

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY

FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS

NELINEÁRNÍ ANALÝZA ÚNOSNOSTI ŽELEZOBETONOVÉ ZÁKLADOVÉ PATKY NONLINEAR ANALYSIS OF REINFORCED CONCRETE FOOT FAILURE

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE

Radek Dubina

VEDOUCÍ PRÁCE SUPERVISOR Ing. JAN ELIÁŠ, Ph.D.

BRNO 2012

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ

Studijní program Typ studijního programu Studijní obor Pracoviště B3607 Stavební inženýrství Bakalářský studijní program s prezenční formou studia 3608R001 Pozemní stavby Ústav stavební mechaniky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student	Radek Dubina
Název	Nelineární analýza únosnosti železobetonové základové patky
Vedoucí bakalářské práce	Ing. Jan Eliáš, Ph.D.
Datum zadání bakalářské práce	30. 11. 2011
Datum odevzdání bakalářské práce	25. 5. 2012
V Brně dne 30, 11, 2011	

prof. Ing. Drahomír Novák, DrSc. Vedoucí ústavu

prof. Ing. Rostislav Drochytka, CSc. Děkan Fakulty stavební VUT

Podklady a literatura

Jirásek. M, Zeman, J., 2006, Přetváření a porušování materiálů: dotvarování, plasticita, lom a poškození. ČVUT v Praze.

Bažant, Z. P., Planas, J., 1998. Fracture and size effect in concrete and other Quasibrittle materials. CRC Press.

Červenka, V., Jendele, L., Červenka, J., October 2005. ATENA Program Documentation, Part 1: Theory. Červenka Consulting, Predvoje 22, Praha, 162 00, Czech Republic.

Zásady pro vypracování

Student provede analýzu únosnosti ŽB patky sloupu v programu Atena 3D. Při výpočtu bude zohledněno nelineární chování betonu a výztuže (případně i zeminy). Analýza bude provedena pro různé varianty lišící se geometrií patky, vlastnostmi materiálů, soudržností výztuže s betonem a pod.

V případě dostatku času je možné práci rozšířit o stochastický přístup, kdy je každá z podstatných vstupních veličin uvažována jako náhodná.

Předepsané přílohy

.....

Ing. Jan Eliáš, Ph.D. Vedoucí bakalářské práce

Abstrakt

Żelezobetonové monolitické patky jsou jedním z druhů plošného zakládání, které se převážně používá pod skeletovými systémy. Tyto systémy přenáší veškerá zatížení z výše položených pater přes sloupy do patek a přes ně do základové půdy. Interakce mezi základem a základovou půdou hraje velmi důležitou roli v důsledku citlivosti systému na nerovnoměrné sedání. Patky jsou namáhány smykem vyvolaným svislou silou a zároveň ohybovým momentem způsobeným napětím v základové spáře.

Práce se věnuje návrhu patky podle evropské normy ČSN EN 1992-1-1. Dále se zaměřuje na výpočet únosnosti patky pomocí 3D modelu s nelineárními materiálovými modely zeminy, výztuže a betonu. Výpočty jsou provedeny v programu ATENA 3D pro různé varianty podloží, vyztužení či tvaru patky. Normové a nelineární analýzou získané únosnosti jsou srovnány.

Abstract

Reinforced concrete monolithic feet are one kind of shallow foundation used mainly under column systems. These systems transfer the load from upper floors through columns to the feet and through them to the foundation soil. Interaction between the foot and the foundation soil plays an important role due to the system sensitivity to the uneven settlement. Feet has to resist shear induced by vertical force and bending moment caused by stress in footing bottom.

The work is devoted to design of the foot according to European standard Eurocode 2. It is then focused on numerical simulation of foot failure and calculation of the corresponding maximal vertical force in the column using a 3D model with nonlinear material models of subsoil, reinforcement and concrete. The calculations are done in software ATENA 3D for different variants of subsoil, reinforcement and foot shape. Results according to European standard and nonlinear analysis are compared.

Klíčová slova

Nelineární MKP analýza, želez
obetonová patka, pružnost, plasticita, ATENA 3D, materiálové modely, podloží.

Key words

Nonlinear FEM analysis, reinforced concrete foot, elasticity, plasticity, ATENA 3D, material models, subsoil.

Bibliografická citace této práce

DUBINA, Radek. *Nelineární analýza únosnosti železobetonové základové patky*. Brno, 2012. 57 s., 18 s. příl. Bakalářská práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav stavební mechaniky. Vedoucí práce Ing. Jan Eliáš, Ph.D..

Čestné prohlášení

Prohlašuji, že jsem svou bakalářskou práci zpracoval samostatně, pod odborným vedením vedoucího práce Ing. Jana Eliáše, Ph.D., a že jsem uvedl všechny použité informační zdroje.

V Brně dne

.....

Radek Dubina

Poděkování

Rád bych poděkoval vedoucímu své bakalářské práce panu Ing. Janu Eliášovi, Ph.D. za to, že se mě ujal, aniž by mě kdykoli dříve viděl. Po celou dobu tvorby mé bakalářské práce byl ochoten přispívat svými cennými radami, názory, náměty a především časem. Rovněž bych mu chtěl poděkovat za vlídný až přátelský postoj k mé osobě, za což jsem mu velmi vděčný.

Dále bych rád poděkoval všem vyučujícím na ústavu stavební mechaniky, kteří méně či více přispěli k profilaci mé osoby na stavební fakultě a také doktorantům na témže ústavu, kteří přátelsky akceptovali mou přítomnost v počítačové učebně.

V neposlední řadě bych rád poděkoval rodičům a přítelkyni za podporu a toleranci při tvorbě práce.

Obsah

znan	n kapit	tol	1
Úvo 1.1 1.2	od Úvod Stručr	do problematiky	1 1 2
Cíle	e práce	<u>}</u>	3
Nor 3.1 3.2	my Č Posou Posou 3.2.1 3.2.2	SN EN 1991-1 a ČSN EN 1992-1-1 zení ohybového momentu a normálové síly	4 4 7 7 9
3.3	Kotve	ní výztužných prutů	9
Zák	ladní v	vztahy teorie pružnosti a plasticity 1	1
4.14.2	Základ 4.1.1 4.1.2 Plastic 4.2.1 4.2.2 4.2.3 4.2.3	Iní vztahy pružnosti 1 Zobecněný Hookův zákon 1 Invarianty tenzoru napětí 1 cita 1 Obecný popis plasticity pro ideálně pružnoplastický model 1 Mohr-Coulombova podmínka plasticity 1 Rankinova podmínka plasticity 1 Drucker-Pragerova podmínka plasticity 1	11 13 14 14 15 16 17
	4.2.5	Srovnání podmínek plasticity	17
ATI 5.1 5.2 5.3	ENA 3 Předm Progra Mater 5.3.1 5.3.2 5.3.3 5.3.4	D 1 nluva 1 am ATENA 1 iálové modely 1 iálové modely 2 Materiálové modely betonu 2 Výztuž 2 Zemina 2 3D elestický izotropní meteriál 2	.9 19 19 20 20 23 24
	Úv c 1.1 1.2 Cíle Nor 3.1 3.2 3.3 Zák 4.1 4.2 ATI 5.1 5.2 5.3	Éznam kapitÚvod1.1Úvod1.2StručnCíle práceNormy ČS3.1Posou3.2Posou3.2.1 $3.2.1$ 3.2 Posou $3.2.1$ $3.2.2$ 3.3KotveZákladní v4.1Základ4.1Základ4.2Plastia $4.2.1$ $4.2.2$ $4.2.3$ $4.2.4$ $4.2.5$ ATENA 35.1Předm5.2Progra5.3Mater $5.3.1$ $5.3.2$ $5.3.3$ $5.2.4$	znam kapitol Úvod 1.1 Úvod do problematiky 1.2 Stručný obsah práce Stručný obsah práce Cíle práce Normy ČSN EN 1991-1 a ČSN EN 1992-1-1 3.1 Posouzení ohybového momentu a normálové síly 3.2 Posouzení na protlačení a propíchnutí 3.2.1 Posouzení ma propíchnutí 3.2.2 Posouzení ma propíchnutí 3.3 Kotvení výztužných prutů Základní vztahy teorie pružnosti a plasticity 1 4.1.1 Zobecněný Hookův zákon 1 4.1.2 Invarianty tenzoru napětí 1 4.2.1 Obecný popis plasticity pro ideálně pružnoplastický model 1 4.2.2 Mohr-Coulombova podmínka plasticity 1 4.2.3 Rankinova podmínka plasticity 1 4.2.4 Drucker-Pragerova podmínka plasticity 1 4.2.5 Srovnání podmínek plasticity 1 5.2 Program ATENA 1 5.3 Materiálové modely 5 5.3.1 Materiálové modely betonu 5 5.3.3 Zemina 5

	5.3.5 Roznášecí tělísko		25
5.4	Modelování patky		26
	5.4.1 Makroprvky		26
	5.4.2 Prutové výztuže		27
	5.4.3 Zatížení		28
	5.4.4 Síť konečných prvků		28
	5.4.5 Monitory \ldots \ldots \ldots \ldots \ldots \ldots \ldots		29
	5.4.6 Výpočet \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots		29
	5.4.7 Základní model		30
6 Vý	sledky		31
6.1	Předmluva		31
6.2	Nezávislost na velikosti sítě konečných prvků		31
6.3	Nezávislost na limitní hodnotě konvergenčních kritérií		34
6.4	Unosnost patky s izotropním elastickým materiálovým modelem z	eminy	35
	6.4.1 Pevný kontakt mezi betonem a zeminou		35
0 F	6.4.2 Volný boční kontakt mezi betonem a zeminou		36
6.5	Unosnost patky pro zeminy s materiálovým modelem Drucker-Pra	ager	90
C C		· · ·	30
0.0 6.7	Porovnam unosnosti patky pro odnišne nastavem jednotnivých po Úposnost patky so smykovou uýztuží	odiozi	38 41
6.8	Změna geometria pro zijětění obybové únosnosti		41
6.0	Napětí v základové spáře		42
0.9			40
7 Záv	věr		52
Litera	tura		54
Sezna	m symbolů		57
Sezna	m příloh		Ι
Příloh	na A - Posouzení na ohybový moment		Π
Příloh	a B - Posouzení patky na protlačení a propíchnutí	2	хп
Příloh	a C - Posouzení kotevních délek výztuže	XV	/II
	v v		

Kapitola 1 Úvod

1.1 Úvod do problematiky

Základové patky jsou jedním z druhů plošného (horizontálního) zakládání, které se používá v případech, kdy lze dosáhnout potřebné únosnosti základové půdy v dosažitelné hloubce. Základové patky patří k nejlevnějším a nejjednodušším druhům zakládání pod skeletovými systémy.

Patky se mohou dělit z několika hledisek:

- dle materiálu: zděné, betonové, železobetonové, ocelové
- dle tvaru průřezu: jednostupňové, dvoustupňové, vícestupňové, lichoběžníkové
- dle použité technologie: montované, monolitické

V této práci se zaměřím jen na jeden konkrétní druh základových patek, na patky železobetonové monolitické, které jsou jednodušší a levnější variantou než patky montované. Zjednodušuje se například problém konstrukční spáry, který vzniká mezi betonáží patky a navazujícího sloupu skeletového systému. U železobetonových patek převládá namáhání svislou silou ve sloupu, který přenáší veškerá stálá a užitná zatížení všech výše položených nadzemních podlaží na dané zatěžovací šířce. Dále je patka namáhána ohybovým momentem vyvolaným silami od větru na plášť budovy, excentricitou svislého zatížení a imperfekcemi 1. a 2. řádu na sloupu. Způsoby porušení patky mohou být

- smykem vyvolaným svislou (normálovou) silou od sloupu
- \bullet ohybem daným napětím v základové spáře od svislé (normálové) síly a ohybového momentu
- vytržením tažené výztuže (ztrátou soudržnosti) díky nedostatečnému kotvení výztuže
- porušením zeminy ...

Vyšetřování statického chování a namáhání konstrukce není zcela možné jednoduchými statickými metodami z důvodu složitého spolupůsobení patky s podložím, rozvojem trhlin v betonu atd. Proto se v dnešní době využívají pokročilé numerické metody za pomocí výpočetní techniky. Programy zpravidla pracují na základě nelineárního výpočtu metodou konečných prvků. To pomáhá k nalezení efektivnějšího a levnějšího řešení daného problému i vhodné volbě dimenzí patky a vyztužení.

1.2 Stručný obsah práce

- **Kapitola 1** obsahuje úvod k práci, stručný výpis druhů patek a možný způsob jejich porušení.
- V kapitole 2 jsou popsány záměry a cíle práce, které jsme chtěli v rámci práce získat.
- V kapitole 3 s názvem normy ČSN EN 1991-1 a ČSN EN 1992-1-1 je nastíněn způsob návrhu a posouzení železobetonových patek na ohybový moment, protlačení, propíchnutí a kotvení podélné výztuže dle výše uvedených norem.
- 4. kapitola je věnována základům pružnosti a plasticity, tenzorům a invariantům napětí a druhům plasticity, se kterými se ve výpočtu porušení patky v programu ATENA dále setkáváme.
- 5. kapitola popisuje samotný program ATENA, a to materiálové modely použité při analýze patky, způsoby modelování, zatížení a výpočtu.
- 6. kapitola popisuje výsledky získané v programu ATENA. Obsahuje problémy, zajímavosti a komentáře, se kterými jsme se během výpočtů a testů setkali.
- V 7. kapitole je závěrečné shrnutí výsledků. Tato kapitola obsahuje také porovnání výsledků z programu ATENA 3D s normovými hodnotami.
- **Příloha A** obsahuje vzorové posouzení patky na ohybový moment dle ČSN EN 1992-1-1 a posouzení únosnosti základové půdy dle ČSN 731001.
- **Příloha B** obsahuje vzorové posouzení patky na protlačení a propíchnutí patky dle ČSN EN 1992-1-1.
- V příloze C jsou vypočteny nutné kotevní délky výztuže dle ČSN EN 1992-1-1.

Kapitola 2

Cíle práce

- Cílem práce je vymodelovat sloup a železobetonovou patku s okolní zeminou v programu ATENA. Zatížit je deformací, která představuje svislé zatížení od konstrukce a pomocí výpočtu metodou konečných prvků sledovat její možné porušení smykem nebo ohybem.
- Pomocí monitorů sledovat sílu (reakci) ve sloupu a tuto sílu porovnat s normovou hodnotou dle ČSN EN 1992-1-1 - Navrhování betonových konstrukcí pro dané vyztužení patky.

Kapitola 3

Normy ČSN EN 1991-1 a ČSN EN 1992-1-1

Normy ČSN EN 1991-1 a ČSN EN 1992-1-1 jsou zásadními dvěma normami, na které se budeme v této práci odkazovat nebo v ní budou zahrnuty.

Norma ČSN EN 1991-1 obsahuje předpisy pro určení veškerých stálých i nahodilých zatížení (ČSN EN 1991-1-1; ČSN EN 1991-1-3; ČSN EN 1991-1-4).

Norma ČSN EN 1992-1-1 - Navrhování betonových konstrukcí předepisuje navrhování a posuzování betonových konstrukcí dle způsobu namáhání dané konstrukce. Touto normou se budeme řídit při základním návrhu patky, včetně dimenzí výztuže.

Pomocí již neplatné normy ČSN 73 1001 bude ověřena únosnost základové půdy R_d . Výpočet bude proveden v příloze A. ČSN 73 1001 byla nahrazena normou ČSN EN 1997-1.

3.1 Posouzení ohybového momentu a normálové síly

Norma je založena na předpokladu porušení patky momentem od konstantního napětí v základové spáře s lineárním rozdělením napětí po průřezu patky dle obrázku 3.1a. Ve skutečnosti je však napětí v základové spáře obecné a rozdělení napětí po průřezu patky odpovídá spíše obrázku 3.1b.

Po příjmutí normových zjednodušeních získáme geometrii návrhu patky dle obrázku 3.2. Excentricitu e získáme ze vztahu (3.1), hodnoty M_{ed} a N_{ed} uvažujeme dle obrázku 3.2.

$$e = \frac{M_{ed}}{N_{ed}} \tag{3.1}$$

Při způsobu porušení dle obrázku 3.1 může být patka zjednodušeně uvažována jako konzola o délce l_k zatížena konstantním napětím dle obrázku 3.3.

Délka konzoly ¹ l_k byla dle starší normy ČSN uvažována jako $l_k = a + 0, 15c$, dle současné evropské normy ČSN EN (EC2) $l_k = a + 0, 176a$.

Obrázek 3.1: Předpokládáný mechanismus porušení v ohybu s předpokládaným průběhem horizontálního napětí na průřezu patky

Obrázek 3.2: Geometrie návrhu patky.

 $^{^{1}\}mathrm{V}$ rovnicích pro délku konzoli l_{k} představuje a vyložení patky a crozměr sloupu dle obrázku 3.2.

Obrázek 3.3: Předpokládá se zatížení rovnoměrným spojitým zatížením od napětí v podzákladí na myšlenou konzolu.

Hodnota maximálního návrhového ohybového momentu $\mathbf{M}_{\mathbf{ed},\mathbf{k}}$ je moment na myšlené konzole délky l_k dle rovnice (3.2).

$$M_{ed,k} = \frac{1}{2}\sigma_{gd}l_f l_k^2 \tag{3.2}$$

 M_{ed} je návrhová hodnota ohybového momentu[kNm], σ_{gd} je konstantní napětí v podzákladí [kPa], l_f [m] šířka patky dle obrázku 3.2, l_k [m] délka myšlené konzoly podle obrázku 3.3.

Mezní únosnost konstrukce se stanoví výpočtovou hodnotou ohybového momentu \mathbf{M}_{rd} dle vztahu (3.3).

$$M_{rd} = A_s f_{yd} \left(d - \frac{\lambda x}{2} \right) \tag{3.3}$$

$$x = \frac{A_s f_{yd}}{b\lambda\eta f_{cd}} \tag{3.4}$$

Obrázek 3.4: Neutralná osa x.

 A_s je plocha použité výztuže [m²], f_{yd} je mez kluzu výztuže [kPa], b [m] je šířka průřezu (l_f ; bm - běžný metr), d je účinná výška průřezu v [m], x je vzdálenost neutrálné osy od nejvíce tlačeného okraje v [m], λ je součinitel definující účinnou výšku tlačené oblasti [-], η součinitel definující účinnou pevnost [-], M_{rd} je výpočtová hodnota ohybového momentu [kNm].

Posouzení únosnosti modelované patky provedeme dle vztahu (3.5), kdy návrhová hodnota M_{ed} musí být menší nebo rovna výpočtové M_{rd} .

$$M_{ed} \le M_{rd} \tag{3.5}$$

Posouzení modelované patky na ohybový moment je provedeno v příloze 1.

3.2 Posouzení na protlačení a propíchnutí

Smyk při protlačení je výsledkem soustředěného zatížení nebo reakce působící na poměrně malou plochu, která se nazývá zatěžovací (kritická) plocha A_{load} $(A_{cr,i})$ desky nebo plošného základu. Tato kritická plocha je ohraničena kontrolovným obvodem $\mu_{cr,i}$, který leží ve vzdálenosti x od sloupu.

U plošných základů lze odečíst zatížení uvnitř tohoto kontrolovaného obvodu, protože toto zatížení přispívá k únosnosti plošného základu (patky), má opačný směr než svislé zatížení od sloupu.

Výpočet se provede pro více kontrolovaných obvodů v různé vzdálenosti od sloupu x (např. $\frac{a}{4}$; $\frac{a}{2}$; $\frac{h}{2}$, $\frac{3a}{4}$, ...).

Účinná výška základu se předpokládá konstantní a stanoví se jako průměrná účinná výška průřezů ve směru x a y.

$$d = \frac{d_x + d_y}{2} \tag{3.6}$$

3.2.1 Posouzení smyku při protlačení

Předpokládáme mechanismus porušení dle obrázků 3.5 a 3.6, kdy dojde k protlačení patky přibližně pod úhlem² $\theta = \arctan \frac{1}{2}$, podél kritického obvodu $\mu_{cr,i}$.

Posouzení smyku při protlačení probíhá na úrovni napětí. Návrhové napětí v kontrolovaném průřezu se určí dle vztahu

$$v_{ed,i} = \beta \frac{V_{ed,red}}{\mu_{cr,i}d} \tag{3.7}$$

$$V_{ed,red} = N_{ed} - \Delta V_{ed} \tag{3.8}$$

$$\Delta V_{ed} = \sigma_{gd} A_{cr,i} \tag{3.9}$$

 $A_{cr,i}$ je kritická plocha průřezu vymezená kritickým obvodem dle obrázku 3.6 v [m²], $\mu_{cr,i} = \mu_i$ je kritický obvod posuzovaného průřezu dle obrázku 3.6 v [m], σ_{gd} je napětí v podzákladí [kPa], $V_{ed,red}$ je redukovaná hodnota návrhové normálové síly dle vztahu (3.8)[kN].

Výpočtová smyková únosnost betonu $v_{rd,ci}$ je dána vztahem (3.10).

$$v_{rd,ci} = C_{RD,c} k (100 \varrho_l f_{ck})^{\frac{1}{3}} \frac{2d}{x} \ge v_{\min} \frac{2d}{x}$$
(3.10)

²Velikost úhlu θ je ve výpočtu zohledněna poměrem $\frac{2d}{x}$.

Obrázek 3.5: Mechanismus porušení.

Obrázek 3.6: Půdorysné schéma protlačení.

 $C_{RD,c} = \frac{0,18}{\gamma_c}$ a $k = 1 + \sqrt{\frac{200}{d}} \leq 2$ jsou součinitele [d je v mm], f_{ck} je charakteristická pevnost betonu v tlaku [MPa], ϱ_l je stupeň vyztužení [-], pro symetricky vyztužené pruřezy platí vztah (3.11). Dále musí být výpočtové napětí větší než napětí minimální v_{\min} dle vzorce (3.12), pokud není, pak do posudku (3.13) dosadíme v_{min} namísto $v_{rd,ci}$.

$$\varrho_l = \frac{A_s}{l_f d} = \frac{A_s}{b_f d} \tag{3.11}$$

$$v_{min} = 0,035k^{\frac{3}{2}}f_{ck}^{\frac{1}{2}} \tag{3.12}$$

Pro vyhovění posudku na protlačení musí být splněn vztah (3.13).

$$v_{ed,i} \le v_{rd,ci} \tag{3.13}$$

3.2.2 Posouzení na propíchnutí

Posuzuje se obdobně jako posouzení na protlačení, za kritický obvod se dosadí obvod sloupu.

$$v_{ed,0} \le v_{rd,\max} \tag{3.14}$$

$$v_{ed,0} = \beta_0 \frac{V_{ed,max}}{\mu_0 d} \tag{3.15}$$

$$V_{ed,max} = N_{ed} - \sigma_{gd}c_1c_2 \tag{3.16}$$

$$\sigma_{gd} = \frac{N_{ed}}{l_f b_f} \tag{3.17}$$

Všechny symboly mají totožný výraz jako v kapitole na protlačení, index 0 značí nultý kontrolovaný průřez daný obvodem sloupu.

$$v_{rd,max} = 0, 5\nu f_{cd}$$
 (3.18)

$$\nu = 0, 6\left[1 - \frac{f_{ck}}{250}\right] \tag{3.19}$$

 f_{ck} je charakteristická pevnost betonu v tlaku [MPa], f_{cd} je návrhová pevnost betonu v tlaku [MPa]

Posouzení modelované patky na protlačení a propíchnutí je provedeno v příloze 2.

3.3 Kotvení výztužných prutů

Tahová síla F_s v místě x musí být zakotvena do betonu ve stejné vzdálenosti x od okraje základu. Délku x opět volíme pro více vzdáleností $(x = \frac{a}{4}, \frac{a}{2}, \frac{b}{2}, \frac{3a}{4} \text{ apod.})$

Tahovou sílu ve výztuži určíme z podmínek rovnováhy vztažených k bodu C. C uvažujeme ve vzdálenosti e = 0, 15b od líce sloupu dle obrázku 3.7. Pak:

$$F_s = \frac{Rz_e}{z_i} \tag{3.20}$$

kde R [kN] je výslednice tlaků v základové půdě na délce x, z_e [m]– rameno vnějších sil, tj. vzdálenost mezi R a svislou silou N_{ed}, z_i [m] rameno vnitřních sil, tj. vzdálenost

Obrázek 3.7: Schéma pro výpočet kotvení výztuže.

mezi výztuží a vodorovnou silou F_c , N_{ed} [kN] je svislá síla odpovídající tlaku v základové půdě mezi průřezy A a B.

Rameno vnějších sil z_e se zjednodušeně určuje jako $z_e = a - \frac{x}{2} + e.$

Rameno vnitřních sil z_i lze zjednodušeně určit jako $z_i = 0.9d$.

Pro všechny vypočítané tahové síly ve výztuži $F_s(x)$ vyjádříme kotevní délky l_{bd} . Výsledná kotevní délka, vynášená dle obrázku 3.7, musí vyhovovat pro všechny volené vzdálenosti x.

Je-li $l_{bd} > x-c$ použijeme ohyb výztuže nebo jinou koncovou úpravu. c je krytí výztuže.

Celkový výpočet kotevní délky je vysvětlen v příloze 3.

Kapitola 4

Základní vztahy teorie pružnosti a plasticity

4.1 Základní vztahy pružnosti

Zůstává-li těleso v klidu, tvoří všechny působící vnější síly rovnovážnou soustavu. Rovnováha musí být dosažena u konstrukce jako celku tak i v každé její části. V tělese tak pro dosažení rovnováhy musí vznikat další síly, které se snaží těleso dostat do původního stavu, tyto síly nazýváme vnitřní síly. Vztáhneme-li tyto síly k ploše a určitému bodu, získáme dané **napětí (stress)**. Tenzor napětí v bodě představuje intenzitu vnitřních sil v tomto bodě (NOVÁK, Drahomír a Luděk BRDEČKO, 2004).

4.1.1 Zobecněný Hookův zákon

V obecně zatíženém trojrozměrném tělese vznikají 3 složky normálových napětí (σ_x , σ_y , σ_z) a 6 složek smykových napětí (τ_{xy} , τ_{yx} , τ_{xz} , τ_{zx} , τ_{yz} , τ_{zy}), tyto napětí popisují celkový stav **napjatosti** v tělese. Tento popis můžeme zjednodušit díky větě o vzájemnosti smykových napětí. Pak platí, že: $\tau_{xy} = \tau_{yx}$, $\tau_{xz} = \tau_{zx}$, $\tau_{yz} = \tau_{zy}$.

Napětí pak můžeme uspořádat do sloupcové matice.

$$\boldsymbol{\sigma} = \begin{cases} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \\ \tau_{xz} \\ \tau_{yz} \end{cases}$$

$$(4.1)$$

Podobně můžeme definovat přetvoření daného tělesa, pomocí šesti složek poměrné

Obrázek 4.1: Obecné složky napětí.

deformace uspořádaných do sloupcové matice.

$$\boldsymbol{\varepsilon} = \begin{cases} \boldsymbol{\varepsilon}_{x} \\ \boldsymbol{\varepsilon}_{y} \\ \boldsymbol{\varepsilon}_{z} \\ \boldsymbol{\gamma}_{xy} \\ \boldsymbol{\gamma}_{xz} \\ \boldsymbol{\gamma}_{yz} \end{cases}$$
(4.2)

Vztah mezi napětím a deformací můžeme vyjádřit zobecněným Hookovým zákonem. Pro normálové složky deformace platí:

$$\varepsilon_x = \frac{1}{E} (\sigma_x - \nu \sigma_y - \nu \sigma_z) \tag{4.3}$$

$$\varepsilon_y = \frac{1}{E} (-\nu \sigma_x + \sigma_y - \nu \sigma_z) \tag{4.4}$$

$$\varepsilon_z = \frac{1}{E} (-\nu \sigma_x - \nu \sigma_y + \sigma_z) \tag{4.5}$$

E je modul pružnosti v tahu a tlaku (Youngův modul pružnosti), což je konstanta úměrnosti mezi napětím a deformací (relativním přetvořením) a ν je Poissonův součinitel příčné deformace [$\nu \in (-1; 0, 5\rangle$].

Pro smykové složky deformace pro izotropní materiály platí:

$$\gamma_{xy} = \frac{\tau_{xy}}{G} = \frac{2(1+\nu)}{E}\tau_{xy} \tag{4.6}$$

$$\gamma_{xz} = \frac{\tau_{xz}}{G} = \frac{2(1+\nu)}{E}\tau_{xz} \tag{4.7}$$

$$\gamma_{yz} = \frac{\tau_{yz}}{G} = \frac{2(1+\nu)}{E}\tau_{yz}$$
(4.8)

Gmodul pružnosti ve smyku, což je konstanta úměrnosti mezi smykovým napětím τ a zkosením γ . Lze ji vyjádřit pomocí E a ν jako:

$$G = \frac{E}{2(1+\nu)} \tag{4.9}$$

Výše uvedených 6 vztahů pro deformace můžeme zapsat do maticového tvaru:

$$\begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{cases} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+\nu) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+\nu) \end{bmatrix} \begin{cases} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{xy} \\ \tau_{xz} \\ \tau_{yz} \end{cases}$$
(4.10)

$$\boldsymbol{\varepsilon} = \mathbf{C}_{\mathrm{e}}\boldsymbol{\sigma} \tag{4.11}$$

Kde C_e je **matice poddajnosi materiálu.** Prvky matice C_e závisejí na materiálových konstantách E a ν .

Inverzí vztahu $\boldsymbol{\varepsilon} = \mathbf{C}_{e}\boldsymbol{\sigma}$ získáme zobecněný Hookův zákon, neboli vyjádření napětí z poměrné deformace.

$$\boldsymbol{\sigma} = (\mathbf{C}_{\mathrm{e}})^{-1} \boldsymbol{\varepsilon} = \mathbf{D}_{\mathrm{e}} \boldsymbol{\varepsilon}$$
(4.12)

 \mathbf{D}_{e} je **matice pružné tuhosti materiálu**, je inverzní k matici pružné poddajnosti.

4.1.2 Invarianty tenzoru napětí

Hodnoty složek napětí závisejí nejen na napjatosti, ale i na volbě souřadné soustavy, v které napětí vyjadřujeme. Hodnoty napětí pro různé natočení souřadné soustavy jsou odlišné, avšak napjatost v tělese se nemění. Proto velmi výraznou roli hrají invarianty napětí, což jsou veličiny, jejichž hodnota je nezávislá na volbě souřadné soustavy.

Existuje poloha souřadné soustavy, kdy jsou všechna smyková napětí nulová. Odpovídající normálová napětí se nazývají **hlavní napětí** σ_1 , σ_2 a σ_3 . Hodnoty hlavních napětí se vypočtou jako kořeny níže uvedeného determinantu.

$$det \begin{bmatrix} \sigma_x - \sigma & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_y - \sigma & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_z - \sigma \end{bmatrix} = 0$$
(4.13)

Příkladem dalšího invariantu je střední napětí, $\sigma_m = \frac{1}{3}(\sigma_x + \sigma_y + \sigma_z)$, které popisuje hydrostatickou část daného stavu napětí.

Invariant J_2 je tzv. druhý invariant deviatorického napětí a je roven dvojnásobku energie W_{eD} , což je energie spotřebovaná na pružnou změnu tvaru (deviatorickou deformaci). Tato energie je opět nezávislá na volbě souřadné soustavy.

$$J_2 = \frac{1}{6} \left[(\sigma_x - \sigma_y)^2 + (\sigma_x - \sigma_z)^2 + (\sigma_y - \sigma_z)^2 \right] + \tau_{xy}^2 + \tau_{xz}^2 + \tau_{yz}^2$$
(4.14)

4.2 Plasticita

4.2.1 Obecný popis plasticity pro ideálně pružnoplastický model

Pro popis plasticity je vhodné zavést pojmy **funkce plasticity** $f(\boldsymbol{\sigma})$ a **podmínku plastické přípustnosti** $f(\boldsymbol{\sigma}) \leq 0$. Záporná hodnota této funkce odpovídá pružnému stavu materiálu, nulová hodnota vyjadřuje plasticky přípustný stav. Kladná hodnota je stav nepřípustný, to znamená, že materiál dané zatížení nemůže přenést (JIRÁSEK, Milan a Jan ZEMAN, 2006).

Celkovou obecnou deformaci tělesa lze rozdělit do 2 složek: $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{e} + \boldsymbol{\varepsilon}_{p}$ dle obrázku 4.2, kde $\boldsymbol{\varepsilon}_{p}$ je tzv. plastická část přetvoření, která zůstává i po odstranění zatížení (viz. obrázek 4.2).

Obrázek 4.2: Jednorozměrný pružnosplastický model - rozdělení deformace na část pružnou (elastickou) a tvárnou (plastickou).

Podmínky/ funkce plasticity se stanovují v závislosti na použitém materiálu. Dále se zaměříme na podmínky plasticity, které jsou vhodné pro popis použitých materiálů, což je beton (železobeton) a zemina. Obecně oba tyto materiály nazýváme jakou soudržné s vnitřním třením (cohesive-frictional materials). Zásadními parametry daných materiálů pak bude koheze c_0 a úhel vnitřního tření ϕ .

4.2.2 Mohr-Coulombova podmínka plasticity

Základní představou porušení je pokluz podél kluzných rovin se sklonem ϕ . Rovnici plastické přípustnosti pak můžeme napsat jako:

$$|\tau| + \sigma \tan \phi - c_0 \le 0 \tag{4.15}$$

Tato podmínka musí být splněna pro každou rovinu a každý směr. Výraz $\tau + \sigma \tan \phi$ nabývá maximální hodnoty na dvou rovinách, jejichž normály jsou kolmé na směr prostředního hlavního napětí a se směrem maximálního hlavního napětí σ_{\max} svírají úhel $45^{\circ} + \frac{\phi}{2}$ a $45^{\circ} - \frac{\phi}{2}$.

Obrázek 4.3: Kluzné roviny v Mohr-Coulombově ploše plasticity.

Pokud celá Móhrova kružnice leží uvnitř roviny ohraničené přímkami $\tau + \sigma \tan \phi - c_0 = 0$ a $-\tau + \sigma \tan \phi - c_0 = 0$, pak nemůže dojít k pokluzu na žádné plošce a materiál je v pružném stavu. Souřadnice dotykových bodů přímek s Móhrovou kružnicí udávají maximální hodnoty normálových a smykových napětí a lze je odvodit z obrázku 4.4.

Souřadnice bodů maximalizujících výraz $|\tau| + \sigma \tan \phi$ jsou:

$$\sigma = \frac{\sigma_{\max} + \sigma_{\min}}{2} + \frac{\sigma_{\max} - \sigma_{\min}}{2} \sin \phi \tag{4.16}$$

$$\tau = \pm \frac{\sigma_{\max} - \sigma_{\min}}{2} \cos \phi \tag{4.17}$$

Obrázek 4.4: Plasticky přípustné kombinace normálového a smykového napětí. Grafické určení bodů Mohrovy kružnice maximalizující výraz $|\tau| + \sigma \tan \phi$.

Po dosazení těchto souřadnic do rovnice plasticity pro soudržný materiál s vnitřním třením (4.15), dostaneme po úpravách rovnici:

$$f(\boldsymbol{\sigma}) = \frac{1 + \sin \phi}{2} \sigma_{\max}(\boldsymbol{\sigma}) - \frac{1 - \sin \phi}{2} \sigma_{\min}(\boldsymbol{\sigma}) - c_0 \cos \phi \qquad (4.18)$$

kde c_0 je koheze a ϕ úhel vnitřního tření materiálu, což jsou materiálové konstanty.

Funkce plasticity je tedy lineární funkcí maximálního a minimálního hlavního napětí.

4.2.3 Rankinova podmínka plasticity

Rankinova podmínka plasticity se používá většinou pro popis tahového porušení betonu. Vychází z Mohr-Coulombovy podmínky pro daný úhel vnitřního tření $\phi = 90^{\circ}$. Pak sin $\phi = 1$ a cos $\phi = 0$.

Funkce plasticity se pak zredukuje na:

$$f(\boldsymbol{\sigma}) = \sigma_{\max}(\boldsymbol{\sigma}) \tag{4.19}$$

To by znamenalo, že beton přenese libovolné tlakovové napětí a přitom nesmí vzniknout jakékoli tahové napětí. Ve skutečnosti, ale beton malá tahové namáhání přenášet může.

Upravou Mohr-Coulombovy podmínky plasticity získáme vztah pro popis tahového namáhání betonu. Nejprve rovnici (4.15) vynásobíme hodnotou $\frac{2c_0 \cos \phi}{(1+\sin \phi)}$, což odpovídá rovinnému jednoosému tahu f_t v Mohr-Coulombově podmínce plasticity. Po dosazení $\sin \phi = 0$ získáme novou funkci plasticity dle Rankina.

$$f(\boldsymbol{\sigma}) = \sigma_{\max}(\boldsymbol{\sigma}) - f_t \tag{4.20}$$

Obrázek 4.5: Rankinova podmínka plasticity.

4.2.4 Drucker-Pragerova podmínka plasticity

Drucker-Pragerova podmínka plasticity je odvozena z podmínky plasticity dle von Misese, která pracuje s invariantem J_2 , který byl popsán v podkapitole 4.1.2.

Von Misesova podmínka plasticity:

$$f(\boldsymbol{\sigma}) = \sqrt{\mathbf{J}_2(\boldsymbol{\sigma})} - \tau_0 \tag{4.21}$$

Podmínka plasticity dle Drucker-Pragera je upravenou podmínkou dle von Misese pro soudržné materiály s vnitřním třením a má tvar:

$$f(\sigma) = 3\alpha_{\phi}\sigma_{\rm m}(\boldsymbol{\sigma}) + \sqrt{\mathbf{J}_2(\boldsymbol{\sigma})} - \tau_0 \tag{4.22}$$

kde σ_m je střední napětí popsané v podkapitole 4.1.2 a α_{ϕ} je koeficient vnitřního tření.

4.2.5 Srovnání podmínek plasticity

Drucker-Pragerova podmínka plasticity umožňuje stejně jako Mohr-Coulombova popsat rozdíl mezi tlakovou a tahovou pevností. Obě se požívají pro materiály s vnitřním třením jako jsou zeminy nebo beton. Pro popis chování zeminy je výhodnější použít Mohr-Coulombovu plochu plasticity, která realističtěji popisuje chování zejména štěrků a písků. Výhodou Drucker-Pragerovy podmínky plasticity jsou hladké plochy plasticity, které jsou výhodnější z numerického hlediska. Rankinova podmínka plasticity se používá především pro popis tahového namáhání betonu.

Pro názornost uvedeme porovnání řezů všech tří výše popsaných ploch plasticity, a to řez odpovídající rovinné napjatosti (obrázek 4.6) a deviatorické řezy pro různé úrovně středního napětí (obrázek 4.7).

Obrázek 4.6: Řezy odpovídající rovinné napjatosti a) dle Mohr-Coulomba; b) dle Rankina; c) dle Druckera-Pragera.

Obrázek 4.7: Deviatorické řezy pro různé úrovně středního napětí a) dle Mohr-Coulomba; b) dle Rankina; c) dle Druckera-Pragera.

Kapitola 5

ATENA 3D

5.1 Předmluva

ATENA je program sloužící k počítačové simulaci skutečného chování betonových a železobetonových konstrukcí. ATENA je založena na deformační metodě konečných prvků a její hlavní charakteristikou je aplikace nelineárních modelů materiálů. To umožňuje analyzovat stavební konstrukce nebo jejich části v kritických podmínkách, kdy dochází k jejich porušování. Základními prvky jsou pokročilé materiálové modely, a to nejen pro beton či betonářskou výztuž, ale například i cihelné zdivo nebo podloží.

Existuje vícero variant nelinearních analýz v konstrukcích, např. geometrická, materiálová nebo kontaktová nelinearita. Ne vždy se používá plná nelineární formulace. V mnoha případech se používají formulace zjednodušené nebo lineární, vždy je nutno posoudit, zda jsou vzniklé nepřesnosti přijatelné, či nikoliv.

V ATENĚ se setkáváme s dvěma typy nelinearity. Materiálovou nelinearitu používáme vždy, protože bychom jinak pracovali jen v elastické části materiálového konstitutivního zákona, avšak geometrická nelinearita může být z výpočtu vypuštěna za předpokladu malých deformací.

5.2 Program ATENA

ATENA 3D se používá pro nelineární analýzu konstrukce a skládá se ze 3 součástí: preprocesor, výpočet a postprocesor. V preprocesoru se provádí modelování konstrukce, tvorba sítě, nastavení zatížení a výběr iteračního schématu. Modelování je velmi snadné, a to především díky přehledné nabídce panelů, která se zobrazuje v levé části programu např. materiály, aktivity, prutové výztuže, síť apod. Ve výpočtovém jádru probíhá samotný výpočet. Výsledky lze pak nalézt v postprocesoru, kde je možnost analyzovat konstrukci v jakémkoli kroku zatěžování z pohledu napětí, deformací, trhlin atd.

5.3 Materiálové modely

Prvním krokem modelování je nastavení materiálů, které budeme dále používat. ATENA nabízí 3 způsoby zadávání materiálů:

• **Přímé zadání** – zde je možnost výběru ze široké nabídky materiálů a nastavení jejich parametrů

Obrázek 5.1: Ukázka výběru materiálů.

- Načtení ze souboru použití dříve nastavených materiálů
- Výběr z katalogu výběr z katalogu je možný jen pro beton, kde lze vybrat 3 varianty hodnot pro beton (návrhové (characteristic), výpočtové (design) a střední (mean))

5.3.1 Materiálové modely betonu

Pro model betonu jsme použili model CC3DNonLinCementitious2¹. Pro model betonu jsme použili katalogové parametry pro střední hodnotu odezvy pro příslušnou třídu betonu. Tyto nejrealističtěji popisují běžné chování betonu.

Formulace materiálového modelu CC3DNonLinCementitious2

Formulace materiálového modelu v tahu je založena na rozkladu deformace do pružné (elastické) složky $\varepsilon^{\rm e}$, tvárné (plastické) složky $\varepsilon^{\rm p}$ a relativního otevření trhlin $\varepsilon^{\rm f}$.

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}^{\mathrm{e}} + \boldsymbol{\varepsilon}^{\mathrm{p}} + \boldsymbol{\varepsilon}^{\mathrm{f}} \tag{5.1}$$

 $^{^1\}mathrm{CC3DNonLinCementitious2}$ je přesný název použitého modelu betonu, který je uveden v manuálu programu.

né -04 [MPa]	Stress-Strain Taw	Liozi
-04 [MPa]	Stress Strain Law	
00 [-] 00 [MPa]		f c f c f c f c f c f c f c f c f c f c
	00 [-] 00 [MPa] 01 [MPa]	1000 [-] 11 [MPa] 12 [Cc] 12 [Cc] 1

Obrázek 5.2: Přímé zadání materiálových parametrů betonu.

Nový stav napětí je pak dán vztahem:

$$\boldsymbol{\sigma}_{n} = \boldsymbol{\sigma}_{(n-1)} + \mathbf{D}(\Delta \boldsymbol{\varepsilon} - \Delta \boldsymbol{\varepsilon}^{\mathrm{p}} - \Delta \boldsymbol{\varepsilon}^{\mathrm{f}}), \qquad (5.2)$$

kde $\sigma_{(n-1)}$ je napětí v předcházejícím kroce zatížení, **D** matice tuhosti, $\Delta \varepsilon$ celkový přírůstek poměrné deformace, $\Delta \varepsilon^{f}$ přírůstek plastické části poměrné deformace a $\Delta \varepsilon^{f}$ přírůstek relativního otevření trhliny.

Pro popis poškození v tahu se používá Rankinova podmínka plasticity, která je popsána v kapitole 3.2.3. Připomeňme si ji předpisem:

$$f(\boldsymbol{\sigma}) = \sigma_{\max}(\boldsymbol{\sigma}) - f_t(w) \tag{5.3}$$

Jestliže napětí σ_{max}^2 překročí oblast (křivku) tahového poškození dle Rankinovy podmínky plasticity (rovnice (5.3)), dochází k dopočítání návratu na plochu plasticity dle asociovaného zákona.

$$F^{f} = f(\boldsymbol{\sigma}) = \sigma_{\max} \left(\boldsymbol{\sigma}^{n-1} + \mathbf{D} \left(\Delta \boldsymbol{\varepsilon} - \Delta \boldsymbol{\varepsilon}^{\mathrm{p}} - \Delta \boldsymbol{\varepsilon}^{\mathrm{f}} \right) \right) - f_{t}(w)$$
(5.4)

$$\Delta \boldsymbol{\varepsilon}^f = \Delta \lambda \boldsymbol{\delta} \tag{5.5}$$

kde **D** je matice tuhosti, $\Delta \lambda$ je plastický násobitel, δ je směr plastického tečení, f_t (pevnost v tahu) je funkcí otevření trhliny w. Dané **Hordijkovou formulí**, která byla experimentálně odvozena a formulována vztahem:

$$\frac{f_t(w)}{f_t^{'ef}} = \left\{ 1 + \left(c_1 \frac{w}{w_c} \right)^3 \right\} e^{-c_2 \frac{w}{w_c}} - \frac{w}{w_c} \left(1 + c_1^3 \right) e^{-c_2}$$
(5.6)

$$w_c = 5.14 \frac{G_f}{f_t^{\prime ef}} \tag{5.7}$$

w je otevření trhliny, w_c je otevření trhliny při poklesu napětí nulovou hodnotu. Hodnoty konstant jsou $c_1=3,\ c_2=6.93.\ G_f$ je lomová energie potřebná pro

 $^{^2}$ Z
a $\sigma_{\rm max}$ uvažujeme maximální hlavní napětí u rotovaných trhlin, u trhlin fixovaných je
 $\sigma_{\rm max}$ napětí kolmé na trhlinu.

vytvoření jednotkové plochy trhliny, $f_t^{'ef}$ je efektivní pevnost v tahu získaná dle směru namáhání (obrázek 5.4). Otevření trhliny w je odvozeno podle **teorie pásu trhlin** (obrázek 5.3).

$$w = \varepsilon_{cr} L'_t \tag{5.8}$$

Obrázek 5.3: Zákon exponencionálního změkčení při otevírání trhliny (Hordijkova formule, rovnice (5.6)) a šířka pásu trhlin.

Obrázek 5.4: Určení $f_t^{'ef}$ z víceosé napjatosti v bodě.

 ε_{cr} je konkrétní hodnota relativního otevření trhlin ε^f , měřená kolmo na směr trhliny v poškozeném stavu dle obrázku 5.3. L'_t je modifikovaná šířka pásu tahového poškození zohledňující polohu prvku v pásu trhlin pomocí součinitele γ . Ten je závislý na úhlu $\theta = \min(\theta_1; \theta_2)$, což jsou úhly mezi směrem normály k ploše poškození a osami lokální souřadné soustavy prvku dle obrázku 5.3. γ^{max} je přednastaveno na hodnotu 1,5.

$$L'_t = \gamma L_t \tag{5.9}$$

$$\gamma = 1 + (\gamma^{\max} - 1)\frac{\theta}{45}, \quad \theta \in \langle 0; 45 \rangle$$
(5.10)

Poškození betonu tlakem

Pro plasticitu betonu v tlaku používá ATENA stejný předpis jako u poškození tahem, rozdílný je popis plochy plasticity, kdy se místo Rankinovy plasticity používá plasticita dle **Willama & Menetreye**, která je daleko složitější a nebude podrobněji popisována. V manuálu programu je označena jako F_{3p}^{p} .³ Pomocí změny poměrné plastické deformace tedy program zajišťuje splnění plastické deformace.

$$F^p = F^p_{3p}(\boldsymbol{\sigma}, w) \le 0 \tag{5.11}$$

Více je uvedeno v teoretickém manuálu k programu ATENA (ČERVENKA, Vladimír et al., 2011).

Kombinace plastického modelu a modelu poškození

Cílem je spojit plastický model a model poškození do jediného modelu. Tento problém ATENA řeší pomocí souběžného řešení dvou následujících nerovnic.

$$F^{p}\left(\boldsymbol{\sigma}^{n-1} + \mathbf{D}\left(\Delta\boldsymbol{\varepsilon} - \Delta\boldsymbol{\varepsilon}^{p} - \Delta\boldsymbol{\varepsilon}^{f}\right)\right) \leq 0$$
(5.12)

řešeno pro $\Delta \varepsilon^p$

$$F^{f}\left(\boldsymbol{\sigma}^{n-1} + \mathbf{D}\left(\Delta\boldsymbol{\varepsilon} - \Delta\boldsymbol{\varepsilon}^{\mathrm{p}} - \Delta\boldsymbol{\varepsilon}^{\mathrm{f}}\right)\right) \leq 0$$
 (5.13)

řešeno pro $\Delta \varepsilon^f$

Každá nerovnice závisí na výstupu z té druhé, a proto se využívá iteračního postupu.

5.3.2 Výztuž

Materiál pro výztuž se určuje pomocí přímého zadání materiálových parametrů, kde je vytvořen samostatný materiálový typ s názvem výztuž.

Stejně jako u betonu lze i u výztuže nastavit materiálové charakteristiky, ale také typ výztuže z hlediska plastického přetváření (lineární, bilineární, multilineární a bilineární se zpevněním), viz. obrázek 5.5.

V našem případě jsme zvolili bilineární typ z důvodu očekávaného pružnoplastického chování výztuže v patce (viz. obrázek 5.6). Výztuž se chová elasticky, dokud není dosaženo meze kluzu. Poté nastává plastické přetváření s narůstem deformace bez přírůstku napětí. Odtěžování se děje pod stejnou tuhostí jako na počátku.

 $^{^{3}}$ Vztah (5.11) je velmi zjednodušený a má za účel popsat, že napětí nesmí přesáhnout pevnost v tlaku betonu, skutečný popis plasticity dle Willama & Menetreye je daleko složitější.

Obrázek 5.5: Zadání materiálových parametrů výztuže.

Obrázek 5.6: Pružnoplastické chování výztuže.

5.3.3 Zemina

Jak bylo uvedeno v kapitole Plasticita 4.2, nejlépe se pro popis zemin či hornin hodí Mohr-Coulombova plocha plasticity, protože však ATENA 3D má v nabídce přímého zadání materiálu pouze **Drucker-Pragerovu plochu plasticity**, byla použita právě tato plocha.

Základní funkce meze kluzu je definována jako:

$$F_{DP}^{p}(\sigma) = \alpha I_{1} + \sqrt{J_{2}} - k = 0$$
(5.14)

 α a k jsou parametry definující tvar plochy poškození. Ty lze vyjádřit při porovnání s Mohr-Coulombovou plochou. Jestliže jsou obě plochy shodné podle tlakového meridiánu, tj. $\theta = 0^{\circ}$, pak proměnné α a k jsou:

$$\alpha = \frac{2\sin\phi}{\sqrt{3}(3-\sin\phi)}, \quad k = \frac{6\cos\phi}{\sqrt{3}(3-\sin\phi)}$$
(5.15)

To odpovídá kuželu opsanému Mohr-Coulombovu povrchu. Pro kužel vepsaný, který odpovídá shodě na tahovém meridiánu kde $\theta = 60^{\circ}$, mají konstanty α a k předpisy:

$$\alpha = \frac{2\sin\phi}{\sqrt{3}(3+\sin\phi)}, \quad k = \frac{6c\cos\phi}{\sqrt{3}(3+\sin\phi)}$$
(5.16)

Obrázek 5.7: Zadání materiálových parametrů (Drucker-Pragerova plasticita).

Drucker-Prager model umožňuje nastavit vývoj plochy plasticity s nárůstem plastické deformace, tlakové tedy např. změkčení. Pro jednoduchost, ale uvažujeme kritickou tlakovou deformaci w_d v řádech metrů, což přibližně odpovídá neměnné ploše plasticity.

Součinitel směru plastického tečení β jsme dopočítali v závislosti na úhlu vnitřního tření uvažované zeminy. Uvažujeme asociovaný zákon plastického tečení, tedy kolmý návrat na plochu plasticity.

$$\beta = \phi \frac{\Pi}{180} \quad [rad] \tag{5.17}$$

5.3.4 3D elastický izotropní materiál

3D elastický izotropní materiál byl v některých případech použit pro zeminu místo modelu Drucker-Prager. Bylo to při ověřování nezávislosti modelu na hustotě sítě konečných prvků a nezávislosti na hodnotách limitů konvergenčních kritérií nastavených ve výpočtovém postupu dle Newton-Raphsona.

Elastické materiálové charakteristiky pro zeminu byly nastaveny shodně s modelem Drucker-Prager.

5.3.5 Roznášecí tělísko

Roznášecí tělísko nám slouží pro převedení zatížení na celou plochu sloupu. Jedná se o 3D elastický izotropní materiál s nastaveným modulem pružnosti E v řádu 10⁸ MPa a s objemovou hmotností 0 MN/m³.

5.4 Modelování patky

Cílem bylo vymodelovat sloup s patkou a okolní zeminou, na které bude přenášeno deformační zatížení pomocí roznášecího tělíska tak, aby byla celá horní plocha sloupu tlačena. Při modelování jsem se omezil na čtvrtinu tělesa z důvodu zrychlení nelineárního výpočtu. Toto zjednodušení lze použít díky symetrii 3D modelu. Nelze pak ale uvažovat moment či excentricity síly ve sloupu.

Tvorba modelu probíhá v programovém módu **preprocesor**, při tvorbě modelu jsem použil 6 základních záložek, **makroprvky**, **prutové výztuže**, **zatížení**, síť, **monitory a výpočet**, které budou níže popsány.

5.4.1 Makroprvky

Záložka makroprvků se skládá ze 2 podčástí I) topologie a II) vlastnosti, v první z nich se určuje poloha a tvar makroprvků modelu pomocí primitiv nebo generování. V mé práci jsem pro jednoduchost modelu zvolil generování, kde jsem rovnou modelovat celé objekty (kvádry) pomocí souřadnic a velikostí stran. V podčásti vlastnosti se přidá nastavený materiál, resp. dílčí materiál. Při modelování bylo nutno dodržet společné plochy jednotlivých makroprvků tak, aby byla později zajištěna kompabilita sítě konečných prvků na styku makroprvků.

Obrázek 5.8: Model složený z makroprvků.

Celkově je model složen z 20 makroprvků (1 sloup, 4 patka, 14 zemina a 1 roznášecí tělísko).
5.4.2 Prutové výztuže

Záložka prutové výztuže se skládá opět ze 2 podčástí **I) topologie a II) vlastnosti**, které mají shodný význam jako u makroprvků. Geometrii výztužných prutů je opět možné určit pomocí primitiv nebo generování. Tentokrát bylo výhodnější použít primitiva usnadňující umístění prutů na požadovanou pozici v modelu. V záložce vlastnosti se nastaví materiál, průměr prutů, počet prutů a spojení s okolním materiálem.

Obrázek 5.9: Výztužné pruty v modelu.

Pro spojení s okolním materiálem lze vybrat ze 2 nabídek, a to **pevné spojení** nebo **zadat parametry**. V modelu jsem použil variantu pevné spojení. Reálnější model by byl se zadáním parametrů, kde by přibyl další materiál, který je v materiálové nabídce ATENY nazván soudržnost výztuže. Kontrolní výpočet ukázal, že rozšíření modelu o nedokonalou soudržnost výrazně neovlivní výsledky simulace.

Topologie Vlastnosti	
Materiál: (2) Výztuž	▼ Plocha: 2,011E+02 … [m ²]
Soudržnost výztuže	
Vazba k okolnímu prostřed	zadat parametry
Obvod: 5,027E+	11 [m] Materiál vazby: (neurčený)
🔲 Znemožnit pokluz počá	ku 🗌 Znemožnit pokluz konce
	Dopočet plochy 🔜
	Počet a průměr prutů
	Průměr jednoho prutu: 16,0000 [m]
	Počet prutů: 1,000 [-]

Obrázek 5.10: Vlastnosti prutových výztuží.

5.4.3 Zatížení

V modelu byly nastaveny 3 zatěžovací stavy

• ZS1 Vlastní tíha

Vlastní tíhou jsou v modelu zatíženy makroprvky sloupu a patky. Vlastní tíha zeminy není uvažována.

• ZS2 Podpory

Podepřeny byly makroprvky zeminy na myšleném kontaktu s další okolní nemodelovanou zeminou a makroprvky, jejichž plochy leží na osách symetrie modelu. Veškeré podpory byly provedeny jako kolmé k uvedeným plochám viz. obrázek 5.11.

• ZS3 Deformace

Zatížení modelu probíhá přes nucenou deformaci v horním bodě, který leží na obou osách symetrie roznášecího tělíska.

Obrázek 5.11: Ukázka podepření modelu.

5.4.4 Síť konečných prvků

Síť konečných prvků vytváří síť uzlů, ke kterým jsou dopočítávány hledané hodnoty posunů. V ATENĚ 3D jsou tyto uzly popsány hierarcicky, což umožňuje kdyko-

liv změnit hustotu sítě (nezávislým přidání uzlu). Mezilehlé hodnoty posunů jsou lineárně nebo kvadraticky interpolovány.

Samotné modelování sítě se provádí v záložce **Síť**, kde je nejjednodušších vybrat možnost Makroprvky. Pro zvolené číslo makroprvku je možné zvolit typ zahuštění (abs. délka, relativní koeficient), velikost konečného prvku a typ prvků sítě [Šestistěny (Bricks), Čtyřstěny(Tetrahedrons) nebo jejich kombinaci].

V modelu jsem použil kombinaci těchto typů. Sloup, patka a roznášecí tělísko jsou modelovány pomocí šestistěnů a zemina pomocí čtyřstěnů viz. obrázek 5.12. Pro kombatibilitu sítě bylo nutné přidat v záložce Síť ještě kontakty mezi všemi makroprvky, což umožní přechod mezi různými velikostmi konečných prvků.

Obrázek 5.12: Síť konečných prvků.

5.4.5 Monitory

Záložka monitory umožnuje sledovat hodnoty hledaných veličin, jako je posun bodu, reakce v bodě, vnější síla v bodě apod. V našem případě jsme se snažili zachytit pracovní diagram železobetonové patky pomocí reakce na sloupu a poklesu horního středového bodu sloupu. Sledovány byly také posuny čtyř dalších spodních rohových bodů dle obrázku 5.13.

5.4.6 Výpočet

Výpočet v ATENĚ probíhá iterativním řešením nelineárních rovnic, které jsou řešeny **Standartní Newton-Raphsonovou nebo Standartní Arc Lenght metodou**. Výpočet probíhá po krocích. V rámci kroku probíhají iterace tak dlouho, dokud nejsou splněny 4 konvergenční kritéria v konstrukci. Ty kontrolují normu deformačních změn během poslední iterace, normu nerovnovážných sil, nerovnovážnou energii a nerovnovážné síly z hlediska maximálního komponentu. Hodnoty limitů konvergenčních kritérii jsou nastaveny na 0,01 resp. na 0,0001 u nerovnovážné energie, mohou však být přenastaveny uživatelem.

	999	Název	Druh	Veličina - položka
	Ćíslo			
	1	Reakce	Hodnota v uzlu sité	Reactions - Component 3
	2	Pokles horniho bodu sloupu	Hodnota v uzlu sité	Displacements - Component 3
	3	Pokles uprostřed patky	Hodnota v uzlu sitë	Displacements - Component 3
	4	Pokles středu hrany ve smě	Hodnota v uzlu sítě	Displacements - Component 3
1 I I E	5	Pokles středu hrany ve smě	Hodnota v uzlu sitě	Displacements - Component 3
	>6	Pokles rohu patky XY	Hodnota v uzlu sítě	Displacements - Component 3

Obrázek 5.13: Umístění monitorů na modelu.

Při zadávání výpočtu v preprocesoru se zadají výpočtové kroky (zatěžovací stavy), parametry výpočtu (Newton-Raphson, Arc Lenght), koeficient výpočtového kroku a počet přídávaných kroků.

5.4.7 Základní model

Základní model patky má půdorysné rozměry b x l = 2,4 x 2,4 m, výška patky h je 0,8 m. Sloup je rozměrů $c_1 = c_2 = 0,5$ m, výšky 3,0 m. Roznášecí tělísko má totožné půdorysné rozměry jako sloup a výšku 0,25 m. Zemina je mocnosti 5,0 m ve všech směrech od patky. Výztuž patky byla uvažována průměru $\phi = 16$ mm a osové vzdálenosti 200 mm. Krytí v patce výztuže bylo stanoveno dle přílohy A na 40 mm. Podélná výztuž sloupu $\phi = 20$ mm, třmínky $\phi = 8$ mm o standartních vzdálenostech.

Kapitola 6

Výsledky

6.1 Předmluva

Prvním cílem po vytvoření modelu bylo dokázat, že daný model pracuje nezávisle na: 1) velikosti sítě konečných prvků v betonové části modelu a 2) limitních hodnotách konvergenčních kritérií. Tyto testy probíhaly se zeminou modelovanou jako lineárně elastický materiál. Dalším problémem mohl být boční kontakt mezi zeminou a patkou, který byl prvotně nastaven jako pevné spojení, což neodpovídá skutečnosti.

Velkým problémem ve všech níže uvedených srovnáních a výsledcích však byla konvergence modelu v iterativním řešiči dle Newton-Raphsona. Bylo nutno příjmout výsledky zatížené chybou, vzniklou nesplnění konvergenčních kritérii, a to zpravidla normou nerovážných sil a nerovnovážnými silami z hlediska maximálního komponentu. Docházelo k přitěžování modelu dalším krokem (deformací), aniž by byly splněny uvedené limitní hodnoty.

Připomeňme si, že grafy představují únosnost čtvrtiny patky. Celá patka by měla únosnost 4x větší.

Patka se porušovala převážně smykem, jedná se tedy o únosnost ve smyku.

6.2 Nezávislost na velikosti sítě konečných prvků

Nejprve jsme podrobili model testu na nezávislost na velikosti sítě konečných prvků. Cílem bylo také vybrat vhodnou základní velikost sítě pro další testování modelu patky. Testované velikosti sítě konečných prvků byly 50, 75, 100, 150 a 200 mm (velikost 1 prvku).

Již při prvním testování bylo zjištěno, že kotvení výztuže pomocí ohybů vede k desetinásobnému nárůstu tuhosti modelu u sítě 75 mm. Jelikož však tentýž model se stejnou výztuží a podložím nemůže vykazovat odlišnou tuhost, dovolili jsme si díky pevnému spojení betonu a výztuže zjednodušení a tyto ohyby odstranili. Na patologické chování modelu jsme upozornili výrobce programu Červenka Consulting s.r.o.

Z grafu 6.1 je zřejmé, že model není nezávislý na velikosti sítě, což je nežádoucí jev. Jednotlivé maximální hodnoty únosnosti se liší až o 0,5 MN. Tuhost modelu však již byla nezávislá na velikosti sítě.

Předmětem dalšího zkoumaní modelu bylo zjistit důvod této závislosti. Úvahy vedly ke dvěma možným problémům: a) boční kontakt mezi betonem a elasticky vymodelovanou zeminou, b) uchycování sítě konečných prvků k modelované výztuži.

a) Test s nastavením bočního kontaktu - kontakt bez spojení

Realističnější model s nastaveným volným kontaktem mezi betonem a boční zeminou nevedl k odstranění závislosti na velikosti sítě. Zjištěné maximální hodnoty únosnosti pro sítě 100 a 150 mm se lišily až o 1MN, což je větší rozptyl maximální únosnosti, než byl pozorován u modelu s pevným spojením mezi betonem a zeminou. Pozitivním zjištěním bylo odstranění nežádoucího zubu, který se objevoval v grafu 6.1 u všech velikostí sítě konečných prvků a byl tedy způsoben pevným bočním kontaktem mezi betonem a zeminou.

b) Test s odstraněním výztuže v modelu patky

Test s odstraněním výztuže nemůže být sice v naší uloze příjmut (nejedná se o ŽB patku, ale o patku z prostého betonu), ale může posloužit jako důkaz důvodu závislosti na velikosti sítě.

Test patky bez výztuže dává uspokojivé výsledky, tuhost modelu se nemění a výsledky dosahují velmi podobných hodnot bez závislosti na velikosti sítě konečných

Obrázek 6.2: Boční kontakt beton - zemina.

Obrázek 6.3: Graf závislosti modelu s výztuží na velikosti sítě konečných prvků s nastaveným kontaktem beton - zemina, kontakt bez spojení.

prvků. V grafu 6.4 se opět objevuje problém skoku (zubu), který je dán pevným kontaktem mezi zeminou a betonem.

Závislost na velikosti sítě u vyztužené patky je tedy způsobena výztuží, na kterou se síť konečných prvků váže. Tento parazitický jev jsme nebyli schopni odstranit,

Obrázek 6.4: Graf závislosti modelu na velikosti sítě konečných prvků, model bez výztuže.

nezbývá tedy než tuto chybu příjmout a zvolit optimální velikost sítě konečných prvků.

Zvolena byla velikost sítě 75 mm, která je dostatečně hustá a lze předpokládat přesnější zkoumané hodnoty. Doba výpočtu je akceptovatelná.

6.3 Nezávislost na limitní hodnotě konvergenčních kritérií

Pro zvolenou síť 75 mm jsme provedli test nezávislosti na limitní hodnotě konvergenčních kritérií, které kontrolují normu deformačních změn, normu nerovnovážných sil, nerovnovážnou energii a nerovnovážné síly z hlediska maximálního komponentu během každé iterace. Jednotlivé hodnoty jsou dle Standartní Newton-Raphsonovy metody přednastaveny tak, jak byly popsány v kapitole 5.4.6 a postupně zpřísněny na desetinu, padesátinu a setinu. Kritická hodnota konvergenčních kritérií vedoucí k ukončení výpočtu (z důvodu neakceptovatelné chyby) byla ponechána. Jelikož je však zadávána relativně vůči měněným hodnotám, byla i tato relativní kritická hodnota patřičně upravena.

Z grafu 6.5 je patrná nezávislost na limitní hodnotě konvergenčních kritérií. Výsledky je ovšem nutné brát s rezervou, protože v mnoha krocích nebyla požadovaná limitní hodnota konvergenčních kritérií dosažena. Pro zkrácení doby výpočtu byla

Obrázek 6.5: Graf závislosti modelu s výztuží na limitní hodnotě konvergenčních kritérií.

pro další analýzy vybrána desetina z původně nastavených hodnot.

6.4 Únosnost patky s izotropním elastickým materiálovým modelem zeminy

Byla zjišťována únosnost patky pro 4 druhy zemin:

- skála R4, $E_{def} = 600$ MPa, $\nu = 0.2$
- štěrk G2, $E_{def} = 190$ MPa, $\nu = 0.2$
- písek S2, $E_{def} = 40$ MPa, $\nu = 0.28$
- jíl F3, $E_{def} = 5$ MPa, $\nu = 0.35$

6.4.1 Pevný kontakt mezi betonem a zeminou

Maximální únosnost ve smyku byla dle očekávání naměřena na zemině s největším modulem pružnosti E_{def} - na skále R4, a to 3,56 MN při poklesu horního bodu sloupu o 6,64 mm. U zeminy G2 byla naměřena maximální reakce 2,3 MN při deformaci 11,5 mm. Na pískovém podloží byla zjištěna maximální hodnota 1,67 MN

při zatlačení patky o 32,5 mm. U jílu model nebyl schopen dopočítat až do porušení patky smykem.

Obrázek 6.6: Graf závislosti posunu a reakce na sloupu ŽB patky pro elastický materiál podloží s pevným bočním kontaktem mezi zeminou a betonem.

6.4.2 Volný boční kontakt mezi betonem a zeminou

Výsledky po odstranění pevného kontaktu mezi podložím a betonem na bočních stranách patky kopírují výsledky s pevným spojením. Hodnota maximální únosnosti ve smyku se u skály R4 snížila o 0,3 MN, naopak u štěrku G2 o 0,3 MN zvýšila. U písku S2 dosáhla maximální síla ve sloupu na 2,2 MN, což je o více než 0,5 MN vyšší hodnota než s pevným spojením. Důvodem mohou být silné konvergenční problémy modelu s pevným spojením, kdy na kontaktu vznikají četné nerovnovážné síly (residuální síly).

Model bez bočního spojení mezi patkou a zeminou vykazoval stabilnější výpočet zhlediska splnění konvergenčních kritérií.

6.5 Únosnost patky pro zeminy s materiálovým modelem Drucker-Prager plasticita

Při zavedení plasticity do materiálového modelu zeminy, bylo použito pouze volné spojení patky se zeminou.

Obrázek 6.7: Graf závislosti posunu a reakce na sloupu ŽB patky pro elastický materiál podloží s volným bočním kontaktem mezi zeminou a betonem.

Byla zjišťována únosnost patky pro zeminy s následujícími charakteristikami:

- štěrk G2, $E_{def}=190$ MPa, $\nu=$ 0,2, $\varphi_{ef}=37\,^o$, c=10 kPa
- písek S2, $E_{def}=40$ MPa, $\nu=0,28,\,\varphi_{ef}=36\,^o,\,c=10$ kPa
- jíl F3, $E_{def} = 5$ MPa, $\nu = 0.35$, $\varphi_{ef} = 27^{\circ}$, c = 12 kPa¹

Hodnoty z grafu 6.8 by měly nejrealističtěji popisovat smykovou únosnost železobetonové patky. Program měl, jak je z grafu zřejmé, velké konvergenční problémy s písčitým podložím S2, jehož maximální únosnost můžeme přibližně odhadnout. Porovnání výsledků pro elastický model zeminy a model zeminy dle Drucker-Pragera uvedeme v sekci 6.6.

¹Hodnoty koheze c jsou uvažovány pro zeminy G2 a S2 jako 10 kPa, ve skutečnosti je koheze c pro tyto zeminy nulová. Do materiálového modelu Drucker- Prager plasticita, ale musela být nastavena hodnota 10 kPa, kvůli konvergenci modelu. Při nižší hodnotě koheze c nebyl model schopen dokončit iteraci.

6.6 Porovnání únosností patky pro odlišné nastavení jednotlivých podloží

Cílem této části bude porovnat únosnosti jednotlivých modelů zeminy pro zeminy a horniny R4, G2, S2 a F3. Nejrealističtejšíí hodnoty jsou očekávány s materiálovým modelem zeminy s plasticitou Drucker-Prager.

Pro horninu R4 vykazoval vyšší únosnost model s pevným kontaktem, realističtější je však model s kontaktem volným, jehož maximální únosnost byla 3,26 MN. Maximální hodnota s pevným kontaktem byla o 0,3 MN vyšší při stejné deformaci 6,6 mm. Další nárůst únosnosti dle grafu 6.9 je přisuzována tuhosti skalního podloží. Plasticita dle Drucker-Pragera nebyla pro skálu R4 zavedena, protože by neměla velké opodstatnění.

Štěrk G2 má srovnání elastických modelů s pevným a volným kontaktem opačný než hornina R4. Vyšší únosnost měl model s volným kontaktem, a to 2,53 MN při poklesu 13,3 mm. Pevný kontakt dosáhl únosnosti 2,3 MN při deformaci 11,5 mm. Mírný rozdíl je i v tuhosti jednotlivých elastických modelů, což koresponduje s nastavením kontaktu, kdy volný kontakt má menší tuhost. Realističtější model se zavedenou plasticitou dosáhl únosnosti 1,69 MN za poklesu horního bodu sloupu o 19,0 mm.

Obrázek 6.9: Srovnání únosností pro horninu R4.

Písčité podloží S2 vykazuje obdobné chování jako štěrk G2. Při maximálních únosnostech s volným kontaktem 2,2 MN při poklesu o 49,0 mm, s pevným kontaktem 1,67 MN a poklesu 32,5 mm. Písek s Drucker-Prager plasticitou měl velké konvergenční problémy a výpočet nebyl dopočítán.

Pro jíl F3 můžeme pro elastické podloží sledovat pouze tuhost jednotlivých modelů, protože modul pružnosti *E* je příliš malý a dochází k nereálnému zatlačování patky do zeminy. Model s plasticitou podloží dle Drucker-Pragera dosáhl maximální únosnosti 591,0 kN při deformaci 24,7 cm. V sekci 6.9 jsme zjistili, že základová půda F3 nevyhoví na napětí v základové spáře. Dle obrázku 6.12 je zřejmé, že se nejedná o poškození patky, ale selhání únosnosti základové půdy.

Obrázek 6.10: Srovnání únosností pro zeminu G2.

Obrázek 6.11: Srovnání únosností pro zeminu S2.

Obrázek 6.12: Poškození patky na jílovém podloží při maximální zjištěné síle.

Obrázek 6.13: Srovnání únosností pro zeminu F3.

6.7 Únosnost patky se smykovou výztuží

Jelikož většina výše uvedených poruch modelu patky je z důvodu tvorby smykových trhlin, byl proveden test vyztužení patky smykovou výztuží pomocí ohybů.

Ohyby byly vytvořeny z výztuže $\phi = 12 \text{ mm}$ ve dvou variantách po vzdálenostech 80 a 160 mm dle obrázku 6.14. Úhel sklonu ohybů byl pod úhlem 45°.

Tuhost modelu se po přidání výztuže značně zvýšila. Model pracoval téměř nezávisle na počtu smykové výztuže. Při dosažení síly přes 4,4 MN při deformaci okolo 5,1 mm přestává být závislost lineární. Zatížení začíná být přenášeno hlavně výztuží až po ukončení výpočtu při síle 9,6 MN a při poklesu o 14,7 mm pro výztuž po 80 mm a síle 8,95 MN a deformaci 15,9 mm pro výztuž po 160 mm.

Napětí ve výztuži bylo zjištěno v postprocesoru přes průběhy napětí v 1D a izoplochy napětí ve směru xx. Napětí je zobrazeno v obrázcích 6.16 a 6.17.

Napětí výztuže v posledním kroku výpočtu dosahuje maximálních hodnot 567,1 kPa pro vzdálenost výztuže 80 mm a 630,0 kPa pro osovou vzdálenost 160 mm. Napětí ve výztuži je malé a stále by tedy bylo možné zvyšovat zatížení.

Obrázek 6.14: Ukázka patek se smykovou výztuží.

6.8 Změna geometrie pro zjištění ohybové únosnosti

V části 6.7 jsme popsali, že model železobetonové patky se porušoval smykem a ukázali jsme změnu únosnosti pomocí smykové výztuže.

V této podkapitole jsme patku podrobili pokusu, kdy jsme zvětšili vyložení patky *a* dvojnásobně, což by dle kapitoly 3 (Normy ČSN EN 1991-1 a ČSN EN 1992-1-1), zvětšilo uvažovaný moment na konzole M_{ed} . Očekávaným výsledkem mělo být porušení patky ohybem nebo vznik velkých trhlin při spodním povrhu patky. Jako podloží jsme pro tento test zvolil štěrk G2 jako elastický materiál s volným kontaktem mezi betonem a zeminou.

Obrázek 6.15: Závislost posun-síla patky se smykovou výztuží na elastickém podloží s pevným kontaktem mezi zeminou a betonem.

Obrázek 6.16: Napětí ve výztuži pro výztuž R12 á 80 mm.

Obrázek 6.17: Napětí ve výztuži pro výztuž $\mathrm{R12}$ á 160 mm.

Obrázek 6.18: Porovnání trhlin obou modelů (vlevo základní model, vpravo patka s dvojnásobným vyloženíma)na vzestupné části pracovního diagramu.

V obrázku 6.18 jsou porovnány trhliny, vzniklé na vzestupné části pracovního diagramu. Pro patku s menším vyložení a zvolili filtr šířky trhliny 0,1 mm, tak abychom demostrovali vznik smykových trhlin. Pro patku s dvojnásobným vyložením 2a byl filtr šířky trhliny nastaven na 1 mm, z důvodu vzniku menších smykových trhlin, které by vadily demonstraci výsledku.

Maximální únosnost dle grafu 6.19 pro patku s vyložením a je 2,66 MN, která se liší jen minimálně od únosnosti patky s vyložením 2a, kde byla stanovena únosnost na čtvrtině patky 2,44 MN. Z obrázku je patrný vznik ohybových trhlin při dolním povrchu zvětšené patky. Výsledné porušení bylo ovšem i u dvojnásobného vyložení patky a nakonec smykem.

Obrázek 6.19: Srovnání závislosti posun - síla u modelů s různým vyložením a.

6.9 Napětí v základové spáře

Při posouzení patky dle přílohy A musí být splněn vztah (A.7), kde kontaktní napětí σ_{zi} v základové spáře musí být menší než normová únosnost základové půdy R_d . Pomocí řezu zobrazíme napětí σ_{zi} v základové spáře (hloubce 0,8 m) pro elasticky modelovanou zeminu a zeminu s plasticitou dle Drucker-Pragera. Porovnáme je s výpočtovou hodnotou σ_{zi} dle ČSN EN 1992-1-1. Jednotlivé napětí σ_{zi} pro písek S2 pak posoudíme s únosností R_d dle ČSN 73 1001, kterou jsme spočítali v příloze A.

Očekávané rozložení kontaktního napětí v základové spáře známé z mechaniky zemin (WEIGLOVÁ, Kamila , 2005) je možné stanovit v závislosti na tuhosti základu obrázek 6.20. Tuhost základu se určí dle vzorce (6.1).

Obrázek 6.20: Rozložení napětí v základové spáře (WEIGLOVÁ, Kamila , 2005).

$$k = \frac{E}{E_{def}} \cdot \left(\frac{t}{b}\right)^3 \tag{6.1}$$

$$k \leq 1 \dots \text{TUHY}$$
 (6.2)

$$k > 1 \dots \text{PODDAJNY}$$
 (6.3)

Střední napětí (rovnoměrné na ploše) σ_{zi} je dáno podílem maximální síly na efektivní plochu, kterou zjednodušeně budeme uvažovat jako čtvrtinu půdorysné plochy patky, z důvodu, že i maximální síla je dána únosností čtvrtiny patky. Dle vzorce $\sigma_{zi}=\frac{N_{ed}}{l_f\cdot b_f}$.

a) Skála R4:

$$k = \frac{E}{E_{def}} \cdot \left(\frac{t}{b}\right)^3 = \frac{31000}{600} \cdot \left(\frac{0,8}{2,4}\right)^3 = 1,91$$
(6.4)

$$\sigma_{zi} = \frac{N_{ed}}{l_f \cdot b_f} = \frac{3260}{1, 2 \cdot 1, 2} = 2,26 \text{ MPa, pro R4 s elastickou zeminou}$$
(6.5)

Obrázek 6.21: Napětí v základové spáře - skála R4 elastický materiál v lineární větvi pracovního diagramu.

Rozložení napětí v základové spáře v elastickém kroku zatěžování je dle obrázku 6.21 převážně od 0 kPa do 500 kPa, na okrajích patky dosahuje napětí až 5 MPa. Rozdělení napětí koresponduje s očekávaným tuhým chováním (k > 1) základu dle obrázku 6.20, kdy se plynule zvyšuje napětí směrem k okraji patky.

Rozložení napětí při dosažení maximální síly se mění kvůli změnám tuhosti patky (obr. 6.22). Napětí na základové spáře již neodpovídá rozdělení napětí pro tuhý základ vlivem plného poškození betonu smykem.

Obrázek 6.22: Napětí v základové spáře při maximálním zatížení - skála R4 elastický materiál.

b) Štěrk G2:

$$k = \frac{E}{E_{def}} \cdot \left(\frac{t}{b}\right)^3 = \frac{31000}{190} \cdot \left(\frac{0,8}{2,4}\right)^3 = 6,04$$
(6.6)

$$\sigma_{zi} = \frac{N_{ed}}{l_f \cdot b_f} = \frac{2530}{1, 2 \cdot 1, 2} = 1,76 \text{ MPa, pro G2 s elastickou zeminou}$$
(6.7)

$$\sigma_{zi} = \frac{N_{ed}}{l_f \cdot b_f} = \frac{1690}{1, 2 \cdot 1, 2} = 1,17 \text{ MPa, pro G2 s plasticitou dle Drucker - Pragera}$$
(6.8)

Napětí v základové spáře v daném řezu dosahuje hodnot od 0 MPa po 15 MPa, převládají napěti leží v intervalu od 1 do 2 MPa, v tomto intervalu se pohybují i vypočítané hodnoty dle vztahů (6.7) a (6.8). Rozdělení napětí na řezu odpovídá chování tuhého základu dle obrázku 6.20.

Normová únosnost základové půd
y R_d je pro štěrk G2 1326,62 kPa, této únosnosti vyhoví střední hodnota napětí v základové spář
e σ_{zi} pro zavedenou plasticitu DP v zemině, elastický model nikoli.

c) Písek S2:

$$k = \frac{E}{E_{def}} \cdot \left(\frac{t}{b}\right)^3 = \frac{31000}{40} \cdot \left(\frac{0,8}{2,4}\right)^3 = 28,7 \tag{6.9}$$

$$\sigma_{zi} = \frac{N_{ed}}{l_f \cdot b_f} = \frac{2200}{1, 2 \cdot 1, 2} = 1,52 \text{ MPa, pro S2 s elastickou zeminou}$$
(6.10)

Obrázek 6.23: Napětí v základové spáře při maximálním zatížení - štěrk G2 elastický.

Obrázek 6.24: Napětí v základové spáře při maximálním zatížení - štěrk G2 s plasticitou DP.

$$\sigma_{zi} = \frac{N_{ed}}{l_f \cdot b_f} = \frac{1040}{1, 2 \cdot 1, 2} = 0,72 \text{ MPa, pro S2 s plasticitou dle Drucker - Pragera}$$
(6.11)

Hodnoty napětí v základové spáře dle obrázků 6.25 a 6.26 v daném řezu dosahují hodnot převážně od 0 do 800 kPa. Maximální hodnoty na okrajích patky jsou u elasticky řešeného písku S2 12 MPa, u písku S2 s plasticitou dle DP 8 MPa.

Únosnost zeminy R_d je dle přílohy A 1227,12 kPa. Tato únosnost vyhoví na střední hodnotu σ_{zi} pro model s plasticitou dle Drucker-Pragera, pro elastický model podloží nikoli.

Obrázek 6.25: Napětí v základové spáře při maximálním zatížení - písek S2 elastický.

Obrázek 6.26: Napětí v základové spáře při maximálním zatížení - písek S2 s plasticitou DP.

d) Jíl F3:

$$k = \frac{E}{E_{def}} \cdot \left(\frac{t}{b}\right)^3 = \frac{31000}{5} \cdot \left(\frac{0,8}{2,4}\right)^3 = 229,63 \tag{6.12}$$

$$\sigma_{zi} = \frac{N_{ed}}{l_f \cdot b_f} = \frac{591}{1, 2 \cdot 1, 2} = 0,41 \text{ MPa, pro F3 s plasticitou dle Drucker - Pragera}$$
(6.13)

Napětí v základové spáře v daném řezu dle obrázku 6.28 dosahuje hodnot převážně od 0 kPa po 3,3 MPa. Normová hodnota únosnosti R_d pro jíl F3 = 485,78 kPa. Ačkoliv střední hodnota napětí σ_{zi} vyhoví normové únosnosti zeminy R_d , patka

Obrázek 6.27: Napětí v základové spáře při maximálním zatížení - jíl F3 elastický.

Obrázek 6.28: Napětí v základové spáře při maximálním zatížení - jíl ${\rm F3~s}$ plasticitou DP.

ztratila únosnost díky zplastizování zeminy, ne kvůli porušení betonu.²

Hodnoty na řezech z programu ATENA 3D jsou brány pro zjištěnou maximální únosnost. U jílu modelovaného jako elastický materiál odpovídá napětí na obrázku 6.27 napětí po posledním dopočteném kroce. Vypočtená hodnota dle normy (6.13) leží v převládající oblasti na řezu 6.28. Rozložení napětí odpovídá očekávanému rozložení napětí pro tuhý základ dle obrázku 6.20.

 $^{^2}$ Únosnost jednotlivých zemin R_d byla spočítána dle vztahu (A.43).

Kapitola 7

Závěr

V bakalářské práci jsem se zabýval únosností železobetonové patky. Byl vytvořen model v konečně prvkostním programu ATENA 3D, kde byla pomocí nelineárního výpočtu zjišťována maximální svislá síla ve sloupu.

Byla ověřována závislost únosnosti patky na druhu podloží, vyložení patky *a* a materiálovém modelu zeminy. Zjištěná únosnost byla srovnána s normovou únosností dle ČSN EN 1992-1-1. Pozornost byla věnována také napětí na základové spáře, jehož průběh se podle numerického výpočtu výrazně odchyluje od předpokladu (rovnoměrného napětí) normy.

Finální porušení patky bylo ve většině zkoušených případů smykem, který je pro únosnost při dané geometrii rozhodující. Byly řešeny tři varianty modelu zeminy:

- A Zemina jako elastický materiál s pevným kontaktem mezi betonem a zeminou;
- B Zemina jako elastický materiál s volným kontaktem mezi betonem a zeminou;
- C Zemina s plasticitou dle Drucker-Pragera s volným kontaktem mezi betonem a zeminou

Výsledná únosnost byla srovnávána s maximální silou při protlačení dle normy. V příloze B jsme zjistili maximální smykové napětí v betonu při protlačení 2033,6 kPa. Po zpětném dosazení do vzorce (B.8), získáme maximální sílu V_{ed} :¹

$$V_{ed} = \frac{v_{ed}\,\mu_{cr}\,d}{\beta} = \frac{2033, 6\cdot 3, 51\cdot 0, 744}{1} = 5310, 6\,\mathrm{kN} = 5,31\mathrm{MN} \tag{7.1}$$

Z tabulky 7.1² je patrná závislost únosnosti na druhu podloží a jeho modelování. Dle očekávání vyšší únosnost vykazovaly zeminy s vyšším modulem pružnosti E_{def} .

 $^{^{1}\}mathrm{Za}$ parametr β byla uvažována hodnota 1 z důvodu absence ohybového momentu v modelu.

 $^{^2\}mathrm{U}$ hodnot s hvězdičkou byl výpočet přerušen před dosažením maximální síly.

	Únosnost žele	ezobetonové patl	xy [MN]
	А	В	С
R4	$3,56 \times 4 = 14,24$	$3,26 \times 4 = 13,04$	-
G2	$2,30 \times 4 = 9.20$	$2,53 \times 4 = 10,12$	$1,69 \times 4 = 6,76$
S2	$1,67 \times 4 = 6.68$	$2,20 \times 4 = 8,80$	$1,04 \times 4 = 4,16^*$
F3	$1,41 \times 4 = 5.64^*$	$1,21 \times 4 = 4,84^*$	$0,59 \times 4 = 2,36$

Tabulka 7.1: Únosnost patky v závislosti na druhu a materiálovém nastavení zeminy.

Normové hodnoty vypočtené v rovnici (7.1) by měly být opatřeny jistou mírou bezpečnosti a měly by se pohybovat v bezpečné oblasti skutečného pracovního diagramu. Naproti tomu v modelu jsou použity materiálové parametry pro střední hodnotu odezvy.

Stěrkové podloží G2 dle ATENY 3D přenese maximální sílu F = 6,36 MN (u písčitého podloží S2 lze očekávat ještě nižší), což je sice vyhovující normové hodnotě, ale s ohledem na to, že model poskytuje střední odezvu, se blízkost obou hodnot jeví jako nedostatečná. Naopak u skalního podloží R4 (F=14,24 MN) se norma jeví jako příliš konzervativní. Závislost na podloží řeší norma pomocí únosnosti základové půdy R_d , která musí být větší než napětí v podzákladí σ_{zi} .

U jílového podloží F3 nedošlo v modelovém zatěžování ke smykovému porušení železobetonové patky, ale k zplastizování zeminy pod základovou patkou. Tento výsledek byl potvrzen i normovým výpočtem a srovnáním v sekci 6.9, kdy napětí v základové spáře bylo velmi blízko únosnosti základové půdy R_d .

Pro ověření modelu by bylo nutné získat experimentální data ze zatěžovacích zkoušek. Otázkou je, zda získané hodnoty v programu ATENA 3D jsou zcela adekvátní s ohledem na konvergenční problémy popsáné výše, a s ohledem na v práci zmíněná zjednodušení.

Práce ukázala velkou závislost na druhu zeminy a na volbě materiálového modelu jednotlivých zemin. Zjistili jsme, že výsledná únosnost železobetonových patek je dána smykovým poškozením patky i při zdvojnásobení vyložení patky *a* a odolnost na ohyb v daném případě nehraje při poškození zásadní roli.

Literatura

- CERVENKA, Vladimír, Libor JENDELE a Jan CERVENKA. ATENA Program Documentation, Part 1, Theory. Prague, Czech Republic: Cervenka Consulting Ltd., 2011.
- JIRÁSEK, Milan a Jan ZEMAN. PŘETVÁŘENÍ A PORUŠOVÁNÍ MATERIÁLŮ, Dotvarování, plasticita, lom a poškozování. Praha: Česká technika - nakladatelství ČVUT, Thákurova 1, 160 41 Praha 6, 2006. ISBN 80-01-03555-7.
- NOVAK, Drahomír a Luděk BRDECKO. Pružnost a pevnost: Základní pojmy a předpoklady. Brno: VUT Brno, 2004. 48s.
- ČSN 73 1001. Zakládání staveb. Základová půda pod plošnými základy. Praha: ÚNMZ, 1987.
- ČSN EN 1991-1-1. Eurokód 1: Zatížení konstrukcí Část 1-1: Obecná zatížení Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha: ÚNMZ, 2004.
- ČSN EN 1991-1-3. Eurokód 1: Zatížení konstrukcí Část 1-3: Obecná zatížení Zatížení sněhem. Praha: ÚNMZ, 2005.
- ČSN EN 1991-1-4. Eurokód 1: Zatížení konstrukcí Část 1-4: Obecná zatížení Zatížení větrem. Praha: ÚNMZ, 2007.
- ČSN EN 1992-1-1. Eurokód 2: Navrhování betonových konstrukcí Část 1-1: Obecná pravidla a pravidla pro pozemní stavby. Praha: ÚNMZ, 2006.
- CSN EN 1997-1. Eurokód 7: Navrhování geotechnických konstrukcí Část 1: Obecná pravidla. Praha: ÚNMZ, 2006.
- WEIGLOVÁ, Kamila . Mechanika zemin: Praktické aplikace mechaniky zemin I. Brno: VUT Brno, 2005. 36s.

Seznam symbolů

e	excentricita
M_{ed}	návrhová hodnota ohybového momentu
M_{rd}	výpočtová hodnota ohybového momentu
$M_{ed,k}$	návrhová hodnota ohybového momentu na myšlené konzole
V_{ed}, N_{ed}	návrhové hodnota normálové síly
l_k	délka konzoly
a	vyložení patky
c, b	rozměry sloupu
l_f, b_f	rozměry patky
h	výška patky
σ_{zi}	kontaktní napětí
σ_{gd}	napětí v podzákladí
A_s	plocha výztuže
d	účinná výška průřezu
x	vzdálenost neutrální osy od nejvíce tlačeného okraje
f_{yd}	mez kluzu výztuže
λ	součinitel definující účinnou výšku tlačené oblasti
η	součinitel definující účinnou pevnost
$A_{cr,i}$	kritická plocha průřezu
$\mu_{cr,i}$	kritický obvod průřezu
$V_{ed,red}$	redukovaná hodnota návrhové síly
v_{ed}	návrhové napětí
v_{rd}	výpočtové napětí
v_{min}	minimální napětí
$C_{RD,c}, k$	součinitelé

$\mathcal{Q}l$	stupeň vyztužení
f_{ck}	návrhová pevnost betonu
f_{ck}	výpočtová pevnost betonu
F_s	síla ve výztuži
l_{bd}	kotevní délka
С	krytí výztuže
$\sigma_{x,y,z}$	normálová napětí
$ au_{x,y,z}$	smyková napětí
$\varepsilon_{x,y,z}$	normálové složky poměrné deformace
$\gamma_{x,y,z}$	smykové složky poměrné deformace
E	Youngův modul pružnosti
ν	Poissonův součinitel
G	modul pružnosti ve smyku
$\sigma_{1,2,3}$	hlavní napětí
σ_m	střední napětí
J_2	druhý invariant deviatorického napětí
ε_e	elastická část přetvoření
ε_p	plastická část přetvoření
ϕ	úhel vnitřního tření
c_0	koheze
σ_{max}	maximální hlavní napětí
σ_{max}	minimální hlavní napětí
f_t	pevnost v tahu
$lpha_{arphi}$	koeficient vnitřního tření
$ au_0$	mez kluzu ve smyku

ε_f	relativní otevření trhliny
w	otevření trhliny
$\Delta\lambda$	plastický násobitel
c_1, c_2	konstanty
$f_t^{'ef}$	efektivní pevnost v tahu
ε_{cr}	konkrétní hodnota přírůstku relativního otevření trhliny ε^f
f_c	pevnost v tlaku
L_t^{\prime}	modifikovaná šířka pásu tahového poškození
β	součinitel směru plastického tečení
ϕ	Ludolfovo číslo
α, k	součinitelé definující Drucker-Pragorovu plochu poškození
G_f	lomová energie

Matice

σ	napětí
ε	poměrné deformace
δ	směr plastického tečení
\mathbf{D}_{e}	elastická matice tuhosti
\mathbf{C}_{e}	elastická matice poddajnosti
D	matice tuhosti

Seznam příloh

- 1. Příloha A Posouzení na ohybový moment
- 2. Příloha B Posouzení patky na protlačení a propíchnutí
- 3. Příloha ${\rm C}$ Posouzení kotevních délek výztužení

Příloha A - Posouzení na ohybový moment

Posouzení železobetonové patky na ohybový moment

Zadání vzorového příkladu:

Půdorysné rozměry patky: $b_f \ge l_f = 2,4 \ge 2,4$ m

Půdorysné rozměry sloupu: $c_1 \ge c_2 = 0.5 \ge 0.5 \le 0.5$ m, c = $c_1 = c_2$

Beton: C 25/30

Výztuž: B 500

Síla a moment na kontaktu sloupu se zeminou: $V_{ed} = 2250 \text{ kN}, M_{ed}^* = 58 \text{ kNm}, H_{ed} = 40 \text{ kN}, z_d$ (vlastní tíha patky, násyp, podkladní vrstvy podlahy, vlastní tíha podlahy, proměnné užitné zatížení na podlaze) = 250 kN

Výpočet:

1) Odvození výšky patky dle předpokládaného roznášecího úhlu

Patka by měla dle obrázku A.1 splňovat roznášecí úhel, který je v rozmezí 35 – 40° .

$$\tan \alpha = \frac{h_f}{a} \Rightarrow h_f = a \tan \alpha \tag{A.1}$$

$$a = \frac{b_f - c}{2} = \frac{2, 4 - 0, 5}{2} = 0,95 \,\mathrm{m} = 950 \,\mathrm{mm} \tag{A.2}$$

 $h_f = \tan(35 - 40^{\circ})a = \tan(35 - 40^{\circ}) \cdot 950 = (665, 2 - 797, 14) \text{mm} \Rightarrow 800 \text{ mm} (A.3)$

Obrázek A.1: Roznášecí úhel ŽB patky.

Výpočet návrhové hodnoty ohybového momentu:

Výpočet dle obrázků A.2 a A.3

Obrázek A.2: Geometrie návrhu.

$$e_x = \frac{M_{x,ed}}{N_{ed}} = \frac{90}{2500} = 0,036 \,\mathrm{m}$$
 (A.4)

$$e_x \le \frac{b_f}{3} = \frac{2,4}{3} = 0,8\,\mathrm{m} \quad \Rightarrow \quad \mathrm{VYHOVUJE}$$
(A.5)

Obrázek A.3: Schéma pro výpočet ohybového momentu.

$$\sigma_{zi} = \frac{N_{ed}}{(l_f(b_f - 2e))} = \frac{2500}{2,4(2,4-2\cdot0,036)} = 447,45\,\mathrm{kPa} \tag{A.6}$$

$$\sigma_{\mathbf{z}\mathbf{i}} \le \mathbf{R}_{\mathbf{g}\mathbf{d}} \left[\mathbf{MPa} \right] \tag{A.7}$$

$$\sigma_{gd} = \sigma_{zi} - \frac{z_d}{(b_f l_f)} = 447, 45 - \frac{250}{(2, 4 \cdot 2, 4)} = 404, 05 \, \text{kPa}$$
(A.8)

Obrázek A.4: Schéma myšlené konzoly.

Délka myšlené konzoly je uvažována dle obrázku A.4

$$l_{k} = a + 0,176a = 950 + 0,176 \cdot 950 = 1117,2 \Rightarrow 1120 \,\mathrm{mm}$$
 (A.9)

$$\mathbf{M}_{ed,k} = \frac{1}{2}\sigma_{gd}l_{f}l_{k}^{2} = \frac{1}{2}\,404,05\cdot2,4\cdot1,12^{2} = \mathbf{608},\mathbf{21\,kNm}$$
(A.10)

$$\mathbf{M}_{ed,k,bm} = \frac{1}{2}\sigma_{gd}l_{f,bm}l_k^2 = \frac{1}{2}\,404,05\cdot1\cdot1,12^2 = \mathbf{253},\mathbf{42\,kNm/m}$$
(A.11)

 σ_{zi} je kontaktní napětí [kPa], σ_{gd} redukované napětí v podzákladí [kPa], R_{gd} výpočtová únosnost zeminy [kPa], l_k délka myšlené konzoly, M_{ed} návrhová hodnota ohybového momentu [kNm], $M_{ed,1m}$ návrhová hodnota ohybového momentu na běžný metr [kNm].

Výztuž:

B 500B

 $f_{\mathbf{yk}} = 500 \, \mathbf{MPa}$

$$\begin{split} \mathbf{f_{yd}} &= \frac{\mathbf{f_{yk}}}{\gamma_{s}} = \frac{500}{1,15} = \mathbf{434}, \mathbf{8}\,\mathbf{MPa} \\ & \varepsilon_{\mathbf{yd}} = \frac{\mathbf{f_{yd}}}{\mathbf{E_{s}}} = \frac{434,8}{200.10^{3}} = \mathbf{2}, \mathbf{174}.\mathbf{10^{-3}}[-] \end{split}$$

 f_{yk} je mez kluzu výztuže (napětí, při kterém vznikají trvalé plastické deformace)[MPa], f_{yd} návrhová hodnota meze kluzu výztuže [MPa], γ_s dílčí součinitel betonářské výztuže [1,15] pro trvalá a dočasná zatížení, E_s =200GPa - návrhová hodnota modulu pružnosti, ε_{yd} návrhové přetvoření betonářské oceli.

Beton:

 $\mathrm{C25/30}$ $\mathrm{f_{ck}=25}$ MPa

 ${f f_{cd}} = rac{{{f_{ck}}}}{{{\gamma _c}}} = rac{{{25}}}{{{1,5}}} = {f 16,67\,{
m MPa}}$

 $f_{\mathbf{ctm}}=\mathbf{2}, \mathbf{6}\,\mathbf{MPa}$

 $f_{\mathbf{ctk};\mathbf{0},\mathbf{05}}=1,8\,MPa$

$${f f_{ctd}} = rac{{{{f f}_{ctk;0,05}}}}{{{\gamma _c}}} = rac{{{1,5}}}{{{1,5}}} = {f 1,0\,{
m MPa}}$$

 $f_{ck}(25)$ je charakteristická válcová pevnost betonu v tlaku [MPa], $f_{ck}(30)$ charakteristická krychelná pevnost betonu v tlaku [MPa], f_{cd} návrhová pevnost betonu v tlaku [MPa], f_{ctm} průměrná hodnota válcové pevnosti v dostředném tahu [MPa], $f_{ctk;0,05}$ charakteristická pevnost betonu v dostředném tahu, 5% kvantil [MPa].
Krytí výztuže c

Uvažovaný stupeň prostředí XC2, konstrukční třída 4, průměr výztuže 16mm a betonáž bude provedena na podkladním betonu.

$$c \ge c_{nom} \tag{A.12}$$

$$c_{nom} = c_{\min} + \Delta c_{dev} \tag{A.13}$$

$$c_{\min} = \max \left\{ c_{\min,b}; c_{\min,dur} + \Delta c_{dur,\gamma} - \Delta c_{dur,st} - \Delta c_{dur,add}; 10 \,\mathrm{mm} \right\} \quad (A.14)$$

$$c_{\min} = \max\{16 \text{mm}; 25 + 0 + 0 + 0 \text{mm}; 10 \text{mm}\} = 25 \text{ mm}$$
 (A.15)

$$\Delta c_{dev} = 10 \,\mathrm{mm} \tag{A.16}$$

Dosadíme do rovnice (A.13) a získáme c_{nom} .

$$c_{nom} = c_{\min} + \Delta c_{dev} = 25 + 10 \,\mathrm{mm} = 35 \,\mathrm{mm}$$
 (A.17)

 $c \ge c_{nom} \Rightarrow \text{navrhuji } c = 40 \text{ mm.}$

c je krytí výztuže (vzdálenost povrchu výztuže k vnějšímu prostředí), c_{nom} je nominální krycí vrstva výztuže, $c_{\min,b}$ je minimální krycí vrstva výztuže, $c_{\min,b}$ je minimální krycí vrstva z hlediska soudržnosti. Jedná-li se o oddělenou výztuž, tak $c_{\min,b}$ se rovná průměru výztuže. Je-li jmenovitý maximální rozměr kameniva $d_g > 32 \text{ mm}$, pak $c_{\min,b} = (\phi + 5 \text{ mm})$. $c_{\min,dur}$ je minimální krycí vrstva z hlediska podmínek prostředí (pro XC2 = mokré, občas suché podmínky – povrchy betonů vystavené dlouhodobému působení vody, většina základů a konstrukční třídu 4, pro návrhovou životnost 50 let) je $c_{min,dur}$ 25 mm dle tabulky 4.4N – ČSN EN 1992-1-1. $\Delta c_{\min,\gamma}$ je přídavná bezpečnostní složka, $\Delta c_{dur,st}$ je redukce minimální krycí vrstvy při použití přídavné ochrany.

 $\Delta c_{dur,\gamma}$; $\Delta c_{dur,st}$; $\Delta c_{dur,add}$ – doporučené hodnoty dle ČSN EN 1992-1-1 jsou 0 mm. Δc_{dev} je přídavek k minimální krycí vrstvě, který pokrývá přípustnou odchylku. Doporučená hodnota je 10 mm pro běžnou úroveň provádění, pro betonáž na upravené zemině 45 mm a pro betonáž na neupravené zemině 75 mm.

Návrh výztuže:

Provedeme posouzení výztuže s menší účinnou výškou d, výztuž ve druhém směru bude symetrická a zároveň méně namáhaná. Odvození účinné výšky d dle obrázku A.5.

$$d_1 = c + \phi + \frac{\phi}{2} = 40 + 16 + \frac{16}{2} = 64 \,\mathrm{mm}$$
 (A.18)

$$d = h_f - d_1 = 800 - 64 = 736 \,\mathrm{mm} \tag{A.19}$$

Obrázek A.5: Schéma průřezu pro návrh výztuže.

2 varianty výpočtu vyztužení:

$$A_{s,d} = \frac{b \cdot d \cdot f_{cd}}{f_{yd}} \left(1 - \sqrt{1 - \frac{2M_{ed}}{b d^2 f_{cd}}} \right)$$
(A.20)

$$A_{s,d} = \frac{2, 4 \cdot 0, 736 \cdot 16, 67}{434, 8} \left(1 - \sqrt{1 - \frac{2 \cdot 608, 21}{2, 4 \cdot 0, 736^2 \cdot 16, 67 \cdot 1000}} \right)$$
(A.21)
$$A_{s,d} = 19, 28 \cdot 10^{-4} \,\mathrm{m}^2$$
(A.22)

$$A_s \ge A_{s,d} \tag{A.23}$$

 $A_s{=}12\mathrm{x}\phi16\,ks \Rightarrow A_s = 24,13\cdot10^{-4}~\mathrm{m^2}$

$$A_{s,d,bm} = \frac{b \, d \, f_{cd}}{f_{yd}} \left(1 - \sqrt{1 - \frac{2M_{ed}}{b \, d^2 f_{cd}}} \right) \tag{A.24}$$

$$A_{s,d,bm} = \frac{1,0 \cdot 0,736 \cdot 16,67}{434,8} \left(1 - \sqrt{1 - \frac{2 \cdot 253,42}{1,0 \cdot 0,736^2 \cdot 16,67 \cdot 1000}} \right) (A.25)$$

$$A_{s,d,bm} = 8,03 \cdot 10^{-4} \,\mathrm{m}^2/\mathrm{m}$$
(A.26)

$$A_{s,bm} \ge A_{s,d,bm} \tag{A.27}$$

 $A_{s,bm}{=}\phi16$ po 200mm $\Rightarrow A_s = 10,05\cdot10^{-4}~{\rm m^2}$

d je účinná výška průřezu [m], h_f je výška patky [m], $A_{s,d}$ je nutná (potřebná) plocha výztuže [m²], A_s je navržená plocha výztuže [m²].

Posouzení plochy výztuže:

$$A_s \ge A_{s,\min} \tag{A.28}$$

$$A_{s,\min} = 0,26 \cdot \frac{f_{ctm}}{f_{yk}} b \, d = 0,26 \cdot \frac{2,6}{500} \cdot 2,4 \cdot 0,736 = 23,88 \cdot 10^{-4} \,\mathrm{m}^2(\mathrm{A.29})$$

$$A_{s,\min,bm} = 0,26 \cdot \frac{f_{ctm}}{f_{yk}} b \, d = 0,26 \cdot \frac{2,6}{500} \cdot 1,0 \cdot 0,736 = \tag{A.30}$$

$$= 9,95 \cdot 10^{-4} \,\mathrm{m}^2/\mathrm{m} \tag{A.31}$$

$$A_s \le A_{s,\max} \tag{A.32}$$

$$A_{s,\max} = 0,04 \cdot 2, 4 \cdot 0,736 = 0,071 \,\mathrm{m}^2 \le \mathrm{A_s}$$
 (A.33)

$$A_{s,\max,bm} = 0,04 \cdot 1,0 \cdot 0,736 = 0,029 \,\mathrm{m}^2/\mathrm{m} \le A_{s,bm}$$
 (A.34)

Plocha výztuže vyhoví na minimální a maximální plochu výztuže dle rovnic (A.29) - (A.34).

Jelikož se nejedná o desku, ale základovou patku budeme dále pracovat s plochou výztuže celé patky $A_s.$

Posouzení účinné výšky průřezu x:

$$x = \frac{A_s f_{yd}}{b\lambda\eta f_{cd}} = \frac{24,13\cdot 10^{-4}\cdot 434,8}{2,4\cdot 0,8\cdot 1,0\cdot 16,67} = 0,0338\,\mathrm{m} \tag{A.35}$$

$$x \le x_{lim} = \frac{\varepsilon_{cu3}}{\varepsilon_{cu3} + \varepsilon_{yd}} \cdot d = \frac{3, 5 \cdot 10^{-3}}{(3, 5+2, 174) \cdot 10^{-3}} \cdot 0,736 = 0,454 \,\mathrm{m}$$
(A.36)

Obrázek A.6: Rozdělení průřezu na tlačenou a taženou část.

Posouzení protažení výztuže:

$$\varepsilon_s \ge \varepsilon_{yd}$$
 (A.37)

$$\varepsilon_s = (d-x) \cdot \frac{\varepsilon_{cu3}}{x} = (0,736-0,0338) \cdot \frac{3,5 \cdot 10^{-3}}{0,0338} = 0,0727$$
 (A.38)

$$\varepsilon_{yd} = 0,002174 \tag{A.39}$$

Posouzení ohybového momentu:

$$M_{rd} = A_s f_{yd} \left(d - \frac{\lambda x}{2} \right) = 24,13 \cdot 10^{-4} \cdot 434, 8 \left(0,736 - \frac{0,8 \cdot 0,0338}{2} \right) = 758,0 \,\mathrm{kNm}$$
(A.40)

$$\frac{M_{ed}}{M_{rd}} \leq 1 \tag{A.41}$$

$$\frac{608,21}{758,0} = 0,802 \tag{A.42}$$

Železobetonová patka je využita na 80,2 %.

x je vzdálenost neutrální osy od nejvíce tlačeného okraje [m], λ je součinitel definující účinnou výšku tlačené oblasti [-], λ =0,8 pro $f_{ck} \leq 50$ MPa, η je součinitel definující účinnou pevnost [-], $\eta = 1,0$ pro $f_{ck} \leq 50$ MPa.

Posouzení únosnosti základové půdy dle normy ČSN 73 1001

Dle nerovnice (A.7) musí být kontaktní napětí σ_{zi} mezi zeminou a patkou menší než únosnost zeminy R_d .

Únosnost zeminy R_d se vypočte dle normy ČSN 73 1001 z rovnice (A.43).

$$R_d = c_d N_c s_c d_c i_c + \gamma_1 dN_d s_d d_d i_d + \gamma_2 \frac{b}{2} N_b s_b d_b i_b$$
(A.43)

Pro vzorový příklad budeme uvažovat následující zeminu:

S2, $\nu = 0, 28$, $E_{def} = 40 \text{ MPa}$, $\varphi_{ef} = 36^{\circ}$, $c_{ef} = 0 \text{ kPa}$, $\gamma_{1,2} = 18, 5 \text{ kNm}^{-3}$, dosah předpokládaných smykových ploch budeme zjednodušeně uvažovat jako $d_s = 2b = 4, 8 \text{ m}$, předpokládaná hloubka založení d = 1 m.

$$\varphi_d = \frac{\varphi_{ef}}{\gamma_{m\varphi}} = \frac{36}{1,125} = 32,0^{\,o}$$
 (A.44)

$$\gamma_{m\varphi} = \frac{\varphi_{ef}}{(\varphi_{ef} - 4)} = \frac{36}{36 - 4} = 1,125; \, \varphi_{ef} > 12^{\,o} \tag{A.45}$$

$$N_c = (N_d - 1) \cot \varphi_d = (23, 17 - 1) \cot 32^\circ = 35, 48$$
(A.46)

$$N_d = \tan^2\left(45 + \frac{\varphi_d}{2}\right) \cdot e^{\pi \tan \varphi_d} = \tan^2\left(45 + \frac{32}{2}\right) \cdot e^{\pi \tan 32^\circ} = 23,17 \,(A.47)$$

$$N_b = 1, 5(N_d - 1) \tan \varphi_d = 1, 5(23, 17 - 1) \tan 32^\circ = 20,78$$
 (A.48)

Součinitelé tvaru základu $s_{c,d,b}$:

$$s_c = 1 + 0, 2 \cdot \frac{b_{eff}}{l} = 1 + 0, 2 \cdot \frac{2, 4 - 2 \cdot 0, 036}{2, 4} = 1, 194$$
 (A.49)

$$s_d = 1 + \frac{b_{eff}}{l} \cdot \sin \varphi_d = 1 + \frac{2, 4 - 2 \cdot 0,036}{2, 4} \cdot \sin 32^o = 1,51$$
 (A.50)

$$s_b = 1 + 0, 3 \cdot \frac{b_{eff}}{l} = 1 + 0, 3 \cdot \frac{2, 4 - 2 \cdot 0, 036}{2, 4} = 1,291$$
 (A.51)

Součinitelé hloubky založení $d_{c,d,b}$:

$$d_c = 1 + 0, 1\sqrt{\frac{d}{b_{eff}}} = 1 + 0, 1\sqrt{\frac{1}{2, 4 - 2 \cdot 0, 036}} = 1,065$$
(A.52)

$$d_d = 1 + 0, 1 \sqrt{\frac{d}{b_{eff}}} \sin 2\varphi_d \tag{A.53}$$

$$d_d = 1 + 0, 1\sqrt{\frac{1}{2, 4 - 2 \cdot 0, 036} \sin 2 \cdot 32^{\circ}} = 1,062$$
 (A.54)

$$d_b = 1,0 \tag{A.55}$$

Součinitelé šikmosti zatížení $i_{c,d,b}$:

$$i_{c,d,b} = (1 - \tan \delta)^2 = (1 - 0, 016)^2 = 0,97$$
 (A.56)

$$\tan \delta = \frac{H_{ed}}{N_{ed}} = \frac{40}{2500} = 0,016 \tag{A.57}$$

Únosnost zeminy R_d dle rovnice (A.43):

$$R_d = 0 \cdot 35, 48 \cdot 1, 194 \cdot 1, 065 \cdot 0, 97 + \tag{A.58}$$

+
$$18, 5 \cdot 1, 0 \cdot 23, 17 \cdot 1, 51 \cdot 1, 062 \cdot 0, 97 +$$
 (A.59)

+
$$18, 5 \cdot \frac{2, 4 - 2 \cdot 0, 036}{2} \cdot 20, 78 \cdot 1, 291 \cdot 1, 0 \cdot 0, 97$$
 (A.60)

$$= 1227, 12 \,\mathrm{kPa}$$
 (A.61)

Kontaktní napětí σ_{zi}

Kontaktní napětí přepočítáme z hodnoty dle EC2 na hodnotu odpovídající ČSN za předpokladu, že výpočtové hodnoty dle EC vychází cca o 16 %větší.

$$M_{x,CSN,ed} = \frac{M_{x,EC,ed}}{1,16} = \frac{90}{1,16} = 77,59 \,\text{kNm}, N_{CSN,ed} = \frac{N_{EC,ed}}{1,16} = \frac{2500}{1,16} = 2155,17 \,\text{kNm}$$

$$e_x = \frac{M_{x,ed}}{N_{ed}} = \frac{77,59}{2155,17} = 0,036 \,\mathrm{m}$$
 (A.62)

$$e_x \le \frac{b_f}{3} = \frac{2,4}{3} = 0,8 \,\mathrm{m} \quad \Rightarrow \quad \mathrm{VYHOVUJE}$$
(A.63)

$$\sigma_{zi} = \frac{N_{ed}}{(l_f(b_f - 2e))} = \frac{2155, 17}{2, 4(2, 4 - 2 \cdot 0, 036)} = 385, 73 \,\text{kPa} \tag{A.64}$$

Posouzení únosnosti zeminy dle rovnice (A.7):

$$\sigma_{zi} \leq R_d \tag{A.65}$$

$$385, 73 \,\mathrm{kPa} \leq 1227, 12 \,\mathrm{kPa}$$
 (A.66)

 \Rightarrow VYHOVUJE na mezní únosnost zeminy dle ČSN 73 1001.

Příloha B - Posouzení patky na protlačení a propíchnutí

Posouzení železobetonové patky na protlačení

Zadání vzorového příkladu je shodné s přílohou A:

Půdorysné rozměry patky: $b_f \ge l_f = 2,4 \ge 2,4$ m

Půdorysné rozměry sloupu: $c_1 \ge c_2 = 0.5 \ge 0.5 \le 0.5$ m, c = $c_1 = c_2$

Beton: C 25/30

Výztuž: B 500

Síla a moment na kontaktu sloupu se zeminou: $V_{ed} = 2250 \text{ kN}, M_{ed}^* = 58 \text{ kNm}, H_{ed} = 40 \text{ kN}, z_d$ (vlastní tíha patky, násyp, podkladní vrstvy podlahy, vlastní tíha podlahy, proměnné užitné zatížení na podlaze) = 250 kN Hodnoty vypočtené v příloze A: plocha výztuže $A_s = 24, 13 \cdot 10^{-4} \text{ m}^2$, výška patky $h_f = 800 \text{ mm}, \text{ vyložení patky } a = 950 \text{ mm}.$ Účinné výšky d_x a d_y byly odvozeny na $d_x = 736 \text{ mm}$ a $d_y = 676 + 16 = 752 \text{ mm}.$

Výpočet:

Výpočet bude proveden pro zvolenou vzdálenost od líce sloupu $\frac{a}{4}$. Pro plné posouzení by bylo nutné ověřit více kontrolovaných průřezů, postup by byl analogický s ukázkovým.

$$x = \frac{a}{4} = \frac{950}{4} = 237, 5 \,\mathrm{mm} \Rightarrow 240 \,\mathrm{mm}$$
 (B.1)

Účinná výška d_{eff} :

$$d_{eff} = d = \frac{d_x + d_y}{2} = \frac{736 + 752}{2} = 744 \,\mathrm{mm}$$
 (B.2)

Obrázek B.7: Schéma kritického průřezu.

Obrázek B.8: Schéma kritického obvodu.

$$A_{cr} = c_1 c_2 + 2c_1 x + 2c_2 x + \pi x^2 = 0, 5 \cdot 0, 5 + 2 \cdot 0, 5 \cdot 0, 24 + 2 \cdot 0, 5 \cdot 0, 24 + \pi \cdot 0, 24^2 = 0, 91 \text{ m}^2$$
(B.3)

$$\mu_{cr} = 2\pi x + 2(c_1 + c_2) = 2 \cdot \pi \cdot 0, 24 + 2 \cdot (0, 5 + 0, 5) = 3,51 \,\mathrm{m} \tag{B.4}$$

Výpočet návrhového smykového napětí:

$$\Delta V_{ed} = \frac{V_{ed}}{b_f l_f} A_{cr} = \sigma_{gd} A_{cr} = \frac{2250}{2, 4 \cdot 2, 4} \cdot 0,91 = 355,47 \,\mathrm{kN} \tag{B.5}$$

$$\sigma_{gd} = \frac{V_{ed}}{b_f l_f} \tag{B.6}$$

$$V_{ed,red} = V_{ed} - \Delta V_{ed} = 2250 - 355, 47 = 1894, 53 \,\mathrm{kN} \tag{B.7}$$

$$v_{ed} = \beta \cdot \frac{V_{ed,red}}{\mu_{cr}d} = 1,05 \cdot \frac{1894,53}{3,51 \cdot 0,744} = 761,74 \,\mathrm{kPa}$$
 (B.8)

$$\beta = 1 + \bar{k} \cdot \frac{M_{ed}^* \cdot \mu_{cr}}{V_{ed,red} \cdot W_i} = 1 + 0, 6 \cdot \frac{58 \cdot 3, 51}{1894, 53 \cdot 1, 22} = 1,05$$
(B.9)

 \bar{k} je součinitel závisející na poměru mezi rozměry sloupu c_1 a c_2 , viz. tabulka B.2.

$\frac{c_1}{c_2}$	$\leq 0,5$	$1,\!0$	2,0	$\geq 3,0$
\bar{k}	0,45	$0,\!60$	0,70	0,80

Tabulka B.2: Hodnoty \bar{k} pro obdélníkové zatěžované plochy.

$$W_{i} = \frac{c_{1}^{2}}{2} + c_{1}c_{2} + 2c_{2}a + 4x^{2} + \pi c_{1}x = \frac{0, 5^{2}}{2} + 0, 5 \cdot 0, 5 + 2 \cdot 0, 5 \cdot 0, 24 + 4 \cdot 0, 24^{2} + \pi \cdot 0, 5 \cdot 0, 24 = 1, 22 \text{ m}^{2}$$
(B.10)

a je délka vyložení patky [m], x je vzdálenost kontrolovaného obvodu od sloupu [m], β je součinitel daný vztahem (B.9)[-], $A_{cr,i}$ je kritická plocha průřezu dle rovnice (B.3) vymezená kritickým obvodem μ_{cr} [m²] dle obr.B.8, $\mu_{cr,i}$ je kritický obvod posuzovaného průřezu [m] dle rovnice (B.4) a obr. B.8, d je průměrná účinná výška průřezu [m], σ_{gd} je napětí v podzákladí [kPa], Med^* je návrhová hodnota ohybového momentu na kontaktu se sloupem [kNm], $V_{ed,red}$ je redukovaná hodnota návrhové normálové síly, dle vztahu (B.7) [kN], W_i [m²] je modul, který odpovídá rozdělení smyku, je funkcí základního kontrolovaného obvodu $\mu_{cr,i}$ [-].

Výpočet výpočtového napětí :

$$v_{rd} = C_{rd,c}k\sqrt[3]{100\rho f_{ck}} \cdot \frac{2d}{x} = 0,12 \cdot 1,52\sqrt[3]{100 \cdot 1,35 \cdot 10^{-3} \cdot 25} \cdot \frac{2 \cdot 0,744}{0,24} = 1,696 \text{ MPa} = 1696 \text{ kPa}$$
(B.11)

$$C_{rd,c} = \frac{0,18}{\gamma_c} = \frac{0,18}{1,5} = 0,12$$
 (B.12)

$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{744}} = 1,52 \quad d \text{ [mm]}$$
 (B.13)

$$\rho = \frac{A_s}{(l_f d)} = \frac{24, 13 \cdot 10^{-4}}{(2, 4 \cdot 0, 744)} = 1,35 \cdot 10^{-3}$$
(B.14)

 $C_{rd,c}$ a k jsou součinitelé dle normy ČSN EN 1992-1-1 dle vztahů (B.12) a (B.13) [-], ρ je stupeň vyztužení dle (B.14) [-], f_{ck} je charakteristická válcová pevnost betonu v tlaku [MPa].

Posouzení na protlačení:

$$v_{rd} \geq v_{ed}$$
 (B.15)

$$1696 \, kPa \geq 761, 64 \, kPa \Rightarrow \text{VYHOVUJE}$$
 (B.16)

$$v_{min} \geq v_{ed}$$
 (B.17)

$$2033, 6 kPa \geq 761, 64 kPa \Rightarrow VYHOVUJE$$
(B.18)

Posouzení na minimální napětí:

$$v_{\min} = 0,035k^{\frac{3}{2}}f_{ck}^{\frac{1}{2}} = 0,035 \cdot 1,52^{\frac{3}{2}} \cdot 25^{\frac{1}{2}} = 0,328 \text{ MPa}$$
 (B.19)

$$v_{rd} \ge v_{\min} \frac{2d}{x} \Rightarrow \text{NEVYHOVUJE}$$
 (B.20)

$$1626 \, kPa \geq 0,328 \cdot \frac{2 \cdot 0,744}{0,24} \cdot 1000 = 2033,6 \, kPa \tag{B.21}$$

Do posouzení na protalčení použijeme hodnotu v_{min} . Není nutno navrhnout smykovou výztuž na protlačení.

Posouzení na propíchnutí patky sloupem

Výpočet návrhového napětí na propíchnutí sloupem:

$$v_{ed,0} = \beta_0 \cdot \frac{V_{ed,max}}{\mu_{cr,0}d} = 1,13 \cdot \frac{2152,34}{2 \cdot 0,744} = 1634,5 \,\mathrm{kPa}$$
 (B.22)

$$\beta_0 = 1 + k \cdot \frac{M_{ed}}{V_{ed,max}} \frac{\mu_0}{W_0} = 1 + 0, 6 \cdot \frac{90}{2152,34} \cdot \frac{2}{0,375} = 1,13$$
(B.23)

 $\mu_0 = 2c_1 + 2c_2 = 4 \cdot 0, 5 = 2 \,\mathrm{m} \tag{B.24}$

$$W_0 = \frac{c_1^2}{2} + c_1 c_2 = \frac{0, 5^2}{2} + 0, 5 \cdot 0, 5 = 0,375 \,\mathrm{m}^2 \tag{B.25}$$

$$V_{ed,max} = V_{ed} - \sigma_{gd}c_1c_2 = 2250 - 390, 625 \cdot 0, 5 \cdot 0, 5 = 2152, 34 \,\mathrm{kN} \tag{B.26}$$

$$\sigma_{gd} = \frac{V_{ed}}{l_f b_f} = \frac{2250}{2, 4 \cdot 2, 4} = 390,625 \,\text{kPa} \tag{B.27}$$

Výpočet výpočtového napětí na propíchnutí sloupem:

$$v_{rd,max} = 0, 5\nu f_{cd} = 0, 5 \cdot 0, 54 \cdot 16, 67 = 4, 5 \text{ MPa} = 4500 \text{ kPa}$$
 (B.28)

$$\nu = 0, 6\left(1 - \frac{f_{ck}}{250}\right) = 0, 6 \cdot \left(1 - \frac{25}{250}\right) = 0, 54$$
(B.29)

Posouzení na propíchnutí:

$$v_{ed,0} \leq v_{rd,max}$$
 (B.30)

$$1634, 5 \,\mathrm{kPa} \leq 4500 \,\mathrm{kPa}$$
 (B.31)

\Rightarrow Patka vyhoví na propíchnutí sloupem.

Veškeré symboly mají totožný význam jako u posouzení na protlačení, index 0 označuje vztažení k obvodu sloupu, tj. nultý kritický obvod.

Příloha C - Posouzení kotevních délek výztuže

Zadání vzorového příkladu je shodné s přílohami A a B:

Půdorysné rozměry patky: $b_f \ge l_f = 2,4 \ge 2,4$ m

Půdorysné rozměry sloupu: $c_1 \ge c_2 = 0.5 \ge 0.5 \le 0.5$ m, c = $c_1 = c_2$

Beton: C 25/30

Výztuž: B 500

Síla a moment na kontaktu sloupu se zeminou: $V_{ed} = 2250$ kN, $M_{ed}^* = 58$ kNm, $H_{ed} = 40$ kN, z_d (vlastní tíha patky, násyp, podkladní vrstvy podlahy, vlastní tíha podlahy, proměnné užitné zatížení na podlaze) = 250 kN

Hodnoty vypočtené v přílohách A a B: plocha výztuže $A_s = 24, 13 \cdot 10^{-4} \text{ m}^2$, výška patky $h_f = 800 \text{ mm}$, vyložení patky a = 950 mm. Účinné výšky d_x a d_y byly odvozeny na $d_x = 736 \text{ mm}$ a $d_y = 736 + 16 = 752 \text{ mm}$, $f_{ctd} = 1, 2 \text{ MPa} \sigma_{gd} = 404, 05 \text{ kPa}$.

Výpočet:

Výpočet bude proveden pro zvolenou vzdálenosti x od kraje patky $\frac{h}{2}$. Pro plné posouzení by bylo nutné ověřit více délek x např. $x = \frac{a}{4}, \frac{a}{2}, \frac{h}{2}, \frac{3a}{4}$, postup by byl analogický s ukázkovým.

$$x = \frac{h}{2} = \frac{800}{2} = 400 \,\mathrm{mm} \tag{C.1}$$

$$e = 0,15b = 0,15 \cdot 500 = 75 \,\mathrm{mm}$$
 (C.2)

$$R_{gd} = \sigma_{gd} l_f x = 404,05 \cdot 2,4 \cdot 0,4 = 387,89 \,\mathrm{kN} \tag{C.3}$$

$$z_e = a + e - \frac{x}{2} = 950 + 75 - \frac{400}{2} = 1225 \,\mathrm{mm}$$
 (C.4)

$$z_i = 0, 9d = 0, 9 \cdot 752 = 676, 8 \,\mathrm{mm} \tag{C.5}$$

Obrázek C.9: Schéma pro výpočet tahové síly ve výztuži.

Vyjádření síly ve výztuži F_s pomocí ohybových momentů vnitřních a vnějších sil dle obrázku C.9:

$$M_e = M_i \tag{C.6}$$

$$R_{gd} \cdot z_e = F_s \cdot z_i \tag{C.7}$$

$$\Rightarrow F_s = R_{gd} \cdot \frac{z_e}{z_i} = 387,89 \cdot \frac{1,225}{0,6768} = 702,08 \,\mathrm{kN} \tag{C.8}$$

$$\sigma_{sd} = \frac{F_s}{A_s} = \frac{702,08}{24,13\cdot 10^{-4}} = 290,96 \,\mathrm{MPa} \tag{C.9}$$

$$l_{bd} = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 l_{brqd} = 1 \cdot 1 \cdot 1 \cdot 1 \cdot 431, 05 = 431, 05 \,\mathrm{mm} \Rightarrow 440 \,\mathrm{mm} \qquad (C.10)$$

$$l_{brqd} = \frac{\phi}{4} \cdot \frac{\sigma_{sd}}{f_{bd}} = \frac{16}{4} \cdot \frac{290,96}{2,7} = 431,05 \,\mathrm{mm} \tag{C.11}$$

$$f_{bd} = 2,25\eta_1\eta_2 f_{ctd} = 2,25 \cdot 1 \cdot 1 \cdot 1, 2 = 2,7 \,\text{MPa}$$
(C.12)

 F_s je síla ve výztuži [kN], σ_{sd} je návrhové napětí ve výztuži [MPa], f_{bd} je mezní napětí v soudržnosti [MPa], f_{ctd} je návrhová hodnota pevnosti betonu v tahu [MPa], η_1 je součinitel závislý na kvalitě podmínek a poloze prutu během betonáže ($\eta_1 = 1, 0$ pro dobré podmínky soudržnosti, pro ostatní podmínky $\eta_1 = 0, 7$), η_2 je součinitel závislý na průměru prutu ($\phi \leq 32, 0 \text{ mm} \Rightarrow \eta_2 = 1, 0, \eta_2 = \frac{132-\phi}{100}$ pro $\phi > 32 \text{ mm}$). l_{brqd} je základní kotevní délka a vypočte se ze vztahu (C.11) [m], α_1 je součinitel vyjadřující vliv tvaru prutu za předpokladu odpovídající krycí vrstvy betonu, α_2 je součinitel vyjadřující vliv minimální krycí vrstvy betonu, α_3 je součinitel vyjadřující vliv ovinutí příčnou výztuží, α_4 je součinitel vyjadřující vliv jednoho nebo více příčně přivařených prutů v návrhové kotevní délce, α_5 je součinitel vyjadřující vliv tlaku kolmého na rovinu odštěpování betonu. Všechny součinitele $\alpha \in \langle 0, 7; 1 \rangle$, pro zjednodušení jsme uvažovali maximální hodnotu $\alpha = 1, 0$.

Posouzení minimální kotevní délky pro kotvení v tahu a v tlaku:

 $l_{b,min} > \max\{0, 3l_{brqd}; 10\phi; 100 \text{ mm}\} = \max\{0, 3.431, 05; 10.16, 100 \text{ mm}\} = 160, 0 \text{ mm}$ (C.13)

pro kotvení v tahu

 $l_{b,min} > \max\{0, 6l_{brqd}; 10\phi; 100 \,\mathrm{mm}\} = \max\{0, 6.431, 05; 10.16, 100 \,\mathrm{mm}\} = 258, 63 \,\mathrm{mm}$ (C.14)

pro kotvení v tlaku

Jestliže a > h pak musí být kotevní délka zakotvena ve vzdálenosti h od líce sloupu, na konci kotevní délky se vytvoří ohyb o délce 15ϕ .