Complex Data Analysis by Mining and Searching Operations – Mgr. Jakub Peschel
Mgr. Jakub Peschel
Advanced ('rigorózní') thesis
Complex Data Analysis by Mining and Searching Operations
Complex Data Analysis by Mining and Searching Operations
Abstract:
Komplexita současných dat vyžaduje pro jejich analýzu složitější analytické operace. Takové analýzy jsou obvykle drahé a vyžadují expertízu ve více oblastech. V této diplomové práci je uveden popis běžně používaných datových analytických úloh a je prozkoumáno několik analytických systémů, jako jsou SPMF, ELKI a Weka. Na základě těchto zjištění navrhujeme vývoj nové univerzální struktury, transakčního …moreAbstract:
The complexity of contemporary data created a need for more complex analytical operations for their analysis. Such analyses are typically expensive and demands expertise in multiple areas. In this thesis proposal, a description of commonly used data analytical tasks is provided and several analytical systems are surveyed, such as SPMF, ELKI and Weka. Based on these findings we aim to design and develop …more
Language used: English
Date on which the thesis was submitted / produced: 20. 2. 2020
Identifier:
https://is.muni.cz/th/bxo31/
Thesis defence
- Date of defence: 25. 5. 2020
- Reader: RNDr. Tomáš Rebok, Ph.D., prof. RNDr. Tomáš Skopal, Ph.D.
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsAdvanced ('rigorózní řízení') programme / field:
Artificial intelligence and data processing / Artificial intelligence and data processing
Theses on a related topic
-
Application of Machine Learning and Data Mining with Python for Business Analysis.
Md Faisal Ibn Haque -
Semantic mining and analysis of information from heterogeneous data sets
Jakub Drábik -
Sale analysis of e-commerce websites using data mining techniques and Power BI tool for reporting
NOOSHIN ASSADI KARAM -
Mendel University performance analysis through data mining
Osunam Panggam -
Comparison of open-source data mining tools for sentiment analysis
Tariku Abebe Asfaw -
User Sessions Clustering and Anomaly Detection
Michal Mokroš -
Evaluation of Multiple Clustering Algorithms on Insurance Datasets
Kryštof Suchánek -
Remuneration Schemes for Individual Prosumers in the EU – understanding the comparison of clustering results
Khatia Shaverdashvili