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Introduction

Compositional data (compositions) are essentially characterized by their re-

lative nature. They represent vectors of stricly positive values describing parts
of some whole. Accordingly, the relevant information is contained in the ratios be-
tween the compositional parts. Due to speci�c sample space of compositional data
and their geometry, compositions require di�erent statistical processing than stan-

dard multivariate observations conveying absolute information (in terms of inter-

val scale). A suitable approach for their analysis is the logratio methodology

(Aitchison, 1986; Pawlowsky-Glahn et al., 2015). Its cornerstone lies in the con-

struction of logratio coordinates that enable to express compositions as real-
valued vectors, to which standard statistical methods can be applied. The choice
of interpretable coordinates leading to meaningful results is of particular impor-
tance.

The aim of this thesis is to present the compositional approach and innovative
methods within the logratio methodology suited to the analysis of biostatistical
data, i.e. data involving living systems. There are many types of biostatistical data

of compositional character. Here, two cases are considered: 1) molecular biology

data concerning metabolites, i.e. small molecules involved in metabolism and 2)

time-use movement behaviour data which re�ect how people spend their time
in terms of sleep, sedentary behaviour and physical activity of various intensities.

The �rst chapter of the thesis provides an overview of compositional data
analysis. It introduces compositional data, their properties, sample space and
geometry. Next, di�erent coordinate representations for compositions are discus-
sed with emphasis on particular isometric logratio coordinates - balances, pivot
coordinates and weighted pivot coordinates. Finally, fundamental ideas behind
several types of linear regression with explanatory variables including a composi-

tion (here termed as compositional linear regression) are presented.

In the second chapter, a novel method for robust compositional regression
is introduced that is able to deal not only with outlying observations comprising

whole observations (rowwise outliers) but also with outliers in individual cells

(cellwise outliers) (�tefelová et al., 2021a). The proposed algorithm is described

in detail, its use is demonstrated in application to metabolomic data and its
performance is further assessed by a simulation study.
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The third chapter presents a new weighting strategy for the construction
of weighted pivot coordinates that is particularly suitable for PLS-based marker

discovery in high-dimensional compositional biomolecular data (�tefelová et al.,

2021b). The bene�ts of the proposal are illustrated using real metabolomic data

as well as using simulated datasets.

The fourth chapter demonstrates the use of the compositional approach
in the context of time-use epidemiology. Robust techniques for compositional
descriptive statistics, visualization and linear regression are applied to analyse

wake-time movement behaviour data (�tefelová et al., 2018). Strong emphasis is

placed on a proper coordinate representation of time-use data considering a natu-
ral ordering of the given compositional parts. A new concept of pivoting balances
is developed that, in combination with an adapted formulation of compositional
PLS biplot, enables meaningful visualization of more complex time-use patterns

and their relationships with an outcome variable (�tefelová et al., 2021c).

This dissertation thesis is based on the following papers that were published
or submitted during my Ph.D. study:

• �tefelová N, Dygrýn J, Hron K, Gába A, Rubín L, Palarea-Albaladejo J

(2018) Robust compositional analysis of physical activity and sedentary

behavior data. International Journal of Environmetal Research and Public
Health 15(10):2248, DOI 10.3390/ijerph15102248

• �tefelová N, Alfons A, Palarea-Albaladejo J, Filzmoser P, Hron K (2021)

Robust regression with compositional covariates including cellwise outliers.

Advances in Data Analysis and Classi�cation, DOI 10.1007/s11634-021-
00436-9

• �tefelová N, Palarea-Albaladejo J, and Hron K (2021) Weighted pivot coor-

dinates for PLS-based marker discovery in high-throughput compositional
data. Under review

• �tefelová N, Palarea-Albaladejo J, Hron K, Gába A, Dygrýn J (2021) Com-

positional PLS biplot based on pivoting balances: a graphical tool to exa-
mine the association between 24-hour movement behaviours and health
outcomes. Under review
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1 Compositional data analysis

A vector x = (x1, . . . , xD)> is called a D-part composition when all its

elements are strictly positive real numbers that carry relative information (Ait-

chison, 1986; Pawlowsky-Glahn et al., 2015). Accordingly, the absolute values

of the parts are not important for the analysis and the relevant information
is captured in the ratios between them. The compositional parts, representing
quantitatively contributions to some whole, are co-dependent as within a gi-
ven representation the change in one part necessarily a�ects the relative values
of the remaining ones.

Compositional data are scale invariant which means that if the composition
is multiplied by a positive number, the ratios between its parts are not altered.
Consequently, the sample space of compositions is formed by equivalence classes

of proportional vectors (Pawlowsky-Glahn et al., 2015). Therefore, compositions

can be represented without loss of information as vectors with an arbitrary sum

of components (typically 1 or 100 in case of proportions or percentages, respecti-

vely). The operation of rescaling the initial vector so that the components add

up to a constant κ is called a closure with the formula

C(x) =

(
κ · x1∑D
d=1 xd

, · · · , κ · xD∑D
k=1 xd

)>
.

The resulting sample space of such constrained representation is a simplex de�ned
as

SD = {x = (x1, . . . , xD)> : x1 > 0, . . . , xD > 0;
D∑
d=1

xd = κ},

which is a (D − 1)-dimensional subset of the ordinary real space. Another pro-

perty of compositional data is permutation invariance meaning that reordering
of the compositional parts does not a�ect the information they contain. Lastly,
subcompositional coherence refers to the fact that if only a subset of compositi-

onal parts (i.e. a subcomposition) is available, the information conveyed by this

subcomposition should not be in contradiction with that coming from the full

(original) composition, and more speci�cally, the distance between two subcom-

positions is not greater than the distance between the two original compositions
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(we refer to subcompositional dominance) (Pawlowsky-Glahn et al., 2015; Fil-

zmoser et al., 2018).

Compositions obey the so-called Aitchison geometry on the simplex

(Pawlowsky-Glahn et al., 2015). Two basic operations within this geometry are

called perturbation and powering. These are analogous to addition and scalar

multiplication in the real space, respectively. For x,y ∈ SD and α ∈ R they are
de�ned as

x⊕ y = C(x1 · y1, . . . , xD · yD)> and α� x = C(xα1 , . . . , xαD)>.

The triplet
(
SD,⊕,�

)
forms a vector space. The Euclidean vector space structure

of the simplex is completed by the Aitchison inner product, norm and distance

de�ned as

〈x,y〉A =
1

2D

D∑
c=1

D∑
d=1

ln
xc
xd

ln
yc
yd
, ‖x‖A =

√
〈x,x〉A and dA(x,y) = ‖x	 y‖A,

where x	 y = x⊕ [(−1)� y].

When analysing compositional data, their speci�c nature should be taken
into account. The direct use of standard statistical methods relying on the Euc-
lidean geometry in real space would lead to misleading results and conclusions

(Filzmoser et al., 2018). One approach is to develop the counterparts to the stan-

dard methods within the Aitchison geometry on the simplex. For example, having

a (N,D)-matrix X = (xnd) representing a compositional dataset of N obser-

ved D-part compositions, the compositional mean, called center, is computed

as a (closed) column-wise geometric mean

x = C

( N∏
n=1

xn1

) 1
N

, . . . ,

(
N∏
n=1

xnD

) 1
N

> .
That is, it replaces the standard column-wise arithmetic mean by the one in line
with the Aitchison geometry: the sum is swapped with the product and the sca-
lar multiplicator with the power. Furthermore, dividing each row of the da-

taset by the center (or in other words, perturbing each row by the center
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powered by −1), yields centered compositional data with the new center shif-

ted to C(1, . . . , 1)> called barycenter (Pawlowsky-Glahn et al., 2015; Filzmoser

et al., 2018) and corresponding to the neutral element on the simplex.

1.1 Logratio coordinates

Another approach to the analysis of compositional data is the use of real-
valued logratio coordinates. Since the characterisation of the simplex as Euclidean

vector space allows to build an (orthonormal) basis of SD, x ∈ SD can be repre-

sented by coordinates with respect to such a basis. The key idea of the logratio me-
thodology is to map compositions from the simplex into real space via logratio co-

ordinates and then proceed with the statistical processing there (Filzmoser et al.,

2018). If necessary, results can be mapped back to the simplex. Using logratios,

instead of simply ratios as bearers of the elemental information, is advantageous
as they map the range of a ratio from the positive real space onto the entire
real space, symmetrise their values around zero and, moreover, inverse logratios

provide the same information up to the sign, i.e. ln(xc/xd) = − ln(xd/xc).

To obtain a generating system for building a basis of SD, we can take expo-

nentials of the canonical basis of RD, i.e. {ẽ1, . . . , ẽD}, where

ẽj = C

1, . . . , 1︸ ︷︷ ︸
j−1

, e, 1, . . . , 1︸ ︷︷ ︸
D−j

> , j = 1, . . . , D.

Then, D di�erent bases can be built from this generating system that are gi-

ven by its D − 1 compositions, e.g. {ẽ1, . . . , ẽD−1}. Further, the Gram-Schmidt

procedure (Egozcue et al., 2003) can be applied resulting into an orthonormal

basis {e1, . . . , eD−1}. Note that this will be just one of in�nitely many possible

orthonormal bases (Pawlowsky-Glahn et al., 2015).

Three basic coordinate systems are commonly used within the logratio me-

thodology - additive logratio coordinates (alr), centered logratio coe�cients (clr)

(Aitchison, 1986) and isometric logratio coordinates (ilr) (Egozcue et al., 2003)
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that are de�ned as follows

alr(x) =

(
ln
x1
xD

, . . . , ln
xD−1
xD

)>
, (1)

clr(x) =

ln
x1

D

√∏D
d=1 xd

, . . . , ln
xD

D

√∏D
d=1 xd

> , (2)

ilr(x) = (〈x, e1〉A, . . . , 〈x, eD−1〉A, )> = Ψ · ln(x), (3)

where the rows of the (D − 1, D)-matrix Ψ, called logcontrast coe�cients, are

given by clr(ej), j = 1, . . . , D − 1.

While alr are coordinates with respect to the basis of the simplex (but not

to an orthonormal basis) and clr coe�cients represent just coe�cients with re-

spect to the generating system (which leads to singular covariance matrix), ilr

are coordinates with respect to an orthonormal basis of the simplex (Pawlowsky-

Glahn et al., 2015). Note that in the alr coordinates de�ned in (1), xD plays

the role of the reference (ratioing) part, which corresponds to the given basis

{ẽ1, . . . , ẽD−1}. But actually D di�erent alr coordinate systems can be construc-

ted taking di�erent xd, d = 1, . . . , D as the reference part (thus corresponding

to the basis omitting ẽd from the generating system). On the other hand, in case

of ilr coordinates, there are in�nitely many options for their construction (de-

pending on the orthonormal basis chosen), thus e1, . . . , eD−1 and Ψ in (3) refer

to an arbitrarily chosen basis of the simplex and the associated matrix of logcon-
trast coe�cients, respectively.

The mapping alr : SD → RD−1 is an isomorphism (but not an isometry)

between SD and RD−1; clr : SD → A ⊂ RD, dim(A) = D− 1, is an isomorphism

as well as isometry between SD and the (D−1)-dimensional subspace of RD; and

ilr : SD → RD−1 is an isomorphism as well as isometry between SD and RD−1

(Pawlowsky-Glahn et al., 2015). Accordingly, whereas operations in the simplex

are translated into operations in the real vector space using any of the three

mappings, inner product (and consequently norm and distance) are preserved
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only with clr and ilr mappings. That is, for x,y ∈ SD and α, β ∈ R it holds that

alr(α� x⊕ β � y) = α · alr(x) + β · alr(y),

clr(α� x⊕ β � y) = α · clr(x) + β · clr(y),

ilr(α� x⊕ β � y) = α · ilr(x) + β · ilr(y),

but
〈x,y〉A = 〈clr(x), clr(y)〉 = 〈ilr(x), ilr(y)〉 6= 〈alr(x), alr(y)〉.

Furthermore, an inverse mapping can be applied to transfer the compositions
back to the simplex as

alr−1 (alr(x)) = C
(

exp (alr(x))> , 1
)>

= x, (4)

clr−1 (clr(x)) = C (exp (clr(x))) = x, (5)

ilr−1 (ilr(x)) = C
(
exp

(
ilr(x)> ·Ψ

))>
= x. (6)

Although alr coordinates and clr coe�cients are quite easily interpretable and
are used in speci�c contexts, they are not compatible with certain multivariate
statistical methods. The former are not eligible for techniques based on a met-
ric assumption and the latter for methods where a singular covariance matrix
represents an issue. The ilr coordinates avoid drawbacks of the former two re-
presentations and importantly, they are orthonormal coordinates. The fact, that
di�erent ilr coordinate systems are just orthogonal rotations of each other, is
a useful property in statistical analysis. For example, in regression analysis, it
enables the use of an arbitrary choice of ilr coordinates to obtain the required

(unique) output. Moreover, a�ne equivariant robust (regression) estimators pro-

vide results invariant to the choice of ilr coordinates (Filzmoser et al., 2018).

Going back to the compositional mean, it can be equivalently computed
within the logratio methodology by calculating column-wise arithmetic mean
of the compositional dataset expressed in any logratio coordinates followed

by the corresponding inverse mapping (and closure). If we want to reduce the in-

�uence of possible outliers in the dataset, we can compute robust center by ap-

plying robust Minimum Covariance Determinant (MCD) estimator of location,
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which is computed from the subset of observations of a chosen size whose sample

covariance matrix has the smallest determinant (Maronna et al., 2002; Filzmoser

et al., 2018). Because of the a�ne equivariance, the MCD estimator of location

applied on X in any ilr coordinates followed by the respective inverse mapping
gives the same robust center regardless the choice of coordinate system. Accor-
dingly, robustly centered compositional data can be obtained by dividing each row
of X by the robust center.

For all the reasons mentioned above, ilr coordinates are preferable in most
cases. Then, the crucial challenge is to construct interpretable coordinates tailored
to the scienti�c question at hand.

1.1.1 Balances

The procedure known as sequential binary partition (SBP) can be ap-

plied to construct customized ilr coordinates called (compositional) balances

(Egozcue and Pawlosky-Glahn, 2005). In the �rst step of the SBP process,

the entire collection of compositional parts is divided into two disjoint subsets,
with each subset summarised by the geometric mean of its components and go-
ing into the numerator and denominator, respectively, of a normalized logratio
constituting the �rst balance. In the next steps, these subsets are further split
into two mutually exclusive subgroups going into the numerator and denomina-
tor, respectively, of the subsequent balances. This process continues until only
one-part subsets remain and D − 1 balances are constructed.

The balance coordinates are represented by a real vector b = (b1, . . . , bD−1)
>

with

bj =

√
rjsj
rj + sj

ln

rj

√∏rj
i=1 x

+
ji

sj

√∏sj
i=1 x

−
ji

, j = 1, . . . , D − 1, (7)

where x+ji and x
−
ji
refers to the parts selected for the numerator and denominator,

respectively, in the jth balance while rj and sj stands for the respective number

of parts (Egozcue and Pawlosky-Glahn, 2005; Pawlowsky-Glahn et al., 2015).
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The associated matrix of logcontrast coe�cients Ψ has elements

ψjd =


+ 1
rj

√
rjsj
rj+sj

, if xd ∈ {x+ji , i = 1, . . . , rj},

− 1
sj

√
rjsj
rj+sj

, if xd ∈ {x−ji , i = 1, . . . , sj},
0 otherwise ,

j = 1, . . . , D − 1, d = 1, . . . , D.

Two exemplary SBP for a 5-part composition are illustrated in Table 1.

Table 1: Example of two possible SBP for 5-part composition which results
in (a) general balances and (b) special balances called pivot coordinates. Parts
chosen for the numerator and denominator of the jth balance are coded + and −,
respectively; 0 indicates that the part is not included in the respective balance.

j x1 x2 x3 x4 x5 rj sj

1 + − − − + 2 3

2 + 0 0 0 − 1 1

3 0 + − − 0 1 2

4 0 0 + − 0 1 1

(a)

j x1 x2 x3 x4 x5 rj sj

1 + − − − − 1 4

2 0 + − − − 1 3

3 0 0 + − − 1 2

4 0 0 0 + − 1 1

(b)

Balance coordinates are interpreted, as their name indicates, in terms of a ba-

lance (contrast) between two subsets of parts represented by their respective

geometric means (Egozcue and Pawlosky-Glahn, 2005; Pawlowsky-Glahn et al.,

2015). They can be constructed according to the scienti�c questions of interest

and based on domain-speci�c knowledge, e.g. to represent meaningful trade-o�s.

Sometimes we are interested in various balances which summarize infor-
mation about the whole composition in di�erent ways. In other words, we want
to analyse within one statistical model the �rst balances from L di�erent coor-
dinate systems. Then, we can use e�ectively the rotation between orthonormal

coordinate systems and construct desirable balances b(l) =
(
b
(l)
1 , . . . , b

(l)
D−1

)>
, l =

1, . . . , L (the superscript here refers to the balance coordinate system) while our

focus lies only on the �rst balance b(l)1 in each of the systems (�tefelová et al.,

2021c). This leads to the idea of pivot coordinates.
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1.1.2 Pivot coordinates

The procedure of extracting unique information from di�erent orthonormal
coordinate system is particularly applied with special balances called pivot co-

ordinates (Fi²erová and Hron, 2011). These are intended to highlight the role

of a single compositional part relative to all the others in one (the �rst) coor-

dinate. In SBP, one part is always set against the remaining ones as illustrated
in Table 1b.

Given a composition x, we can rearrange it so that the lth part is put
at the �rst place and denote that composition as

x(l) =
(
x
(l)
1 , . . . , x

(l)
D

)>
= (xl, x2, . . . , xl−1, xl+1, . . . , xD)>, l = 1, . . . , D.

Then, the corresponding pivot coordinates de�ne a real vector z(l) =(
z
(l)
1 , . . . , z

(l)
D−1

)>
, where

z
(l)
j =

√
D − j

D − j + 1
ln

x
(l)
j

D−j

√∏D
d=j+1 x

(l)
d

=
1√

(D − j + 1)(D − j)

[
ln

(
x
(l)
j

x
(l)
j+1

)
+ · · ·+ ln

(
x
(l)
j

x
(l)
D

)]
(8)

= u>j ln
(
x(l)
)
, j = 1, . . . , D − 1, l = 1, . . . , D,

with

uj =

√
D − j

D − j + 1

0, . . . , 0︸ ︷︷ ︸
j−1

, 1,− 1

D − j
, . . . ,− 1

D − j

>

representing the vectors of logcontrast coe�cients, i.e. the rows of matrix Ψ

associated with pivot coordinates (Filzmoser et al., 2018; Hron et al., 2017) .

Each �rst coordinate z(l)1 in the pivot coordinate system contains all the re-

lative information about the lth compositional part. Speci�cally, this �rst coor-
dinate is a scaled logratio of the part xl of interest to the geometric mean of all
the other D−1 parts, which is equivalent to the scaled sum of the D−1 pairwise

logratios including the part of interest in the numerator as shown in (8). Thus, it
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can be interpreted in terms of dominance of the l-th part with respect to an ave-

rage (geometric mean) of the other parts (Fi²erová and Hron, 2011; Filzmoser

et al., 2018). Furthermore, there is a notable relation to clr coordinates as the lth

clr coe�cient equals to
√

(D − 1)/D · z(l)1 , l = 1, . . . D. Eventually, pivot coor-

dinates can be expressed as standard logcontrasts u>j ln
(
x(l)
)
, with u>j 1 = 0,

where vectors uj are orthonormal, i.e. u>i uj = δij, i, j = 1, . . . , D − 1, with δij
being 1 if i = j and 0 otherwise.

1.1.3 Weighted pivot coordinates

In the representation of the �rst pivot coordinate as a scaled sum of the D−1

pairwise logratios of x(l)1 over the other parts, the logratios are treated equally.

However, the collection of logratios aggregated into that coordinate can include
information from completely di�erent processes. Therefore, a weighted counter-
part to the ordinary pivot coordinates was introduced, namely the weighted pivot

coordinates (Hron et al., 2017). These enable to weight the logratios aggregated

into the �rst coordinate according to their relevance for the purpose of the ana-
lysis.

Accordingly, by using γ
(l)
2 , . . . , γ

(l)
D to denote the weights, the �rst weigh-

ted pivot coordinate w(l)
1 is constructed by taking the weighted sum of pairwise

logratios with x(l)1 ,

γ
(l)
2 ln

(
x
(l)
1

x
(l)
2

)
+ . . .+ γ

(l)
D ln

(
x
(l)
1

x
(l)
D

)
, γ

(l)
2 , . . . , γ

(l)
D > 0,

D∑
d=2

γ
(l)
d = 1,

which, after rescaling to a standard logcontrast, leads to the coordinate

w
(l)
1 =

1√
1 +

∑D
d=2

(
γ
(l)
d

)2 ln
x
(l)
1∏D

d=2

(
x
(l)
d

)γ(l)d

=
(
v
(l)
1

)>
ln
(
x(l)
)
, l = 1, . . . , D

(9)

with

v
(l)
1 =

1√
1 +

∑D
d=2

(
γ
(l)
d

)2 (1,−γ(l)2 , . . . ,−γ
(l)
D

)>
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representing the �rst vector of logcontrast coe�cients, i.e the �rst row of matrix

Ψ(l) associated with the lth system of weighted pivot coordinates (Hron et al.,

2017).

The remaining elements to form a real vector of weighted pivot coordinates

w(l) =
(
w

(l)
1 , . . . , w

(l)
D−1

)>
are obtained sequentially by considering the orthonor-

mal property of the logcontrast coe�cients and the requirement for standard

logcontrasts. That is, w(l)
j =

(
v
(l)
j

)>
ln
(
x(l)
)
,
(
v
(l)
1

)>
1 = 0,

(
v
(l)
i

)>
v
(l)
j =

δij, i, j = 1, . . . , D − 1, l = 1, . . . , D. Note that unlike in the case of ordinary

pivot coordinates, weighted pivot coordinates, using the construction from Hron

et al. (2017), contain two coordinates which capture information about the part

of interest: w(l)
1 and w(l)

D−1. However, the former coordinate contains the relevant

information, whereas the latter corresponds to just a redundant remainder (Hron

et al., 2017).

1.2 Compositional linear regression

Regression analysis is one of the most widely used techniques in practical
data analysis and statistical modelling. The object of linear regression is to mo-

del linear relationship between response (dependent) variable and explanatory

(independent) variables, also called covariates or predictors (Härdle and Simar,

2012). The compositional data framework has three basic regression problems.

These concern the relation between the real-valued response and compositional
covariates, compositional response and real covariates, or between compositional
parts themselves. In all instances, the logratio methodology serves as useful tool
as, with compositions expressed in proper logratio coordinates, standard regres-

sion methods can be applied and interpretable results obtained (Filzmoser et al.,

2018). Because of their properties, the ilr coordinates are preferable, especially

balances or the (weighted) pivot coordinates.

Throughout this thesis, we mainly deal with the cases where explanatory
variables are formed by, or at least include, a composition. In that case, we

consider two data structures: column vector y of size N and (N,D + P )-matrix

A = (1, i1, . . . , iD−1, c1, . . . , cP ). The vector y describes values of the response va-
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riable on N objects. The �rst column of the so-called design matrix A is formed

by ones (for the intercept term parameter) and the remaining columns combine

values on the D−1 ilr coordinates and the P non-compositional covariates corre-
sponding to the same N observations. The resulting linear regression model has
the form

y = Aβ + ε, (10)

where β = (β0, β1, . . . βD−1+P )> is a vector of unknown K = D + P regression

coe�cients and ε = (ε1, . . . , εN)> is an error vector (Härdle and Simar, 2012;

Filzmoser et al., 2018).

Often, the focus lies on L di�erent �rst coordinates conveying information
about compositional parts in a desirable way. Then, L di�erent regression models
are examined and information associated with the �rst coordinate from each
system is extracted. That is, we have L models

y = A(l)β(l) + ε, l = 1, . . . L, (11)

where the design matrix A(l) =
(
1, i

(l)
1 , . . . , i

(l)
D−1, c1, . . . , cP

)
contains values

on the lth set of ilr coordinates and the regression coe�cient vector β(l) =(
β0, β

(l)
1 , . . . , β

(l)
D−1, βD, . . . βD−1+P

)>
has, due to the orthogonality of di�erent

ilr coordinate systems, the same intercept term β0 and the same coe�cients
corresponding to the non-compositional covariates in each model. Consequently,

the vector of estimates
(
β̂0, β̂

(1)
1 , . . . , β̂

(D)
1 , β̂D, . . . , β̂D−1+P

)>
is used for interpre-

tation purposes. Note that also model �t measures like the coe�cient of determi-
nation are invariant to the choice of orthonormal coordinate system. Commonly,
the L di�erent ilr systems represent D sets of pivot coordinates so that each time
the emphasis is put on the coordinate isolating the relative information about

one compositional part (Hron et al., 2012; Filzmoser et al., 2018).

Considering the case when the response is of compositional nature, it is
converted in practice to the case of real response by using any speci�c coordinate
from an ilr representation of the composition, e.g., the �rst pivot coordinate.

Then, y in (10) is given by i1, A = (1, c1, . . . , cP ) and β is of size K = P + 1.

Again, we can consider L di�erent models � now with di�erent �rst ilr coordinate
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as the response. Of course, then the regression coe�cients and model �t measures

di�er in each model (Müller et al., 2018; Filzmoser et al., 2018).

1.2.1 OLS compositional regression

The basic method for estimating coe�cients in a linear regression model is

the ordinary least squares (OLS) technique. It produces estimates that minimize

the sum of squared residuals, i.e. the sum of squared di�erences between observed

and predicted values of the response variable (Härdle and Simar, 2012).

Denoting the vector of residuals as ε̂ = (ε̂1, . . . , ε̂N), with ε̂n(β) implying

that the n-th residual, n = 1, . . . , N , depends on the parameter β, the least

square solution for (10) is given by

β̂ = arg min
β

N∑
n=1

(ε̂n(β))2 =
(
A>A

)−1
A>y.

Accordingly, the sum of squared residuals is computed as

SSR =
N∑
n=1

(
ε̂n

(
β̂
))2

=
(
y −Aβ̂

)> (
y −Aβ̂

)
.

Assuming independent identically distributed errors with εi ∼ N (0, σ2), we can

test whether the explanatory variables are signi�cant in explaining the response

variable. Estimating σ2 by

σ̂2 =
SSR

N −K − 1
,

we can compute the variance estimate of βk, k = 0, 1, . . . , K − 1 as

v̂ar(βk) = σ̂2
{(

A>A
)−1}

k+1,k+1
,

with {}k+1,k+1 denoting the (k+1)th element at the diagonal of the respective ma-

trix. Then, the explanatory variable corresponding to βk is considered signi�cant
in relation to the response if∣∣∣∣∣ β̂k√

v̂ar(βk)

∣∣∣∣∣ > t1−α/2;N−K−1,
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where t1−α/2;N−K−1 denotes (1−α/2)-quantile of Student's t-distribution withN−
K − 1 degrees of freedom (Härdle and Simar, 2012) . The usual choice of the sig-

ni�cance level is α = 0.05.

1.2.2 MM compositional regression

In practice, a common issue is that the observed dataset contains outliers,
i.e. individual values or entire multivariate observations that deviate considera-
bly from the main cloud of data points. Unfortunately, outliers can greatly in�u-
ence ordinary estimates of model parameters and may lead to unreliable results.
A number of regression methods robust against outlying observations have been

developed (Maronna et al., 2002). Among those, MM-regression (Yohai, 1987) is

a popular choice as it produces highly e�cient estimates (i.e. with small vari-

ance and thus high precision) with a high breakdown-point, concretely up to 0.5

(meaning that reliable results can be obtained even with 50% observations being

contaminated).

For (10), the MM-estimator is determined as the M-estimator

β̂ = arg min
β

N∑
n=1

ρ

(
ε̂n(β)

σ̂

)
, l = 1, . . . , D,

with σ̂ being the scale M-estimator (thus the double M in the title) de�ned

as solution of

1

N

N∑
n=1

ρ∗
(
ε̂n
σ̂

)
= δ,

where ρ(·) and ρ∗(·) are appropriate bounded loss functions and δ is a given

constant (Maronna et al., 2002). The optimal estimator is found via the IRWLS

(iteratively reweighted least squares) algorithm. Robust estimate with high bre-

akdown point but possibly ine�cient, e.g. S-estimator (Yohai, 1987), is taken

for the initial value β̂[0]. Until convergence is reached, the estimator is updated
in each iteration t with the weighted least square equation

β̂[t] =
(
A>Ω[t−1]A

)−1
A>Ω[t−1]y,
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where Ω[t−1] is a diagonal (N,N)-matrix with weights ω[t−1]
1 , . . . , ω

[t−1]
N as entries

given by

ω[t−1]
n =

ρ′
(
ε̂
[t−1]
n

σ̂[t−1]

)
ε̂
[t−1]
n

σ̂[t−1]

, n = 1, . . . , N,

with ρ′ denoting the derivative of ρ. Throughout this work we use Tukey's biwei-
ght loss function, with the initial estimator tuned for maximum breakdown point

and the �nal estimator tuned for 95% e�ciency.

1.2.3 PLS compositional regression and biplot

Partial least squares (PLS) regression enjoys wide popularity in areas such

as chemometrics (Höskuldson, 1988), especially in the case where the number

of explanatory variables is signi�cantly larger than the number of observations.

It aims to �t the relationship between response variable(s) and potentially many

and/or highly correlated explanatory variables by �nding a small number of latent

factors that synthesize the relationship in lower dimension. The underlying as-
sumption is that the observed data are generated by a process driven by this small
number of latent factors, also known as PLS components. The values on the PLS

components (scores) are linear combinations of the explanatory variables with

parameters (loadings) determined in such a way that they maximize the cova-

riance between the response and the explanatory variables. Once the model is
�tted in the latent space, the regression coe�cients associated with the origi-
nal explanatory variables can be subsequently worked out and their signi�cance
investigated. Even if PLS regression is particularly useful for the analysis of high-
dimensional data, it o�ers other features that make the method also appealing
for datasets with a relatively small to moderate number of explanatory variables.
This includes the capacity to handle multicollinearity and highly correlated ex-
planatory variables, the ability to separate main information from noise, the no
requirement of distributional assumptions for error terms and, last but not least,
the possibility of visualizing data in low dimensions via a PLS biplot.

Before �tting the PLS model, the data are usually mean-centered so that
the intercept is excluded from further considerations. Accordingly, the design

matrix omits the column of ones. That is, for (10) we have centered y, column-
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centered A = (i1, . . . , iD−1, c1, . . . , cP ) and β = (β1, . . . βD−1+P )> of size K =

D − 1 + P . PLS decomposes the design matrix as

A = FG> + EA,

where F (the score matrix) is of sizeN×Q, G (the loading matrix) is of sizeK×Q,
withQ being the number of PLS components (Varmuza and Filzmoser, 2009).Q is

usually selected based on cross-validated (CV) prediction performance assessed by

root mean squared error of prediction (RMSEP) and coe�cient of determination

R2. One concrete option to determine the optimal number of PLS components is

the randomization test approach (van der Voet, 1994). In brief, given a reference

model chosen according to the absolute minimum in the CV curve, the procedure
tests for the signi�cance of increments in the squared prediction errors in models
with fewer components. The selected model is the one with the smallest number
of components that is not signi�cantly worse than the reference model.

A number of procedures have been proposed to estimate the PLS model coef-
�cients so that the covariance between the scores and the response is maximized.
One of the most popular methods producing uncorrelated scores is the NIPALS al-

gorithm (Varmuza and Filzmoser, 2009), that can be summarized in the following

steps. For q = 1, . . . , Q:

1. o∗q = A>q y/
(
y>y

)
, with A1 = A

2. oq = o∗q/‖o∗q‖, with ‖ · ‖ denoting the Euclidean norm

3. fq = Aqoq

4. gq = A>q fq/
(
f>q fq

)
5. uq = y>fq/

(
f>q fq

)
6. Aq+1 = Aq − fqgq

Then, the regression coe�cients are estimated by

β̂ = O
(
F>O

)
u,
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where the matrix O is formed by columns oq, matrix F by columns fq and column

vector u by elements uq, q = 1, . . . , Q.

To determine the individual statistical signi�cance of the explanatory va-
riables, bootstrap-based signi�cance testing of the standardised PLS regression

coe�cients can be applied (Kalivodová et al., 2015). That is, denoting by µk

and υk respectively the mean and the standard deviation of β̂k, k = 1, . . . , K

over B bootstrap resamples, the estimated bootstrap standardised coe�cients

µk/υk are compared with the (α/2)- and (1−α/2)-quantile of a standard normal

distribution. This means that with the usual choice α = 0.05 as statistical sig-
ni�cance level, the kth explanatory variable is considered signi�cant in relation

to the response variable if |µk/υk| > 1.96, k = 1, . . . , K.

Using PLS regression allows to project the data onto a 2-dimensional PLS

biplot corresponding to the �rst two PLS components (Oyedele and Gardner-

Lubbe, 2015) . That is, the representation of the N observations (using points)

is given by the rows of the matrix F(2) = (f1, f2) and the representation

of the K explanatory variables (using arrows from the origin) is given by the rows

of the matrix G(2) = (g1,g2). The scores represent the projection of the ob-

servations onto the space de�ned by the PLS components, while the loadings
represent the e�ect of the explanatory variables on the directions of the pro-
jections. Therefore, a PLS biplot provides a single graphical representation
of the observations alongside the explanatory variables which, unlike ordinary
biplots based on PCA, accounts for the relationship with the response variable.
The observations in the direction of an arrow are characterised by higher values

on the corresponding explanatory variable (hence in case of a balance by domi-

nance of the parts in the numerator over those in the denominator of the logratio).

The sign of the relationship with the outcome variable determines the direction
of the arrow.

Often, instead of one model (10), L models (11) are examined with the fo-

cus on the �rst coordinate and the respective estimated bootstrap stan-

dardised coe�cient µ
(l)
1 /υ

(l)
1 , l = 1, . . . , L together with the estimates

µD/υD, . . . , µD−1+P/υD−1+P corresponding to the P non-compositional variables

(Kalivodová et al., 2015; �tefelová et al., 2021b,c). Note that these are invariant

to the speci�c choice of balances due to the orthogonality of the coordinate re-
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presentation and linearity of PLS regression (Helland, 2010). This property also

leads to the fact that the decomposition of the matrix A(l) yields the same score
matrix F in each of the L models. Therefore F(2) from any given model can be

used for the visualization of the observations in PLS biplot. Of course, di�erent

matrix of loadings G(l) is obtained each time. Then in a compositional PLS biplot,
we display only loadings corresponding to the �rst coordinate from each system,
together with the loadings associated with the non-compositional variables. That

is, denoting by G
(l)
(2) = (g

(l)
1 ,g

(l)
2 ) the matrix of loadings corresponding to the �rst

two PLS components in the lth coordinate system, the �rst row of G
(l)
(2) is used

for the representation of the �rst coordinate (e.g. b(l)1 , z
(l)
1 or w(l)

1 , l = 1, . . . , L) and

the last P rows from any given G
(l)
(2) are used to visualize the non-compositional

covariates. When interpreting the biplot, similarly to the case for PCA biplots

(Kyn£lová et al., 2016), we need to take into account that the loadings are gene-

rated from di�erent PLS models. Thus, interpretation of relationships between

arrows (loadings) corresponding to the di�erent �rst ilr coordinates could lead

to misleading conclusions.

Especially in case of high-dimensional data, it is convenient to automatize

the choice of ilr coordinates by considering L = D (weighted) pivot coordinate

systems so that the relative importance of each of the D compositional parts

is assessed (Kalivodová et al., 2015; �tefelová et al., 2021b). Further, with a

large number of explanatory variables it is reasonable to include adjustment for

multiple testing, e.g. using Bonferroni's adjustment (Kalivodová et al., 2015),

the estimated bootstrap standardised coe�cients are compared with the (αadj/2)-

and (1−αadj/2)-quantile of a standard normal distribution, where αadj = α/(D+

P ).
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2 Robust regression on compositional covariates

including cellwise outliers

Traditionally, robust statistical methods have been designed to deal
with rowwise outliers, i.e. entire observations being contaminated, assuming that
there is a majority of non-contaminated observations in the dataset. This includes
robust regression techniques, such as MM-estimation described in Section 1.2.2.
However, atypical observations often exhibit outlying values only in a single va-

riable or a small subset of variables (Rousseeuw and Van den Bossche, 2018).

When contamination occurs at the cell level of a data matrix, it is actually possi-
ble that the majority of rows contain some outlying cells. Thus, treating entire
observations as outliers might lead to an unacceptable loss of useful information

(Alqallaf et al., 2009). Recent literature has focused on this latter type of outliers,

referred to as cellwise outliers. Figure 1 illustrates the two types of outliers that
can be found in a data matrix.

Figure 1: Illustration of rowwise outliers (left) and cellwise outliers (right).

In the context of linear regression, a few methods have been introduced re-

cently that are robust against cellwise outliers such as shooting S-estimator (Ölle-

rer et al., 2016) and 3-step regression estimator (Leung et al., 2016). The former,

which combines a coordinate descent algorithm with simple robust regression, de-
als with deviating cells by weighing the components of an observation di�erently.
The latter, robust also against rowwise outliers, starts by �ltering outlying cells
and then apply rowwise robust estimator for incomplete data. However, both
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methods have some limitations when it comes to working with compositional
data. Neither of them is suitable for regression with ilr coordinate representation
of compositions as detailed in Section 1.2. The reason is that one outlying com-
positional part can a�ect several logratio coordinates so cellwise contamination
easily propagates throughout.

In this chapter, we present a robust estimation procedure for a linear re-
gression model with a real-valued response and compositional explanatory varia-
bles, possibly accompanied by additional real-valued covariates, that is designed

to handle both cellwise and rowwise outliers (�tefelová et al., 2021a). The me-

thod is developed for the regular case with more observations than explanatory
variables. It is similar in spirit to the 3-step regression estimator as it �lters
cellwise outliers and apply rowwise robust regression technique. But since a con-
struction of an appropriate coordinate system for compositions is not feasible
for incomplete data, our procedure makes use of an imputation step after the �lte-
ring. Imputation uncertainty is then re�ected on regression coe�cients estimates
via multiple imputation scheme.

Section 2.1 gives a detailed description of the proposed algorithm, Section 2.2
illustrates its use in a bio-environmental science application and its relative per-
formance in comparison to other regression methods is assessed by simulation
in Section 2.3. The results indicate that our procedure, which maximizes the use
of the information contained in the dataset, can cope with moderate levels
of cellwise and rowwise contamination, and yields better or comparable esti-
mates than its competitors: the aforementioned shooting S-estimator and 3-step
regression estimator, as well as the rowwise robust MM-estimator and the OLS
estimator. Moreover, our procedure allows to perform regression analysis in any
ilr coordinate system that provides suitable interpretability of the results, whereas
the predicted values do not depend on the particular coordinate representation.

2.1 Proposed algorithm

Here we address three challenges for regression analysis: (i) the inclusion

of compositional explanatory variables, possibly complemented by real-valued

explanatory variables; (ii) the presence of cellwise outliers; and (iii) the presence

of rowwise outliers. Each one creates its own set of particular issues for statistical
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modelling, and regardless of their occurrence in isolation or in combination, igno-
ring these issues can lead to unreliable and biased results. Therefore, the proposed
method consists of three stages:

1. Detect outlying cells in the dataset (that are not part of entire outlying

observations).

2. Replace them by sensible values via rowwise robust imputation.

3. Conduct rowwise robust compositional regression with multiple imputation
estimates.

These stages are discussed in more detail in the following subsections.

2.1.1 Detection of cellwise outliers

The detection of deviating cells is based on the bivariate �lter of Rousseeuw

and Van den Bossche (2018). The foremost assumption of this method is that

the data matrix is generated from a multivariate normal population, but some
cell values are contaminated at random and become outliers. The procedure is
brie�y sketched in the following:

1. First, all variables (columns) are robustly standardized, e.g., by subtracting

the median and dividing by the median absolute deviation (MAD).

2. Then deviating cells in single variables are marked, i.e., those containing

absolute values higher than the cut-o� value
√
χ2
1,τ , where χ

2
1,τ is the τ -

quantile of the χ2 distribution with one degree of freedom.

3. For each variable, the correlated variables are determined, i.e., those
with absolute robust correlation higher than 0.5. Predictions for every cell
are made based on each correlated variable that has a nonmarked cell
in the same observation (row). If multiple nonmarked cells are available, the

weighted mean of the corresponding predictions can be taken as the pre-
dicted value. A deshrinkage step is subsequently applied to obtain the �nal
prediction. If all other cells of the row are marked as well, the prediction is

set to 0 (which is the location estimate of the variable since all variables are
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standardized). A cell for which the observed value di�ers too much from its

prediction is marked.

4. The cells marked in step 2 or 3 are considered to be cellwise outliers.

5. Finally, rowwise outliers are identi�ed. The n-th row of the data matrix
is marked as an outlier if the absolute value of a robustly standardized

statistic Tn exceeds the cut-o� value
√
χ2
1,τ . The statistic Tn is de�ned

as the average (over m) of F (∆2
nm), where F stands for the cumulative

distribution function of the χ2 distribution with one degree of freedom,
and ∆nm denotes the robustly standardized di�erence between the value

in the cell with indices (n,m) and its prediction (from step 3).

Denote the dataset at hand as (N,D + P + 1)-matrix X =

(x1, . . . ,xD, c1, . . . , cP ,y) = (x1, . . . ,xD, r1, . . . , rP+1) whose columns combine

D-part compositional dataset X = (xnd) and values on P + 1 real-valued va-

riables (P non-compositional covariates and 1 response variable) corresponding

to N observations. For compositional data, we search for deviating cells through
pairwise logratios where the elemental information is contained. Since the inverse

logratios di�ers just on the sign, only D(D−1)/2 logratios have to be considered.

Clearly, if a form of contamination generates an outlying value in a compositional
part xnd, this will a�ect all pairwise logratios where xnd is contained. On the other

hand, data contamination that generates aberrant pairwise logratio ln(xnc/xnd)

might have been originated from two outlying compositional parts, namely xnc
and xnd. These considerations need to be taken into account when determining
cellwise outliers in compositional dataset.

Accordingly, we apply the bivariate �lter to the (N,D(D − 1)/2 + P + 1)-

matrix L, which contains the relevant pairwise logratios of the compositions
along with potential real-valued covariates and the response variable, i.e., L =

(ln(x1/x2), . . . , ln(xD−1/xD), r1, . . . , rP+1). The next task is to transfer the infor-

mation about the cellwise outliers in L to X . While this is identical for the real-
valued variables, we propose to mark a compositional part xnd in X as a cellwise

outlier (and subsequently set its value to missing to be imputed) if at least half

of the logratios containing xnd are identi�ed as outliers by the bivariate �lter.
After extensive simulation experiments, we found this condition strict enough
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to detect outlying compositional parts but not overly strict. As a matter of fact,
many outlying cells would not be detected if we required that all logratios inclu-
ding a particular part had to be marked as outliers. We set τ = 0.99 in the cut-

o� value
√
χ2
1,τ of the outlier �lter as recommended in Rousseeuw and Van den

Bossche (2018) since it gave favorable results in our simulations.

Note that the purpose of the initial �lter is to avoid that the subsequent
regression modelling is in�uenced by cellwise outliers. However, while cellwise
outlier �lters perform well in detecting individual outlying cells, they are not

as e�ective in detecting rowwise outliers (Leung et al., 2016; Rousseeuw and

Van den Bossche, 2018). Hence it is still crucial to protect against rowwise out-

liers in the subsequent stages of the procedure. Moreover, observations that have
a large number of outlying cells are likely to be rowwise outliers. In our view,
it is thus better not to impute those data cells and instead have the entire ob-
servation downweighted by a robust regression estimator in the following stages.
Hence, at this point we treat an observation as a rowwise outlier if step 5 of the
bivariate �lter identi�es the corresponding row in L as a rowwise outlier, or if

at least 75% cells of the corresponding row in X are marked as cellwise outliers.

The �nal index set O contains the indices (n,m) of all cellwise outliers that are

not part of rowwise outliers. Cells of X indicated by O are treated as missing
values to be imputed in the next stage.

2.1.2 Imputation of cellwise outliers

Since compositional data are projected onto RD−1 through logratios invol-
ving several parts, missing parts as derived from the cellwise outlier �lter can
easily result in an unmanageable amount of missing logratios. We therefore im-
pute the a�ected cells beforehand, so that subsequent compositional regression
based on logratio coordinates can be conducted as usual on the imputed data ma-
trix. For this purpose, we modify the iterative model-based imputation procedure

of Hron et al. (2010) for compositional data to allow for a mixture of composi-

tional and real-valued variables. This method uses a representation of the com-
positional data in pivot coordinates, and imputes the missing cells by estimates
of expected values conditional on the observed part of the data. Such conditional

expected values are modeled by linear regression models (with the assumption
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that the error terms have expected value equal to zero), which are �tted using

the rowwise robust MM-estimator (Yohai, 1987). As MM-regression allows to re-

duce the in�uence of rowwise outliers on the estimation of the imputation model,
the imputed values should re�ect the structure of the majority of the available
data.

The imputation of outlying cells starts by separately sorting compositio-
nal parts and real-valued variables in decreasing order according to the amount
of missing values. To simplify notation, we assume that this sorting does not
change the original position of any compositional part or real-valued variable.

Following Hron et al. (2010), the imputation algorithm is initialized with the

simultaneous k-nearest-neighbor (knn) method, which is based on the Aitchison

distance between neighbors for the compositional parts and on the Euclidean
distance between neighbors for the real-valued variables.

Each iteration of the imputation algorithm consists of at most D + P + 1

steps. The �rst steps involve the imputation of the compositional parts (up to D),

whereas the remaining steps involve the imputation of the real-valued variables

(up to P + 1). The procedure is summarized as follows:

1. For each compositional part xl that contains outlying cells, l = 1, . . . , D,

pivot coordinates Z(l) =
(
z
(l)
nj

)
are obtained (Section 1.1.2) to sequentially

�t regression models of the �rst pivot coordinate on the remaining D − 2

coordinates plus the P + 1 non-compositional variables as covariates, while
observations with no outlying cell in xl are used for model �tting. The esti-
mated regression coe�cients are obtained using MM estimation such that
they are robust against rowwise outliers. Furthermore, MM-regression also

protects against poorly initialized missing value imputation (Hron et al.,

2010). The coe�cient estimates are then used to compute predicted values

ẑ
(l)
n1, (n, l) ∈ O.

2. For (n, l) ∈ O, imputed compositional parts x̂n1, . . . , x̂nD are obtained

via the inverse mapping ilr−1
(
ẑ
(l)
n1, z

(l)
i2 , . . . , z

(l)
n,D−1

)
. Note that the ratios

between the non-outlying parts are not a�ected by this procedure.

3. Next, each real-valued variable that contains outlying cells is imputed
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in an analogous way by sequentially serving as response in MM-regression
on the remaining variables as predictors, including the compositional parts
through pivot coordinates. Note that it does not matter which particular
pivot coordinate system is used here. They all yield the same predictions
due to the fact that they are orthogonal rotations of each other.

This is repeated iteratively until the sum of the squared relative changes
in the imputed values are smaller than a threshold η. Following Hron et al.

(2010), η is set at 0.5. Only a few iterations were typically needed to reach

convergence in our simulations. The iterative procedure results in an imputed

dataset X̃ = (x̃1, . . . , x̃D, r̃1, . . . , r̃P+1) = (x̃1, . . . , x̃D, c̃1, . . . , c̃P , ỹ), whose co-

lumns combine D-part compositional imputed dataset X̃ = (x̃nd) and imputed

values on P non-compositional covariates and the response variable corresponding

to N observations. X̃ serves as input for the subsequent stage.

The performance of the imputations in the stages 1 and 3 above can often
be improved by applying some form of variable selection to �t the correspon-
ding regression models. To keep the computational burden low, we use a simple
initial variable screening technique: before starting the iterative imputation pro-
cedure, we identify the most correlated variables for each variable to be imputed.

We thereby compute robust correlations via bivariate winsorization (Khan et al.,

2007) based on pairwise complete observations. However, initial simulations sug-

gest that variable screening may not be necessary if the number of variables and

the amount of �ltered cells are both relatively small (e.g., D + P + 1 ≤ 10 and

less than 10% �ltered cells). Moreover, when the number of variables is small,

a smaller correlation threshold should be used to ensure that enough variables
survive the screening process. Our procedure therefore implements the following
default behavior as a compromise: if D+P +1 ≤ 10, only variables with absolute
correlations higher than 0.2 are used, otherwise the threshold is set to 0.5.

2.1.3 Robust compositional regression with multiple imputation esti-

mates

After imputing cellwise outliers, and possibly other missing values in the da-
taset, the actual regression modelling is conducted. However, it is well-known
that measures of variability like standard errors can be underestimated when
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the usual formulas are applied to imputed data (Little and Rubin, 2002). Con-

sequently, statistical signi�cance tests in relation to the regression coe�cients
tend to be anticonservative. The reason is that the uncertainty derived from im-
puting the �ltered cells is not taken into account. A well-established solution

to this problem is using multiple imputation (MI) (Rubin and Schenker, 1986).

The basic idea is that instead of a single imputed dataset, H di�erent imputed
datasets are actually analysed. It has been shown that by aggregating estima-
tes from all these datasets, better estimates of the standard errors are obtained,

as they re�ect the additional uncertainty from the imputation process (Little and

Rubin, 2002; Van Buuren, 2012; Cevallos Valdiviezo and Van Aelst, 2015). We

adopt this approach and, following Bodner (2009) and White et al. (2011), we

consider the number of imputed datasets H to be the rounded percentage of rows
in the data matrix a�ected by cellwise outliers.

Each of the H datasets is obtained from X̃ by adding random noise to the es-
timated values resulting from the imputation procedure. That is, rather than
imputing the �ltered cells with the conditional expected value, we impute them
by a random draw from the estimated conditional distribution. For compositio-

nal data, the noise is not added directly to the compositional part x̃nl, (n, l) ∈ O,
as this would be incoherent with the geometry of the simplex, but to the �rst pivot

coordinate z̃(l)n1 obtained from the composition
(
x̃
(l)
n1, . . . , x̃

(l)
nD

)
. The corresponding

values of the compositional parts are then obtained by the inverse mapping. More
speci�cally, consider the m-th step of the last iteration of the imputation pro-

cedure (Section 2.1.2), with m = 1, . . . , D + P + 1. Missing values in the m-th

variable are imputed by robust regression using all the other variables as pre-

dictors. Following Templ et al. (2011), random noise is added to the imputed

value by drawing H random values from N (0, σ̂2
m(1 + ιm/N)), where σ̂m is a ro-

bust residual scale estimate from the corresponding regression �t and ιm denotes
the number of values to be imputed in the m-th variable.

Afterwards, regression analysis is performed for each of the H imputed data-

sets with compositions expressed in proper ilr coordinates (Section 1.2). Since we

still need to protect against rowwise outliers after dealing with cellwise outliers,

we apply the robust and highly e�cient MM-estimator (Section 1.2.2). Note that

this estimator is designed to handle rowwise outliers only, and it could easily fail
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if applied directly to data containing cellwise outliers by skipping the previous
cellwise outlier detection and imputation stages. We denote the k-th regression
coe�cient estimate, k = 0, 1, . . . , D − 1 + P , from the h-th imputed dataset,

h = 1, . . . , H, as β̂{h}k and the corresponding estimated variance as φ̂{h}k . Following

Rubin (1987) and Barnard and Rubin (1999), a �nal point estimate and variance

for each regression coe�cient is then obtained as

β̂k =
1

H

H∑
h=1

β̂
{h}
k and φ̂k = ζ̂k +

H + 1

H
ξ̂k,

respectively, where ζ̂k = 1
H

∑H
h=1 φ̂

{h}
k is the average within-imputation variance

and ξ̂k = 1
H−1

∑H
h=1

(
β̂
{h}
k − β̂k

)2
is the between-imputation variance.

The entire procedure is summarized in the following pseudocode.

Algorithm 1 Detection of cellwise outliers

Input: Data matrix X = (x1, . . . ,xD, r1, . . . , rP+1) of compositional parts

and real-valued variables
Output: Index set O of outlying cells and index set R of outlying rows

1: . Cellwise outlier detection on pairwise logratios and real-valued variables

2: L← (ln(x1/x2), . . . , ln(xD−1/xD), r1, . . . , rP+1)

3: Apply bivariate �lter of Rousseeuw and Van den Bossche (2018) to L
4: Store index set OL ← {(n, j) : cell in row n and column j of L is marked}

as cellwise outlier}

5: Store index set RL ← {n : row n of L is marked as rowwise outlier}
6: . Mark outlying cells in compositional parts

7: Initialize empty set O . set of indices (n,m) of cells in X to be marked

as cellwise outliers
8: Initialize empty set R . set of indices n of rows in X to be marked

as rowwise outliers
9: for d ∈ {1, . . . , D} do

10: Obtain index set Jd ← {j : column j of L contains a logratio involving xd}
11: for n ∈ {1, . . . , N} do
12: if 1

(D−1)
∑

j∈Jd IOL((n, j)) ≥ 0.5 then
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13: O ← O ∪ {(n, d)}
14: end if
15: end for
16: end for
17: . Adopt outlying cells in real-valued variables from bivariate �lter

18: for p ∈ {1, . . . , P + 1} do
19: for n ∈ {1, . . . , N} do
20: if (n,D(D − 1)/2 + p) ∈ OL then

21: O ← O ∪ {(n,D + p)}
22: end if
23: end for
24: end for
25: . Mark outlying rows and only mark outlying cells that are not part

of outlying rows

26: for n ∈ {1, . . . , N} do

27: if n ∈ RL or 1
D+P+1

∑D+P+1
m=1 IO((n,m)) >= 0.75 then

28: . Marked as rowwise outlier in L or at least 75% of cells marked
as cellwise outliers in X

29: R ← R∪ {n}
30: O ← O \ {(n,m) : m = 1, . . . , D + P + 1}
31: end if
32: end for
33: return Index sets O and R

Algorithm 2 Initial knn imputation for compositional data and real-valued
variables

Input: Data matrix X = (x1, . . . ,xD, r1, . . . , rP+1) of compositional parts

and real-valued variables with missing values (outlying cells)

Output: Imputed data matrix X̃
1: Apply simultaneous knn imputation with Aitchison distance to X =

(x1, . . . ,xD)

2: Store imputed data matrix as X̃ = (x̃1, . . . , x̃D)

3: Compute pivot coordinates z̃
(1)
1 , . . . , z̃

(1)
D−1 from x̃1, . . . , x̃D

4: Apply simultaneous knn imputation with Euclidean distance

to
(
r1, . . . , rP+1, z̃

(1)
1 , . . . , z̃

(1)
D−1

)
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5: Store imputed real-valued variables as R̃ = (r̃1, . . . , r̃P+1)

6: return Imputed data matrix X̃ = (X̃, R̃)

Algorithm 3 Model-based imputation for compositional data and real-valued
variables

Input: Data matrix X = (x1, . . . ,xD, r1, . . . , rP+1) of compositional parts

and real-valued variables with missing values (outlying cells)

Output: Imputed data matrix X̃ , residual scale estimates σ̂1, . . . , σ̂D+P+1

from imputation models
1: . Initializations
2: Rearrange �rst D columns of X by sorting compositional parts by decreasing

amount of missing values
3: Rearrange last P + 1 columns of X by sorting real-valued variables by decre-

asing amount of missing values

4: Obtain index sets κm ← {n : cell in row n and column m of X is missing},
m = 1, . . . , D + P + 1

5: Obtain index sets τm ← {n : cell in row n and column m of X is observed},
m = 1, . . . , D + P + 1

6: Initialize counter t← 0 and convergence criterion η ←∞

7: Initialize X [0] =
(
x
[0]
1 , . . . ,x

[0]
D , r

[0]
1 , . . . , r

[0]
P+1

)
by applying knn imputation

from Algorithm 2 to X
8: . Iterative model-based imputations
9: while η ≥ 0.5 do

10: t← t+ 1

11: X [t] =
(
x
[t]
1 , . . . ,x

[t]
D , r

[t]
1 , . . . , r

[t]
P+1

)
← X [t−1] =

(
x
[t−1]
1 , . . . ,x

[t−1]
D , r

[t−1]
1 , . . . , r

[t−1]
P+1

)
12: . Imputations in compositional data

13: for d ∈ {1, . . . , D} do

14: Compute pivot coordinates z
(d)
n1 , . . . , z

(d)
n,D−1 from x

[t]
n1, . . . , x

[t]
nD,

n = 1, . . . , N

15: Perform MM-regression of z
(d)
n1 on z

(d)
n2 , . . . , z

(d)
n,D−1, r

[t]
n1, . . . , r

[t]
n,P+1,

n ∈ τd
16: Compute prediction ẑ(d)n1 from z

(d)
n2 , . . . , z

(d)
n,D−1, r

[t]
n1, . . . , r

[t]
n,P+1, n ∈ κd

17: Replace x[t]n1, . . . , x
[t]
nD with the inverse mapping of ẑ(d)n1 , z

(d)
n2 , . . . , z

(d)
n,D−1,
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n ∈ κd
18: Compute robust residual scale estimate σ̂d from MM-regression �t
19: end for
20: . Imputations in real-valued variables

21: Compute pivot coordinates z
(1)
n1 , . . . , z

(1)
n,D−1 from x

[t]
n1, . . . , x

[t]
nD,

n = 1, . . . , N

22: for p ∈ {1, . . . , P + 1} do

23: Perform MM-regression of r
[t]
np on z

(1)
n1 , . . . , z

(1)
n,D−1, r

[t]
n1, . . . ,

r
[t]
n,p−1, r

[t]
n,p+1, r

[t]
n,P+1, n ∈ τp

24: Replace r
[t]
np with prediction r̂

[t]
np from z

(1)
n1 , . . . , z

(1)
n,D−1, r

[t]
n1, . . . ,

r
[t]
n,p−1, r

[t]
n,p+1, r

[t]
n,P+1, n ∈ κp

25: Compute robust residual scale estimate σ̂D+p from MM-regression �t

26: end for
27: . Update convergence criterion

28: η ←
∑N

n=1

[∑D
d=1

(
x
[t−1]
nd −x[t]nd

x
[t]
nd

)2

+
∑P+1

p=1

(
r
[t−1]
np −r[t]np

r
[t]
np

)2]
29: end while

30: Obtain X̃ by rearranging columns of X [t] from last iteration according
to original order of columns in X

31: Rearrange residual scale estimates σ̂1, . . . , σ̂D+P+1 accordingly

32: return Imputed data matrix X̃ and residual scale estimates σ̂1, . . . , σ̂D+P+1

Algorithm 4 Cellwise and rowwise robust compositional regression
with bivariate �lter and multiple imputation

Input: Compositional data X = (x1, . . . ,xD), real-valued covariates

C = (c1, . . . , cP ), real-valued response y

Output: Regression coe�cient estimates and corresponding variance
estimates

1: . Detect cellwise outliers
2: Obtain index set O of cellwise outliers by applying Algorithm 1 to X =

(x1, . . . ,xD, c1, . . . , cP ,y)

3: . Special case of no cellwise outliers

4: if O = ∅ then
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5: Compute ilr coordinates i1, . . . , iD−1 from x1, . . . ,xD

6: Perform MM-regression of y on i1, . . . , iD−1, c1, . . . , cP

7: return Coe�cient estimates and corresponding variance estimates
8: end if
9: . Filter and impute cellwise outliers

10: Replace cells of X with indices in O by missing values
11: Apply model-based imputation with Algorithm 3 to X =

(x1, . . . ,xD, c1, . . . , cP ,y)

12: Store imputed data matrix as X̃ = (x̃1, . . . , x̃D, c̃1, . . . , c̃P , ỹ)

13: Store residual scale estimates from imputation models as σ̂1, . . . , σ̂D+P+1,
respectively

14: . Rowwise robust compositional regression with multiple imputation

15: Nout ← N −
∑N

n=1

∏D+P+1
m=1 (1− IO((n,m))) . Number of observations

with outlying cells

16: H ← max(2, round(100 ·Nout/N)) . Number of imputations

17: Obtain ιm ←
∑N

n=1 IO((n,m)), m = 1, . . . , D + P + 1 . Number of outlying

cells per variable

18: for h ∈ {1, . . . , H} do
19: . Add random noise to imputations

20: Initialize X̃ {h} =
(
x̃
{h}
1 , . . . , x̃

{h}
D , c̃

{h}
1 , . . . , c̃

{h}
P , ỹ{h}

)
by X̃ =

(x̃1, . . . , x̃D, c̃1, . . . , c̃P , ỹ)

21: for (n,m) ∈ O do

22: Draw random noise term e ∼ N(0, σ̂2
m(1 + ιm/N))

23: if m ∈ {1, . . . , D} then . Compositional parts

24: Compute pivot coordinates z̃(m)
n1 , . . . , z̃

(m)
n,D−1 from x̃n1, . . . , x̃nD

25: z̃
(m)
n1 ← z̃

(m)
n1 + e

26: Replace x̃{h}n1 , . . . , x̃
{h}
nD with the inverse mapping of z̃(m)

n1 , . . . , z̃
(m)
n,D−1

27: else if m ∈ {D + 1, . . . , D + P} then . Real-valued variables

28: c̃
{h}
n,m−D ← c̃n,m−D + e

29: else . Response variable

30: ỹ
{h}
n ← ỹn + e

31: end if
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32: end for
33: . Rowwise robust compositional regression

34: Compute ilr coordinates i1, . . . , iD−1 from x̃
{h}
1 , . . . , x̃

{h}
D

35: Perform MM-regression of ỹ{h} on i1, . . . , iD−1, c̃
{h}
1 , . . . , c̃

{h}
P

36: Store coe�cient estimates as
(
β̂
{h}
0 , . . . , β̂

{h}
D−1+P

)>
37: Store variance estimates as

(
φ̂
{h}
0 , . . . , φ̂

{h}
D−1+P

)>
38: end for
39: . Aggregate results from multiple imputation

40: Compute �nal coe�cient estimates β̂k ← 1
H

∑H
h=1 β̂

{h}
k , k = 0, . . . , D− 1 + P

41: Compute average within-imputation variances ζ̂k ← 1
H

∑H
h=1 φ̂

{h}
k ,

k = 0, . . . , D − 1 + P

42: Compute between-imputation variances ξ̂k ← 1
H−1

∑H
h=1

(
β̂
{h}
k − β̂k

)2
,

k = 0, . . . , D − 1 + P

43: Compute variance estimates φ̂k ← ζ̂k + H+1
H
ξ̂k, k = 0, . . . , D − 1 + P

44: return Coe�cient estimates (β̂0, . . . , β̂D−1+P )> and corresponding variance

estimates (φ̂0, . . . , φ̂D−1+P )>

2.2 Application to low-dimensional metabolomic data

We apply the proposed compositional MM-regression with a bivariate

cellwise outlier �lter and multiple imputation (BF-MI algorithm) to investigate

the association between livestock methane emissions from individual animals and
their ruminal volatile fatty acid (VFA) composition, while accounting for the po-

tential e�ects of other animal and diet-related covariates. The dataset conta-
ins N = 239 observations originating from the study carried out in Palarea-

Albaladejo et al. (2017). The concentrations of 6-part VFA composition consis-

ting of acetate, propionate, butyrate, isobutyrate, isovalerate and valerate were
determined by high-performance liquid chromatography from rumen �uid sam-
ples taken using a stomach tube. The quality of the chromatography determines
the precision of the measurements, and outlying measurements may be related
to unstable baselines, noisy detectors, poor resolution of the components, or errors
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on the part of the operator in preparing the solution or performing the measure-

ment. Animal methane yield (CH4 in grams per kilogram of dry matter intake)

was measured using indirect respiration chambers. Further, animal diet metabo-

lizable energy (ME), dry matter intake (DMI), weight and type of diet (either

concentrate or mixed) were recorded .

All four positive-valued variables in the dataset (CH4, ME, DMI and wei-

ght) are log-transformed and thus mapped into real space to better accommodate

model assumptions. Moreover, the dataset is split by diet type before the biva-

riate outlier �lter (Section 2.1.1) is applied separately to each resulting subset

of data. Overall, 1.26% of rows are marked as rowwise outliers, while 1.96%

of cells in the remaining observations are marked as cellwise outliers. Figure 2
highlights these in each numerical variable, as well as the marked rows, in red

color. Note that both the imputation step (Section 2.1.2) and the regression step
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Figure 2: Cellwise and rowwise outliers detected by the bivariate �lter
in the VFA dataset. Outlying cells/rows are colored in red. The grey color scheme
re�ects the values of compositional parts and real-valued variables (the higher
the value, the darker the color).

(Section 2.1.3) of our procedure work with categorical variables in the usual way
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by including dummy variables. Here we consider dummy variable MD, which ta-
kes the value 1 for mixed diet and 0 for a concentrate diet. We skip the variable
screening in the imputation step, as the number of variables is rather small and

fewer than 2% of cells are �ltered. The �nal estimates are obtained for L = D = 6

models (11) with CH4 (in log-scale) set as a response and VFA composition ex-

pressed in pivot coordinates z(l)1 , . . . , z
(l)
5 , l = 1, ..., 6, as explanatory variables so

we can examine the relative role (dominance) of each of the six parts through

the regression coe�cient at the �rst pivot coordinate in each system. ME, DMI,

weight (all three in log-scale) and MD are put as additional covariates. For com-

parison, we also �t the regression model using OLS estimation (Section 1.2.1) and

MM estimation (Section 1.2.2). Note that in this application we are interested

in an interpretation of the results in terms of pivot coordinates, therefore it is

not meaningful to apply other methods such as the shooting S-estimator (Öllerer

et al., 2016) or 3-step regression (Leung et al., 2016).

Table 2 displays the relevant results extracted from the six models using
the three estimation procedures considered. Focusing on the VFA composition,
OLS estimation does not result in a statistically signi�cant association between

the dominance of ruminal acetate and methane yield (p-value = 0.127). The MM-

estimator (without the cellwise outlier �lter) provides only a weakly signi�cant

positive association between animal methane emission and the relative production

of ruminal acetate (p-value = 0.053). Moreover, a statistically signi�cant nega-

tive association is concluded in both cases between methane yield and the do-

minance of propionate (p-value < 0.001). The results from using our proposed

BF-MI method are comparable in terms of overall directions of the associati-
ons, but the statistical signi�cance of the acetate related term is notably higher

(p-value < 0.001), which further stresses the role of the contrast between acetate

and propionate as a driver of the association between the ruminal VFA com-
position and methane emission, which is in agreement with biological knowledge

(Wolin, 1960; Palarea-Albaladejo et al., 2017).
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Table 2: Regression coe�cient estimates, standard errors and p-values
for the VFA dataset: compositional OLS estimation, compositional MM esti-
mation without a cellwise outlier �lter, and proposed compositional MM esti-
mation with a bivariate cellwise outlier �lter and multiple imputation (BF-MI).

O
L
S

M
M

B
F
-M

I

C
ov
a
ri
a
te

C
o
e�
.

S
td
.
er
ro
r

p
-v
a
lu
e

C
o
e�
.

S
td
.
er
ro
r

p
-v
a
lu
e

C
o
e�
.

S
td
.
er
ro
r

p
-v
a
lu
e

z
(A

c
e
ta
te
)

1
0.
12

5
0.
08

2
0
.1
2
7

0
.2
03

0.
10

4
0
.0
53

0
.3
01

0.
08

4
<

0
.0
01

z
(P

ro
p
io
n
a
te
)

1
−
0.
2
47

0.
0
48

<
0.
00

1
−
0
.3
04

0.
06

7
<

0
.0
01
−
0
.3
85

0.
05

4
<

0
.0
01

z
(B

u
ty
ra
te
)

1
0.
09

3
0.
05

1
0
.0
7
2

0
.0
70

0.
05

4
0
.1
93

0
.0
25

0.
05

0
0
.6
17

z
(I
so
b
u
ty
ra
te
)

1
−
0.
0
15

0.
0
47

0
.7
44
−
0
.0
23

0.
05

2
0
.6
64
−
0
.0
14

0.
05

5
0
.7
94

z
(I
so
v
a
le
ra
te
)

1
0.
00

6
0.
03

2
0
.8
4
8

0
.0
05

0.
03

4
0
.8
90

0
.0
15

0.
03

4
0
.6
62

z
(V

a
le
ra
te
)

1
0.
03

8
0.
03

9
0
.3
2
2

0
.0
49

0.
03

7
0
.1
95

0
.0
59

0.
06

4
0
.3
50

ln
(M

E
)

0.
72

5
0.
48

4
0
.1
3
6

0
.9
99

0.
51

2
0
.0
52

0
.7
55

0.
48

1
0
.1
18

ln
(D

M
I)

−
0.
4
13

0.
0
64

<
0.
00

1
−
0
.4
08

0.
06

4
<

0
.0
01
−
0
.3
97

0.
07

2
<

0
.0
01

ln
(W

ei
g
h
t)

0.
62

7
0.
14

7
<

0.
0
01

0
.6
51

0.
16

5
<

0
.0
01

0
.6
89

0.
18

6
<

0
.0
01

D
M

0.
32

8
0.
04

0
<

0.
0
01

0
.3
08

0.
04

8
<

0
.0
01

0
.2
45

0.
04

8
<

0
.0
01

44



2.3 Simulation study

In order to assess the performance of our procedure in comparison to other

(robust) methods for compositional regression, we perform a simulation study.

The parameters for the simulation design are partly inspired by the VFA da-
taset from Section 2.2. As the main novelty of our procedure is the inclusion
of compositional covariates in the context of robust regression with cellwise and
rowwise outliers, we assume for simplicity that there are only compositional co-

variates involved. We set N ∈ {50, 100, 200} as the number of observations and
D ∈ {5, 10, 20} as the number of compositional parts. The simulated compositions

are generated through pivot coordinates. In order to obtain a realistic covariance
structure in the pivot coordinate system, we chose an initial covariance matrix

Σ0 =
(
0.5|i−j|/10

)
1≤i,j≤D−1, with entries being similar in magnitude to the ones

observed in the VFA case study. To investigate the e�ects of adding more varia-
bility to the data matrix, we consider the covariance matrix in pivot coordinates

Σ as a multiple of the initial covariance matrix, i.e., Σ = cΣ0 with c ∈ {1, 2, 3}.

We examine a scenario with both rowwise and cellwise outliers. Speci�cally,

we consider the case where outlying rows (entire observations) and outlying cells

(in the compositional parts and the response variable) both occur with proba-

bility θ ∈ {0, 0.02, 0.05, 0.1, 0.2}. We �rst generate entire outlying observations

(rows) and, subsequently, outlying cells only in non-outlying rows. We perform

1000 simulation runs for each con�guration. In each simulation run, the data are
generated as follows:

1. Pivot coordinates are sampled as zn = (zn1, . . . , zn,D−1) ∼ ND−1(0,Σ),

n = 1, . . . , N .

2. The values of the response variable are obtained in the pivot coordinate
system as

yn = β0 +β1zn1 + . . .+βD−1zn,D−1 +εn, εn ∼ N (0, 0.252), n = 1, . . . , N,

with regression parameters β0 = 0 and (β1, . . . , βD−1) = (1, 0, 1, 0, . . .).

The variance of the error terms εn is chosen to roughly mimic the signal-
to-noise ratio observed in the VFA data.
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3. The pivot coordinates zn are transformed according to (1.1) to obtain

the corresponding compositions xn = (xn1, . . . , xnD) = ilr−1(zn), n =

1, . . . , N .

4. Observations are randomly selected with probability θ to be turned
into rowwise outliers. We �rst generate outliers in the pivot coordinates

along the smallest principal component. Let R ⊆ {1, . . . , N} denote the set
of indices of the rowwise outliers, and let an = (an1, . . . , an,D−1) denote

the principal component scores corresponding to zn. For n ∈ R, we change
the value of the last component a∗n,D−1 = an,D−1+5

√
c. Note that the factor

√
c ensures that the outlier shift is of the same magnitude for the di�erent

scalings of the covariance matrix Σ = cΣ0. After transforming the scores

a∗n = (an1, . . . , an,D−2, a
∗
n,D−1) back to pivot coordinates to obtain outly-

ing z∗n = (z∗n1, . . . , z
∗
n,D−1), we change the respective values of the response

variable to

y∗n = β∗0 + β∗1z
∗
n1 + . . .+ β∗D−1z

∗
n,D−1 + εn, n ∈ R,

with regression parameters β∗0 = 0 and β∗k = −1, k = 1, . . . , D − 1.

Using regression coe�cients that are very di�erent to those from clean
observations ensures that the rowwise outliers are bad leverage points. Fi-

nally, the outlying pivot coordinates z∗n = (z∗n1, . . . , z
∗
n,D−1) are transfor-

med according to (1.1) to obtain the corresponding outlying compositions

x∗n = (x∗n1, . . . , x
∗
nD) = ilr−1(z∗n), n ∈ R.

5. Cells corresponding to non-outlying observations (xn1, . . . , xnD, yn), n /∈ R,
are randomly selected with probability θ to be turned into cellwise outliers.

Let O denote the set of indices (n,m) of the outlying cells. For any pair

(n,m) ∈ O, we change the cell value to x∗∗nm = 10 · xnm if m ∈ {1, . . . , D}
or to y∗∗n = 10 · yn if m = D + 1. The multiplicative factor was chosen

to minimize the chance that outlying cells overlap with noise that occurs
naturally in the composition or the real-valued response.

The resulting observations with rowwise and cellwise outliers are denoted by x?n =
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(x?n1, . . . , x
?
nD)′ and y?n, where

x?nd =

{
x∗nd, if n ∈ R,
x∗∗nd, if (n, d) ∈ O,
xnd, otherwise,

n = 1, . . . , N, d = 1, . . . , D,

and

y?n =

{
y∗n, if n ∈ R,
y∗∗n , if (n,D + 1) ∈ O,
yn, otherwise,

n = 1, . . . , N.

Below we give a brief description of the methods that participate in the eva-
luation, together with the abbreviations we use to refer to them:

OLS: ordinary compositional least squares regression described in Section 1.2.1

(with no treatment for outliers).

MM: robust compositional MM-regression described in Section 1.2.2 (with no

treatment for cellwise outliers).

ShS: shooting S-estimator (Öllerer et al., 2016) obtained from the D(D − 1)/2

unique pairwise logratios. The shooting S-estimator is designed to cope with
cellwise contamination by weighing the components of an observation dif-
ferently. Note that the results can only be compared in terms of prediction
and not in terms of parameter estimation. We used both Tukey's biweight
loss function and the skipped Huber loss function: the former yields conti-

nuous weights in [0, 1] while the latter leads to binary weights in {0, 1}. We

only report the results for Tukey's biweight loss function, as it generally
gave better and more stable results than the skipped Huber loss function.

3S: 3-step regression (Leung et al., 2016) �tted to alr coordinates de�ned in (1),

while in each simulation run, the reference part is selected randomly. Note

that the use of D(D − 1)/2 pairwise logratios as covariates is not possi-

ble here since the algorithm requires a full-rank data matrix. 3-step re-
gression �rst uses a consistent univariate �lter to eliminate outlying cells;
second, it applies a robust estimator of multivariate location and scatter
to the �ltered data to downplay outlying rows; and third, it computes
robust regression coe�cients from the previous step. As with the shoo-
ting S-estimator, the results are compared only in terms of prediction.
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It is important to note that the predicted values depend on the choice
of the reference part. For example, an outlying value in a cell xn1 results

in a rowwise outlier in the observation (ln(xn2/xn1), . . . , ln(xnD/xn1)), but

only in a cellwise outlier in (ln(xn1/xnD), . . . , ln(xn,D−1/xnD)). These cases

will be handled di�erently by 3-step regression, yielding di�erent predictions
of the response variable. Although this leads to somewhat limited practical
applicability, it is still informative to include this approach here in order
to compare its general performance.

BF-MI: this is our proposed method which applies the bivariate �lter (BF)

followed by multiple imputation (MI). In the imputations, we use the default

behavior for variable screening (see Section 2.1.2).

IF-MI: this represents a hypothetical situation where an ideal �lter (IF) is able

to perfectly identify all outlying cells (and only those). The remaining steps

of our method are afterwards applied using multiple imputation (MI). We

use the same settings for variable screening as used for BF-MI. This case
is included for benchmarking purposes only, as it is generally unattainable
in practice.

Note that all methods except the shooting S-estimator and 3-step regression con-
sider pivot coordinates to represent the compositional covariates. By construction,
the shooting S-estimator and the 3-step regression method require the use of pai-
rwise logratios and alr coordinates, respectively.

The performance of the methods is assessed in terms of the mean squared

error (MSE) of the coe�cient estimates, computed as

MSE =
1

D

D−1∑
k=0

(β̂k − βk)2.

Further evaluation is made in terms of prediction error. For this purpose, N

additional clean test observations xtestn and ytestn , n = 1, . . . , N , are generated

in each simulation run according to steps 1�3 of our data generating process.

On the test data, the mean squared error of prediction (MSEP) is calculated as

MSEP =
1

N

N∑
n=1

(ŷtestn − ytestn )2,
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where ŷtestn denote the predicted values of ytestn .

For di�erent numbers of compositional parts D, Figures 3�5 contain plots
of the average MSE against the contamination level θ for various sample sizes
N and scaling factors c of the covariance matrix in pivot coordinates. Similarly,
the average MSEP is displayed in Figures 6�8.

Regarding coe�cient estimates, all methods are accurate when there is no

contamination (θ = 0). As contamination increases, OLS is quickly in�uenced

by the outliers, yielding the highest MSE of all methods. The MSE of MM also
increases continuously for increasing contamination level, which is expected since
MM is only robust to rowwise outliers but not to cellwise outliers. Our propo-

sed method BF-MI is however very accurate for up to 5% contamination and
close to the hypothetical IF-MI case using an ideal outlier �lter. While the MSE
of BF-MI increases for larger contamination levels, it is generally still lower than
that of MM, although the di�erence between the two becomes small as vari-

ability in the data increases (increasing c). The MSE of IF-MI remains fairly

low for 10% contamination, which indicates that the outlier �ltering step is cru-

cial for the performance of our proposed method, but under 20% contamination
the MSE of IF-MI increases as well. All in all, the assessment based on MSE
suggests that BF-MI o�ers improved performance over existing techniques for re-
gression analysis with compositional covariates.

As to prediction performance, the results are comparable to the above. OLS
in general has the highest MSEP, and BF-MI outperforms MM. In many settings,
the MSEP of ShS is comparable to that of BF-MI or somewhat higher, but ShS

is unstable if the ratio of N/D is small. Furthermore, ShS cannot be applied

for D = 20 and N = 50 or N = 100, since the number of pairwise logratios is
larger than the number of observations in those cases. 3S is also similar to BF-MI

in terms of MSEP while the contamination level is 5% or lower, but each method
is performing slightly better than the other in some settings with higher amounts
of contamination. While 3S predicts better for lower values of D when the data

are more scattered (higher values of c), BF-MI has lower MSEP for D = 20.

Note that we also considered counterparts to IF-MI and BF-MI that use sin-
gle imputation instead of multiple imputation. The results were very similar. This
is actually expected, as the main purpose of multiple imputation is to improve
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standard errors (Little and Rubin, 2002; Van Buuren, 2012; Cevallos Valdiviezo

and Van Aelst, 2015), but there should not be large di�erences in the point esti-

mates of the coe�cients (compared to single imputation). Consequently, the bias

component of the MSEP should be similar, and the MSEP can only be impro-
ved by reducing the variance of the predictions. In multiple imputation, such
reduction in variance would in turn require to decrease the correlation between
predictions based on di�erent imputed datasets. However, when the number of im-
puted cells is rather small, the predictions based on di�erent imputed datasets
are still highly correlated. An improvement in prediction performance via mul-

tiple imputation can only be expected for larger fractions of imputed cells (cf.

results and recommendations of Cevallos Valdiviezo and Van Aelst, 2015), where

the correlation between imputed data sets is su�ciently reduced.
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Figure 3: Results from 1000 simulation runs for the scenario with D = 5 com-
positional parts: the average MSE of coe�cient estimates from regression me-
thods in pivot coordinates is plotted against the contamination level θ for various
sample sizes N and scaling factors c of the covariance matrix in pivot coordinates.
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Figure 4: Results from 1000 simulation runs for the scenario with D = 10 com-
positional parts: the average MSE of coe�cient estimates from regression me-
thods in pivot coordinates is plotted against the contamination level θ for various
sample sizes N and scaling factors c of the covariance matrix in pivot coordinates.
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Figure 5: Results from 1000 simulation runs for the scenario with D = 20 com-
positional parts: the average MSE of coe�cient estimates from regression me-
thods in pivot coordinates is plotted against the contamination level θ for various
sample sizes N and scaling factors c of the covariance matrix in pivot coordinates.
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Figure 6: Results from 1000 simulation runs for the scenario with D = 5 com-
positional parts: the average MSEP for di�erent regression methods is plotted
against the contamination level θ for various sample sizes N and scaling factors
c of the covariance matrix in pivot coordinates.
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Figure 7: Results from 1000 simulation runs for the scenario with D = 10
compositional parts: the average MSEP for di�erent regression methods is plotted
against the contamination level θ for various sample sizes N and scaling factors
c of the covariance matrix in pivot coordinates.
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Figure 8: Results from 1000 simulation runs for the scenario with D = 20 com-
positional parts: the average MSEP for di�erent regression methods is plotted
against the contamination level θ for various sample sizes N and scaling factors c
of the covariance matrix in pivot coordinates. Note that the shooting S-estimator
(ShS) cannot be applied for N = 50 and N = 100, as the number of pairwise
logratios is larger than the number of observations. In addition, the 3-step re-
gression estimator (3S) is unstable for N = 50, yielding an average MSEP that
is outside the depicted range on the y-axis.
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3 Weighted pivot coordinates for PLS-based mar-

ker discovery in high-dimensional compositional

data

As discussed in Section 1.2.3, PLS regression is a well-established method

to identify which (in a large set of) explanatory variables are signi�cant (markers)

in relation to a response variable of interest, including cases where covariates are

of compositional nature. Using the pivot coordinate representation (Section 1.1.2)

for compositional explanatory variables allows to investigate each compositional

part in terms of its relative importance, as used e.g. in Kalivodová et al. (2015)

for PLS discriminant analysis (PLS-DA).

The method presented in this chapter extends previous work in PLS model-

ling with compositional data by using weighted pivot coordinates (Section 1.1.3)

instead of the ordinary ones with a newly introduced weighting strategy aiming

to enhance the identi�cation of markers (�tefelová et al., 2021b). This is achieved

by de�ning weights which focus on the correlation structure between a real-valued
response variable and pairwise logratios aggregated into the �rst pivot coordi-
nate in order to downplay the e�ect of irrelevant logratios and enhance the most

relevant ones in relation to the outcome variable (Section 3.1). The practical re-

levance of the proposed model is demonstrated by its application to the identi�-
cation of metabolite signals associated with the emission of greenhouse gases from

cattle (Section 3.2). Its performance is further investigated through a simulation

study (Section 3.3). The results provide evidence of the overall improved ability

of the proposed weighted pivot coordinates approach to distinguish between mar-
kers and non-markers, increasing sensitivity, although resulting in slightly worse
speci�city.

3.1 Proposed weighting scheme

Although weighted pivot coordinates were introduced in Hron et al. (2017),

the weighting schemes suggested there are not appropriate for regression analy-
sis because they were only meant to downplay parts which were not proportio-

nal enough (have poor relative relationship) to the pivot part. In order to make

a sensible choice of weights for a regression purpose, we must �rst determine what
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we understand as a marker in our context. We aim for a compositional part to be
identi�ed as a marker if a relatively signi�cant number of pairwise logratios inclu-
ding that part are strongly associated with the response variable Y . Moreover,
considering the pairwise logratios where the part of interest is in the numera-

tor, that strong association should be (possibly with a few exceptions) in one

direction, either positive or negative.

Accordingly, we propose to construct weighted pivot coordinates (9) using

weights γ(l)d , d = 2, . . . , D, l = 1, . . . , D, de�ned as follows:

γ
(l)
d =

γ̃
(l)
d∑D

d=2 γ̃
(l)
d

, (12)

with

γ̃
(l)
d =

∣∣∣∣∣
∫ r

(l)
d

0

f̂ (l)(λ) dλ

∣∣∣∣∣ , r
(l)
d = cor

(
Y, ln

x
(l)
1

x
(l)
d

)
,

f̂ (l)(λ) =
1

ν(D − 1)

D∑
d=2

K

(
λ− r̃(l)d
ν

)
, r̃

(l)
d =

{
0, if

∣∣∣r(l)d ∣∣∣ < o(l),

r
(l)
d , otherwise,

o(l) = 2×min

(∑D
d=2 I(r

(l)
d ≥ 0)

D − 1
,

∑D
d=2 I(r

(l)
d < 0)

D − 1

)
,

where f̂ is a kernel density estimator, K is a Gaussian kernel function (de�ned

as K(λ) = 1√
2π
e−

1
2
λ2), ν (set to ν = 0.05) is the bandwidth used and I is an in-

dicator function.

Thus, for the lth part, rearranged into the �rst position as x(l)1 , the set

of correlations r(l)2 , . . . r
(l)
D is smoothed using kernel density estimation (Everitt and

Hothorn, 2011), with the correlations under the given threshold being set to zero

in order to estimate the density, and the weight γ̃(l)d is computed as the area under

the curve from zero to the value of the correlation r(l)d . The rationale behind this

weighting scheme is to minimise the in�uence of logratios that are not related
to the response Y , so that higher weights are given to logratios strongly corre-
lated to Y . Among these, the procedure emphasises those logratios representing

the main trend in the distribution of r(l)2 , . . . r
(l)
D by using a kernel density. In order
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to prevent from false positives, correlations with absolute value smaller than a cut-

o� value o(l) are set to zero when conducting kernel density estimation. The value

of o(l) modulates the e�ect of the weighting, which is downplayed with increasing

values of o(l). Therefore, the value given to o(l) is higher when there is no clear
trend in the distribution of the correlations and vice versa. For instance, when

all correlations are positive, then o(l) = 0, the density is estimated from the unal-
tered set of correlations and, as a consequence, the logratios strongly correlated
with Y are highlighted. On the other hand, when half of the correlations are posi-

tive and half are negative, then o(l) = 1, and all correlations are taken to be zero
for the density estimation. Thus, the value of the area under the curve from 0

to r(l)d is practically the same for any d (apart from the cases where r(l)d are the clo-

sest to 0), so only logratios very weakly correlated with Y are suppressed, while

the rest are treated equally. The �nal normalised weight results from dividing

each γ̃(l)d by the sum of all of them.

We use some results from the exemplary case study in Section 3.2 to illustrate
the functioning of the proposed weighting scheme. The compositional parts con-

sist of a collection of integral values (normalised areas under the peaks of spectra

generated by nuclear magnetic resonance). The interest is in identifying integrals

which are potentially relevant markers associated with methane yield from cattle
as response variable. The upper graphs in the sub�gures of Figure 9 display
the histograms of the correlations between the response variable and the pai-

rwise logratios including the part (integral) in the numerator. Figures 9a and 9b

correspond to two parts that should be identi�ed as meaningful markers, while
Figures 9c and 9d shows two parts that should not be considered as meaning-
ful markers. The graphs at the bottom compare the respective weights assigned

to the logratios when using ordinary pivot coordinates (PC) and weighted coun-

terparts with cut-o� value o(l) as de�ned in (12) (WPC), or using the extreme

cases o(l) = 0 (WPC 0) and o(l) = 1 (WPC 1). Note that for PC, each logratio is

applied the uniform weight 1/(D − 1). In the case of an obvious trend (Fig. 9a),

the irrelevant logratios are downplayed, while the meaningful ones are enhanced.
In Fig. 9b, the histogram suggests that the relative importance of the part in the
composition is positively associated with the response variable. However, there
are two deviating logratios with strong negative correlation that are attenua-

59



ted using the proposed weighting scheme (12). When no or only a few relevant

logratios are present (Fig. 9c), then giving higher weight to those with higher

correlation should not a�ect the overall lack of signi�cance of the weighted pivot
coordinate. Finally, when strong correlations are found in both directions with no

clear trend (Fig. 9d), the scheme implies a neutralising e�ect by weighting both

sides similarly.

3.2 Application to high-dimensional metabolomic data

To illustrate the functioning of the proposed PLS regression model
based on weighted pivot coordinates we use a real dataset kindly provided

by the Scotland's Rural College (UK). It consists of high-throughput spectral

pro�les, representative of metabolite signals, acquired by nuclear magnetic reso-

nance (NMR) spectrometry on rumen �uid samples from cattle. The raw samples

went through a number of ordinary pre-processing stages, including phase and
baseline correction, binning to integrate the area under the signal peaks, and

normalisation by referencing all the integrals to a same integral (corresponding

to methyl of propionate), which resulted in D = 127 integrals per animal sample

(N = 211 samples in total). A few cases of zero integrals were assumed to corre-

spond to values below the limit of detection and were imputed based on the infor-

mation from the other signals using the logratio expectation-maximisation (EM)

algorithm (Palarea-Albaladejo and Martín-Fernández, 2008). Methane yield (CH4

in grams per kilogram of dry matter intake) was also measured for each individual

animal using respiration chambers. Information about the diet type used to feed

the animals was also recorded (either concentrate, mixed or forage based diet).

Ruminants are known to be important contributors to the world production
of greenhouse gases, particularly methane which is strongly implied in global
warming. Methane production is mainly associated with fermentation of feed
in the rumen. The purpose of this case study is to identify the most relevant

metabolite signals (markers) associated with cattle methane emissions. PLS re-

gression modelling is an adequate approach given the large number of signals

and the multicollinearity between them. L = D = 127 models (11) are conside-

red with signals represented through weighted pivot coordinates (Section 1.1.3)

with weights constructed as proposed in Section 3.1. Then, each rotated coordi-
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(d)

Figure 9: Illustration of the proposed weighting scheme to identify poten-
tial markers�(a) and (b)�and non-markers�(c) and (d)�in a collection of NMR
integral values. The upper section of each sub�gure displays the histogram
of the correlations between the response variable and the pairwise logratios con-
taining the integral in the numerator. The curve represents the respective esti-
mated kernel density. The lower section of each sub�gure compares the weights
assigned to the logratios when using ordinary (PC) and weighted pivot coordina-
tes with cut-o� value o(l) as de�ned in (12) (WPC) or equal to either 0 (WPC 0)
or 1 (WPC 1) as extreme cases.
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nate system highlights the relative role of one integral in the NMR composition.
For comparison, signals are then represented through ordinary pivot coordinates

(Section 1.1.2). The response variable CH4 is also mapped into real space using

a simple log-transformation to better accommodate its scale and model assumpti-
ons. PLS modelling is conducted as described in Section 1.2.3. The optimal models

(determined by the randomization test approach) consist of two PLS components

(CV RMSEP = 0.17 and CV R2 = 0.51). The estimated bootstrap standardi-

sed regression coe�cients are computed from B = 1000 bootstrap resamples.
Bonferroni's correction is applied for statistical signi�cance testing. Table 3 com-

pares integrals identi�ed as markers using ordinary pivot coordinates (PC) and

weighted pivot coordinates (WPC). The integral signals are distinguished using

the letter I followed by a numeric ID, although note that some which represent
known metabolites are named after these. PC and WPC based results di�er in 13
integrals (39 vs. 52 respectively). Namely, these are all integrals only identi�ed

when the proposed weighting scheme is applied, i.e. they are missed when using
ordinary pivot coordinates, and their corresponding histograms of correlations

(Figure 10) in fact suggest that they are associated with the methane yield.

In agreement with previous modelling work based on only the ruminal vo-

latile fatty acids (VFA) composition (Palarea-Albaladejo et al., 2017), both pro-

cedures identify as markers the signals of acetate and species of butyrate and

propionate (with the direction of the associations being also coincident with pre-

vious results). Moreover, integrals I22 and I125 (forming the VFA called valerate)

are both non-signi�cant, which is also consistent with the previous results based
on VFA only. On top of this, the current analysis using high-throughput data
provides further insight by identifying, amongst others, integrals I67-I73, I80-I83
and I87, which are known to belong to glucose protons. However, note that some
signals in these regions are only identi�ed when weighted pivot coordinates are

used (I69 and I83), hence suggesting that this approach provides a higher level

of sensitivity.

Figure 11 shows heatmaps of the correlations between pairwise logratios and
response variable. We can observe that, in general, the pairwise logratios of a mar-

ker deviating from the main trend are de�ned over another marker (in the denomi-

nator) associated with the response variable in the same direction. For example,

the logratios of I33 are almost all positively correlated with methane production,
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Table 3: Peak integrals in NMR spectral data identi�ed as markers using ordi-
nary pivot coordinates (PC) and weighting pivot coordinates (WPC). Red (resp.
blue) colour refers to signi�cant markers in positive (resp. negative) direction.

PC WPC

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

I16

I17

I18

I19

I20

I21

I22

I23

I24

I25

I26

I27

I28

I29

I30

I31

I32

I33

I34

I35

I36

I37

I38

I39

I40

I41

I42

PC WPC

I43

I44

I45

I46

I47

I48

I49

I50

I51

I52

I53

I54

I55

I56

I57

I58

I59

I60

I61

I62

I63

I64

I65

I66

I67

I68

I69

I70

I71

I72

I73

I80

I81

I82

I83

I84

I85

I86

I87

I88

I89

I90

I91

PC WPC

I92

I93

I94

I95

I96

I97

I98

I99

I100

I101

I102

I103

I104

I105

I106

I107

PropCH2ButCH2a.1

PropCH2ButCH2a.2

I111

I112

Acetate

I114

I115

I116

I117

I118

I119

ButyrateCH2b.1

ButyrateCH2b.2

I122

I123

I124

I125

I126

I127

I128

PropionateCH3.1

PropionateCH3.2

I131

ButyrateCH3.1

ButyrateCH3.2

many of them even strongly correlated. But two of them are strongly correlated

in negative direction (see Fig. 9b). These two are the logratios of I33 over other

integrals positively associated with the response (I34 and I35). Note that I33 is

identi�ed as marker only when weighted pivot coordinates are used. Moreover,
the deviating pairwise logratio of I35 is the one over I34.

Compositional PLS biplot is constructed using the loadings of the D �rst

weighted pivot coordinates (Figure 12). The biplot shows that markers negatively

associated with methane yield (in blue) are mostly linked to the concentrate

diet, whereas markers showing a positive association (in red) are more related

with mixed and forage diets.
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Figure 10: Histograms of correlations between pairwise logratios of NMR inte-
grals and methane yield for integrals only identi�ed as markers by using weighted
pivot coordinates.

3.3 Simulation study

A simulation study is conducted to assess and compare the performance
of ordinary and weighted pivot coordinates for marker identi�cation through
PLS regression across a range of parameter settings. In particular, we set

D = {100, 200, 300} as number of compositional parts, n = {D/2, D, 2D} as num-

ber of observations, M = {D/25, D/10, D/5} as number of markers associated

in positive and negative direction. Results from each combination of parameter
settings are assessed over 500 simulation runs.

For each simulation run, the data are simulated so that the �rst M odd
compositional parts represent markers associated with the response in positive
direction, while the �rstM even compositional parts represent markers associated
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Figure 11: Heatmap of the correlations between pairwise logratios of NMR inte-
grals and methane yield. The y- (resp. x-) axis show the integral used in the nu-
merator (resp. denominator). Identi�ed markers using either ordinary pivot co-
ordinates (PC) or weighted pivot coordinates (WPC) are coloured in red or blue
according to the direction of the relationship with the response variable (positive
or negative respectively). For each colour, dark shade indicates markers identi�ed
by both methods, whereas light shade refers to those identi�ed only by WPC.
Labels in grey refer to signals not identi�ed by any method.
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Figure 12: PLS biplot using weighted pivot coordinates. Identi�ed markers in po-
sitive (resp. negative) direction are coloured in red (resp. blue). The points are
distinguished according to diet type. Rays in grey refer to signals not identi�ed
as markers. The dashed lines indicate the origin for the �rst and second PLS
components (PLS comp. 1 and PLS comp. 2). A 39.96% of explanatory data va-
riance (resp. 56.64% of response data variance) is explained by the �rst two PLS
components: 31.74% by PLS comp. 1 and 8.22% by PLS comp. 2 (resp. 41.96%
by PLS comp.1 and 14.68% by PLS comp. 2).

with the response in negative direction. Compositions are generated through pivot
coordinates having a multivariate normal distribution. The covariance matrix

of the pivot coordinates is chosen so that there is: 1) positive covariances between

every pair from the �rstM odd pivot coordinates, 2) positive covariances between

every pair from the �rst M even pivot coordinates and 3) negative covariances

between each of the �rst M odd pivot coordinates and each of the �rst M even
pivot coordinates. Moreover, variances for the �rst 2M pivot coordinates are
set higher than for the remaining ones. The values of the response variable are
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generated through a regression equation, with the �rst 2M pivot coordinates used

as explanatory variables, where positive (resp. negative) regression coe�cients are

set for the �rstM odd (resp. even) pivot coordinates. The optimal number of PLS

components is determined using the randomization test approach as described

in Section 1.2.3 (the same number of PLS components is used for both, ordinary

pivot and weighted pivot coordinates).

The simulated data generation process is outlined in the following points:

1. Pivot coordinates are generated as zn = (zn1, . . . , zn,D−1) from aND−1(0,Σ)

distribution, n = 1, . . . , N , with covariance matrix Σ = (σij) containing

elements

σij =


2, if i = j ≤ 2M,
1, if i = j > 2M,
0.5× (−1)i+j if i 6= j, i, j ≤ 2M,
0, otherwise,

i, j = 1, . . . , D − 1.

2. The pivot coordinates zn are transformed according to (1.1) to obtain

the associated compositions xn = (xn1, . . . , xnD) = ilr−1(zn), n = 1, . . . , N .

3. Values for the response variable are obtained as

yn = β1zn1 − β2zn2 + . . .+ β2M−1zn,2M−1 − β2Mzn,2M + εn,

with the error terms εn ∼ N (0, 1), n = 1, . . . , N, and regression coe�ci-

ents βk ∼ U(0.1, 1), k = 1, . . . , 2M .

This scheme ensures that markers and non-markers in each simulation sce-
nario can be clearly distinguished (see Fig. 13), while marker identi�cation using

the PLS regression model is still not perfect. For the simulated markers, it can
be observed that a marker's pairwise logratios most correlated with the response
variable are those de�ned over other markers associated with the response vari-

able in opposite direction. Moreover, the least correlated (or deviating from the

main trend) logratios for a marker are those de�ned over other markers associ-

ated with the response variable in the same direction. In general, this resembles

the relationships observed in the NMR dataset used in Section 3.2 (see Fig. 11).
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Figure 13: Examplary heatmap of correlations between pairwise log-ratios and
response variable in simulation scenario. The y- (resp. x-) axis corresponds
to the part in the numerator (resp. denominator). Markers are coloured red or
blue according to the relationship with the response variable (positive or negative
respectively).

For example, parts x1, x3 and x5 in the simulation scenario would be equivalent
to integrals I34, I35 and I33 in the case study.

The ordinary and weighted pivot coordinates approaches are compared ac-
cording to their ability to distinguish between genuine markers and non-markers.

Note that we can consider a binary classi�er (i.e marker or non-marker) since
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in the simulations a positive marker is never identi�ed as negative or vice versa.
The performance is compared in terms of

1. Sensitivity, i.e true positive rate (ability to detect actual markers),

2. Speci�city, i.e true negative rate (ability to not detect non-markers as mar-

kers).

For reference, the nearer the values of these measures are to 1 the better the per-
formance is. The results for each scenario are summarised by the means of these

two measures across simulation runs and are displayed in Figure 14 (PC andWPC

denote ordinary and weighted pivot coordinates respectively). In all the scenarios

it can be observed that using WPC provides higher sensitivity, but some lower
speci�city. The bene�t of WPC can particularly be seen in cases with higher
percentage of markers, when PC are outperformed in terms of sensitivity, while
speci�city is close to 1.
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Figure 14: Results from 500 simulation runs: the average (a) sensitivity and
(b) speci�city for the two di�erent approaches is plotted against the number
of markers associated in positive and negative direction M for various numbers
of compositional parts D and sample sizes N .
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4 Compositional approach in time-use epidemio-

logy

Time-use epidemiology is a sub�eld of biostatistics which focuses on the re-
lationship between health and movement behavior patterns in populations. Daily

movement behavior (time-use) data are usually reported as amounts of time spent

in various activities during a certain time period. Nowadays, the data are ge-
nerally collected from people wearing some sort of accelerometers, commonly
within one week. The raw signals of the accelerations measured by the accele-
rometer are processed and evaluated by various methods to obtain the required

data (Burchartz et al., 2020), e.g. using the GGIR package (Migueles et al., 2019)

of the R software for statistical computing (R Core Team, 2021). The basic parti-

tion of behaviors is made in terms of sleep, sedentary behavior (SB) and physical

activity (PA) of di�erent intensities: light (LPA), moderate (MPA) and vigorous

(VPA). However, with some devices, the distinction between sleep and SB is

not possible, therefore in such cases they are not worn overnight and the corre-
sponding analysis, limited to wake-time day, does not include sleep. Note that
the accelerometers are usually not worn during water-based activities, or they
are taken o� during a day for another reasons, so to compute sleep duration
as the time adding up to 24 hours per day would be inadequate.

In either way, whether the observations available represent 24-hours move-

ment behavior vectors (MB) or wake-time movement behavior vectors (WMB),

they meet properties of compositions. More time spent in one activity necessarily

causes less time spent in another one(s). As the parts of (W)MB are interrelated,

they should not be analysed independently of each other. Accordingly, the logratio
methodology is appropriate tool for the analysis of time-use data. Hence, the par-

ticular scale in which the parts of (W)MB are measured (e.g. using hours/week,

minutes/day, or their expression in percentage) is irrelevant. The �rst study,

where compositional approach to the analysis of movement behavior data was
introduced and discussed in a comprehensive and statistically-principled means,

was the work by Chastin et al. (2015). Over the last few years, there has been

an increasing awareness of the suitability of compositional approach in time-use
epidemiology and a large number of studies examining movement behavior pat-
terns using compositional data analysis have been published.
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During my Ph.D. study, I have collaborated in several articles from time-
use epidemiology that are listed in the Introduction. These were mostly related
to the projects �Application of a novel compositional data analysis approach
for the evaluation of combined e�ects of 24-hour lifestyle behaviors on child-
hood obesity� and �In�uence of obesity on changes in long-term physical acti-
vity of older adults women in context of built environment: a prospective study�
funded by the Czech Science Foundation under reg. No. GA18-09188S, respecti-
vely No. GA18-16423S. To a great extend, the studies followed practice depicted

in Chastin et al. (2015), Dumuid et al. (2017b) and Dumuid et al. (2017a) ap-

plying compositional descriptive statistics, basic visualization, linear regression
models based on ilr coordinates and compositional version of isotemporal sub-
stitution analysis that allows to estimate a theoretical change in a health out-
come resulting from a change in the duration of one type of behavior in favour

of another one. My main methodological contributions to the �eld have been 1)

demonstrating robust compositional analysis of time-use data (�tefelová et al.,

2018), which is a novel aspect in the context of movement behavior research and

2) presenting an advanced visualization technique suitable for time-use epidemio-

logy in the form of compositional PLS biplot based on newly introduced pivoting

balances (�tefelová et al., 2021c). The former study is described in more detail

in Section 4.1, with an extensive discussion about proper coordinate represen-
tation of WMB composition, while the latter analysis including the reasoning
for coordinate representation of MB composition is summarized in Section 4.2.

4.1 Robust compositional analysis of wake-time movement

behavior data

In the �rst application, we investigate wake-time movement behaviors
of Czech adolescents, concretely its association with adiposity and the role of age

in the behavior patterns, similarly as in �tefelová et al. (2018). Visualization tech-

niques for compositional data and linear regression within logratio methodology
are used for this purpose. These were �rstly demonstrated in the context of time-

use data in Chastin et al. (2015). Here, robust statistics is used instead in order

to lessen the in�uence of possible outliers. The real dataset comes from the Fa-
culty of Physical Culture in Olomouc. The participants were N = 420 healthy
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adolescents (169 boys and 251 girls). The amount of time spent in WMB parts,

i.e. in SB, LPA, MPA and VPA, were measured by hip-worn ActiGraph GT3X

accelerometer (ActiGraph LLC, Pensacola, FL, USA). The distinction between

the particular activities were made based on the Evenson's cut-points (Evenson

et al., 2008). Body Mass Index (BMI) was calculated from the self-reported he-

ight and weight. Age and sex-adjusted BMI (zBMI) was used as an adiposity

indicator. The calculation of zBMI and the respective weigh categories was done

according to the WHO guideline (de Onis et al., 2007). Due to the lack of indi-

viduals in each category, only two groups were de�ned: underweight/normal and

overweight/obese (with 344 vs. 76 adolescents).

First, we examine the di�erences in movement behaviors between adolescents

from di�erent weight groups. Table 4 shows the robust compositional center (com-

puted as described in Section 1.1) of WMB computed for all adolescents, compa-

red with that in the underweight/normal and overweight/obese groups.

Table 4: Robust center (expressed in %) of adolescents wake-time movement
behavior data for the whole sample and for underweight/normal and overwei-
ght/obese subgroups.

Group SB LPA MPA VPA
All 60.54 33.66 3.83 1.97

Underweight/normal 60.57 33.52 3.85 2.05

Overweight/obese 60.81 33.89 3.74 1.57

The relative di�erence between the groups is visualized by the robust com-

positional mean barplot (Figure 15). The graph displays the ratio between

each group's robust center and the overall robust center after the data are ro-

bustly centered (so that the comparison is made towards the barycenter). Thus,

in the overweight/obese group, the proportion of time spent in VPA is reduced

by 15.6% relatively to the overall mean composition. Accordingly, VPA stands out

as a key driver of the di�erence between the underweight/normal and overwei-

ght/obese groups, stressing the lack of VPA time in adolescents with adiposity

issues.

The continuous character of zBMI is used to obtain more precise information
about the association between movement behaviors and adiposity using adequate
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Figure 15: Robust compositional mean barplots for the underweight/normal
and overweight/obese adolescents group.

regression models with zBMI set as the response variable and the 4-part WMB

composition expressed by three ilr coordinates as covariates. In �tefelová et al.

(2018), L = D = 4 models (11) are used with pivot coordinates representation(
z
(l)
1 , z

(l)
2 , z

(l)
3

)>
, l = 1, . . . , 4 for WMB composition resulting from sequential

placement of each part originally at position l at the �rst position (Section

1.1.2). In each model, the focus lies on the coe�cient estimate corresponding

to the �rst coordinate which refers to the dominance of one particular part wi-
thin the given composition. We give those coordinates of interest the symbolic
notation SB_LPA.MPA.VPA, LPA_SB.MPA.VPA, MVPA_SB.LPA.VPA and

VPA_SB.LPA.MPA (i.e. using an underscore to separate the parts in the nu-

merator and the denominator of the logratio and a point symbol to split out

the parts into the respective subgroup). MM-estimation of regression coe�ci-

ents is performed (Section 1.2.2). The results extracted from the four models

are summarized in Table 5. Statistically signi�cant regression coe�cients (at 5%

signi�cance level) are obtained for SB_LPA.MPA.VPA (with a positive sign)
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and VPA_SB.LPA.MPA (with a negative sign). In other words, the �ndings re-

veal that the relative dominance of SB (with respect to the average contribution

of the other parts) is in positive relationship with zBMI, while the relative domi-

nance of VPA is in inverse relationship with zBMI.

Table 5: MM-regression coe�cient estimates, standard errors and p-values as-
sociated with the �rst pivot coordinates extracted from the 4 models assessing
the relationship between adolescents' zBMI and wake-time behaviors.

Covariate Coe�. Std. error p-value
SB_LPA.MPA.VPA 0.376 0.190 0.048

LPA_SB.MPA.VPA −0.308 0.196 0.118

MPA_SB.LPA.VPA 0.139 0.144 0.334

VPA_SB.LPA.MPA −0.207 0.081 0.011

Although the process of extracting information about the �rst pivot co-
ordinates from D models is common practice that enables to obtain relative

information about each compositional part (Filzmoser et al., 2018), it has some

drawbacks regarding time-use epidemiology. Here, it is reasonable to take into ac-
count the ordinal character of wake-time behaviors to construct the appro-
priate ilr coordinates as it is generally accepted that a higher health bene�t
is obtained from more physically demanding activities. Then, e.g. coordinate
LPA_SB.MPA.VPA aggregates logratios with potentially contrary association

with health outcome, namely ln(LPA/SB) vs. ln(LPA/MPA) and ln(LPA/VPA).

Therefore, we further consider two models (10) � one with composition (SB, LPA,

MPA, VPA) and the second one with composition (VPA, MPA, LPA, SB) expres-

sed in pivot coordinates
(
z
(1)
1 , z

(1)
2 , z

(1)
3

)>
. Thus, we have coordinates with a sym-

bolic notation SB_LPA.MPA.VPA, LPA_MPA.VPA and MPA_VPA, respecti-

vely VPA_MPA.LPA.SB, MPA_LPA.SB and LPA_SB (so, the two �rst co-

ordinates are the same as in the previous case), where each one corresponds

to the dominance of one activity with respect to the average of the more intense,
respectively the less intense, activities. MM-estimation of regression coe�cients is
performed for the two models. The results are summarized in Table 6. In addition
to the signi�cance of SB_LPA.MPA.VPA and VPA_MPA.LPA.SB, only a weak

signi�cance (at 10% signi�cance level) is observed for MPA_VPA (with a positive
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sign) and LPA_SB (with a negative sign).

Table 6: MM-regression coe�cient estimates, standard errors and p-values asso-
ciated with the �ordinal� pivot coordinates from the two models assessing the re-
lationship between adolescents' zBMI and wake-time behaviors.

Covariate Coe�. Std. error p-value
SB_LPA.MPA.VPA 0.376 0.190 0.048

LPA_MPA.VPA −0.194 0.166 0.243

MPA_VPA 0.212 0.114 0.063

VPA_MPA.LPA.SB −0.207 0.081 0.011

MPA_LPA.SB 0.074 0.146 0.612

LPA_SB −0.418 0.220 0.058

If we want coordinates that re�ect the ordinal character of WMB but capture
the information about the whole wake-time day structure, we can use so-called

pivoting balances. These combine ideas behind balances (Section 1.1.1) and pivot

coordinates (Section 1.1.2). They result from L balance coordinate systems in

which a balance of interest is isolated in the �rst coordinate. These were introdu-
ced in �tefelová et al. (2021c) in the context of MB data. In this case, L = 3 models

(11) are considered with WMB expressed in balances
(
b
(l)
1 , b

(l)
2 , b

(l)
3

)>
, l = 1, 2, 3,

while the focus lies always in the �rst balance. In the �rst system, SB is set aga-

inst the remaining (active) parts in the initial partition. In the following systems,

the initial subgroup consisting of SB is subsequently accompanied by the other
activities from the least to the most intense. Thus, the three �rst balances of in-
terest have a symbolic notation SB_LPA.MPA.VPA, SB.LPA_MPA.VPA and
SB.LPA.MPA_VPA. Table 7 illustrates an exemplary SBP to obtain the required
set of balances. Note that the reciprocal balances, i.e. swapping the subsets of be-
haviors in the logratio, di�er only by the sign. So in fact, the three �rst balance
coordinates provide information also about the balances LPA.MPA.VPA_SB,
MPA.VPA_SB.LPA and VPA_SB.LPA.MPA. As for the interpretation, e.g.
SB.LPA_MPA.VPA is a contrast of time spent in the two least phys-
ically demanding activities against the two most intense activities. MM-
estimation of regression coe�cients is performed. The results extracted from
the three models are summarized in Table 8. Apart of the already revea-

led signi�cance of SB_LPA.MPA.VPA and SB.LPA.MPA_VPA (respectively
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LPA.MPA.VPA_SB and VPA_SB.LPA.MPA) no additional signi�cant result

is found here. We can conclude that the problem with the adolescents' obesity
is related with spending relatively too little time in VPA and on the other hand
relatively too much time in SB.

Table 7: Examplary SBP for WMB composition which results in the required
pivoting balance systems with the (�rst) balance of interest as noted in the capti-
ons. Parts chosen for the numerator and denominator of the jth balance are coded
+ and −, respectively; 0 indicates that the part is not included in the respective
balance.

j x1 x2 x3 x4 rj sj

1 + − − − 1 3

2 0 + − − 1 2

3 0 0 + − 1 1

(a) SB_LPA.MPA.VPA

j x1 x2 x3 x4 rj sj

1 + + − − 2 2

2 + − 0 0 1 1

3 0 0 + − 1 1

(b) SB.LPA_MPA.VPA

j x1 x2 x3 x4 rj sj

1 + + + − 3 1

2 + − − 0 2 1

3 0 + − 0 1 1

(c) SB.LPA.MPA_VPA

Table 8: MM-regression coe�cient estimates, standard errors and p-values asso-
ciated with the pivoting balances extracted from the 3 models assessing the re-
lationship between adolescents' zBMI and wake-time behaviors.

Covariate Coe�. Std. Error p-value
SB_LPA.MPA.VPA 0.376 0.190 0.048

SB.LPA_MPA.VPA 0.059 0.123 0.632

SB.LPA.MPA_VPA 0.207 0.081 0.011

Next, we investigate how age is associated with the structure of adolescents'
wake-time movement behaviors. To get an initial insight into the problem, we
display the data in a ternary diagram, which is a standard tool for visualization

of the simplex sample space for a three-part (sub)composition (Pawlowsky-Glahn

et al., 2015). Here, four three-part subcompositions are available. A color gradi-

ent is used to distinguish the points by age (Figure 16). For further insight, it
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is useful to plot centered data, particularly when the data are concentrated near
the borders of the ternary diagram. The reason for this is the relative scale of com-
positional data; near the borders, the ratios between the components change sub-
stantially more than near the barycenter and this is re�ected by larger distances

between points in terms of the Aitchison geometry (von Eynatten et al., 2002).

This means that near the borders, outlying observations might easily be over-
looked due to the small relative values of some compositional parts. Moreover,
in order to prevent from possible masking of outliers, robustly centered data are
displayed in Figure 17. The diagrams indicate that the proportion of time spent
in SB and VPA is associated with higher age, whereas the e�ect is the opposite
for LPA and MPA.
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Figure 16: Ternary diagrams visualizing how adolescents' wake-time movement
behaviors change with increasing age (the lighter the point, the higher the age).

78



●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

● ●●

●
● ●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●● ●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●

●

●
●

●
●

●

●●
●

●

●

●

●
●

● ●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

● ●
●

LPASB

MPA

LPA

SB MPA

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●●●

●●
●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●
●

●

● ●●

● ●
●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

LPASB

VPA

LPA

SB VPA

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

● ●
●

●

● ●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●●●

●

●

●

● ●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

M
PASB

VPA

MPA

SB VPA

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●●

●

●

●

● ●

●●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

M
PALP

A

VPA

MPA

LPA VPA

12

14

16

18

Age

Figure 17: Ternary diagrams with robustly centered data visualizing how ado-
lescents' wake-time movement behaviors change with increasing age (the lighter
the point, the higher the age).

We further examine the relationship between WMB and age via regres-
sion analysis. We conduct four regression models, each time with di�erent pi-

vot coordinate (isolating di�erent behavior) as a response variable and age

(mapped into real space using log-transformation) as a covariate. Thus, we ob-

tain information about increasing/decreasing dominance of the individual parts

(with respect to the remaining parts). Alternatively, we can exploit the �ndings

from the ternary diagrams and set balance SB.VPA_LPA.MPA as a response, di-
viding the behaviors into two groups that are apparently a�ected by age in an op-
posite way. MM-regression is conducted for the �ve models and the results are
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displayed in Table 9. As anticipated, positive (negative, respectively) associ-

ation is observed between age and SB_LPA.MPA.VPA, VPA_SB.LPA.MPA and

SB.VPA_LPA.MPA (LPA_SB.MPA.VPA and MPA_SB.LPA.VPA, respecti-

vely). So the older they get, Czech adolescents tend to spend more time in SB and

VPA at the expense of LPA and MPA. It is interesting to see that the two behavi-
ors relatively increasing with age are the two behaviors associated with adiposity
in opposite direction.

Table 9: MM-regression coe�cient estimates, standard errors and p-values as-
sociated with the age from the 5 models assessing the relationship between ado-
lescents' wake-time behaviors and age.

Response Coe�. Std. error p-value
SB_LPA.MPA.VPA 0.320 0.133 0.016

LPA_SB.MPA.VPA −0.157 0.113 < 0.001

MPA_SB.LPA.VPA −1.072 0.131 < 0.001

VPA_SB.LPA.MPA 2.199 0.024 < 0.001

SB.VPA_LPA.MPA 2.272 0.156 < 0.001

4.2 Examining the association between 24-hour behaviors

and health outcome via compositional PLS biplot based

on pivoting balances

In the second application, we demonstrate the use of compositional PLS
regression and biplot based on pivoting balances in the context of evaluating
the association between 24-hour movement behavior patterns and health indi-

cator (�tefelová et al., 2021c). Concretely, the methods are applied to examine

the combined association of 24-hour behaviors on fat mass (FM), i.e. adiposity-

related parameter, from a sample of Czech school-aged girls. The real dataset
comes from the Faculty of Physical Culture in Olomouc. The participants were
N = 414 healthy girls. The amount of time spent in parts of MB, i.e. in sleep,
SB, LPA, MPA and VPA were measured by wrist-worn tri-axial ActiGraph acce-

lerometers (ActiGraph LLC, Pensacola, FL, USA) wGT3X-BT and GT9X Link

for children and adolescents, respectively. Raw data were processed with the GGIR

package (Migueles et al., 2019) of the R software for statistical computing (R Core
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Team, 2021). Time spent in the particular wake-time activities was classi�ed using

cut-points for non-dominant wrist (Hildebrand et al., 2017). The default algori-

thm guided by participants sleep log was used to detect sleep time (van Hees et al.,

2015). FM was measured by means of a multifrequency bioelectrical impedance

analysis using the InBody 720 device (InBody Co., Seoul, Korea). Additionally,

height and age were recorded.

When exploring the relationship between a response variable and the time-
use composition, ternary diagrams can serve well in many situations. However,
similarly to the ordinary scatterplot, its practical usefulness is limited as the num-

ber of compositional parts increases, as only 3-part (sub)compositions can be

displayed at once in a ternary plot. Thus, if we consider a 5-part composition
MB, 10 ternary diagrams would be needed to visualize all possible combinations
of 3-part subcompositions. Therefore, data dimension reduction techniques can
provide more useful insight into the problem at hand. Speci�cally, using com-
positional PLS regression based on pivoting balances allows to project the data
onto a 2-dimensional biplot display which represents the observations alongside
the relevant time-use balances while accounting for the relationship with the out-
come variable.

In our study, we consider L = 7 regression models (11) with FM

(in log-scale) set as the response and 5-part composition MB expressed in ba-

lances
(
b
(l)
1 , b

(l)
2 , b

(l)
3 , b

(l)
4

)>
, l = 1, . . . , 7, as explanatory variables. Naturally,

fat mass depends on height and age respectively (with these two being highly

correlated for individuals in school age). Accordingly, age and height (both

mapped into real space using log-transformation) are put in as additional

covariates. For the construction of pivoting balances we take into account
that the ordination of MB parts is not so straightforward as when dealing
with only wake-time behaviors. Therefore, we consider seven di�erent coordinate
systems with di�erent initial partitions into two subgroups, starting with sleep
against the rest of behaviors and subsequently enlarging the subset of parts
in the numerator from the least to the most intense activities; and vice versa,
sleep in the numerator subsequently accompanied by the other activities
from the most to the least intense. With the aim of examining the whole
24-hour behavior pattern, in each system we focus only on the �rst balance
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involving all �ve parts, i.e. on the pivoting balances with symbolic notation
Sleep_SB.LPA.MPA.VPA, Sleep.SB_LPA.MPA.VPA, Sleep.SB.LPA_MPA.VPA,
Sleep.SB.LPA.MPA_VPA, Sleep.VPA_SB.LPA.MPA, Sleep.MPA.VPA_SB.LPA,

Sleep.LPA.MPA.VPA_SB (and the corresponding reciprocals). Table 10 illustra-

tes an exemplary SBP to obtain the required set of balances. As for the interpre-
tation, e.g. the balance Sleep_SB.LPA.MPA.VPA compares time spent in sleep
relative to waking-time behaviors, Sleep.SB_LPA.MPA.VPA is a contrast
of time spent in non-active behaviors against physical activities, and so on.

PLS modelling is performed as described in Section 1.2.3. The optimal
model, selected based on the randomized test approach, consists of two

PLS components (CV RMSEP = 0.49 and CV R2 = 0.32). Table 11 shows

the bootstrap standardized regression coe�cients estimated from B = 1000

bootstrap resamples for each of the �rst balances and their reciprocals, as well
as for the two additional covariates. Statistically signi�cant variables in positive

relationship to FM (at 5% signi�cance level) are obtained for the following

balances (listed in decreasing order according to the estimated standardi-

sed regression coe�cient): SB.LPA.MPA_Sleep.VPA, SB.LPA.MPA.VPA_Sleep,

SB.LPA_Sleep.MPA.VPA, Sleep.SB.LPA.MPA_VPA, SB_Sleep.LPA.MPA.VPA.
Hence, their reciprocals are signi�cant in negative direction. Thus, according

to the results, for obesity prevention (in school-aged girls) it would be bene�cial

to spend relatively less time sitting. Moreover, the results suggest that the two
non-active behaviors, sleep and SB, have contrary association with fat. That is,

sleep (unlike SB) would play a positive role in fat reduction. As expected, both

non-compositional covariates (age and height) are positively associated with FM.

Furthermore, a PLS biplot is constructed based on the �rst compositio-

nal balances and their reciprocals (together with the non-compositional varia-

bles) from the seven coordinate systems (Figure 18). It provides further insi-

ght into what would be more recommendable movement behaviour patterns wi-
thin the 24-hour period associated with lower adiposity. The arrows representing
the covariates are coloured according to the sign of their respective associati-

ons with the FM outcome (positive in red and negative in blue for statistically

signi�cant associations, grey for insigni�cant association). A color gradient is

used to distinguish the points according to the individuals' FM (in log-scale).
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Table 10: Examplary SBP for MB composition which results in the required
pivoting balance systems with the (�rst) balance of interest as noted in the capti-
ons. Parts chosen for the numerator and denominator of the jth balance are coded
+ and −, respectively; 0 indicates that the part is not included in the respective
balance.

j x1 x2 x3 x4 x5 rj sj

1 + − − − − 1 4

2 0 + − − − 1 3

3 0 0 + − − 1 2

4 0 0 0 + − 1 1

(a) Sleep_SB.LPA.MPA.VPA

j x1 x2 x3 x4 x5 rj sj

1 + + − − − 2 3

2 + − 0 0 0 1 1

3 0 0 + − − 1 2

4 0 0 0 + − 1 1

(b) Sleep.SB_LPA.MPA.VPA

j x1 x2 x3 x4 x5 rj sj

1 + + + − − 3 2

2 + − − 0 0 1 2

3 0 + − 0 0 1 1

4 0 0 0 + − 1 1

(c) Sleep.SB.LPA_MPA.VPA

j x1 x2 x3 x4 x5 rj sj

1 + + + + − 4 1

2 + − − − 0 1 3

3 0 + − − 0 1 2

4 0 0 + − 0 1 1

(d) Sleep.SB.LPA.MPA_VPA

j x1 x2 x3 x4 x5 rj sj

1 + − − − + 2 3

2 + 0 0 0 − 1 1

3 0 + − − 0 1 2

4 0 0 + − 0 1 1

(e) Sleep.VPA_SB.LPA.MPA

j x1 x2 x3 x4 x5 rj sj

1 + − − + + 3 2

2 + 0 0 − − 1 2

3 0 0 0 + − 1 1

4 0 + − 0 0 1 1

(f) Sleep.MPA.VPA_SB.LPA

j x1 x2 x3 x4 x5 rj sj

1 + − + + + 4 1

2 + 0 − − − 1 2

3 0 0 + − − 1 2

4 0 0 0 + − 1 1

(g) Sleep.LPA.MPA.VPA_SB

The points are fairly well distinguished according to the relationships of the sig-
ni�cant variables with the FM outcome along both PLS component axes. The po-
sition of a point along the horizontal axis approximately re�ects the contrast be-
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Table 11: Estimated bootstrap standardized coe�cients (and 95% con�dence
intervals) from PLS regression �t to school-age girls' fat mass on movement be-
haviour pivoting balances and their reciprocals (plus age and height).
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tween active lifestyle and SB. The vertical axis is largely related to age, height

and the lack (or the de�ciency) of sleep, with the lack of sleep being associated
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with higher age and height. The arrows of the variables with signi�cantly positive
regression coe�cients point roughly towards the top-right quadrant, which inclu-
des mainly individuals having higher fat mass. The variables with signi�cantly

negative regression coe�cients point to opposite direction (i.e. roughly bottom-

left quadrant), where the individuals with lower fat mass mostly concentrate.

A few outlying cases are observed in the bottom-right quadrant, particularly two
cases of lower fat mass corresponding to the very young individuals with low le-
vel of physical activity. The two balances that most clearly indicate the division
between lower and higher fat mass are SB.LPA.MPA_Sleep.VPA and its reci-
procal. We can conclude from these results that a bene�cial strategy for obesity

prevention (for the school-aged girls) is to spend more time in VPA and sleep,

considered in combination, with respect to the other behaviours. This result also
illustrates the advantage of pivoting balances over ordinary pivot coordinates
in the context of movement behavior research. Although the corresponding pivot

coordinates SB.LPA.MPA.VPA_Sleep and Sleep.SB.LPA.MPA_VPA (and their

reciprocals) would also indicate a signi�cant association of the relative contri-

butions of the (single) components Sleep and VPA to adiposity, the combined

association of both relative to the other behaviours could not be assessed. This is
only possible with the balance SB.LPA.MPA_Sleep.VPA, indicating that inclu-
ding the two movement behaviours into one group leads to even stronger evidence
of their association with adiposity.
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Figure 18: PLS biplot for school-aged girls data based on the �rst composi-
tional balances and their reciprocals from seven coordinate systems. Signi�cant
variables in positive (resp. negative) direction are coloured in red (resp. blue),
grey refers to insigni�cant covariates. The lighter the point is, the higher the fat
mass of the respective individual is. The dashed lines indicate the origin for the
�rst and second PLS components (PLS comp. 1 and PLS comp. 2). A 92.25% of
explanatory data variance (resp. 33.31% of response data variance) is explained
by the �rst two PLS components: 88.52% by PLS comp. 1 and 3.73% by PLS
comp. 2 (resp. 20.48% by PLS comp.1 and 12.83% by PLS comp. 2).
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Concluding remarks

This thesis contributes novel methods for the processing of data in biosta-
tistics that are of compositional nature, i.e. data conveying relative information.
The speci�c features of compositions call for an adequate approach to their statis-
tical analysis. The logratio methodology is used for their proper statistical treat-

ment. The application of the developments is demonstrated in time-use (physical)

and livestock greenhouse gas emission research. Additionally, the work conducted
during this Ph.D. project contributed new scienti�c insights through a number
of interdisciplinary collaborations.

Section 1 revised the basics and fundamental properties of compositional
data and principles for their analysis. The main emphasis was put on di�erent
logratio coordinates which allow to express compositions as real-valued vectors.
It turns out that so-called isometric logratio coordinate systems, preferable from
the theoretical perspective, lead also to great �exibility with respect to the choice

of interpretable coordinates. Speci�cally, balances and (weighted) pivot coordina-

tes can be interpreted in terms of a contrast between two subsets of compositional
parts. In the case of pivot coordinates, a particular part is examined in contrast
to the remaining ones. Most of the methods introduced in the thesis are related
to regression modelling, what is of primary importance in a biostatistical con-
text. Regression analysis with compositional data, particularly the case with real
response and compositional explanatory variables, was thoroughly discussed.

A new method for compositional regression that is robust against cellwise
and rowwise outliers was introduced in Section 2. Cellwise outliers are �rst �ltered
and then imputed by robust estimates. Afterwards, rowwise robust compositional
regression using a multiple imputation scheme is performed to obtain model co-
e�cient estimates. An application to bio-environmental data relating biological
processes in livestock rumen with methane emissions revealed that the proposed

procedure (compared to other regression methods) leads to conclusions that are

best aligned with established scienti�c knowledge. An extensive simulation study
shows that the procedure generally outperforms a traditional rowwise-only ro-

bust regression method (MM-estimator). Moreover, our procedure yields better

or comparable results to recently proposed cellwise robust regression methods

(shooting S-estimator, 3-step regression) while it is preferable for interpretation
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through the use of appropriate coordinate systems for compositional data.

A new weighting strategy for the construction of weighted pivot coordina-
tes was proposed in Section 3. Designed to improve PLS-based marker disco-
very in high-dimensional compositional data, it draws on the correlation between
response variable and pairwise logratios aggregated into the �rst coordinate.
The illustrative application to investigate the association between ruminal high-
throughput metabolite signals and methane emission in cattle extended the study
in Section 2 to the high-dimensional case. It demonstrated the practical relevance
and potential of the proposed approach, providing results compatible with pre-
vious knowledge along with a higher sensitivity to identify meaningful markers.
A simulation study provided additional evidence that this proposed logratio co-
ordinate representation enhances the discovery of markers, although it results
in slightly worse speci�city.

In Section 4, the compositional approach within time-use epidemiology was
studied. Proper coordinate representation for movement behavior data was dis-
cussed given the ordinal character of daily activities. In the �rst application, wake-
time movement behavior data were examined via robust linear regression and
visualization tools such as compositional mean barplots and ternary diagrams.
The second application demonstrated how an adapted version of compositional
PLS regression and biplot based on the newly introduced concept of pivoting ba-
lances could be employed to evaluate the association between 24-hours behavior
patterns and a health marker.

All computation in this work were performed within the R environment

for statistical computing (R Core Team, 2021). The related codes are availa-

ble at https://github.com/aalfons/lmcrCoda (Section 2), https://github.

com/StefelovaN/Weighted-pivot-coordinates (Section 3), https://github.

com/StefelovaN/Robust-CoDA-WMB (Section 4.1) and https://github.com/

StefelovaN/Balance-based-PLS-biplot (Section 4.2).

I truly hope that the presented thesis helps in further development of the lo-
gratio methodology, not solely in the biostatistical context, but others where
similar statistical modelling challenges are presented.
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Abstract

Many types of data in biostatistics meet properties of compositional data,
i.e. multivariate observations comprising positive parts of a whole carrying rela-
tive information. Given their speci�c properties, the logratio methodology serves
as a proper tool for the analysis of compositions. This thesis presents metho-
dological developments and applications of the compositional approach in �elds
of biostatistics, speci�cally in relation to regression analysis and data visuali-
zation as applied to metabolomics and time-use epidemiology. A novel method
for regression with compositional explanatory variables is introduced, which is
robust against rowwise as well as against cellwise outliers. Further, a procedure
for improved biomarker discovery in high-dimensional compositional data is pre-

sented. It is based on partial least squares (PLS) regression using a weighted

pivot coordinate representation for compositions with a new, task-driven, stra-
tegy for weighting. In the context of time-use research, special relevance is given
to a suitable coordinate representation of time-use data. The proposed coordi-
nate system aims to re�ect the fact that there is a natural ordering in time-use
categories, the compositional variables.

Key words: compositional data, logratio methodology, balances, pivot coordina-
tes, weighted pivot coordinates, regression analysis, PLS biplot, robust statistics,
cellwise outliers, time-use data, metabolomic data
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Abstrakt v £eském jazyce

Mnoho typ· dat v biostatistice má podobu kompozi£ních dat, tj. jde o mno-
horozm¥rná pozorování obsahující kladné sloºky, které reprezentují £ásti n¥jakého
celku a nesou relativní informaci. Logpodílová metodika, zohled¬ující speci�cké
vlastnosti kompozic, slouºí jako vhodný prost°edek k jejich analýze. Tato práce
p°edstavuje metodologické inovace a aplikace kompozi£ního p°ístupu v oborech
biostatistiky, konkrétn¥ v oblasti regresní analýzy a vizualizace dat, a to v meta-
bolomice a p°i zkoumání vlivu pohybového chování na zdraví. Je zde prezentována
nová robustní metoda pro regresi s kompozi£ními vysv¥tlujícími prom¥nnými,
jeº je schopna efektivn¥ pracovat s pozorováními, která jsou odlehlá jako celek,
i s t¥mi, kde se odlehlost projevuje pouze na prvkové úrovni. Také je tu p°edsta-
vena vylep²ená procedura pro identi�kaci statisticky významných prom¥nných
ve vysoce-dimenzionálních kompozi£ních datech. Je zaloºena na regresi metodou

£áste£ných nejmen²ích £tverc· (PLS regresi), p°i níº se pro reprezentaci kom-

pozic vyuºívají váºené pivotové sou°adnice s novou strategií pro váºení danou
povahou problému. V kontextu výzkumu pohybového chování je kladen zvlá²tní
d·raz na vhodnou sou°adnicovou reprezentaci dat o pohybovém chování. Na-
vrºený sou°adnicový systém bere v potaz to, ºe mezi kategoriemi pohybového
chování, kompozi£ními prom¥nnými, existuje p°irozené uspo°ádání.

Klí£ová slova: kompozi£ní data, logpodílová metodika, bilance, pivotové sou°ad-
nice, váºené pivotové sou°adnice, regresní analýza, PLS biplot, robustní statistika,
odlehlá pozorování na úrovni bun¥k, data o pohybovém chování, metabolomická
data
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1 Introduction

Compositional data (compositions) are essentially characterized by their re-

lative nature. They represent vectors of stricly positive values describing parts
of some whole. Accordingly, the relevant information is contained in the ratios be-
tween the compositional parts. Due to speci�c sample space of compositional data
and their geometry, compositions require di�erent statistical processing than stan-

dard multivariate observations conveying absolute information (in terms of inter-

val scale). A suitable approach for their analysis is the logratio methodology

(Aitchison, 1986; Pawlowsky-Glahn et al., 2015). Its cornerstone lies in the con-

struction of logratio coordinates that enable to express compositions as real-
valued vectors, to which standard statistical methods can be applied. The choice
of interpretable coordinates leading to meaningful results is of particular impor-
tance.

This thesis focus on the compositional approach and innovative methods
within the logratio methodology suited to the analysis of biostatistical data, i.e.
data involving living systems. There are many types of biostatistical data of com-

positional character. Here, two cases are considered: 1) molecular biology data

concerning metabolites, i.e. small molecules involved in metabolism and 2) time-

use movement behaviour data which re�ect how people spend their time in terms
of sleep, sedentary behaviour and physical activity of various intensities.

First, a novel method for robust compositional regression is introduced that
is able to deal not only with outlying observations comprising whole observations

(rowwise outliers) but also with outliers in individual cells (cellwise outliers) (�te-

felová et al., 2021a). Next, a new weighting strategy for the construction of wei-

ghted pivot coordinates is presented that is particularly suitable for PLS-based

marker discovery in high-dimensional compositional biomolecular data (�tefe-

lová et al., 2021b). Finally, the use of the compositional approach in the context

of time-use epidemiology is demonstrated (�tefelová et al., 2018, 2021c). Strong

emphasis is placed on a proper coordinate representation of time-use data consi-
dering a natural ordering of the given compositional parts. A new concept of pi-
voting balances is developed that, in combination with an adapted formulation
of compositional PLS biplot, enables meaningful visualization of more complex
time-use patterns and their relationships with an outcome variable.
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2 Summary of the state of the art

2.1 Compositional data

A vector x = (x1, . . . , xD)
> is called a D-part composition when all its

elements are strictly positive real numbers that carry relative information (Ait-

chison, 1986; Pawlowsky-Glahn et al., 2015). Accordingly, the absolute values

of the parts are not important for the analysis and the relevant information
is captured in the ratios between them. The compositional parts, representing
quantitatively contributions to some whole, are co-dependent as within a gi-
ven representation the change in one part necessarily a�ects the relative values
of the remaining ones.

Compositional data are scale invariant which means that if the composition
is multiplied by a positive number, the ratios between its parts are not altered.
Consequently, the sample space of compositions is formed by equivalence classes

of proportional vectors (Pawlowsky-Glahn et al., 2015). Therefore, compositions

can be represented without loss of information as vectors with an arbitrary sum

of components (typically 1 or 100 in case of proportions or percentages, respecti-

vely) on a simplex.

Compositions obey the so-called Aitchison geometry on the simplex

(Pawlowsky-Glahn et al., 2015). When analysing compositional data, their spe-

ci�c nature should be taken into account. The direct use of standard statistical
methods relying on the Euclidean geometry in real space would lead to misleading

results and conclusions (Filzmoser et al., 2018).

The key idea of the logratio methodology is to map compositions
from the simplex into real space via logratio coordinates and then proceed

with the statistical processing there (Filzmoser et al., 2018). Using logratios,

instead of simply ratios as bearers of the elemental information, is advantageous
as they map the range of a ratio from the positive real space onto the entire
real space, symmetrise their values around zero and, moreover, inverse logratios

provide the same information up to the sign, i.e. ln(xc/xd) = − ln(xd/xc).

Among the di�erent types of logratio coordinates proposed, the ilr (iso-

metric logratio) coordinates are preferred as they allow to express compositions

7



in an orthonormal coordinate system (Egozcue et al., 2003). There are in�nitely

many options for their construction. The fact that di�erent ilr coordinate sys-
tems are just orthogonal rotations of each other is a useful property in statistical
analysis. For example, in regression analysis, it enables the use of an arbitrary

choice of ilr coordinates to obtain the required (unique) output. Moreover, a�ne

equivariant robust (regression) estimators provide results invariant to the choice

of ilr coordinates (Filzmoser et al., 2018). The crucial challenge is to construct

interpretable coordinates tailored to the scienti�c question at hand.

2.2 Balances

The procedure known as sequential binary partition (SBP) can be ap-

plied to construct customized ilr coordinates called (compositional) balances

(Egozcue and Pawlosky-Glahn, 2005). In the �rst step of the SBP process,

the entire collection of compositional parts is divided into two disjoint subsets,
with each subset summarised by the geometric mean of its components and go-
ing into the numerator and denominator, respectively, of a normalized logratio
constituting the �rst balance. In the next steps, these subsets are further split
into two mutually exclusive subgroups going into the numerator and denomina-
tor, respectively, of the subsequent balances. This process continues until only
one-part subsets remain and D − 1 balances are constructed.

The balance coordinates are represented by a real vector b = (b1, . . . , bD−1)
>

with

bj =

√
rjsj
rj + sj

ln

rj

√∏rj
i=1 x

+
ji

sj

√∏sj
i=1 x

−
ji

, j = 1, . . . , D − 1, (1)

where x+ji and x
−
ji
refers to the parts selected for the numerator and denominator,

respectively, in the jth balance while rj and sj stands for the respective number

of parts (Egozcue and Pawlosky-Glahn, 2005; Pawlowsky-Glahn et al., 2015).

Balance coordinates are interpreted, as their name indicates, in terms of a ba-

lance (contrast) between two subsets of parts represented by their respective

geometric means (Egozcue and Pawlosky-Glahn, 2005; Pawlowsky-Glahn et al.,

2015). They can be constructed according to the scienti�c questions of interest
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and based on domain-speci�c knowledge, e.g. to represent meaningful trade-o�s.

2.3 Pivot coordinates

The procedure of extracting unique information from di�erent orthonormal
coordinate system is particularly applied with special balances called pivot co-

ordinates (Fi²erová and Hron, 2011). These are intended to highlight the role

of a single compositional part relative to all the others in one (the �rst) coordi-

nate. In SBP, one part is always set against the remaining ones.

Given a composition x, we can rearrange it so that the lth part is put
at the �rst place and denote that composition as

x(l) =
(
x
(l)
1 , . . . , x

(l)
D

)>
= (xl, x2, . . . , xl−1, xl+1, . . . , xD)

>, l = 1, . . . , D.

Then, the corresponding pivot coordinates de�ne a real vector z(l) =(
z
(l)
1 , . . . , z

(l)
D−1

)>
, where

z
(l)
j =

√
D − j

D − j + 1
ln

x
(l)
j

D−j

√∏D
d=j+1 x

(l)
d

=
1√

(D − j + 1)(D − j)

[
ln

(
x
(l)
j

x
(l)
j+1

)
+ · · ·+ ln

(
x
(l)
j

x
(l)
D

)]
(2)

= u>j ln
(
x(l)
)
, j = 1, . . . , D − 1, l = 1, . . . , D,

with

uj =

√
D − j

D − j + 1

0, . . . , 0︸ ︷︷ ︸
j−1

, 1,− 1

D − j
, . . . ,− 1

D − j

>

representing the vectors of logcontrast coe�cients (Filzmoser et al., 2018; Hron

et al., 2017) .

Each �rst coordinate z(l)1 in the pivot coordinate system contains all the rela-

tive information about the lth compositional part. It can be interpreted in terms

of dominance of the l-th part with respect to an average (geometric mean)

of the other parts (Fi²erová and Hron, 2011; Filzmoser et al., 2018).
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2.4 Weighted pivot coordinates

In the representation of the �rst pivot coordinate as a scaled sum of the D−1

pairwise logratios of x(l)1 over the other parts, the logratios are treated equally.

However, the collection of logratios aggregated into that coordinate can include
information from completely di�erent processes. Therefore, a weighted counter-
part to the ordinary pivot coordinates was introduced, namely the weighted pivot

coordinates (Hron et al., 2017). These enable to weight the logratios aggregated

into the �rst coordinate according to their relevance for the purpose of the ana-
lysis.

Accordingly, by using γ
(l)
2 , . . . , γ

(l)
D to denote the weights, the �rst weigh-

ted pivot coordinate w(l)
1 is constructed by taking the weighted sum of pairwise

logratios with x(l)1 ,

γ
(l)
2 ln

(
x
(l)
1

x
(l)
2

)
+ . . .+ γ

(l)
D ln

(
x
(l)
1

x
(l)
D

)
, γ

(l)
2 , . . . , γ

(l)
D > 0,

D∑
d=2

γ
(l)
d = 1,

which, after rescaling to a standard logcontrast, leads to the coordinate

w
(l)
1 =

1√
1 +

∑D
d=2

(
γ
(l)
d

)2 ln x
(l)
1∏D

d=2

(
x
(l)
d

)γ(l)d

=
(
v
(l)
1

)>
ln
(
x(l)
)
, l = 1, . . . , D

(3)

with

v
(l)
1 =

1√
1 +

∑D
d=2

(
γ
(l)
d

)2 (1,−γ(l)2 , . . . ,−γ
(l)
D

)>

representing the �rst vector of logcontrast coe�cients (Hron et al., 2017).

The remaining elements to form a real vector of weighted pivot coordinates

w(l) =
(
w

(l)
1 , . . . , w

(l)
D−1

)>
are obtained sequentially by considering the orthonor-

mal property of the logcontrast coe�cients and the requirement for standard
logcontrasts. Note that unlike in the case of ordinary pivot coordinates, weigh-

ted pivot coordinates, using the construction from Hron et al. (2017), contain
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two coordinates which capture information about the part of interest: w(l)
1 and

w
(l)
D−1. However, the former coordinate contains the relevant information, whereas

the latter corresponds to just a redundant remainder (Hron et al., 2017).

2.5 Compositional linear regression

Regression analysis is one of the most widely used techniques in practical
data analysis and statistical modelling. The object of linear regression is to mo-

del linear relationship between response (dependent) variable and explanatory

(independent) variables, also called covariates or predictors (Härdle and Simar,

2012). The compositional data framework has three basic regression problems.

These concern the relation between the real-valued response and compositional
covariates, compositional response and real covariates, or between compositional
parts themselves. In all instances, the logratio methodology serves as useful tool
as, with compositions expressed in proper logratio coordinates, standard regres-

sion methods can be applied and interpretable results obtained (Filzmoser et al.,

2018). Because of their properties, the ilr coordinates are preferable, especially

balances or the (weighted) pivot coordinates.

Throughout this thesis, we mainly deal with the cases where explanatory
variables are formed by, or at least include, a composition. In that case, we

consider two data structures: column vector y of size N and (N,D + P )-matrix

A = (1, i1, . . . , iD−1, c1, . . . , cP ). The vector y describes values of the response va-

riable on N objects. The �rst column of the so-called design matrix A is formed

by ones (for the intercept term parameter) and the remaining columns combine

values on the D−1 ilr coordinates and the P non-compositional covariates corre-
sponding to the same N observations. The resulting linear regression model has
the form

y = Aβ + ε, (4)

where β = (β0, β1, . . . βD−1+P )
> is a vector of unknown K = D + P regression

coe�cients and ε = (ε1, . . . , εN)
> is an error vector (Härdle and Simar, 2012;

Filzmoser et al., 2018).

Often, the focus lies on L di�erent �rst coordinates conveying information
about compositional parts in a desirable way. Then, L di�erent regression models
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are examined and information associated with the �rst coordinate from each
system is extracted. That is, we have L models

y = A(l)β(l) + ε, l = 1, . . . L, (5)

where the design matrix A(l) =
(
1, i

(l)
1 , . . . , i

(l)
D−1, c1, . . . , cP

)
contains values

on the lth set of ilr coordinates and the regression coe�cient vector β(l) =(
β0, β

(l)
1 , . . . , β

(l)
D−1, βD, . . . βD−1+P

)>
has, due to the orthogonality of di�erent

ilr coordinate systems, the same intercept term β0 and the same coe�cients
corresponding to the non-compositional covariates in each model. Consequently,

the vector of estimates
(
β̂0, β̂

(1)
1 , . . . , β̂

(D)
1 , β̂D, . . . , β̂D−1+P

)>
is used for interpre-

tation purposes. Note that also model �t measures like the coe�cient of determi-
nation are invariant to the choice of orthonormal coordinate system. Commonly,
the L di�erent ilr systems represent D sets of pivot coordinates so that each
time the emphasis is put on the coordinate isolating the relative information

about one compositional part (Hron et al., 2012; Filzmoser et al., 2018).

The basic method for estimating coe�cients in a linear regression model is

the ordinary least squares (OLS) technique. It produces estimates that minimize

the sum of squared residuals, i.e. the sum of squared di�erences between ob-

served and predicted values of the response variable (Härdle and Simar, 2012).

In practice, a common issue is that the observed dataset contains outliers, i.e. in-
dividual values or entire multivariate observations that deviate considerably from
the main cloud of data points. Unfortunately, outliers can greatly in�uence ordi-
nary estimates of model parameters and may lead to unreliable results. A number

of regression methods robust against outlying observations (i.e. rowwwise out-

liers) have been developed (Maronna et al., 2002). Among those, MM-regression

(Yohai, 1987) is a popular choice as it produces highly e�cient estimates (i.e.

with small variance and thus high precision) with a high breakdown-point, con-

cretely up to 0.5 (meaning that reliable results can be obtained even with 50%

observations being contaminated). A few methods have been introduced recently

that are robust against cellwise outliers (i.e. designed to deal with contamination

occurring at the cell level of a data matrix) such as shooting S-estimator (Öllerer

et al., 2016) and 3-step regression estimator (Leung et al., 2016). However, both
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methods have some limitations when it comes to working with compositional
data. Neither of them is suitable for regression with ilr coordinate representation
of compositions. The reason is that one outlying compositional part can a�ect
several logratio coordinates so cellwise contamination easily propagates throu-
ghout.

Partial least squares (PLS) regression enjoys wide popularity in areas such

as chemometrics (Höskuldson, 1988), especially in the case where the number

of explanatory variables is signi�cantly larger than the number of observations.

It aims to �t the relationship between response variable(s) and potentially many

and/or highly correlated explanatory variables by �nding a small number of latent

factors that synthesize the relationship in lower dimension. The underlying as-
sumption is that the observed data are generated by a process driven by this small
number of latent factors, also known as PLS components. The values on the PLS

components (scores) are linear combinations of the explanatory variables with

parameters (loadings) determined in such a way that they maximize the cova-

riance between the response and the explanatory variables. Once the model is
�tted in the latent space, the regression coe�cients associated with the origi-
nal explanatory variables can be subsequently worked out and their signi�cance
investigated. Even if PLS regression is particularly useful for the analysis of high-
dimensional data, it o�ers other features that make the method also appealing
for datasets with a relatively small to moderate number of explanatory variables.
This includes the capacity to handle multicollinearity and highly correlated ex-
planatory variables, the ability to separate main information from noise, the no
requirement of distributional assumptions for error terms and, last but not least,
the possibility of visualizing data in low dimensions via a PLS biplot. PLS regres-

sion is a well-established method to identify which (in a large set of) explanatory

variables are signi�cant (markers) in relation to a response variable of interest,

including cases where covariates are of compositional nature. Using the pivot
coordinate representation for compositional explanatory variables allows to in-
vestigate each compositional part in terms of its relative importance, as used e.g.

in Kalivodová et al. (2015) for PLS discriminant analysis (PLS-DA).

13



3 Thesis objectives

This thesis aims to introduce methodological inovations of the compositio-
nal approach in �elds of biostatistics as applied to metabolomics and time-use
epidemiology. Most of the presented methods are related to regression model-
ling, what is of primary importance in a biostatistical context. The developments
touch upon subjects such as presence of cellwise outliers in dataset and proper
coordinate representation of compositions, including the case of high-dimensional
data and data of compositional variables with an intrinsic ordering.

4 Theoretical framework and applied methods

4.1 Cellwise and rowwise robust compositional regression

We present a robust estimation procedure for a linear regression model
with a real-valued response and compositional explanatory variables, possibly ac-
companied by additional real-valued covariates, that is designed to handle both

cellwise and rowwise outliers (�tefelová et al., 2021a). The method is develo-

ped for the regular case with more observations than explanatory variables. It

is similar in spirit to the 3-step regression estimator (Leung et al., 2016) as it

�lters cellwise outliers and apply rowwise robust regression technique. But since
a construction of an appropriate coordinate system for compositions is not fe-
asible for incomplete data, our procedure makes use of an imputation step after
the �ltering. Imputation uncertainty is then re�ected on regression coe�cients
estimates via multiple imputation scheme. The entire procedure is summarized
in the following pseudocode involving a number of algorithms for its di�erent
stages.

Algorithm 1 Detection of cellwise outliers

Input: Data matrix X = (x1, . . . ,xD, r1, . . . , rP+1) of compositional parts

and real-valued variables
Output: Index set O of outlying cells and index set R of outlying rows

1: . Cellwise outlier detection on pairwise logratios and real-valued variables

2: L← (ln(x1/x2), . . . , ln(xD−1/xD), r1, . . . , rP+1)

3: Apply bivariate �lter of Rousseeuw and Van den Bossche (2018) to L
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4: Store index set OL ← {(n, j) : cell in row n and column j of L is marked}
as cellwise outlier}

5: Store index set RL ← {n : row n of L is marked as rowwise outlier}
6: . Mark outlying cells in compositional parts

7: Initialize empty set O . set of indices (n,m) of cells in X to be marked

as cellwise outliers
8: Initialize empty set R . set of indices n of rows in X to be marked

as rowwise outliers
9: for d ∈ {1, . . . , D} do

10: Obtain index set Jd ← {j : column j of L contains a logratio involving xd}
11: for n ∈ {1, . . . , N} do
12: if 1

(D−1)
∑

j∈Jd IOL((n, j)) ≥ 0.5 then

13: O ← O ∪ {(n, d)}
14: end if
15: end for
16: end for
17: . Adopt outlying cells in real-valued variables from bivariate �lter

18: for p ∈ {1, . . . , P + 1} do
19: for n ∈ {1, . . . , N} do
20: if (n,D(D − 1)/2 + p) ∈ OL then

21: O ← O ∪ {(n,D + p)}
22: end if
23: end for
24: end for
25: . Mark outlying rows and only mark outlying cells that are not part

of outlying rows

26: for n ∈ {1, . . . , N} do

27: if n ∈ RL or 1
D+P+1

∑D+P+1
m=1 IO((n,m)) >= 0.75 then

28: . Marked as rowwise outlier in L or at least 75% of cells marked
as cellwise outliers in X

29: R ← R∪ {n}
30: O ← O \ {(n,m) : m = 1, . . . , D + P + 1}
31: end if
32: end for
33: return Index sets O and R
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Algorithm 2 Initial knn imputation for compositional data and real-valued
variables

Input: Data matrix X = (x1, . . . ,xD, r1, . . . , rP+1) of compositional parts

and real-valued variables with missing values (outlying cells)

Output: Imputed data matrix X̃
1: Apply simultaneous knn imputation with Aitchison distance to X =

(x1, . . . ,xD)

2: Store imputed data matrix as X̃ = (x̃1, . . . , x̃D)

3: Compute pivot coordinates z̃(1)1 , . . . , z̃
(1)
D−1 from x̃1, . . . , x̃D

4: Apply simultaneous knn imputation with Euclidean distance

to
(
r1, . . . , rP+1, z̃

(1)
1 , . . . , z̃

(1)
D−1

)
5: Store imputed real-valued variables as R̃ = (r̃1, . . . , r̃P+1)

6: return Imputed data matrix X̃ = (X̃, R̃)

Algorithm 3 Model-based imputation for compositional data and real-valued
variables

Input: Data matrix X = (x1, . . . ,xD, r1, . . . , rP+1) of compositional parts

and real-valued variables with missing values (outlying cells)

Output: Imputed data matrix X̃ , residual scale estimates σ̂1, . . . , σ̂D+P+1

from imputation models
1: . Initializations
2: Rearrange �rst D columns of X by sorting compositional parts by decreasing

amount of missing values
3: Rearrange last P +1 columns of X by sorting real-valued variables by decre-

asing amount of missing values

4: Obtain index sets κm ← {n : cell in row n and column m of X is missing},
m = 1, . . . , D + P + 1

5: Obtain index sets τm ← {n : cell in row n and column m of X is observed},
m = 1, . . . , D + P + 1

6: Initialize counter t← 0 and convergence criterion η ←∞

7: Initialize X [0] =
(
x
[0]
1 , . . . ,x

[0]
D , r

[0]
1 , . . . , r

[0]
P+1

)
by applying knn imputation

from Algorithm 2 to X
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8: . Iterative model-based imputations
9: while η ≥ 0.5 do

10: t← t+ 1

11: X [t] =
(
x
[t]
1 , . . . ,x

[t]
D , r

[t]
1 , . . . , r

[t]
P+1

)
← X [t−1] =

(
x
[t−1]
1 , . . . ,x

[t−1]
D , r

[t−1]
1 , . . . , r

[t−1]
P+1

)
12: . Imputations in compositional data

13: for d ∈ {1, . . . , D} do

14: Compute pivot coordinates z
(d)
n1 , . . . , z

(d)
n,D−1 from x

[t]
n1, . . . , x

[t]
nD,

n = 1, . . . , N

15: Perform MM-regression of z
(d)
n1 on z

(d)
n2 , . . . , z

(d)
n,D−1, r

[t]
n1, . . . , r

[t]
n,P+1,

n ∈ τd
16: Compute prediction ẑ(d)n1 from z

(d)
n2 , . . . , z

(d)
n,D−1, r

[t]
n1, . . . , r

[t]
n,P+1, n ∈ κd

17: Replace x[t]n1, . . . , x
[t]
nD with the inverse mapping of ẑ(d)n1 , z

(d)
n2 , . . . , z

(d)
n,D−1,

n ∈ κd
18: Compute robust residual scale estimate σ̂d from MM-regression �t
19: end for
20: . Imputations in real-valued variables

21: Compute pivot coordinates z
(1)
n1 , . . . , z

(1)
n,D−1 from x

[t]
n1, . . . , x

[t]
nD,

n = 1, . . . , N

22: for p ∈ {1, . . . , P + 1} do

23: Perform MM-regression of r
[t]
np on z

(1)
n1 , . . . , z

(1)
n,D−1, r

[t]
n1, . . . ,

r
[t]
n,p−1, r

[t]
n,p+1, r

[t]
n,P+1, n ∈ τp

24: Replace r
[t]
np with prediction r̂

[t]
np from z

(1)
n1 , . . . , z

(1)
n,D−1, r

[t]
n1, . . . ,

r
[t]
n,p−1, r

[t]
n,p+1, r

[t]
n,P+1, n ∈ κp

25: Compute robust residual scale estimate σ̂D+p from MM-regression �t

26: end for
27: . Update convergence criterion

28: η ←
∑N

n=1

[∑D
d=1

(
x
[t−1]
nd −x[t]nd

x
[t]
nd

)2

+
∑P+1

p=1

(
r
[t−1]
np −r[t]np

r
[t]
np

)2]
29: end while

30: Obtain X̃ by rearranging columns of X [t] from last iteration according
to original order of columns in X
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31: Rearrange residual scale estimates σ̂1, . . . , σ̂D+P+1 accordingly

32: return Imputed data matrix X̃ and residual scale estimates σ̂1, . . . , σ̂D+P+1

Algorithm 4 Cellwise and rowwise robust compositional regression
with bivariate �lter and multiple imputation

Input: Compositional data X = (x1, . . . ,xD), real-valued covariates

C = (c1, . . . , cP ), real-valued response y

Output: Regression coe�cient estimates and corresponding variance
estimates

1: . Detect cellwise outliers
2: Obtain index set O of cellwise outliers by applying Algorithm 1 to X =

(x1, . . . ,xD, c1, . . . , cP ,y)

3: . Special case of no cellwise outliers

4: if O = ∅ then
5: Compute ilr coordinates i1, . . . , iD−1 from x1, . . . ,xD

6: Perform MM-regression of y on i1, . . . , iD−1, c1, . . . , cP

7: return Coe�cient estimates and corresponding variance estimates
8: end if
9: . Filter and impute cellwise outliers

10: Replace cells of X with indices in O by missing values
11: Apply model-based imputation with Algorithm 3 to X =

(x1, . . . ,xD, c1, . . . , cP ,y)

12: Store imputed data matrix as X̃ = (x̃1, . . . , x̃D, c̃1, . . . , c̃P , ỹ)

13: Store residual scale estimates from imputation models as σ̂1, . . . , σ̂D+P+1,
respectively

14: . Rowwise robust compositional regression with multiple imputation

15: Nout ← N −
∑N

n=1

∏D+P+1
m=1 (1− IO((n,m))) . Number of observations

with outlying cells

16: H ← max(2, round(100 ·Nout/N)) . Number of imputations

17: Obtain ιm ←
∑N

n=1 IO((n,m)), m = 1, . . . , D + P + 1 . Number of outlying

cells per variable

18: for h ∈ {1, . . . , H} do
19: . Add random noise to imputations

20: Initialize X̃ {h} =
(
x̃
{h}
1 , . . . , x̃

{h}
D , c̃

{h}
1 , . . . , c̃

{h}
P , ỹ{h}

)
by X̃ =
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(x̃1, . . . , x̃D, c̃1, . . . , c̃P , ỹ)

21: for (n,m) ∈ O do

22: Draw random noise term e ∼ N(0, σ̂2
m(1 + ιm/N))

23: if m ∈ {1, . . . , D} then . Compositional parts

24: Compute pivot coordinates z̃(m)
n1 , . . . , z̃

(m)
n,D−1 from x̃n1, . . . , x̃nD

25: z̃
(m)
n1 ← z̃

(m)
n1 + e

26: Replace x̃{h}n1 , . . . , x̃
{h}
nD with the inverse mapping of z̃(m)

n1 , . . . , z̃
(m)
n,D−1

27: else if m ∈ {D + 1, . . . , D + P} then . Real-valued variables

28: c̃
{h}
n,m−D ← c̃n,m−D + e

29: else . Response variable

30: ỹ
{h}
n ← ỹn + e

31: end if
32: end for
33: . Rowwise robust compositional regression

34: Compute ilr coordinates i1, . . . , iD−1 from x̃
{h}
1 , . . . , x̃

{h}
D

35: Perform MM-regression of ỹ{h} on i1, . . . , iD−1, c̃
{h}
1 , . . . , c̃

{h}
P

36: Store coe�cient estimates as
(
β̂
{h}
0 , . . . , β̂

{h}
D−1+P

)>
37: Store variance estimates as

(
φ̂
{h}
0 , . . . , φ̂

{h}
D−1+P

)>
38: end for
39: . Aggregate results from multiple imputation

40: Compute �nal coe�cient estimates β̂k ← 1
H

∑H
h=1 β̂

{h}
k , k = 0, . . . , D− 1 + P

41: Compute average within-imputation variances ζ̂k ← 1
H

∑H
h=1 φ̂

{h}
k ,

k = 0, . . . , D − 1 + P

42: Compute between-imputation variances ξ̂k ← 1
H−1

∑H
h=1

(
β̂
{h}
k − β̂k

)2
,

k = 0, . . . , D − 1 + P

43: Compute variance estimates φ̂k ← ζ̂k +
H+1
H
ξ̂k, k = 0, . . . , D − 1 + P

44: return Coe�cient estimates (β̂0, . . . , β̂D−1+P )
> and corresponding variance

estimates (φ̂0, . . . , φ̂D−1+P )
>
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4.2 Weighted pivot coordinates for a regression task

with high-dimensional compositional data

The method presented here extends previous work in PLS modelling

with compositional data by using weighted pivot coordinates (Section 2.4) in-

stead of the ordinary ones with a newly introduced weighting strategy aiming

to enhance the identi�cation of markers (�tefelová et al., 2021b). This is achieved

by de�ning weights which focus on the correlation structure between a real-valued
response variable and pairwise logratios aggregated into the �rst pivot coordinate
in order to downplay the e�ect of irrelevant logratios and enhance the most rele-
vant ones in relation to the outcome variable.

In order to make a sensible choice of weights for a regression purpose, we must
�rst determine what we understand as a marker in our context. We aim for a com-
positional part to be identi�ed as a marker if a relatively signi�cant number
of pairwise logratios including that part are strongly associated with the response
variable Y . Moreover, considering the pairwise logratios where the part of inte-

rest is in the numerator, that strong association should be (possibly with a few

exceptions) in one direction, either positive or negative.

Accordingly, we propose to construct weighted pivot coordinates (3) using

weights γ(l)d , d = 2, . . . , D, l = 1, . . . , D, de�ned as follows:

γ
(l)
d =

γ̃
(l)
d∑D

d=2 γ̃
(l)
d

, (6)

with

γ̃
(l)
d =

∣∣∣∣∣
∫ r

(l)
d

0

f̂ (l)(λ) dλ

∣∣∣∣∣ , r
(l)
d = cor

(
Y, ln

x
(l)
1

x
(l)
d

)
,

f̂ (l)(λ) =
1

ν(D − 1)

D∑
d=2

K

(
λ− r̃(l)d
ν

)
, r̃

(l)
d =

{
0, if

∣∣∣r(l)d ∣∣∣ < o(l),

r
(l)
d , otherwise,

o(l) = 2×min

(∑D
d=2 I(r

(l)
d ≥ 0)

D − 1
,

∑D
d=2 I(r

(l)
d < 0)

D − 1

)
,

where f̂ is a kernel density estimator, K is a Gaussian kernel function (de�ned
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as K(λ) = 1√
2π
e−

1
2
λ2), ν (set to ν = 0.05) is the bandwidth used and I is an in-

dicator function.

Thus, for the lth part, rearranged into the �rst position as x(l)1 , the set

of correlations r(l)2 , . . . r
(l)
D is smoothed using kernel density estimation (Everitt and

Hothorn, 2011), with the correlations under the given threshold being set to zero

in order to estimate the density, and the weight γ̃(l)d is computed as the area under

the curve from zero to the value of the correlation r(l)d . The rationale behind this

weighting scheme is to minimise the in�uence of logratios that are not related
to the response Y , so that higher weights are given to logratios strongly corre-
lated to Y . Among these, the procedure emphasises those logratios representing

the main trend in the distribution of r(l)2 , . . . r
(l)
D by using a kernel density. In order

to prevent from false positives, correlations with absolute value smaller than a cut-

o� value o(l) are set to zero when conducting kernel density estimation. The value

of o(l) modulates the e�ect of the weighting, which is downplayed with increasing

values of o(l). Therefore, the value given to o(l) is higher when there is no clear
trend in the distribution of the correlations and vice versa. For instance, when

all correlations are positive, then o(l) = 0, the density is estimated from the unal-
tered set of correlations and, as a consequence, the logratios strongly correlated
with Y are highlighted. On the other hand, when half of the correlations are posi-

tive and half are negative, then o(l) = 1, and all correlations are taken to be zero
for the density estimation. Thus, the value of the area under the curve from 0

to r(l)d is practically the same for any d (apart from the cases where r(l)d are the clo-

sest to 0), so only logratios very weakly correlated with Y are suppressed, while

the rest are treated equally. The �nal normalised weight results from dividing

each γ̃(l)d by the sum of all of them.

4.3 Pivoting balances and their use with movement beha-

viour compositions

Speci�c feature of movement behavior (time-use) compositions is their ordi-

nal character. In case of wake-time compositions WMB = (SB, LPA, MPA, VPA),

the parts (standing for sedentary behavior, light, moderate and vigorous physical
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activity) are thus placed in ascending order according to their intensity. With 24-

hour compositions MB = (Sleep, SB, LPA, MPA, VPA), the situation is a little

more complicated � particularly when assessing the relationship between the MB
composition and health outcomes. For it is generally accepted that a higher he-
alth bene�t is obtained from more physically demanding activities, but the role
of sleep is less clear.

Therefore for the representation of time-use composition we propose so-called

pivoting balances (�tefelová et al., 2021c). These combine ideas behind balances

(Section 2.2) and pivot coordinates (Section 2.3). They result from L balance

coordinate systems in which a balance of interest is isolated in the �rst coordinate.

In case of WMB, L = 3 sets of coordinates
(
b
(l)
1 , b

(l)
2 , b

(l)
3

)>
, l = 1, 2, 3 are

considered. In the �rst system, SB is set against the remaining (active) parts

in the initial partition. In the following systems, the initial subgroup consis-
ting of SB is subsequently accompanied by the other activities from the least
to the most intense. Thus, the three �rst balances of interest have a symbo-
lic notation SB_LPA.MPA.VPA, SB.LPA_MPA.VPA and SB.LPA.MPA_VPA.
Table 1 illustrates an exemplary SBP to obtain the required set of balances. Note
that the reciprocal balances, i.e. swapping the subsets of behaviors in the logratio,
di�er only by the sign. So in fact, the three �rst balance coordinates provide
information also about the balances LPA.MPA.VPA_SB, MPA.VPA_SB.LPA
and VPA_SB.LPA.MPA. As for the interpretation, e.g. SB.LPA_MPA.VPA is
a contrast of time spent in the two least physically demanding activities against
the two most intense activities.

In case of MB, L = 7 sets of coordinates
(
b
(l)
1 , b

(l)
2 , b

(l)
3 , b

(l)
4

)>
, l = 1, . . . , 7 are

considered. In the �rst system, sleep is set against the remaining parts in the ini-
tial partition. In the following systems, the initial subgroup consisting of sleep
is subsequently accompanied by the other activities from the least to the most
intense; and vice versa, sleep is subsequently accompanied by the other activities
from the most to the least intense. With the aim of examining the whole
24-hour behavior pattern, in each system we focus only on the �rst balance
involving all �ve parts, i.e. on the pivoting balances with symbolic notation
Sleep_SB.LPA.MPA.VPA, Sleep.SB_LPA.MPA.VPA, Sleep.SB.LPA_MPA.VPA,
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Table 1: Examplary SBP for WMB composition which results in the required
pivoting balance systems with the (�rst) balance of interest as noted in the capti-
ons. Parts chosen for the numerator and denominator of the jth balance are coded
+ and −, respectively; 0 indicates that the part is not included in the respective
balance.

j x1 x2 x3 x4 rj sj

1 + − − − 1 3

2 0 + − − 1 2

3 0 0 + − 1 1

(a) SB_LPA.MPA.VPA

j x1 x2 x3 x4 rj sj

1 + + − − 2 2

2 + − 0 0 1 1

3 0 0 + − 1 1

(b) SB.LPA_MPA.VPA

j x1 x2 x3 x4 rj sj

1 + + + − 3 1

2 + − − 0 2 1

3 0 + − 0 1 1

(c) SB.LPA.MPA_VPA

Sleep.SB.LPA.MPA_VPA, Sleep.VPA_SB.LPA.MPA, Sleep.MPA.VPA_SB.LPA,

Sleep.LPA.MPA.VPA_SB (and the corresponding reciprocals). Table 2 illustrates

an exemplary SBP to obtain the required set of balances. As for the interpre-
tation, e.g. the balance Sleep_SB.LPA.MPA.VPA compares time spent in sleep
relative to waking-time behaviors, Sleep.SB_LPA.MPA.VPA is a contrast
of time spent in non-active behaviors against physical activities, and so on.

Further, as demonstrated in �tefelová et al. (2021c), pivoting balances and

their implementation into an adapted formulation of compositional PLS bi-
plot can be used to facilitate a synthetic and meaningful graphical display
of compositions and their relationships with outcome variables. The main idea
behind the construction of such a PLS biplot is to display only loadings corre-

sponding to the �rst balance from each coordinate system (possibly together

with the loadings from their reciprocals), and the loadings corresponding to non-

compositional variables, similarly to the case for PCA biplots (Kyn£lová et al.,

2016). (Scores are taken from any given coordinate system as these are invariant

to the speci�c choice of balances).
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Table 2: Examplary SBP for MB composition which results in the required pivo-
ting balance systems with the (�rst) balance of interest as noted in the captions.
Parts chosen for the numerator and denominator of the jth balance are coded +
and −, respectively; 0 indicates that the part is not included in the respective
balance.

j x1 x2 x3 x4 x5 rj sj

1 + − − − − 1 4

2 0 + − − − 1 3

3 0 0 + − − 1 2

4 0 0 0 + − 1 1

(a) Sleep_SB.LPA.MPA.VPA

j x1 x2 x3 x4 x5 rj sj

1 + + − − − 2 3

2 + − 0 0 0 1 1

3 0 0 + − − 1 2

4 0 0 0 + − 1 1

(b) Sleep.SB_LPA.MPA.VPA

j x1 x2 x3 x4 x5 rj sj

1 + + + − − 3 2

2 + − − 0 0 1 2

3 0 + − 0 0 1 1

4 0 0 0 + − 1 1

(c) Sleep.SB.LPA_MPA.VPA

j x1 x2 x3 x4 x5 rj sj

1 + + + + − 4 1

2 + − − − 0 1 3

3 0 + − − 0 1 2

4 0 0 + − 0 1 1

(d) Sleep.SB.LPA.MPA_VPA

j x1 x2 x3 x4 x5 rj sj

1 + − − − + 2 3

2 + 0 0 0 − 1 1

3 0 + − − 0 1 2

4 0 0 + − 0 1 1

(e) Sleep.VPA_SB.LPA.MPA

j x1 x2 x3 x4 x5 rj sj

1 + − − + + 3 2

2 + 0 0 − − 1 2

3 0 0 0 + − 1 1

4 0 + − 0 0 1 1

(f) Sleep.MPA.VPA_SB.LPA

j x1 x2 x3 x4 x5 rj sj

1 + − + + + 4 1

2 + 0 − − − 1 2

3 0 0 + − − 1 2

4 0 0 0 + − 1 1

(g) Sleep.LPA.MPA.VPA_SB
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5 Original results and summary

This thesis contributes novel methods for the processing of data in biosta-
tistics that are of compositional nature, i.e. data conveying relative information.
The speci�c features of compositions call for an adequate approach to their statis-
tical analysis. The logratio methodology is used for their proper statistical treat-

ment. The application of the developments is demonstrated in time-use (physical)

and livestock greenhouse gas emission research. Additionally, the work conducted
during this Ph.D. project contributed new scienti�c insights through a number
of interdisciplinary collaborations.

First, a new method for compositional regression that is robust against
cellwise and rowwise outliers was introduced. Cellwise outliers are �rst �ltered
and then imputed by robust estimates. Afterwards, rowwise robust compositio-
nal regression using a multiple imputation scheme is performed to obtain model
coe�cient estimates. An application to bio-environmental data relating biologi-

cal processes in livestock rumen with methane emissions (not included in this

summary) revealed that the proposed procedure (compared to other regression

methods) leads to conclusions that are best aligned with established scienti�c

knowledge. An extensive simulation study (not included in this summary) shows

that the procedure generally outperforms a traditional rowwise-only robust re-

gression method (MM-estimator). Moreover, our procedure yields better or com-

parable results to recently proposed cellwise robust regression methods (shooting

S-estimator, 3-step regression) while it is preferable for interpretation through

the use of appropriate coordinate systems for compositional data.

Next, a new weighting strategy for the construction of weighted pivot coor-
dinates was proposed. Designed to improve PLS-based marker discovery in high-
dimensional compositional data, it draws on the correlation between response
variable and pairwise logratios aggregated into the �rst coordinate. The illustra-
tive application to investigate the association between ruminal high-throughput

metabolite signals and methane emission in cattle (not included in this summary)

extended the study in Section 4.1 to the high-dimensional case. It demonstrated
the practical relevance and potential of the proposed approach, providing results
compatible with previous knowledge along with a higher sensitivity to identify

meaningful markers. A simulation study (not included in this summary) pro-
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vided additional evidence that this proposed logratio coordinate representation
enhances the discovery of markers, although it results in slightly worse speci�city.

Finally, the compositional approach within time-use epidemiology was stu-
died. Proper coordinate representation for movement behavior data was discus-

sed given the ordinal character (in terms of physical intensity) of daily activities.

In the �rst application (not included in this summary), wake-time movement be-

havior data were examined via robust linear regression and visualization tools
such as compositional mean barplots and ternary diagrams. The second appli-

cation (not included in this summary) demonstrated how an adapted version

of compositional PLS regression and biplot based on the newly introduced con-
cept of pivoting balances could be employed to evaluate the association between
24-hours behavior patterns and a health marker.

All computation in this work were performed within the R en-

vironment for statistical computing (R Core Team, 2021). The rela-

ted codes are available at https://github.com/aalfons/lmcrCoda, https:

//github.com/StefelovaN/Weighted-pivot-coordinates, https://github.

com/StefelovaN/Robust-CoDA-WMB and https://github.com/StefelovaN/

Balance-based-PLS-biplot.
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