

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Informatics

Master's Thesis

An interactive system for teaching school going children.

MD SAHIN ALAM

© 2023 CZU Prague

Declaration

I declare that I have worked on my master's thesis titled "An interactive system for

teaching school-going children." by myself and I have used only the sources mentioned at

the end of the thesis. As the author of the master's thesis, I declare that the thesis does not

break any copyrights.

In Prague on 20/03/2023 ___________________________

Acknowledgement

The completion of this thesis would not have been possible without the assistance

and support of several individuals who have contributed in various ways. I would like to

express my sincere gratitude to doc. Ing. Arnošt Veselý, CSc., for his invaluable guidance

and mentorship throughout this project. His insightful suggestions and feedback were

instrumental in shaping my research and helped me to attain a deeper understanding of the

subject matter.

I am also deeply grateful to my family and friends for their unwavering support and

encouragement throughout this journey. Their love, patience, and understanding were a

constant source of motivation and inspiration, and I am truly blessed to have them in my life.

I would like to extend my heartfelt thanks to all those who assisted me in collecting

data and feedback for my end system, particularly those who volunteered their time and

effort to participate in this study. The valuable insights and feedback provided by the

students were critical in shaping my research and helped me to achieve a more

comprehensive understanding of the topic.

Finally, I would like to express my gratitude to Ikram Khan for his invaluable

review of my thesis paper, and Rubaiat Jahan Suva for her immense support throughout

this project. Their feedback and assistance were invaluable, and I am deeply indebted to

them both.

An interactive system for teaching school going children.

Abstract

 Web-based interactive systems are becoming more common in educational systems

for school-going children’s. Using AI, machine learning, and deep learning have huge

potential in building such systems to improve personalised and adaptive learning experiences

for these children. In this thesis paper I discuss and compare machine learning and deep

learning algorithms to demonstrate that the Convoluted Neural Network is the most effective

at recognising hand-written Bengali and English alphabets, digits and common shapes for

improving accuracy of such interactive learning systems. From the results of this comparison

I developed an interactive educational platform to improve student engagement, learning

outcomes, and enjoyment of the learning process by adding a drawing tool as well as visual

and auditory responses. The goal of this platform is to demonstrate the possibility of

replacing traditional learning systems with digital interactive ones.

Keywords: Convolution Neural Networks, discrimination of alphabet characters, Machine

Learning, Scikit-Learn, Flask, TensorFlow, Panda, OpenCV

Interaktivní systém pro výuku dětí v základní škole.

Abstrakt

Webové interaktivní systémy se stávají častějšími v edukačních systémech pro

školou povinné děti. Využití umělé inteligence, strojového učení a hlubokého učení má

obrovský potenciál při budování takových systémů, které zlepšují personalizované a

adaptivní učební zkušenosti pro tyto děti. V této diplomové práci diskutuji a srovnávám

algoritmy strojového a hlubokého učení, abych prokázal, že konvoluční neuronová síť je

nejúčinnější při rozpoznávání ručně psaných bengálských a anglických abeced, číslic a

běžných tvarů pro zlepšení přesnosti těchto interaktivních vzdělávacích systémů. Na základě

výsledků tohoto srovnání jsem vyvinul interaktivní vzdělávací platformu pro zlepšení

zapojení studentů, výsledků učení a potěšení z učebního procesu pomocí nástroje pro

kreslení, vizuálních a zvukových odezev. Cílem této platformy je ukázat možnost nahrazení

tradičních učebních systémů digitálními interaktivními.

Klíčová slova: Konvoluční neuronové sítě, rozpoznání písmen abecedy, strojové učení,

Scikit-Learn, Flask, TensorFlow, Panda, OpenCV.

Table of content

1 Introduction .. 11

2 Objectives and Methodology ... 13

2.1 Objectives ... 13

2.2 Methodology .. 13

3 Literature Review... 14

3.1 Current Study System .. 14

3.1.1 Current Pre-School Education Systems in Bangladesh 14

3.1.2 Exploring how children learn from their everyday life 24

3.2 Artificial Intelligence ... 25

3.2.1 Four Categories Of Artificial Intelligence Definitions 27

3.3 Machine Learning .. 28

3.3.1 Categories of Machine Learning ... 30

3.3.2 Machine Learning Algorithms .. 32

3.4 Other Technologies for Building Applications .. 40

4 Practical Part .. 44

4.1 Data Collection ... 44

4.2 Data Pre-processing ... 49

4.2.1 Inverted Image .. 50

4.2.2 RGB to grayscale .. 50

4.2.3 Image Contour Detection .. 51

4.2.4 Image Resize ... 53

4.3 Training the Algorithms and Comparison .. 54

4.3.1 Training Gaussian Naive Bayes .. 54

4.3.2 Training K-Nearest Neighbors Classifier ... 56

4.3.3 Training Support Vector Classifier ... 57

4.3.4 Training Random Forest Classifier ... 58

4.3.5 Training Decision Tree Classifier ... 58

4.3.6 Comparison ... 59

4.4 Training The Convolutional Neural Network (CNN) 60

4.4.1 Implementations of CNN on Bonjonborno Category 61

4.4.2 The architecture of the Convolutional Neural Network (CNN) model 69

4.4.3 Classification accuracy achieved by the CNN model 72

4.5 Implementing user interface. .. 72

4.5.1 Using Flask ... 72

4.5.2 Using HTML, CSS, Bootstrap and JavaScript to designing the templates73

5 Results and Discussion ... 75

5.1 Home Page ... 76

5.2 Page Selection .. 76

5.3 Sorborno (স্বরবর্ ণ) Page .. 77

5.4 Bonjonborno (বযঞ্জনবর্ ণ) Page ... 78

5.5 English Alphabet Page ... 79

5.6 English Digit Page .. 79

5.7 Drawing Page ... 80

6 Conclusion ... 81

References .. 82

7 List of pictures and graphs .. 84

1 Introduction

"The only way to do great work is to love what you do" - Steve Jobs.

The year 2020 will be remembered as a year of great turbulence and uncertainty, with the

emergence of a pandemic that shook the world to its core. COVID-19 has disrupted our lives

in many ways, leading to countless losses and hardships. During this difficult time, I

witnessed first-hand the devastating effects of the pandemic on society, including the

education sector. Schools were closed, children were forced to stay at home, and the

traditional methods of learning were disrupted.

As an avid lover of playing with children, I could not help but think about the potential

impact of the pandemic on their education. It was in this moment that the idea of developing

an educational platform that could be accessed through technology devices such as

smartphones, laptops, and tablets came to mind. As I love AI, machine learning, and deep

learning technology, I realized that I could use these tools to make the educational platform

more engaging and effective.

Artificial intelligence (AI) has revolutionized the way we interact with technology, and its

impact on education is no exception. Machine learning and deep learning, which are subsets

of AI, have the potential to transform the way children learn by enabling personalized and

adaptive learning experiences.

Machine learning involves the use of algorithms and statistical models to enable computers

to learn from data and improve their performance without being explicitly programmed.

Deep learning, on the other hand, involves the use of artificial neural networks to simulate

human intelligence and solve complex problems.

According to a report by McKinsey (1), AI and machine learning have the potential to

transform education by enabling personalized learning experiences, improving student

outcomes, and reducing costs. The report suggests that AI can be used to create adaptive

learning environments that adjust to the needs and learning styles of individual students.

As I embark on this journey, I am reminded of the wise words of Steve Jobs, who believed

that the key to achieving great work is to love what you do. My fascination with AI, machine

learning, and deep learning technology has fueled my determination to develop an interactive

educational platform that will make a positive impact on the lives of school-going children.

In conclusion, this thesis aims to explore the potential of AI, machine learning, and deep

learning technology in facilitating personalized and adaptive learning experiences for

school-going children during and beyond the pandemic. The primary motivation behind this

research is to develop an interactive educational platform that can be accessed through

technology devices, enabling children to learn with fun while making the best use of AI,

machine learning, and deep learning technology. The next sections will discuss the literature

review, methodology, and results of this research, culminating in recommendations for

future work in this field.

2 Objectives and Methodology

2.1 Objectives

The objective of the work is to develop the web-based system for teaching kids

alphabet. The result of the work will be online educational platform focused on

teaching school-going children about alphabets, and number systems as well as

drawing different shapes. In this day and age, children are always hooked up to digital

devices and so the goal is to improve learning in children using a digital platform.

Using a digital device, it is easier to capture children's attention and so having a

platform like this will significantly improve their learning ability.

2.2 Methodology

I developed a system to collect multiple sets of real-time data from people. However,

due to the limited number of available participants, I collected raw data from online

sources such as Bangla consonants, vowels, numerical as well as English characters

and everyday common drawings of shapes. Due to the difference in sources of data, I

had to pre-process the data; categorised the data based on the individual character

collected and kept those in their separate folders. Different images have different

backgrounds so to correct those, I inverted the images, converted the images from

RGB profiles to grayscale profiles, cropped the images to remove extraneous

information. This resulted in having images of different sizes so I had to resize the

image.

At this stage, the data is ready to test and train the system. I will use the data to train

and test the system based on 6 categories: Bangla consonants, Bangla vowels, Bangla

numbers, English alphabets, English numbers and drawings of shapes. I will be using

the Scikit-Learn library to train all machine learning algorithms, test the data and

measure which algorithm's accuracy is good for my data finally I will be using the best

algorithm to build my web-based systems.

3 Literature Review

3.1 Current Study System

The education system in Bangladesh has undergone significant changes in recent

years, with a focus on improving access to education and enhancing the quality of

education at all levels. However, the pre-school education system in Bangladesh has

not received the same level of attention, despite being an essential component of a

child's early education. This study aims to explore the current pre-school education

systems in Bangladesh and identify potential areas for improvement.

3.1.1 Current Pre-School Education Systems in Bangladesh

In Bangladesh, pre-school education is primarily provided by private institutions, with

limited government involvement. The pre-school education system is divided into two

categories: informal and formal. Informal pre-school education is provided by day-

care centers and other similar institutions, while formal pre-school education is

provided by pre-primary schools.

The informal pre-school education system in Bangladesh is largely unregulated, with

limited standards and guidelines for curriculum development and teacher training.

Many of these institutions operate in poor conditions, with inadequate facilities and

untrained teachers.

The formal pre-school education system in Bangladesh is slightly more regulated, with

guidelines and standards developed by the Ministry of Primary and Mass Education.

However, the quality of education provided by pre-primary schools varies widely, with

some schools offering high-quality education, while others offer poor quality

education.

Furthermore, there are significant disparities in access to pre-school education in

Bangladesh, with children from low-income families and rural areas being less likely

to attend pre-primary schools. According to a survey by the Bangladesh Bureau of

Statistics (2), only 24 percent of children aged 3-5 years in rural areas attend pre-

primary schools, compared to 60 percent in urban areas.

English For Today-Class One Book

In this educational book (3), children embark on a linguistic journey that begins with

learning greetings, pre-writing skills, and engaging in alphabet songs. They gradually

progress to learning the English alphabet, recognizing individual letters within words,

and mastering the skill of counting numbers.

To enrich their language development, the book incorporates short rhymes that are

both entertaining and educational. The children are also encouraged to identify the

names of various objects or animals in provided images, fostering their vocabulary

expansion.

Furthermore, students learn the names of different body parts, promoting their

understanding of human anatomy. Engaging in drawing exercises and coloring

activities not only strengthens their fine motor skills but also encourages creativity and

self-expression. Through this comprehensive and interactive book, children develop a

solid foundation in language and artistic skills that will serve them well in their future

educational endeavors.

Figure 1: English Book-Class One

My Bengali book (আমার বাাংলা বই)- Class One Book

In this educational book (3), children are introduced to the process of self-expression

by learning how to present themselves. This serves as the starting point for their

linguistic journey. They begin by acquiring the basics of the Bengali alphabet, starting

with individual vowels and gradually moving on to consonants. This systematic

approach ensures that they develop a strong foundation in the language.

As they progress, students are introduced to various diacritical marks, enabling them

to read and write more complex words and sentences. In addition to mastering the

alphabet, the book nurtures a love for literature by exposing children to poetry and

stories. Through this comprehensive and engaging approach, young learners are

equipped with essential language skills that will support their continued education and

personal growth.

Figure 2: Bangla Book-Class One

Elementary Mathematics (প্রাথমমক গমিত)-Class One Book

This educational book (3) introduces children to the fundamentals of mathematics,

beginning with counting numbers from 0 to 50 and teaching them to compare these

numbers effectively. Students learn basic arithmetic operations, such as addition and

subtraction, focusing on calculations involving numbers between 0 and 10.

The book also covers essential geometric shapes, familiarizing children with the names

and properties of squares, triangles, circles, and lines. Engaging in counting exercises

using images, such as identifying the number of apples in a picture, helps students

develop their numeracy skills and enhances their observational abilities.

Additionally, the book includes matching exercises where children pair images with

corresponding numbers, further reinforcing their understanding of numerical concepts.

Problem-solving activities, such as filling boxes with appropriate numbers, encourage

students to apply their newfound skills in practical situations. Through this

comprehensive approach, children build a strong foundation in mathematics that will

support their academic growth.

Figure 3: Math Book-Class One

English For Today-Class Two Book

Initially, students begin by memorizing the entire alphabet and numbers (3). They

practice counting and writing numerals while actively listening to their teacher's

instructions. Students are then encouraged to describe various images, articulating

their thoughts and writing down their observations. They also focus on identifying the

final sound of each word depicted in the images and practice writing capital letters for

each corresponding word.

Furthermore, students learn to express numbers from one to ten in written form,

enhancing their number literacy. Engaging in activities such as connecting dots to

complete images and adding color to their creations helps develop their fine motor

skills and creativity. They also participate in reciting and enacting rhymes, promoting

their linguistic and cognitive abilities.

Lastly, students are introduced to different shapes through visual and auditory

methods, allowing them to recognize and name each shape with confidence. By

reading and coloring within the lines of a butterfly illustration, students refine their

precision and focus, fostering essential developmental skills.

Figure 4: English Book-Class Two

My Bengali book (আমার বাাংলা বই)- Class Two Book

In this book (3), children begin their learning journey by introducing themselves

through a self-introduction form. They are then guided to answer questions based on

provided images, encouraging critical thinking and comprehension. Various exercises,

such as filling in gaps by analyzing pictures, help students develop their problem-

solving abilities.

To enhance their vocabulary, children are tasked with constructing words from random

letters and formulating sentences based on visual cues. They also engage in

storytelling exercises using a series of pictures, which fosters their creativity and

narrative skills. Counting and identifying animals in images, as well as writing the

numbers in both digits and words, further strengthens their numeracy abilities.

Moreover, students are exposed to poetry, learning to appreciate, read, and write

poems. Interactive conversations with their peers promote social skills and fluency in

the language. As their abilities progress, children are introduced to joint letters,

expanding their understanding of the writing system.

Matching exercises, where students draw lines connecting sentences to corresponding

images, help reinforce their comprehension and retention. Lastly, they learn the names

of all the months in the Bengali calendar, enriching their cultural knowledge and

awareness.

Figure 5: Bangla Book-Class Two

Elementary Mathematics (প্রাথমমক গমিত)-Class Two Book

Students begin by counting the quantity of objects depicted in images, practicing their

numeracy skills by writing the results both in numerals and words (3). They are then

introduced to the concept of comparing numbers, learning to identify which of the two

is larger. To reinforce this understanding, they are asked to circle the larger number

among a given set.

By arranging random numbers in ascending order, students develop their

organizational and analytical skills. They continue to expand their number literacy by

reading and writing numbers from fifty-one to one hundred. Additionally, they are

taught the concepts of even and odd numbers, enhancing their foundational

mathematical knowledge.

Students participate in exercises that involve circling numbers with odd summations

and practice writing numbers from eighty to one hundred in words. They also learn

subtraction, focusing on identifying even results. These exercises are followed by

analytical math tasks that challenge their problem-solving abilities.

Lastly, students are introduced to the fundamental operations of multiplication and

division, specifically focusing on calculations involving numbers between 0 and 10.

Through these activities, they build a strong foundation in mathematics that will

support their future academic endeavors.

Figure 6: Math Book-Class Two

3.1.2 Exploring how children learn from their everyday life

Understanding how children learn from their everyday life is crucial to developing

effective learning strategies. This study aimed to explore the various ways in which

children in Bangladesh learn and gain knowledge. The study involved observing and

interviewing children and their parents to gain insights into their learning experiences.

The findings of the study can help develop effective learning strategies for school-

going children in Bangladesh.

Child Learning from Everyday Life:

Through the study, it was found that children in Bangladesh learn in various ways. At

school, in the classroom, teachers teach various courses, which helps children learn

how to read and write. The formal education system in Bangladesh plays a crucial role

in providing children with the necessary foundational knowledge and skills.

Children also learn through play. While playing with toys or other children, different

pictures are shown to them for learning, such as animals, shapes, and colors. This helps

them learn the names of things and improves their basic knowledge.

In addition to traditional forms of learning, technology has also become a useful tool

for children's education. Various educational programs are shown on television, such

as Sisimpur, which provide children with a fun and interactive way of learning.

Similarly, cartoons like Mina Cartoon offer basic knowledge, and YouTube channels

like TuTiTuTV provide knowledge about alphabets, letters, and numbers.

Learning Activities for School-Going Children in Bangladesh:

Based on the findings of this study, there are several learning activities that can be

implemented for school-going children in Bangladesh. The formal education system

should continue to provide foundational knowledge and skills to children.

Additionally, there should be more emphasis on play-based learning, which can make

learning more fun and engaging for children.

Moreover, there is a need to develop and promote educational programs and cartoons

that offer more advanced and diverse knowledge for children. Educational channels

on YouTube can also be used to provide additional learning opportunities for children.

3.2 Artificial Intelligence

Artificial Intelligence (AI) refers to the development of machines that can perform

tasks that typically require human intelligence, such as reasoning, learning, and

problem-solving. The field of AI has grown significantly in recent years, with

applications in a wide range of industries, including healthcare, finance, and

transportation. In this article, we will explore the term AI, its scope, and the current

work being done in the field.

The term AI was first coined by John McCarthy in 1956, who defined it as "the science

and engineering of making intelligent machines". Since then, the definition of AI has

evolved to encompass a range of techniques and applications, including machine

learning, natural language processing, computer vision, and robotics.

The scope of AI is vast and continues to expand as new applications are developed.

Machine learning is a subfield of AI that involves training algorithms on large datasets

in order to make predictions or decisions. This has led to the development of

applications such as voice assistants, recommendation systems, and fraud detection

systems. Natural language processing (NLP) involves teaching machines to

understand and interpret human language. This has led to the development of

applications such as chatbots, sentiment analysis, and language translation systems.

Computer vision involves teaching machines to interpret visual data, such as images

and videos. This has led to the development of applications such as facial recognition

systems, object detection systems, and autonomous vehicles. Robotics involves the

design and development of robots that can perform tasks autonomously. This has led

to the development of applications such as industrial robots, surgical robots, and

service robots.

The current work being done in AI is focused on developing new techniques and

applications that can improve efficiency, accuracy, and performance. One area of

focus is deep learning, which involves the use of neural networks with multiple layers

to learn complex representations of data. This has led to breakthroughs in applications

such as image recognition and natural language processing. Another area of focus is

reinforcement learning, which involves training agents to make decisions based on

feedback from their environment. This has led to breakthroughs in applications such

as game playing and robotics. Additionally, researchers are exploring new techniques

for explainable AI, which aim to provide insights into how AI systems arrive at their

decisions.

Despite the rapid progress being made in AI, there are still significant challenges that

need to be addressed. One of the biggest challenges is the development of ethical and

responsible AI systems. This includes addressing issues such as bias, privacy, and

transparency. Another challenge is the development of AI systems that can adapt to

changing environments and learn from experience. This requires the development of

new techniques for lifelong learning and transfer learning.

3.2.1 Four Categories Of Artificial Intelligence Definitions

The four categories of Artificial Intelligence (AI) that are based on their level of

intelligence and complexity, AI can also be categorized based on their approach to

thinking and acting. These categories include thinking humanly, thinking rationally,

acting humanly, and acting rationally.

Thinking Humanly:

Thinking humanly (4) AI aims to replicate human thought processes and the way

humans learn, perceive, and reason. This approach involves studying human cognition,

psychology, and neuroscience to develop AI systems that can think and learn in a

similar way to humans. This approach aims to develop AI that can solve problems in

the same way that humans do.

Thinking Rationally:

Thinking rationally (4) AI aims to replicate human reasoning and decision-making

processes using logical and mathematical rules. This approach involves developing AI

systems that can reason deductively, based on a set of pre-defined rules and

assumptions. This approach aims to develop AI that can make decisions based on

logical reasoning, rather than simply relying on past experiences or intuition.

Acting Humanly:

Acting humanly (4) AI aims to replicate human behavior and actions, rather than

focusing on thinking and reasoning. This approach involves developing AI systems

that can interact with humans in a way that is similar to human-human interaction,

such as through natural language processing or gesture recognition. This approach

aims to develop AI that can act and communicate like humans.

Acting Rationally:

Acting rationally (4) AI aims to develop systems that can act rationally to achieve

specific goals, regardless of whether their actions mimic human behaviour or not. This

approach involves developing AI systems that can identify the best course of action to

achieve a specific goal, based on available information and knowledge. This approach

aims to develop AI that can act rationally, even if their actions do not necessarily

resemble human behaviour.

3.3 Machine Learning

Machine learning is a subfield of artificial intelligence that focuses on developing

algorithms and models that enable computers to learn from data and make predictions

or decisions. The applications of machine learning are diverse, including image and

speech recognition, natural language processing, fraud detection, and recommendation

systems.

In this review, I will discuss some of the key parts of machine learning, including data

pre-processing, feature selection and engineering, model selection and training, model

evaluation, and hyperparameter tuning.

Data Pre-processing

Data pre-processing is a crucial step in any machine learning project, as the quality of

the data used for training and testing can significantly impact the accuracy and

performance of the resulting model. The pre-processing steps may involve cleaning,

transforming, or normalizing the data to make it suitable for analysis. In some cases,

missing values or outliers may need to be addressed.

In a recent study by Wang (5), the authors proposed a novel data pre-processing

method called Multi-Task Learning Based Data Pre-processing (MTL-DP) for

predicting the performance of computer systems. The method involves using a multi-

task learning approach to simultaneously predict multiple performance metrics, which

allows for better feature representation and improved performance compared to

traditional pre-processing methods.

Feature Selection and Engineering

Feature selection and engineering involves identifying the most relevant features in

the data and creating new features that may improve the accuracy and performance of

the model. This can be a challenging task, as the number of potential features can be

very large, and selecting the wrong features can lead to overfitting or underfitting.

In a study by Nguyen (6), the authors proposed a feature selection method based on

mutual information and fuzzy clustering for predicting the sentiment of social media

posts. The method involves clustering the data based on the mutual information

between the features and the target variable, and selecting the most representative

features from each cluster. The results showed that the proposed method outperformed

several other feature selection methods in terms of accuracy and computational

efficiency.

Model Selection and Training

Model selection and training involves choosing the appropriate machine learning

algorithm for the problem at hand, considering factors such as data type, size, and

complexity, and training the model on the available data. The choice of algorithm can

have a significant impact on the performance of the model, and different algorithms

may be better suited for different types of data and tasks.

In a recent study by Shahin (7), the authors compared the performance of several

machine learning algorithms for predicting the onset of type 2 diabetes. The algorithms

included logistic regression, decision trees, random forests, and neural networks. The

results showed that the neural network algorithm achieved the highest accuracy, but

the decision tree algorithm was the most interpretable and could provide insights into

the underlying factors contributing to the onset of diabetes.

Model Evaluation

Model evaluation involves assessing the accuracy and performance of the trained

model, using metrics such as precision, recall, and F1 score. It is important to evaluate

the model on both the training and testing data to ensure that it is not overfitting or

underfitting the data.

In a study by Xie (8), the authors proposed a novel evaluation metric called

Normalized Pairwise Margin (NPM) for evaluating binary classification models. The

metric is based on the margin between the predicted probabilities of the positive and

negative classes, and is normalized to account for class imbalance and model

complexity. The results showed that NPM outperformed several other evaluation

metrics in terms of discrimination and calibration.

Hyperparameter Tuning

Hyperparameter tuning involves adjusting the settings of the machine learning

algorithm to optimize its performance on the given dataset. This is typically done using

a validation set or cross-validation to evaluate the performance of different

hyperparameter settings.

In a recent study by Zhang (9), the authors proposed a Bayesian optimization approach

for hyperparameter tuning in deep neural networks. The method involves constructing

a probabilistic model of the objective function and using it to guide the search for

optimal hyperparameters. The results showed that the proposed method outperformed

several other hyperparameter tuning methods in terms of efficiency and effectiveness.

3.3.1 Categories of Machine Learning

Machine learning can be categorized into three main categories: supervised learning,

unsupervised learning, and reinforcement learning. Deep learning is a subfield of

machine learning that focuses on building neural networks with multiple layers to learn

complex representations of data. Deep learning has been particularly successful in

computer vision, natural language processing, and speech recognition.

Supervised Learning:

Supervised learning involves training a machine learning model on labeled data, where

each data point is associated with a label or target variable. The goal is to learn a

mapping between the input features and the output labels, so that the model can make

accurate predictions on new, unseen data. Supervised learning can be further

categorized into two types of tasks: regression and classification.

Regression tasks involve predicting a continuous output variable, such as the price of

a house or the age of a person. Linear regression is a common algorithm used for

regression tasks.

Classification tasks involve predicting a categorical output variable, such as the type

of animal in an image or the sentiment of a tweet. Common algorithms used for

classification tasks include logistic regression, decision trees, and support vector

machines.

Deep learning models, such as convolutional neural networks (CNNs) and recurrent

neural networks (RNNs), have been used to achieve state-of-the-art performance on

supervised learning tasks, particularly in computer vision and natural language

processing, LeCun (10).

Unsupervised Learning:

Unsupervised learning involves training a machine learning model on unlabeled data,

where there is no target variable or labels provided. The goal is to discover patterns or

structure in the data, such as clusters or groups of similar data points. Unsupervised

learning can be further categorized into two types of tasks: clustering and

dimensionality reduction.

Clustering tasks involve grouping similar data points together, based on their features

or characteristics. K-means clustering and hierarchical clustering are common

algorithms used for clustering tasks, Alpaydin (11).

Dimensionality reduction tasks involve reducing the number of features or variables in

the data, while preserving as much of the original information as possible. Principal

component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE)

are common algorithms used for dimensionality reduction tasks, Murphy (12).

Deep learning models, such as autoencoders and generative adversarial networks

(GANs), have been used to learn representations of data in an unsupervised manner

(13).

Reinforcement Learning:

Reinforcement learning involves training a machine learning model to make decisions

based on feedback from the environment, such as rewards or penalties. The goal is to

learn a policy or set of actions that maximize the cumulative reward over time.

Reinforcement learning can be applied to a wide range of tasks, including game

playing, robotics, and autonomous driving.

Deep reinforcement learning has been particularly successful in game playing, where

models such as AlphaGo and AlphaZero have achieved superhuman performance in

games such as Go and chess (14).

3.3.2 Machine Learning Algorithms

There are many machine learning algorithms, each with its own strengths and

weaknesses. Here are some common machine learning algorithms that I will use to test

my dataset and it is outcomes.

Linear Regression:

Linear regression (15) is a commonly used algorithm in machine learning for

regression tasks, where the goal is to predict a continuous output variable. The

algorithm assumes that there is a linear relationship between the input features and the

output variable, and seeks to learn a linear function that best fits the training data.

The basic idea behind linear regression is to find the line that best fits the data points,

based on the principle of minimizing the sum of squared errors between the predicted

and actual values. The line is defined by the equation:

𝑦 = 𝑏0 + 𝑏1𝑥

where y is the predicted output variable, x is the input feature, b0 is the y-intercept or

bias term, and b1 is the slope or weight of the input feature.

In practice, there may be multiple input features, and the linear function can be

expressed as:

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + . . . + 𝑏𝑛𝑥𝑛

where 𝑥𝑖 represents the ith input feature, and bn represents the weight or coefficient

associated with that feature.

The goal of linear regression is to estimate the values of the coefficients that minimize

the sum of squared errors between the predicted and actual values. This is typically

done using an optimization algorithm such as gradient descent, which iteratively

adjusts the values of the coefficients to minimize the cost function.

Once the coefficients have been estimated, the model can be used to make predictions

on new, unseen data. The prediction for a given input feature is simply the value of the

linear function for that input:

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + . . . + 𝑏𝑛𝑥𝑛

Linear regression is a simple and interpretable algorithm that can be applied to a wide

range of regression tasks. However, it may not be appropriate for data that does not

exhibit a linear relationship between the input features and output variable. In such

cases, other regression algorithms, such as decision trees or support vector machines,

may be more appropriate.

Logistic Regression:

Logistic regression (15) is a widely used algorithm in machine learning for binary

classification tasks, where the goal is to predict a binary output variable (e.g. 0 or 1,

true or false, yes or no) based on one or more input features. The algorithm estimates

the probability of the positive class (i.e. 1) given the input features, and uses a threshold

to make a binary prediction.

The logistic regression model is based on the logistic function, which is defined as:

𝑝(𝑥) =
1

1 + 𝑒−𝑧

where p(x) is the probability of the positive class, x is the input feature vector, and z is

the linear function of the input features:

𝑧 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + . . . + 𝑏𝑛𝑥𝑛

where bi represents the weight or coefficient associated with the ith input feature.

The logistic function has an S-shaped curve, which maps any input value to a

probability between 0 and 1. The logistic regression model estimates the values of the

coefficients that best fit the training data, by minimizing the negative log-likelihood of

the observed labels given the predicted probabilities.

Once the coefficients have been estimated, the model can be used to make predictions

on new, unseen data. The predicted probability of the positive class is calculated using

the logistic function:

𝑝(𝑥) =
1

1 + 𝑒−𝑧

and a threshold is used to make a binary prediction. Common thresholds include 0.5,

which corresponds to the point where the predicted probability is equal to the threshold,

and 0.7 or 0.8, which can be used to increase the precision of the predictions at the

expense of recall.

Logistic regression is a simple and interpretable algorithm that can be applied to a wide

range of binary classification tasks. However, it may not be appropriate for data that

does not exhibit a linear relationship between the input features and output variable, or

for multi-class classification tasks. In such cases, other classification algorithms, such

as decision trees, random forests, or support vector machines, may be more

appropriate.

Decision Trees:

Decision trees (15) are a widely used algorithm in machine learning for both regression

and classification tasks. The basic idea behind decision trees is to recursively split the

input space into regions based on the input features, in order to make predictions on

new, unseen data.

The decision tree consists of nodes that represent the input features, edges that

represent the possible values of the input features, and leaves that represent the

predicted output variable. The tree is constructed by recursively splitting the input

space into regions, based on the input features that best discriminate the training data.

The splitting criterion depends on the task and can be based on various metrics such as

information gain, entropy, or Gini impurity. The goal is to find the splits that result in

the greatest reduction in the impurity or uncertainty of the output variable, while

minimizing the complexity of the tree.

The decision tree can be represented by a binary tree structure, where each internal

node represents a decision on a specific feature, and each leaf node represents a

predicted output value. The decision rules for each node can be represented by a

Boolean function of the input features, which determines which branch to follow based

on the value of the input feature.

More specifically, the decision tree algorithm can be summarized as follows:

1. Define a root node for the tree.

2. Select the feature that best discriminates the training data, based on the splitting

criterion.

3. Create a new internal node for the selected feature.

4. Create a branch for each possible value of the selected feature.

5. Recursively apply steps 2-4 to each branch, using the remaining features and

training data.

6. Stop splitting when a stopping criterion is met, such as a maximum depth or a

minimum number of samples per leaf.

7. Assign a predicted output value to each leaf node, based on the majority class

or the mean value of the training data in that leaf.

Once the tree has been constructed, it can be used to make predictions on new, unseen

data. The prediction is made by traversing the tree from the root to the leaf node that

corresponds to the input features, based on the decision rules represented by the edges.

Support Vector Machines (SVM):

Support Vector Machines (SVM) (15) are a widely used algorithm in machine learning

for classification and regression tasks. The basic idea behind SVM is to find the

hyperplane that maximally separates the data into classes or predicts the output variable

with the smallest error.

In binary classification tasks, the hyperplane can be represented by the equation:

𝑤𝑇 𝑥 + 𝑏 = 0

where w is the weight or coefficient vector, x is the input feature vector, and b is the

bias term. The hyperplane divides the input space into two regions, one for each class.

The distance between the hyperplane and the closest data points from each class is

called the margin.

The goal of SVM is to find the hyperplane that maximizes the margin, subject to the

constraint that all data points are correctly classified. This is typically done using an

optimization algorithm such as quadratic programming.

In cases where the data is not linearly separable, SVM can be extended to use a kernel

function that maps the input features to a higher-dimensional space, where the data

may become linearly separable. Common kernel functions include the linear kernel,

polynomial kernel, and radial basis function (RBF) kernel.

Once the hyperplane has been found, it can be used to make predictions on new, unseen

data. The predicted class for a given input feature is determined by the sign of the

hyperplane equation:

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏)

where 𝑠𝑖𝑔𝑛() is the sign function that returns +1 or −1 depending on the sign of its

argument.

SVM is a powerful algorithm that can be applied to a wide range of classification and

regression tasks, and is particularly useful in cases where the data is not linearly

separable. However, SVM can be sensitive to the choice of kernel function and

hyperparameters, and may suffer from scalability issues when dealing with large

datasets.

Random Forest:

Random forest (15) is a widely used ensemble learning algorithm in machine learning

for classification and regression tasks. The basic idea behind random forest is to build

multiple decision trees on randomly sampled subsets of the input data and features, and

then combine their predictions to improve the accuracy and robustness of the model.

Each decision tree in the random forest is constructed using a random subset of the

input data, sampled with replacement (i.e. with bootstrapping). Additionally, at each

node of the tree, only a random subset of the input features is considered for splitting,

in order to introduce diversity and reduce overfitting.

The final prediction of the random forest is made by aggregating the predictions of all

the decision trees, either by taking the majority vote for classification tasks, or the

average or median for regression tasks.

The random forest algorithm can be summarized as follows:

• Select the number of decision trees to build (n_estimators) and the size of the

random feature subset (max_features).

• For each decision tree, randomly sample a subset of the input data with

replacement.

• For each node of the tree, randomly select a subset of the input features of size

max_features.

• Split the data at each node based on the selected feature that best discriminates

the data, using a splitting criterion such as information gain, entropy, or Gini

impurity.

• Grow the tree until a stopping criterion is met, such as a maximum depth or a

minimum number of samples per leaf.

• Repeat steps 2-5 for all decision trees.

• Aggregate the predictions of all decision trees to obtain the final prediction.

Random forest is a powerful algorithm that can be applied to a wide range of

classification and regression tasks, and is particularly useful in cases where the data is

noisy, high-dimensional, or has complex nonlinear relationships. However, random

forest may require tuning of hyperparameters such as the number of decision trees, the

size of the random feature subset, and the stopping criteria, in order to achieve optimal

performance.

Convolutional Neural Networks (CNNs):

Convolutional Neural Networks (CNNs) (13) are a powerful class of neural networks

commonly used in image and video recognition tasks. CNNs leverage a mathematical

operation called convolution, which allows the network to learn and extract features

from images.

The basic idea behind CNNs is to use a series of convolutional layers to extract

progressively more complex features from the input image, followed by one or more

fully connected layers to classify the image based on the extracted features.

The convolutional layer works by sliding a small window called a filter or kernel over

the input image and computing a dot product between the filter weights and the pixel

values in the window. This produces a feature map that highlights certain patterns or

features in the image, such as edges, corners, or textures.

The output of the convolutional layer can be further processed using non-linear

activation functions such as ReLU (Rectified Linear Unit) to introduce non-linearity

and improve the model's ability to learn complex features.

CNNs also commonly use pooling layers, which downsample the feature maps by

taking the maximum or average value of a small region of the map. This reduces the

spatial resolution of the feature maps, while preserving the most salient features.

The final layers of the CNN typically consist of one or more fully connected layers,

which use the extracted features to make a prediction about the class of the input image.

CNNs can be trained using backpropagation and gradient descent, with the objective

of minimizing a loss function such as cross-entropy between the predicted and actual

class labels.

Figure 7: CNN Architecture (16)

The equations for CNNs are complex and depend on the specific architecture and

parameters of the network. However, the basic idea behind the convolutional layer can

be represented by the equation:

ℎ(𝑖, 𝑗, 𝑘) = 𝑅𝑒𝐿𝑈(∑(𝑥(𝑝, 𝑞, 𝑟) ∗ 𝑤(𝑖 − 𝑝 + 1, 𝑗 − 𝑞 + 1, 𝑟, 𝑘) + 𝑏(𝑘)))

where ℎ(𝑖, 𝑗, 𝑘) is the output feature map at position (𝑖, 𝑗) and channel 𝑘, 𝑥(𝑝, 𝑞, 𝑟) is

the input image pixel at position (𝑝, 𝑞) and channel 𝑟, 𝑤(𝑖, 𝑗, 𝑟, 𝑘) is the weight or filter

at position (𝑖, 𝑗) and channel 𝑟 and k, 𝑏(𝑘) is the bias term for channel 𝑘, and 𝑅𝑒𝐿𝑈()

is the rectified linear unit activation function.

3.4 Other Technologies for Building Applications

Building user-friendly applications is a complex task that demands a comprehensive

understanding of various technologies and tools. To create an intuitive user

experience, it is crucial to have a deep understanding of the principles of user interface

design. Additionally, advanced tools such as Flask, OpenCV, Scikit-Learn, Pandas,

NumPy, and TensorFlow can be utilized to develop powerful applications with

cutting-edge features.

Furthermore, the development of functional web pages and user interfaces requires

proficiency in front-end development tools such as HTML, CSS, Bootstrap, and

JavaScript. Keeping up-to-date with the latest trends and best practices in user

interface design and front-end development is crucial for delivering a user-friendly

experience. This necessitates continuous learning and staying informed about

emerging technologies and tools in the field.

Flask Framework:

Flask is a lightweight web framework (17) for Python that is widely used for building

web applications and APIs. Flask provides a simple and flexible architecture for

handling HTTP requests and responses, and supports a wide range of extensions and

plugins for database access, authentication, and other functionality.

OpenCV:

OpenCV (18) is a popular computer vision library that provides a wide range of tools

and functions for image and video processing, including feature detection, object

recognition, and tracking. OpenCV can be used with a wide range of programming

languages, including Python, and is widely used in applications such as robotics,

autonomous vehicles, and medical imaging.

Pandas:

Pandas (19) is a data manipulation library for Python that provides powerful tools for

working with structured data, including data frames and time series. Pandas can be

used to load, clean, and transform data from a wide range of sources, and provides a

wide range of functions for statistical analysis and visualization.

NumPy:

NumPy (20) is a numerical computing library for Python that provides support for

arrays, matrices, and other numerical data structures. NumPy provides a wide range of

functions for mathematical and scientific computing, including linear algebra, Fourier

analysis, and random number generation.

TensorFlow:

TensorFlow (21) is an open-source machine learning library developed by Google that

provides a wide range of tools and functions for building and training machine learning

models. TensorFlow supports a wide range of neural network architectures, including

convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep

belief networks (DBNs).

These libraries can be used together to build powerful and flexible machine learning

applications. For example, OpenCV can be used to preprocess images and extract

features, Pandas and NumPy can be used to load and manipulate data, and TensorFlow

can be used to build and train machine learning models. Flask can be used to create a

web application that exposes the machine learning model as an API, allowing users to

submit data and receive predictions in real time.

Scikit-Learn:

Scikit-Learn (also known as sklearn) (22)is a popular machine learning library for

Python that provides a wide range of tools and functions for building and evaluating

machine learning models. Scikit-Learn includes a wide range of algorithms for

classification, regression, clustering, and dimensionality reduction, as well as tools for

data preprocessing, feature selection, and model evaluation.

One of the key features of Scikit-Learn is its consistency and ease of use, which makes

it easy for developers and data scientists to build and evaluate machine learning

models. Scikit-Learn provides a consistent interface for all of its algorithms, with a

similar set of functions and parameters for each model. This makes it easy to switch

between different models and compare their performance.

Scikit-Learn includes a wide range of algorithms for classification, including logistic

regression, support vector machines, decision trees, random forests, and neural

networks. Scikit-Learn also includes algorithms for regression, clustering, and

dimensionality reduction, as well as tools for model selection and hyperparameter

tuning.

Scikit-Learn is built on top of other popular Python libraries, including NumPy, SciPy,

and Matplotlib, and provides integration with other tools such as Pandas and Jupyter

notebooks. Scikit-Learn also includes a wide range of tools for data preprocessing and

feature engineering, such as scaling, normalization, and imputation.

4 Practical Part

4.1 Data Collection

After completing my background study, I realized the need for collecting a large

amount of data. To achieve this, I developed a system that could collect data from

multiple individuals. The system was designed using PHP, HTML, CSS, and

JavaScript, and it consisted of an online HTML scratch form hosted on a server. I

distributed the form to around 50 people, and 30 of them responded by providing us

with data.

The system was used to collect data on Bangla and English alphabets as well as Bangla

and English digits. All the data collected was downloaded from the server and

separated into different folders for ease of use.

Overall, the system proved to be an effective method for collecting the required data.

Its online-based interface made it easy to distribute the form to multiple individuals

and gather data from them. The collected data would prove to be valuable for my

research, and I was grateful to have developed such a functional and efficient system.

Figure 8: Data Collections System

I was able to collect a total of 4265 data entries through the system that I had

developed. This data was classified into different categories based on the type of data

collected.

Out of the total data collected, 740 data entries belonged to the Sorborno class, 1648

data entries belonged to the Benjonborno class, 1063 data entries belonged to the

English Alphabet class, 367 data entries belonged to the Bangla Digit class, and 448

data entries belonged to the English Digit class. Unfortunately, there were some data

entries that I was unable to classify, and they were deemed garbage data that I did not

use in my analysis.

Figure 9: Own System Data Collection Chart

Here I attached the collected data view.

Figure 10: Collected Data English Alphabets

0
200
400
600
800

1000
1200
1400
1600
1800

740

1648

367

1063

448

N
u

m
b

er
 o

f
Im

ag
e

D
at

a

Category Nmae

Own system data collection chart

Figure 11: Collected Data Bangla Sorborno

Figure 12: Collected Data Bangla Benjonborno

Figure 13: Collected Data English Digit

Figure 14: Collected Data Bangla Digit

After collecting the data, I pre-processed it and run it through various algorithms in

the Scikit-Learn library. Unfortunately, all of these algorithms provided very poor

accuracy when applied to my data. While Support Vector Classification (SVC)

provided slightly better accuracy than other algorithms I used, it still fell short of

acceptable levels.

I went back to studying and learned about the Convolutional Neural Network (CNN)

algorithm. I discovered that this algorithm is best for image and video, suited for large

datasets and realized that I needed more data to apply it effectively. As a result, I

collected additional image data from various sources to enhance my dataset.

Figure 15:Collected Data From Various Sources (23) (24) (25) (26)

The Sorborno_C_10 category encompasses 10 subcategories of Bengali vowels, while

the Bonjonborno_C_39 category consists of 39 subcategories of Bengali consonants.

Bengali digits include numbers from 0 to 9. In addition, English Alphabets_C_26

represents 26 subcategories of characters, ranging from A to Z. English Digit_10

comprises 10 subcategories of numbers, spanning from 0 to 9. Lastly, Shape_C_16

includes 16 distinct subcategories of shapes, such as apple, bird, book, butterfly,

candle, chair, circle, cup, fish, flower, house, line, square, star, tree, and triangle.

Ultimately, the comprehensive dataset encompasses a total of 216,028 handwritten

images, providing a rich and diverse collection for analysis.

4.2 Data Pre-processing

Data pre-processing is a crucial step in preparing data for analysis. Prior to running

the algorithms, I needed to pre-process the images to ensure they were in a format that

the algorithms could handle. Pre-processing can involve various techniques such as

normalization, resizing, and image augmentation to improve the quality and

consistency of the data.

0
10000
20000
30000
40000
50000
60000
70000
80000

21783

77167

19748
26000

40000
31330

N
u

m
b

er
 o

f
Im

ag
e

D
at

a

Category of Data

Collected Image data Chart

To pre-process my data, I employed a range of methods that were customized for my

system. These steps were necessary to prepare the images for analysis by the

algorithms. A detailed description of the pre-processing steps, along with a figure, is

provided below.

4.2.1 Inverted Image

To invert an image in Python, I used the OpenCV library. Here is the code that

demonstrates how to invert an image:

Figure 16: Snapshot of Inverted Image code

Original Image Inverted Image

In the code provided, I first loaded the input image using the ‘cv2.imread()’ function.

Then I inverted the image using the ‘cv2.bitwise_not()’ function, which performed a

bitwise NOT operation on each pixel of the image. Finally, I saved the inverted image

using the ‘cv2.imwrite()’ function.

4.2.2 RGB to grayscale

To convert an RGB image to grayscale in Python, I used the OpenCV library. Here is

the code that demonstrates how to convert an image from RGB to grayscale:

Figure 17: Snapshot RGB to Grayscale code

Input Image RGB (23, 240, 144) Output Image grayscale (45, 245)

In the code provided, I first loaded the input image in color mode using the

cv2.imread() function. Then I converted the image to grayscale using the

cv2.cvtColor() function, which took the input image and the color conversion code

as arguments. The color conversion code cv2.COLOR_BGR2GRAY specified that

the input image was in BGR format and should be converted to grayscale. Finally, I

saved the grayscale image using the cv2.imwrite() function. In the above example,

the two images are not a good example. However to clarify, the basic difference

between them is that RGB is 3 dimensional and grayscale is 2 dimensional image.

4.2.3 Image Contour Detection

To detect contours in an image using Python and OpenCV, I used the

cv2.findContours() function. Here is the code that demonstrates how to find and

draw contours in an image:

Figure 18: Snapshot of Image Contour Detection Code

Input Image Output Image

In the above code, I first loaded the input image in grayscale mode using the

cv2.imread() function with the cv2.IMREAD_GRAYSCALE flag. Then I applied

edge detection to the image using the cv2.Canny() function, which detects the edges

in the image based on the gradient of the pixel intensities.

Next, I found the contours in the image using the cv2.findContours() function, which

takes the edge-detected image, retrieval mode, and contour approximation method as

arguments. The contours were returned as a list of points, along with a hierarchy of

nested contours if applicable.

Finally, I drew the contours on the original image using the cv2.drawContours()

function, which takes the input image, list of contours, contour index (set to -1 to

draw all contours), color, and thickness as arguments. I saved the output image using

the cv2.imwrite().

4.2.4 Image Resize

Here is a Python code snippet to resize an image using the OpenCV library:

Figure 19: Snapshot of Image Resize code

 Input Image size are different

Output Image are specific size(28x28)

In the above code, I first loaded the input image using the cv2.imread() function.

Then, I used the shape attribute to get the current height and width of the image.

Next, I specified the desired dimensions for the output image using the new_width

and new_height variables. I used the dimension 28×28 to reduce memory usage.

This dimension returned a numpy array of size 784. Then I resized the image using

the cv2.resize() function and saved the output image using the cv2.imwrite()

function.

4.3 Training the Algorithms and Comparison

In this section, I will delve into a thorough comparison between various algorithms,

ultimately selecting the best one based on a comprehensive evaluation. To substantiate

my choice, I will provide detailed explanations and reasoning behind the decision.

Furthermore, I will present statistics gathered from running each algorithm on my

dataset, which will demonstrate their respective strengths and weaknesses.

Additionally, I will share code snippets and visualizations to offer readers a clear

understanding of the implementation and performance of the chosen algorithm. This in-

depth analysis will serve as a valuable guide for those seeking to implement the most

effective solution for their specific problem.

4.3.1 Training Gaussian Naive Bayes

I began by implementing the Gaussian Naive Bayes (GaussianNB) algorithm on my

custom dataset, which focused on the Sorborno category. The dataset was partitioned

into training and testing subsets:

• The dataset consisted of a total of 740 data points.

• 593 of these data points were allocated for training the model.

• The remaining 147 data points were used to test the model's performance.

Figure 20: Importing all the required library for the Gaussian Naive Bayes

Figure 21: Defining the function process my data into the algorithm

Figure 22: GaussianNB Algorithm Using scikit-learn

Here loading dataset and splitting the training and testing set. Upon applying the

GaussianNB algorithm and evaluating its performance based on the test and train

datasets, the model achieved an accuracy of 37%.

4.3.2 Training K-Nearest Neighbors Classifier

Next, I implemented the K-Nearest Neighbors Classifier (KNeighborsClassifier)

algorithm on the same custom dataset focused on the Sorborno category. The dataset

was again divided into training and testing subsets:

• The dataset comprised a total of 740 data points.

• 593 of these data points were allocated for training the model.

• The remaining 147 data points were utilized to test the model's performance.

Figure 23: Importing all the required library for the KNeighborsClassifier

Figure 24:KNeighborsClassifier Algorithm using scikit-learn

Here I did same process loading dataset and splitting the training and testing set Upon

applying the KNeighborsClassifier algorithm and evaluating its performance based

on the test and train datasets, the model achieved an accuracy of 19%.

4.3.3 Training Support Vector Classifier

Subsequently, I implemented the Support Vector Classifier (SVC) algorithm on the

same custom dataset focused on the Sorborno category. The dataset was divided into

training and testing subsets, just as before:

• The dataset consisted of a total of 740 data points.

• 593 of these data points were allocated for training the model.

• The remaining 147 data points were used to test the model's performance.

Figure 25: Training SVC code snapshot using scikit-learn

Upon applying the SVC algorithm and evaluating its performance based on the test

and train datasets, the model achieved an accuracy of 66%.

4.3.4 Training Random Forest Classifier

Subsequently, I implemented the Random Forest Classifier algorithm on the same

custom dataset focused on the Sorborno category. As with the previous algorithms, the

dataset was divided into training and testing subsets:

• The dataset comprised a total of 740 data points.

• 593 of these data points were allocated for training the model.

• The remaining 147 data points were utilized to test the model's performance.

Figure 26: Training Random Forest Classifier code snapshot using scikit-learn

Upon applying the Random Forest Classifier algorithm and evaluating its

performance based on the test and train datasets, the model achieved an accuracy of

44%.

4.3.5 Training Decision Tree Classifier

Lastly, I implemented the Decision Tree Classifier algorithm on the same custom

dataset focused on the Sorborno category. As with the other algorithms, the dataset

was divided into training and testing subsets:

• The dataset consisted of a total of 740 data points.

• 593 of these data points were allocated for training the model.

• The remaining 147 data points were used to test the model's performance.

Figure 27: Training Decision Tree Classifier code snapshot Using scikit-learn

Upon applying the Decision Tree Classifier algorithm and evaluating its performance

based on the test and train datasets, the model achieved an accuracy of 52%.

4.3.6 Comparison

After applying various classification algorithms to the custom dataset focused on the

Sorborno category, the following accuracies were obtained:

Figure 28: Comparison Chart between above algorithms

37%

19%

66%

44%

52%

0% 10% 20% 30% 40% 50% 60% 70%

Gaussian Naive Bayes

K-Nearest Neighbors Classifier

Support Vector Classifier

Random Forest Classifier

Decision Tree Classifier

Comparison Accuracy Chart

Based on these results, the Support Vector Classifier (SVC) outperforms the other

algorithms, achieving the highest accuracy at 66%. On the other hand, the K-Nearest

Neighbors Classifier yields the lowest accuracy at 19%, making it the least effective

option among the tested algorithms. Although the Support Vector Classifier achieved

the highest accuracy among the tested algorithms, the performance is still not entirely

satisfactory for the problem at hand. Consequently, I decided to investigate

Convolutional Neural Network (CNN) algorithms further, as they may offer improved

results. In the subsequent sections of my literature review chapter, I will present a

detailed analysis of CNN algorithms and their outcomes, providing additional insights

to guide the selection of the most appropriate algorithm for this particular dataset.

4.4 Training The Convolutional Neural Network (CNN)

Leveraging the Convolutional Neural Network (CNN) algorithm, I plan to process my

collected dataset, which comprises multiple categories: Sorborno, Bonjonborno,

Bangla Digit, English Alphabet, English Digit, and 16 types of common shapes. For

each category, I will independently apply the algorithm, enabling a tailored approach

to capture the unique characteristics of each group.

In this section, I will focus on one specific category, Bonjonborno, which contains the

largest number of subcategories, totalling 39. End of the section I will show you

accuracy chart for rest of categories data. By concentrating on this category, I will

demonstrate the effectiveness of the chosen algorithm on a complex dataset.

Following the training process, I will save the resulting models for future utilization

within my applications. This approach ensures the development of specialized models

designed to address the specific needs of each category, thereby maximizing

performance and enhancing the overall effectiveness of the system.

4.4.1 Implementations of CNN on Bonjonborno Category

Figure 29: Imported all the required library for final outcome

In the provided code snippet, essential libraries and modules have been imported to

facilitate the implementation of the Convolutional Neural Network (CNN) algorithm.

These imports encompass the following functionalities:

• File and path manipulation using Path from the pathlib library.

• Image processing operations, such as reading and resizing images, through

imread and resize from the skimage.io and skimage.transform libraries.

• Dataset manipulation and visualization tools, including Bunch,

matplotlib.pyplot, and datasets from the sklearn.utils and sklearn libraries.

• Computer vision functionality provided by the cv2 library.

• Data manipulation and numerical computing using pandas and numpy

libraries.

• Machine learning utilities, such as train_test_split and StandardScaler, from

the sklearn.model_selection and sklearn.preprocessing libraries.

• Tensorflow framework, imported as tf.

• Keras modules containing essential model and layers for implementing CNN,

including Sequential, Dense, Conv2D, Dropout, Flatten, and

MaxPooling2D from the keras.models and keras.layers libraries.

• Keras integration with TensorFlow, imported from the tensorflow library.

These imports provide a comprehensive toolkit for developing, training, and

evaluating a CNN-based model for the targeted dataset, ensuring an efficient and

streamlined implementation process.

Figure 30: This function pre-process the data and load data into model

The load_image_files function serves as a utility for pre-processing and loading image

data into a structured format, specifically a numpy array. It takes two parameters as

input: container_path, which represents the path to the folder containing the image

data, and dimension, which is a tuple indicating the desired dimensions for resizing

the images (default is set to 28x28 pixels).

Within the function, the following steps are carried out:

• The container_path is converted into a Path object, and the subfolders are

identified as individual categories.

• The description variable descr is initialized with the string "A image

classification dataset".

• Three lists, flat_data, target, and categories, are initialized to store the pre-

processed image data, corresponding category indices, and category names,

respectively.

• The function iterates through each category folder, reads and processes each

image file, and appends the pre-processed image data to flat_data and the

corresponding category index to target.

• Image processing steps include converting the image to grayscale using

cv2.cvtColor() and resizing it to the specified dimensions using cv2.resize().

• The lists flat_data and target are then converted to numpy arrays.

• Finally, a Bunch object is returned, containing the pre-processed image data,

target indices, category names, and dataset description.

By utilizing this function, the image data is effectively pre-processed and transformed

into a format suitable for further analysis, such as training a CNN-based model.

Figure 31: After Pre-processing the data plotting one image data

The code snippet provided executes the following steps:

• The load_image_files() function is called with the "bbonno/" path as its

argument, which loads and pre-processes the image data from the specified

directory, returning the image_dataset object.

• The dataset is then split into training and testing sets using the train_test_split()

function from sklearn.model_selection. It takes the image data, target labels,

and a test_size parameter as input (set to 0.2, representing a 20% split for the

test set). The function returns x_train, x_test, y_train, and y_test variables

containing the respective training and testing data and labels.

• The image_index variable is initialized with the value 7100, which is used to

select a specific image from the dataset for display.

• The corresponding target label for the selected image is printed using

print(image_dataset.target[image_index]).

• The selected image is displayed using

plt.imshow(image_dataset.data[image_index]), followed by a call to

plt.show() to render the image.

This code snippet demonstrates loading, pre-processing, and splitting the image

dataset, as well as displaying a specific image and its corresponding label from the

dataset.

Figure 32: Preparing the image data and creating a CNN model using Keras

The provided code snippet outlines the steps involved in preparing the image data and

creating a CNN model using Keras. Here is a summary of each step:

1. Reshape the input data (x_train and x_test) to 4-dimensional arrays to make

them compatible with the Keras API. Each sample is reshaped to a 28x28x1

array, representing a 28x28 pixel grayscale image.

2. Convert the input data's datatype to 'float32' to ensure decimal values are

preserved after division.

3. Normalize the input data by dividing each pixel value by the maximum

possible value (255). This scales the pixel values to the range of 0 to 1, which

generally improves model performance.

4. Print the shapes of x_train and x_test along with the number of images in each

set.

5. Define the CNN model using a Keras Sequential model, which allows stacking

layers on top of each other. The model includes the following layers:

• A Conv2D layer with 28 filters, a kernel size of 3x3, and input shape set

to 28x28x1 (corresponding to the input images). This layer performs the

convolution operation.

• A MaxPooling2D layer with a pool size of 2x2, which reduces the spatial

dimensions of the feature maps.

• A Flatten layer, which flattens the 2D feature maps into a 1D array to be

fed into the fully connected layers.

• A Dense (fully connected) layer with 128 units and a ReLU activation

function.

• A Dropout layer with a rate of 0.2, which randomly drops a fraction of

the input units during training to prevent overfitting.

• A final Dense layer with 39 units (corresponding to the number of

classes) and a softplus activation function to produce the class

probabilities.

This code snippet prepares the image data and constructs a CNN model suitable for

classifying the images into one of the 39 categories.

Figure 33: CNN model is compiled and trained

In the provided code snippet, the CNN model is compiled and trained using the

following steps:

1. Compile the model with the specified parameters:

• The optimizer is set to 'adam', a popular optimization algorithm for deep

learning models. It adjusts the model's weights based on the calculated

gradients to minimize the loss function.

• The loss function is set to 'sparse_categorical_crossentropy', which is

appropriate for multi-class classification problems with integer labels. It

measures the dissimilarity between the predicted class probabilities and the

true class labels, and the optimizer aims to minimize this value.

• The performance metric is set to 'accuracy', which calculates the

proportion of correctly classified samples during training.

2. Train the model using the model.fit() method with the following inputs:

• x_train and y_train are the training dataset and corresponding labels,

respectively.

• epochs is set to 10, which represents the number of complete passes through

the entire training dataset. The model weights are updated incrementally

with each pass.

This code snippet compiles the CNN model with the specified optimizer, loss function,

and performance metric, and then trains the model on the provided training data for 10

epochs.

Figure 34: saving the trained model and evaluating its performance

The provided code snippet demonstrates two actions: saving the trained model and

evaluating its performance on the test dataset.

1. Save the trained model: The model.save() method is called with the filename

'Bonjonborno.h5'. This saves the model's architecture, optimizer, and learned

weights to an HDF5 file. This allows you to reuse the model later without

retraining it, making it convenient for deployment in applications.

2. Evaluate the model: The model.evaluate() method is called with the test dataset

(x_test and y_test). This function calculates the model's performance on the

test dataset in terms of the loss function and the specified performance metric

(accuracy, in this case).

The output provided indicates that the evaluation process has completed, with the

following results:

Loss: 0.6448533180519385

Accuracy: 0.829596996307373 (approximately 82.96%)

This shows that the model has achieved an accuracy of about 82.96% on the test

dataset, which is a relatively good performance.

Figure 35: Inspect a single image and compare it to the model's predicted label

This code allows you to visually inspect a single image from the test dataset, display

its true label, and compare it to the model's predicted label.

4.4.2 The architecture of the Convolutional Neural Network (CNN) model

The flowchart provided above outlines the architecture of the Convolutional Neural

Network (CNN) model used for image classification. Here is a brief description of

each layer in the model:

1. Input: The input layer accepts grayscale images of size 28x28x1. This is the

starting point for the network, where raw image data is fed into the model.

2. Conv2D: The first convolutional layer uses 28 filters and a kernel size of 3x3

to extract features from the input image. This layer helps the model identify

patterns such as edges, corners, and textures present in the images.

3. MaxPooling2D: The max pooling layer with a pool size of 2x2 is used to

reduce the spatial dimensions of the feature maps, which helps to minimize

computational complexity and control overfitting.

4. Flatten: The flatten layer is responsible for converting the 2D feature maps

into a 1D vector. This transformation is necessary for connecting the

convolutional layers to the fully connected layers.

5. Dense: The first fully connected layer has 128 neurons and utilizes a ReLU

(Rectified Linear Unit) activation function. This layer enables the model to

learn non-linear relationships and complex patterns in the data.

6. Dropout: A dropout layer with a rate of 0.2 is included to prevent overfitting.

During training, this layer randomly drops out (i.e., sets to zero) a fraction of

the neurons, making the model more robust and less reliant on any single

neuron.

7. Dense: The final dense layer acts as the output layer, consisting of 39 neurons

and a Softplus activation function. It produces the predicted class

probabilities for each of the categories in the dataset.

Figure 36: Architecture of CNN

The model is compiled with the Adam optimizer, sparse categorical crossentropy loss

function, and accuracy metric. The training process consists of 10 epochs, during

which the model learns to recognize and classify the different image categories.

4.4.3 Classification accuracy achieved by the CNN model

The chart presented here displays the classification accuracy achieved by the CNN

model for each category of data:

Figure 37: Categorical Accuracy Chart

The model has shown impressive performance across all categories, with the majority

of them achieving over 90% accuracy. The Bonjonborno_C_39 category has the

lowest accuracy at 82%, but this is still considered a reasonably good performance.

Overall, the CNN model has demonstrated its effectiveness in classifying the different

categories of data.

4.5 Implementing user interface.

4.5.1 Using Flask

This code is for a Flask web application that provides an interface for users to interact

with various image classification models. The application has several routes for

different classification tasks such as Bangla Sorbonno, Bangla Benjonbonno, English

alphabets, English numbers, Bangla numbers, and drawings.

95%

82%

96% 95%
98%

91%

70%

75%

80%

85%

90%

95%

100%

Categorical Accuracy Chart

Figure 38: Flask Code Snapshot

The code imports the necessary libraries, loads the pre-trained models, and defines the

Flask application routes. The application has different pages for each of the

classification tasks, where users can draw images that will be classified by the

corresponding model. The application saves the drawn images and makes predictions

using the appropriate model.

4.5.2 Using HTML, CSS, Bootstrap and JavaScript to designing the templates

This is an HTML template file for the home page of a website called "Hello Kid’s".

The page is designed to display a list of practice categories with images, titles, and

descriptions. Users can click on the "PRACTICE NOW" button under each category

to start practicing.

Figure 39: The snapshot of template design code

The file uses the Jinja2 templating engine for rendering dynamic content in the Flask

web application. It extends a "template.html" file, which should include the common

structure and layout for all pages on the website, such as the header and footer.

The main content of the page is organized into a grid of six categories: Shorborno

Shikhi, Benjonborno Shikhi, Alphabet, Drawing, English Digit, and Bangla Digit.

Each category is represented by a thumbnail image with an overlay containing the

title, description, and a "PRACTICE NOW" button.

5 Results and Discussion

After investing countless hours and tireless effort, I have successfully developed a

system that has exceeded all expectations. Upon visiting children both at their homes

and schools, I observed their immense attraction to the website. It captivated them as if

they were playing a video game. The platform's drawing feature and instantaneous

results piqued their curiosity and fueled their enthusiasm.

The students from various schools clamored for the opportunity to try this innovative

platform. They discovered that practicing on the website was far more enjoyable than

writing in their traditional exercise books. The auditory feedback, in which they could

hear the sounds corresponding to their written work, further heightened their

engagement. Eagerly, they delved into each topic available in the menu bar, one after

another, propelled by their newfound excitement for learning.

As the children continued to explore and engage with the platform, it became apparent

that the website was fostering a genuine love for learning. The innovative approach to

education seemed to tap into their innate curiosity, encouraging them to practice and

master new skills with a sense of joy and wonder. Teachers and parents alike noticed a

positive shift in the children's attitude towards learning, as well as significant

improvement in their academic performance.

Furthermore, the website's interactive and immersive nature inspired the children to

learn collaboratively. They shared their discoveries, challenges, and achievements with

each other, creating a supportive and dynamic learning community. This collaborative

environment not only fostered a strong sense of camaraderie among the students, but

also helped them develop essential communication and teamwork skills.

Ultimately, the success of this ground-breaking platform lies in its ability to create a

captivating and enriching educational experience for children. By seamlessly blending

learning with entertainment, it has transformed traditional education into a delightful

adventure, unlocking the unlimited potential of young minds and inspiring them to reach

for the stars.

5.1 Home Page

Welcome to the vibrant and intuitive homepage of our innovative learning system.

Here, children are presented with an array of engaging topics, each accompanied by a

visually appealing and descriptive image. This user-friendly design allows young

learners to effortlessly navigate through the platform and select the subject matter that

sparks their interest, inviting them to embark on a captivating educational journey.

Figure 40: User Interface Home Page

5.2 Page Selection

In this illustrative example, a single topic is carefully chosen from the diverse range

of subjects available. Upon selection, learners are seamlessly guided to the dedicated

practice page for their chosen topic. In this particular case, "English Digits" has been

thoughtfully picked, providing an opportunity for young minds to delve into the

fascinating world of numbers and hone their skills.

Figure 41: Selecting Page “English Digit”

5.3 Sorborno (স্বরবি ণ) Page

This dedicated practice page is specifically designed for mastering Bangla Sorborno.

Learners can freely write any Sorborno they wish, exploring and experimenting with

the language. Should they desire to erase their work and start anew, the conveniently

placed "Clear" button provides an effortless way to remove any written content,

enabling a fresh and unblemished canvas for continuous learning.

Figure 42: Sorborno Page

Upon submitting their work, learners will be presented with the results, allowing them

to evaluate the accuracy of their intended letter. This immediate feedback empowers

them to refine their skills and knowledge, fostering continuous improvement and

growth in their learning journey.

Figure 43: Result View

5.4 Bonjonborno (বযঞ্জনবি ণ) Page

Welcome to the Bonjonborno page, where children have the opportunity to explore,

learn, and practice a wide range of Bonjonborno characters. This engaging and

interactive platform encourages curiosity and mastery, offering a comprehensive

learning experience for young minds.

Figure 44: Bonjonborno Page

5.5 English Alphabet Page

Discover the English alphabet page, an all-encompassing platform designed to

facilitate the learning and practice of each letter. Children can immerse themselves in

this interactive environment, gaining immediate feedback on their progress and honing

their skills with confidence and clarity.

Figure 45: English Alphabet Page

5.6 English Digit Page

Children can engage in writing and practicing English digits, covering numbers from

0 to 9. Should any mistakes occur, the user-friendly platform allows for effortless

erasure and amendment, promoting a smooth and enjoyable learning journey.

Figure 46: English Digit

5.7 Drawing Page

This engaging page is particularly captivating for young minds, allowing them to

unleash their creativity through drawing and immediately witnessing the results.

Additionally, they can delight in the auditory feedback provided by the platform, as it

verbalizes their written work.

Figure 47: Drawing Page

6 Conclusion

In conclusion, this innovative educational platform has been meticulously designed to

cater to the diverse learning needs of children. By integrating interactive and visually

stimulating elements, it fosters an engaging environment that nurtures curiosity and

excitement for learning. Furthermore, the system encourages creative expression and

provides auditory feedback, both of which contribute to a comprehensive and

immersive learning experience.

As I continue to refine and develop the platform, my focus will be on improving the

accuracy of the model for Bonjonborno, ensuring that children receive the most

accurate and helpful feedback possible. In addition to the current web-based platform,

I am planning to expand my reach by developing applications for various platforms,

such as Android, Apple, and Microsoft. These apps will not only be more accessible

to children, but also offer a more attractive and user-friendly experience.

By making education feel like play, this ground-breaking website and its forthcoming

applications are poised to revolutionize the way children learn and develop essential

skills, fostering a lifelong love for learning and setting them on a path to success.

Through constant innovation and improvement, I am committed to creating the most

engaging and effective educational tools for the children of today and tomorrow.

References

1. McKinsey & Company. How artificial intelligence will impact K-12 teachers.

McKinsey & Company. [Online] 01 2020. [Cited: 11 04, 2022.]

https://www.mckinsey.com/industries/education/our-insights/how-artificial-intelligence-

will-impact-k-12-teachers.

2. Bangladesh Bureau of Statistics. Multiple Indicator Cluster Survey 2012-2013, Final

Report. [Online] 2015. https://www.bbs.gov.bd/site/page/4222a409-4d7c-4b5d-a8d8-

9ae90aefb14d/MICS%20Final%20Report%202012-13%20English.

3. Ministry of Primary and Mass Education. National Curriculum and Textbook Board

Pre-Primary Curriculum. [Online] 2013. [Cited: 05 10, 2022.]

http://www.nctb.gov.bd/site/page/56324be4-3c4b-46fe-aab9-d552a5b9eb8b/-.

4. Russell, S. J., & Norvig, P. Artificial intelligence: A modern approach. s.l. : Pearson

Education., 2010.

5. Multi-task learning based data preprocessing for performance prediction of computer

systems. Wang, Y., Wu, S., Wu, S., & Ye, Y. s.l. : Journal of Supercomputing, 2001,

Vols. 77(5), 4719-4738.

6. A feature selection method based on mutual information and fuzzy clustering for

sentiment analysis on social media. Nguyen, T. H., Duong, A. D., Nguyen, V. P., Le, T.

T., & Huynh, V. N. s.l. : Journal of Ambient Intelligence and Humanized Computing.,

2021, Vols. 12(2), 1867-1876.

7. Comparison of different machine learning algorithms for predicting the onset of type 2

diabetes. Shahin, A., Jafari, A., & Khan, S. A. s.l. : Journal of Medical Systems,, 2021,

Vols. 45(6), 1-8.

8. Normalized pairwise margin: A novel evaluation metric for binary classification models.

Xie, Y., Zhang, J., Chen, Q., & Xie, Z. s.l. : IEEE Transactions on Neural Networks and

Learning Systems,, 2021, Vols. 32(3), 1127-1139.

9. Bayesian optimization for hyperparameter tuning in deep neural networks. Zhang, Y.,

Li, J., Li, Y., Li, D., & Li, B. s.l. : Neurocomputing, 2021, Vols. 441, 87-101.

10. Deep learning. LeCun, Y., Bengio, Y., & Hinton, G. s.l. : Nature, 2015, Vols.

521(7553), 436-444.

11. Alpaydin. Introduction to machine learning. s.l. : MIT Press, 2010.

12. Murphy, K. P. Machine learning: A probabilistic perspective. s.l. : MIT Press, 2012.

13. Goodfellow, I., Bengio, Y., & Courville, A. Deep learning. 2016 : MIT Press.

14. Sutton, R. S., & Barto, A. G. Reinforcement learning: An introduction. 2018 : MIT

Press.

15. Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow, 2n Edition. s.l. : O'Reilly Media, 2019.

16. Saha, Sumit. A Comprehensive Guide to Convolutional Neural Networks — the ELI5

way. Towards Data Science. [Online] 12 15, 2018. [Cited: 12 05, 2022.]

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-

the-eli5-way-3bd2b1164a53.

17. Flask Pallets Projects. Tutorial. [Online] [Cited: 02 12, 2022.]

https://flask.palletsprojects.com/en/2.2.x/tutorial/.

18. OpenCV. OpenCV: OpenCV-Python Tutorials. [Online] [Cited: 04 01, 2022.]

https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html.

19. Pandas. Pandas: User Guide. [Online] [Cited: 04 22, 2022.]

https://pandas.pydata.org/docs/user_guide/index.html.

20. NumPy. NumPy: User Guide. [Online] [Cited: 04 11, 2022.]

https://numpy.org/doc/stable/user/index.html.

21. Tensor Flow. Deep Convolutional Generative Adversarial Network. [Online] [Cited:

05 04, 2022.] https://www.tensorflow.org/tutorials/generative/dcgan.

22. Scikit-learn. User Guide. [Online] [Cited: 06 22, 2022.] https://scikit-

learn.org/stable/user_guide.html.

23. PATEL, SACHIN. A-Z Handwritten Alphabets. [Online] [Cited: 03 02, 2022.]

https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format.

24. COLIANNI, STUART. MNIST as .jpg. Kaggle. [Online] [Cited: 03 03, 2022.]

https://www.kaggle.com/datasets/scolianni/mnistasjpg.

25. Google Cloud . quickdraw_dataset. [Online] [Cited: 03 12, 2022.]

https://console.cloud.google.com/storage/browser/quickdraw_dataset/full/numpy_bitmap;t

ab=objects?pli=1&prefix=&forceOnObjectsSortingFiltering=false.

26. Mendeley Data. BanglaLekha-Isolated. [Online] [Cited: 03 20, 2022.]

https://data.mendeley.com/datasets/hf6sf8zrkc/2#file-8a68156d-8a76-44d3-93e5-

d14b61880526.

7 List of pictures and graphs

Figure 1: English Book-Class One... 16

Figure 2: Bangla Book-Class One ... 17

Figure 3: Math Book-Class One .. 18

Figure 4: English Book-Class Two .. 20

Figure 5: Bangla Book-Class Two ... 22

Figure 6: Math Book-Class Two .. 24

Figure 7: CNN Architecture ... 40

Figure 8: Data Collections System ... 45

Figure 9: Own System Data Collection Chart ... 46

Figure 10: Collected Data English Alphabets .. 46

Figure 11: Collected Data Bangla Sorborno .. 47

Figure 12: Collected Data Bangla Benjonborno .. 47

Figure 13: Collected Data English Digit .. 48

Figure 14: Collected Data Bangla Digit ... 48

Figure 15:Collected Data From Various Sources .. 49

Figure 16: Snapshot of Inverted Image code ... 50

Figure 17: Snapshot RGB to Grayscale code... 51

Figure 18: Snapshot of Image Contour Detection Code .. 52

Figure 19: Snapshot of Image Resize code .. 53

Figure 20: Importing all the required library for the Gaussian Naive Bayes 55

Figure 21: Defining the function process my data into the algorithm 55

Figure 22: GaussianNB Algorithm Using scikit-learn ... 55

Figure 23: Importing all the required library for the KNeighborsClassifier 56

Figure 24:KNeighborsClassifier Algorithm using scikit-learn .. 56

Figure 25: Training SVC code snapshot using scikit-learn ... 57

Figure 26: Training Random Forest Classifier code snapshot using scikit-learn 58

Figure 27: Training Decision Tree Classifier code snapshot Using scikit-learn 59

Figure 28: Comparison Chart between above algorithms .. 59

Figure 29: Imported all the required library for final outcome .. 61

Figure 30: This function pre-process the data and load data into model 62

Figure 31: After Pre-processing the data plotting one image data 63

Figure 32: Preparing the image data and creating a CNN model using Keras 65

Figure 33: CNN model is compiled and trained .. 66

Figure 34: saving the trained model and evaluating its performance 67

Figure 35: Inspect a single image and compare it to the model's predicted label 69

Figure 36: Architecture of CNN .. 71

Figure 37: Categorical Accuracy Chart ... 72

Figure 38: Flask Code Snapshot .. 73

Figure 39: The snapshot of template design code .. 74

Figure 40: User Interface Home Page .. 76

Figure 41: Selecting Page “English Digit” .. 77

Figure 42: Sorborno Page .. 77

Figure 43: Result View .. 78

Figure 44: Bonjonborno Page .. 78

Figure 45: English Alphabet Page ... 79

Figure 46: English Digit ... 79

Figure 47: Drawing Page ... 80

