Czech University of Life Sciences Prague
Faculty of Economics and Management

Department of Informatics

Master's Thesis

An interactive system for teaching school going children.

MD SAHIN ALAM

© 2023 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE

Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT

Md Sahin Alam

Informatics

Thesis title

An interactive systam for teaching school going children.

Objectives of thesis

The objective of the work is to develop the web-based system for teaching kids alphabet.

The result of the work will be online educational platform focused on teaching school-going children about
alphabets, and number systems as well as drawing different shapes. In this day and age, children are always
hooked up to digital devices and so the goal is to improve learning in children using 2 digital platform. Using
a digital device, it is easier to capture children’s attention and so having a platfiorm like this will significantiy
improwve their learning ability.

Methodology

| developed a system to collect multple sets of real-time data from people. However, due to the limited
number of available participants, | collected raw data from cnline sources such as Bangla consonants, vow-
&ls, numerical as well as English characters and everyday common drawings of shapes. Due to the difference
insources of data, | had to preprocess the data; categorized the data based on the individual character col-
lected and kept those in their separate folders. Different images have differenmt backgrounds so to correct
those, | inverted the images, converted the images from RGE profiles to grayscale profiles, cropped the im-
ages to remove extraneous information. This resulted im having images of different sizes zo | had to resize
the image.

At this stage, the data iz ready to test and train the systemn. | will use the data to train and test the system
based on 6 categories: Bangla consonants, Bangla vowels, Bangla numbers, English alphabets, Englizh num-
bers and drawings of shapes. | will be using the Scikit-Learn library to train all machine leaming algorithms,
test the data and measure which algorithm's accuracy is good for my data finally | will be using the best
algorithm to build my web-based systems.

Oifficial cocument * Crach University of Life Sdenoes Pragus * Kamryoie 125, 167 00 Fraha - Suchdol

The proposad extent of the thesis
&0

Keywords
Comvolution Neural Networks, discrimination of alphabet characters, Machine Learning, Scikit-Learn, Flask,
TensorFlow, Panda, OpenCy

Recommendad information sources

G I-ERCI'N, A Hands-on machine learning with Sakit-Learn, Keras, and TensorFlow - concepts, fools, and
technigques to bulld intelligent systems. Beijing ; Boston ; Farmmham | Sevastopol ; Tokyo: O'Reilky, 2019,
ISEM 978-1-4520-3264-9.

Expected date of thesis defence
2022423 WS — FEM

The Diploma Thesis Supervisor
doc. Ing. Amost Vesaby, CSc.

Supervising department
Department of Information Engineering

Electronic approval: 9. 3. 2023 Electronic approval: 13, 3. 2023
Ing. Martin Pelikan, Ph.D. doc. Ing. Toma$ Subrt, Ph.D.
Head of departrment D=an

Prague om 21. 03, 2023

CHficial document * Czech University of Life Sdences Prague * Kamyo 125, 163 00 Fraha - Suchdol

Declaration

I declare that I have worked on my master's thesis titled "An interactive system for
teaching school-going children." by myself and I have used only the sources mentioned at
the end of the thesis. As the author of the master's thesis, I declare that the thesis does not

break any copyrights.

In Prague on 20/03/2023

Acknowledgement

The completion of this thesis would not have been possible without the assistance
and support of several individuals who have contributed in various ways. I would like to
express my sincere gratitude to doc. Ing. Arnost Vesely, CSc., for his invaluable guidance
and mentorship throughout this project. His insightful suggestions and feedback were
instrumental in shaping my research and helped me to attain a deeper understanding of the

subject matter.

I am also deeply grateful to my family and friends for their unwavering support and
encouragement throughout this journey. Their love, patience, and understanding were a

constant source of motivation and inspiration, and I am truly blessed to have them in my life.

I would like to extend my heartfelt thanks to all those who assisted me in collecting
data and feedback for my end system, particularly those who volunteered their time and
effort to participate in this study. The valuable insights and feedback provided by the
students were critical in shaping my research and helped me to achieve a more

comprehensive understanding of the topic.

Finally, I would like to express my gratitude to Ikram Khan for his invaluable
review of my thesis paper, and Rubaiat Jahan Suva for her immense support throughout
this project. Their feedback and assistance were invaluable, and I am deeply indebted to

them both.

An interactive system for teaching school going children.

Abstract

Web-based interactive systems are becoming more common in educational systems
for school-going children’s. Using AIl, machine learning, and deep learning have huge
potential in building such systems to improve personalised and adaptive learning experiences
for these children. In this thesis paper I discuss and compare machine learning and deep
learning algorithms to demonstrate that the Convoluted Neural Network is the most effective
at recognising hand-written Bengali and English alphabets, digits and common shapes for
improving accuracy of such interactive learning systems. From the results of this comparison
I developed an interactive educational platform to improve student engagement, learning
outcomes, and enjoyment of the learning process by adding a drawing tool as well as visual
and auditory responses. The goal of this platform is to demonstrate the possibility of

replacing traditional learning systems with digital interactive ones.

Keywords: Convolution Neural Networks, discrimination of alphabet characters, Machine

Learning, Scikit-Learn, Flask, TensorFlow, Panda, OpenCV

Interaktivni systém pro vyuku déti v zakladni Skole.

Abstrakt

Webové interaktivni systémy se stavaji Castéj§imi v edukacnich systémech pro
Skolou povinné déti. Vyuziti umélé inteligence, strojového uceni a hlubokého uceni ma
obrovsky potencial pii budovani takovych systému, které zlepSuji personalizované a
adaptivni ucebni zkuSenosti pro tyto déti. V této diplomové praci diskutuji a srovnavam
algoritmy strojového a hlubokého uceni, abych prokazal, ze konvolu¢ni neuronova sit je
nejucinnéj§i pii rozpoznavani rucné psanych bengalskych a anglickych abeced, Cislic a
béznych tvara pro zlepSeni presnosti téchto interaktivnich vzdélavacich systéma. Na zaklade
vysledkd tohoto srovnani jsem vyvinul interaktivni vzdélavaci platformu pro zlepSeni
zapojeni studentd, vysledk uceni a potéSeni z uCebniho procesu pomoci nastroje pro
kresleni, vizualnich a zvukovych odezev. Cilem této platformy je ukézat moznost nahrazeni

tradi¢nich ucebnich systému digitalnimi interaktivnimi.

Klicova slova: Konvolu¢ni neuronové sité, rozpoznani pismen abecedy, strojové ucent,

Scikit-Learn, Flask, TensorFlow, Panda, OpenCV.

Table of content

1 INErOAUCLION cocvieesriesecssancssncsancssnncsanessnsssnesssnsssnssssnessasessassssssssssssasssnsssssssssssssassssssssss 11
2 Objectives and Methodology 13
2.1 OBJECHIVES. cueeuieteiieecie ettt et a e st 13
2.2 MethOdOIOZYueiiiieiieeiieciiieiieciie ettt 13

3 Literature Review 14
3.1 Current Study SYSLEM ..c..ccuiriiriiiiieiiiiiiiii ittt 14
3.1.1 Current Pre-School Education Systems in Bangladesh 14
3.1.2 Exploring how children learn from their everyday lifeccceceeeee. 24

3.2 Artificial INtelliZENCE ...c..eeviruiiriiiiiiiiiiiiii i 25
3.2.1 Four Categories Of Artificial Intelligence Definitionsccccoeneenene. 27

3.3 Machine Learningcceeceeveeieieeiiiiiiiiiiiiii ettt 28
3.3.1 Categories of Machine Learning...........ccoccoevviviiniiiiniininnieeceie s 30
3.3.2 Machine Learning AlgOrithms..........cccccecuiiiiiiiiiiiiiiiiiiiie e 32

3.4 Other Technologies for Building Applicationscccvevvieiiiiiiienienienienens 40

4 Practical Part.....ccciiiiiniseensensenssesssncssnessscsssnessssesssessasssssssssssssssssasssssssssssssssssassns 44
4.1 Data COllECtiON. ...eiiiieeeiieeetie ettt et st as e sbs e e ssbeeesabeeenes 44
4.2 Data Pre-proCessSingccccuuiiiiiiiiiiiiiiiiee e eitieeiriesitte e s s 49
4.2.1 Inverted IMAZEcooueruiiiiiiiiiiiiiiii it 50
422 RGB t0 GraysCaleccccceeviiiiiiiiiiiiiiiiiiii e 50
42.3 Image Contour Detection.........cccoiiuiiiiiiniiiiiniiie e 51
424 TmMage RESIZE...cccccouiriiiiiiiiiiiiiec e 53

4.3 Training the Algorithms and COmMPAriSON..........ccoevveiiiiiiniinenineeiece s 54
4.3.1 Training Gaussian Naive Bayes.........ccccooriiiiiiiiniiniiiiice 54
43.2 Training K-Nearest Neighbors Classifierccoooviveniiiininiiinieens 56
4.3.3 Training Support Vector Classifier.........cocoiiviiiiiiiiiiiiiinieiceceen 57
4.3.4 Training Random Forest Classifier.........ccccoiiiiiiiiiiiiiiieiieniecceen 58
4.3.5 Training Decision Tree Classifier........cccocoviiiiiiiiiiiiiniiiiee 58
4.3.6 COMPATISON ..utiriienieeiieeeientieitestieie et saiesiessaessee s s seasebeessessse s e s esesnbessnes 59

4.4 Training The Convolutional Neural Network (CNN).........cooiiiiiinninnnn. 60
4.4.1 Implementations of CNN on Bonjonborno Categorycocovevueineniine 61
4.4.2 The architecture of the Convolutional Neural Network (CNN) model 69
44.3 Classification accuracy achieved by the CNN model...........c.ccooooininnin. 72

4.5 Implementing user iNterface.ccoovriiiiiiiniiiini 72
4.5.1 USING FIASK ..ottt 72

452 Using HTML, CSS, Bootstrap and JavaScript to designing the templates73

5 Results and Discussion

5.1
5.2
53
54
5.5
5.6
5.7

6 Conclusion
References

7 List of pictures and graphs

HOME PAGE ..ottt et
Page SEIECHIONeeiiiiiiiie et
Sorborno ('5’3?1"‘{) PAZE oottt e e
Bonjonborno @T@‘Fﬁ"‘f) PaZE c.iieieieiieeeee e e
English Alphabet Pageccccooviiiiiiiiiiitetee e
English Digit Page.......ccooiiiiiiiiiiiiiiiiiietetete ettt
Drawing Pageccooiiiiiiiiiiieie ettt

75
76
76

77

78
79
79
80

81
82
84

1 Introduction

"The only way to do great work is to love what you do" - Steve Jobs.
The year 2020 will be remembered as a year of great turbulence and uncertainty, with the
emergence of a pandemic that shook the world to its core. COVID-19 has disrupted our lives
in many ways, leading to countless losses and hardships. During this difficult time, I
witnessed first-hand the devastating effects of the pandemic on society, including the
education sector. Schools were closed, children were forced to stay at home, and the

traditional methods of learning were disrupted.

As an avid lover of playing with children, I could not help but think about the potential
impact of the pandemic on their education. It was in this moment that the idea of developing
an educational platform that could be accessed through technology devices such as
smartphones, laptops, and tablets came to mind. As I love Al, machine learning, and deep
learning technology, I realized that I could use these tools to make the educational platform

more engaging and effective.

Artificial intelligence (Al) has revolutionized the way we interact with technology, and its
impact on education is no exception. Machine learning and deep learning, which are subsets
of Al, have the potential to transform the way children learn by enabling personalized and

adaptive learning experiences.

Machine learning involves the use of algorithms and statistical models to enable computers
to learn from data and improve their performance without being explicitly programmed.
Deep learning, on the other hand, involves the use of artificial neural networks to simulate

human intelligence and solve complex problems.

According to a report by McKinsey (1), Al and machine learning have the potential to
transform education by enabling personalized learning experiences, improving student
outcomes, and reducing costs. The report suggests that Al can be used to create adaptive

learning environments that adjust to the needs and learning styles of individual students.

As I embark on this journey, I am reminded of the wise words of Steve Jobs, who believed
that the key to achieving great work is to love what you do. My fascination with Al, machine
learning, and deep learning technology has fueled my determination to develop an interactive

educational platform that will make a positive impact on the lives of school-going children.

In conclusion, this thesis aims to explore the potential of Al, machine learning, and deep
learning technology in facilitating personalized and adaptive learning experiences for
school-going children during and beyond the pandemic. The primary motivation behind this
research is to develop an interactive educational platform that can be accessed through
technology devices, enabling children to learn with fun while making the best use of Al,
machine learning, and deep learning technology. The next sections will discuss the literature
review, methodology, and results of this research, culminating in recommendations for

future work in this field.

2 Objectives and Methodology

2.1

2.2

Objectives

The objective of the work is to develop the web-based system for teaching kids
alphabet. The result of the work will be online educational platform focused on
teaching school-going children about alphabets, and number systems as well as
drawing different shapes. In this day and age, children are always hooked up to digital
devices and so the goal is to improve learning in children using a digital platform.
Using a digital device, it is easier to capture children's attention and so having a

platform like this will significantly improve their learning ability.

Methodology

I developed a system to collect multiple sets of real-time data from people. However,
due to the limited number of available participants, I collected raw data from online
sources such as Bangla consonants, vowels, numerical as well as English characters
and everyday common drawings of shapes. Due to the difference in sources of data, I
had to pre-process the data; categorised the data based on the individual character
collected and kept those in their separate folders. Different images have different
backgrounds so to correct those, I inverted the images, converted the images from
RGB profiles to grayscale profiles, cropped the images to remove extraneous
information. This resulted in having images of different sizes so I had to resize the
image.

At this stage, the data is ready to test and train the system. I will use the data to train
and test the system based on 6 categories: Bangla consonants, Bangla vowels, Bangla
numbers, English alphabets, English numbers and drawings of shapes. I will be using
the Scikit-Learn library to train all machine learning algorithms, test the data and
measure which algorithm's accuracy is good for my data finally I will be using the best

algorithm to build my web-based systems.

3 Literature Review

3.1 Current Study System

The education system in Bangladesh has undergone significant changes in recent
years, with a focus on improving access to education and enhancing the quality of
education at all levels. However, the pre-school education system in Bangladesh has
not received the same level of attention, despite being an essential component of a
child's early education. This study aims to explore the current pre-school education

systems in Bangladesh and identify potential areas for improvement.

3.1.1 Current Pre-School Education Systems in Bangladesh

In Bangladesh, pre-school education is primarily provided by private institutions, with
limited government involvement. The pre-school education system is divided into two
categories: informal and formal. Informal pre-school education is provided by day-
care centers and other similar institutions, while formal pre-school education is

provided by pre-primary schools.

The informal pre-school education system in Bangladesh is largely unregulated, with
limited standards and guidelines for curriculum development and teacher training.
Many of these institutions operate in poor conditions, with inadequate facilities and

untrained teachers.

The formal pre-school education system in Bangladesh is slightly more regulated, with
guidelines and standards developed by the Ministry of Primary and Mass Education.
However, the quality of education provided by pre-primary schools varies widely, with
some schools offering high-quality education, while others offer poor quality

education.

Furthermore, there are significant disparities in access to pre-school education in
Bangladesh, with children from low-income families and rural areas being less likely

to attend pre-primary schools. According to a survey by the Bangladesh Bureau of

Statistics (2), only 24 percent of children aged 3-5 years in rural areas attend pre-

primary schools, compared to 60 percent in urban areas.

English For Today-Class One Book

In this educational book (3), children embark on a linguistic journey that begins with
learning greetings, pre-writing skills, and engaging in alphabet songs. They gradually
progress to learning the English alphabet, recognizing individual letters within words,

and mastering the skill of counting numbers.

To enrich their language development, the book incorporates short rhymes that are
both entertaining and educational. The children are also encouraged to identify the
names of various objects or animals in provided images, fostering their vocabulary

expansion.

Furthermore, students learn the names of different body parts, promoting their
understanding of human anatomy. Engaging in drawing exercises and coloring
activities not only strengthens their fine motor skills but also encourages creativity and
self-expression. Through this comprehensive and interactive book, children develop a
solid foundation in language and artistic skills that will serve them well in their future

educational endeavors.

2018

/ \
(\
Alphabet Lessons 4-6 | ')

A. Look, listen and say. Trace in the air.

apple ant
B. Say and read. Trace and write.
A
A A A
& U S
C. Say, trace and write.
apple
_pple
ant
_nt

Figure 1: English Book-Class One

My Bengali book (SINTF 1T T2)- Class One Book

In this educational book (3), children are introduced to the process of self-expression
by learning how to present themselves. This serves as the starting point for their
linguistic journey. They begin by acquiring the basics of the Bengali alphabet, starting
with individual vowels and gradually moving on to consonants. This systematic

approach ensures that they develop a strong foundation in the language.

As they progress, students are introduced to various diacritical marks, enabling them
to read and write more complex words and sentences. In addition to mastering the
alphabet, the book nurtures a love for literature by exposing children to poetry and
stories. Through this comprehensive and engaging approach, young learners are
equipped with essential language skills that will support their continued education and

personal growth.

0¥

Figure 2: Bangla Book-Class One

Elementary Mathematics (&T I ?fral'@)-Class One Book
This educational book (3) introduces children to the fundamentals of mathematics,

beginning with counting numbers from 0 to 50 and teaching them to compare these
numbers effectively. Students learn basic arithmetic operations, such as addition and

subtraction, focusing on calculations involving numbers between 0 and 10.

The book also covers essential geometric shapes, familiarizing children with the names
and properties of squares, triangles, circles, and lines. Engaging in counting exercises
using images, such as identifying the number of apples in a picture, helps students

develop their numeracy skills and enhances their observational abilities.

Additionally, the book includes matching exercises where children pair images with
corresponding numbers, further reinforcing their understanding of numerical concepts.
Problem-solving activities, such as filling boxes with appropriate numbers, encourage
students to apply their newfound skills in practical situations. Through this
comprehensive approach, children build a strong foundation in mathematics that will

support their academic growth.

i e (<2)

= &
@mw,nwr,mem
s B FAPRGF T % R
\ '} 9] 59
9 (@] o Bl

a
?

Figure 3: Math Book-Class One

English For Today-Class Two Book

Initially, students begin by memorizing the entire alphabet and numbers (3). They
practice counting and writing numerals while actively listening to their teacher's
instructions. Students are then encouraged to describe various images, articulating
their thoughts and writing down their observations. They also focus on identifying the
final sound of each word depicted in the images and practice writing capital letters for

each corresponding word.

Furthermore, students learn to express numbers from one to ten in written form,
enhancing their number literacy. Engaging in activities such as connecting dots to
complete images and adding color to their creations helps develop their fine motor
skills and creativity. They also participate in reciting and enacting rthymes, promoting

their linguistic and cognitive abilities.

Lastly, students are introduced to different shapes through visual and auditory
methods, allowing them to recognize and name each shape with confidence. By
reading and coloring within the lines of a butterfly illustration, students refine their

precision and focus, fostering essential developmental skills.

\
Alphabet Lessons 4-6 | 55)
L Ui 2

A. Look, listen and say.

Ff Gg

Hh i]
i i®am
farmer girl hut igloo jeep

B. Read and say. Trace and write.
former gl hutiglogjeep:

Figure 4: English Book-Class Two

My Bengali book (ST JT¢AT T2)- Class Two Book
In this book (3), children begin their learning journey by introducing themselves

through a self-introduction form. They are then guided to answer questions based on
provided images, encouraging critical thinking and comprehension. Various exercises,
such as filling in gaps by analyzing pictures, help students develop their problem-

solving abilities.

To enhance their vocabulary, children are tasked with constructing words from random
letters and formulating sentences based on visual cues. They also engage in
storytelling exercises using a series of pictures, which fosters their creativity and
narrative skills. Counting and identifying animals in images, as well as writing the

numbers in both digits and words, further strengthens their numeracy abilities.

Moreover, students are exposed to poetry, learning to appreciate, read, and write
poems. Interactive conversations with their peers promote social skills and fluency in
the language. As their abilities progress, children are introduced to joint letters,

expanding their understanding of the writing system.

Matching exercises, where students draw lines connecting sentences to corresponding
images, help reinforce their comprehension and retention. Lastly, they learn the names
of all the months in the Bengali calendar, enriching their cultural knowledge and

awareness.

8, @4 G e afd |
T T B

T T A ITE i

whr 4ied feles st

O TR A o

fafbafafs @ wie =2 =
¢. (=G =% +fF | v g e

.........................

.........................

Figure 5: Bangla Book-Class Two

Elementary Mathematics (&T ﬂ'ﬁ?? ?TF‘T@)-Class Two Book

Students begin by counting the quantity of objects depicted in images, practicing their
numeracy skills by writing the results both in numerals and words (3). They are then
introduced to the concept of comparing numbers, learning to identify which of the two
is larger. To reinforce this understanding, they are asked to circle the larger number

among a given set.

By arranging random numbers in ascending order, students develop their
organizational and analytical skills. They continue to expand their number literacy by
reading and writing numbers from fifty-one to one hundred. Additionally, they are
taught the concepts of even and odd numbers, enhancing their foundational

mathematical knowledge.

Students participate in exercises that involve circling numbers with odd summations
and practice writing numbers from eighty to one hundred in words. They also learn
subtraction, focusing on identifying even results. These exercises are followed by

analytical math tasks that challenge their problem-solving abilities.

Lastly, students are introduced to the fundamental operations of multiplication and
division, specifically focusing on calculations involving numbers between 0 and 10.
Through these activities, they build a strong foundation in mathematics that will

support their future academic endeavors.

3.9 e sf
S | FRETISITAT VTR AT A% @ Wt G fire #fa

e W q
R ¢¥1»
e
o & = @»
W 8 ») (24 = i
» b
»8 b
bW S L ALY
3 | e AR
(5) wibrem (2) “BEEE (o) wife
(8) TmiEa (@) it (v) FTeres
o | w4y fafe
(3) »% () v8 (©) ea (8)
(¢) % (&) Q) vd (r) 5%
8 | @Y (4T® ue *1fF AT ures fafv _

@ | b (4T Soo EF FRRATICAT Wy ol

Figure 6: Math Book-Class Two

3.1.2 Exploring how children learn from their everyday life

Understanding how children learn from their everyday life is crucial to developing
effective learning strategies. This study aimed to explore the various ways in which
children in Bangladesh learn and gain knowledge. The study involved observing and
interviewing children and their parents to gain insights into their learning experiences.
The findings of the study can help develop effective learning strategies for school-

going children in Bangladesh.

Child Learning from Everyday Life:

Through the study, it was found that children in Bangladesh learn in various ways. At
school, in the classroom, teachers teach various courses, which helps children learn
how to read and write. The formal education system in Bangladesh plays a crucial role

in providing children with the necessary foundational knowledge and skills.

3.2

Children also learn through play. While playing with toys or other children, different
pictures are shown to them for learning, such as animals, shapes, and colors. This helps
them learn the names of things and improves their basic knowledge.

In addition to traditional forms of learning, technology has also become a useful tool
for children's education. Various educational programs are shown on television, such
as Sisimpur, which provide children with a fun and interactive way of learning.
Similarly, cartoons like Mina Cartoon offer basic knowledge, and YouTube channels

like TuTiTuTV provide knowledge about alphabets, letters, and numbers.

Learning Activities for School-Going Children in Bangladesh:

Based on the findings of this study, there are several learning activities that can be
implemented for school-going children in Bangladesh. The formal education system
should continue to provide foundational knowledge and skills to children.
Additionally, there should be more emphasis on play-based learning, which can make
learning more fun and engaging for children.

Moreover, there is a need to develop and promote educational programs and cartoons
that offer more advanced and diverse knowledge for children. Educational channels

on YouTube can also be used to provide additional learning opportunities for children.

Artificial Intelligence

Artificial Intelligence (AI) refers to the development of machines that can perform
tasks that typically require human intelligence, such as reasoning, learning, and
problem-solving. The field of AI has grown significantly in recent years, with
applications in a wide range of industries, including healthcare, finance, and
transportation. In this article, we will explore the term Al, its scope, and the current

work being done in the field.

The term Al was first coined by John McCarthy in 1956, who defined it as "the science
and engineering of making intelligent machines". Since then, the definition of Al has
evolved to encompass a range of techniques and applications, including machine

learning, natural language processing, computer vision, and robotics.

The scope of Al is vast and continues to expand as new applications are developed.
Machine learning is a subfield of Al that involves training algorithms on large datasets
in order to make predictions or decisions. This has led to the development of
applications such as voice assistants, recommendation systems, and fraud detection
systems. Natural language processing (NLP) involves teaching machines to
understand and interpret human language. This has led to the development of
applications such as chatbots, sentiment analysis, and language translation systems.
Computer vision involves teaching machines to interpret visual data, such as images
and videos. This has led to the development of applications such as facial recognition
systems, object detection systems, and autonomous vehicles. Robotics involves the
design and development of robots that can perform tasks autonomously. This has led
to the development of applications such as industrial robots, surgical robots, and

service robots.

The current work being done in Al is focused on developing new techniques and
applications that can improve efficiency, accuracy, and performance. One area of
focus is deep learning, which involves the use of neural networks with multiple layers
to learn complex representations of data. This has led to breakthroughs in applications
such as image recognition and natural language processing. Another area of focus is
reinforcement learning, which involves training agents to make decisions based on
feedback from their environment. This has led to breakthroughs in applications such
as game playing and robotics. Additionally, researchers are exploring new techniques
for explainable AI, which aim to provide insights into how Al systems arrive at their

decisions.

Despite the rapid progress being made in Al, there are still significant challenges that
need to be addressed. One of the biggest challenges is the development of ethical and
responsible Al systems. This includes addressing issues such as bias, privacy, and
transparency. Another challenge is the development of Al systems that can adapt to
changing environments and learn from experience. This requires the development of

new techniques for lifelong learning and transfer learning.

3.2.1 Four Categories Of Artificial Intelligence Definitions

The four categories of Artificial Intelligence (AI) that are based on their level of
intelligence and complexity, Al can also be categorized based on their approach to
thinking and acting. These categories include thinking humanly, thinking rationally,

acting humanly, and acting rationally.

Thinking Humanly:

Thinking humanly (4) Al aims to replicate human thought processes and the way
humans learn, perceive, and reason. This approach involves studying human cognition,
psychology, and neuroscience to develop AI systems that can think and learn in a
similar way to humans. This approach aims to develop Al that can solve problems in

the same way that humans do.

Thinking Rationally:

Thinking rationally (4) Al aims to replicate human reasoning and decision-making
processes using logical and mathematical rules. This approach involves developing Al
systems that can reason deductively, based on a set of pre-defined rules and
assumptions. This approach aims to develop Al that can make decisions based on

logical reasoning, rather than simply relying on past experiences or intuition.

Acting Humanly:

Acting humanly (4) Al aims to replicate human behavior and actions, rather than
focusing on thinking and reasoning. This approach involves developing Al systems
that can interact with humans in a way that is similar to human-human interaction,
such as through natural language processing or gesture recognition. This approach

aims to develop Al that can act and communicate like humans.

Acting Rationally:

Acting rationally (4) Al aims to develop systems that can act rationally to achieve
specific goals, regardless of whether their actions mimic human behaviour or not. This
approach involves developing Al systems that can identify the best course of action to

achieve a specific goal, based on available information and knowledge. This approach

3.3

aims to develop Al that can act rationally, even if their actions do not necessarily

resemble human behaviour.

Machine Learning

Machine learning is a subfield of artificial intelligence that focuses on developing
algorithms and models that enable computers to learn from data and make predictions
or decisions. The applications of machine learning are diverse, including image and
speech recognition, natural language processing, fraud detection, and recommendation

systems.

In this review, I will discuss some of the key parts of machine learning, including data
pre-processing, feature selection and engineering, model selection and training, model

evaluation, and hyperparameter tuning.

Data Pre-processing

Data pre-processing is a crucial step in any machine learning project, as the quality of
the data used for training and testing can significantly impact the accuracy and
performance of the resulting model. The pre-processing steps may involve cleaning,
transforming, or normalizing the data to make it suitable for analysis. In some cases,

missing values or outliers may need to be addressed.

In a recent study by Wang (5), the authors proposed a novel data pre-processing
method called Multi-Task Learning Based Data Pre-processing (MTL-DP) for
predicting the performance of computer systems. The method involves using a multi-
task learning approach to simultaneously predict multiple performance metrics, which
allows for better feature representation and improved performance compared to

traditional pre-processing methods.

Feature Selection and Engineering

Feature selection and engineering involves identifying the most relevant features in
the data and creating new features that may improve the accuracy and performance of
the model. This can be a challenging task, as the number of potential features can be

very large, and selecting the wrong features can lead to overfitting or underfitting.

In a study by Nguyen (6), the authors proposed a feature selection method based on
mutual information and fuzzy clustering for predicting the sentiment of social media
posts. The method involves clustering the data based on the mutual information
between the features and the target variable, and selecting the most representative
features from each cluster. The results showed that the proposed method outperformed
several other feature selection methods in terms of accuracy and computational

efficiency.

Model Selection and Training

Model selection and training involves choosing the appropriate machine learning
algorithm for the problem at hand, considering factors such as data type, size, and
complexity, and training the model on the available data. The choice of algorithm can
have a significant impact on the performance of the model, and different algorithms

may be better suited for different types of data and tasks.

In a recent study by Shahin (7), the authors compared the performance of several
machine learning algorithms for predicting the onset of type 2 diabetes. The algorithms
included logistic regression, decision trees, random forests, and neural networks. The
results showed that the neural network algorithm achieved the highest accuracy, but
the decision tree algorithm was the most interpretable and could provide insights into

the underlying factors contributing to the onset of diabetes.

Model Evaluation

Model evaluation involves assessing the accuracy and performance of the trained
model, using metrics such as precision, recall, and F1 score. It is important to evaluate
the model on both the training and testing data to ensure that it is not overfitting or

underfitting the data.

In a study by Xie (8), the authors proposed a novel evaluation metric called
Normalized Pairwise Margin (NPM) for evaluating binary classification models. The
metric is based on the margin between the predicted probabilities of the positive and
negative classes, and is normalized to account for class imbalance and model
complexity. The results showed that NPM outperformed several other evaluation

metrics in terms of discrimination and calibration.

Hyperparameter Tuning

Hyperparameter tuning involves adjusting the settings of the machine learning
algorithm to optimize its performance on the given dataset. This is typically done using
a validation set or cross-validation to evaluate the performance of different

hyperparameter settings.

In a recent study by Zhang (9), the authors proposed a Bayesian optimization approach
for hyperparameter tuning in deep neural networks. The method involves constructing
a probabilistic model of the objective function and using it to guide the search for
optimal hyperparameters. The results showed that the proposed method outperformed

several other hyperparameter tuning methods in terms of efficiency and effectiveness.

3.3.1 Categories of Machine Learning

Machine learning can be categorized into three main categories: supervised learning,
unsupervised learning, and reinforcement learning. Deep learning is a subfield of

machine learning that focuses on building neural networks with multiple layers to learn

complex representations of data. Deep learning has been particularly successful in

computer vision, natural language processing, and speech recognition.

Supervised Learning:

Supervised learning involves training a machine learning model on labeled data, where
each data point is associated with a label or target variable. The goal is to learn a
mapping between the input features and the output labels, so that the model can make
accurate predictions on new, unseen data. Supervised learning can be further

categorized into two types of tasks: regression and classification.

Regression tasks involve predicting a continuous output variable, such as the price of
a house or the age of a person. Linear regression is a common algorithm used for

regression tasks.

Classification tasks involve predicting a categorical output variable, such as the type
of animal in an image or the sentiment of a tweet. Common algorithms used for
classification tasks include logistic regression, decision trees, and support vector

machines.

Deep learning models, such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), have been used to achieve state-of-the-art performance on
supervised learning tasks, particularly in computer vision and natural language

processing, LeCun (10).

Unsupervised Learning:

Unsupervised learning involves training a machine learning model on unlabeled data,
where there is no target variable or labels provided. The goal is to discover patterns or
structure in the data, such as clusters or groups of similar data points. Unsupervised
learning can be further categorized into two types of tasks: clustering and

dimensionality reduction.

Clustering tasks involve grouping similar data points together, based on their features
or characteristics. K-means clustering and hierarchical clustering are common

algorithms used for clustering tasks, Alpaydin (11).

Dimensionality reduction tasks involve reducing the number of features or variables in
the data, while preserving as much of the original information as possible. Principal
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE)

are common algorithms used for dimensionality reduction tasks, Murphy (12).

Deep learning models, such as autoencoders and generative adversarial networks
(GANSs), have been used to learn representations of data in an unsupervised manner

(13).

Reinforcement Learning:

Reinforcement learning involves training a machine learning model to make decisions
based on feedback from the environment, such as rewards or penalties. The goal is to
learn a policy or set of actions that maximize the cumulative reward over time.
Reinforcement learning can be applied to a wide range of tasks, including game

playing, robotics, and autonomous driving.

Deep reinforcement learning has been particularly successful in game playing, where
models such as AlphaGo and AlphaZero have achieved superhuman performance in

games such as Go and chess (14).

3.3.2 Machine Learning Algorithms

There are many machine learning algorithms, each with its own strengths and
weaknesses. Here are some common machine learning algorithms that I will use to test

my dataset and it is outcomes.

Linear Regression:
Linear regression (15) is a commonly used algorithm in machine learning for

regression tasks, where the goal is to predict a continuous output variable. The

algorithm assumes that there is a linear relationship between the input features and the

output variable, and seeks to learn a linear function that best fits the training data.

The basic idea behind linear regression is to find the line that best fits the data points,
based on the principle of minimizing the sum of squared errors between the predicted

and actual values. The line is defined by the equation:

y = by + bix

where y is the predicted output variable, x is the input feature, b0 is the y-intercept or

bias term, and b1 is the slope or weight of the input feature.

In practice, there may be multiple input features, and the linear function can be

expressed as:

Yy = by + bix; + byxy, +...+ byx,

where xi represents the ith input feature, and bn represents the weight or coefficient

associated with that feature.

The goal of linear regression is to estimate the values of the coefficients that minimize
the sum of squared errors between the predicted and actual values. This is typically
done using an optimization algorithm such as gradient descent, which iteratively

adjusts the values of the coefficients to minimize the cost function.

Once the coefficients have been estimated, the model can be used to make predictions
on new, unseen data. The prediction for a given input feature is simply the value of the
linear function for that input:

Yy = by + bix; + byxy, +...+ byx,

Linear regression is a simple and interpretable algorithm that can be applied to a wide

range of regression tasks. However, it may not be appropriate for data that does not

exhibit a linear relationship between the input features and output variable. In such
cases, other regression algorithms, such as decision trees or support vector machines,

may be more appropriate.

Logistic Regression:

Logistic regression (15) is a widely used algorithm in machine learning for binary
classification tasks, where the goal is to predict a binary output variable (e.g. O or 1,
true or false, yes or no) based on one or more input features. The algorithm estimates
the probability of the positive class (i.e. 1) given the input features, and uses a threshold

to make a binary prediction.

The logistic regression model is based on the logistic function, which is defined as:

PO =T
where p(x) is the probability of the positive class, x is the input feature vector, and z is

the linear function of the input features:

Z = by + byxy + byxy, +...+ byx,

where bi represents the weight or coefficient associated with the ith input feature.

The logistic function has an S-shaped curve, which maps any input value to a
probability between 0 and 1. The logistic regression model estimates the values of the
coefficients that best fit the training data, by minimizing the negative log-likelihood of

the observed labels given the predicted probabilities.

Once the coefficients have been estimated, the model can be used to make predictions
on new, unseen data. The predicted probability of the positive class is calculated using

the logistic function:

PO =1

and a threshold is used to make a binary prediction. Common thresholds include 0.5,
which corresponds to the point where the predicted probability is equal to the threshold,
and 0.7 or 0.8, which can be used to increase the precision of the predictions at the

expense of recall.

Logistic regression is a simple and interpretable algorithm that can be applied to a wide
range of binary classification tasks. However, it may not be appropriate for data that
does not exhibit a linear relationship between the input features and output variable, or
for multi-class classification tasks. In such cases, other classification algorithms, such
as decision trees, random forests, or support vector machines, may be more

appropriate.

Decision Trees:

Decision trees (15) are a widely used algorithm in machine learning for both regression
and classification tasks. The basic idea behind decision trees is to recursively split the
input space into regions based on the input features, in order to make predictions on

new, unseen data.

The decision tree consists of nodes that represent the input features, edges that
represent the possible values of the input features, and leaves that represent the
predicted output variable. The tree is constructed by recursively splitting the input

space into regions, based on the input features that best discriminate the training data.

The splitting criterion depends on the task and can be based on various metrics such as
information gain, entropy, or Gini impurity. The goal is to find the splits that result in
the greatest reduction in the impurity or uncertainty of the output variable, while

minimizing the complexity of the tree.

The decision tree can be represented by a binary tree structure, where each internal
node represents a decision on a specific feature, and each leaf node represents a

predicted output value. The decision rules for each node can be represented by a

Boolean function of the input features, which determines which branch to follow based

on the value of the input feature.

More specifically, the decision tree algorithm can be summarized as follows:

1.
2.

Define a root node for the tree.

Select the feature that best discriminates the training data, based on the splitting
criterion.

Create a new internal node for the selected feature.

Create a branch for each possible value of the selected feature.

Recursively apply steps 2-4 to each branch, using the remaining features and
training data.

Stop splitting when a stopping criterion is met, such as a maximum depth or a
minimum number of samples per leaf.

Assign a predicted output value to each leaf node, based on the majority class

or the mean value of the training data in that leaf.

Once the tree has been constructed, it can be used to make predictions on new, unseen

data. The prediction is made by traversing the tree from the root to the leaf node that

corresponds to the input features, based on the decision rules represented by the edges.

Support Vector Machines (SVM):

Support Vector Machines (SVM) (15) are a widely used algorithm in machine learning

for classification and regression tasks. The basic idea behind SVM is to find the

hyperplane that maximally separates the data into classes or predicts the output variable

with the smallest error.

In binary classification tasks, the hyperplane can be represented by the equation:

wlix +b =0

where w is the weight or coefficient vector, x is the input feature vector, and b is the

bias term. The hyperplane divides the input space into two regions, one for each class.

The distance between the hyperplane and the closest data points from each class is

called the margin.

The goal of SVM is to find the hyperplane that maximizes the margin, subject to the
constraint that all data points are correctly classified. This is typically done using an

optimization algorithm such as quadratic programming.

In cases where the data is not linearly separable, SVM can be extended to use a kernel
function that maps the input features to a higher-dimensional space, where the data
may become linearly separable. Common kernel functions include the linear kernel,

polynomial kernel, and radial basis function (RBF) kernel.

Once the hyperplane has been found, it can be used to make predictions on new, unseen
data. The predicted class for a given input feature is determined by the sign of the

hyperplane equation:

f(x) = sign(w'x + b)

where sign() is the sign function that returns +1 or —1 depending on the sign of its

argument.

SVM is a powerful algorithm that can be applied to a wide range of classification and
regression tasks, and is particularly useful in cases where the data is not linearly
separable. However, SVM can be sensitive to the choice of kernel function and
hyperparameters, and may suffer from scalability issues when dealing with large

datasets.

Random Forest:

Random forest (15) is a widely used ensemble learning algorithm in machine learning
for classification and regression tasks. The basic idea behind random forest is to build
multiple decision trees on randomly sampled subsets of the input data and features, and

then combine their predictions to improve the accuracy and robustness of the model.

Each decision tree in the random forest is constructed using a random subset of the
input data, sampled with replacement (i.e. with bootstrapping). Additionally, at each
node of the tree, only a random subset of the input features is considered for splitting,

in order to introduce diversity and reduce overfitting.

The final prediction of the random forest is made by aggregating the predictions of all
the decision trees, either by taking the majority vote for classification tasks, or the

average or median for regression tasks.

The random forest algorithm can be summarized as follows:

e Select the number of decision trees to build (n_estimators) and the size of the
random feature subset (max_features).

e For each decision tree, randomly sample a subset of the input data with
replacement.

e For each node of the tree, randomly select a subset of the input features of size
max_features.

e Split the data at each node based on the selected feature that best discriminates
the data, using a splitting criterion such as information gain, entropy, or Gini
impurity.

e Grow the tree until a stopping criterion is met, such as a maximum depth or a
minimum number of samples per leaf.

e Repeat steps 2-5 for all decision trees.

e Aggregate the predictions of all decision trees to obtain the final prediction.

Random forest is a powerful algorithm that can be applied to a wide range of
classification and regression tasks, and is particularly useful in cases where the data is
noisy, high-dimensional, or has complex nonlinear relationships. However, random
forest may require tuning of hyperparameters such as the number of decision trees, the
size of the random feature subset, and the stopping criteria, in order to achieve optimal

performance.

Convolutional Neural Networks (CNNs):

Convolutional Neural Networks (CNNs) (13) are a powerful class of neural networks
commonly used in image and video recognition tasks. CNNs leverage a mathematical
operation called convolution, which allows the network to learn and extract features

from images.

The basic idea behind CNNs is to use a series of convolutional layers to extract
progressively more complex features from the input image, followed by one or more

fully connected layers to classify the image based on the extracted features.

The convolutional layer works by sliding a small window called a filter or kernel over
the input image and computing a dot product between the filter weights and the pixel
values in the window. This produces a feature map that highlights certain patterns or

features in the image, such as edges, corners, or textures.

The output of the convolutional layer can be further processed using non-linear
activation functions such as ReLU (Rectified Linear Unit) to introduce non-linearity

and improve the model's ability to learn complex features.

CNNs also commonly use pooling layers, which downsample the feature maps by
taking the maximum or average value of a small region of the map. This reduces the

spatial resolution of the feature maps, while preserving the most salient features.

The final layers of the CNN typically consist of one or more fully connected layers,

which use the extracted features to make a prediction about the class of the input image.

CNNs can be trained using backpropagation and gradient descent, with the objective
of minimizing a loss function such as cross-entropy between the predicted and actual

class labels.

3.4

fc 3 fc 4

Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A K—M
(5 X 5) kerr.1el Max-Pooling (5 X 5) kerr.1el Max-Pooling (with
valid padding (2x2) valid padding (2x2) desponi)

@ ; @o
O . 1
.' X .
O

@9

/ OUTPUT

INPUT nl channels nl channels n2 channels n2 channels
(28 x28x1) (24 x24 xnl) (12x12xnl) (8 x 8 xn2) (4x4xn2)

Figure 7: CNN Architecture (16)

The equations for CNNs are complex and depend on the specific architecture and
parameters of the network. However, the basic idea behind the convolutional layer can

be represented by the equation:

hi, j, k) = ReLU(Z(x(p, Gr)x wi—p+1j—q+1rk) + b(k)))

where h(i, j, k) is the output feature map at position (i, j) and channel k, x(p, q, 1) is
the input image pixel at position (p, q) and channel r, w(i, j, 1, k) is the weight or filter
at position (i, j) and channel r and k, b(k) is the bias term for channel k, and ReLU ()

is the rectified linear unit activation function.

Other Technologies for Building Applications

Building user-friendly applications is a complex task that demands a comprehensive
understanding of various technologies and tools. To create an intuitive user
experience, it is crucial to have a deep understanding of the principles of user interface
design. Additionally, advanced tools such as Flask, OpenCV, Scikit-Learn, Pandas,
NumPy, and TensorFlow can be utilized to develop powerful applications with

cutting-edge features.

Furthermore, the development of functional web pages and user interfaces requires
proficiency in front-end development tools such as HTML, CSS, Bootstrap, and
JavaScript. Keeping up-to-date with the latest trends and best practices in user
interface design and front-end development is crucial for delivering a user-friendly
experience. This necessitates continuous learning and staying informed about

emerging technologies and tools in the field.

Flask Framework:

Flask is a lightweight web framework (17) for Python that is widely used for building
web applications and APIs. Flask provides a simple and flexible architecture for
handling HTTP requests and responses, and supports a wide range of extensions and

plugins for database access, authentication, and other functionality.

OpenCV:

OpenCV (18) is a popular computer vision library that provides a wide range of tools
and functions for image and video processing, including feature detection, object
recognition, and tracking. OpenCV can be used with a wide range of programming
languages, including Python, and is widely used in applications such as robotics,

autonomous vehicles, and medical imaging.

Pandas:

Pandas (19) is a data manipulation library for Python that provides powerful tools for
working with structured data, including data frames and time series. Pandas can be
used to load, clean, and transform data from a wide range of sources, and provides a

wide range of functions for statistical analysis and visualization.

NumPy:

NumPy (20) is a numerical computing library for Python that provides support for
arrays, matrices, and other numerical data structures. NumPy provides a wide range of
functions for mathematical and scientific computing, including linear algebra, Fourier

analysis, and random number generation.

TensorFlow:

TensorFlow (21) is an open-source machine learning library developed by Google that
provides a wide range of tools and functions for building and training machine learning
models. TensorFlow supports a wide range of neural network architectures, including
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep

belief networks (DBNs).

These libraries can be used together to build powerful and flexible machine learning
applications. For example, OpenCV can be used to preprocess images and extract
features, Pandas and NumPy can be used to load and manipulate data, and TensorFlow
can be used to build and train machine learning models. Flask can be used to create a
web application that exposes the machine learning model as an API, allowing users to

submit data and receive predictions in real time.

Scikit-Learn:

Scikit-Learn (also known as sklearn) (22)is a popular machine learning library for
Python that provides a wide range of tools and functions for building and evaluating
machine learning models. Scikit-Learn includes a wide range of algorithms for
classification, regression, clustering, and dimensionality reduction, as well as tools for

data preprocessing, feature selection, and model evaluation.

One of the key features of Scikit-Learn is its consistency and ease of use, which makes
it easy for developers and data scientists to build and evaluate machine learning
models. Scikit-Learn provides a consistent interface for all of its algorithms, with a
similar set of functions and parameters for each model. This makes it easy to switch

between different models and compare their performance.

Scikit-Learn includes a wide range of algorithms for classification, including logistic
regression, support vector machines, decision trees, random forests, and neural
networks. Scikit-Learn also includes algorithms for regression, clustering, and
dimensionality reduction, as well as tools for model selection and hyperparameter

tuning.

Scikit-Learn is built on top of other popular Python libraries, including NumPy, SciPy,
and Matplotlib, and provides integration with other tools such as Pandas and Jupyter
notebooks. Scikit-Learn also includes a wide range of tools for data preprocessing and

feature engineering, such as scaling, normalization, and imputation.

4 Practical Part

4.1 Data Collection

After completing my background study, I realized the need for collecting a large
amount of data. To achieve this, I developed a system that could collect data from
multiple individuals. The system was designed using PHP, HTML, CSS, and
JavaScript, and it consisted of an online HTML scratch form hosted on a server. |
distributed the form to around 50 people, and 30 of them responded by providing us
with data.

The system was used to collect data on Bangla and English alphabets as well as Bangla
and English digits. All the data collected was downloaded from the server and

separated into different folders for ease of use.

Overall, the system proved to be an effective method for collecting the required data.
Its online-based interface made it easy to distribute the form to multiple individuals
and gather data from them. The collected data would prove to be valuable for my

research, and I was grateful to have developed such a functional and efficient system.

o2

H4l 9|8
al | x| oyl 2
sﬂ’.u-a
X 26 &
Al 4lc| o
HAlalals
URRC Gldﬁ

&)

AR ZRZAE AT RS A B

Figure 8: Data Collections System

I was able to collect a total of 4265 data entries through the system that I had
developed. This data was classified into different categories based on the type of data

collected.

Out of the total data collected, 740 data entries belonged to the Sorborno class, 1648
data entries belonged to the Benjonborno class, 1063 data entries belonged to the
English Alphabet class, 367 data entries belonged to the Bangla Digit class, and 448
data entries belonged to the English Digit class. Unfortunately, there were some data
entries that I was unable to classify, and they were deemed garbage data that I did not

use in my analysis.

Number of Image Data

Tcd3ed504b2dcd
1ch3f8f3d67defD
dec.png

A\

A%baadobecf2ab3
4b82768feT5c3ffh

a.png

.'ﬁ\

2513f9500a881f2a
10dcdbecccssd
bf.png

Own system data collection chart

1648
i
1500 -
0 s
ERFA K
400 -
0
N P N A° N
o/ o/ o/ o/ 1
Ve Ve R4 X7 R4
o"(\o o"ﬁ\o oM & S
N N P & &
P 3 4 > S
Q’O(\ R \{;Q &
&®

Category Nmae

Figure 9: Own System Data Collection Chart

3b4f23418e52061
de778bfeT7f2001f

J.png

FE\\
66fBe9d9297ef3c

e30ebbba7322e01
Tf.png

A

i

4800ca%83alaeed
Ta7dd1c78260f40
ch.png

Here I attached the collected data view.

A

3f0945756337a5cf
bf6136d7fbe30f6

a.png

T0d7c8eacl63fod
2c154859F0441038

B.png

6350ef866a20ddb
2cBeaatf21041df
ab.png

Belb1f20238e351

968112727d0befd
6f.png

4535ccac931745%0

3418c423e170ed0
dd.png

39556e088c12055

3b609db264475a
eBb.png

Figure 10: Collected Data English Alphabets

6f31a734a343efb
33747f685241270
22.png

A

525b9e962b4a975
4315e5675f32046
42.png

A

T558792e72d130k
2a7f348f leaiclee

7.png

A

Th2cd1d9cof2abl
d72ebbe5ecalce

ec.png

a

643aa566e86b50e
Qa7fob01c3ccdld
fi.png

A

594101346e748de
G422 cec2466fd
Sc.png

| T\ ~ — e —
< 5 D, "z D,

— (._) 2 =i _i_ 2
0daed0b0e31069c 2bdeddaefblbca 2bf3d0383e233be 2cc10e7533580abb 2f33fcf20f32f280c 3edBc73370 Tech
5b116e05899c3f6 e3e205720131f41 017F7765c9763b3 d7de50c8e02419e acdf5cel9f5162c. 9294chbfcfl2Tfa

4b.png d39.png Bb.png Se.png png png

- 1 —_— S—
- \E — Am— ™y — i .
- w4 =) J .

_ — 2 < Py -
9cb795caf01f8dd 24db23d350ba34 6Bbc7f1b16093f7 74e352201223783 077ebafd861bbal 91f3b1f7396126f1
d12b5f825eb8530 ec2e230c2calcl3d b81a7d31c3cd2c 319083e1353dcB4b eb7ball133%24aal f2ab4353066bE1T

84.png fla.png dBe.png 8a.png 97.png 9.png

]] .) .,) -

/A O ! F — ey

g,) T_,_/\ = ay A

< S . L _T_,.ﬁ. F
T34c0e¥126e7202 T87f0b2049b28bd B0dbfd0abdelfbl B00fAffdT0739951 1813b2e781caall 9050f4cbh3a991f3f
a5d34246b61e3dc 36d1eflddc3fa? b41albBE780533e3 9931b3cE01ca?df 7fb2e3e0c0038ef cadlbb94f3d205a

el.png b3f.png 81.png c.png 15.png a.png

— ™~ = e) -
< <J) — f J _#
T < T < <=
982125407c06bd% a%9f2ebbf2dfed7 a900146d8c033fc aalaelB2B5f39454 aaT02c002b0624e aff3847c0flalldd
18al7eedadddd3 Dad2bfee32d3ble 0573d3f75fc2fddd ed0cb382004dd> 4814aacdbclede 9aB36341e0dBach
becepng 2d.png S.png 242.png Sde.png 4.png
Figure 11: Collected Data Bangla Sorborno
D\ ' FAYEE s ; L R Y -
) Q. o 2 | I
D] > 9] 91 23 2]
0d7fb5d7ac34369 Of0bcd0adeldl45f 2ach03B5calf799 2c40736837464b4 2ef002213094e69b 4a5cB325bchb2Tee
19d89cd2f27alcd 8eb8df3613d8158 f81b05de33dcv60 23abf3cca7d03f12 0113823228%a7ca d1d5519833a5f7f
14.png 33.png 63.png 9.png 4. png al.png
- — -~ =) |
o o~ - -~ {' — 1 (__; \ ", =
f % o | _/ | \ L} - -~ |
'\._/;: \; —.{ _ J }/"""—- ___)\\- I|I y _J
|
7b3c14b16625162 Th7135923db018 7d515d4686e81d Zeab4146c93e271 8f2e31celdd192c BFOBIIFTI8T1EdT
1ebb65562e8596f8 14eff2fd6ed091b9 195a04abbc3bbd7 cced25e386faeff7 33a8d7cfd3494a5 4dadbf61476b1e
cl.png 23.png bE3.png a.png ed.png bf3.png
o P e o, — e >
4 2 | ¢ O G\

- i A\ J 4 =
T2f5ecelbabc328f TOedf1fofdf366b5 95e8d%9eaeld1883 133ad7a%b0f5221 403acd9684870ad4 413ddOfbOf36f0e
5960435283e9284 33b3af14b7878f7 4b74266326419d5 32dfBbafcdeldel 578833cff416c41 TVb4ff1b7cdelb

epng d.png Ze.png c9.png dd.png 46.png

Figure 12: Collected Data Bangla Benjonborno

4 q A ~1 Al (
/ 1 / | |
L — [-
DafdcB3fiecab93 ObSb23ccelbadf 0d3ac737fob3724 1a7571476b72fal 02e428695bEb0fb 3baflbc326alf2d 3ed4f7053dEbddb
Of70f34074fad4a7 b513eB260038899 ffcdeBBcb3cBalcs 1eelbdc07E020f2 GacDBflBcf3b021 10clcad9eb2bdfc d21c7e791cd3bce
9.png 076.png T.png 10.png 8b.png 51.png Tef0.png
/1 il J.‘I A o w
r '-: f | |
- i A L 1
5dd9%f27eallaad4 Tcdddd0e2f25b4 7db9dce9423475 3d112a8197c9e58 B8d489c3bThE707 9e30899%fdbdcla 14eabff342bd12a
239bf79d65728af 20213eca3b73fef d6fd0B93c7efe3a 216cac2bb49ad3d 2e5f048c7ebbdbb 2b35820162%db7 4261e7b372bdab
Jc.png cBd.png fec.png 93.png Jef.png bfd.png 4%e.png
s \ 1 / { \". ~] ,';-
y \ \ \ VA
s : 1 A
61c7a84520b5451 70c733b638abc% 87f70cd09585435 96bTee532e5b626 403f579071269d5 655c70def36f046 988be090cd267ab
7f3b9ch38f39136 512eeBel240cBBe b2faicdB4034297 4648edlceT3aedd SfHfb07c2ad9092 0002a6673eedbfa 3bc71498c67dd4
20.png dd.png ed.png 40.png 38.png 46.png cch.png
Figure 13: Collected Data English Digit
r R P) . o
1% . ¢) g — §
laefdd7803972d9 1b138592d5f7301 3b756d38chalde 4d1f3369¢7clb3d 4df16adbcdfEb7l 5ac179ceb%e9d3c 5Sb3clel3l3el2bff
:acB94aabff81153 9ccdBdff5cb305a dbdBcaac7ldi3 dfE3c3a472e0008 cab3864fca30lNs 324cd162abela?d ef763d7908bb199
S.png T8.png 16f6.png cZ.png Ob.png df.png 13.png
= — . - .
7 —1) &)
- — x,_'al : O . ‘;I = n
7 . >
3b4353238f0c5d5 6cdef331fodef10d 6d3f39662db5f64 6d107d99fb83fc2 Ged2ebbldef750a TcedT32cBbd2be 0D8fcddb10bEF593
jaaaeead267cff20 beb09d33a30673 2ebbf78e13cd1b 243b06b33d34% e2lccbffabi9844 6f3cTdb2f967c99 01b2ed310e637c]
7.png cepng edl.png Il.png Da.png 423.png 8d.png
~ - —) -
~ ~) o o > o \
Y — =
39341 7fb5098d3 25f0ef400d3d2c8 32c21Baelffadelc 36deBT17ed2azfc 40c40dal14b874 B0f7e368b14a3b3 Blealafalfic3b7
3dedaadalfl252 Beec2dflf7fEb965 TB7ECFTEf9035af0) f403cf73Badbd8c d1d0Bfch121671 3%9ebc3beb298cd2 c0TB08052fa05a1
dc.png S.png .png 60.png 6ed.png le.png 2.png

Figure 14: Collected Data Bangla Digit

After collecting the data, I pre-processed it and run it through various algorithms in
the Scikit-Learn library. Unfortunately, all of these algorithms provided very poor
accuracy when applied to my data. While Support Vector Classification (SVC)
provided slightly better accuracy than other algorithms I used, it still fell short of

acceptable levels.

4.2

I went back to studying and learned about the Convolutional Neural Network (CNN)
algorithm. I discovered that this algorithm is best for image and video, suited for large
datasets and realized that I needed more data to apply it effectively. As a result, |

collected additional image data from various sources to enhance my dataset.

Collected Image data Chart

© 77167
T 80000
% 70000
60000
& 50000 el 31330
£ 20000 21783 1974 26000
% 30000
= oNe
2 10000
c 0
=}
= N D N A° N NI
s (%4 (Y% (9% (Y4 (9
,\(\O / é\o s &{,\. / *oé’& s/ . &{’\. ’ @QQ’ 7/
{oo © @ @ ~<5)
(‘)O \OQ (\QO ,}Q oé\")
Q)OQ Q;b \{:}\ ‘é\
¥

Category of Data

Figure 15:Collected Data From Various Sources (23) (24) (25) (26)

The Sorborno_C_10 category encompasses 10 subcategories of Bengali vowels, while
the Bonjonborno_C_39 category consists of 39 subcategories of Bengali consonants.
Bengali digits include numbers from 0 to 9. In addition, English Alphabets_C_26
represents 26 subcategories of characters, ranging from A to Z. English Digit_10
comprises 10 subcategories of numbers, spanning from 0 to 9. Lastly, Shape_C_16
includes 16 distinct subcategories of shapes, such as apple, bird, book, butterfly,
candle, chair, circle, cup, fish, flower, house, line, square, star, tree, and triangle.
Ultimately, the comprehensive dataset encompasses a total of 216,028 handwritten
images, providing a rich and diverse collection for analysis.

Data Pre-processing

Data pre-processing is a crucial step in preparing data for analysis. Prior to running
the algorithms, I needed to pre-process the images to ensure they were in a format that
the algorithms could handle. Pre-processing can involve various techniques such as
normalization, resizing, and image augmentation to improve the quality and

consistency of the data.

To pre-process my data, I employed a range of methods that were customized for my
system. These steps were necessary to prepare the images for analysis by the
algorithms. A detailed description of the pre-processing steps, along with a figure, is

provided below.

4.2.1 Inverted Image

To invert an image in Python, I used the OpenCV library. Here is the code that

demonstrates how to invert an image:

import cv2

Load the image
img = cv2.imread('input_image.jpg’)

Invert the image using bitwise NOT operation
inverted_img = cv2.bitwise_not(img)

Save the inverted image
cv2.imwrite('inverted_image.jpg', inverted_img)

x

Figure 16: Snapshot of Inverted Image code

Original Image Inverted Image

In the code provided, I first loaded the input image using the ‘cv2.imread()’ function.
Then I inverted the image using the ‘cv2.bitwise_not()’ function, which performed a
bitwise NOT operation on each pixel of the image. Finally, I saved the inverted image

using the ‘cv2.imwrite()’ function.

4.2.2 RGB to grayscale

To convert an RGB image to grayscale in Python, I used the OpenCV library. Here is

the code that demonstrates how to convert an image from RGB to grayscale:

4.2.3

import cv2
color_image = cv2.imread('input_image.jpg')

Convert the image to grayscale
gray_image = cv2.cvtColor(color_imagh, cv2.COLOR_BGR2GRAY)

Save the grayscale image
cv2.imwrite('gray_image.jpg', gray_image)

Figure 17: Snapshot RGB to Grayscale code

Input Image RGB (23, 240, 144) Output Image grayscale (45, 245)

In the code provided, I first loaded the input image in color mode using the
cv2.imread() function. Then I converted the image to grayscale using the
cv2.cvtColor() function, which took the input image and the color conversion code
as arguments. The color conversion code cv2.COLOR_BGR2GRAY specified that
the input image was in BGR format and should be converted to grayscale. Finally, I
saved the grayscale image using the cv2.imwrite() function. In the above example,
the two images are not a good example. However to clarify, the basic difference

between them is that RGB is 3 dimensional and grayscale is 2 dimensional image.

Image Contour Detection

To detect contours in an image using Python and OpenCV, I used the
cv2.findContours() function. Here is the code that demonstrates how to find and

draw contours in an image:

import cv2

Load the input image in grayscale mode
image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE)

Apply edge detection to the image
edges = cv2.Canny(image, 109, 208)

Find contours in the image
contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

Draw the contours on the original image
image_contours = cv2.drawContours(image, contours, -1, (@, 255, 8), 2)

Save the output image
cv2.imwrite('output_image.jpg', image_contours)

Figure 18: Snapshot of Image Contour Detection Code

¥ tagged — O X

Input Image Output Image

In the above code, I first loaded the input image in grayscale mode using the
cv2.imread() function with the cv2.IMREAD_GRAYSCALE flag. Then I applied
edge detection to the image using the cv2.Canny() function, which detects the edges

in the image based on the gradient of the pixel intensities.

Next, I found the contours in the image using the ¢v2.findContours() function, which
takes the edge-detected image, retrieval mode, and contour approximation method as
arguments. The contours were returned as a list of points, along with a hierarchy of

nested contours if applicable.

Finally, I drew the contours on the original image using the cv2.drawContours()
function, which takes the input image, list of contours, contour index (set to -1 to
draw all contours), color, and thickness as arguments. I saved the output image using

the cv2.imwrite().

4.2.4 Image Resize

Here is a Python code snippet to resize an image using the OpenCV library:

import cv2

Load the input image
img = cv2.imread('input_image.jpg')

Get the current dimensions of the image
height, width = img.shape[:2]

Specify the desired dimensions for the output image
new_width, new_height = 28

Resize the image using the cv2.resize() function
resized_img = cv2.resize(img, (new_width, new_height))

Save the resized image to file
cv2.imwrite('output_image.jpg’', resized_img)

Figure 19: Snapshot of Image Resize code

O

Input Image size are different

Output Image are specific size(28x28)

In the above code, I first loaded the input image using the cv2.imread() function.

Then, I used the shape attribute to get the current height and width of the image.

Next, I specified the desired dimensions for the output image using the new_width
and new_height variables. I used the dimension 28x28 to reduce memory usage.
This dimension returned a numpy array of size 784. Then I resized the image using
the cv2.resize() function and saved the output image using the cv2.imwrite()

function.

4.3 Training the Algorithms and Comparison

In this section, I will delve into a thorough comparison between various algorithms,
ultimately selecting the best one based on a comprehensive evaluation. To substantiate
my choice, I will provide detailed explanations and reasoning behind the decision.
Furthermore, 1 will present statistics gathered from running each algorithm on my

dataset, which will demonstrate their respective strengths and weaknesses.

Additionally, I will share code snippets and visualizations to offer readers a clear
understanding of the implementation and performance of the chosen algorithm. This in-
depth analysis will serve as a valuable guide for those seeking to implement the most

effective solution for their specific problem.

4.3.1 Training Gaussian Naive Bayes

I began by implementing the Gaussian Naive Bayes (GaussianNB) algorithm on my
custom dataset, which focused on the Sorborno category. The dataset was partitioned
into training and testing subsets:

e The dataset consisted of a total of 740 data points.

e 593 of these data points were allocated for training the model.

e The remaining 147 data points were used to test the model's performance.

importing necessary libraries
from pathlib import Path

from skimage.io import imread

from skimage.transform import resize
from sklearn.utils import Bunch
import matplotlib.pyplot as plt
import numpy as np

from sklearn import datasets

from sklearn.metrics import confusion_matrix

from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianhB

Figure 20: Importing all the required library for the Gaussian Naive Bayes

def load_image_files(container_path, dimension=(64, 64)):
image_dir = Path(container_path)
folders = [directory for directory in image_dir.iterdir() if directory.is_dir()]
categories = [fo.name for fo in folders]

descr = "A image classification dataset”

images = []

flat_data = []

target = []

for i, direc in enumerate(folders):

for file in direc.iterdir():

img = imread(file)
img_resized = resize(img, dimension, anti_aliasing=True, mode='reflect')
flat_data.append(img_resized.flatten())
images.append(img_resized)
target.append(i)

flat_data = np.array(flat_data)

target = np.array(target)

images = np.array(images)

return Bunch(data=flat_data,
target=target,
target_names=categories,
images=images,
DESCR=descr)

Figure 21: Defining the function process my data into the algorithm

image_dataset = load_image_files("outdata/")

[16]: |X_train, X_test, y _train, y_test = train_test_split(image_dataset.data, image_dataset.target, random_state 5

4 >

training a Naive Bayes classifier
gnb = GaussianNB().fit(X_train, y_train)
gnb_predictions = gnb.predict(X_test)

accuracy on X_test
accuracy = gnb.score(X_test, y_test)
print (accuracy)

creating a confusion matrix
cm = confusion_matrix(y_test, gnb_predictions)

©.3763440860215054

Figure 22: GaussianNB Algorithm Using scikit-learn

Here loading dataset and splitting the training and testing set. Upon applying the
GaussianNB algorithm and evaluating its performance based on the test and train

datasets, the model achieved an accuracy of 37%.

4.3.2 Training K-Nearest Neighbors Classifier

Next, I implemented the K-Nearest Neighbors Classifier (KNeighborsClassifier)
algorithm on the same custom dataset focused on the Sorborno category. The dataset
was again divided into training and testing subsets:

e The dataset comprised a total of 740 data points.

e 593 of these data points were allocated for training the model.

e The remaining 147 data points were utilized to test the model's performance.

importing necessary Libraries

from pathlib import Path

from skimage.io import imread

from skimage.transform import resize
from sklearn.utils import Bunch
import matplotlib.pyplot as plt
import numpy as np

from sklearn import datasets

from sklearn.metrics import confusion_matrix

from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

Figure 23: Importing all the required library for the KNeighborsClassifier

image_dataset = load_image_files("outdata/")

plt.imshow(image_dataset.images[3e@])
plt.show()

X_train, X_test, y_train, y_test = train_test_split(image_dataset.data, image_dataset.target, random_state =
»

training a KNN classifier

knn = KNeighborsClassifier(n_neighbors = 7).fit(X_train, y_train)
accuracy on X_test

accuracy = knn.score(X_test, y_test)

print (accuracy)

creating a confusion matrix

knn_predictions = knn.predict(X_test)
cm = confusion_matrix(y_test, knn_predictions)

©.1935483870967742

Figure 24:KNeighborsClassifier Algorithm using scikit-learn

Here I did same process loading dataset and splitting the training and testing set Upon
applying the KNeighborsClassifier algorithm and evaluating its performance based

on the test and train datasets, the model achieved an accuracy of 19%.

4.3.3 Training Support Vector Classifier

Subsequently, I implemented the Support Vector Classifier (SVC) algorithm on the
same custom dataset focused on the Sorborno category. The dataset was divided into

training and testing subsets, just as before:

e The dataset consisted of a total of 740 data points.
e 593 of these data points were allocated for training the model.

e The remaining 147 data points were used to test the model's performance.

importing necessary Libraries

from pathlib import Path

from skimage.io import imread

from skimage.transform import resize
from sklearn.utils import Bunch
import matplotlib.pyplot as plt
import numpy as np

from sklearn import datasets
from sklearn.metrics import confusion_matrix

from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

image_dataset = load_image_files("Training/")

X_train, X_test, y_train, y_test = train_test_split(image_dataset.data, image_dataset.target, random_state = @)

training a Linear SVM classifier

[1, 18, 1ee, 1eee]

svm_model_linear = SVC(kernel = 'linear’', C = 16008).fit(X_train, y_train)
svm_predictions = svm_model_linear.predict(X_test)

model accuracy for X_test
accuracy = svm_model_linear.score(X_test, y_test)
print(accuracy)

Figure 25: Training SVC code snapshot using scikit-learn

Upon applying the SVC algorithm and evaluating its performance based on the test

and train datasets, the model achieved an accuracy of 66%.

4.3.4 Training Random Forest Classifier

Subsequently, I implemented the Random Forest Classifier algorithm on the same
custom dataset focused on the Sorborno category. As with the previous algorithms, the

dataset was divided into training and testing subsets:

e The dataset comprised a total of 740 data points.
e 593 of these data points were allocated for training the model.

e The remaining 147 data points were utilized to test the model's performance.

from pathlib import Path

from skimage.io import imread

from skimage.transform import resize

from sklearn.utils import Bunch

import cv2

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix

image_dataset = load_image_files("outdata/")
X_train, X_test, y_train, y_test = train_test_split(image_dataset.data, image_dataset.target, test_size=8.2)

classifier = RandomForestClassifier(n_estimators = 1@, criterion = 'entropy', random_state = 42)
classifier.fit(X_train, y_train)

Figure 26: Training Random Forest Classifier code snapshot using scikit-learn

Upon applying the Random Forest Classifier algorithm and evaluating its
performance based on the test and train datasets, the model achieved an accuracy of

44%.

4.3.5 Training Decision Tree Classifier

Lastly, I implemented the Decision Tree Classifier algorithm on the same custom
dataset focused on the Sorborno category. As with the other algorithms, the dataset

was divided into training and testing subsets:

e The dataset consisted of a total of 740 data points.
e 593 of these data points were allocated for training the model.

e The remaining 147 data points were used to test the model's performance.

importing necessary libraries

from pathlib import Path

from skimage.io import imread

from skimage.transform import resize

from sklearn.utils import Bunch

import matplotlib.pyplot as plt

import numpy as np

import cv2

from sklearn import datasets

from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

image_dataset = load_image_files("Training/")
X_train, X_test, y_train, y_test = train_test_split(image_dataset.data, image_dataset.target, random_state = ©)
training a DescisionTreeClassifier

dtree_model = DecisionTreeClassifier(max_depth = 2).fit(X_train, y_train)
dtree_predictions = dtree_model.predict(X_test)

creating a confusion matrix
cm = confusion_matrix(y_test, dtree_predictions)

Figure 27: Training Decision Tree Classifier code snapshot Using scikit-learn

Upon applying the Decision Tree Classifier algorithm and evaluating its performance

based on the test and train datasets, the model achieved an accuracy of 52%.

4.3.6 Comparison

After applying various classification algorithms to the custom dataset focused on the

Sorborno category, the following accuracies were obtained:

Comparison Accuracy Chart

Decision Tree Classifier _ 52%
Random Forest Classifier _ 44%
Support Vector Classifier _ 66%
K-Nearest Neighbors Classifier _ 19%
Gaussian Naive Bayes _ 37%

0% 10% 20% 30% 40% 50% 60% @ 70%

Figure 28: Comparison Chart between above algorithms

4.4

Based on these results, the Support Vector Classifier (SVC) outperforms the other
algorithms, achieving the highest accuracy at 66%. On the other hand, the K-Nearest
Neighbors Classifier yields the lowest accuracy at 19%, making it the least effective
option among the tested algorithms. Although the Support Vector Classifier achieved
the highest accuracy among the tested algorithms, the performance is still not entirely
satisfactory for the problem at hand. Consequently, I decided to investigate
Convolutional Neural Network (CNN) algorithms further, as they may offer improved
results. In the subsequent sections of my literature review chapter, I will present a
detailed analysis of CNN algorithms and their outcomes, providing additional insights

to guide the selection of the most appropriate algorithm for this particular dataset.

Training The Convolutional Neural Network (CNN)

Leveraging the Convolutional Neural Network (CNN) algorithm, I plan to process my
collected dataset, which comprises multiple categories: Sorborno, Bonjonborno,
Bangla Digit, English Alphabet, English Digit, and 16 types of common shapes. For
each category, I will independently apply the algorithm, enabling a tailored approach

to capture the unique characteristics of each group.

In this section, I will focus on one specific category, Bonjonborno, which contains the
largest number of subcategories, totalling 39. End of the section I will show you
accuracy chart for rest of categories data. By concentrating on this category, I will

demonstrate the effectiveness of the chosen algorithm on a complex dataset.

Following the training process, I will save the resulting models for future utilization
within my applications. This approach ensures the development of specialized models
designed to address the specific needs of each category, thereby maximizing

performance and enhancing the overall effectiveness of the system.

4.4.1 Implementations of CNN on Bonjonborno Category

from pathlib import Path

from skimage.io import imread

from skimage.transform import resize

from sklearn.utils import Bunch

import matplotlib.pyplot as plt

from sklearn import datasets

import cv2

import pandas as pd

import numpy as np

%matplotlib inline

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

import tensorflow as tf

Importing the required Keras modules containing model and Layers
from keras.models import Sequential

from keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D
from tensorflow import keras

Figure 29: Imported all the required library for final outcome

In the provided code snippet, essential libraries and modules have been imported to
facilitate the implementation of the Convolutional Neural Network (CNN) algorithm.

These imports encompass the following functionalities:

e File and path manipulation using Path from the pathlib library.

e Image processing operations, such as reading and resizing images, through
imread and resize from the skimage.io and skimage.transform libraries.

e Dataset manipulation and visualization tools, including Bunch,
matplotlib.pyplot, and datasets from the sklearn.utils and sklearn libraries.

e Computer vision functionality provided by the cv2 library.

e Data manipulation and numerical computing using pandas and numpy
libraries.

e Machine learning utilities, such as train_test_split and StandardScaler, from
the sklearn.model_selection and sklearn.preprocessing libraries.

o Tensorflow framework, imported as ff.

e Keras modules containing essential model and layers for implementing CNN,
including Sequential, Dense, Conv2D, Dropout, Flatten, and
MaxPooling2D from the keras.models and keras.layers libraries.

e Keras integration with TensorFlow, imported from the tensorflow library.

These imports provide a comprehensive toolkit for developing, training, and
evaluating a CNN-based model for the targeted dataset, ensuring an efficient and

streamlined implementation process.

def load_image_files(container_path, dimension=(28, 28)):

image_dir = Path(container_path)
folders = [directory for directory in image_dir.iterdir() if directory.is_dir()]

categories [fo.name for fo in folders]
descr = "A image classification dataset™
flat_data = []

target = []

for i, direc in enumerate(folders):
for file in direc.iterdir():
cfile=str(file).replace('\\","/")
img = cv2.imread(cfile)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_resized = cv2.resize(gray, dimension)
flat_data.append(img_resized)
target.append(i)
flat_data = np.array(flat_data)
target = np.array(target)
return Bunch(data=flat_data,
target=target,
target_names=categories,
DESCR=descr)

Figure 30: This function pre-process the data and load data into model

The load_image_files function serves as a utility for pre-processing and loading image
data into a structured format, specifically a numpy array. It takes two parameters as
input: container_path, which represents the path to the folder containing the image
data, and dimension, which is a tuple indicating the desired dimensions for resizing

the images (default is set to 28x28 pixels).

Within the function, the following steps are carried out:

o The container_path is converted into a Path object, and the subfolders are
identified as individual categories.
e The description variable descr is initialized with the string "A image

classification dataset".

e Three lists, flat_data, target, and categories, are initialized to store the pre-
processed image data, corresponding category indices, and category names,
respectively.

e The function iterates through each category folder, reads and processes each
image file, and appends the pre-processed image data to flat_data and the
corresponding category index to target.

e Image processing steps include converting the image to grayscale using
cv2.cvtColor() and resizing it to the specified dimensions using cv2.resize().

o The lists flat_data and target are then converted to numpy arrays.

e Finally, a Bunch object is returned, containing the pre-processed image data,

target indices, category names, and dataset description.

By utilizing this function, the image data is effectively pre-processed and transformed

into a format suitable for further analysis, such as training a CNN-based model.

image_dataset = load_image_files("bbonno/")
x_train, x_test, y_train, y_test = train_test_split(image_dataset.data, image_dataset.target, test_size=0.2)

image_index = 716e # You may select anything up to 6e,eee
print(image_dataset.target[image_index]) # The Label is &
plt.imshow(image_dataset.data[image_index])

plt.show()

38

0 5 10 15 20 25

Figure 31: After Pre-processing the data plotting one image data

The code snippet provided executes the following steps:

o The load_image_files() function is called with the "bbonno/" path as its
argument, which loads and pre-processes the image data from the specified
directory, returning the image_dataset object.

e The dataset is then split into training and testing sets using the train_test_split()
function from sklearn.model_selection. It takes the image data, target labels,
and a test_size parameter as input (set to 0.2, representing a 20% split for the
test set). The function returns x_train, x_test, y_train, and y_test variables
containing the respective training and testing data and labels.

e The image_index variable is initialized with the value 7100, which is used to
select a specific image from the dataset for display.

e The corresponding target label for the selected image is printed using
print(image_dataset.target[image_index]).

e The selected image is displayed using
plt.imshow(image_dataset.data[image_index]), followed by a call to

plt.show() to render the image.

This code snippet demonstrates loading, pre-processing, and splitting the image
dataset, as well as displaying a specific image and its corresponding label from the

dataset.

Reshaping the array to 4-dims so that it can work with the Keras API
x_train = x_train.reshape(x_train.shape[©], 28, 28, 1)

Xx_test = x_test.reshape(x_test.shape[e], 28, 28, 1)

input_shape = (28, 28, 1)

Making sure that the values are float so that we can get decimal points after division
x_train = x_train.astype('float32")

x_test = x_test.astype('float32")

Normalizing the RGB codes by dividing it to the max RGB value.
x_train /= 255

x_test /= 255

print('x_train shape:', x_train.shape)

print('Number of images in x_train', x_train.shape[@])

print('Number of images in x_test', x_test.shape[@])

X_train shape: (61733, 28, 28, 1)
Number of images in x_train 61733
Number of images in x_test 15434

Creating a Sequential Model and adding the Layers

model = Sequential()

model.add(Conv2D (28, kernel_size=(3,3), input_shape=input_shape))

model .add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten()) # Flattening the 2D arrays for fully connected Layers
model .add(Dense (128, activation=tf.nn.relu))

model.add(Dropout(©.2))

model .add(Dense(39,activation=tf.nn.softplus))

Figure 32: Preparing the image data and creating a CNN model using Keras

The provided code snippet outlines the steps involved in preparing the image data and

creating a CNN model using Keras. Here is a summary of each step:

1. Reshape the input data (x_train and x_test) to 4-dimensional arrays to make
them compatible with the Keras API. Each sample is reshaped to a 28x28x1
array, representing a 28x28 pixel grayscale image.

2. Convert the input data's datatype to 'float32’ to ensure decimal values are
preserved after division.

3. Normalize the input data by dividing each pixel value by the maximum
possible value (255). This scales the pixel values to the range of 0 to 1, which
generally improves model performance.

4. Print the shapes of x_train and x_test along with the number of images in each
set.

5. Define the CNN model using a Keras Sequential model, which allows stacking

layers on top of each other. The model includes the following layers:

e A Conv2D layer with 28 filters, a kernel size of 3x3, and input shape set
to 28x28x1 (corresponding to the input images). This layer performs the
convolution operation.

e A MaxPooling2D layer with a pool size of 2x2, which reduces the spatial
dimensions of the feature maps.

e A Flatten layer, which flattens the 2D feature maps into a 1D array to be
fed into the fully connected layers.

e A Dense (fully connected) layer with 128 units and a ReLU activation
function.

e A Dropout layer with a rate of 0.2, which randomly drops a fraction of
the input units during training to prevent overfitting.

e A final Dense layer with 39 units (corresponding to the number of
classes) and a softplus activation function to produce the class

probabilities.

This code snippet prepares the image data and constructs a CNN model suitable for

classifying the images into one of the 39 categories.

model.compile(optimizer="adam’,
loss="'sparse_categorical_crossentropy’,
metrics=["'accuracy'])

model.fit(x=x_train,y=y_train, epochs=18)sS

Epoch 1/10

61733/61733 [] - 93s 1lms/step - loss: 1.5236 - accuracy: ©.5735 @s - loss: 1.5247 - accuracy
Epoch 2/10

61733/61733 [] - 92s 1lms/step - loss: ©8.8176 - accuracy: ©.7600

Epoch 3/1@

61733/61733 [] - 93s 2ms/step - loss: ©.6598 - accuracy: ©.8043 @s - loss: 0.6

Epoch 4/10

61733/61733 [] - 92s 1ms/step - loss: 8.5659 - accuracy: ©.8292

Epoch 5/18

61733/61733 [] - 92s 1ms/step - loss: ©.4972 - accuracy: ©.8489

Epoch 6/1@

61733/61733 [] - 92s 1ms/step - loss: ©.4454 - accuracy: ©.8618

Epoch 7/10

61733/61733 [] - 92s 1ms/step - loss: ©.3988 - accuracy: ©.8744

Epoch 8/1@

61733/61733 [] - 94s 2ms/step - loss: ©.3649 - accuracy: ©.8844 Bs - loss: ©.3649 - accuracy:
Epoch 9/10

61733/61733 [] - 94s 2ms/step - loss: ©.3357 - accuracy: ©.8934

Epoch 18/10

61733/61733 [] - 93s 2ms/step - loss: ©.308@ - accuracy: ©.9007

Figure 33: CNN model is compiled and trained

In the provided code snippet, the CNN model is compiled and trained using the

following steps:

1. Compile the model with the specified parameters:

e The optimizer is set to ‘adam’, a popular optimization algorithm for deep
learning models. It adjusts the model's weights based on the calculated
gradients to minimize the loss function.

e The loss function is set to 'sparse_categorical_crossentropy’, which is
appropriate for multi-class classification problems with integer labels. It
measures the dissimilarity between the predicted class probabilities and the
true class labels, and the optimizer aims to minimize this value.

e The performance metric is set to 'accuracy'’, which calculates the
proportion of correctly classified samples during training.

2. Train the model using the model.fit() method with the following inputs:

e Xx_train and y_train are the training dataset and corresponding labels,
respectively.
e epochs is set to 10, which represents the number of complete passes through

the entire training dataset. The model weights are updated incrementally

with each pass.

This code snippet compiles the CNN model with the specified optimizer, loss function,
and performance metric, and then trains the model on the provided training data for 10

epochs.

model.save('Bonjonborno.h5")

model.evaluate(x_test, y_testﬂ
15434,/15434 [::::::::::::::::::::::::::::::] - 5sg 34eus/5tep

[©.6448533180519385, ©.829596996307373]

Figure 34: saving the trained model and evaluating its performance

The provided code snippet demonstrates two actions: saving the trained model and

evaluating its performance on the test dataset.

1. Save the trained model: The model.save() method is called with the filename
'Bonjonborno.hS5'. This saves the model's architecture, optimizer, and learned
weights to an HDFS5 file. This allows you to reuse the model later without

retraining it, making it convenient for deployment in applications.

2. Evaluate the model: The model.evaluate() method is called with the test dataset
(x_test and y_test). This function calculates the model's performance on the
test dataset in terms of the loss function and the specified performance metric

(accuracy, in this case).

The output provided indicates that the evaluation process has completed, with the

following results:

Loss: 0.6448533180519385
Accuracy: 0.829596996307373 (approximately 82.96 %)

This shows that the model has achieved an accuracy of about 82.96% on the test

dataset, which is a relatively good performance.

image_index = ©
print(y_test[image_index])

plt.imshow(x_test[image_index].reshape(28, 28),cmap='Greys')
plt.show()

pred = model.predict(x_test[image_index].reshape(1, 28, 28, 1))
print(pred.argmax())

21

0

10
15
20

25

21

Figure 35: Inspect a single image and compare it to the model's predicted label

This code allows you to visually inspect a single image from the test dataset, display

its true label, and compare it to the model's predicted label.

4.4.2 The architecture of the Convolutional Neural Network (CNN) model

The flowchart provided above outlines the architecture of the Convolutional Neural
Network (CNN) model used for image classification. Here is a brief description of
each layer in the model:

1. Input: The input layer accepts grayscale images of size 28x28x1. This is the
starting point for the network, where raw image data is fed into the model.

2. Conv2D: The first convolutional layer uses 28 filters and a kernel size of 3x3
to extract features from the input image. This layer helps the model identify
patterns such as edges, corners, and textures present in the images.

3. MaxPooling2D: The max pooling layer with a pool size of 2x2 is used to
reduce the spatial dimensions of the feature maps, which helps to minimize
computational complexity and control overfitting.

Flatten: The flatten layer is responsible for converting the 2D feature maps
into a 1D vector. This transformation is necessary for connecting the
convolutional layers to the fully connected layers.

Dense: The first fully connected layer has 128 neurons and utilizes a ReLU
(Rectified Linear Unit) activation function. This layer enables the model to
learn non-linear relationships and complex patterns in the data.

Dropout: A dropout layer with a rate of 0.2 is included to prevent overfitting.
During training, this layer randomly drops out (i.e., sets to zero) a fraction of
the neurons, making the model more robust and less reliant on any single
neuron.

Dense: The final dense layer acts as the output layer, consisting of 39 neurons
and a Softplus activation function. It produces the predicted class
probabilities for each of the categories in the dataset.

Input
(28x28x1 grayscale image)

Conv2D
(28 filters, kemnel_size=(3,3))

MaxPooling2D
(pool_size=(2, 2))

|

Flatten

R N e

¥

Dense
(128 neurons,
activation=ReLU)

- »
v
' >
Dropout (0.2)
- l »
' >
Dense

(39 neurons,
acfivation=Sofiplus)

A l &

'l ™
Output (Predicted class .
probabilities) > \./'

. J
Figure 36: Architecture of CNN

The model is compiled with the Adam optimizer, sparse categorical crossentropy loss
function, and accuracy metric. The training process consists of 10 epochs, during
which the model learns to recognize and classify the different image categories.

4.4.3 Classification accuracy achieved by the CNN model

The chart presented here displays the classification accuracy achieved by the CNN

model for each category of data:

Categorical Accuracy Chart

100% 98%
’ 95% 96% 95%
95% 91%
90%
85% 82%
80%
75%
70%
N P > 4 N N
¢ ¢ o el o o
/ Ve 3 o
° ° oM 5 s® S
N & N < &
P N ® 9 &
< N4 & 5
&®

Figure 37: Categorical Accuracy Chart

The model has shown impressive performance across all categories, with the majority
of them achieving over 90% accuracy. The Bonjonborno_C_39 category has the
lowest accuracy at 82%, but this is still considered a reasonably good performance.
Overall, the CNN model has demonstrated its effectiveness in classifying the different

categories of data.

4.5 Implementing user interface.

4.5.1 Using Flask

This code is for a Flask web application that provides an interface for users to interact
with various image classification models. The application has several routes for
different classification tasks such as Bangla Sorbonno, Bangla Benjonbonno, English

alphabets, English numbers, Bangla numbers, and drawings.

new_model = keras.models.load_model('sorbonno.h5")
benjorbonno_model = keras.models.load_model('benjonbornno.h5")

english_model = keras.models.load_model('EnglishModel.h5")
drawing_model = keras.models.load_model('dwraing.h5")
english_digit = keras.models.load _model('english Digit.h5')
bangla_digit = keras.models.load_model('bangla_digit.h5")

t = time.localtime()
current_time = time.strftime("
pat="'static/images/"+str(current_time)+'.png'

app = Flask(__name__)

.config['MYSQL_HOST']

.config["MYSQL_USER']

.config['MYSQL_PASSWORD'] = '°
.config['MYSQL_DB'] = 'data'’

mysql = MySQL(app)

@app.route("/")
home():

Figure 38: Flask Code Snapshot

The code imports the necessary libraries, loads the pre-trained models, and defines the
Flask application routes. The application has different pages for each of the
classification tasks, where users can draw images that will be classified by the
corresponding model. The application saves the drawn images and makes predictions

using the appropriate model.

4.5.2 Using HTML, CSS, Bootstrap and JavaScript to designing the templates

This is an HTML template file for the home page of a website called "Hello Kid’s".
The page is designed to display a list of practice categories with images, titles, and
descriptions. Users can click on the "PRACTICE NOW" button under each category

to start practicing.

class=
Shorborno Shikhi
Start writing and see which Shorborno did you write by this website with full enjoyment. Try

href="{ f t }">PRACTICE NOW

Benjonborno Shikhi

writing and learning benjonborno with this website ry to learn and enjoy yourself.

href= 1 bang PRACTICE NOW

Alphabet

Figure 39: The snapshot of template design code

The file uses the Jinja2 templating engine for rendering dynamic content in the Flask
web application. It extends a "template.html" file, which should include the common

structure and layout for all pages on the website, such as the header and footer.

The main content of the page is organized into a grid of six categories: Shorborno
Shikhi, Benjonborno Shikhi, Alphabet, Drawing, English Digit, and Bangla Digit.
Each category is represented by a thumbnail image with an overlay containing the

title, description, and a "PRACTICE NOW" button.

Results and Discussion

After investing countless hours and tireless effort, I have successfully developed a
system that has exceeded all expectations. Upon visiting children both at their homes
and schools, I observed their immense attraction to the website. It captivated them as if
they were playing a video game. The platform's drawing feature and instantaneous

results piqued their curiosity and fueled their enthusiasm.

The students from various schools clamored for the opportunity to try this innovative
platform. They discovered that practicing on the website was far more enjoyable than
writing in their traditional exercise books. The auditory feedback, in which they could
hear the sounds corresponding to their written work, further heightened their
engagement. Eagerly, they delved into each topic available in the menu bar, one after

another, propelled by their newfound excitement for learning.

As the children continued to explore and engage with the platform, it became apparent
that the website was fostering a genuine love for learning. The innovative approach to
education seemed to tap into their innate curiosity, encouraging them to practice and
master new skills with a sense of joy and wonder. Teachers and parents alike noticed a
positive shift in the children's attitude towards learning, as well as significant

improvement in their academic performance.

Furthermore, the website's interactive and immersive nature inspired the children to
learn collaboratively. They shared their discoveries, challenges, and achievements with
each other, creating a supportive and dynamic learning community. This collaborative
environment not only fostered a strong sense of camaraderie among the students, but

also helped them develop essential communication and teamwork skills.

Ultimately, the success of this ground-breaking platform lies in its ability to create a
captivating and enriching educational experience for children. By seamlessly blending
learning with entertainment, it has transformed traditional education into a delightful
adventure, unlocking the unlimited potential of young minds and inspiring them to reach

for the stars.

5.1 Home Page

Welcome to the vibrant and intuitive homepage of our innovative learning system.
Here, children are presented with an array of engaging topics, each accompanied by a
visually appealing and descriptive image. This user-friendly design allows young
learners to effortlessly navigate through the platform and select the subject matter that

sparks their interest, inviting them to embark on a captivating educational journey.

HELLO KID'S Bangla ~ English Drawing Math

| SNERA T

Shorborno Shikhi

Start writing and see which Shorbomo did you write by
this website with full enjoyment. Try to practice and leam.

PRACTICE NOW

Figure 40: User Interface Home Page

5.2 Page Selection

In this illustrative example, a single topic is carefully chosen from the diverse range
of subjects available. Upon selection, learners are seamlessly guided to the dedicated
practice page for their chosen topic. In this particular case, "English Digits" has been
thoughtfully picked, providing an opportunity for young minds to delve into the

fascinating world of numbers and hone their skills.

English Digit

Start learming English ot and count anythng as you
wan Try 1o learm Bis and have fun with practice

Figure 41: Selecting Page “English Digit”

5.3 Sorborno (F44 "f) Page

This dedicated practice page is specifically designed for mastering Bangla Sorborno.
Learners can freely write any Sorborno they wish, exploring and experimenting with
the language. Should they desire to erase their work and start anew, the conveniently
placed "Clear" button provides an effortless way to remove any written content,

enabling a fresh and unblemished canvas for continuous learning.

HELLOKID'S

sAFd I 94

Figure 42: Sorborno Page

Upon submitting their work, learners will be presented with the results, allowing them

to evaluate the accuracy of their intended letter. This immediate feedback empowers

them to refine their skills and knowledge, fostering continuous improvement and

growth in their learning journey.

HELLO KID'S

Save Letter

Figure 43: Result View

5.4 Bonjonborno (47 @ﬂﬂ?‘f) Page

Welcome to the Bonjonborno page, where children have the opportunity to explore,
learn, and practice a wide range of Bonjonborno characters. This engaging and
interactive platform encourages curiosity and mastery, offering a comprehensive

learning experience for young minds.

— T\

Figure 44: Bonjonborno Page

5.5 English Alphabet Page

Discover the English alphabet page, an all-encompassing platform designed to
facilitate the learning and practice of each letter. Children can immerse themselves in
this interactive environment, gaining immediate feedback on their progress and honing

their skills with confidence and clarity.

HELLO KID'S

Figure 45: English Alphabet Page

5.6 English Digit Page

Children can engage in writing and practicing English digits, covering numbers from
0 to 9. Should any mistakes occur, the user-friendly platform allows for effortless

erasure and amendment, promoting a smooth and enjoyable learning journey.

HELLO KID'S

Figure 46: English Digit

5.7 Drawing Page

This engaging page is particularly captivating for young minds, allowing them to
unleash their creativity through drawing and immediately witnessing the results.
Additionally, they can delight in the auditory feedback provided by the platform, as it

verbalizes their written work.

HELLO KID'S Bangla~ English Drawing Math

Clear

Figure 47: Drawing Page

6 Conclusion

In conclusion, this innovative educational platform has been meticulously designed to
cater to the diverse learning needs of children. By integrating interactive and visually
stimulating elements, it fosters an engaging environment that nurtures curiosity and
excitement for learning. Furthermore, the system encourages creative expression and
provides auditory feedback, both of which contribute to a comprehensive and

immersive learning experience.

As I continue to refine and develop the platform, my focus will be on improving the
accuracy of the model for Bonjonborno, ensuring that children receive the most
accurate and helpful feedback possible. In addition to the current web-based platform,
I am planning to expand my reach by developing applications for various platforms,
such as Android, Apple, and Microsoft. These apps will not only be more accessible

to children, but also offer a more attractive and user-friendly experience.

By making education feel like play, this ground-breaking website and its forthcoming
applications are poised to revolutionize the way children learn and develop essential
skills, fostering a lifelong love for learning and setting them on a path to success.
Through constant innovation and improvement, I am committed to creating the most

engaging and effective educational tools for the children of today and tomorrow.

References

1. McKinsey & Company. How artificial intelligence will impact K-12 teachers.
McKinsey & Company. [Online] 01 2020. [Cited: 11 04, 2022.]
https://www.mckinsey.com/industries/education/our-insights/how-artificial-intelligence-
will-impact-k-12-teachers.

2. Bangladesh Bureau of Statistics. Multiple Indicator Cluster Survey 2012-2013, Final
Report. [Online] 2015. https://www.bbs.gov.bd/site/page/4222a409-4d7c-4b5d-a8d8-
9ae90aefb14d/MICS %20Final %20Report%202012-13%20English.

3. Ministry of Primary and Mass Education. National Curriculum and Textbook Board
Pre-Primary Curriculum. [Online] 2013. [Cited: 05 10, 2022.]
http://www.nctb.gov.bd/site/page/56324be4-3c4b-46fe-aab9-d552a5b9eb8b/-.

4. Russell, S. J., & Norvig, P. Artificial intelligence: A modern approach. s.1. : Pearson
Education., 2010.

5. Multi-task learning based data preprocessing for performance prediction of computer
systems. Wang, Y., Wu, S., Wu, S., & Ye, Y. s.1. : Journal of Supercomputing, 2001,
Vols. 77(5), 4719-4738.

6. A feature selection method based on mutual information and fuzzy clustering for
sentiment analysis on social media. Nguyen, T. H., Duong, A. D., Nguyen, V. P., Le, T.
T., & Huynh, V. N. s.I. : Journal of Ambient Intelligence and Humanized Computing.,
2021, Vols. 12(2), 1867-1876.

7. Comparison of different machine learning algorithms for predicting the onset of type 2
diabetes. Shahin, A., Jafari, A., & Khan, S. A. s.1. : Journal of Medical Systems,, 2021,
Vols. 45(6), 1-8.

8. Normalized pairwise margin: A novel evaluation metric for binary classification models.
Xie, Y., Zhang, J., Chen, Q., & Xie, Z. s.I. : IEEE Transactions on Neural Networks and
Learning Systems,, 2021, Vols. 32(3), 1127-1139.

9. Bayesian optimization for hyperparameter tuning in deep neural networks. Zhang, Y.,
Li, J., Li, Y., Li, D., & Li, B. s.1. : Neurocomputing, 2021, Vols. 441, 87-101.

10. Deep learning. LeCun, Y., Bengio, Y., & Hinton, G. s.1. : Nature, 2015, Vols.
521(7553), 436-444.

11. Alpaydin. Introduction to machine learning. s.1. : MIT Press, 2010.

12. Murphy, K. P. Machine learning: A probabilistic perspective. s.l. : MIT Press, 2012.
13. Goodfellow, 1., Bengio, Y., & Courville, A. Deep learning. 2016 : MIT Press.

14. Sutton, R. S., & Barto, A. G. Reinforcement learning: An introduction. 2018 : MIT
Press.

15. Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow, 2n Edition. s.1. : O'Reilly Media, 2019.

16. Saha, Sumit. A Comprehensive Guide to Convolutional Neural Networks — the ELIS
way. Towards Data Science. [Online] 12 15, 2018. [Cited: 12 05, 2022.]
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-
the-eli5-way-3bd2b1164a53.

17. Flask Pallets Projects. Tutorial. [Online] [Cited: 02 12, 2022.]
https://flask.palletsprojects.com/en/2.2.x/tutorial/.

18. OpenCV. OpenCV: OpenCV-Python Tutorials. [Online] [Cited: 04 01, 2022.]
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html.

19. Pandas. Pandas: User Guide. [Online] [Cited: 04 22, 2022.]
https://pandas.pydata.org/docs/user_guide/index.html.

https://www.mckinsey.com/industries/education/our-insights/how-artificial-intelligence-
https://www.bbs.gov.bd/site/page/4222a409-4d7c-4b5d-a8d8-
http://www.nctb.gov.bd/site/page/56324be4-3c4b-46fe-aab9-d552a5b9eb8b/-
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-
https://flask.palletsprojects.eom/en/2.2.x/tutorial/
https://docs.opencv.Org/4.x/d6/d00/tutorial_py_root.html
https://pandas.pydata.org/docs/user_guide/index.html

20. NumPy. NumPy: User Guide. [Online] [Cited: 04 11, 2022.]
https://mnumpy.org/doc/stable/user/index.html.

21. Tensor Flow. Deep Convolutional Generative Adversarial Network. [Online] [Cited:
05 04, 2022.] https://www.tensorflow.org/tutorials/generative/dcgan.

22. Scikit-learn. User Guide. [Online] [Cited: 06 22, 2022.] https://scikit-
learn.org/stable/user_guide.html.

23. PATEL, SACHIN. A-Z Handwritten Alphabets. [Online] [Cited: 03 02, 2022.]
https://www kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format.
24. COLIANNI, STUART. MNIST as .jpg. Kaggle. [Online] [Cited: 03 03, 2022.]
https://www kaggle.com/datasets/scolianni/mnistasjpg.

25. Google Cloud . quickdraw_dataset. [Online] [Cited: 03 12, 2022.]
https://console.cloud.google.com/storage/browser/quickdraw_dataset/full/numpy_bitmap;t
ab=objects ?pli=1&prefix=&forceOnObjectsSortingFiltering=false.

26. Mendeley Data. Banglalekha-Isolated. [Online] [Cited: 03 20, 2022.]
https://data.mendeley.com/datasets/hf6sf8zrkc/2#file-8a68156d-8a76-44d3-93e5-
d14b61880526.

https://numpy.org/doc/stable/user/index.html
https://www.tensorflow.org/tutorials/generative/dcgan
https://scikit-
http://learn.org/stable/user_guide.html
https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format
https://www.kaggle.com/datasets/scolianni/mnistasjpg
https://console.cloud.google.com/storage/browser/quickdraw_dataset/full/numpy_bitmap;t
https://data.mendeley.com/datasets/hf6sf8zrkc/2%23file-8a68156d-8a76-44d3-93e5-

7 List of pictures and graphs

Figure 1: English BoOK-Class One..........cccccocuiiiiiiiiiiiiiiiiic et 16
Figure 2: Bangla BOOK-Class ONecccocuiiiiiiiiiiiiiiiiii e 17
Figure 3: Math BOOK-Class ONeccccceouiviiiiiiiiiiiiiiiiic i 18
Figure 4: English BOOK-Class TWOcccccceiiiiiiiiiiniiiiiiiccii e 20
Figure 5: Bangla BOOK-Class TWO........ccccccuiiiiiiiiiiiiiiiiiiccecic e 22
Figure 6: Math BOOK-Class TWO....cc.cccooiiiiiiiiiiiiiiiiiie e 24
Figure 7: CNN ATCRIECTUIEc..eouiriiiiiiiiiiiie ittt 40
Figure 8: Data Collections SYSteML.........cc.cciiiiiiiiiiiiiiiiiiiii et 45
Figure 9: Own System Data Collection Chartc.ccoviiiiniiiiiniiiiii e 46
Figure 10: Collected Data English Alphabets..........cccocoviiiiiiiiiniiiiii i 46
Figure 11: Collected Data Bangla SOrborno...........cccocveviiiiiiiiiniii i 47
Figure 12: Collected Data Bangla Benjonborno..........c.cccooioiiiiiiiiiiiiiiii 47
Figure 13: Collected Data English Digit........cccccooiiiiniiiiiiiiiii 48
Figure 14: Collected Data Bangla Digit.........ccccoviiiiiiiiiiiiiiiii 48
Figure 15:Collected Data From Various SOUICEScccceruiiiiiiiiiiiiiiiicicciei e 49
Figure 16: Snapshot of Inverted Image codeccovviviiiiiiiiiiniiii e 50
Figure 17: Snapshot RGB to Grayscale code..........cccovviiiiiiiiiiiiiniiiii i 51
Figure 18: Snapshot of Image Contour Detection Codeccoeiiiiiiiiiiiniiiiniiiecie 52
Figure 19: Snapshot of Image Resize code..........ccooviiiiiiiiiiiiiiiiiii e 53
Figure 20: Importing all the required library for the Gaussian Naive Bayes....................... 55
Figure 21: Defining the function process my data into the algorithm ... 55
Figure 22: GaussianNB Algorithm Using scikit-learn............cccocooiviiiiiiiiinninninin 55
Figure 23: Importing all the required library for the KNeighborsClassifier........................ 56
Figure 24:KNeighborsClassifier Algorithm using scikit-learn...........c.ccccooveiiiniine 56
Figure 25: Training SVC code snapshot using scikit-learnccccocveviiiininininiininnnn 57
Figure 26: Training Random Forest Classifier code snapshot using scikit-learn 58
Figure 27: Training Decision Tree Classifier code snapshot Using scikit-learn 59
Figure 28: Comparison Chart between above algorithms..............cccocoeieiiiiniiiniiiie 59
Figure 29: Imported all the required library for final outcome..........ccccoeveviviiiiiniiiininnne. 61
Figure 30: This function pre-process the data and load data into model................c............ 62
Figure 31: After Pre-processing the data plotting one image data...........c.ccooeeueirieieniennnne 63
Figure 32: Preparing the image data and creating a CNN model using Keras 65
Figure 33: CNN model is compiled and trainedccccocueviiiiiniiniiiiiiinice e 66
Figure 34: saving the trained model and evaluating its performancecccccoeeeenvinnnne 67
Figure 35: Inspect a single image and compare it to the model's predicted label................ 69
Figure 36: Architecture of CINNccccciiiiiiiiiiiii 71
Figure 37: Categorical Accuracy Chartcccooiiiiiiiiiiiiiinii 72
Figure 38: Flask Code Snapshotccccuiiiiiiiiiiiiiiiiiciceci e 73
Figure 39: The snapshot of template design code..........ocovuiniiiiiiiiiiiiiiiiiiii e 74
Figure 40: User Interface Home Page...........cccoooviiiiiiiiiiini e 76
Figure 41: Selecting Page “English Digit”ccccccoiiiiiiiiiiiniiiiii i 77
Figure 42: Sorborno Pagecccooviiiiiiiiiiiiiiiii 77
Figure 43: ReSUIt VIBW ...cc.ccouiiiiiiiiiiiiiiiiiiii sttt 78
Figure 44: Bonjonborno Pagecccceciiiiiiiiiiiiiiiiiiiccie i 78
Figure 45: English Alphabet Pageccccocoviiiiiiiiiiii 79
Figure 46: English Digit......cccooueviiiiiiiiiiiiiiiiiiiiiii i 79

Figure 47: Drawing Pageccccocveviiiiiiiiiiiiiiiiiiiiiii e 80

