data such as mileage values.

Debug Interfaces
The P C B contains two debug headers, one header for each processor.
These debug headers expose a serial connection with a command-line
interface and a Joint Test Action Group (JTAG) interface.

On-Board Interfaces
One C A N interface used for the on-board communication between the
two processors. SPI and Inter-Integrated Circuit (I2C) are used for com
munication with various peripheral ICs. The communication on these
interfaces is mainly for safety-related information, like status information
of output drivers and relays-switches.

External Interfaces
Four individual FlexRay networks, six CANs, and two Ethernet inter
faces are connected to this E C U . One Ethernet and one C A N interface
is dedicated to diagnostic communication. The second Ethernet interface
is directly connected with the M M U of the vehicle. FlexRay commu
nication is mainly used for safety-critical data transfer, such as driver
assistant systems and steering control units. Also, the C G W acts as a
master node for 14 different LIN networks.

Wireless Interfaces
This E C U contains interfaces for multiple passive-entry antennas.

Operating System
Inside the E C U , an embedded operating system and a bootloader are
used.

Step 3: Attack surface analysis
The following attack surfaces can be considered for further security analysis.
Remote attack surfaces

Ethernet T C P and IP-based communications have a complex driver
stack. The BMW-specific diagnostic protocols can offer privileged func
tionalities. Due to the higher complexity of the used protocols, this is the
likeliest interface for implementation errors in network drivers. Software
updates of the entire vehicle are forwarded from HSFZ to the desired
E C U in a subnetwork.

30 CHAPTER 4. SECURITY INVESTIGATION AND SURVEY

C A N This attack surface is the second likeliest for remote attacks. Most
ECUs in the car are connected via C A N to the CGW. To offer the required
diagnostic functionalities, this E C U can forward ISO-TP communication
into subnetworks. UDS is implemented to allow diagnostic operations
and software updates on this E C U .
LIN Various peripheral components are connected over LIN to this
E C U . LIN does not support complex protocols on this E C U . Attacks
over LIN that could compromise this E C U are unlikely.

Local attack surfaces
J T A G JTAG access is not possible without further hardware attacks.
JTAG would be a rewarding attack surface to compromise this E C U and
extract sensitive data, such as keys of the vehicles' immobilizer system or
secrets for encrypted communication between ECUs.
Debug Interfaces This E C U has two serial debug interfaces, one per
processor. Usually, these interfaces are used during development. Log
ging functionalities can help during the information gathering to better
understand the internal behavior of the E C U . Vulnerabilities on the debug
interface of this processor can be used to compromise the entire E C U .
External Memories Data that is often manipulated during the ECUs'
lifetime is stored in external EEPROMs. Stored data in these memories
can be manipulated if the E C U does not encrypt or authenticate this
memory. This attack surface could be used to spoof incorrect data for
internal processing.
Chip-Internal Memories Very sensitive data, for example, the crypto
graphic material for the vehicles' immobilizer system, is stored in internal
memories of the processor. Advanced hardware attacks are required to
attack the processor's internal storage. Colin O'Flynn's publication gives
a detailed impression of the required effort for such hardware attacks [41].

Step 4: Summary of identified vulnerabilities
Within the available time frame for this investigation, five different vulner
abilities were found. A l l exemplary vulnerabilities are shown in tables A . l ,
A.2, A.3, A.4, and A.5.

4.1. MANUAL INVESTIGATIONS OF ELECTRONIC CONTROL UNITS 31

Since this E C U acts as the central component for all vehicle-internal commu
nication, external interfaces are the most critical attack surface for this E C U .
The Ethernet interface can be attacked from vehicle-internal communication
by the M M U or by a malicious attacker through the OBD connector. Since
most ECUs of this vehicle are connected via C A N with the CGW, internal
attacks over C A N are likely. The offered diagnostic services and flashing
mechanisms are a rewarding target. If an attacker manages to compromise
the CGW, they can manipulate the vehicle's entire communication and trig
ger safety-critical commands. Attacks on the debug interfaces or the ECU's
external memories are interesting for attackers who either want to manipu
late the immobilizer system, the mileage counter, or the permanent pairing
of ECUs to a vehicle. In general, attacks on the P C B can reveal the firmware
and the ECU's internal behavior, which might be the first step to prepare
remote attacks.

32 CHAPTER 4. SECURITY INVESTIGATION AND SURVEY

4.1.2 Body Domain Controller

Controls all BDCs control all types of body-electronics in the vehicle. This includes the entry-
actuators in and immobilizer-system, power supply for body-electronic circuits, and all kinds of

the vehicle a ctuators, for example, the vehicle's horn, the wash- and wipe-system, and power
window regulators. As a representative, a BDC for vehicles manufactured by G M is
chosen for a manual investigation.

. ;IMHI ' ^ I

Figure 4.2: P C B of BDC manufactured by G M . The following color scheme is used
for the indication of E C U properties. Processors and Controllers are blue, External
memories are red, Debug Interfaces are orange, On-Board Interfaces are yellow, and
External Interfaces are green.

Table 4.2: Investigation of a G M BDC, following the defined process.

Step 1: Role inside the vehicle
As a central component, this E C U plays a crucial role in the vehicle's func
tionality. Security-related information for the vehicle's immobilizer system is
stored in this E C U .

4.1. MANUAL INVESTIGATIONS OF ELECTRONIC CONTROL UNITS 33

Therefore this component is in charge of unlocking the whole vehicle when
a driver wants to start the vehicle's engine. Besides the control over the
immobilizer, the steering wheel has to be unlocked as well, and additionally,
multiple other ECUs inside the car need to be supplied with power and woken
up.
Therefore, this E C U controls several relays to supply different circuits during
the vehicle's operation. Since this E C U is part of two different C A N net
works, a high-speed C A N and a low-speed Single Wire C A N (SWCAN), it
can route messages from one network to another. The investigated vehicle
uses a network architecture consisting of two Line-Bus networks (see 2.2.1) for
the entire in-vehicle communication. The BDC has full access to the vehicle's
internal networks and can directly communicate with any other E C U inside
the car.

Step 2: Identification of ECU properties
The following properties could be identified.
Processors and Controllers

The central processor is a Renesas uPD70F3558 microcontroller with in
ternal flash memory and Random Access Memory (RAM). A proprietary
Application-Specific Integrated Circuit (ASIC) on the PCB's backside
shown in figure 4.2 provides multiple safety-critical functionalities to the
main microcontroller. A data-sheet of this ASIC is not publicly available,
but manual reverse engineering showed that this ASIC consists of multiple
LIN transceivers, a hardware watchdog to reset the main microcontroller,
and multiple Universal Asynchronous Receiver Transmitter (UART) and
SPI connections. Such ASICs are often referenced as System Basis Chip
(SBC).

External Memories
This E C U contains one external E E P R O M .

Debug Interfaces
A JTAG-debug header for flashing of the central processor was found on
the PCB. Serial interfaces with debug information could not be identified.

On-Board Interfaces
The central processor and the SBC for safety-critical functionality are
connected via multiple interfaces. Run-time data of the processors op
erating system is exchanged over UART with the hardware watchdog of
the SBC. Multiple different SPI interfaces are connected to the SBC as
well.

34 CHAPTER 4. SECURITY INVESTIGATION AND SURVEY

External Interfaces
This E C U has multiple LIN interfaces, a high-speed C A N interface (500
kbps), and a low-speed SWCAN interface (33,3 kbps). These two C A N
networks are the main communication system for vehicle-internal com
munication.

Wireless Interfaces
This E C U does not have any wireless interfaces.

Operating System
Inside the E C U , an embedded operating system and a bootloader are
used.

Step 3: Attack surface analysis
The following attack surfaces can be considered for further security analysis.
Remote attack surfaces

C A N Since this E C U is directly connected to all other ECUs and
the OBD interface, the high-speed C A N connection poses the biggest
attack surface. The diagnostic protocol G M L A N is supported and used
for diagnostic operations and software updates.
S W C A N The low-speed S W C A N interface of this E C U poses a smaller
attack surface than the high-speed C A N interface. This E C U is mainly
sending data into this network. No diagnostic protocol is supported on
S W C A N by this E C U .
LIN LIN is used to communicate with peripheral components; for
example, the immobilizer Radio-Frequency Identification (RFID) coils or
systems like power mirror controls and power window controls. Because of
the small communication pay loads in LIN, attacks which lead to security
vulnerabilities, like buffer overflows or remote code execution, are very
unlikely.

Local attack surfaces
J T A G The JTAG interface of this E C U is locked. For example, a sophis
ticated hardware attack or voltage-glitching attacks, or electromagnetic-
glitching attacks, are required to access the debug interface of this E C U .
External Memories Run-time data that needs to be changed often
over the ECUs lifetime is usually stored in an E E P R O M . These memories
are usually not protected and can be read through physical connections.

Step 4: Summary of identified vulnerabilities
Within the available time frame for this investigation, three different vulnera
bilities and one vulnerability chain were found. A l l exemplary vulnerabilities
are shown in tables A.6, A.7, A.8, and A.9.

4.1. MANUAL INVESTIGATIONS OF ELECTRONIC CONTROL UNITS 35

The identified vulnerabilities in this E C U allow remote code execution over
the high-speed C A N network of the vehicle. Malicious actors with tempo
rary access to the OBD interface of a vehicle can execute arbitrary code on
the BDC. This can allow attackers to disable the immobilizer system of the
vehicle. Safety-critical functions can be triggered, or malfunctions provoked.
These vulnerabilities were used to demonstrate the capabilities of automotive
ransomware [05] [P5].

3(3 CHAPTER 4. SECURITY INVESTIGATION AND SURVEY

4.1.3 Telematics Control Unit

gateway of
the vehicle

network

Acts as Modern vehicles have to provide a Global System for Mobile Communications (GSM)
mobile- a n c [Global Positioning System (GPS) connection to fulfill the European regulation

communicationeQa\\ [IQ] j n c a s e 0 f a s erious road accident, a modern vehicle has to transmit its
current position automatically to emergency services. Vehicle manufacturers have
to fulfill these requirements to be able to sell their vehicles inside the European
Union. Most manufacturers added a new E C U with GSM and GPS connectivity to
their existing vehicle architectures and network topologies. From the requirements
of eCall, these Telematics Control Units (TCUs) need to have interfaces for both
GSM and GPS in one single component. As a representative for this investigation,
a T C U manufactured by L G was chosen. This T C U is used for telematic services of
vehicles manufactured by G M .

Figure 4.3: P C B of a T C U used in G M vehicles. The following color scheme is
used for the indication of E C U properties. Processors and Controllers are blue,
External memories are red, Debug Interfaces are orange, On-Board Interfaces are
yellow, External Interfaces are green, and Wireless Interfaces are purple.

4.1. MANUAL INVESTIGATIONS OF ELECTRONIC CONTROL UNITS 37

Table 4.3: Investigation of a G M T C U , following the defined process.

Step 1: Role inside the vehicle
This specific T C U provides remote connectivity for the entire vehicle. The
T C U has a connection to every other E C U in the vehicle and is able to
perform software updates of the entire vehicle. A W L A N access point hosted
by this T C U allows passengers to use the vehicle's Long Term Evolution
(LTE) connection for internet access.

Step 2: Identification of ECU properties
The following properties could be identified.
Processors and Controllers

The central processor of this T C U is an i.MX6 single core applica
tion processor from Freescale/NXP. As a W L A N controller, a Broadcom
BCM4330 chipset module is used. The Network Access Device (NAD)
daughterboard for the LTE and GSM connectivity uses a Qualcomm
MDM9215 LTE chipset. Also, an embedded Subscriber Identity Mod
ule (SIM) card is located on the NAD board.

External Memories
The i .MX6 central processor of this E C U has an external flash and R A M .

Debug Interfaces
This T C U contains various debug interfaces. A USB On-The-Go (USB-
OTG) interface to the central processor, a serial connection, and a second
USB connection is available on an external connector. The second USB
connection can be transformed into an Ethernet connection if a USB to
Ethernet adapter with ASIX chipset is connected. On the P C B , a JTAG
header, both for the central processor and the W L A N module, was found.

On-Board Interfaces
The central processor connects via USB to the NAD daughter board and
the W L A N module.

External Interfaces
This E C U has a high-speed C A N interface (500 kbps) and a low-speed
SWCAN interface (33,3 kbps). These two C A N networks are the main
communication system for all vehicle-internal communication.

Wireless Interfaces
This E C U has the following wireless interfaces: LTE, GPS, and W L A N .

38 CHAPTER 4. SECURITY INVESTIGATION AND SURVEY

Operating System
A QNX operating system operates the central processor. The W L A N -
module uses an embedded real-time operating system from Broadcom,
and the NAD is driven by an embedded real-time operating system from
Qualcomm.

Step 3: Attack surface analysis
The following attack surfaces can be considered for further security analysis.
Remote attack surfaces

W L A N A malicious attacker could use the vehicle's internal W L A N
hotspot to attack the entire vehicle. An attacker needs to know the
correct credentials to access the W L A N network, or a pre-authentication
vulnerability in the WLAN-chipset needs to be present. This interface
exposes a remote attack surface, which authenticated or unauthenticated
attackers could potentially attack.
L T E The LTE connection itself is encrypted and authenticated. Every
SIM card is registered and bound to a specific vehicle. Vulnerabilities
inside the LTE chipset firmware could allow remote attacks from an at
tacker within the LTE or even GSM communication range. An attacker
with physical access could use the SIM card to access the communication
endpoints inside the Access Point Name (APN) network.
GPS GPS is a receive-only communication interface. The T C U uses
the GPS signal to determine the vehicle's position. GPS can also be used
as a source for the current time. Both signals, time and position, can be
spoofed by malicious actors. If the information from the remote interface
GPS is trusted and used for internal and security-sensitive operations,
such as certificate validation, an attacker is able to compromise those.
C A N The T C U uses a powerful application processor and a complex
operating system, which requires more memory compared to a firmware
on embedded processors. Because of the limitations of CANs transfer
rate, software updates over C A N are unlikely, which excludes this attack
vector. C A N might be an attack surface to reconfigure the T C U or to
cause a DoS. A reduced set of diagnostic services can be expected on
the C A N interface. It might also be possible that other ECUs could use
C A N communication to ex-filtrate data over the Internet connection of
the T C U .

4.1. MANUAL INVESTIGATIONS OF ELECTRONIC CONTROL UNITS 39

S W C A N This remote interface is probably the least rewarding for
attacks. It is unlikely that this interface offers diagnostic services since
this E C U has a faster C A N connection. Also, on this interface, there is a
possibility that other ECUs could ex-filtrate information.

Local attack surfaces
J T A G A l l three processors (i.MX6, BCM4330, MDM9215) have JTAG
interfaces. The interface of the MDM9215 processor is not exposed. A l l
other interfaces can be used to debug the processor and to read out the
firmware.
External Memories The i .MX6 central processor has an external flash
that could be read out or modified.
Debug Interfaces Multiple debug interfaces were found on the central
processor. The i .MX6 has a UART, USB, and even an Ethernet-over-USB
interface exposed on a dedicated external connector of this E C U .

Step 4: Summary of identified vulnerabilities
Within the available time frame for this investigation, three different vulner
abilities were found. A l l exemplary vulnerabilities are shown in tables A. 10,
A . l l , and A.12.
This T C U has multiple remote attack surfaces and an extraordinary position
in the vehicle architecture, as it is directly connected to all other ECUs of
the vehicle. A successful remote attack of this E C U would allow an attacker
to control the entire vehicle. Vulnerabilities to allow such an attack could
not be identified. The identified local attack surfaces allow comprehensive
information gathering about the internal functionalities of this E C U . Access
to debugging interfaces can help attackers to prepare remote attacks.

40 CHAPTER 4. SECURITY INVESTIGATION AND SURVEY

4.1.4 Airbag Control Unit
This E C U controls the airbag and restraint system of vehicles from G M .

Figure 4.4: P C B of an airbag and restraint system E C U used in G M vehicles. The
following color scheme is used for the indication of E C U properties. Processors and
Controllers are blue, External memories are red, Debug Interfaces are orange, On-
Board Interfaces are yellow, and External Interfaces are green.

Table 4.4: Investigation of a G M Airbag Control Unit (ACU), following the defined
process.

4.1. MANUAL INVESTIGATIONS OF ELECTRONIC CONTROL UNITS 41

Step 1: Role inside the vehicle
This E C U controls lifesaving systems as the airbag- and the passenger-
restraint-system. Furthermore, this E C U can store pre-crash vehicle data
in an internal memory. The vehicle driving data is received on a low-speed
C A N connection. Since the airbag- and the passenger-restraint-system are
very safety-critical components, security vulnerabilities can have a devas
tating impact. Outgoing communication from this E C U is only emitted if
internal errors are detected.

Step 2: Identification of ECU properties
The following properties could be identified.
Processors and Controllers

The central processor is a 16-bit Freescale MC9S12XS processor, which
uses a CPU12X instruction set architecture. Two SPI airbag squib
driver ICs (TEMIC TAURI 4 E113.0xx) are used to launch the vehicle's
airbags. Furthermore, two Micro-Electro-Mechanical System (MEMS)
sensors guarantee redundant acceleration data.

External Memories
This E C U does not have external memories.

Debug Interfaces
No debug interfaces could be identified on this E C U . Reverse-engineering
of the traces on the P C B is necessary to identify a debug interface of the
processor.

On-Board Interfaces
The central processor connects through multiple SPI interfaces to all other
controllers.

External Interfaces
This E C U has a low-speed S W C A N interface (33,3 kbps).

Wireless Interfaces
This E C U has no wireless interfaces.

Operating System
A real-time operating system for embedded systems is used.

Step 3: Attack surface analysis
The following attack surfaces can be considered for further security analysis.
Remote attack surfaces

S W C A N Since this interface is the only connection to the vehicle
network, all diagnostic- and software-update-services have to be served
there. This is a possible attack surface for exploitation.

42 CHAPTER 4. SECURITY INVESTIGATION AND SURVEY

Local attack surfaces
S P I This on-board interface can be used to gain information about the
internal functionality of the airbag squib driver ICs.

Step 4: Summary of identified vulnerabilities
Within the available time frame for this investigation, two different vulnera
bilities and one vulnerability chain were found. A l l exemplary vulnerabilities
are shown in tables A. 13, A. 14, and A. 15.
This ECU's connectivity is very minimal, but the safety impact a software
vulnerability can have is tremendous. Code execution can potentially allow an
attacker to launch airbags. The exposed diagnostic interface over C A N does
not show any security hardening, and very weak security access algorithms
are used.

4.2. SURVEY OF PUBLISHED ATTACKS ON AUTOMOTIVE SYSTEMS 43

4.2 Survey of P u b l i s h e d At t acks on A u t o m o t i v e
Systems

In recent years, automotive systems were regularly targeted by various cyber-attacks.
This section summarizes publications with the most impact related to passenger
safety A l l presented attacks will be analyzed to highlight the used attack surfaces
and understand the required vulnerabilities and vulnerability chains.

4.2.1 Dieter Spaar: Beemer, Open Thyself!

Dieter Spaar demonstrated an attack against BMW's remote control features [52].
Next to multiple other comfort features, owners can use a smartphone application
to lock and unlock their vehicles. Shared cryptographic secrets and implementation
flaws in the Next Generation Telematics Protocol (NGTP) communication protocol
allowed Spaar to open arbitrary vehicles through a malicious Base Transceiver Station
(BTS). This attack required remote services to be enabled on a victim's car. During
his research, he even managed to remotely change a victim's car's configuration to
enable the required remote features from his malicious BTS, allowing him to perform
his attack on every vehicle from B M W , which had the proper T C U built-in. For this
research, two different vulnerabilities and one vulnerability chain could be identified.
Al l vulnerabilities and vulnerability chains are shown in tables A. 16, A. 17, and A. 18.

4.2.2 Miller &; Valasek: Remote Exploitation of an Unal
tered Passenger Vehicle

Miller & Valasek were able to gain full control over a vehicle through a remote attack Famous Jeep
[38]. The targeted vehicle exposed highly sensitive services on various ports. These Cherokee
ports were accessible through the vehicle's IP address. The absence of an A P N for the hack from
vehicle's cellular connection allowed Miller & Valasek to connect to vulnerable cars
over the Internet. The exposed services allowed, for example, software updates of
arbitrary ECUs in the vehicle. Through malicious firmware modifications of an E C U ,
they could gain remote access to the vehicle's C A N bus, allowing them to control
any cyber-physical function of an attacked vehicle. For this research, two different
vulnerabilities and one vulnerability chain could be identified. A l l vulnerabilities and
vulnerability chains are shown in tables A.19, A.20, and A.21.

Remote
attack of
BMW's
locking
system

44 CHAPTER 4. SECURITY INVESTIGATION AND SURVEY

4.2.3 Nie et al.: Free-Fail - Hacking Tesla from Wireless to
C A N Bus

Security researchers from Keen Security Lab analyzed a Tesla Model S for remote
exploitability [50]. Based on an already known browser exploit, they crafted an
attack chain to compromise the entire vehicle. A local privilege escalation bug,
introduced by an outdated Linux kernel version, allowed them to gain control over
the entire M M U . This unit is also connected to the vehicle gateway and has the
ability to provide software updates. The lack of signed firmware updates allowed
them to craft their manipulated gateway firmware, which provides full remote access
to the vehicle's C A N buses. At this point, they could exploit further ECUs through
insecure UDS routines and update mechanisms. For this research, four different
vulnerabilities and one vulnerability chain could be identified. A l l vulnerabilities
and vulnerability chains are shown in tables A.22, A.23, A.24, A.25, and A.26.

4.2.4 Cai et al.: 0-days & Mitigations - Roadways to Exploit
and Secure Connected B M W Cars

The same group of security researchers that already analyzed the cars from Tesla
started a follow-up research project on multiple cars from B M W [6]. In this pub
lication, they showed a remote exploit of an unaltered vehicle from B M W . The
researchers crafted two very complex attack chains, consisting of vulnerabilities in
multiple different ECUs. The first attack chain used a web browser exploit on the
M M U as a remote entry. A time-of-check to time-of-use (TOCTOU) attack against
internal diagnostic services allowed them to send arbitrary UDS messages onto the
vehicle's internal C A N bus. Implementation flaws in the UDS protocol of the C G W
allowed the escalation to all internal communication systems. Their second attack
chain did not involve any user interaction. Similar to the attack of Spaar, they used
the provisioning feature of the N G T P protocol. A buffer overflow in the T C U allowed
them to obtain remote code execution. A vulnerable diagnostic service allowed them
to send arbitrary messages onto the vehicle's C A N bus. From here onward, the same
flaws in the C G W could be used to get access to the entire vehicle. For this research,
four different vulnerabilities and two vulnerability chains could be identified. A l l
vulnerabilities and vulnerability chains are shown in tables A.27, A.28, A.29, A.30,
A.31, and A.32.

4.2. SURVEY OF PUBLISHED ATTACKS ON AUTOMOTIVE SYSTEMS 45

4.2.5 Computest: The Connected Car - Ways to get unau
thorized access and potential implications

The Dutch security company Computest conducted an investigation of Audi and
Volkswagen vehicles as an R&D project [5]. Within their research, they discovered
open ports on the vehicle's M M U . A vulnerability in the operating system Q N X al
lowed them to open a shell through a W L A N or mobile data connection. Depending
on the country in which the vehicle is operated, the remote connection might be
secured by an A P N from the telecommunication service operator. Further vulnera
bilities in the Q N X system and internal services of the M M U offer a local privilege
escalation vulnerability. Through a firmware modification of the C A N Microcon
troller Unit (MCU) inside the M M U , they obtained arbitrary write access to the
vehicle's C A N bus. At this point, they stopped their research. An attack of the
vehicle gateway E C U would have been necessary to compromise the entire vehicle.
For this research, three different vulnerabilities and one vulnerability chain could
be identified. A l l vulnerabilities and vulnerability chains are shown in tables A.33,
A.34, A.35, and A.36.

Chapter 5

Analysis of Identified
Vulnerabilities and
Attack-Surfaces

To conclude part II of this thesis, an evaluation of the performed ratings will be
conducted, aiming to reveal common properties of each identified attack surface and
defense strategies to lower the exploitation risk of vulnerability chains. In preparation
for chapter 6, each attack surface is analyzed for its test-ability and its automation
capabilities for security tests on a component level.

This chapter targets the following research questions:
• Q l : Which impact on the overall safety-critical system do individual vulnera

bilities and vulnerability-chains have?
• Q2: Which attack surfaces can be analyzed automatically?

The following contributions will answer these questions:
• A l : An evaluation of all vulnerabilities and vulnerability chains regarding their

exploitation risk and mitigation strategies (5.1).
• A2: A n overview of capabilities for automated discovery and testing of attack

surfaces (5.2).

At the end of this chapter, common attack surfaces in automotive components are
identified, their impact on the overall safety-critical system is estimated through a
scoring system, and the possibility for automated security tests on individual attack
surfaces is evaluated.

46

5.1. EVAL UATION OF IDENTIFIED VULNERABILITIES 47

5.1 Eva lua t i on of Identified Vulnerab i l i t i es

The evaluation of all identified vulnerabilities is structured in two parts. First,
average scores of all vulnerabilities clustered by their attack surface and vulnerability
chains scores are compared. Secondly, vulnerability chains are analyzed, and the
impact of mitigation strategies is discussed.

5.1.1 Analysis of Vulnerability Ratings

Section 4.1 and section 4.2 show a collection of 28 different vulnerabilities and eight
different vulnerability chains. Every vulnerability and vulnerability chain is rated
with an impact and exploit ability factor, according to the definitions in table 3.2 and
table 3.3.

Table 5.1 shows the average impact and exploitability factors of all identified
vulnerabilities clustered by the attack surface. Besides evaluating single vulnerabili
ties, vulnerability chains need to be considered independently to better understand
the differences in the exploitation risk. A l l vulnerability chains are shown in table 5.2.

The identified vulnerability chains consist of two to four individual vulnerabili
ties. The combination of multiple vulnerabilities leads to a higher impact and ex
ploitability factors. Table 5.2 shows that the average impact and exploitability factor
increased for all vulnerability chains than average values of single vulnerabilities.

Table 5.1: Summary of vulnerabilities grouped by attack surfaces. The ratings Low,
Medium, and High correspond to the numeric values 1, 2, and 3.

No. Name Impact Exploit.

Attack Surface: External Memories
V I Unprotected external memory Low Low
V6 Unprotected external memory Low Low
V9 Unprotected external memory Medium Low
V14 Shared cryptographic secrets in T C U Low Low

Total: 1.25 1

48 CHAPTER 5. ANALYSIS OF ATTACK-SURFACES

Attack Surface: Debug Interfaces
V4 Serial debug interface available Low Low
V5 Insecure M C U internal bootloader Medium Low
V10 Unprotected JTAG interface Medium Low
VI1 External Debug-Port Medium Low

Total: 1.75 1

Attack Surface: On-Board Interfaces
V17 Insecure software update mechanisms High Low
V20 Unauthenticated software update mechanisms High Low
V28 Insecure software update mechanisms Medium Low

Total: 2.67 1

Attack Surface: External Interfaces
V2 Diagnostic message routing Medium Medium
V3 Development functionalities Low Medium
V7 Insecure Security Access mechanism Medium Medium
V12 Weak Security Access algorithm Medium Medium
V21 Insecure UDS protocol High Medium
V24 Insecure UDS message routing High Medium

Total: 2.17 2

Attack Surface: Wireless Interfaces
V15 Information leaks in NGTP Low High
V16 Exposed services on remote interface Medium High
V18 Browser exploit Medium High
V22 Browser exploit Medium Medium
V25 Buffer overflow in the N G T P protocol Medium High
V26 Open ports on the vehicles network interfaces Low High

Total: 1.67 2.83

Attack Surface: Operating System
V8 Insecure software update mechanism High Low
V13 Remote Code Execution (RCE) vulnerability High Low
V19 Linux kernel exploit Medium Low
V23 T O C T O U attack Medium Low
V27 QNX vulnerability Medium Low

Total: 2.4 1

5.1. EVAL UATION OF IDENTIFIED VULNERABILITIES 49

Table 5.2: Summary of vulnerability chains. The ratings Low, Medium, and High
correspond to the numeric values 1, 2, and 3.

No. Vulnerabilities Impact Exploitability Ref.

CI V7, V8 High Medium A.9
C2 V12, V13 High Medium A.15
C3 V14, V15 High High A.18
C4 V16, V17 High High A.21
C5 V18, V19, V20, V21 High High A.26
C6 V22, V23, V24 High Medium A.31
C7 V24, V25 High High A.32
C8 V26, V27, V28 Medium High A.36

Total: 2.88 2.62

Figure 5.1 visualizes the average exploitation risk of all vulnerability chains and
all vulnerabilities grouped by attack surfaces. With an average exploitability score
of 7.55 (2.88 x 2.62), vulnerability chains have the highest exploitation risk. Another
remarkable outcome of this analysis is the distribution of impact and exploitability
factors across the individual attack surfaces' vulnerabilities. An attack surface is
either more likely to be exploited but has a lower impact factor or is unlikely to be
exploited but has a higher impact factor.

Wireless Interfaces have a medium to high exploitability factor (2.83) combined
with a low to medium impact factor (1.67), resulting in an exploitability risk score
of 4.73. This relatively low impact factor is an effect of the applied hardening mech
anisms onto the vehicle architectures, as described in section 2.2.2.

External Interfaces, from an ECU's point of view, include all vehicle-internal in
terfaces. This attack surface has a medium to high impact (2.17) and a medium
exploitability (2). With an exploitability risk score of 4.34, this attack surface is the
second likeliest entry point for exploitation. The impact factor would be higher on
this attack surface if OEMs did not already apply physical hardening mechanisms
through network separations.

The attack surfaces External Memories, Debug Interfaces, and On-Board Inter
faces require physical access for any exploitation attempt, which is the main reason

50 CHAPTER 5. ANALYSIS OF ATTACK-SURFACES

- Medium -

• External Memories
• Debug Interfaces
On-Board Interfaces

• External Interfaces
Wireless Interfaces
Operating System
Vulnerability Chains

Medium

Exploitability

Figure 5.1: Distribution of average exploitability factors and average impact factors
for each attack surface and all vulnerability chains.

for the low exploitability factor. The attack surface Operating System requires access
to the system, usually unprivileged code execution, resulting in the low exploitability
factor for automotive systems. These four attack surfaces' impact factors vary from
low to high, depending on the possibilities an attacker gains from a successful attack.
In all investigated systems, code execution was not easy to achieve.

5.1.2 Analysis of Vulnerability Chains

A l l published attacks on automotive systems used a more or less complex vulnera
bility chain. The chaining of vulnerabilities is necessary to overcome architectural
mitigation strategies, OEMs applied to their cars. A common goal of every attack
is unlimited access to the vehicle's internal network, which results in a high impact
factor of a vulnerability chain.

The vulnerabilities V8, V13, V17, V20, and V28 are targeting software update
mechanisms of vehicle components which are connected to the vehicle-internal net
works. In all cases, these vulnerabilities require an additional vulnerability to get
access to the interface on which the safety-critical components receive their updates.
In the analyzed chains, these were either C A N networks or On-Board networks on
the ECU's PCB.

5.1. EVAL UATION OF IDENTIFIED VULNERABILITIES 51

To better understand the impact of vulnerability chains and the defense capa
bilities if these vulnerability chains could be broken up, the following hypothetical
assumption is made:

Assuming that the software update mechanisms would not have any security flaws,
V8, V13, V17, V20, and V28 would not be present.

This assumption would drastically change the impact factors of the vulnerability
chains CI , C2, C4, C5, and C8, which then would have a medium instead of a high
impact factor. Furthermore, this would result in a lower exploitation risk of a car.
The majority of the collected vulnerability chains (5 out of 8) would be affected by
this assumption which shows that this defense strategy would lower exploitation risk
in most cases.

Table 5.3: Comparison of real exploitation risk (on the left side) with the hypothetical
exploitation risk (on the right side). The ratings Low, Medium, and High correspond
to the numeric values 1,2, and 3.

Real Risk Hypothetical Risk

No. Impact Expl. Impact Expl.

CI High Medium Medium Medium
C2 High Medium Medium Medium
C4 High High Medium High
C5 High High Medium High
C8 Medium High Medium High

Total: 2.8 2.6 2 2.6

Risk: 7.28 / 9 5.2 / 9

Table 5.3 shows that the lowering of one factor for the exploitation risk calcula
tion results in a decrease in the overall exploitation risk. This hypothetical example
should highlight the capabilities of security measures that target the decreases of
either the impact or the exploit ability factor. Such mitigation, which increases the
complexity of successful exploitation, is based on the Defense in Depth hardening
strategy introduced by the U. S. National Security Agency [2]. Especially in automo
tive systems, components have either high exploitation factors or high impact factors
(see figure 5.1). This circumstance fits perfectly to lower the overall exploitation risk

52 CHAPTER 5. ANALYSIS OF ATTACK-SURFACES

through a Defense in Depth strategy. The Defense in Depth strategy can break up
vulnerability chains by improving individual components' security, which delivers a
cost-efficient method to harden a complex automotive system against safety-critical
cyber-attacks.

5.2 Ana lys i s of A u t o m a t i o n Capabi l i t i es

Automated testing is crucial to improve the cost efficiency of security investigations
and penetration tests. Software systems, nowadays, have overall good automation
capabilities for quality assurance tests. Also, the research field of automated secu
rity tests for software products delivers promising results. On embedded systems,
the same progress has not taken place yet. Automated functional tests for hard
ware systems are well understood and performed on all automotive components, but
security-related automated tests are an exception and only performed on a very lim
ited set of systems.

The studied publications demonstrated the automated execution of all vulnera
bility chains. In some publications, the usage of automated tools for vulnerability
discovery was explicitly mentioned. Miller & Valasek and researchers from Com-
putest used the tool Nmap during their investigations to identify the vulnerabilities
V16(A.19) and V26(A.33) [34].

To better understand hardware-related security testing difficulties, every attack
surface will be examined for its automation capabilities while also discussing required
challenges to be solved. Furthermore, the possibility of automated identification and
exploitation of vulnerabilities will be discussed.

5.2.1 External Memories

A l l identified vulnerabilities related to the attack surface External Memories are
L°w listed in Table 5.1. The average exploit ability factor of 1 already indicates difficul-

automahon ^ e g £ Q r a u t 0 mated security tests. Spaar described the entire process for his attack
cd WCL b Hi tics

[52]. This clearly shows that the process of memory extraction from a sophisticated
target P C B has no capabilities for automation. On the other hand, if targets were
more basic, which mainly describes that the form factor of external memory is easier
to access, open-source tools like flashrom can be used for semi-automated memory
extraction [12].

5.2. ANALYSIS OF AUTOMATION CAPABILITIES 53

In contrast, the analysis of extracted memory can be partly automated to ex
tract specific information. Binary analysis tools, for example, binwalk, can identify
data of interest [46]. Entropy analysis of the memory content will immediately high
light cryptographic material. A l l under the assumption, the extracted data is not
encrypted. In general, the automation capabilities for the attack surface External
Memories are low.

5.2.2 Debug Interfaces

Automated vulnerability assessments of Debug Interfaces on PCBs face similar diffi
culties as described for External Memories. On automotive systems, mainly UART
and JTAG interfaces are used for debugging purposes (see table 5.1). In most cases,
these interfaces do not provide an easy to access connector. Therefore, manual mod
ifications need to be made to a target PCB. Tools like the JTAGulator can assist
during the identification of these interfaces [53]. Vulnerability assessments are very
target-specific and need to be done manually. In summary, the automation capabil
ities for the attack surface Debug Interfaces are low.

Low
automation
capabilities

5.2.3 On-Board Interfaces

On-Board Interfaces are the third attack surface that requires physical access to a
PCB. These interfaces are a great source to gather internal information about a
target. An example of how On-Board Interfaces can be used to attack embedded
targets was shown in a presentation at the Troopers Conference 2019 and in the
publication Extending Vehicle Attack Surface Through Smart Devices [04] [P3]. The
same difficulties as on Debug Interfaces and External Memories also apply for On-
Board Interfaces. Manual investigation and modifications of the P C B are required
in order to get access to them. The automation capabilities of this attack surface
correlate with their low exploitability.

Low
automation
capabilities

5.2.4 External Interfaces

External Interfaces stand for all wired interfaces that connect with an E C U . The
most relevant physical protocols for security investigations are explained in detail High
in section 2.1, and important communication protocols are summarized in section
2.3. In recent years, many open-source tools for penetration attempts in automotive
networks were published. In cooperation with E. Pozzobon, a list of open-source

automation
capabilities

54 CHAPTER 5. ANALYSIS OF ATTACK-SURFACES

tools for automotive network penetration testing was published [01, table 1 on page
3]. A l l identified vulnerabilities on the attack surface External Interfaces (see table
5.1) could have been discovered automatically. From the perspective of a security
researcher or penetration tester, the physical interfaces C A N , Automotive Ethernet,
and Ethernet are easy to access. These interfaces provide stable communication since
the communication medium is not shared. A l l together, vulnerability discovery on
External Interfaces has a high potential for automated testing.

5.2.5 Wireless Interfaces

Low The attack surface Wireless Interfaces describes a wide variety of different communi-
automation
capabilities

for Wireless
Interface in

cation technologies. A detailed collection of wireless interfaces is given by Checkoway
et al. [7, section 3.2 and 3.3]. Only the mobile data connection and W L A N con
nections were attacked (see table 5.1). This attack surface has two negative aspects
in terms of automation. First, the huge variety of communication standards require
special testing equipment for each interface. Second, every standard has its unique
protocol structure, which requires individual effort to establish a connection. These
two aspects result in very complex and expensive test setups. A l l wireless interfaces

Individual u s e the shared communication medium air. External interference will additionally
increase the difficulties for automated test setups. The automation capabilities of
the entire attack surface Wireless Interfaces have low capabilities for automated vul-

higher nerability assessments. Nevertheless, it is essential to mention that a large amount
automation of tools for individual communication standards exists.
capabilities

wireless
technologies

can have

5.2.6 Operating Systems

This attack surface summarizes all vulnerabilities which require an implementation
bug or logic error in the operating system or bootloader of an E C U . The analyzed

capabilities systems showed a huge variety, from a bare-metal real-time operating system to a
full-fledged Linux operating system. This circumstance makes automated analysis of
vulnerabilities complicated since the systems are fundamentally different. For those
reasons, the automation capabilities of the attack surface Operating Systems are
rated low.

Low
automation

5.3. SUMMARY 55

5.3 S u m m a r y

Safety-critical vulnerabilities in automotive systems are realistic, and various re
searchers were able to demonstrate multiple successful attacks. In all real-world
scenarios, vulnerability chains were required to overcome architectural difficulties
and mitigation strategies. The final goal of every exploitation is unlimited access to
vehicle-internal networks with connections to CPSs. Through a Defense in Depth Defense in
strategy, the exploitation risk can be reduced by interrupting the necessary vulner
ability chains. The positive effects of hardening strategies applied to the vehicle
network architectures could already be demonstrated by an in-depth analysis of re
quired vulnerability chains in published attacks. Furthermore, it was demonstrated automotive
that hardening efforts applied to individual components are an efficient mitigation architectures
strategy to lower the automotive system's overall exploitation risk.

Depth
strategies
already
secure

A cost- and time-efficient solution to increase a systems security level is automated
security testing. A l l identified attack surfaces were analyzed for their automation ca
pabilities. The most suitable attack surfaces for automated security testing are wired have high
vehicle-internal networks (External Interfaces of an ECU). Such automated tests have automation
the potential to harden the vehicle's internal networks against exploitation sustain- capabilities
ably and lower the overall impact factor, resulting in a lower overall exploitation risk
of an entire vehicle.

Wired vehicle
networks

for security
tests

Part III

Automated Security Investigations
of Safety-Critical Systems

56

Chapter 6

Tools for Security Investigations of
Safety-Critical Networks

Part II provided two essential insights. First, vehicle-internal networks contribute
disproportionately to the impact of security vulnerabilities. Second, these networks
have outstanding potential for automated security tests and vulnerability scans.

This chapter will focus on tools and methodologies for automated security evalu
ations in wired vehicular networks. As the first step, a suitable open-source software
framework for tool development will be chosen. Second, the diagnostic protocol stack
in automotive networks is introduced. Further, this stack will be dissected into its
layers, and opportunities for automated testing on each layer will be discussed.

In summary, this chapter contains the following contributions:

• A summary of the implementation of an open-source software framework for
automotive penetration testing.

• A description of contributed tools for every layer in the automotive diagnostic
protocol stack.

• A novel approach for ISO-TP endpoint identification on CAN-based networks.

6.1 Select ion of a Software Framework

To avoid reinvent the wheel, an existing software framework should be used as a
starting point for creating a toolbox to support automated vulnerability scanning in

57

58 CHAPTER 6. TOOLS FOR SECURITY INVESTIGATIONS

automotive networks. Such a toolbox should fulfill the following requirements:

1. Open-Source Software: A l l tools are based on open-source software to en
sure freedom of use and to leverage an already existing software basis.

2. Portability: The tools are usable on all major operating systems.

3. Community: An active community ensures longevity.

As the first step, the following open-source tools were selected for further analysis
of suitability: Busmaster [45], CANalyzatOr [49], cantoolz [51], Caring Caribou [47],
Scapy [43], and Metasploit [44].

Fundamental analysis of open-source tools can be done by evaluating the version
control system's history. A l l chosen software frameworks use git for this purpose.
Most important for a project's vitality are the age of a project and the number and
the frequency of contributions, which quickly reveal if an existing community actively
maintains a project.

Busmaster
CANalyzatOr

cantoolz
Caring Caribou

Scapy
Metasploit

2004 2006 2008 2010 2012 2014 2016 2018 2020
Year

Figure 6.1: Evaluation of commits per year for the open-source projects Busmaster
[45], CANalyzatOr [49], cantoolz [51], Caring Caribou [47], Scapy [43] and Metasploit
[44].

6.2. AUTOMOTIVE DIAGNOSTIC PROTOCOL STACK 59

The commits per year plot in figure 6.1 clearly shows significant differences be
tween the individual projects. The projects cantoolz and Busmaster did not receive
any contribution since 2018. The projects CANalyzatOr and Caring Caribou are still
under development, but the number of commits is low. This indicates that no active
community for these projects exists. As a counterexample, the projects Scapy and
Metasploit show the contribution behavior of an active community. Over the last
five years, the project Scapy received more than 800 commits on average per year,
the project Metasploit more than 5000.

Because of the given requirements, the only projects worth considering are Scapy,
a powerful Python-based interactive packet manipulation program and library, and
Metasploit, The world's most used penetration testing framework. Scapy was cho
sen for further development between these two projects because of its outstanding
capabilities for IEEE 802.3 based network penetration testing. The communication
systems for vehicle-internal networks will develop into this technological direction,
which makes Scapy a future safe choice for a network penetration testing tool and
framework. Metasploit, on the other hand, mainly focuses on penetration testing of
web-applications, end-user computer systems, and servers, which does not make it a
perfect fit for the desired use-cases in automotive penetration testing.

The following sections will reference contributions to this open-source project as
part of the efforts to form a general and open toolkit for automotive penetration
testing in vehicular networks.

6.2 Dissec t ion of the A u t o m o t i v e Diagnos t ic P r o
toco l Stack

Recent developments in the automotive industry show the transition from C A N -
based networks to IEEE 802.3 based networks. Therefore, the focus of this chapter
lies on application layer protocols, for example, diagnostic protocols. This allows the
application of the following tools and methodologies, which only dependent on an
application layer protocol, on top of both protocol stacks (CAN and IEEE 802.3) if
the abstraction to the transport layer is implemented transparently. For comparison,
these stacks are shown in figure 2.5.

60 CHAPTER 6. TOOLS FOR SECURITY INVESTIGATIONS

6.2.1 Media Access Layer Contributions

In 2018, an overview of media access solutions for C A N penetration testing was pub
lished in cooperation with Enrico Pozzobon [01]. The release "A Survey on Media
Access Solutions for C A N Penetration Testing" defined the general requirements of
software tools for penetration testing in vehicular networks. Furthermore, a per
formance analysis of different media access solutions was conducted. The used test
setups were designed to benchmark use cases, common for penetration test appli
cations. Furthermore, this publication demonstrates that open-source software and
hardware media access solutions can provide a decent performance compared to ex
pensive professional media access equipment.

Another outcome of this paper was mapping open-source tools to the used soft
ware framework for media access [01, Table 1]. Most of the presented tools use
either Linux SocketCAN [18] or python-can [55] as a media access framework. Each
framework follows its individual design goals. The python-can framework is highly
flexible due to its support of all major operating systems and C A N bus interfaces. A
communication object in python-can does not have an intermediate layer for message
queuing, python-can provides a standardized software interface to a C A N network
device. Linux SocketCAN, on the other hand, provides a full-featured socket inter
face to a C A N network device. This demands the usage of Linux kernel functions
for message queuing and filtering. Both frameworks have their advantages and dis
advantages.

6.2.2 Transport Layer Contributions on C A N

As mentioned in section 2.3.2, ISO-TP is used to exchange payloads greater than
eight bytes between two ISO-TP endpoints. A set of communication parameters is
required to establish communication with an ISO-TP endpoint successfully. A novel
approach to automatically detect ISO-TP endpoints in CANs was published at the
Computer Science in Cars Symposium [02].

Once the necessary communication parameters are known, one can establish com
munication with an ISO-TP endpoint. A special kernel module for ISO-TP commu
nication can be used on Linux-based systems to achieve a socket-like communication
[16]. A comparable solution does not exist for Windows or OSX-based systems.

6.2. AUTOMOTIVE DIAGNOSTIC PROTOCOL STACK 61

The novel ISO-TP scanner utility is an important key to enable automated se
curity tests in CAN-based networks. This utility's unique capability is to identify
ISO-TP endpoints independently from the application layer protocol on top. How
ever, security vulnerabilities are more likely to exist in an application layer protocol
(see section 7.1.2). After the identification of ISO-TP endpoints, additional tools
can perform additional security tests on the application layer.

6.2.3 Transport Layer Contributions on IP networks
The latest vehicles use HSFZ or DoIP for diagnostic communication. As shown
in figure 2.5, these two protocols are located in the automotive diagnostic protocol
stack's transport layer. Increasing bandwidth demands made the use of IEEE 802.3
based communication necessary. Since this communication technology is widely used,
various tools from classical IT-systems can now be used for information gathering
and analysis of automotive networks. Two remarkable open-source tools are:

• Wireshark is the world's foremost and widely-used network protocol analyzer
[9]. The latest version of Wireshark supports the automotive protocols DoIP
and UDS. Wireshark allows to analyze any network traffic exchanged with a
vehicle.

• Nmap is a port scanner for IP networks [34]. With Nmap, open sockets on
ECUs can be identified, which helps to find endpoints for DoIP or HSFZ com
munication if they do not reveal themselves through announcement messages.

Both protocols can act as a routing protocol for UDS communication into vehi
cle subnetworks. This requires additional address information similar to source and
destination addresses in the ISO-TP communication protocol.

To enable automated security scanning of application layer protocols on top of
these communication protocols, protocol descriptions and application layer sockets
were contributed to the Scapy project. The protocol descriptions allow packet cre
ation and fuzzing on the transportation layer. Transparent application layer sockets
allow the application layer to application layer communication to support protocol
stack independent diagnostic protocol examinations.

6.2.4 Application Layer Contributions

The groundwork for each protocol's basic support was necessary to allow the cre
ation of automated scanners for application layer protocols (G M L A N , UDS, X C P ,

62 CHAPTER 6. TOOLS FOR SECURITY INVESTIGATIONS

OBD). My additions to the Scapy project enable network packet creation and traffic
interpretation for these automotive diagnostic protocols.

6.3 S u m m a r y of Con t r ibu t ions to Scapy

The entire groundwork for advanced scanning techniques of automotive diagnostic
protocols is summarized in table B . l . A l l self-developed contributions are open-
source, targeting the objective to support free automotive security research and de
velopment.

Chapter 7

Automated Security Investigations
of Safety-Critical Networks

This chapter shows a novel approach for threat analysis and measurement of the
possible attack surfaces in automotive diagnostic protocols. With an automated
scanner algorithm and its implementation, in-depth information gathering on auto
motive systems is demonstrated on real-world automotive components.

In summary, this chapter contains the following contributions:

• Threat definitions and a threat model of the possible attack surface of auto
motive components.

• An algorithm for automated system state reverse-engineering of hidden system
states in automotive diagnostic protocols.

• A new approach for attack surface estimation of automotive diagnostic proto
cols over a vehicle's lifetime.

7.1 Threa ts for A u t o m o t i v e Diagnos t ic Pro toco ls

This section introduces novel threat definitions for automotive diagnostic protocols
based on proven and demonstrated attacks. With an open-source scanner, intro
duced in section 7.2, automated information gathering in vehicular networks can be
realized. This scanner uses automated system state reverse engineering to obtain a
system state machine of an automotive system. Combining threat definitions with a
reverse-engineered system state machine forms a novel threat model for the potential

63

64 CHAPTER 7. AUTOMATED SECURITY INVESTIGATIONS

attack surface of automotive systems. Parts of the following sections were published
at the Embedded Security in Cars Workshop (ESCAR) USA in May 2021 [03].

The following implementation of a diagnostic protocol scanner will focus on UDS
and G M L A N , widely used in the automotive industry and supported by almost
every car. Both of these diagnostic protocols allow various commands for diagnosis,
programming, or even safety-critical operations on an E C U [20]. Vulnerabilities and
implementation flaws in both protocols have been used in the past to attack vehicles.
These attacks will be discussed, and general threat definitions for these protocols'
services will be presented. During this research, custom services for development
or provisioning purposes from OEMs could be identified. In general, undocumented
UDS services are a good indicator of hidden functionalities, often with extensive
privileges.

7.1.1 Demonstrated attacks

Some vulnerabilities that were presented in chapter 3 were already related to diag
nostic protocols. The concrete abuse of these vulnerabilities will be evaluated to
determine generic threats for a protocol's features.

• V3 (A.3) The O E M added proprietary additions to the UDS protocol imple
mentation. Attackers can leak sensitive information, read memory, and access
services for message routing.

• CI (A.9) An insecure implementation of GMLANs authentication mechanism
allows attackers to obtain extensive execution privileges. Combined with au
thentication issues in the software update mechanism, a remote code execution
attack over C A N was demonstrated [P5].

• C2 (A. 15) This vulnerability chain is very similar to CI , which proves the
repetition of vulnerability patterns in different ECUs.

• V21 (A.25) Researchers could execute safety-critical functionalities of UDS
without authentication.

• V24 (A.29) Similar to V3, logical issues in the message routing of the gateway
E C U exposed safety-critical functionalities of UDS to attackers.

• Miller <k Valasek conducted an in-depth security analysis of diagnostic protocols
[36]. They have proven the safety-criticality of various features in diagnostic
protocols for two different vehicles.

7.1. THREATS FOR A UTOMOTIVE DIAGNOSTIC PROTOCOLS 65

• Garcia et al. focused on security access mechanisms and analyzed remote code
execution capabilities of eleven different ECUs [57]. Their research was focused
entirely on diagnostic protocols.

• Pareja and Cordoba demonstrated hardware attacks on automotive diagnostic
protocols [42]. Fault injection attacks allowed them to bypass authentication
mechanisms and arbitrary memory extraction to obtain an ECU's firmware.

7.1.2 Threat Definitions

The demonstrated attacks (section 7.1.1), combined with a threat analysis of the
protocols G M L A N and UDS, will be used to develop general threat definitions for
automotive diagnostic protocols. The proposed threat definitions are based on the
Common Vulnerabilities and Exposures (CVE) flaw terminology [40]. Since C V E
flaw types are initially designed for web applications, office applications, and personal
computer systems, a new keyword is added. The keyword phys indicates that this
service of a diagnostic protocol can cause a physical action on a vehicle, becoming
important if analysis regarding the safety-criticality of supported services of an E C U
is performed. In table 7.2, all functions and features (also called services) of G M L A N
and UDS are annotated with possible or proven C V E flaw types. These threat
definitions allow mapping services of an E C U to possible security flaws to perform an
in-depth impact analysis of a diagnostic protocol implementation. Table 7.1 proposes
a measurand and a measuring unit for every flaw type to achieve a comparable rating.
[03]

Table 7.1: List of measurands and units for C V E flaw types.

Type Measurand Unit

upload Availability of service Boolean

dos-flood Number of supported sub-functions Integer

rand Number of supported sub-functions Integer

pass Number of supported sub-functions Integer

crypt Number of supported sub-functions Integer

phys Number of supported sub-functions Integer

infoleak Number of data bytes readable Integer

buf Number of data bytes writable Integer

int- overflow Number of data bytes writable Integer

(3(3 CHAPTER 7. AUTOMATED SECURITY INVESTIGATIONS

Table 7.2: Threat definitions for the diagnostic protocols UDS and G M L A N . Each
relevant service (referenced by the hexadecimal service identifier) is mapped to one
or multiple possible C V E flaw types. The description explains why a certain flaw
type is possible. A list of all service names of UDS and G M L A N can be found in
appendix C in table C . l .

UDS G M - Type Descriptions and references for the combination
of flaw types with U D S / G M L A N services

L A N

lOh lOh, dos- These commands will change the session of an E C U .
A5h flood This command's actual impact can reach from no ef

fect in the functionality to the execution of a different
firmware or the ECUs bootloader. Miller & Valasek and
Nie et al. used this service to disable (DoS) individual
ECUs [39, p. 9] [50, p. 12].

l l h dos- During a reset, an E C U is unavailable. Researchers from
flood Keen Labs were able to trigger this function at any speed

of a vehicle. Unavailability of safety-critical ECUs in
extreme driving conditions can cause serious dangers [6,
p. 28].

19h, 12h, infoleak These commands can be used to gather internal infor-
22h, lAh, mation about an E C U . This can be used to obtain static
23h, 22h, information (Vehicle Identification Number (VIN), soft-
24h, 23h, ware versions, etc.), dynamic information to understand
2Ah, 2Ch, the internal behavior of an E C U , or even to extract the
2Ch, 2Dh, entire firmware [42].
86h A9h,

AAh
27h 27h crypt Van den Herrewegen et al. and Diirrwang et al. demon

strated impacts of weak cryptographic implementations
[57, 11].

pass Miller <k Valasek revealed many hard-coded crypto
graphic secrets inside an ECUs firmware [36, p. 46].

rand Nie et al. analyzed weak security access implementa
tions and showed the lack of random seed creation [50,
p. 11].

7.1. THREATS FOR A UTOMOTIVE DIAGNOSTIC PROTOCOLS 67

28h 28h dos- This service grants the total bandwidth of the C A N bus
flood to only one E C U . Attackers can prevent ECUs from

communicating, which causes a DoS of the attacked
E C U [29, p. 7].

2Dh int- This service specification describes two possible use-
overflow cases, clearing of non-volatile memory and changing of

calibration values [22, p. 147]. Both use-cases can be
used to cause program flow corruptions, e.g. integer- or
buffer-overflows.

buf See above. Identical to int-overflow.
2Eh 3Bh int- Identifiers can be any payload. The protocol specifica-

overflow tions are very generic for these commands. If a data-
identifier is mapped to numeric values, it might be pos
sible that these values can trigger execution errors, such
as integer overflows.

phys Cai et al. demonstrated the manipulation of the driver's
seat position through this service [6, p. 8].

buf Payloads can contain complex data, e.g. certificates or
ring buffer contents. Increasing data size and complex
ity leads to a higher likelihood of security flaws in in
terpreters and parsers. Additionally, writable memory

allow attackers to place exploit code into known
and defined memory sections.

2Fh phys Miller & Valasek demonstrated the control of a vehicle's
pre-collision system seat belt functionality. This proves
the possibility to trigger physical actions through this
service [36, p. 15].

31h dos- Miller & Valasek identified sub-functions that allow the
flood erase of an ECUs memory. Such an operation would

brick an E C U and lead to the entire vehicle's unavail
ability [39, p. 12].

buf RoutineControl jobs accept individual payloads with
various lengths. The more complex data leads to a
higher likelihood of implementation flaws. Cai et al.
demonstrated an insecure implementation, combined
with a T O C T O U attack, which led to code execution
[6, p. 8].

68 CHAPTER 7. AUTOMATED SECURITY INVESTIGATIONS

phys RoutineControl jobs can be used to control actuators on
a vehicle. Miller & Valasek were able to kill a vehicle's
engine [36, p. 51]. Diirrwang et al. showed the de
ployment of airbags through insecure implementations
of RoutineControl jobs [11].

infoleak The sub-function requestRoutineResults can poten
tially leak sensitive data.

34h 34h upload These commands are intended to initiate a software up
date. Miller & Valasek and Van den Herrewegen et al.
demonstrated arbitrary code execution by abusing this
command [39, 57].

35h infoleak This command could be used to leak internal informa
tion of an E C U .

36h, 36h buf These commands are part of the update process. An im
84h plementation flaw is unlikely; nevertheless, buffer over

flow vulnerabilities are potentially possible.
87h dos-

flood
Allows the modification of communication parameters.
Attackers can prevent an E C U from communicating by
providing an invalid configuration.

AEh phys

dos-
flood

Koscher et al. demonstrated the possibility of triggering
physical actions on ECUs [29, p. 8].
The G M L A N standard describes the possibility to trig
ger an E C U reset [15].

7.2 A u t o m o t i v e Diagnos t ic P r o t o c o l Scanner

This section describes the implementation of an automotive diagnostic protocol scan
ner. The scanner uses an active automata learning technique to reverse engineer the
ECU's system state machine automatically. This allows the creation of a black box
testing strategy solely based on the application layer communication. Through dy
namic reverse engineering of the system state machine of an E C U , it is possible to
scan an increased attack surface. Differences in an ECUs communication can be
modeled with a system state graph that describes the ECUs behavior. [03]

7.2. AUTOMOTIVE DIAGNOSTIC PROTOCOL SCANNER (39

7.2.1 System States

UDS and G M L A N have a very similar protocol structure. Since various OEMs use
UDS, the concrete implementations and, therefore, an ECU's behavior varies be
tween ECUs from different OEMs. The G M L A N standard is much more descriptive
in terms of an ECU's communication behavior. The current state of an E C U defines
its communication behavior. Most modern ECUs have the possibility to execute at
least two different types of software to fulfill safety requirements and update fea
tures. One software is called a bootloader; the other one is an ECU's application
software for normal operations. Every software component of an E C U will show a
different attack surface derived from a different set of supported protocol services.
Furthermore, the bootloader and the application software are often developed by
different suppliers. For diagnostic purposes, an ECU's application software supports
a diagnostic mode, often with capabilities to trigger physical actions. The security
access service is used for authentication to unlock protected services. Both secu
rity access and diagnostic mode can change the entire communication behavior and,
therefore, the ECU's attack surface. On some ECUs, the communication behavior
already changes as soon as a TesterPresent message is sent. Every variation of the
communication behavior will be called a state of an E C U and represented by a
node in the system state graph. [03]

Since every state of an E C U can support a different set of services, it implies that
certain services that modify the state (transitions in the system state machine) can
become available only in a specific state or under special conditions. Therefore a full
scan for supported services must be performed in every identified state of the system
state machine. [03]

7.2.2 Transitions in the System State Graph

During the implementation of the protocol scanner with active state learning, several
conditions that alter an ECU's internal state were identified. The following services
can trigger state transitions in G M L A N and UDS. The collection in table 7.3 is not
necessarily complete and can vary for individual ECUs. Especially for UDS-based
ECUs, OEMs often implement their custom protocol specifications or additions. To
anticipate this circumstance, the software architecture of the implemented Scanner
is highly extendable. [03]

70 CHAPTER 7. AUTOMATED SECURITY INVESTIGATIONS

Table 7.3: Summary of state modifying services in UDS and G M L A N . [03]

UDS G M L A N

lOh DiagnosticSessionControl lOh InitiateDiagnosticOperation
l l h ECUReset
27h Security Access 27h Security Access
28h CommunicationControl 28h DisableNormalCommunication
31h RoutineControl

34h RequestDownload
3Eh TesterPresent 3Eh TesterPresent

A5h ProgrammingMode

7.2.2.1 Reset State

The scan algorithm needs a reliable way to bring an E C U under test back into its reset
state, even if the E C U entered an unknown state. Undocumented commands could
cause an undesired state change during a scan. Through a reliable reset function,
misbehavior can be identified, and interruptions of further scans can be prevented
with frequent resets of the scan target. A power cycle of an E C U is used in later
tests as a reliable reset function, which is easy to implement and sufficient since the
proposed scan does not alter non-volatile memories. [03]

7.2.2.2 Return Code Evaluation

UDS and G M L A N follow a strict communication scheme. Every request to a scan
target triggers a response if the request does not explicitly suppress the response.
Two response types are possible, either a positive or a negative one.

If a negative response is received, the state of a scan target is not changed. The
return code of negative responses can be used to identify the reason why a specific re
quest failed. This return code can leak information about the possible attack surface.

The reception of a positive response indicates the successful execution of the
request. If the scan algorithm, for example, has sent a DiagnosticSessionControl
request, it can identify a state change of the scan target from a positive response.
Furthermore, the scan algorithm now knows the previous state, the new state, and
the corresponding transition function to trigger this state change. The transition
function, in this case, is simply a DiagnosticSessionControl request with a specific

7.2. AUTOMOTIVE DIAGNOSTIC PROTOCOL SCANNER 71

parameter. The algorithm can append this new state onto the previous state in its
internal system state graph. On the next scan iteration, the scan target can be set
into the new state by concatenating all transition functions necessary to enter the
desired system state. [03]

7.2.2.3 Security Access Testing

System states which grant security access are crucial for attack surface evaluations.
SecurityAccess routines in diagnostic protocols are used to grant further privi
leges to repair shop testers during E C U development or vehicle production. These
privileges may open new attack surfaces once they are gained. Through manual re
verse engineering steps on the investigated ECUs, multiple security access algorithms
could be obtained. The actual implementations of the analyzed security access func
tions are entirely different between the individual OEMs. A categorization of the
reverse-engineered security access functions delivered the following groups:

• Simple Arithmetic Operations
This group contains security access algorithms based on single arithmetic op
erations such as XOR, NOT, or A D D with a fixed value. Examples are given
by Diirrwang et al. and Nie et al. [11, 31].

key = -<seed (7.1)

• Mathematical Operations
The security access mechanism of one analyzed O E M relies on complex math
ematical operations. To obtain a key, one needs to know five different numeric
values which act as a shared secret. With this secret, a random seed has to be
multiplied in different ways to obtain a valid key. An example operation for
this group can be the following:

key = (seed * secret! + secret2) (J)(seed * secrete + secretA) (J) secretb (7.2)

• Proprietary XOR-Shift-Loop
Security access algorithms for this group were analyzed in-depth by Van den
Herrewegen et al. [57]. Their publication provides examples as well as a cryp
tographic analysis.

• Cryptographic Operations
One analyzed O E M relies on cryptographic authentication mechanisms for its
security access algorithms. The following equation shows an example:

key = RSAsign(MD5(seed \ salt),private_key) (7.3)

72 CHAPTER 7. AUTOMATED SECURITY INVESTIGATIONS

Each group of security access functions has a different probability of being broken
over an ECUs lifetime. The implemented scanner algorithm can automatically test
known or trivial security access functions. If a positive response is received after
sending a key to the E C U , this SecurityAccess routine is stored as a transition
function to enter this new state with granted security access. Additionally, this new
state gets inserted into the system state graph of the scanner algorithm. [03]

7.2.2.4 Time-Dependent State Changes

The TesterPresent command has a time-dependent return function implemented.
After a TesterPresent request is acknowledged from a scan target, the scan target
remains in this state for a fixed amount of time. After five seconds, the scan target
automatically leaves the TesterPresent state, which also involves a return to the
default diagnostic session. [03]

7.2.2.5 Summary

The explained properties of system state graphs in automotive diagnostic protocols
can be defined as follows: [03]

Definition 1 A system state machine M is a directed graph (S,E,A), with the
following properties:

• S = {so, si,..., sn} is a finite set of nodes, each node represents a system state.

• The state so is defined as the default system state after the power-up of the
system.

• E = {(v,w) G S2} is a set of ordered pairs of nodes, called directed edges.

• A = {#o, Si,... ,Sk},Sk : S2 i y S,Sk(v,w) = z is a set of transition functions
for each e G E.

• For each state Sj G S \ {so} a reset function 5k G A,Sk(si,so) = so is given
through the power cycle of the system.

7.2. AUTOMOTIVE DIAGNOSTIC PROTOCOL SCANNER 73

7.2.3 Exploration Algorithm for Reverse-Engineering of Sys
tem States

The scan algorithm for application layer protocol scans consists of two different
parts. For every diagnostic service, a unique module with service-specific knowledge
exists. This module performs the enumeration of all sub-functions and can evaluate
responses. This module will be called "Enumerator". Enumerators store all scan
results of a specific service and map the results to a state. Furthermore, an Enu
merator keeps track of which states it was executed. This is necessary to know if an
Enumerator has finished its scan of a service. [03]

Algorithm 1: Enumerator
Data: current system state Sj
forall sub-function in service
do

test sub-function;
store result;
evaluate return code;
if state changed then

add Sj, Sk(si,Sj) to M ;
return;

end
end
s, finished;
return;

Algorithm 2: Scanner
forall en in enumerators do

forall Si in S do
if en finished for Sj
then

continue;
end
reset target to so;
call 5k(so,Si);
if not entered Si then

continue;
end
execute en(s,);

end
end

The second part is called Scanner, which stores a scan target's system state ma
chine as a directed graph with transition functions. Through a reset function, the
Scanner can reliably reset the scan target on each scan iteration. After each reset, the
Scanner computes all known states of the scan target from its system state graph.
The shortest path algorithm delivers the minimal transitions necessary to set the
scan target into the desired state. If a system state manipulation were successful,
the next, not finished enumerator would be executed for the desired state. [03]

If an Enumerator detects a state modification of the scan target through return
code evaluation, a new state is inserted into the Scanner's system state graph. The
last operation performed on the target is identified as a transition function to enter

74 CHAPTER 7. AUTOMATED SECURITY INVESTIGATIONS

this new state. Now the Scanner knows a new system state of the scan target and
the necessary transition function to set the scan target into this state. Every other
enumerator will be executed in this newly identified system state on the next itera
tion of the Scanner. [03]

The separation in Enumerator and Scanner objects opens the algorithm for addi
tions and customization. If one focuses on ECUs from a specific O E M , he might
have access to classified information under Non-Disclosure Agreements (NDAs).
SecurityAccess algorithms are one example of such classified information. The
object-oriented way in which the scanner software is written allows the implemen
tation of custom Enumerators. This enables researchers to implement, e.g., custom
SecurityAccess algorithms into a new Enumerator class. A proprietary SecurityAccess
enumerator object can be provided to the Scanner, which increases the scan depth
and will add further states to the system state graph. [03]

7.3 T h e A t t a c k Surface M o d e l for A u t o m o t i v e D i
agnostic Pro toco ls

Combining the previously introduced threat definitions (table 7.2) with the proposed
system state machine (definition 1) generates an extensive attack-surface model for
automotive diagnostic protocols. The Scanner can measure all possible threats for
each system state while reverse-engineering the system state machine. This allows
performing threat estimations concerning the system state machine. Furthermore,
threat evolution over a system's lifetime can be evaluated through Cumulative Dis
tribution Functions (CDFs). [03]

Definition 2 A threat model (M, R) for an automotive diagnostic protocol imple
mentation contains:

• A system state machine M of a scanned ECU.

• A set R of threat measurements, in which every threat measurement is defined
as a tuple = (f,S,ser,sub), that contains a flaw type f according to table
7.2, a set of system states S = {si,Sj,... \ Si,Sj G M}, the service identifier
ser and the sub-function identifier sub according to the protocol specification.

This definition of a attack surface model allows evaluation of the exploitation
risk over an ECU's lifetime and, therefore, for an entire vehicle. Just one addition

7.3. ATTACK SURFACE MODEL 75

to the definitions of the system state machine M is required. In the performed scans
on real-world ECUs, multiple different types of transition functions in the reverse-
engineered system state machines were found, for example, reset of an E C U , change
of the diagnostic session, or security access authentication. Only security access
transitions rely on authentication mechanisms that are relevant for analysis over the
system's lifetime. Let X be a function that describes the time it takes until a security
access algorithm is successfully attacked. F(X < t) denotes the probability that a
successful attack occurs within time t. Call F : R H - [0 , 1] given by F{t) = F(x < t)
the CDF of X. To evaluate systems with more than one security access function, the
following operations are required in this model. Let F\(t) and F2(t) be two CDFs
for independent random variables, the operations summation, maximum and mini
mum are defined as follows: Fsum{t) = J0 Fi(t — x)F2(x)dx, Fmax(t) = Fi(t)F2(t),
and Fmin(t) = 1 — (1 — — F2(t)) [3]. Every transition function Sk(v,w) in
the system state machine can be extended with a CDF to describe this transition's
behavior over time. [03]

Defining a proper CDF for each security access algorithm is a challenging task
on its own. Furthermore, the CDF is also dependant on the implemented mitigation
on a system level. Some analyzed security access implementations, for example, are
vulnerable to brute force attacks; others not. An in-depth analysis of every individual
target is required to obtain a suitable CDF. Additionally, a comprehensive analysis
to identify a CDF for a security access algorithm also includes studying an OEMs
key management in repair shops, factories, and suppliers' production sites. The
benefit of the proposed model lies in the simplicity and coverage of its analysis. One,
interested in the system's security over a lifetime, only needs to identify one proper
CDF for each security access algorithm in his system. A l l further analysis can then
be performed automatically, based on the gathered threat model resulting from the
automated scan. The necessary steps are the following: [03]

1. Let B be a directed graph (V, E,A). B is built from M by the following steps:

• V is a finite set of vertices obtained from the following operations:

— From a given system state machine M, remove all edges et with a
security access transition function 4 e A . This returns a set V of
n disjoint sub-graphs. Every sub-graph Vk G V contains multiple
system states Vk = {si, Sj,... \ Si, Sj G M}.

- E = {(w,z) G V2} is defined as set of ordered pairs of vertices. In
this case, all security access transitions.

76 CHAPTER 7. AUTOMATED SECURITY INVESTIGATIONS

— A is a set of CDFs, one for each edge G E. The sub-graph VQ G V,
which contains the system state so G M obtains the CDF : F(t) =
1, since all system states Sk in this sub-graph vo are immediately
reachable.

• Let Fj, be the CDF of the sub-graph v

• Vertices G V \ {i>0} get a CDF defined by = for every
in a shortest path from i>o to i ^ .

• Since every system state Sk G M is contained in only one sub-graph G
5 , the CDF of the sub-graph Vk also applies for all system state Sk G Vk-

2. Each threat tuple can contain multiple system states in its set 5*. The CDF
of a threat tuple is defined by CDF : Fmax(t) = Y\Fi(t), V F ^ assigned to each
system state Sk G S.

3. Define a suitable CDF for each security access algorithm.

4. The behavior over time of all measured threats, reachable over security access
functions, can now be modeled by the corresponding CDF.

Additionally, for security investigations, it is rewarding to identify possible threats
that are only present in system states, reachable through a security access transition.
OEMs protect these services and sub-functions by security access algorithms which
indicates privileged functionalities. [03]

Chapter 8

Evaluation

This chapter discusses gathered results from thirteen analyzed ECUs.

8.1 Hardware Arch i t ec tu re and Test Setup

As part of the conducted research, a cheap and scalable test setup to perform auto
mated scans on different ECUs was built. Raspberry P i 4B single board computers,
equipped with two C A N interfaces for communication and a relay to control the
ECUs power supply, were used as the hardware interface to ECUs under test. The
Raspberry Pis are operated with the latest Raspbian OS. For ISO-TP support, the
can-isotp Linux kernel module was used [16]. No modifications to the Operating
System (OS) were made. A l l timing measurements were performed from user-land
Python applications. For scans performed over DoIP or HSFZ, an Ethernet connec
tion and standard User Datagram Protocol (UDP) and T C P sockets were sufficient.
13 different ECUs (shown in table 8.1) from five different OEMs were installed into
hardware in the loop test setup to verify the O E M independence of the implemented
scan algorithm. This setup contains ECUs from Daimler A G , Tesla Inc., Opel Au
tomobile GmbH, Volkswagen A G , and B M W A G . For every investigated E C U , the
following manual installation steps were necessary: [03]

1. The power supply connector pins of an E C U had to be identified.

2. C A N or DoIP interface pins needed to be identified.

3. Some ECUs require periodic keep-alive C A N messages to be sent or Eth
ernet activation line signals applied.

77

78 CHAPTER 8. EVALUATION

Table 8.1: Overview of investigated ECUs. A label E{x} is assigned to each E C U
for later reference. [03]

Ref. O E M E C U Type Part No.

E l B M W A G Gateway E C U LR-01
E2 B M W A G BDC LR-01
E3 B M W A G Gateway E C U 9243211
E4 B M W A G T C U 9342881
E5 V W A G Body Control Module (BCM) 5WA93
E6 V W A G Dashboard E C U 5G0920961A
E7 Opel GmbH Airbag E C U 13575447
E8 Opel GmbH B C M 13588153
E9 Tesla Inc. Airbag E C U 1031642
E10 Daimler A G Gateway E C U 1679012003
E l l V W A G Antenna E C U AU651
E12 V W A G Gateway E C U 80B907468B
E13 V W A G Airbag E C U T15XX164919

8.2 Scan D u r a t i o n

First, the scan algorithms' general runtimes are discussed to provide a basic overview
of the performed scans. Table 8.2 shows the number of sent, received, and missed
packets, as well as the average response time per request. These measurements are
used to compute a theoretical scan duration based on the average response time and
the number of answered requests. Next to this theoretical scan duration, the scan
algorithm's actual execution time is shown in table 8.3. Interesting in this table
is the computed scan overhead. This overhead is the difference between the actual
execution time and the computed scan duration. During this overhead time, the
scan algorithm performs resets, security access authentications, and state changes of
the scan targets. Compared to the actual scan time, the high overhead is mainly
caused by the necessary delays of certain ECUs. Every state change interrupts a
scan execution and requires a reset of the scan target.

8.3. AUTOMATED SYSTEM STATE REVERSE-ENGINEERING 79

Table 8.2: Captured runtime metrics of all performed scans. This table shows the
number of requests (REQ.), responses (RESR), and unanswered or timed-out re
quests (TMO.). Furthermore, the computed average response time (AVG. RESP.)
from all answered requests is shown.

REQ. RESP. T M O . A V G . RESP.

E l 3528349 3528209 140 0.711 ms
E2 2038900 2038859 41 1.547 ms
E3 2040410 2040298 112 1.726 ms
E4 1711320 1711302 18 1.572 ms
E5 1720970 1720408 562 9.675 ms
E6 1665907 1664711 1196 4.909 ms
E7 735608 735591 17 19.65 ms
E8 549750 542980 6770 53.51 ms
E9 97988 97950 38 19.396 ms
E10 2672670 2672449 221 4.447 ms
E l l 2055886 2054380 1506 7.742 ms
E12 3359694 3359392 302 1.388 ms
E13 1026945 1026925 20 8.65 ms

8.3 A u t o m a t e d Sys tem State Reverse-Engineer ing

The scan algorithm was able to identify multiple different system states for each
E C U . A l l ECUs showed individual system state machines, even if the same manu
facturer developed them. As an example, figure 8.1 shows two different system state
machines with all transitions. This gives an impression of how different system state
graphs can be. Table 8.4 provides a comprehensive overview of the complexity of all
reverse-engineered system state graphs and indicates the number of security access
algorithms known from the scanner utility. [03]

8.4 De tec t ion of Boot loaders

Five tested ECUs showed a significant behavior change in the measured communica
tion timings on different injected system states. Through manual reverse engineering,
it could be proven that these ECUs were able enter the bootloader if the correct se
quence of commands is sent. ECUs which implement the G M L A N protocol showed

80 CHAPTER 8. EVALUATION

Table 8.3: Captured duration metrics of all performed scans. This table compares the
measured duration (DUR.) with the computed duration (CDUR.) of all performed
scans. The computed duration is the product of all answered request times, the aver
age response time from table 8.2. The scan overhead (OVHD.) and the proportional
overhead (POVHD.) are given from the difference of the measured duration and the
computed duration.

DUR. CDUR. O V H D . P O V H D .

E l 14500 s 2 509 s 11991 s 83 %
E2 10162 s 3154 s 7008 s 69 %
E3 10 700 s 3 522 s 7178 s 67%
E4 8 739 s 2 690 s 6 049 s 69 %
E5 18909 s 16 650 s 2 259 s 12 %
E6 18822 s 8178 s 10644 s 57%
E7 76169 s 14455 s 61 714 s 81 %
E8 74467 s 29417 s 45 050 s 60 %
E9 4679 s 1901 s 2 778 s 59 %
E10 21 734 s 11885 s 9849 s 45 %
E l l 22466 s 15 917 s 6549 s 29 %
E12 15 718 s 4663 s 11055 s 70 %
E13 11188 s 8 883 s 2 305 s 21 %

this change after a RequestDownload service request. ECUs with UDS support could
be forced into the bootloader through a successful DiagnosticSessionControl com
mand with DiagnosticSessionType=ProgrammingSession as the parameter. Other
ECUs of the presented test setup required additional proprietary commands or se
curity access authentication to unlock the bootloader mode. [03]

Negative response messages have a fixed size and fit in a single C A N frame.
Therefore the timings of negative responses, shown in table 8.5, are more comparable
to positive responses' timings. The ECUs E l , E8, E10, and E12 communicate with
500 kbit/s C A N speed, E7 with 33.3 kbit/s C A N speed. This explains the higher
average response times of E7. The measurements in table 8.5 show a significant
change in an ECUs communication behavior, caused by the execution of different
firmware. Since the bootloader has a smaller codebase and less parallel tasks than the
application firmware, it is reasonable that the response times significantly decrease. A
simple average computation is sufficient to detect the execution of different firmware

8.5. ATTACK SURFACE INCREASE 81

Def.

Prog., Sec. 3

Prog.

SA=17

Prog., Sec. 17 Diag.. Sec. 2

Figure 8.1: Left: Automatically reverse-engineered system state graph of E C U E l .
Right: Automatically reverse-engineered system state graph of E C U E7. Both:
Reset through the power cycle is represented by the red dotted lines. Blue lines in
dicate Security Access (SA) authentication. The green lines show Diagnostic Session
Control (DSC) transitions. TP stands for Tester Present and REQDL for Request
Download. [03]

automatically. The fact that a bootloader firmware is often developed by a different
software supplier and sold as a product implies that different ECUs from different
OEMs can have an identical bootloader firmware. This leads to the possibility of
common vulnerabilities, respectively, an identical attack surface, between different
ECUs from different OEMs. [03]

8.5 A t t a c k Surface Increase

The scan results of E C U E10 in table 8.6 are discussed, and a more general overview
of the results of all tested ECUs is provided in table 8.7 to demonstrate that the
proposed scan algorithm can automatically explore an increased attack surface on

82 CHAPTER 8. EVALUATION

Table 8.4: Overview of reverse-engineered system state machine complexities for all
analyzed ECUs. Row Edges does not contain the reset edges through the power
cycle. Row Security Access (SA) indicates the number of different security access
algorithms that were reverse-engineered. [03]

E l E2 E3 E4 E5 E6 E7 E8 E9 E10 E l l E12 E13

Edges 15 7 9 7 9 23 23 22 13 19 11 32 5
Nodes 9 5 5 5 5 6 10 8 6 8 6 11 3

SA 3 1 2 1 0 0 1 1 1 2 0 2 0

Table 8.5: Average response time for negative responses and number of samples.
Timings of five different ECUs in the default and the bootloader state. [03]

Firmware Bootloader

E l 0.89 ms, 65k 0.78 ms, 65k
E7 20.5 ms, 1.9k 8.18 ms, 0.7k
E8 7.36 ms, 7.6k 0.60 ms, 2.4k
E10 6.00 ms, 65k 0.61 ms, 65k
E12 1.16 ms, 65k 0.73 ms, 65k

diagnostic protocols. Figure 8.2 shows all system states of E C U E10 with its possible
transitions. For each system state, table 8.6 provides detailed measurements. These
measurements are grouped by their possible flaw type from all executable services per
individual system state. A l l flaw types, which count the number of available sub-
functions as measurand, accumulate all positive responses and negative responses
with the response code Incorrect message length or invalid format (0x13).
This negative response code indicates the availability of a sub-function, the previously
sent request does not match the required format, which is caused by the proprietary
implementations of sub-functions. Nevertheless, once this negative response code
is received, some manual reverse engineering or automated request mutation is re
quired to trigger this sub-function successfully. Table 8.6 clearly shows that each
state supports a different set of services and sub-functions, which leads to different
attack surfaces. To further underline this statement, table 8.7 provides an overview
of the attack surface of all investigated ECUs. For readability, only two states per
E C U are shown. State SQ indicates the default state of an E C U . Row S stands for
the set of all automatically explored system states through the scanner algorithm.
In most cases, the measured values and, therefore, the attack surface increases. [03]

8.6. THREATS OVER LIFETIME 83

Diag., Sec. 1 *• Prog., Sec. 1
' V

» 11
• 1 F ,

Diag., Sec. 97 • Prog., Sec. 97

Figure 8.2: Automatically reverse-engineered system state graph for E C U E10 with
out reset transitions. Colors and abbreviations are identical to figure 8.1. Clusters
indicate sub-graphs with unique security access levels. [03]

Table 8.6: The detailed threat model for E C U E10. The abbreviation rpc stands for
rand/pass/crypt. [03]

State buf dos-fl. infoleak int-ov. phys rpc

Def. Session so 0 6 13958 0 2 0
so, TesterPresent 0 6 16133 0 2 0
Diag. Session 6392 81 16270 6392 169 2
Diag. Session, Sec. level 1 6405 81 16270 6405 171 2
Diag. Session, Sec. level 97 6405 81 16270 6405 171 2
Prog. Session 2 9 13961 2 6 1
Prog. Session, Sec. level 1 6407 83 16272 6407 174 2
Prog. Session, Sec. level 97 6407 83 16270 6407 174 3

The scanner algorithm was able to identify the necessary system state for software
updates on seven different ECUs, indicated by the upload column. Another remark
able identification is the increased infoleak on E7 and E8. During these scans, it was
possible to dump the E C U firmware by abusing the ReadMemoryByAddress service
automatically. For all tested ECUs, except E4 and E9, the number of sub-functions
that could trigger physical actions (column phys) increased system states' injection.
[03]

8.6 Threa ts over Li fe t ime

As a final evaluation, the proposed threat model's capabilities for lifetime security
analysis will be discussed. E C U E l supports three different security access levels.

84 CHAPTER 8. EVALUATION

Table 8.7: Overview of identified flaws per E C U . Rows with state so stand for default
session, rows with state S describes the combination of all identified system states.
The abbreviation rpc stands for rand/pass/crypt. [03]

E C U States buf dos-fl. infoleak int-ov. phys rpc upload

E l so
S

443
±0

52
+23

1780
+280

443
±0

55
+21

0
+3

0
+1

E2 so
S

17
+17

7
+2

255
±0

17
+17

8
+1

0
+1

0
+1

E3 so
S

375
±0

19
+17

2984
+5

375
±0

24
+15

0
+2

0
0

E4 so
S

0
±0

6
+1

666
±0

0
±0

4
±0

0
+1

0
+1

E5 so
S

101
+68

14
+37

8157
+26

101
+68

20
+50

0
±0

0
±0

E6 so
S

0
+1

4
+10

1221
+859

0
+1

0
+20

0
+2

0
±0

E7 so
S

0
+20

3
±0

747
+394k

0
+20

0
+4

0
+1

0
+1

E8 so
S

145
+26

3
±0

2.2M
+12.6M

145
+26

43
+4

0
+1

0
+1

E9 so
S

0
±0

2
+1

0
+2559

0
±0

0
±0

0
+1

0
+1

E10 so
S

0
+6407

6
+78

13958
+2313

0
+6407

2
+172

0
+3

0
±0

E l l so
S

4
+5

5
+4

3637
+1

4
+5

2
+7

0
+1

0
±0

E12 so
S

0
+35

8
+50

30001
+6709

0
+35

6
+56

0
+2

0
+1

E13 so
S

24
±0

5
+2

706
+420

24
±0

5
+2

0
+1

0
±0

8.6. THREATS OVER LIFETIME 85

Table 8.8: Attack surface metrics protected by individual security access levels for
E C U E l . [03]

Security level dos-flood infoleak phys upload

3 4 1 4 0
17 0 0 0 1
97 1 146 1 0

First, the protected attack surface per security access level is analyzed. A l l threat
tuples r G R with a set of system states S only containing system states reachable
through a security access transition are selected. Table 8.8 shows that security access
level 17 is dedicated to the software update service. Security levels 3 and 97 protect
sub-functions with the possibility to trigger physical actions and protect information.
A CDF to model the time until a security access function is successfully attacked can
be obtained either from an analysis of historical data or on the basis of expert opinion
[3]. For this example evaluation, the exponential distribution exp(l/t) is chosen to
model the meantime t until a successful attack. Assuming that each security level
has an individual resistance against attacks expressed by exponential distribution
functions with different success rates. A unit less value for t is used, since the ob
jective is only a demonstration of the models capabilities. A CDF for a real world
system would contain a proper unit for t. [03]

Figure 8.3 shows the individual CDFs for each security access level and their
application to the measured attack surface. This estimates the attack surface over
20 time-units t, supposed that the meantime until a security access algorithm is
broken, behaves like the proposed CDFs. For example, let F3(t) and Fd7(t) be the
CDFs to model the meantime until security level 3, respectively security level 97, will
be available for an attacker. The expected attack surface for a dos-flood at a certain
time t is given from Fdf(t) = 4 • F3(t) + 1 • FQ7(t). Multipliers are obtained from the
measurements in table 8.8. If a more realistic evaluation is required, one can construct
a detailed attack tree for each security access algorithm and derive a CDF. Besides,
it should be noted that a successful attack of the upload attack surface on the latest
ECUs requires a further vulnerability to leverage the firmware signature mechanism,
which results in an additional attack step. Nevertheless, previously referenced real-
world attacks show that not every E C U implements firmware signatures. [03]

8(3 CHAPTER 8. EVALUATION

CDFs for each secur i ty level over t ime r
Possible at tack sur face over t ime t

Level 3: F(t) = exp(10)
Level 17: F(t) = exp(5)
Level 97: F(t) = exp(l)

140-
4-

120-

100- 3

8 80-o
c 2
- 60-

40- 1

20-

0- 0

dos-flood
infoleak
upload

10.0 12.5 15.0 17.5 20.0
t

10.0 12.5 15.0 17.5 20.0
t

Figure 8.3: Left: Three CDFs of different exponential distribution functions to
model the meantime t until a successful attack of the corresponding security access
algorithm for three different security access levels. Right: Evaluation of the attack
surface over time t for measured attack surfaces protected by different security access
algorithms. Both: The x-axis indicates the time t, the y-axis shows the expected
value of the attack surface metric. For demonstrational purposes the x-axis is unitless
since no specific time-unit was defined by the chosen CDFs. [03]

8.7 S u m m a r y

This chapter demonstrates automation capabilities for different protocol layers in
the automotive diagnostic protocol stack. It was possible to realize automated tools
because of comprehensive groundwork by the contribution of automotive protocol
implementations to the open-source software framework Scapy.

Based on proven security incidents, it was possible to establish a comprehensive
risk model for threat estimations of automotive diagnostic protocols. Furthermore,
it was possible to prove that ECUs have a different attack surface, depending on
their internal system state. Active automata reverse engineering techniques enable
the implemented scan algorithms to discover system states during a black-box scan
automatically. Through active detection and stimulation of system states, the algo
rithms can perform a more comprehensive analysis of an ECU's or a vehicle's attack
surface. The introduced metric helps security researchers to rate and compare the
possible attack surfaces of ECUs and their evolutions over a system's lifetime. Ad
ditionally, the risk model can point researchers or penetration testers to safety- and
security-critical services. By publishing these tools as open-source software, auto
mated attack surface discovery for automotive diagnostic protocols will speed up,

8.7. SUMMARY 87

aiming to lower the attack surface of future vehicles.

The developed scan algorithms can collect detailed information about the im
plementation of a diagnostic protocol of an E C U . This could be extended to enable
device and firmware fingerprinting during a scan. Common vulnerabilities in auto
motive systems could automatically be tested through custom Enumerator objects.
Furthermore, reverse engineered system state machines can deliver valuable input
for smart fuzzing approaches of automotive diagnostic protocols.

Chapter 9

Conclusion

This chapter summarizes the main contributions of this thesis, collects open issues,
and proposes future work. Since the security of safety-critical systems is a rapidly
growing field, it will more and more affect our all daily life's. This thesis builds a
foundation for future security research in safety-critical automotive networks based
on free and open software tools.

9.1 O p e n Issues

The following issues in the field of security testing for safety-critical systems, specif
ically automotive systems, remain.

9.1.1 Proprietary Systems and Security by Obscurity

One, interested in the field of automotive security research, is facing multiple obsta
cles in the beginning. Entire vehicles for research require a high initial investment,
on the other hand, single components are very hard to investigate, without a pos
sibility to observe their normal behavior. Documentation about a system is usually
kept secret, and necessary information to understand the internals of a component
needs to be reverse-engineered. Furthermore, keeping an automotive system in an
operational state, while exploring its internals, is a very challenging task on its own.
In recent years, educational systems for automotive security research have become
available, and more researchers document their efforts publicly. Unfortunately, no
public information exchange on security topics with OEMs or suppliers exists.

88

9.2. FUTURE WORK 89

Many automotive systems contain custom or obscured hardware components.
Part numbers of controllers and processors are customized, or datasheets and soft
ware libraries are only available under NDA. These measures increase difficulties for
researchers but do not provide any real security enhancements.

Possible solution. The automotive industry needs a change in its security
culture, to address upcoming security challenges. The latest vehicles already contain
open-source software to provide their functionalities. Similar cultural changes need
to take place for security-related topics, and more first-hand information for security
research is required.

9.1.2 Custom Implementations of Diagnostic Protocols

Every analyzed E C U contains a unique implementation of the diagnostic protocol.
This ECU-specific protocol follows the definitions in the standards, but the cus
tom additions of OEMs are kept secret. More public knowledge about the actual
functionalities in automotive systems would allow more comprehensive security in
vestigations.

Possible solution. Parts of this information can be extracted from the software
of repair shop testers. Parser to extract protocol information would be required, to
enhance security investigations.

9.2 Fu ture W o r k

On top of this work, automotive security research can build up in three possible
directions:

• Comprehensive analysis of custom diagnostic protocols. Parsers for O E M -
specific diagnostic protocol description files could extract detailed information
for advanced scanners of diagnostic protocols. This information could speed
up scans and would lead to a more detailed attack surface and threat analysis.

• Automated fuzz testing of automotive systems. Reverse-engineered system state
machines would allow more effective smart fuzzing of automotive diagnostic
protocols. Additional performance increases could be obtained by proprietary
protocol information, as described previously.

90 CHAPTER 9. CONCLUSION

• System-state reverse engineering for testing of state-full automotive software.
State-full software, present in the update mechanisms of secure automotive
bootloaders, could use identical system state reverse-engineering techniques
for automated and explorative software testing.

9.3 F i n a l Conc lus ion

This thesis covers a study of published security incidents of automotive systems and
in-deep security analysis of four different ECUs. The security analysis follows a de
fined process for black-box security investigations and a comprehensive vulnerability
rating of automotive components. Based on the analysis results, the automation
capabilities of the attack-surface "External Interfaces" are leveraged for the creation
of an open-source software framework for security testing of automotive systems.
On top of this framework, tools for automated and semi-automated testing in auto
motive networks were created and published. Finally, a novel attack surface model
for automotive diagnostic protocols is defined, including an automated scanner with
system state reverse engineering capabilities.

9.3.1 Major Contributions

The main contributions of this thesis are:

• an investigation process for black-box security analysis of automotive com
ponents,

• an open-source software framework for manual and semi-automated se
curity testing in automotive networks, and fully-automated security testing of
automotive diagnostic protocols,

• a novel attack-surface model for automotive diagnostic protocols.

9.3.2 Review of Aims of the Ph.D. Thesis

The following tasks are taken from the author's Ph.D. thesis expose (Weiss, 2020):

• Evaluations of open-source software projects suitable for security tests in safety-
critical networks.

9.3. FINAL CONCLUSION 91

This goal was accomplished. Open- and closed-source media access solutions were
analyzed [01], and existing software frameworks, suitable for security testing in au
tomotive networks, were evaluated in section 6.1.

• Analysis of security flaws in current automotive systems.

• Evaluation of automation capabilities for security tests in current automotive
systems.

These two goals were covered in Part II of this thesis and therefore completed. A
novel investigation process for automotive systems was proposed and applied to four
different EC Us. Results were presented at the Troopers 19 conference and to the
Automotive Security Research Group [PS, P4J. Next to this manual investigation,
published research on security incidents of automotive systems was studied and an
alyzed. Based on the defined process, automation capabilities for individual attack
surfaces in automotive systems were evaluated.

• Implementation of software tools to support the penetration testing process in
safety-critical networks.

This goal was achieved by a comprehensive extension of the open-source software tool
"Scapy" in three stages. First, all proprietary automotive protocols and communica
tion technologies were implemented and presented to the security research community
[PI, P2J. Second, a tool and methodology for the automated detection of possible at
tack targets in vehicular networks were published [02]. Third, a novel threat model,
a scan algorithm with system-state reverse-engineering, and an open-source software
tool were published [03].

• General consideration of what kind of security flaws can be detected through
automated testing.

This goal was accomplished for automotive diagnostic protocols. In Chapter 7 of this
thesis, a novel attack surface model introduces a mapping of security flaw types to
individual functions of automotive diagnostic protocols. This mapping describes what
kind of security flaws can be detected in individual features of automotive diagnostic
protocols.

List of Authors Publications

[01] Enrico Pozzobon, Nils Weiss, Sebastian Renner, and Rudolf Hackenberg. A Sur
vey on Media Access Solutions for C A N Penetration Testing. In ACM Computer
Science in Cars Symposium (CSCS), CSCS '18, New York, NY, USA, 09 2018.
Association for Computing Machinery.

[02] Nils Weiss, Sebastian Renner, Jürgen Mottok, and Vaclav Matousek. Transport
layer scanning for attack surface detection in vehicular networks. In Computer
Science in Cars Symposium, page 1-8. A C M , Dec 2020.

[03] Nils Weiss, Sebastian Renner, Jürgen Mottok, and Vaclav Matousek. Auto
mated threat evaluation of automotive diagnostic protocols. In Proceedings of
the Embedded Security in Cars Workshop (ESCAR), page 1-16, May 2021.

[04] Nils Weiss, Sebastian Renner, Enrico Pozzobon, and Rudolf Hackenberg. Ex
tending Vehicle Attack Surface Through Smart Devices. In The Eleventh In
ternational Conference on Emerging Security Information, Systems and Tech
nologies (SECURWARE), Rome, Italy, 09 2017.

[05] Nils Weiss, Markus Schrötter, and Rudolf Hackenberg. On Threat Analysis
and Risk Estimation of Automotive Ransomware. In ACM Computer Science
in Cars Symposium, CSCS '19, New York, NY, USA, 2019. Association for
Computing Machinery.

92

List of Authors Presentations

[PI] Nils Weiss. Automotive Penetration Testing with Open Source Software. Open
Source Specialist Group - A Specialist Group of the British Computer Society,
2021.

[P2] Nils Weiss and Enrico Pozzobon. Automotive Penetration Testing with Scapy.
IT Security Conference Troopersl9, 2019.

[P3] Nils Weiss and Enrico Pozzobon. lot Backdoors in Cars. IT Security Conference
Troopersl9, 2019.

[P4] Nils Weiss and Enrico Pozzobon. Reverse Engineering and Weaponizing OBD
Dongles. In Automotive Security Research Group, Meeting 22, Stuttgart, Ger
many, 2019.

[P5] Nils Weiss and Enrico Pozzobon. From Blackbox to Automotive Ransomware.
DEF C O N SAFE M O D E Hacking Conference. Virtual Conference, 2020.

93

Bibliography

[1] Linktype_can_socketcan - packet structure, 2020. https://www.tcpdump.org/
linktypes/LINKTYPE_CAN_SDCKETCAN. html (accessed 2021-04-14).

[2] U.S. National Security Agency. Defense in Depth - a practical strategy
for achieving Information Assurance in today's highly networked environ
ments, https://apps.nsa.gov/iaarchive/library/ia-guidance/archive/

defense-in-depth.cfm (accessed 2021-04-14).

[3] Florian Arnold, Holger Hermanns, Reza Pulungan, and Marielle Stoelinga. Time-
Dependent Analysis of Attacks, volume 8414 of Lecture Notes in Computer Sci
ence, page 285-305. Springer Berlin Heidelberg, 2014.

[4] AUTOSAR. Specification of Secure Onboard Communication, 2020.
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-

3/AUT0SAR_SWS_Secure0nboardCommunication.pdf (accessed 2021-04-14).

[5] Computest Services B.V. The Connected Car - Ways to get unauthorized access
and potential implications, Apr 2018. https: //www. computest. nl/wp-content/
uploads/2018/04/connected-car-rapport .pdf (accessed 2021-04-14).

[6] Zhiqiang Cai, Aohui Wang, and Wenkai Zhang. 0-days & Mitigations: Roadways
to Exploit and Secure Connected B M W Cars. In BlackHat USA, pages 1-37, Aug
2019. https://i.blackhat.com/USA-19/Thursday/us-19-Cai-O-Days-And-

Mitigations-Roadways-To-Exploit-And-Secure-Connected-BMW-Cars-wp.

pdf (accessed 2021-04-14).

[7] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno. Comprehensive Experimental Analyses of Automotive Attack
Surfaces. In Proceedings of the 20th USENIX Conference on Security, S E C ' l l ,
pages 1-6, USA, 2011. USENIX Association.

94

https://www.tcpdump.org/
https://apps.nsa.gov/iaarchive/library/ia-guidance/archive/
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-
https://i.blackhat.com/USA-19/Thursday/us-19-Cai-O-Days-And-

BIBLIOGRAPHY 95

[8] Kyong-Tak Cho and Kang G. Shin. Error Handling of In-Vehicle Networks Makes
Them Vulnerable. In Proceedings of the 2016 ACM SIGSAC Conference on Com
puter and Communications Security, CCS '16, page 1044-1055, New York, NY,
USA, 2016. Association for Computing Machinery.

[9] Gerald Combs. Wireshark is the world's foremost and widely-used network pro
tocol analyzer. https://www.wireshark.org/ (accessed 2021-04-14).

[10] European Commission. Intelligent transport systems - The interoperable EU-
wide eCall. https : //ec . europa. eu/transport/themes/its/road/action_

plan/ecall_en (accessed 2021-04-14).

[11] Jürgen Dürrwang, Johannes Braun, Marcel Rumez, Reiner Kriesten, and
Alexander Pretschner. Enhancement of Automotive Penetration Testing with
Threat Analyses Results. SAE International Journal of Transportation Cyberse-
curity and Privacy, 1(2):91 112, Nov 2018.

[12] flashrom.org. flashrom is a utility for identifying, reading, writing, verifying and
erasing flash chips, https://flashrom.org/ (accessed 2021-04-14).

[13] Association for Standardization of Automation and Measuring Systems. The
Universal Measurement and Calibration Protocol Family. Standard A S A M M C D -
1 XCP, Association for Standardization of Automation and Measuring Systems,
Germany, DE, 2003. https://www.asam.net/standards/detail/mcd-l-xcp/
(accessed 2021-04-14).

[14] Vector Informatik GmbH. Xcp - the standard protocol for ecu development,
2020. https://assets.vector.com/cms/content/application-areas/ecu-

calibration/xcp/XCP_Ref erenceBook_V3.0_EN.pdf (accessed 2021-04-14).

[15] General Motors Worldwide (GMW). General Motors Local Area Network En
hanced Diagnostic Test Mode Specification. Standard GMW3110, General Mo
tors Worldwide (GMW), 2018.

[16] Oliver Hartkopp. Linux Kernel Module for ISO 15765-2:2016 CAN transport
protocol, 2020. https://github.com/hartkopp/can-isotp (accessed 2021-04-
14).

[17] Oliver Hartkopp. Readme file for the Controller Area Network Protocol Fam
ily (aka SocketCAN), 2020. https://www.kernel.org/doc/Documentation/

networking/can.txt (accessed 2021-04-14).

https://www.wireshark.org/
http://flashrom.org
https://flashrom.org/
https://www.asam.net/standards/detail/mcd-l-xcp/
https://assets.vector.com/cms/content/application-areas/ecu-
https://github.com/hartkopp/can-isotp
https://www.kernel.org/doc/Documentation/

96 BIBLIOGRAPHY

[18] Oliver Hartkopp. SocketCAN userspace utilities and tools, 2020. h t t p s : / /
gi thub.com/l inux-can/can-ut i ls (accessed 2021-04-14).

[19] IEEE. IEEE Standard 802.3-2018 - Standard for Ethernet, 2018.

[20] ISO Central Secretary. Road vehicles - End-of-life activation of on-board py
rotechnic devices - Part 3: Tool requirements. Standard ISO 26021-3:2009, In
ternational Organization for Standardization, Geneva, C H , 2009.

[21] ISO Central Secretary. Road vehicles - Implementation of World-Wide Harmo
nized On-Board Diagnostics (WWH-OBD) communication requirements - Part
3: Common message dictionary. Standard ISO 27145-3:2012, International Or
ganization for Standardization, Geneva, C H , 2012.

[22] ISO Central Secretary. Road vehicles - Unified diagnostic services (UDS) - Part
3: Unified diagnostic services on C A N implementation (UDSonCAN). Standard
ISO 14229-3:2012, International Organization for Standardization, Geneva, CH,
2012.

[23] ISO Central Secretary. Road vehicles - Unified diagnostic services (UDS) -
Part 5: Unified diagnostic services on Internet Protocol implementation (UD-
SonlP). Standard ISO 14229-5:2013, International Organization for Standardiza
tion, Geneva, C H , 2013.

[24] ISO Central Secretary. Road vehicles - Communication between vehicle and
external equipment for emissions-related diagnostics - Part 5: Emissions-related
diagnostic services. Standard ISO 15031-5:2015, International Organization for
Standardization, Geneva, C H , 2015.

[25] ISO Central Secretary. Road vehicles - Controller area network (CAN) -
Part 1: Data link layer and physical signalling. Standard ISO 11898-1:2015,
International Organization for Standardization, Geneva, CH, 2015.

[26] ISO Central Secretary. Road vehicles - Diagnostic communication over Con
troller Area Network (DoCAN) - Part 2: Transport protocol and network layer
services. Standard ISO 15765-2:2016, International Organization for Standard
ization, Geneva, C H , 2016.

[27] ISO Central Secretary. Road vehicles - Diagnostic communication over Internet
Protocol (DoIP) — Part 2: Transport protocol and network layer services. Stan
dard ISO 13400-2:2019, International Organization for Standardization, Geneva,
CH, 2019.

http://github.com/linux-can/can-utils

BIBLIOGRAPHY 97

[28] Wayne Jansen. Directions in security metrics research. Technical Report NIST
IR 7564, National Institute of Standards and Technology, 2009. https://

nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7564.pdf (accessed 2021-04-
14).

[29] K . Koscher, A . Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. Mc
Coy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental Security
Analysis of a Modern Automobile. In 2010 IEEE Symposium on Security and
Privacy, pages 447-462, May 2010.

[30] Sekar Kulandaivel, Tushar Goyal, Arnav Kumar Agrawal, and Vyas Sekar.
CANvas: Fast and Inexpensive Automotive Network Mapping. In 28th USENIX
Security Symposium (USENIX Security 19), pages 389-405, Santa Clara, CA,
August 2019. USENIX Association.

[31] Tencent Keen Security Lab. Car Hacking Research: Remote Attack Tesla Mo
tors, 2020. https://keenlab.tencent.com/en/2016/09/19/Keen-Security-
Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/

(accessed 2021-04-14).

[32] Tencent Keen Security Lab. New Vehicle Security Research by Keen-
Lab: Experimental Security Assessment of BMW Cars, 2020. https:

//keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-

KeenLab-Experimental-Security-Assessment-of-BMW-Cars/ (accessed
2021-04-14).

[33] Pico Technology Ltd. Complete CAN data frame structure, 2020. https://www.
picotech.com/images/uploads/library/topics/_med/CAN-full-frame.jpg
(accessed 2021-04-14).

[34] Gordon Lyon. Nmap: the Network Mapper - Free Security Scanner, https:
//nmap. org/(accessed 2021-04-14).

[35] Peter Mell, Karen Scarfone, and Sasha Romanosky. A Complete Guide to the
Common Vulnerability Scoring System Version 2.0. https: //tsapps. nist. gov/
publication/get_pdf . cfm?pub_id=51198 (accessed 2021-04-14).

[36] Dr. Charlie Miller and Chris Valasek. Adventures in Automotive Networks and
Control Units. DEF C O N 21 Hacking Conference. Las Vegas, NV: DEF CON,
August 2013. http://illmatics.com/car_hacking.pdf (accessed 2021-04-14).

https://keenlab.tencent.com/en/2016/09/19/Keen-Security-
https://www
http://illmatics.com/car_hacking.pdf

98 BIBLIOGRAPHY

[37] Dr. Charlie Miller and Chris Valasek. A Survey of Remote Automotive Attack
Surfaces. DEF C O N 22 Hacking Conference. Las Vegas, NV: DEF CON, August
2014.

[38] Dr. Charlie Miller and Chris Valasek. Remote Exploitation of an Unaltered
Passenger Vehicle. DEF C O N 23 Hacking Conference. Las Vegas, NV: DEF
CON, August 2015.

[39] Dr. Charlie Miller and Chris Valasek. Advanced can injection techniques for
vehicle networks. In BlackHat USA, Aug 2016. http://illmatics.com/can°/

0

20message°/o20injection.pdf (accessed 2021-04-14).

[40] The M I T R E Corporation (MITRE). Vulnerability Type Distributions in C V E
- Flaw Terminology, https://eve.mitre.org/docs/vuln-trends/index.html
(accessed 2021-04-14).

[41] Colin O'Flynn. B A M B A M ! ! On Reliability of EMFI for in-situ Automotive
E C U Attacks. Cryptology ePrint Archive, Report 2020/937, 2020. https://
eprint.iacr.org/2020/937 (accessed 2021-04-14).

[42] Ramiro Pareja and Santiago Cordoba. Fault injection on automotive diagnostic
protocols, 2018. https: //www. riscure . com/uploads/2018/06/Riscure_

Whitepaper_Fault_injection_on_automotive_diagnostic_protocols.pdf

(accessed 2021-04-14).

[43] Pierre Lalet Philippe Biondi, Guillaume Valadon and Gabriel Potter. Scapy,
2018. http://www.secdev.org/projects/scapy/ (accessed 2021-04-14).

[44] Inc. Rapid7. metasploit - The world's most used penetration testing framework,
2020. https://www.metasploit.com/ (accessed 2021-04-14).

[45] RBEI and ETAS. BUSMASTER, 2017. https://github.com/rbei-etas/

busmaster/ (accessed 2021-04-14).

[46] Inc. ReFirm Labs. Binwalk is a fast, easy to use tool for analyzing, reverse en
gineering, and extracting firmware images. https://github.com/ReFirmLabs/
binwalk (accessed 2021-04-14).

[47] Christian Sandberg, Kasper Karlsson, Tobias Lans, Mattias Jidhage, Johannes
Weschke, and Filip Hesslund. Caring Caribou, 2018. https://github.com/

CaringCaribou/caringcaribou (accessed 2021-04-14).

http://illmatics.com/can�/0
https://eve.mitre.org/docs/vuln-trends/index.html
http://eprint.iacr.org/2020/937
http://www.secdev.org/projects/scapy/
https://www.metasploit.com/
https://github.com/rbei-etas/
https://github.com/ReFirmLabs/
https://github.com/

BIBLIOGRAPHY 99

[48] Ankita Sawanta and Lenina Svb. C A N , FlexRay, MOST versus Ethernet for
Vehicular Networks. International Journal of Innovations & Advancement in
Computer Science, 04 2018.

[49] Philipp Schmied. CANalyzatOr, 2018. https://github.com/schutzwerk/

CANalyzatOr (accessed 2021-04-14).

[50] Yuefeng Du Sen Nie, Ling Liu. FREE-FALL: HACKING TESLA FROM
WIRELESS TO CAN BUS, 2020. https://www.blackhat.com/docs/us-17/
thursday/us-17-Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-
Bus-wp.pdf (accessed 2021-04-14).

[51] Alexey Sintsov. CANToolz - framework for black-box CAN network analysis,
2017. https://github.com/CANToolz/CANToolz (accessed 2021-04-14).

[52] Dieter Spaar. Beemer, Open Thyself! - Security vulnerabilities in BMW's
ConnectedDrive, February 2015. https://www.heise.de/ct/artikel/Beemer-

Open-Thyself-Security-vulnerabilities-in-BMW-s-ConnectedDrive-

2540957.html (accessed 2021-04-14).

[53] Grand Idea Studio. Jtagulator. a tool to assist in identifying on-chip debugging
(ocd) and/or programming connections from test points, vias, or component
pads on a target piece of hardware, https://github.com/grandideastudio/
jtagulator (accessed 2021-04-14).

[54] Junko Takahashi, Yosuke Aragane, Toshiyuki Miyazawa, Hitoshi Fuji, Hirofumi
Yamashita, Keita Hayakawa, Shintarou Ukai, and Hiroshi Hayakawa. Automotive
Attacks and Countermeasures on LIN-Bus. Journal of Information Processing,
25:220-228, 02 2017.

[55] Brian Thorne. python-can, 2020. https://github.com/hardbyte/python-can

(accessed 2021-04-14).

[56] Ken Tindell. CAN Bus Security - Attacks on CAN bus and their mitigations,
2019. https://canislabs.com/wp-content/uploads/2020/12/2020-02-14-
White-Paper-CAN-Security.pdf (accessed 2021-04-14).

[57] Jan Van den Herrewegen and Flavio D. Garcia. Beneath the Bonnet: A Break
down of Diagnostic Security, volume 11098 of Lecture Notes in Computer Science,
page 305-324. Springer International Publishing, 2018.

https://github.com/schutzwerk/
https://www.blackhat.com/docs/us-17/
https://github.com/CANToolz/CANToolz
https://www.heise.de/ct/artikel/Beemer-
https://github.com/grandideastudio/
https://github.com/hardbyte/python-can
https://canislabs.com/wp-content/uploads/2020/12/2020-02-14-

100 BIBLIOGRAPHY

[58] Awad Younis, Yashwant K. Malaiya, and Indrajit Ray. Assessing vulnera
bility exploitability risk using software properties. Software Quality Journal,
24(l):159-202, Mar 2016.

Appendix A

Identified Vulnerabilities

This appendix lists detailed information of all identified vulnerabilities in the inves
tigated automotive components. A l l vulnerabilities are documented with the defined
vulnerability fact sheet.

A . l C e n t r a l Ga teway Cont ro l l e r

Table A . l : Summary of vulnerability VI

V I Unprotected external memory
The external E E P R O M can be red or manipulated. Data inside this memory is
not authenticated nor encrypted.

Preconditions: Physical access to the P C B
Impact: Low Exploitability: Low

Rating Explanation: An attacker needs physical access and code exe
cution can't be obtained.

Attack Surface: External Memories (EEPROM)

102

A.l. CENTRAL GATEWAY CONTROLLER 103

Table A.2: Summary of vulnerability V2

V2 Diagnostic message routing
A l l diagnostic communication is forwarded into the vehicle-internal subnetwork.
No plausibility checks are applied. No authentication is required.

Preconditions: Access to the diagnostic interface
Impact: Medium Exploitability: Medium

Rating Explanation: Physical network access is required and an at
tacker gains access to multiple other targets but
no priviledges for code execution.

Attack Surface: External Interfaces (CAN)

Table A.3: Summary of vulnerability V3

V3 Development functionalities
B M W proprietary UDS commands to access special functionalities for devel
opment purposes are available. Some of these services can be used without
authentication.

Preconditions: Access to the diagnostic interface
Impact: Low Exploitability: Medium

Rating Explanation: Development functionalities can be accessed with
physical access to the diagnostic C A N network.
Code execution privileges are not obtained.

Attack Surface: External Interfaces (CAN)

104 APPENDIX A. IDENTIFIED VULNERABILITIES

Table A.4: Summary of vulnerability V4

V4 Serial debug interface available
A serial interface (UART interface) with debug functionalities can be accessed
via a debug header on the PCB. A command line terminal on this interface can
be used to run debug and development functions.

Preconditions: Physical access to the P C B
Impact: Low Exploitability: Low

Rating Explanation: Internal information can be gathered, if an at
tacker has physical access to the target.

Attack Surface: Debug Interfaces (UART)

Table A.5: Summary of vulnerability V5

V5 Insecure M C U internal bootloader
A hardware attack on the internal bootloader was demonstrated by Colin
O'Flynn [41].

Preconditions: Physical access to the P C B
Impact: Medium Exploitability: Low

Rating Explanation: An attacker can obtain code execution or access all
secrets stored in internal memories of this M C U .

Attack Surface: Debug Interfaces (UART)

A.2. BODY DOMAIN CONTROLLER

A . 2 B o d y D o m a i n Cont ro l l e r

105

Table A.6: Summary of vulnerability V6

V6 Unprotected external memory
The external E E P R O M can be red or manipulated. Data inside this memory is
not authenticated nor encrypted.

Preconditions: Physical access to the P C B
Impact: Low Exploitability: Low

Rating Explanation: Physical access to the target is required. No code
execution can be obtained from this vulnerability.

Attack Surface: External Memories (EEPROM)

Table A. 7: Summary of vulnerability V7

V7 Insecure Security Access mechanism
The G M L A N protocol specification defines a key length of two bytes for the
security access service [15, p. 125]. The seed which need to be answered with the
correct key is constant. A brute force attack on the security access mechanism
is feasible under laboratory conditions. After obtaining security access on this
E C U , an attacker can enter the bootloader and execute dangerous functionalities,
for example flashing of the E C U .

Preconditions: Access to the high-speed C A N network, for exam
ple through the vehicles OBD interface.

Impact: Medium Exploitability: Medium
Rating Explanation: Physical access to the cars internal network is re

quired. The bootloader as further attack surface
can be accessed.

Attack Surface: External Interfaces (CAN)

106 APPENDIX A. IDENTIFIED VULNERABILITIES

Table A.8: Summary of vulnerability V8

V8 Insecure software update mechanism
After obtaining security access, one can access the bootloader functionalities of
this E C U . The bootloader is implemented in an insecure way. A bootloader
service, called Transfer Data, allows the transfer and the execution of arbitrary
code to the ECUs R A M [15, p. 161]. No cryptographic signatures are checked
by the bootloader.

Preconditions: Access to the high-speed C A N network and secu
rity access.

Impact: High Exploitability: Low
Rating Explanation: An attacker with access to the bootloader can ob

tain remote code execution over the car internal
network and therefore trigger physical actions in
the car.

Attack Surface: Operating System (Bootloader)

Table A.9: Summary of vulnerability chain Cl

CI Vulnerability Chain: Insecure Security Access mechanism and in
secure software update mechanism

A n attacker obtains remote code execution and access to physical systems
through access to the cars internal C A N network, for example through the OBD
interface.

Preconditions: Access to the vehicle network through OBD
Impact: High Exploitability: Medium

Rating Explanation: Two vulnerabilities can be joined together to ob
tain a vulnerability chain with higher exploitabil
ity factor and impact factor as the individual vul
nerabilities.

Attack Surface: External Interfaces (CAN)
Involved Vulnerabilities: V7, V8

A.3. TELEMATICS CONTROL UNIT

A . 3 Telematics C o n t r o l U n i t

107

Table A. 10: Summary of vulnerability V9

V9 Unprotected external memory
The external flash memory of the main processor can be red or manipulated.
Data inside this memory is not authenticated nor encrypted. An attacker can
read or modify password hashes for the passwords in the QNX operation system.
Cryptographic data to secure the back-end connections can be red.

Preconditions: Physical access to the P C B
Impact: Medium Exploitability: Low

Rating Explanation: An attacker can gain local code execution through
manual data tampering. This attack requires
physical modifications on the PCB.

Attack Surface: External Memories (Flash)

Table A.11: Summary of vulnerability V10

V10 Unprotected J T A G interface
The main processor can be debugged through the external JTAG interface. The
firmware inside the flash memory can be red and modified. Run-time data in
the R A M memory can be red and manipulated.

Preconditions: Physical access to the P C B
Impact: Medium Exploitability: Low

Rating Explanation: Full control over the processor can be achieved
from an attacker. This requires physical access an
modifications on the P C B .

Attack Surface: Debug Interfaces (JTAG)

108 APPENDIX A. IDENTIFIED VULNERABILITIES

Table A. 12: Summary of vulnerability VI1

V I 1 External Debug-Port
The i.MX6 main processor can be booted over USB-OTG. This USB port is
available on an external connector. An attacker can use this debug port to
compromise the entire E C U .

Preconditions: Physical access to the E C U
Impact: Medium Exploitability: Low

Rating Explanation: This vulnerability gives an attacker identical priv
ileges as the previous two vulnerabilities, but no
physical modifications to the P C B are required.

Attack Surface: Debug Interfaces (USB-OTG)

A . 4 A i r b a g C o n t r o l U n i t

Table A. 13: Summary of vulnerability VI2

V12 Weak Security Access algorithm
The security access algorithm of this E C U follows the examples in ISO 26021
[20].

Preconditions: Access to S W C A N
Impact: Medium Exploitability: Medium

Rating Explanation: A weak security access algorithm allows an at
tacker to access a new attack surface over the ve
hicles network.

Attack Surface: External Interfaces (SWCAN)

A A. AIRBAG CONTROL UNIT 109

Table A.14: Summary of vulnerability V13

V13 R C E vulnerability
After a successful security access authentication, the bootloader of this E C U is
accessible. This bootloader contains a vulnerability which allows an attacker to
execute arbitrary code.

Preconditions: Access to the ECUs bootloader through security
access

Impact: High Exploitability: Low
Rating Explanation: If an attacker gains access to the bootloader, a

remote code execution vulnerability can be trig
gered. This gives an attacker the possibility to
cause physical actions from a remote interface.

Attack Surface: Operating System (Bootloader)

Table A. 15: Summary of vulnerability chain C2

C2 Vulnerability Chain: Weak Security Access algorithm and R C E
vulnerability

An attacker can trigger a R C E vulnerability in the airbag E C U bootloader from
the vehicles OBD interface. This vulnerability gives an attacker control over
physical systems.

Preconditions: Access to the vehicle network
Impact: High Exploitability: Medium

Rating Explanation: The combination of these two vulnerabilities in
crease the impact and the exploitability compared
to both individual vulnerabilities.

Attack Surface: External Interfaces (SWCAN)
Involved Vulnerabilities: V12, V13

110 APPENDIX A. IDENTIFIED VULNERABILITIES

A . 5 Die te r Spaar: Beemer , O p e n Thyself!

Table A. 16: Summary of vulnerability V14

V14 Shared cryptographic secrets in T C U
Shared secrets allow an attacker to authenticate itself as legitimate communica
tion partner to a T C U .

Preconditions: Physical access to one T C U .
Impact: Low Exploitability: Low

Rating Explanation: The gained information from this vulnerability al
low an attacker to prepare further attacks. Phys
ical modification to the P C B were necessary to
extract these shared secrets.

Attack Surface: External Memories (Flash)

Table A. 17: Summary of vulnerability VI5

V15 Information leaks in N G T P
Leaked information allow preparations for remote attacks on the communication
protocol NGTP.

Preconditions: Vehicle needs to connect to a malicious BTS.
Impact: Low Exploitability: High

Rating Explanation: A n attacker gains necessary information to craft
malicious commands for a targeted vehicle.

Attack Surface: Wireless Interfaces (Mobile Data Connection)

A.6. MILLER & VALAŠEK: REMOTE EXPLOITATION 111

Table A. 18: Summary of vulnerability chain C3

C3 Vulnerability Chain: Shared secrets and information leaks in
N G T P

Leaked information combined with cryptographic secrets for authentication can
be used to trigger physical actions on the car.

Preconditions: Vehicle needs to connect to a malicious BTS.
Impact: High Exploitability: High

Rating Explanation: A n attacker can authenticate itself onto a arbi
trary car and execute legitimate physical actions
from a wireless connection.

Attack Surface: Wireless Interfaces (Mobile Data Connection)
Involved Vulnerabilities: V14, V15

A . 6 M i l l e r & Valasek: Remote E x p l o i t a t i o n of an
Una l t e r ed Passenger Vehic le

Table A. 19: Summary of vulnerability VI6

V16 Exposed services on remote interface
Various open ports for connections from the Internet existed on the vehicles
M M U .

Preconditions: Internet connection and IP-address of the vehicle.
Impact: Medium Exploitability: High

Rating Explanation: Attackers can execute arbitrary code on the M M U
over an Internet connection. This exposes the
C A N controller of the attacked E C U as additional
attack surface.

Attack Surface: Wireless Interfaces (Mobile Data Connection)

112 APPENDIX A. IDENTIFIED VULNERABILITIES

Table A.20: Summary of vulnerability V17

V17 Insecure software update mechanisms
Exposed services allow software updates to the M M U of the vehicle. No authen
tication checks were performed on software updates. A custom firmware allows
arbitrary read and write access to the vehicles C A N network.

Preconditions: Local code execution on the M M U .
Impact: High Exploitability: Low

Rating Explanation: A custom firmware update allows read and write
access to the vehicles internal C A N network.
Through this connection, physical actions on the
vehicles actuators can be triggered from the M M U
main processor.

Attack Surface: On-Board Interfaces (SPI)

Table A.21: Summary of vulnerability chain C4

C4 Vulnerability Chain: Exposed services and insecure software up
date mechanisms

The combination of these two vulnerabilities allows attackers a remote exploita
tion of the entire vehicle.

Preconditions: Internet connection to the vehicle
Impact: High Exploitability: High

Rating Explanation: A n attacker can execute arbitrary code and trigger
physical actions on the vehicles actuator from an
Internet connection.

Attack Surface: Wireless Interfaces (Mobile Data Connection)
Involved Vulnerabilities: V16, V17

A. 7. NIE ET AL.: FREE-FALL 113

A . 7 N i e et a l . : Free-Fal l - H a c k i n g Tesla from
Wire less to C A N B u s

Table A.22: Summary of vulnerability VI8

V I 8 Browser exploit
Once a vehicle connects to a malicious W L A N access point, a browser exploit
can be triggered.

Preconditions: Established W L A N connection to malicious
W L A N access point.

Impact: Medium Exploitability: High
Rating Explanation: A browser exploit could be triggered without user

interaction. This exploit gives privileges for code
execution. An attacker has access to a greater
attack surface.

Attack Surface: Wireless Interfaces (WLAN)

Table A.23: Summary of vulnerability VI9

V19 Linux kernel exploit
This vulnerability allows attackers to gain root privileges on a target system.
This exploit is triggered after a successful browser exploit.

Preconditions: Unprivileged code execution
Impact: Medium Exploitability: Low

Rating Explanation: An attacker needs unprivileged code execution in
order to escalate privileges through this vulnera
bility. Privileged code execution exposes a greater
attack surface on the M M U .

Attack Surface: Operating System (Linux)

114 APPENDIX A. IDENTIFIED VULNERABILITIES

Table A.24: Summary of vulnerability V20

V20 Unauthenticated software update mechanisms
A malicious firmware update of the vehicles internal gateway controller allows
arbitrary read and write access to the vehicles C A N network.

Preconditions: Privileged code execution on the M M U
Impact: High Exploitability: Low

Rating Explanation: An attacker with root privileges on the M M U can
trigger a software update of a malicious firmware
to the MMUs network processor. An attacker ob
tains arbitrary read and write access to the vehi
cles C A N bus.

Attack Surface: On-Board Interfaces (unknown)

Table A.25: Summary of vulnerability V21

V21 Insecure UDS protocol
In-proper security mechanism on the UDS protocol allows access to dangerous
services on various ECUs in the vehicle.

Preconditions: Read and write access to the vehicle-internal C A N
network.

Impact: High Exploitability: Medium
Rating Explanation: Once an attacker has access to the vehicles C A N

network, he can abuse the UDS protocol to trigger
physical actions or reprogram further ECUs in the
vehicle.

Attack Surface: External Interfaces (CAN)

A.8. CAI ET AL.: O-DAYS & MITIGATIONS 115

Table A.26: Summary of vulnerability chain C5

C5 Vulnerability Chain: Browser exploit, Kernel exploit and unau-
thenticated software updates

This vulnerability chain, consisting of three different vulnerabilities gives an
attacker full remote access to the vehicles intern C A N network.

Preconditions: Connection to a malicious W L A N access point.
Impact: High Exploitability: High

Rating Explanation: A n attacker can trigger physical actions through
a wireless connection.

Attack Surface: Wireless Interfaces (WLAN)
Involved Vulnerabilities: V18, V19, V20, V21

A . 8 C a i et a l . : O-days & M i t i g a t i o n s - Roadways
to E x p l o i t and Secure Connec ted B M W Cars

Table A.27: Summary of vulnerability V22

V22 Browser exploit
Once the web browser accesses a malicious website, a browser exploit can be
triggered.

Preconditions: Access of a website by the cars web browser.
Impact: Medium Exploitability: Medium

Rating Explanation: This exploit requires user interaction to load a ma
licious website. An attacker gains code execution
privileges on the M M U .

Attack Surface: Wireless Interfaces (Mobile Data Connection)

116 APPENDIX A. IDENTIFIED VULNERABILITIES

Table A.28: Summary of vulnerability V23

V23 T O C T O U attack
This vulnerability allows attackers to send arbitrary UDS messages onto the
vehicles internal networks.

Preconditions: Code execution.
Impact: Medium Exploitability: Low

Rating Explanation: An attacker is able to send UDS messages to all
ECUs in the same subnetwork. In this special
case, the impact is rated medium, since the vehicle
uses a C G W to separate networks. An attacker
can not access the entire vehicle network through
this vulnerability. ECUs that control CPSs are
located in different subnetworks.

Attack Surface: Operating System (QNX)

Table A.29: Summary of vulnerability V24

V24 Insecure UDS message routing
A logic error in the vehicle-internal gateway allows attackers to send UDS com
mands from one subnetwork to any other subnetwork.

Preconditions: Access to one of the vehicles subnetworks.
Impact: High Exploitability: Medium

Rating Explanation: This vulnerability allows the attackers to access
ECUs that control CPS. Physical actions can be
triggered through this vulnerability.

Attack Surface: External Interfaces (CAN)

A.8. CAI ET AL.: O-DAYS & MITIGATIONS 117

Table A.30: Summary of vulnerability V25

V25 Buffer overflow in the N G T P protocol
Through a provisioning feature of the N G T P protocol, a buffer overflow could
be triggered. This allows arbitrary code execution on the T C U of the vehicle,
which involves access to the vehicles internal subnetwork on which the T C U is
connected to.

Preconditions: GSM or Enhanced Data Rates for GSM Evolution
(EDGE) connection to a malicious BTS.

Impact: Medium Exploitability: High
Rating Explanation: This vulnerability has a medium impact, since the

T C U of this vehicle is in the same subnetwork as
the M M U . Access to ECUs with control over CPSs
is not granted by this vulnerability.

Attack Surface: Wireless Interfaces (Mobile Data Connection)

Table A.31: Summary of vulnerability chain C6

C6 Vulnerability Chain: Browser exploit, T O C T O U attack and inse
cure UDS message routing

This vulnerability chain allows remote exploitation of the entire vehicle.
Preconditions: Access of a malicious website.

Impact: High Exploitability: Medium
Rating Explanation: The victim of this attack has to trigger an exploit

by accessing a malicious website.
Attack Surface: Wireless Interfaces (Mobile Data Connection)

Involved Vulnerabilities: V22, V23, V24

118 APPENDIX A. IDENTIFIED VULNERABILITIES

Table A.32: Summary of vulnerability chain CI

C7 Vulnerability Chain: N G T P buffer overflow and insecure UDS
message routing

The buffer overflow vulnerability combined with the insecure UDS message rout
ing vulnerability allow the exploitation of the entire vehicle.

Preconditions: G S M / E D G E connection to a malicious BTS.
Impact: High Exploitability: High

Rating Explanation: This vulnerability chain doesn't require user in
teraction. An attacker can compromise the entire
vehicle and gains access to CPSs.

Attack Surface: Wireless Interfaces (Mobile Data Connection)
Involved Vulnerabilities: V24, V25

A . 9 Computes t : T h e Connec ted C a r - Ways to
get unauthor ized access and potent ia l i m p l i
cations

Table A.33: Summary of vulnerability V26

V26 Open ports on the vehicles network interfaces
Open ports expose services of the ECUs operating system to the Internet.

Preconditions: Internet connection
Impact: Low Exploitability: High

Rating Explanation: Attackers can remotely access services of the
ECUs operating system.

Attack Surface: Wireless Interfaces (WLAN or mobile data con
nection)

A.9. COMPUTEST: THE CONNECTED CAR 119

Table A.34: Summary of vulnerability V27

V27 Q N X vulnerability
A vulnerable service on an open port allows attackers to trigger a vulnerability
of the QNX operating system.

Preconditions: Access to vulnerable service.
Impact: Medium Exploitability: Low

Rating Explanation: An attacker can use this vulnerability to obtain
code execution. The vehicle network can't be ac
cessed from the exploitable M M U .

Attack Surface: Operating System (QNX)

Table A.35: Summary of vulnerability V28

V28 Insecure software update mechanisms
A n insecure software update mechanism of the M M U allows privilege escalation
to a second processor in the M M U . A custom firmware allows arbitrary read and
write access to the vehicles C A N network.

Preconditions: Code execution on the M M U processor.
Impact: Medium Exploitability: Low

Rating Explanation: An attacker can escalate his privileges to ob
tain access to a C A N subnetwork for multimedia
ECUs. Access to ECUs with control over actua
tors is not possible from this vulnerability.

Attack Surface: On-Board Interfaces (unknown)

120 APPENDIX A. IDENTIFIED VULNERABILITIES

Table A.36: Summary of vulnerability chain C8

C8 Vulnerability Chain: Open ports, Q N X vulnerability and insecure
software updates

The combination of these vulnerabilities allow attackers a remote exploitation
with access to the vehicles C A N subnetwork for multimedia ECUs

Preconditions: Internet connection
Impact: Medium Exploitability: High

Rating Explanation: This vulnerability chain misses one more vulnera
bility to gain remote access to ECUs with control
over CPSs.

Attack Surface: Wireless Interfaces (WLAN or Mobile Data Con
nection)

Involved Vulnerabilities: V26, V27, V28

Appendix B

Contributions to Scapy

Table B . l : Summary of contributions to the Scapy project in order to form a ver
satile open-source software framework for automotive penetration testing. On each
contribution, a note identifier specifies the author's involvement. 1: The author
implemented this contribution; 2: This contribution was implemented in coopera
tion with another contributor; 3: The author supported the implementation of this
contribution; 4: The author has extended an existing implementation.

C A N - Media Access Layer

CAN Packet4

Added support for handling of C A N packets received from Linux SocketCAN
sockets.

NativeCANSocket
1

Standardized Scapy SuperSocket object for communication over a Linux
SocketCAN socket.

PythonCANSocket
1

Standardized Scapy SuperSocket object for communication over any python-
can Bus object. This SuperSocket adds internal message queues to mimic
the behavior of Linux SocketCAN sockets for python-can Bus objects.

SignalFields and SignalPacket
1

A new class of Scapy Fields to support Data Base C A N (DBC) signal pack
ets for C A N networks. SignalPackets and SignalFields allow straight
forward translation of DBC packet definitions to Scapy Packet classes.

121

122 APPENDIX B. CONTRIBUTIONS TO SCAPY

CandumpReader
1

A helper class for parsing and interpretation of candump log-files into Scapy
Packets.

ISO-TP - Transportation Layer

ISOTP Packet1

A special Scapy Packet class for ISO-TP messages. This class allows defrag-
mentation of C A N frames into an ISOTP message and fragmentation of an
ISOTP message into a list of C A N frames.

ISOTPHeader and IS0TP_{SF, FF, CF, FC} Packets1

Special Scapy Packet classes to dissect and build individual ISO-TP frames
for C A N communication.

ISOTPMessageBuilder
3

A helper class for defragmentation of C A N messages to ISO-TP messages.
ISOTPSoftSocket

2

A special Scapy SuperSocket class for ISO-TP communication over a
NativeCANSocket or a PythonCANSocket. A l l underlying communication
handling is done in Python.

ISOTPNativeSocket
1

A Scapy SuperSocket for interaction with the ISO-TP Linux kernel mod
ule. This allows ISO-TP communication over Linux ISO-TP sockets from
Python. A l l underlying communication handling is done in the Linux kernel.

ISOTPScan
2

An ISO-TP endpoint scanner for CANs. This utility automatically identifies
possible endpoints and all communication parameters necessary to establish
an ISO-TP communication.

HSFZ - Transportation Layer

HSFZ Packet1

A special Scapy Packet class to support dissection and building of packets
for BMWs HSFZ protocol.

HSFZSocket
1

A pre-configured Scapy StreamSocket for HSFZ communication over TCP.
ISOTP_HSFZSocket

1

A transparent HSFZSocket to allow application layer communication with an
E C U , based on a logical address. A l l necessary wrapping of messages to send
an application layer packet over HSFZ to an E C U is handled transparently.

123

DoIP - Transportation Layer

Do IP Packet1

A special Scapy Packet class to support dissection and building of DoIP
packets.

DoIPSocket
1

A pre-configured Scapy StreamSocket for DoIP communication over T C P .
UDS_DoIPSocket

1

A transparent DoIPSocket to allow application layer communication with an
E C U , based on a logical address. A l l necessary wrapping of messages to send
an application layer packet over DoIP to an E C U is handled transparently.

Diagnostic Protocols - Application Layer

UDS
1

Implementation of Scapy Packet classes for dissection and building of UDS
packets. UDS packets are a derivation class of ISDTP packets.

UDS_Scanner
1

Implementation of a scanner utility specifically for attack-surface exploration
of UDS implementations.

GMLAN
1

Implementation of Scapy Packet classes for dissection and building of G M
L A N packets. GMLAN packets are a derivation class of ISOTP packets.

GMLAN utilities2

A set of helper functions for easy execution of complex G M L A N functions
on ECUs.

GMLAN_Scanner
1

Implementation of a scanner utility specifically for attack-surface exploration
of G M L A N implementations.

OBD
2

Implementation of Scapy Packet classes for dissection and building of OBD
packets. OBD packets £1X6 9. derivation class of ISOTP packets.

0BD_Scanner
2

A scanner utility to automatically gather all available OBD information from
an E C U .

CCP
1

Implementation of Scapy Packet classes for dissection and building of CCP
packets.

124 APPENDIX B. CONTRIBUTIONS TO SCAPY

XCP
3

Implementation of Scapy Packet classes for dissection and building of X C P
packets.

XCPOnCANScanner
3

A scanner utility to identify XCP endpoints in CANs.
Communication Protocols - Application Layer

SOME/IP
3

Implementation of Scapy Packet classes for dissection and building of
SOME/IP packets.

Application Layer Utilities

Ecu and EcuSession
1

Helper object to analyze diagnostic layer communication.
EcuAnsweringMachine

1

Helper object to simulate an E C U .

Appendix C

U D S / G M L A N Service Request
Identifiers

Table C.l: List of hexadecimal service identifiers and according service names of
UDS and G M L A N

UDS UDS Service Name G M - G M L A N Service Name

L A N

0x04 ClearDiagnosticInformation
0x10 DiagnosticSessionControl 0x10 InitiateDiagnosticOperation
0x11 ECUReset

0x12 ReadFailur eRecor dD at a
0x14 ClearDiagnosticInformation
0x19 ReadDTCInformation

OxlA ReadDataByldentifier
0x22 ReadDataByldentifier 0x22 ReadDataByParameterldentifier
0x23 ReadMemoryByAddress 0x23 ReadMemoryByAddress
0x24 ReadScalingDataByldentifier
0x27 Security Access 0x27 SecurityAccess
0x28 CommunicationControl 0x28 DisableNormalCommunication
0x2A ReadDataPeriodicIdentifier
0x2C DynamicallyDefineDataldentifier 0x2C DynamicallyDefineMessage

0x2D DefinePIDByAddress
0x2E WriteDataByldentifier
0x2F InputOutputControlByldentifier

125

126 APPENDIX C UDS / GMLAN SERVICE REQUEST IDENTIFIERS

0x31 RoutineControl
0x34 RequestDownload
0x35 RequestUpload
0x36 TransferData
0x37 Request TransferExit
0x38 RequestFileTransfer

0x3D WriteMemoryByAddress
0x3E TesterPresent
0x83 AccessTimingParameter
0x84 SecuredDataTransmission
0x85 ControlDTCSetting
0x87 LinkControl

0x34 RequestDownload

0x36 TransferData

0x3B WriteDataByldentifier

0x3E TesterPresent

0xA2 Report ProgrammingState
0xA5 ProgrammingMode
0xA9 ReadDiagnosticInformation
OxAA ReadDataByPacketldentifier
OxAE DeviceControl

