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Developing an Email Classification Algorithm 

Abstract: 

Artificial intelligence and machine learning have shown the ability to automate decision­

making and improve different aspects of human lives. This thesis uses the power of machine 

learning to build classification models that can be used to recognize the topic of an email 

based on its context. The purpose is to have a model that can be deployed in companies and 

used to correctly detect the topic or category of each email and help the employees to 

prioritize their email reading based on the topic. Another application may be to direct an 

email to the correct/suitable person or department depending on its topic. 

Bearing the above in mind, this thesis is composed of two main parts. The first part is a 

theoretical part where an overview of the basics of artificial intelligence, machine learning, 

natural language processing, and artificial neural networks is presented. The second part is 

a practical part that shows the practical steps followed in order to build the email 

classification model. The practical part itself includes two sequential steps. The first step is 

data preprocessing within which the emails are cleaned and converted into a numerical form 

making them suitable for the training of machine learning mathematical models. The second 

step is, of course, the training and testing of the machine learning models. 

For comparison purposes, four machine learning models have been trained. Those models 

are Logistic Regression, Random Forest, and Naive Bayes in addition to Artificial Neural 

Networks. The results confirm the applicability of the email's classification concept and also 

affirm the linear nature of the classification problem in scope based on the high prediction 

accuracy reached by the Linear Logistic Regression. As a result of the performed analysis, 

the Logistic Regression and Artificial Neural Networks have shown the highest performance 

among the four compared algorithms. 

Keywords: Artificial Intelligence, Machine Learning Algorithms, Artificial Neural Network, 

Natural Language Processing, Activation Functions. 
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1 Introduction: 

Electronic email is a method to send and receive information through electronic 

communication systems, whether it is the internet or communication networks within 

companies or home institutions. Email allows users to send files, images, links, or texts. 

Companies use emails to communicate with employees and clients. 

As a result of the development and the massive amounts of data sent via the Internet, 

classifying emails into semantic groups has become a necessity. The classification system 

of emails saves time and reduces effort, and efficiency is increased. For example, in G-mail 

the emails are categorized as Primary, Social, Promotions, Updates, and forums. 

Natural Language Processing (NLP) is a subfield of artificial intelligence, NLP centers on 

processing and analyzing text into a form that helps machine learning models to understand 

and extract information from it and use this information for the desired output. 
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2 Objectives and Methodology: 

2.1 Objectives 

The goal of this thesis is to build a machine-learning model that is able to classify emails 

and predict which category each email belongs to. The aim is to exploit Natural Language 

Processing techniques to analyze and understand the language of the emails and then, to train 

several machine learning algorithms (i.e., Logistic Regression, Naive Bayes, Random 

Forest) to predict the category of each email. In addition to the previous algorithms, the 

advanced Artificial Neural Network (ANN) is also used to build a non-linear model for the 

same purpose, i.e., the prediction of each email's category. The use of ANNs is motivated 

by their ability to extract more complex and non-linear models between the inputs (the 

emails) and the output (the corresponding category). The various trained models are tested 

on a test set of emails and then, compared using the test set prediction accuracy as the 

model's quality criteria. 

2.2 Methodology: 

The thesis includes two parts: theoretical and practical. The theoretical part is an overview 

of artificial intelligence and applications of artificial intelligence as well as natural language 

processing. Moreover, the theoretical part covers the basic principles and applications of 

machine learning algorithms, Artificial neural networks, and Deep Learning algorithms. 

The practical part, on the other hand, includes the detailed processes followed to fulfill the 

objectives of this thesis. These processes include the data collection, and its pre-processing 

steps as follows: 

• Data splitting 

• Tokenization 

• Data cleaning 

• Lemmatization 

• Term frequency-inverse document frequency(TF-IDF) 
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The pre-processing steps are followed by training the following classification models: 

• Logistic Regression 

• Naive Bayes 

• Random Forest 

• ANN 

The last step includes the comparison between the trained models in terms of the reached 

classification accuracy on the test set. In addition to the description of the results, the 

conclusion of this thesis is provided. 
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3 Literature Review: 

3.1 Artificial Intelligence: 

3.1.1 History of AI: 

Different ideas about humanoid robots have been implemented. Daedalus is an example of 

this, who attempts to create artificial humans when he ruled the methodology of the wind. 

In 1884 Charles Babbage began working on a mechanical machine capable of showing 

intelligent behavior, but he concluded that he would be unable to create a machine with the 

same intelligence as a human being. In 1950 Alan Turing asked one of the most important 

questions in history "Can a machine think", and he did a test to check the intelligence of 

computers, and the results of the test were deemed convincing. Then in 1956 a conference 

on artificial intelligence was at Dartmouth college for the first time in this period the first 

artificial intelligence applications were created, and these applications are based on logic 

theorem and chess games, the programs created at this time were distinct from the geometric 

forms used in intelligence tests, leading to the notion that intelligence computers can be 

created. (Mijwel, 2015) 

The most important Milestones of AI: 

Artificial Intelligence isn't a novel notion, it has been for a long time, there have been several 

important milestones that have aided in the advancement of artificial intelligence 

capabilities. According to (Mijwel, 2015) between 1920 and 1950 

1923: The concept of the robot was presented in the theater play Rossum's Universal Robots. 

1927: Featured artificial intelligent robot in a science fiction film (Metropolis). 

1943: The concept that logical functions could be fulfilled through networks of artificial 

neurons emerged because of collaboration between Warren McCulloch and Walter Pitts 

Then after the 40's, there was a rapid development in the theory of AI. According to (Marr, 

2021): 

1950: a collection of fictional stories called I Robot was published by Isacc Asimov. and 

Asimov indicated the three laws of Robotics, as well as a computer that could answer 

questions due to its capability to store human knowledge. 
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1950: Alan Turing represented the concept of the Turing test. 

1956: The first conference about the term artificial intelligence was organized at Dartmouth 

College by Professor John McCarthy. 

1966: The world's first text chatbot (Eliza) was created by Joseph Weizenbaum at MIT. 

1985: The companies started investing huge money in the field of AI, because from 1980 to 

1986: The XCON expert learning system from digital equipment cooperation was credited 

with saving the company 40 million per year. 

1988: The first use of AI strategy of the probability of different outcomes by preparing the 

data and processing it then training the machines on these prepared data is marked in the 

paper "A Statistical Approach to Language Translation" 

1997: IBM designed a chess-playing supercomputer [Deep Blue] that defeated the 

international grandmaster chess player Garry Kasparov. 

2005: In the race of 100 kilometers of road in the Mojave desert, 5 autonomous vehicles 

accomplished the race, whereas in 2004 no autonomous vehicle did it. 

2011: Apple company designed the voice-controlled virtual assistant. 

2015: The accuracy of image recognition reached 97,3% in the contest of ImageNet 

challenge Where it was 73% in 2014. 

In the last four years, AI has been developing faster than expected, as it was mentioned in 

(Milestones, 2022): 

2018: Groove X created Lovot which is the first emotional robot, which can sense human 

change moods and act according to these changes. 

2019: An autonomous battle tank Ripsaw M5 unveiled at the army expo in Washington. 

2021: The first AI system to detect potential COVID-19 patients within one hour was 

designed by Oxford University. This curial AI can distinguish between other respiratory 

patients with more than 90 % accuracy. 

Waymo self-car driving is open to the public. Users can call a taxi to their location by 

downloading this app car on their smartphones. In the previous, safety personal would 

accompany self-driving cars, but this was the first time a car was driven without any human 

but a passenger. 
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3.1.2 Subfields of Artificial Intelligence: 

According to (AI, 2022) the subfields of AI are : 

• Natural language processing. 

• Machine learning. 

• Neural Networks. 

• Deep learning. 

• Cognitive computing. 

• Computer vision. 

Figure 1: Sub-fields of Artificial Intelligence 

(Source: www.softwaretestinghelp.com/what-is-artificial-intelligence ) 
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3.2 Machine Learning: 

3.2.1 Introduction: 

Machine learning is a subset of artificial intelligence, which aims to study and create 

programs that learn patterns over time when it's exposed to additional data rather than being 

explicitly programmed. It learns from observation data. Feeding the machine learning 

algorithm with more data enables the algorithm to better learn the underlying pattern (Geron, 

2019) 

Utilizing machine learning programs has increased in recent years. Determining if the email 

is spam or not spam, an automatic recommendation of which movies to watch, and a 

recommendation of which order to buy are examples of a machine learning program. 

Websites like Netflix, and Facebook have machine-learning algorithms (Miiller & Guido, 

2016) 

3.2.2 Machine Learning Systems: 

There are different systems of machine learning, these systems are categorized according to 

special cases: 

• If the system is trained or not with human supervision (supervised, unsupervised, 

semi-supervised, reinforcement learning). 

• If the system can or can't learn incrementally on the fly ( online, batch learning). 

• Whether they create predictive models by identifying patterns in the training data 

(model-based learning) or simply comparing new data points to known data points 

(instance-based versus). 

• It could combine some of these systems when needed, spam filter is an example of a 

state that learns on the fly using deep neural networks, The model trained on spam 

and ham. This makes it an online, model-based, supervised learning system. 

The basic categories are Supervised, Unsupervised, Semi-Supervised, and Reinforcement 

learning. (Geron, 2019) 
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3.2.3 Supervised Learning: 

In this type of machine learning the training data which feeds the algorithm is labeled. There 

are two types of supervised learning: 

3.2.3.1 Classification: 

Classification aims to predict a class label (category), which is a choice from a predefined 

list of categories. Classification is divided into binary classification and multiclass 

classification. Binary classification is the process of differentiating between two classes, 

whereas multiclass classification differentiates between more than two classes. An example 

of binary classification is spam or not spam email, whereas classifying email into more than 

two categories is an example of multiclass classification. (Müller & Guido, 2016). 

According to (Gong, 2022), There are several machine learning models for classification 

problems: 

• Logistic Regression. 

• K-Nearest Neighbors(K-NN). 

• Support Vector Machines(SVM). 

• Naive Bayes. 

• Decision Tree Classification. 

• Random Forest Classification 

Logistic Regression: 

Logistic Regression is a classification algorithm that attempts to learn a function that is close 

to P(Y/X). Its central assumption is that P(Y/X) can be approximated as a sigmoid function 

applied to a linear combination of input features. 

17 



Figure 2: Sigmoid Function 

(Source: https://pdfcoffee.com/220-logistic-regression-pdf-free.html) 

This is a sigmoid function, its equation is : 

Q(Z) = 
1+e" 

(1) 

The sigmoid function converts real numbers to a range between [0,1]. In Logistic regression, 

(T(z) converts an arbitrary value "z" into a number between [0,1], which is known as 

probability. Positive numbers of (z) refer to high probabilities, whereas negative ones refer 

to low probabilities. 

The importance of Logistic Regression is because it is considered the major building block 

of artificial neural networks. Logistic Regression is used to predict if a new observation 

relates to one of two possible classes such as email filter to spam or not spam, and also 

predicts if the tumor is benign or malignant. (Monroe, 2017) 
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Naive Bayes: 

The Naive Bayes classifier is a machine-learning model that uses the Bayes theorem, for 

probabilistic classification. And it can classify multiple classes directly. 

The major idea of Naive Bayes is that each feature in the class (input data) is independent of 

another feature in the same class. An example of the process of Naive Bayes calculation is 

if the dependent feature is a watermelon fruit and the independent features are green, round, 

and the diameter is about 15 cm. The Naive Bayes considers that if the watermelon is green, 

the probability is 40% if the watermelon is round the probability is 60% if the diameter is 

close to 15 the probability is 95 %. It is called "Naive" because independent features 

contribute to decision-making. 

Naive Bayes theorem is : 

, . . p(Cj)p(x\Cj) 

Cj: is the number of classes 

x: is the feature vector. 

p(Cj |x): is the posterior probability of class C;- where x is given. 

p(C ;): is the prior probability of class. 

p(x|C ;): is the likelihood. 

p(x): is the prior probability of the predictor. 

The advantages of Naive Bayes are: 

• Simple and quick implementation. 

• Working better with categorical input data than numerical data. 

The Disadvantage of Naive Bayes is the big challenge is to implement the assumption of 

independence between features in real-world applications. (Krishnan, 2021) 
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Random Forest Classification: 

To understand the Random Forest, it is necessary to have an overview of the decision tree 

which is the foundation of the Random Forest. 

1 1 0 0 0 0 0 

I 
Yes Is red? No 

1 1 0 0 0 0 0 

Yes [ Is underlined? No 

1 1 0 

Figure 3: Decision Tree 

(Source: (Yiu, 2019)) 

The above example illustrates the principle of the decision tree, and the aim is to classify 

data sets that consist of two (Is) and five (0s ) into two classes according to their features. 

The methodology of separation here will be based on two features (if the color observation 

is red or blue, also if the observation is underlined or not). 

Because one of the 0s is red, the first question to classify this dataset( is the observations 

color red)? If not, the path won't go down more because the color of observations is blue, so 

it's done here. If yes, the path will go down and there is another separation because the set 

now consists of two Is that are underlined and one 0s isn't, so the second question will be is 

the observations underlined? The two Is go down the yes branch because they are underlined 

and the 0 goes down to the no branch. Finally, the data has been separated into blue, 

underlined, and not underlined observations due to the methodology of the decision tree. 

The most important concept Is ensemble learning which refers to the process of taking 

multiple decision trees/machine learning algorithms and putting them together to create one 

bigger algorithm, an example of this is a Random Forest that combines a lot of decision tree 

methods. 
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A Random Forest is a combination of many decision trees that operate as an ensemble. Each 

one of those trees is being built on a randomly selected subset from a dataset. Even though 

each one of those trees might not be ideal overall on average, the whole system can perform 

very well and that's a major advantage of this algorithm. It's kind of leveraging the power 

of the crowd so to speak or sort of just relying on one tree, it's checking what all the trees 

are going to decide and then just taking the majority vote and deciding the classification 

decide on that. (Yiu, 2019) 

Predict 1 Predict 0 Predict 1 

Predict 1 Predict 1 Predict 0 

Predict 1 Predict 1 Predict 0 

Figure 4: Random Forest 

(Source: (Yiu, 2019)) 

3.2.3.2 Regression: 

Regression is used for predicting a real value. There are two models of regression linear and 

non-linear. An example of regression is predicting the annual income of employees 

according to their age, education, and experience. The predicted value could be any number 

in each range. Another example is the predicting of yields of corn farms according to 
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weather, previous yield, and the number of workers on the farms the outcome(yields) could 

be an arbitrary number. 

It's easy to distinguish between regression and classification if the outcomes in the data set 

are continuous so the task is regression-like predicting salary, and age. Whereas if the 

outcomes are discrete, then the task is classification -like predicting the category of the email. 

(Müller & Guido, 2016) 

There are several machine learning models for regression problems: 

• Simple Linear Regression. 

• Multiple Linear Regression. 

• Polynomial Regression. 

• Support Vector for Regression [SVM]. 

• Decision Tree Regression. 

• Random Forest Regression. 

3.2.4 Unsupervised Learning: 

The idea of unsupervised learning is that the data is unlabeled, and the system tries to 

determine some segments or clusters in the data. (Geron, 2019) 

Training set 

Figure 5: An unlabeled training set for unsupervised learning 

(Source: (Geron, 2019)) 

There are several important unsupervised algorithms : 
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• Clustering 

o K-Means. 

o DBSCAN. 

o Hierarchical Cluster Analysis(HCA). 

• Anomaly detection and novelty detection 

o One class SVM. 

o Isolation Forest. 

• Visualization and dimensionality reduction 

o Principal Component Analysis (PCA) 

o Kernel PCA. 

o Local Linear Embedding (LLE). 

o T-distributed Stochastic Neighbor Embedding. 

• Association rule learning 

o Apriori 

o Eclat 

3.2.5 Semi-Supervised Learning: 

Semi-supervised learning algorithms are applied when the training data consists of both 

many unlabeled data and a few labeled data. An example of it is photo-hosting services like 

Google Photos, when the user uploads a family photo to the service, it recognizes that person 

A is in photo 1,3,5 and person B in photo 2,6,8, this part of the algorithm is clustering, which 

is unsupervised learning. The user should label some photos per person, then the model can 

name everyone in each photo. (Geron, 2019) 
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Supervised Learning 

Training data 

AIL data i5 LabeLed ModeL 

Semi-supervised 
Learning 

Unsupervised 
Learning 

Figure 6: Semi-Supervised Learning Concept 

(Source: https://www.altexsoft.com/blog/semi-supervised-learning/) 

3.2.6 Reinforcement Learning: 

Reinforcement learning is a powerful subset of machine learning. The methodology is 

divided into two stages. First, the learning system observes the environment, chooses, and 

carries out actions, and receives rewards in return ( or penalties in the negative form) In this 

context the learning system is called an agent. Second, it must learn by itself what is the best 

strategy, and this is called the policy, to receive the reward over time. In another hand, the 

policy determines how the agent should act in certain situations. 
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Figure 7: Reinforcement Learning 

(Source: (Geron, 2019)) 

Many robots perform algorithms of learning systems to learn how to walk. An example of 

reinforcement learning is DeepMind's AlphaGo program which beat the famous world 

champion Ke Jie in the game of Go. The winning policy methodology involves learning by 

itself to analyze millions of games and then playing a large number of games against itself. 

It is worth noting that learning was turned off during the game. AlphaGo was simply 

implementing the policy it had learned. (Geron, 2019) 

3.2.7 Terminologies in Machine Learning 

3.2.7.1 Overfitting & Underfitting: 

To figure out the underlying reasons behind low model accuracy, it's crucial to understand 

model fitting. This comprehension will direct to take corrective steps. The difference 

between prediction error on training data and evaluation (test) data is the key to knowing if 

the predictive model is underfitting or overfitting the training data. 

When an over-complex machine learning model is trained and overly tuned to the training 

set, overfitting occurs. Because the model works well on training data, and it can't create 

good predictions on unseen data. On the contrary, the underfitting happens when the trained 

model is very simple and/or not well tuned/trained to lead to poor performance on the 

training as well as the test set. 
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3.2.7.2 Model & Algorithm: 

There are two important terms in machine learning, which make confusion for non-expert 

people (e.g., people from other fields). The first term is "Machine Learning Algorithm" 

which represents the process and the steps that are applied to data to generate a "Machine 

Learning Model", which is the second term. Machine learning algorithms implement 

"Pattern recognition" and learn from data or fit on a dataset. algorithms in classification like 

Logistic Regression and Naive Bayes and Random Forest and algorithms in regression and 

clustering are examples of machine learning algorithms. 

There are several properties of machine learning algorithms: 

• Math and pseudocode can be used to describe machine learning algorithms. 

• Machine learning algorithms can be executed by any programming language. 

• Machine learning effectiveness can be analyzed and described. 

Scikit-learn is an example of a library that consists of many classification, regression, and 

clustering machine learning algorithms in Python. 

Machine Learning Model refers to the output of a machine learning algorithm applied to data 

and shows what the machine learning algorithm learned. In precise, the model represents the 

final mathematical formula or rules that are used to do perdition. This output results from 

running the machine learning algorithm and can be saved and deployed to perform 

prediction. 

Some examples of models: 

• The results of linear regression in a model are represented by a linear equation 

connecting the input to the prediction. The coefficients of the linear equation terms are 

normally stored as a vector of values. 

• The results of a Random Forest in a model represent a tree if-then rules with specific 

values. 

There is a difference between machine learning models and other algorithms in computer 

science. The output of the sorting algorithm is a sorted list which isn't really a model. It 

could be to think of a machine learning model as a "program". The best definition of a 

machine learning model is a program that involves both data and the process of utilizing the 

data to make predictions. (Brownlee, 2020) 
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3.2.7.3 Cross-Validation 

The train-test split aims to evaluate the performance of the machine learning algorithm. The 

technique comprised dividing the dataset into two separate sets. The first set is the training 

set which is utilized to fit the machine learning model and the second set is the test set which 

is utilized to evaluate the performance. To select the best parameters for the model, it is 

preferable to train the model many times, each one on a different training set, Then the model 

resulting in the highest accuracy on the test set is the best. This is the idea of cross-validation 

which helps estimate the expected performance of the trained model when deployed in 

production. (Lakshana, 2022) 

3.3 Natural Language Processing: 

3.3.1 WhatisNLP: 

Natural Language Processing (NLP) is applying Machine Learning models to text and 

language. Teaching machines to understand what is said in the spoken and written word is 

the focus of Natural Language Processing. NLP is a subfield of linguistics, computer 

science, and artificial intelligence that uses algorithms to manipulate and analyze and 

transform written and spoken human language into numbers which enable machine learning 

models to predict the desired output. 

3.3.2 The Origin of NLP: 

In late 1940, The first AI systems were created. Hence the processing and analysis of Natural 

Language to understand texts have emerged. In 1950 Alan Turing who is regarded as the 

father of computer science and natural language processing did a test known as the Turing 

test. The test was initially called the "imitation game". It measures a machine's ability to 

exhibit intelligent behavior that matches or surpasses a human. The task involves 

understanding and writing back natural language effectively measuring the ability of a 

machine to fool humans into believing they are talking to a real person. 

3.3.3 Evolution Of Natural Language Processing: 

In 1956, happening the first translation of 60 sentences containing 250 words from English 

to the Russian language by computer in a few seconds, because of a collaboration between 

Georgetown University and IBM. On the face of it, it seems the authors made a breakthrough 
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even claiming that machine translation would be solved in 5 years, but it turned out the 

translation was more complicated than originally thought. (Hutchins, 2004) 

The first emergence of the term "artificial intelligence" Was at Dartmouth College, New 

Hampshire in 1956. The book Syntactic Structures written by Noam Chomsky in 1957, 

involved a methodology to convert natural language words and sentences to a form that 

computers could understand. (Lichtig, 2011) 

According to (Lichtig, 2011) between (1958-1990): 

A language LISP(Locator/Identifier Separation Protocol) was created by John McCarthy in 

1958. Then the first chatbot(Eliza) humans was released in 1966 by Joseph Weizenbaum and 

simulates a conversation between a person and a psychiatrist doctor. 

The fast development in increasing the speed and power of computers in the period between 

1960-1980 was reflected positively in natural language processing. SHRDLU was a project 

created in 1970. It involved reordering blocks, and cones according to users' input. SHDLU 

understands and performs sentences like" Put the red cube on top of the blue cube". It 

introduces the concepts of real-world applications as opposed to concepts of translation or 

software control. 

The concept of the chatbot was developed in 1982 when researchers started work on the 

project Jabberwocky Chabot. The project is an AI program that aims to mimic human natural 

conversation in an interesting, entertaining way. Jabberwocky Chabot was the first attempt 

to pass the Turing test and added another application of NLP. 

NLP started growing faster than ever in the early 1990s due to the widespread use of the 

internet and the massive quantity of data utilized. Machine learning algorithms concerned 

with machine translation have developed because of huge quantities of Canadian texts spread 

in English and French language. 

Then according to (Bouargane, 2021) In 1994, a big advance in NLP was made, where the 

capability of machines to read increased almost 400 times faster than humans, But still not 

as quickly as human translators. After that in 2006, Google Translate was released, which 

uses several machine learning algorithms to translate words and sentences into other 

languages. Then in 2010, IBM released a system called Watson, which can analyze and 

understand questions and utilize machine learning algorithms to give the right answer. 
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3.3.4 Examples of NLP: 

3.3.4.1 Email Filters: 

The process of email filters means separating emails, this process includes filtering the email 

into two categories spam or not spam. Spam email is defined as an irrelevant message sent 

to users' computers using the internet as the medium with bad mood advertisement, phishing, 

or releasing malware. Because of the development of NLP, emails could be filtered into 

categories based on their content and each email is recognized according to its category, an 

example of it: g-mail categories( Primary, Social, and Promotions) (Tableau, 2022) 

3.3.4.2 Language Translation: 

Nowadays, NLP is considered a great and powerful technique. The utilization of NLP with 

deep learning algorithms aims to get the best accuracy of the translation. A language 

translator helps to communicate when a person talks to a person in another language and 

also helps researchers when trying to read the information in another language and get 

accurate outputs. (Tableau, 2022) 

3.3.4.3 Smart Assistant: 

Natural language generation is a subset of NLP which is utilized to analyze voices that able 

the machine to understand them. An example of a smart assistant is Alexa, Siri. (Tableau, 

2022) 

3.3.4.4 Search Engine Results : 

NLP is utilized in search engines, when a user searches for a term on Google or another 

search engine, the results would be relevant and like what the intended user. If the user inserts 

a term on a Google search, The results wouldn't only match the exact term. Because Google 

search looks at the big picture and recognizes what the user types rather than the exact search 

term. For example, when a user types the term car on a google search, the predicted results 

include anything related to a car such as a car service, car brand, car game, car engine, etc. 

Another example is when the user inserts the term tree, the results would be about forests, 

Christmas, and trees in the data structure. Hence these differences when accomplishing a 

search as NLP in search connects an ambiguous query to the relative entity and returns great 

results. (Tableau, 2022) 
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3.3.4.5 Predictive Text: 

As a result of the development of NLP and machine learning and deep learning algorithms, 

Predictive text become so common and necessary in smartphones and notebooks. Because 

predictive text includes autocorrecting and auto-completing a sentence or a word. When a 

user types a sentence, especially in another language, predictive text will change words in 

this sentence to make sense, and correct grammar if it's needed. 

The Grammarly application is a great example of artificial intelligence. It's an application 

that teaches the user how to communicate and write better by autocorrect and suggestion. 

(Tableau, 2022) 

3.3.4.6 Sentiment Analytics: 

Nowadays, companies deal with enormous quantities of data, these data must be structured 

to save time and effort. Text analytics aids to organize unstructured data into significant data. 

Sentiment analysis is used in a wide area It helps companies to learn how a specific sort of 

user feels about a topic or product. With NLP, text analysis, and other techniques, companies 

determine whether the person is positive, negative, or natural about their products and 

services. 

The sentiment is used by political candidates when they want to know political stances and 

who supports them. The governments also utilize sentiment analysis to have an overview of 

public opinion and determine potential dangers to the country's security. (Tableau, 2022) 

3.3.5 NLP Techniques: 

NLP technique means analyzing and processing the data(texts) in a form that enables 

machines to understand natural language. The most NLP technique used are: 

3.3.5.1 Tokenization: 

Tokenization is the process of breaking down text into phrases or words. This method 

streamlines the text analysis for future steps. When tokenization is applied to the sentence "I 

live in Prague" the following is the result :['T", "live", "in", "Prague"]. (NLP Techniques, 

2022) 
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3.3.5.2 Stemming: 

The principle of stemming is to reduce the word to its base, this process is based on the idea 

that a word with a slightly different spelling, but a roughly identical meaning should be in 

the same token. In another meaning, removing the suffixes from the given word to get the 

root of the word, so stemming uses fixed rules such as removing (ing, able, s ) to derive a 

base word. 

By applying stemming on these words(playing, walks, Prague, ate)the following are the 

results: play, walk, Pragu, ate 

As a result, in some cases, applying stemming may have no meaning for the converted word 

like Pragu. 

3.3.5.3 Lemmatization: 

Lemmatization has the same principle as stemming, but it uses knowledge of a 

language(linguistic knowledge) to derive a base word. 

By applying stemming on the word (ability), the result is (abil) whereas applying 

lemmatization to the same word, the result is (ability), also applying stemming on (ate), the 

result is (ate), whereas applying lemmatization the result is (eat). 

From the examples above the lemma gives a meaningful word. So, lemmatization is more 

powerful than stemming but it requires more time. 

Both stemming and lemmatization are used, stemming is used in applications like sentiment 

classifier positive, and negative sentiment analysis, whereas lemmatization can be used in 

chatbots also in question-answer applications because the response gets from those 

applications should be meaningful. 

3.3.5.4 Bag of Words: 

The basic idea of a bag of words is to create a matrix that contains the frequency of each 

word in the text. This process aims to generate a numerical format to can be fed into the 

model. 

Below is an example of a bag of words where the document has three sentences: 

'I have a nice dog; my neighbor has a big dog. It is a nice cat. The dog and cat are nice.' 

After applying lemmatization and stop of words (removing anything that has no meaning) 

the sentences would be: 

'Nice dog neighbor big dog, nice cat, dog cat nice' 
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then after counting the frequency of each word the results are nice 3, dog 3, cat 2, big 1, 

neighbor 1 then after applying BOW, the result is: 

Dog Cat Nice neighbor big 

Sent 1 2 0 1 1 1 

Sent 2 0 1 1 0 0 

Sent 3 1 1 1 0 0 

Table 1: Bag of words 

(Source: Own work) 

The disadvantage of BOW has only represented the frequency of each word and doesn't 

represent the importance and the semantics of each word, an example is nice 3, dog 3. To 

solve this problem there is a method called: Term frequency-inverse document frequency. 

3.3.5.5 Term Frequency-Inverse Document Frequency: 

Term frequency-inverse document frequency calculates the importance of each keyword in 

the document. Term frequency (TF) calculates the number of the repetition of each keyword 

in the sentence divided by the total of words in the sentence (Chouinard, 2022), from the 

example above by applying TF, the result of TF is : 

Sen 1 Sen 2 Sen3 

Dog 2/5 0 1/3 

Cat 0 V2 1/3 

Nice 1/5 Vi 1/3 

neighbor 1/5 0 0 

Big 1/5 0 0 

Table 2: TF 

(Source: Own work) 

Inverse document frequency (IDF) =log(number of the total sentences divided by the number 

of sentences containing the keyword ). 
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Keywords IDF 

Dog Log(3/2) 

Cat Log(3/2) 

Nice Log(3/3) 

Neighbor Log(3/l) 

Big Log(3/l) 

Table 3: IDF 

(Source: Own work) 
Then by multiplying TF*IDF the results represent the importance of each keyword. 

3.3.5.6 Stop Words Removal: 

Stop words removal means removing words that don't hold much value in the text such as 

[the, a, or, he, she,4, @.... ]. This technique aims to save time and effort and concentrate on 

meaningful words. The implementation of stop word removal isn't efficient in every NLP 

model, it relies on the task. When the task is an email classifier, so this technique is efficient, 

but if the task is machine translation, the stop words removal is inefficient. 

There are several libraries for stop words removal, and it could be added some new words 

to the library according to the task. (NLP Techniques, 2022) 

3.3.5.7 Topic Modeling: 

Topic means a repeating group of statistically significant words in the corpus, statistically 

significant means a group of words occurring together in the document and they have similar 

ranges of TF-IDF values. A document is a group of topics. Topic modeling is the process of 

finding the major topics in the text, which means minimizing the big text into a small number 

of topics, and this is an unsupervised technique. Latent Dirichlet Allocation(LDA) is One 

of the best topic modeling algorithms. The principle of this algorithm is to determine the 

important topics in the document, and then assign documents to each topic according to a 

way that the topic must include all words in the document. (NLP Techniques, 2022) 

3.3.5.8 Word Embedding: 

Word embedding is one of the methods that convert the natural language to a numerical form 

to feed machine learning and deep learning algorithms. With this technique, words with 
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similar meanings have similar representations. Word embedding refers to numerical vectors, 

which means each word is presented as a numerical vector 

Figure 8: Word Embedding Concept 

(Source: (10 NLP Techniques, 2022)) 

This figure illustrates that Each word is represented in a 3-3-dimensional space, and the 

distance between words with similar meanings is closer than words with a different meaning, 

the distance between man and swam is greater than the distance between swam and 

swimming. Also, this technique is helpful to release relationships between words. Such as 

the relationship between man and woman, also king and queen. In the vector space, the 

distance between man and woman is roughly equal to the distance between king and queen 

(10 NLP Techniques, 2022). 

3.4 Deep Learning: 

3.4.1 Introduction: 

Deep learning is a subfield of machine learning, which exactly includes three or more layers 

of the neural network. It utilizes an artificial neural network and a huge dataset to simulate 

the behavior of the human brain and realize patterns that can be utilized for decision-making. 

Deep learning enhances automation and carries out physical and analytical tasks without the 

need for human interventions. The technologies of deep learning are used every day in many 

different areas like the detection of credit card fraud, digital assistants, voice, health care, 

and self-driving cars). ( IBM Cloud Education, 2020) 
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3.4.2 Why Deep Learning: 

As a result of exponential growth in data like using social media platforms (Facebook, 

Instagram, YouTube, ...), it was difficult to create machine learning algorithms able to 

model a large amount of dataset accurately. Therefore, deep learning is utilized to solve these 

kinds of problems where there is a big amount of data. This is the essential difference 

between machine learning and deep learning. 

Figure 9 illustrates that X-axis is the amount of data and the Y-axis is the performance of 

the algorithms, as it shows the amount of data is increasing with respect to the older learning 

algorithms(any machine learning algorithms) and at a specific time the performance remains 

almost constant and didn't increase. In the case of deep learning as the amount of data 

increasing also the performance is increasing, so this exponential growth of data leads to 

deep learning models. (Narayan, 2019) 

Amount of data 

Figure 9: Importance of Deep Learning When Using Big Amount of Data 

(Source: (Narayan, 2019)) 

3.4.3 Artificial Neural Network: 

Neural networks are a set of algorithms that aim to understand the implicit relationship in a 

set of data by a process that simulates how the human brain works. Therefore, neural 

networks are systems of neurons that can be organic or artificial in nature. Neural networks 
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create the best results without having to redesign the output criteria because of their ability 

to adapt to change the input. 

The neuron is a mathematical function that gathers and categorizes information based on a 

specific architecture. The network is quite similar to statistical techniques like regression 

analysis and curve fitting. 

A neural network is made up of layers of nodes that are linked together. The node is a 

perceptron, which is like multiple linear regression. The signal produced by multiple linear 

regression is fed into the nonlinear activation function by perceptron (CHEN, 2021) 

3.4.3.1 Perceptron: 

Perceptron is invented in 1957 by Frank Rosenblatt. The process of Perceptron is based on 

threshold logic unit (TLU): first, inputs and outputs are numbers instead of binary, second, 

all inputs(Xi) are multiplied by their weights(Wi). Then The sum of weighted inputs is 

calculated (z=wlxl+w2x2+w3x3=...). The final step is applying the step function to this 

sum z. 

t Output: /7w(x) = step(x Tw) 

/\JT\ Step function: step(z) 

V £ J Weighted sum: z = x T w 

jS/ © \Sl Weights 

x i x 2 x 3 Inputs 

Figure 10: Threshold Logic Unit 

(Source: (Geron, 2019)) 

The Heaviside step function is commonly used in perceptron. Sometimes the sign function 

is used. 

Heaviside M = f? ^ M = f" 1 . ' / 
[lif z > 0 u (. 1 if z > 0 

The process of a single TLU is used in simple binary classification. TLU calculates the linear 

combination of the inputs. Then according to the result if exceeds the threshold the output is 

a positive class otherwise it's a negative class (like Logistic Regression or SVM). Training 

TLU leads to determining the right values for wl,w2, and w3. 
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A perceptron consists of a single layer of TLUs where each TLU is connected to all inputs. 

The fully connected layer is when all neurons in a layer are connected to every neuron in the 

previous layer. 

Figure 11 represents a perceptron with two inputs and three outputs. The first layer is the 

input layer which represents that every input neuron is sent to every TLU. The output of the 

input layer is whatever the input is fed. The input layer also includes the bias neuron where 

the value of x is 1, therefore, the output of it is 1. This perceptron classifies instances together 

into three different binary classes which is a multiple output classifier. 

Outputs 

TLU 

Bias Neuron 
(always outputs 1 

\ Output 
' layer 

\ Input 
' layer 

Input Neuron 
(passthrough) x 2 

Inputs 

Figure 11: Perceptron Diagram 

(Source: (Geron, 2019)) 

The equation for computing the output of a fully connected layer is : 
hWib(x) = 0(xw + b) (3) 

X: matrix of features where columns for features and rows for instance. 

W: matrix of weights which consists of all connection weights except the bias neuron. 

B: bias vector consists of all connection weights between artificial neurons and bias 

neurons. 

0: is the activation function. When the artificial neurons are TLUs, the activation 

function is a step function. 

When the pattern is complex the perceptron can't learn of complex patterns like Logistic 

Regression. Therefore, when the learning instance is linearly separable, the solution would 

be by this algorithm, and this is called the Perceptron convergence theorem. 
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The difference between the Logistic Regression classifier and Perceptron is that the output 

of the Logistic Regression classifier is a class probability whereas the output of Perceptron 

is a prediction based on a hard threshold. 

The weaknesses of perceptron have been noted by Marvin Minsky and Seymour Papert in 

1969. One of the weaknesses is that the Perceptron can't solve an XOR classification 

problem. 

Multi-layer Perceptron(MLP) able to solve the XOR problem as it's shown in figure 12: 

when the inputs of the network are (0,0) or (1,1) the outputs are 0, and when the inputs are 

(0,1) or (1,0) the outputs are 1. The weights of the connections are equal to 1 except the four 

connections where the weight is shown. (Geron, 2019) 

t 

x1 x2 

Figure 12: How MLP Can Solve XOR Classification Problem 

(Source: (Geron, 2019)) 

3.4.3.2 Multi-Layer Perceptron: 

MLP consists of one input layer, one or more TLU layers (hidden layer), and one output 

layer. The essential point in the architecture of MLP is the step function is replaced with a 

logistic function or other activation functions. In the step function, there is no gradient 

because it includes a flat segment therefore (Gradient descent can't move on a flat surface). 

The essential feature of the activation function is adding non-linearity to a neural network. 

Therefore, if there is a complex problem the (MLP) can solve this problem like the XOR 

problem. (Geron, 2019) 
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Figure 13: Multi-Layer Perceptron 

(Source: (Geron, 2019)) 

3.4.4 Forward/Backward Propagation: 

Forward and backward propagation processes, which are independent, are one of the 

fundamentals of understanding the process of the training model in neural networks. 

Forward propagation: 

During forward error propagation, an output prediction with some error is made. An 

overview of what occurs in each neuron should be done before going too deeply into this 

process. 

Figure 14: Inside hi (first neuron of the hidden layer) 

(Source: (Lamsal, 2021)) 

There are two operations inside every single neuron: 

1. Sum of product: includes multiplying the weight vector by the given input vector. 

2. Pass the sum through the activation function: The goal of this process is to pass the 

sum of the product from the input layer in every layer to give the output layer. 

The output of the first layer becomes an input in the next layer and multiplies it by the weight 

of this layer. This process continues till the output layer. 
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Figure (15) is an example of a neural network that includes an input layer with two 

neurons (il,i2), one hidden layer with two neurons (hl,h2), and an output layer with two 

neurons(ol,o2). The wl,w2,w3...w8 are the weights. Bl,b2,b3,b4 are the bias for the 

neurons hl,h2,ol,o2 respectively. The used activation function is a sigmoid function. 

input 1 ( M 

input 2 ( \2 

Expected values 

input 
layer 

hidden 
layer 

output 
layer 

Figure 15: Neural Network example 

(Source: (Lamsal, 2021)) 

let's get begin with the forward pass process. 

For h±: 

sumhl = it * Wj + i2 * w 3 + b1 

Now passing sumhl into a sigmoid function to squash the weighted sum into a range[0,l]. 

outputs = 1 + e

1_sumhi 

Now the same operations for the neuron h2 

sumh2 = ti * w 2 + i2 * w 4 + b2 

°utVuth2 = 1 + eturnh2 

Now outputhl and outputh2 are considered inputs to the next layer. 

For ox: 

sum01 = outputhl *ws + outputh2 * w 6 + b3 

1 
output 0 1 1 -i- e-sum0l 

For o2: 

sum02 = outputhl * w7 + outputh2 * w 8 + b4 
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Now the final step is computing the total error: 

Etotai = ^^{taget - output)2 

Where target is the real value. 

To compute Etotal we need to compute errors at ot and o2: 
1 

El = — {target! — output01) 

1 
E2 = — {target2 — output02) 

£tota!=^(£l+£2)2 

Backward propagation: 

The goal of Backpropagation (backward pass) is to distribute the total error back to the 

network to update the weights and minimize the cost function (loss). The weights are updated 

in such a way that when the next forward pass uses the updated weights, the total error is 

reduced by a certain margin (until the minimum is reached). 

Updating weights (w5, w 6 , w 7 , w8) in the output layer: 

for w 5: 

to update w 5 we will use the chain rule. From figure( 15) El is affected by output01, 

output01 

is affected by sum01, sum01 is affected by w 5 . 
dEtotal dEtotal doutput01 dsum01 

= * * 
dw5 doutput01 dsum01 dw5 

Computing the first component: partial derivative of Error w.r.t. Output 
V " 1 

Etotal =2_i2^E1+E2^) 2 

1 9 1 

Etotai = 2 ( t a rö' e tl — output01y + — (target2 — output02) 
dEt0tai 1 

= 2 * - {target! — output01) * —1 
o output 0 1 2 

dEtotal = outputQ1 — tarqetl o output 0 1 

Computing the second component: partial derivative of output01 w.r.t. sum01 
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The output section of a neuron of a neural network uses a non-linear activation function 

which is a sigmoid function: 
1 

1 + e"* 
Notice that: 

1 
= 1 

l + e~x l + e -* 
By using this fact the partial deriváte could be written as : 

^ / ( * ) = / 0 0 * ( 1 - / 0 0 ) 

Therefore, the derivative of the Logistic function is equal to the output multiplied by (1 -

output). 
d output 0 1 

= output01(l — output 01) 
dsum01 

Computing the third component: partial derivative of sum0l w.r.t. Weight5 

sum01 — outputhl * ws + outputh2 * w 6 + b3 

dsum01 

— = outputhl 

dw5 

Putting them together: 
dE 

= {putput01 — targetl) * output01(l — output01) * outputhl 

dws 

Therefore: 

^ ̂  total 
Wr(new) = Wr — n * — 

dw5 

n: learning rate. 

Remaining weights( w6, w7, w8 ) can be updated in the same way. 

Updating weights (iv l 5 w2,w3, vv4) in the hidden layer: 

The same process to update weights is the hidden layer but the chain rule becomes a bit 

longer 

For w-l (with respect to Exy. 
dEr dEt doutput01 dsum01 doutputhl dsumhl 

dw1 doutput01 dsum01 doutputhl dsumhl dwt 

Computing the first component: 
dE1 

doutput01 

= output01 — targetl 
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The second component is already computed. 

Computing the third component: 

sum01 = outputhl *ws + outputh2 * w 6 + b3 

dsum01 

doutputhl 

Computing the fourth component: 
doutputhl 

dsumhl 

= outputhl(l — outputhl) 

Computing the fifth component: 
sumhl = it * wt + i2 * w 3 + b1 

dsumhl 

dwt

 1 

Putting them together: 
dE1 , . 
-— = (output01 — target!) * {output01(l — output01)) * w5 

* outputhl(l — outputhl) * it 

For wt with respect to (E2): 

dE2 , >. 
-— = {putput02 — target?) * {output02(l — output02)) * w7 

* outputhl(l — outputhl) * it 

Now: 
dEtotal = dEt | dE2 

^ ̂  total 
w± (new) = w1—n* — 

Remaining weights (w2, w 3, w4) can be updated in the same way. 

After we've calculated all of the new weights, we must update all of the old weights with 

the new weights. One backpropagation cycle is completed once the weights are updated. The 

forward pass is now complete, and the total new error is computed. The weights are then 

updated based on the newly computed total error. This process is repeated until the loss value 
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converges to minima. In this manner, a neural network begins with random weight values 

and eventually converges to optimal values. (Lamsal, 2021) 

It should be noted that the previous example considers the weights update. The bias update, 

on other hand, can be updated in the same way. 

The example represents a regression problem (not a classification problem) for this reason 

the loss function is a mean squared error. However, the same backward propagation process 

can be applied to any other loss function for a regression or classification problem. 

3.4.5 Activation Function: 

The aim of the activation function is to add non-linearity to each layer in the neural network. 

This step is essential during forward propagation. 

When the neural network is working without adding activation functions, each neuron will 

implement a linear transformation on inputs utilizing the weight and bias. Therefore, the 

number of hidden layers isn't important in this case, because the output of combining two 

linear functions is a linear function so the neural network will work simply and couldn't 

learn any complex task. 

3.4.6 Types of Activation Functions: 

3.4.6.1 Binary Step Function: 

This function depends on the value of the threshold which determines if the neuron should 

be activated or not. The principle is to compare a certain threshold to the input fed to the 

activation function. If the input is greater than this value so the neuron is activated which 

means the output of this neuron is passed to the next hidden later. If the input isn't greater 

than this value so the neuron isn't activated. 
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Figure 16: Binary Step Function 

(Source: (Baheti, 2022)) 

Binary step: 

(Oforx < 0 
tW -[iforx > o (4) 

The disadvantages of the binary step function are: 

• It can't be utilized for a multiclass classification problem. 

• The gradient of this function is zero which led to an obstacle in the backward 

propagation process. (Baheti, 2022) 

3.4.6.2 Linear Activation Function: 

This function is known as "no activation". The output of This function is the same as the 

value it was given because the linear activation function doesn't modify the sum of weights 

of the input. 
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Figure 17: Linear Activation Function 

(Source: (Baheti, 2022)) 
Linear: 

fix) = x (5) 

The disadvantages of the linear activation function are: 

• Because the derivative of this function is a constant and hasn't relation to the input 

x, it's impossible to implement backpropagation. 

• A linear function will cause the neural network's layers to merge into one. The last 

layer of the neural network will be a linear function of the first layer, regardless of 

the number of layers, thus, a linear activation function effectively reduces the neural 

network to a single layer. 

3.4.6.3 Non-Linear Activation Function: 

The Advantages of non-linear activation functions are: 

• Because the derivative of these functions isn't a constant and is related to the input 

x, it's possible to implement backward propagation and determine which inputs in 

neurons provide a better prediction. 

• The output passed through the multiple layers would be a combination of non-linear 

activation functions, and they allow for a stack of multiple layers of neurons. 

There are several types of non-linear activation functions: 
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3.4.6.4 Sigmoid/Logistic Activation Function: 

The sigmoid function transforms the value of the input to a value between the range [0,1]. 

When the model is used to predict probability, the sigmoid function is the best choice 

because the probability is in the range [0,1]. The gradient provided by this function is smooth 

and this function is differentiable. 

8 

Figure 18: Sigmoid Function 

(Source: (Baheti, 2022)) 

The formula of the sigmoid function is: 

/(*) = 1 7 ^ W 

The disadvantage of the sigmoid function is the vanishing gradient when doing backward 

propagation, which means the weight updating is getting updated by a small number. Also, 

the function output isn't zero-centered. 

3.4.6.5 Tanh Or Hyperbolic Tangent Activation: 

Tanh function is like the sigmoid function and even has the same shape. The difference 

between sigmoid and tanh is that tanh has a range from [-1,1]. 

This function is differentiable, the function output is zero-centered. (Sharma, 2017) 
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Figure 19: Tanh Activation Function 

(Source: (Sharma, 2017)) 

3.4.6.6 RELU Activation Function: 

PvELU stands for Rectified Linear Unit. It's the most utilized activation function. Almost all 

convolutional neural networks and deep learning used it. 

R(z) =mox(0. z) 

-10 -5 ' 5 It 

Figure 20: RELU Activation Function 

(Source: (Sharma, 2017)) 

As it's shown this function is half rectified and the output of RELU is zero when z is less 

than zero and the output is z when z is larger than 0. The range is from 0 to infinity. This 

function and its derivative are monotonie. 

The disadvantage of this function is that takes any negative value and turns it into zero, 

which reduces the model's ability to effectively fit or train from the data. The resulting graph 

of this process doesn't properly map the negative values. (Sharma, 2017) 
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3.4.6.7 Leaky RELU: 

The leaky function solves the dying problem of the RELU function because in the negative 

area it has a small positive slope. The formula of Leaky RELU is: 

f(x) = max (o. lx,x) (7) 

RELU and Leaky RELU functions are the same, as well as Leaky performs backpropagation 

for negative input values. 

This small modification ensures that the gradient of the graph's left side is non-zero for 

negative input values. As a result, the dead neurons wouldn't be anymore. (Baheti, 2022) 

Figure 21: Leaky ReLU 

(Source: (Sharma, 2017)) 

3.4.6.8 Softmax 

The aim of softmax is to compute the sum of multiple sigmoid functions where the output 

of the sigmoid function is a probability in the range[0,l]. Softmax is the most used activation 

function in the last layer of ANN. The formula of Softmax is: 

s o f t m a x ( Z t ) = e x p ( z ' * (8) 

L i exp (Zj) 

An example of using softmax: 
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If there are three classes it means there are three neurons in the output layer and the output 

of neurons is [1.8, 0.9, 0.68]. Applying softmax over these values will give the probability 

of each class[0.58, 0.23, 0.19]. The function returns 1 for the largest probability index and 0 

for the remaining two array indexes. Index 0 is given full weight, while indexes 1 and 2 are 

given no weight. As a result, the output would be the class associated with the first neuron 

(index 0) of three. (Baheti, 2022) 

3.4.7 Terminologies in ANN: 

There are several terminologies in ANN: 

3.4.7.1 Sample 

A sample is a single data row, that contains inputs for the algorithm. For example, a sample 

represents a single image for image classification tasks or a single email for email 

classification tasks. When supervised learning is utilized, every sample is accompanied by 

an output (i.e., a label) which is compared to the predicted output of that sample during the 

training process (the error or the difference between the label and the prediction is to be 

minimized during training iterations). A dataset for training consists of many samples. 

The sample is also called an observation or instance or an input vector. (Brownlee, 2020) 

3.4.7.2 Batch and Epoch 

When training a neural network, it is common to use Gradient Decent (GD) to tune the neural 

network weights such that the loss function is minimized. However, to speed up the training, 

a subset of the dataset samples is usually enough to estimate the loss gradient and update the 

weights. Therefore, GD is usually applied to a subset of the data samples in every iteration. 

This subset is called a batch. Based on that, the dataset is split into non-overlapping batches. 

Then the training iterates over the batches and uses GD on each batch updating the weights 

in every iteration. When all batches are processed once, this is called an epoch of training. 

The process repeats as the training process is done over many epochs. In this case, GD is 

called "Stochastic Gradient Decent" (SGD). 

The batch size and the number of training epochs are both hyperparameters that can be tuned 

by the machine learning engineer or the data scientist performing the training. 
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Note that if the batch size is set to be equal to the size of the whole data set, then there is 

only one batch, and every single epoch is a single training iteration. In this case, The 

algorithm would be "Gradient Decent" (i.e., not stochastic). On the other hand, if the batch 

size is set to one, the number of batches would be equal to the data set samples and the 

number of iterations to complete a single training epoch would also be equal to the number 

of data set samples as well. In this case, the optimization algorithm is called "Mini-batch 

Gradient Decent". (Brownlee, 2020) 

3.4.7.3 Loss Function: 

The performance of the model is measured by the loss, which represents how much the 

model differs from the desired outcome. Hence, the lower the loss, the better the model. The 

loss function is one of the most crucial components of neural networks which, together with 

the optimization algorithm, are directly in charge of fitting the model to the provided training 

data. The principle is to compare the target and predicted output values and to measure how 

well the neural network models training data. When training, the goal is to minimize the loss 

between the target and predict value. (Yathish, 2022) 

Common types of loss function: 

• Regression loss functions: Mean Squared Error, Mean Absolute Error. 

• Classification loss functions: Binary Cross-Entropy, Categorical Cross-Entropy. 

(Yathish, 2022) 

Binary Cross-Entropy/Log Loss: 

It's used in binary classification cases where there are two actual values of y 0 or 1. 

The forum of cross entropy is: 

CELOSS= - ± i f = 1 Cyi-iogfa) + ( i - y i ) . i o g ( i - p O (9) 

To determine the loss between the predicted and actual values, it's necessary to compare the 

actual value 0 or 1 with the probability that the input aligns with that category. 

p(i): represents the probability where the category is 1. 

1 — p(i): represents the probability where the category is 0. 

N: represents the number of samples. 

yt: represents the label/class (1 or 0). (Pawar, 2021) 

Categorical Cross-Entropy Loss: 
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It's used when the number of classes is greater than two. The formula of categorical cross-

entropy is a generalization of the previous formula from (9) to the multi-class case and can 

be written as: 

CELOSS = - i Z*LiZ?=iyy -log(py) (io) 

N: represents the number of samples. 

M: represents the number of possible classes. 

jij: represents a binary indicator of whether the real label of sample i is class j or not. 

Pif. represents the predicted probability of class j for sample i . (Yathish, 2022) 

Note that other loss functions are out of the scope of this thesis and, hence, there is no need 

to show/explain more details about those other loss functions. 

4 Practical part: 

4.1 Data set 

4.1.1 Data acquisition 

As expected, data sets with email contents are of limited availability due to privacy issues. 

Therefore, we have used a data set available for research purposes from the well-known 

website "www. kaggle.com". 

The data set includes 2000 emails including the emails' content text. For each email, a 

corresponding topic out of three available topics is attached. Those three topics are 

"Crime", "Politics" and "Science". If an email does not belong to any of those three topics, 

this email is considered to be "Others" referring to any other topic that is not crime, 

politics, or science. Based on that, each of the emails is classified into one of the four 

available classes, i.e., Crime, Politics, Science, and Others. 

It is important to note that the data is acquired such that the balance between the four 

classes is maintained. In precise, the 2000 emails include 500 emails (25% of the whole 

data) for each of the four classes. This keeps the equality of the number of samples for 

each of the classes and prevents any possible bias in the trained models due to the class 

imbalance problems. 
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The data set is provided by a major newspaper in which the editor was receiving a high 

number of emails from his/her journalists. Those emails were separated into categories 

indicating each email's topic separated into categories. The editor grew tired of these emails 

because the newspaper's IT department did a poor job of maintaining the data, resulting in 

text files labeled in multiple folders. 14147.txt, for example, is labeled as 'Crime', 'Science', 

and 'Others'. The task is to build a model that is able to classify all the emails into their 

proper categories based on their content in order to correct the IT department's mistakes. 

4.1.2 Data pre-processing 

In this sub-section, the data pre-processing steps are described. The goal is to have a clean 

numeric input that a machine learning model can understand and be trained based upon. 

4.1.2.1 Get folders and load emails: 

This step is to get a folder in the directory and load every email and put features in x and 

the labels(email's topic) in y, and then look at the shapes of the inputs and one sample, 

then transform x from list to array. 

the code developed to perform the analysis presented in this thesis is in the form of a 

jupyter notebook. 
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# l o a d e v e r y e m a i l and put t h e f e a t u r e s ( e m a i l s ' t e x t ) i n x and t h e l a b e l s ( e m a i l s ' t o p i c s ) i n y 
x - [ ] 

y=[] 
f o r d i r e c t o r y i n d i r e c t o r i e s : 

path2= p a t h +"/"+ d i r e c t o r y + "/" 
w i t h o s . s c a n d i r ( p a t h 2 ) as e n t r i e s : 

f o r e n t r y i n e n t r i e s : 
w i t h o p e n ( e n t r y , "r~3 e n c o d i n g = " l a t i n i " ) as f i l e : 

• = f i l e . r e a d ( ) 
i f len{m)!= 0: # a v o i d empty e m a i l s ( d a t a q u a l i t y i s s u e ) 

x.append(m) 
y . a p p e n d ( d i r e c t o r y ) 

# t a k e a l o o k a t t h e shapes o f t h e i n p u t s and check one sample 
p r i n t ( ' I n p u t f e a t u r e s shape : n p . s h a p e ( x ) ) 
p r i n t ( ' L a b e l s shape : n p . s h a p e ( y ) ) 

p r i n t ('The l a b e l / t o p i c o f t h e f i r s t e m a i l i s : ', y [ 0 ] ) 

p r i n t ('The f i r s t e m a i l i n t h e t o p i c " + " ( r r + y [ 0 ] + " ) " + " i s :" +"\n" + x [ 6 ] ) 

1.5s 

Output exceeds t h e s i z e l i m i t . Open t h e f u l l o u t p u t d a t a i n a t e x t e d i t o r 

I n p u t f e a t u r e s shape : (1997,) 

L a b e l s shape : (1997,) 

The l a b e l / t o p i c o f t h e f i r s t e m a i l i s : Cr i m e 

The f i r s t e a a i l i n t h e t o p i c ( C r i m e ) i s : 

Archive-name: r i p e m / f a q 

L a s t - u p d a t e : Sun, 7 War 93 21:09:00 -0500 

ABOUT THIS POSTING 

T h i s i s a ( s t i l l r a t h e r rough) l i s t i n g o-f l i k e l y q u e s t i o n s and 

i n f o r m a t i o n about RIPEM, a program f o r p u b l i c key m a i l e n c r y p t i o n . I t 

( t h i s FAQ, not RIPEM) was w r i t t e n and w i l l be m a i n t a i n e d by Hare 

VanHeyningen, <mvanheyn@tjhale.cs.indiana.edu>. I t w i l l be p o s t e d t o a 

v a r i e t y o f newsgroups on a monthly b a s i s ; f o l l o w - u p d i s c u s s i o n s p e c i f i c 

t o RIPEM i s r e d i r e c t e d t o t h e group a l t . s e c u r i t y . r i p e m . 

Figure 22: Code for loading every email 

4.1.2.2 Data splitting 

This step is typical in every model development process. The idea is to split the whole data 

set into two parts, a training, and a testing part (referred to as the training set and the test 

set respectively). The remaining data pre-processing steps and the model training are 

applied to the training set only. Then, the whole pre-processing and the trained models are 

evaluated on the test set. The test set represents the set of emails that would be received in 

the future when the trained and tested model is put into production. In such case, the emails 

would be inserted into the model and the model has to predict the category of each email. 

Bearing this in mind, the reachable accuracy on the test set is an estimate of the expected 

performance of the model when deployed in production. 
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Based on the pre-described principle, the 2000 emails are split into a training and test set 

with a split ratio of 80:20. This means that 1600 emails are used for the training (training 

set) and the remaining 400 emails are used for the testing (test set). 

Although the split is done randomly, it is important to note that the "stratified" train-test 

split is considered. In the stratified train-test split, the class balance is kept in the training 

as well as the test set. In detail, the training set includes 400 emails for each of the four 

classes (making a total of 1600 emails in the training set). Similarly, the test set includes 

100 emails from each of the four classes (making a total of 400 emails for the test set). 

This keeps the fairness between the training and the test phases guaranteeing unbiased 

training on the training set and a fair evaluation of the model on the test set. 

The block of code of transforming x from list to array and train-test split and the results are 

shown in Figure 23. 
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# transform x from l i s t t o numpy array 
x = n p . a r r a y ( x ) . r e s h a p e ( - l ) 
p r i n t ( x . s h a p e ) 

# s p l i t data i n t o t r a i n / t e s t sets v i a a s t r a t i f i e d f a s h i o n 
X _ t r a i n , X _ t e s t , y _ t r a i n , y _ t e s t = t r a i n _ t e s t _ s p l i t ( x , y, t e s t _ s i z e = 6.26, s t r a t i f y = yt s h u f f l e = True, random_state = 1299) 
p r i n t ( y _ t r a i n [ 1 ] ) 
p r i n t ( X _ t r a i n [ l ] > 

V 2.3s 

Output exceeds the s i z e l i m i t . Open the f u l l output data i n a t e x t e d i t o r 

(1997,) 

P o l i t i c s 

In a r t i c l e <visser.7352G0518@convex.convex.com> ( a l t . c o n s p i r a c y , t a l k . p o l i t i c s . m i s c , t a l k . r e l i g i o n . m i s c ) , visser@convex.com (Lance V i s s e r ) w r i t e s : 

] I n <b5kendigC5qyJ2.GEi*%ietcoin.com> b-skendig@netcom.coni ( B r i a n Kendig) w r i t e s : 

] +>b645zaw@utarlg.uta.edu (Stephen T i c e ) w r i t e s : 

] +» 
] + » O n e way or another -- so much f o r patience. Too bad you couldn't j u s t 

] +>>wait. Was the prospect of God's Message j u s t t o o much t o take? 

] +>So you b e l i e v e t h a t David Koresh r e a l l y i s Jesus C h r i s t ? 

They cut o f f the water, there were no f i r e t r u c k s present and 

] the FBI/ATF go b l a s t i n g holes i n t o the b u i l i n g and f i r i n g gas munitions. 

] The b u i l d i n g burns, almost everyone d i e s . I t probably doesn't bother 

] you much, but i t bothers many other people most o f whom dont b e l i e v e 

] p a r t i c u l a r l y i n Koresh or h i s message. 

Four ATF agents and 90 branch Davidians are now dead because of 

] crazy t a c t i c s on the p a r t of the ATF and FBI. 

Attorney General Vampira t e l l s us t h a t todays events were suppose 

] t o "save" those i n the compound. Blowing holes i n a b u i l d i n g and 

] gassing those i n s i d e was supposed t o "save" them? 

Figure 23: Train-Test split 

4.1.2.3 Label encode the labels: 

This step is to encode the labels of the (y) matrix and check the labels. To do this, the code 

used for labeling (y) and inspecting the labels is shown in Figure 24. 

# L a b e l encode the l a b e l s (0: , 1: ,2: , 3 0 
Is = LabelEncoder{) 
p r i n t ( " T h e e x i s t i n g u n i q j e e m a i l t o p i c * ; : " j pd.unique,y t r a i n ) ) 
y _ t r a i n = l e . f i t _ t r a n s f o r m ( y _ t r a i n ) 
y _ t e s t = l e . t r - a n s f onm(y_te&t) 

# check the l a b e l s : 

p r i n t ( " T h e r e s u l t e d l a b e l s f o r each em; i i l t o p i c : "j. pd . unique.. y t r a i n ) ) 
p r i n t ( l e n ( y t r a i n ) ) 

p r i n t ( n p . s h a p e ( X _ t r a i n [ y _ t r a i n — 0 ] ) ) 
p r i n t ( n p . s h a p e ( X _ t r a i n [ y _ t r a i n = = l ] ) ) 
p r i n t ( n p . s h a p e ( X t r a i n [ y t r a i n = = 2 ] ) ) 
p r i n t ( n p . s h a p e ( X _ t r a i n [ y _ t r a i n = = 3 ] ) ) 

p r i n t ( n p . s h a p e ( X t e s t [ y test==0])) 
p r i n t ( n p . s h a p e ( X _ t e s t [ y _ t e s - t = = l ] ) ) 
pr"int(np.shape(X t e s t [ y test==2])) 
pi"int(np.shape(X t e s t [ y test==3])) 

•y U i 

The e x i s t i n g unique e m a i l t o p i c s : ['Other - " P o l i t i e s ' 'Crime' 'Science'] 

The r e s u l t e d l a b e l s f o r each e m a i l t o p i c : [ 1 2 G 3 ] 

1597 

(399,) 

(490,) 

(430,) 

(398,) 

(100,) 

(100,) 

(100,) 

(196,) 

Figure 24: Code of labeling (y) 
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4.1.2.4 Tokenization, Data cleaning, and Lemmatization 

In this subsection, the process of applying the standard text data preparation is described as 

follows. 

First, the content of every email is separated into a list of words (tokenization). Then, the 

following data-cleaning steps are applied: 

• Al l words are changed into lowercase (small letters) 

• Al l Latin or non-alphabet words in addition to the words with less or equal 

to 3 letters are excluded from the list of words 

• Al l remaining words are converted into their root or first form 

(lemmatization) 

The aforementioned cleaning steps guarantee that all redundant words or letters (not 

beneficial for the identification of the email's topic) are excluded. It also guarantees the 

same word structure (or tense) over the various emails. 

The code used for cleaning every email is shown in Fig.25 shown below: 

X_train_before = X_train.copy() 

def text_cleaning_function(X_train): 
stop = stopwords.words('english') 
corpus=[] 
wordnet_lemmatizer = WordNetLemmatizer() 

for punct i n punctuation: 
stop.append(punct) 

for text i n X_train: 
sentences= WordPunctTokenizer().tokenize(text.lower()) 
review= [regex.sub(u 1 \ p { r t L a t i r i j - 1

1 u''^ u) for w i n sentences i f w.isalpha() and len(w) > 3]# 
review=[vdordnet_lemmatizer.lenmatize(wJ pos="v") for w i n review i f not w in stop] 
review = ' '.join(review) 
corpus.append(review) 

return corpus 

# transform emails (cleaning ..etc) 
X_t rain = text_cleaning_f u net io n ( X_t ra i inbefore ) 
p r i n t ( X _ t r a i n [ l ] ) 

Figure 25: Code for cleaning every email 

The result after executing this step to the same email above from Fig.23 is shown : 
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a r t i c l e visser convex convex conspiracy t a l k p o l i t i c s misc t a l k r e l i g i o n inisc visser convex lance visser write netcom bskendig netcom briar 
much take believe david koresh r e a l l y jesus christ water f i r e truck present blast hole b u l l i n g f i r e munition build burn almost everyone die 
four agents branch davidians dead crazy t a c t i c s part attorney general vampira t e l l todays events suppose save compound blow hole build gas 

black bat f earn would mu l t i p l y many time a l so mourn deaths bat f agents although deceptions ca r r y government nothing 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

Note that three emails out of the 1600 emails of the training set remained empty after this 

preprocessing step. Hence, these emails were excluded from the analysis. The remaining 

emails used for the training were 1597 emails/training samples. 

4.1.2.5 TFIDF 

The Term Frequency-Inverse Document Frequency (TF-IDF) is used to convert the emails 

into a numeric matrix with the shape of the number of samples (emails), x the number of 

words. The number of words equals the number of all distinct words over the whole training 

set. Each cell in the matrix represents the importance of the corresponding word (defined by 

the column) in the corresponding data sample/email (defined by the row). 

This step concludes the preprocessing of data such that the emails are in a form of an input 

numerical matrix that can be used to train a variety of machine learning models. 

The code and the result are shown in Figure 26. 

# v e c t o r i s e ema i l t e x t s ( T f i d words --> numbers) 
v e c t o r i z e i"_data = T f i d f V e c t o r i ze r ( ) 
X = v e c t o i " i z e i " _ d a t a . f i t _ t r a n s f o r m ( X _ t r a i n ) . t oa r r a y ( ) 
p r i n t (X . shape ) 

•S 1.9s 

(1597, 20809) 

Figure 26: TF-IDF-code 

Note that the number 1597 refers to the number of the training set samples (i.e., emails) 

while the number 20809 refers to the number of all distinct words over the whole training 

set. 

The table below in Fig. 27 illustrates that, for example, the sample (email) in row 82 has 

three words that are used in this email with the following importance: 0.217, 0.09315, and 
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0.1148. Also, the sample in row 84 includes the word represented by column 41 with 

importance of 0.0562. Note that the table from Fig. 27 was generated using Spyder IDE. 
44 45 46 47 

1 a 0 

0 1 0 

0 

78 e a 0 0 0 0 0 0 0 0 

79 a 0 
• 

0 0 0 0 0 0 0 0 

80 0 a 0 B a a a a a a 0 

81 0 B e B 9 B 0 B B B 0 

82 e 0 e B 0 B 0 B 0.217642 0.0941553 0.114834 

83 o » o » » o » 0 

84 a 0 0 0.0562204 0 0 0 0 0 0 

85 a 0 0 0 0 0 0 0 0 0 

86 0 . 0 B a a a 0.0756071 a a a 

87 0 0 e B 0 B 0 B 0 B 0 

88 0 B 0 B 0 B 0 6 0 6 0 

89 a 0 0 0 0 0 0 0 0 0 0 

90 a 0 0 0 0.04414-26 0 0 0 0 0 0 

Figure 27: The "matrix of words" representing the emails 

4.2 Models training 

In this section, we go over the training of the various machine learning models used for email 

classification. Of course, all the trained models were tested on a test set to guarantee the 

avoidance of overfitting. Note that the emails of the test set were also preprocessed using the 

preprocessors that were fit on the training set. The test set preparation code is the following. 

# prepare t e s t data 

# c lean 
X_ te s t = t e x t _ c l e a n i n g _ f u n c t i o n ( X _ t e s t ) 

# v e c o t r i s e emai ls {use t rans form where the v e c t o r i s e r i s f i t on t r a i n i n g data) 
X t e s t = v e c t o r i z e r _ d a t a . t r a n s f o r m ( X _ t e s t ) . t o a r r a y Q 

Figure 28: Test data preparation 

4.2.1 Logistic Regression 

A Logistic Regression model was trained first to do the email classification task, scikit-learn 

library from Python was used. The default Logistic Regression parameters were kept( 
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penalty='12' C:float, default=1.0 , intercept-scaling=l,fit_intercept=True/) The code used is 

the following: 

# t r a i n l o g i s t i c r e g r e s s i o n 
L R _ c l a s s i f i e r = L o g i s t i c R e g r e s s i o n ( r a n d o m _ s t a t e = 0) 
L R c l a s s i f i e r . f i t ( X j y t r a i n ) 
a c c _ t r a i n i n g _ d a t a = 1 0 6 * L R _ c l a s s i f i e r . s c o r e ( X j y t r a i n ) 
p r i n t ( ' L o g i s t i c Regression : The accuracy on the t r a i n i n g data i s : a c c _ t r a i n i n g _ d a t a j % • ) 

L o g i s t i c Regression : The accuracy on the t r a i n i n g data i s : 99.87476518472135 % 

Figure 29: Logistic Regression code - Training 

The reached total accuracy of the trained Logistic Regression model was 99.8%. However, 

to examine the performance of the trained Logistic Regression model on unseen data, the 

model was tested on the test set. The code used for testing is shown below: 

# p r e d i c t t e s t output using the t r a i n d model 
L R_y_pred = L R c l a s s i f i e r. p red i ct ( X t e s t ) 

# confusion matrix 
LRcm = c o n f u s i o n n a t r i x C y t e s t j LR_y_pred) 
p r i n t ( ' L o g i s t i c Regression : The confusion matrix values are : LR_c»> 

# accuracy c a l c u l a t i o n 
L R a c c = l@@*accuracy_score(y_testj LR_y_pred) 
p r i n t ( ' L o g i s t i c Regression : The accuracy on the t e s t s e t i s : ', L R a c c , •%•) 

L o g i s t i c Regression : The confusion matrix values are : [[97 0 

[ B 99 1 3] 

[ 0 0 99 1] 

[ 8 0 3 97]] 

L o g i s t i c Regression : The accuracy on the t e s t set i s : 98.0 % 

1 2] 

Figure 30: Logistic Regression code - Testing 

The block of code used to visualize the confusion matrix on the test set and its outcome are 

shown in Fig 31 and Fig 32, respectively. 

p i t . f i g u r e { ) 
ax = sns.heatmap{LR_cmj annot=Truej cmap = B l u e s ) 
ax = ax.set{xlabel='Predicted'jylabel="True',title="Logistic Regression - Confusion Matrix", 

x t i c k l a b e l s = ( d i r e c t o r i e s ) 3 

y t i c k l a b e l s = ( d i r e c t o r i e s ) ) 

pit.savefig{'Logistic_Regression_Confusion_Matrix.png 1

f dpi = 

Figure 31: Code to visualize Logistic Regression confusion matrix 
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Logistic Regression - Confusion Matrix 
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Figure 32: Logistic Regression confusion matrix on the test set 

The confusion matrix shows that the total accuracy of the Logistic Regression model on 

the test set is 98% model. The confusion matrix also confirms that the balanced data lead 

to a relatively balanced performance of the trained model in each of the four classes. 

However, small differences between the accuracies in the four classes were spotted. 

Precisely, the accuracy in both the "Politics" and "Other" classes was 99% while the 

accuracy in the "Crime" and Science classes was 97%. This indicates that the linear 

hyperplane created by the Logistic Regression is more able to split the "Politics" and 

"Other" classes from the remaining classes compared to its ability to split the "Crime" and 

"Science" classes from the remaining classes. However, such a performance is almost 

perfect, and we can state that there is a clear linear relationship/mapping between the 

inputs (the emails) and the output (the emails categories/classes). Nevertheless, we have 

trained more complex and non-linear models in the following subsections to confirm the 

possibility of reaching better performance. 

4.2.2 Random Forest 

In addition to the Logistic Regression model, a Random Forest model was trained for email 

classification and scikit-learn library from Python was used. The default Random Forest 
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parameters were kept (n-estimators (The number of trees in the forest.=100), 

max_depth=None, criterion='gini'). The code used is the following is shown in Fig.33: 

# t r a i n random f o r e s t 
RF_c l a s s i f i e r = RandomForestClassifier(ramdom_state = 0) 
R F _ c l a s s i f i e r . f i t ( X j y_ t ra in ) 
RF_acc_training_data = 100*RF_c lass i f ier . score(Xj y t r a i n ) 
print('Random F o r e s t : The accuracy on t h e t r a i n i n g data i s : " t RF_acc_training_data j l ' %•) 

Random Forest : The accuracy on the t r a i n i n g data i s : 100.0 % 

Figure 33: Random Forest code - Training 

The reached total accuracy by the trained Random Forest model was 100% which is very 

high and indicates possible overfitting. However, this can be confirmed by testing the 

performance of the trained Random Forest model on unseen data. The code used for 

Random Forest testing (on the unseen test set) is shown below in Fig.34. 

# p r e d i c t t e s t output using the t r a i r i d model 
RF_y_pred = R F _ c l a s s i f i e r . p r e d i c t ( X _ t e s t ) 

# confusion matrix 
RF_cm = c o n f u s i o n _ m a t r i x ( y _ t e s t j RF_y_pred) 
print('Random Forest : The confusion matrix values are : cm) 

# accuracy c a l c u l a t i o n 
RF_acc = 100*accuracy_score(y_test > RF_y_pred) 
print('Random Forest : The accuracy on the t e s t set i s : " j RF_ acc, 1 

Random Forest : The confusion matrix values are : 

[ B 199 9 9] 

[ 1 9 91 S] 

[ 9 9 4 96]] 

Random Forest : The accuracy on the t e s t set i s : 

[[92 e 

94.75 % 

2 6] 

Figure 34: Random Forest code - Testing 

Visualization of the confusion matrix on the test set: 

The block of code used to visualize the confusion matrix on the test set and its outcome are 

shown in Fig 35 and Fig 36, respectively. 
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p l t . f i g u r e { ) 
ax = sns.heatmapfRFcnij annot=Truej cmap = " B l u e s ' ) 
ax = a x . s e t ( x l a b e l = ' P r e d i c t e d ' j y l a b e l = " T r u e ' J t i t l e = 1 R a n d o m Forest - Confus ion M a t r i x ' 3 

x t i c k l a b e l s = ( d i r e c t o r i e s ) , 
y t i c k l a b e l s = ( d i r e c t o r i e s ) ) 

p i t . s a vef i g ( ' RandomFo re st_Co nf u s i o n_Mat r i x . ping" t d p i = 300) 

Figure 35: Code to visualize Random Forest confusion matrix 
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Figure 36: Random Forest confusion matrix on the test set 

The total accuracy of the Random Forest model on the test set is 94.7 which is slightly low 

compared to the 100% accuracy on the training set. This confirms that the model slightly 

overfits the data. However, this may be expected due to the existence of a linear 

relationship between the input and the output as shown in the Logistic Regression results. 

Therefore, the use of a more complex non-linear model such as a Random Forest led to the 

pre-shown overfitting. 

Going into more details from the confusion matrix, the Random Forest model has resulted 

more overfitting on the "Politics" and "Crime" classes (91% and 92% test set accuracy, 

respectively) compared to the "Science" class (96% test set accuracy). On the "Other" 
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class, the Random Forest model showed a perfect performance without any overfitting 

(100% test set as well as training set accuracies). 

4.2.3 Naive Bayes 

A Naive Bayes model was also trained for the purpose of comparison with the previously 

trained models. Similar to the previous models, the scikit-learn library from Python was use 

The code used is the Fig.37: 

# t r a i n naive bayes 
g r b c l a s s i f i e r = Gauss ianrJBf) 
g n b _ c l a s s i f i e i " . f i t ( X ] y_ t ra in ) 
gnb_acc_training_data = 100*gnb_classi-Fier.score(Xj y t r a i n ) 

p r i n t ( "Naive Bayes : The accuracy on the t r a i n i n g data i s : 't gnb_acc_ti"aining_data J ' % ' ) 

Naive Bayes : The accuracy on the t r a i n i n g data i s : 99.93738259236968 % 
Figure 37: Naive Bayes code-Training 

The reached total accuracy by the trained Naive Bayes model was 99.9% which is also 

very high and indicates possible overfitting. To confirm, the models' performance on the 

test set was checked similarly to the previous two models. The code used for Naive Bayes 

model testing (on the unseen test set) is shown in Fig.38. 
# p r e d i c t t e s t o u t p u t u s i n g t h e t r a i r i d model 
gnb_y_pred = g n b _ c l a s s i f i e r . p r e d i c t ( X _ t e s t ) 

# c o n f u s i o n mati-ix 
gnb_cm = c o n f u s i o n _ r n a t r i x ( y _ t e s t . , gnb_y_pred) 
p r i n t ( " N a i v e Bayes : The c o n f u s i o n m a t r i x v a l u e s are : J gnb_cm) 

fl a c c u r a c y c a l c u l a t i o n 
gnb_acc = 1 0 G * a c c u r a c y _ s c o r e ( y _ t e s t J gnb_y_pred) 
p r i n t ( ' N a i v e Bayes : The a c c u r a c y on t h e t e s t s e t i s ; > gn b _ a c c > 

N a i v e Bayes : The c o n f u s i o n m a t r i x v a l u e s are : [ [ 9 6 2 

[ & 99 & 1 ] 

[ 3 2 95 0 ] 

[ 2 1 6 9 1 ] ] 

Nai v e Bayes : The a c c u r a c y on t he t e s t s e t i s : 95.25 % 

2 0] 

Figure 38: Naive Bayes code- Testing 

The block of code used to visualize the confusion matrix on the test set and its outcome are 

shown in Fig 39 and Fig 40, respectively. 
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p l t . f i g u r e { ) 
ax = sns.heatmapfgnbcnij annot=Truej cmap = "B lue s " ) 
ax = a x . s e t ( x l a b e l = " P r e d i c t e d " j y l a b e l = " T r u e " J t i t l e = " N a i v e Bayes - Confus ion M a t r i x ' 3 

x t i c k l a b e l s = ( d i r e c t o r i e s ) , 
y t i c k l a b e l s = ( d i r e c t o r i e s ) ) 

p l t . s a v e f i g { ' N a i v e B a y e s C o n f u s i o n M a t r i x . ping" t d p i = 300) 

Figure 39: Code to visualize Naive Bayes confusion matrix 
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Figure 40: Naive Bayes confusion matrix on the test set 

The total accuracy of the Naive Bayes model on the test set is 95.2 which is slightly low 

compared to the 99.9% accuracy on the training set. Although, this confirms that the model 

slightly overfits the data, the average overfitting is lower than the overfitting observed in 

the Random Forest model training. 

Looking at each class separately in the confusion matrix, the Naive Bayes model has 

resulted more overfitting on the "Science" class (91% test set accuracy) compared to the 

"Politics" and "Crime" classes (95% and 96% test set accuracy, respectively). Similar to 

the case of Random Forest, the "Other" class shows (almost) a perfect performance 

without any overfitting. 

65 



4.2.4 Artificial Neural Networks 

Finally, powerful Artificial Neural Networks (ANNs) were used to train an email's 

classification model. The selected structure of the trained ANN was an input layer, a hidden 

layer with five neurons and a RELU activation function, and a SoftMax output layer with 

four neurons (equal to the number of four possible classes/categories). The used loss function 

is the multi-class cross entropy suitable for multi-class classification problems. The 

prediction accuracy is used as the main metric for the evaluation of the model's performance. 

Keras library from Python was used for the modeling. The optimizer used for the 

minimization of the loss function and the weights' update is A D A M with the default initial 

learning rate set in Keras (The learning rate. Defaults to 0.001.). The number of epochs was 

set to 30 epochs. Note that the previous ANN structure and parameters were set based on the 

trial-and-error approach. The block of code used to train the ANN and the training progress 

are shown in Fig.41. 

# ANN 
a n n c l a s s i f i e r = t f . k e r a s . m o d e l s . S e q u e n t i a l ^ ) 
a n n _ c l a s s i f i e r . a d d ( t f . k e r a s . l a y e r s . D e n s e ( u n i t s = 5 , a c t i v a t i o n - ' r e l j ' ) ) 
a n n _ c l a s s i f i e r . a d d ( t f . k e r a s . l a y e r s . D e n s e ( u n i t s = 4 , a c t i v a t i o n - ' s o f t m a x ' ) ) 
a n n c l a s s i f i e r . compile (optimizer="adam", l o s s ^ ' S p a r s e C a t e g o r i c a l C r o s s e n t r o p y " j met r i c s = [ " accuracy " ] ) 
h i s t = a n n _ c l a s s i f i e r . f i t ( X j y _ t r a i n j epochs = 39) 

Figure 41: ANN code-Training 

The training progress of the ANN (i.e., the loss function value and the reached accuracy at 

every training epoch) is shown in Figure 42 : 
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Epoch 1/30 

50/50 [======= ] - I s 8ms/step - l o s s : 1.3360 - accuracy: 0.6969 

Epoch 2/30 

50/50 [======= ======= ] - 9s 9ms/step - l o s s : 1.1818 - accuracy: 0.8691 

Epoch 3/30 

50/50 [======= ======= ] - 0s 9ms/step - l o s s : 1.0188 - accuracy: 0.9267 

Epoch 4/30 

50/50 [======= ======= ] - 0s 9ms/step - l o s s : 0.8632 - accuracy: 0.9662 

Epoch 5/30 

50/50 ] - I s 11ms/step - l o s s : 0.7252 - accuracy: : 0.9831 

Epoch 6/30 

50/50 ] - 0s 8ms/step - l o s s : 0.6066 - accuracy: 0.9912 

Epoch 7/30 

50/50 [ ] - 9s 16ms/step - l o s s : 0.5057 - accuracy: : 0.9944 

Epoch 8/30 

50/50 [ ] - 0s 9ms/step - l o s s : 0.4297 - accuracy: 0.9969 

Epoch 9/30 

50/50 [ ] - 0s 9ms/step - l o s s : 0.3492 - accuracy: 0.9981 

Epoch 10/39 

50/50 [ ] - 0s 9ms/step - l o s s : 0.2898 - accuracy: 0.9987 

Epoch 11/30 

50/50 [======= ] - 0s 8ms/step - l o s s : 9.2408 - accuracy: 0.9987 

Epoch 12/30 

50/50 [======= ======= ] - 0s 8ms/step - l o s s : 0.2007 - accuracy: 0.9987 

Epoch 13/30 

Epoch 29/30 
50/50 [======= ======= ] - 0s 10ms/step - l o s s : 0.0228 - accuracy: : 1.0000 

Epoch 30/30 

50/50 [======= - 0s 9ms/step - l o s s : 0.0210 - accuracy: 1.0000 

Figure 42: Training progress of the ANN 

The training progress is monitored by following the loss reduction and the prediction 

accuracy increment over the training epochs. The block of code used in training progress 

over the training epochs is included in Fig 43 and Fig 44 showing the loss decrease and 

the accuracy increase . 
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p i t .-figure() 
p i t . p l o t { h l s t . h i s t o r y [ ' l o s s ' ] ) 
p i t . y l a b e l { ' L o s s ' ) 
pit.xlabel{'Epoches') 
pit.grid(True) 
p i t .savefig{ 'ANN_loss_progress. prig' t dpi = 306) 
plt.show{) 

Figure 43: Code to visualize the Loss 

p i t . f i g u r e { ) 
p l t . p l o t ( h i s t . h i s t o r y [ " a c c u r a c y " ] ) 
pit.ylabel('Accuracy") 
pit.xlabel{'Epoches') 
pit.grid(True) 
p i t .savefig{ 'ANN_accuracy_progress. ping", dpi = 399) 
pit.show{) 

Figure 44: Code to visualize the Accuracy 

0 5 10 15 20 25 30 
Epoches Epoches 

Figure 45: Loss progress Figure 46: Accuracy progress 

The prediction accuracy achieved by the ANN was 100%. Such a high accuracy on the 

training set motivates towards checking the accuracy in the test set to examine whether the 

model overfits the training data. The code used for ANN testing is shown in Fig.47 

# ANN 
# p r e d i c t t e s t output u s i ng the t r a i n d model 
3nn_y_pred = np.argmax(ann_classifier.predict(X_test), axis = 1) 

# confusion matrix 
anncm - c o n f u s i o n _ m a t r i x ( y _ t e s t , ann_y_pred) 
p r i r r t ( ' A r t i f i c i a l Neura l Network : The con fu s i on m a t r i x va lues are : ann_cn) 

# accuracy c a l c u l a t i o n 

ann_acc - 10G*accu racy_ sco re {y_ te s t , ann_y_pred) 
p r i n t ( ' A r t i f i c i a l Neura l Network : The accuracy on t he t e s t se t i s : ' } ann_acc, ' % ' ) 

A r t i f i c i a l Neu ra l Network 

[ 0 99 l e] 
[ 1 0 99 0] 

[ 1 9 2 97] ] 

A r t i f i c i a l Neu ra l Network 

The con fu s i on m a t r i x va l ue s a re : [[98 & 2 0] 

The accuracy on t he t e s t set i s : 98.25 % 

Figure 47: ANN code-Testing 
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The confusion matrix on the test set is shown below: 

ANN- Confusion Matrix 

Crime Other Politics Science 
Predicted 

Figure 48: ANN test confusion matrix 

As shown in the previous figure, the trained ANN was able to reach a very high total 

accuracy on the test set (98.25%). Moreover, the accuracy of the individual classes is 

balanced (only very small differences are spotted in the accuracies of each of the four 

classes). 

4.3 Models' comparison 

In order to compare the performance of the trained models, we show the total accuracy of 

each model on the training set (Figure 49. a) as well as the test set (Figure 49. b). 
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Logistic Random Naive Artificial Logistic R a n d o m Naive Artificial 
Regression Forest Bayes Neural Networks Regression Forest Bayes Neural Networks 

Algorithms Algorith ms 

(a) Training set (b) Test set 

Figure 49: Comparison between the trained models in terms of total accuracy 

The accuracy of the training set for all four models is almost perfect. However, the accuracy 

of the test set varies between the models indicating the differences in the expected 

performance if the models would be deployed in production. On the first hand, the ANN and 

Logistic Regression both show a very high performance where the ANN slightly overcomes 

the Logistic Regression model but with a negligible difference. On the second hand, the 

Random Forest and Naive Bayes show lower performance compared to their performance 

on the training set indicating some overfitting as already discussed in the previous 

subsection. It is also worth reminding that the ability of Logistic Regression to reach such 

high performance without overfitting emphasizes the existence of a linear relation between 

the input and the output. 
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5 Conclusion 

This thesis aims to build a classification model that is able to predict an email's topic based 

on that email's content. The practical benefit is to help companies to either know what to 

expect in an email and prioritize their readings of emails or to even direct each email to the 

corresponding right department or person. 

The data was collected from Kaggle.com where 2000 emails were used in the analysis of 

this thesis. Each email was attached to a category that represents the label of this email. The 

four categories are "Crime", "Politics", "Science" and "Other". The data were preprocessed 

using the following steps. First, the data was split into a training and a test set. Then, 

Tokenization, data cleaning, and Lemmatization were applied. The words were then 

converted into a numerical form using Term Frequency-Inverse Document Frequency. 

The preprocessed data were used to train various classification models. Logistic Regression, 

Random Forest, Naive Bayes, and Artificial neural networks were used. The four algorithms 

were tested on the test set in terms of accuracy (i.e., the percentage of correctly classified 

emails from the test set). 

The confusion matrix of each model was used to evaluate the performance and also to 

compare the performance of the various models. The Logistic Regression algorithm was able 

to reach an accuracy of 99.87% on the training set and 98% on the test set. This very high 

performance indicates the presence of a linear relation between the input and the output in 

our classification problem. However, the non-linear model of Random Forest should have a 

high performance on the training set (100% accuracy) and a notably lower performance on 

the test set (94.75%). This suggests that Random Forest overfit the training data and, hence, 

would perform poorly (compared to the Logistic Regression for example) when deployed in 

production. The Naive Bayes results are quite similar to the Random Forest. The accuracy 

on the training set is 99.94% while the accuracy on the test set is 95.25% and overfitting 

occurred. Finally, the Artificial Neural Networks achieved the best prediction accuracy on 

the test set (98.25%) and a perfect accuracy on the training set (100%). However, the 

difference in the test set accuracy between the Artificial Neural Networks and the Logistic 

Regression is negligible. 
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Based on the performed analysis, it is recommended to use Logistic Regression or Artificial 

Neural Networks to solve the problem targeted in this thesis. The reason is that these two 

algorithms showed the highest performance on the test data without overfitting. Therefore, 

these two algorithms are expected to perform well on unseen data when put in production. 

The analysis performed in this thesis also confirms the feasibility to apply email 

classification in various companies. The goals of email classification may vary even to other 

goals not included in this thesis such as directing every email to the correct person or 

department. The principles and steps followed in this thesis would remain the same anyway 

and only the business application would change. 
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