

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

Bachelor Thesis

Web Scraping Methodologies for Image Dataset

Creation: A motorcycle Imagery Case Study

Artem Gubin

© 2024 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
Artem Gubin

Informa cs

Thesis tle

Web Scraping Methodologies for Image Dataset Crea on: A motorcycle Imagery Case Study

Objec ves of thesis
The main objec ve of this thesis is to comprehensively analyse web scraping methodologies and
techniques, culmina ng in the development of a motorcycle image dataset divided into classes by
manufacturer, model, and years of produc on as a prac cal case study.
Par al objec ves:
• Study of Web Scraping Tools and Techniques. To select and analyse various tools and techniques
suitable for web scraping.
• Challenges in Web Scraping. To iden fy, analyse, and address the various challenges encountered in the
process of web scraping.
• Legal and Ethical Considera ons. To inves gate the legal implica ons and ethical considera ons
associated with web scraping.
• Scalability Strategies. To explore and propose strategies for scaling web scraping processes, focusing on
improving data extrac on rates and managing larger data volumes.
• Evalua on of Scraped Images. To evaluate the quality and comprehensiveness of scraped images for the
dataset.
• Motorcycle Image Dataset Crea on. To apply the studied web scraping methodologies by crea ng
a categorized dataset detailing the make, model, and years.

Methodology

The methodology of the thesis is divided into two main parts: theore cal and prac cal.

The theore cal part will primarily involve a comprehensive examina on and analysis of professional and
scien fic literature. This includes examining various web scraping tools, frameworks, and techniques, as
well as understanding the legal and ethical implica ons of web scraping. The compara ve analysis of dif-
ferent methodologies will be crucial to iden fy the most efficient tools for image dataset crea on, with
a special focus on scalability and handling large volumes of data.

The prac cal part will be focused on applying theweb scraping techniques explored in the theore cal study
to create a motorcycle image dataset. This process will involve se ng up a scalable web scraping system to
collect images from diverse online resources, ensuring that images are categorized by their manufacturer,
model, and years of produc on. Following the data gathering, an evalua on of the dataset’s quality and
comprehensiveness will be conducted in order to ensure its relevance and u lity for poten al applica ons.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
30-40 pages

Keywords
Keywords:WebScraping, ImageDataset, VehicleMake andModel Recogni on (VMMR),Motorcycle dataset,
Selenium, Beau ful Soup, YOLO, Data Filtra on.

Recommended informa on sources
Heydt, Michael. Python Web Scraping Cookbook: Over 90 Proven Recipes to Get You Scraping with

Python, Microservices, Docker, and AWS. Packt Publishing, 2018. ISBN 978-1787285217
Mitchell, Ryan. Web Scraping with Python: Collec ng More Data from the Modern Web. 2nd edi on.

O’Reilly Media, Inc., 2018. ISBN 978-1491985571
Vanden Broucke, Seppe; Baesens, Bart. Prac cal Web Scraping for Data Science: Best Prac ces and

Examples with Python. 1st edi on. Apress Berkeley, CA, 2018. ISBN 978-1-4842-3581-2

Expected date of thesis defence
2023/24 SS – PEF

The Bachelor Thesis Supervisor
Ing. Mar n Pelikán, Ph.D.

Supervising department
Department of Informa on Engineering

Electronic approval: 16. 2. 2024

Ing. Mar n Pelikán, Ph.D.
Head of department

Electronic approval: 16. 2. 2024

doc. Ing. Tomáš Šubrt, Ph.D.
Dean

Prague on 15. 03. 2024

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

Declaration

I declare that I have worked on my bachelor thesis titled "Web Scraping

Methodologies for Image Dataset Creation: A motorcycle Imagery Case Study" by myself

and I have used only the sources mentioned at the end of the thesis. As the author of the

bachelor thesis, I declare that the thesis does not break any copyrights.

In Prague on March 15, 2024 ___________________________

Acknowledgement

I would like to thank my supervisor, Ing. Martin Pelikán, Ph.D., for his guidance

and support, and extend my special heartfelt appreciation to my consultant, Ing. Martin

Čejka, for his exceptional mentorship, dedicated time, insightful instructions, and constant

encouragement. His support was a key factor in the successful completion of this bachelor

thesis.

4

Web Scraping Methodologies for Image Dataset

Creation: A motorcycle Imagery Case Study

Abstract

This thesis investigates the methods and techniques of web scraping and

subsequently applies them in the creation of a structured dataset of images for future

computer vision tasks. The work is divided into theoretical and practical parts.

The theoretical part describes the objectives of web scraping and provides a

thorough analysis of its tools and techniques. Furthermore, it addresses the current

challenges of web scraping, including its technical, ethical, and legal aspects, and provides

an in-depth discussion of these issues.

The practical part demonstrates the application of these methodologies, supported

by tools like Selenium and Beautiful Soup, for collecting and processing an image dataset

of motorcycles. This process involves developing scrapers, integrating them into a general

scraping system, scaling the system, and using neural network filtering to ensure data

quality. The final compiled dataset, categorized by manufacturer, model, and years of

production, showcases the practical use of web scraping tools for Vehicle Make and Model

Recognition (VMMR) tasks. Nevertheless, in summary, the thesis emphasizes the

significant potential of employing web scraping methods for the creation of datasets in the

field of computer vision tasks.

Keywords: Web Scraping, Image Dataset, Vehicle Make and Model Recognition

(VMMR), Motorcycle dataset, Selenium, Beautiful Soup, YOLO, Data Filtration.

5

Metodiky web scrapingu pro tvorbu obrazových

datasetů: Případová studie motocyklových obrázků

Abstrakt

Tato práce zkoumá metody a techniky web scrapingu, které následně aplikuje při

tvorbě strukturovaného datasetu obrázků pro budoucí úlohy počítačového vidění. Práce je

rozdělena na teoretickou a praktickou část.

Teoretická část popisuje cíle web scrapingu a poskytuje důkladnou analýzu jeho

nástrojů a technik. Dále teoretická část otevírá téma aktuálních výzev web scrapingu,

zahrnující technické, etické a právní aspekty, a podrobně popisuje cíle a specifické výzvy

této oblasti.

Praktická část demonstruje aplikaci těchto metod s podporou nástrojů Selenium a

Beautiful Soup pro sběr a zpracování obrazového datasetu motocyklů. Proces zahrnuje

vývoj scrapovacích nástrojů, jejich integraci do obecného systému scrapingu, škálování

systému a použití filtrace neuronových sítí pro zajištění kvality dat. Finální zkompilovaný

dataset, kategorizovaný podle výrobce, modelu a roků výroby, prezentuje praktické využití

nástrojů web scraping pro úlohy Rozpoznávání značek a modelů vozidel (VMMR).

Obecně však práce poukazuje na potenciál využití metod web scrapingu při tvorbě datasetu

pro úlohu počítačového vidění.

Klíčová slova: Web Scraping, Obrazový Dataset, Rozpoznávání Značek a Modelů Vozidel

(VMMR), Dataset Motocyklů, Selenium, Beautiful Soup, YOLO, Filtrace Dat.

6

Table of Contents

1 Introduction .. 9

2 Objectives and Methodology .. 10

2.1 Objectives ... 10

2.2 Methodology ... 10

3 Literature Review ... 12

3.1 Overview of Web Scraping ... 12

3.1.1 History of Web Scraping .. 12

3.1.1.1 Early Development (Late 1990s – Early 2000s) 13

3.1.1.2 Technological Advancements (Mid-2000s) 13

3.1.1.3 Integration with Big Data and AI (2010s – Present) 14

3.2 Web Scraping Tools and Techniques .. 15

3.2.1 Web Scraping Techniques .. 15

3.2.1.1 Manual Scraping ... 15

3.2.1.2 HTML parsing .. 16

3.2.1.3 DOM parsing .. 16

3.2.1.4 XPath parsing ... 18

3.2.1.5 API scraping ... 21

3.2.2 Web Scraping Tools ... 22

3.2.2.1 Beautiful Soup .. 22

3.2.2.2 Selenium ... 26

3.2.2.3 Scrapy .. 27

3.3 Web Scraping Challenges ... 29

3.3.1 Dynamic Content ... 29

3.3.2 Targeted Anti-Scraping Measures .. 30

3.3.2.1 CAPTCHA ... 30

3.3.2.2 IP Rate Limiting & IP Rotation ... 31

3.3.2.3 Honeypot Traps .. 33

3.3.2.4 Behavioural Patterns ... 33

3.3.2.5 Technical indicators .. 34

3.4 Legal & Ethical Considerations ... 36

3.4.1 Legal Aspects of Web Scraping: .. 36

3.4.1.1 Terms of Use .. 36

3.4.1.2 Copyrighted Material .. 37

7

3.4.1.3 Trespass to chattels ... 37

3.4.2 Ethical Aspect of Web Scraping ... 37

3.4.2.1 Robots.txt.. 38

3.4.2.2 Potential damage ... 38

3.4.2.3 Privacy Concerns .. 38

4 Practical Part .. 40

4.1 Motivation and Goals .. 40

4.2 Data Analysis & Data Source .. 41

4.2.1 Data analysis .. 41

4.2.2 Data list preparation ... 41

4.2.3 Data source .. 42

4.3 Web Scraping System Planning ... 43

4.4 First scrapers ... 45

4.4.1 Static nature scrapers .. 45

4.4.1.1 Links Scraper .. 45

4.4.1.2 Image Scraper ... 47

4.4.2 Dynamic nature scrapers .. 48

4.4.3 Evaluation of scrapers .. 51

4.5 Scalability and Optimization ... 51

4.5.1 Scrapers orchestration .. 52

4.5.2 Orchestrated scraping system evaluation .. 56

4.5.3 “Raw” dataset creation ... 57

4.6 Data Quality & Filtration ... 57

4.6.1 Manual filtration .. 58

4.6.2 Automated filtration ... 58

4.6.2.1 Classify model creation ... 59

4.6.2.2 Wrapping model.. 62

4.7 Data Storage & Final Dataset .. 64

4.7.1 Cloud storage ... 64

4.7.2 Relational Database Approach.. 65

4.7.3 File System Storage.. 66

4.7.4 Database Implementation ... 66

4.7.5 Final Dataset Creation .. 68

5 Results and Discussion .. 71

5.1 Results .. 71

5.1.1 Web Scraping Methodology and Implementation 71

5.1.2 Developed Scraping & Filtration System .. 71

8

5.1.3 Compiled dataset ... 72

5.2 Discussions ... 73

5.2.1 Insights on the Developed Scraping System ... 73

5.2.2 Data Quality and Filtering .. 73

5.2.3 Reflections on the Compiled Dataset .. 74

6 Conclusion .. 76

7 References ... 77

8 List of pictures, tables, source codes, equations, and abbreviations 82

8.1 List of figures.. 82

8.2 List of tables ... 82

8.3 List of source codes .. 82

8.4 List of equations ... 83

8.5 List of abbreviations ... 83

9

1 Introduction

In the era of digitalization, the huge volume of data available online offers

unparalleled opportunities and challenges. Among these, the extraction and utilization of

visual content, particularly images, are crucial in numerous domains, from academic

research to commercial applications. Web scraping, a technique used for extracting data

from websites, has become an essential tool for gathering information in an efficient and

automated manner. The utility of web scraping extends across a diverse range of sectors,

encompassing banking and finance, marketing, socio-political analysis, research and

academics, cyber security, healthcare, and many more [29][47][20].

The advent of web scraping has completely transformed the methods we use to gather

and analyse visual data. Targeted image datasets have gained significant value in

specialized domains like automotive analysis. These datasets are used for numerous

purposes, including make & model recognition [28], market trend analysis, and consumers

experience analysis [21]. The creation of a specialized motorcycle image dataset

exemplifies this trend, showcasing the effectiveness of web scraping in collecting and

classifying images based on specific criteria like manufacturer, model, and years.

However, the process of web scraping, specifically for creating a comprehensive and

organized image dataset, is filled with challenges. These encompass not only the technical

aspects of extracting and managing large volumes of data, but also navigating the complex

legal and ethical landscape related to digital information. The delicate equilibrium between

the accessibility of data and respect for intellectual property and privacy rights is a crucial

factor to consider in the web scraping process.

This thesis aims to explore the methodologies and techniques of web scraping, with a

specific focus on its application in building a structured image dataset. This study aims to

provide significant insights into the effective utilization of web scraping in modern data

collection and analysis. This will be accomplished by studying a variety of tools and

frameworks, as well as addressing the legal, ethical, and technical problems that are

involved.

10

2 Objectives and Methodology

2.1 Objectives

The main objective of this thesis is to comprehensively analyse web scraping

methodologies and techniques, culminating in the development of a motorcycle image

dataset divided into classes by manufacturer, model, and years of production as a practical

case study.

Partial objectives:

 Study of Web Scraping Tools and Techniques. To select and analyse various tools

and techniques suitable for web scraping.

 Challenges in Web Scraping. To identify, analyse, and address the various

challenges encountered in the process of web scraping.

 Legal and Ethical Considerations. To investigate the legal implications and ethical

considerations associated with web scraping.

 Scalability Strategies. To explore and propose strategies for scaling web scraping

processes, focusing on improving data extraction rates and managing larger data

volumes.

 Evaluation of Scraped Images. To evaluate the quality and comprehensiveness of

scraped images for the dataset.

 Motorcycle Image Dataset Creation. To apply the studied web scraping

methodologies by creating a categorized dataset detailing the make, model, and

years.

2.2 Methodology

The methodology of the thesis is divided into two main parts: theoretical and

practical.

The theoretical part will primarily involve a comprehensive examination and

analysis of professional and scientific literature. This includes examining various web

scraping tools, frameworks, and techniques, as well as understanding the legal and ethical

implications of web scraping. The comparative analysis of different methodologies will be

crucial to identify the most efficient tools for image dataset creation, with a special focus

on scalability and handling large volumes of data.

11

The practical part will be focused on applying the web scraping techniques explored in

the theoretical study to create a motorcycle image dataset. This process will involve setting

up a scalable web scraping system to collect images from diverse online resources,

ensuring that images are categorized by their manufacturer, model, and years of

production. Following the data gathering, an evaluation of the dataset’s quality and

comprehensiveness will be conducted in order to ensure its relevance and utility for

potential applications.

12

3 Literature Review

3.1 Overview of Web Scraping

Web scraping, also known as web harvesting or web data extraction, is the process of

using automated tools to extract large volumes of data from websites [29][47][39]. This

process involves an automated program querying a web server, requesting data in the form

of HTML (HyperText Markup Language) or other files that comprise a web page, and then

parsing this data to extract the necessary information [29]. Web scraping is more than just

data retrieval; it’s a complex process of automating interactions with web browser,

mimicking human browsing patterns but on a significantly accelerated and more effective

level.

This automated process is crucial in various domains, allowing for the rapid and

systematic collection of data. Web scrapers navigate through web pages, identify needed

content, and extract it in a structured format. This approach is especially effective for

collecting data that is often updated or distributed across multiple web pages.

The scope of web scraping extends to numerous applications, ranging from business

intelligence and market research to academic research and journalism. For instance, in the

business sector, companies use web scraping to continuously analyse competitors pricing

strategies and collect consumer feedback from social media and review platforms [20].

To summarize, web scraping is a vital and complex process that has an important

impact in diverse fields. This section of the thesis aims to explore the myriad challenges it

presents, encompassing ethical, legal, and technical aspects. Understanding these

complexities is essential for grasping the technique’s full potential and implications.

3.1.1 History of Web Scraping

Web scraping has evolved significantly alongside the web itself. This progress

reflects the advancements in web technologies, addressing the complexities of data

management and privacy. In this section, we'll look at a brief history of web scraping from

its early days to the present and how this practice has changed.

13

3.1.1.1 Early Development (Late 1990s – Early 2000s)

Web scraping emerged alongside the early stages of the World Wide Web. Three

key features of the World Wide Web played a crucial role in web scraping process

development:

 URLs (Uniform Resource Locators). URLs are the addresses used to access

web pages. URLs provide a standardized way to find resources on the

internet, such as images, files, and web pages. In web scraping, URLs play a

key role as they define specific locations from which the necessary data needs

to be retrieved.

 Hyperlinks. Hyperlinks are references or links leading from one page to

another. In the context of web scraping, hyperlinks are crucial for navigating

through various pages to systematically collect data from multiple sources.

 Web pages. A web pages are the documents written in HTML, containing

various types of data like text, images, and multimedia. Web scrapers analyse

these pages to extract relevant data, highlighting the ability to process and

interpret the content of web pages fundamental to web scraping.

In the early days, data extraction techniques were basic and typically required

manual processing and simple scrips for parsing HTML. During this period, the

groundwork for automated web scraping was established through the creation of early

automatising tools. These technologies were fundamental yet essential for laying the

foundation for future innovations, with a primary focus on extracting text from static web

pages.

3.1.1.2 Technological Advancements (Mid-2000s)

The mid-2000s marked a turning point for standard web scraping techniques. This

period was characterized by the significant growth of technologies such as JavaScript and

AJAX [50], which significantly changed the way content was loaded and displayed on web

pages, making them more dynamic and introducing a more complex architecture. Thus,

basic parsing tools capable of parsing static HTML have become less effective. Despite

this, it was during this time that tools such as Beautiful Soup and Scrapy emerged.

Beautiful Soup is a library for the Python programming language that was created to

simplify the parsing of HTML and XML documents. Similarly, Scrapy, an open-source

Python framework, was created for data extraction from websites. While both tools

14

excelled at handling static content, they were not inherently equipped to manage dynamic

content. A deeper examination of these tools, focusing on their roles and limitations in web

scraping, will be presented in subsequent sections of this thesis.

As the web continued to evolve, particularly with the increasing use of JavaScript

and AJAX, it became clear that more advanced techniques for scraping dynamic content

were required. This led to the adoption of tools like Selenium, which could automate web

browsers to interact with dynamic web elements, enabling the extraction of content that

traditional scraping tools couldn't access.

3.1.1.3 Integration with Big Data and AI (2010s – Present)

The exponential growth of data in recent years has significantly impacted the field

of web scraping. According to Statista [42], the amount of data generated annually has

been consistently growing since 2010. From 2 zettabytes in 2010 (1 zettabyte is equal to

1,000,000,000 terabytes), this figure has grown approximately by 60 times, reaching 120

zettabytes in 2023. Furthermore, as indicated in Figure 1, this rapid expansion in data

generation is expected to continue with an expected 181 zettabytes in 2025.

Figure 1. Amount of data generated worldwide. Source: [42]

15

With the integration of big data and AI, the field of web scraping experienced

changes, entering a new era. AI, especially through the use of machine learning techniques,

has enhanced the capabilities of web scraping tools, enabling them to extract valuable data

more easily. Machine learning algorithms have improved the precision of data extraction

from various web sources, including those with unstructured formats [13].

Alongside these advancements, the incorporation of Natural Language Processing

(NLP) may serve as another example of machine learning integration into web scraping

[13][29]. Using NLP can help when pages are not only structurally complex but also

semantically rich. In such cases, this method can play an important role in extracting and

interpreting the multi-level meanings and contexts found in text data. This approach can be

useful in a wide range of applications. For example, NLP can be used for the extraction of

data from speech transcriptions in forums, email messages, newspapers, articles, resumes,

etc. [13]

3.2 Web Scraping Tools and Techniques

This section of the thesis is dedicated to exploring the fundamental aspects of web

scraping. The primary objectives of this section are twofold: firstly, to conduct an

extensive analysis of various web scraping techniques, including manual parsing, HTML

parsing, DOM parsing, XPath, and the use of APIs. Secondly, to thoroughly examine key

tools for web scraping such as Selenium, Beautiful Soup, and Scrapy. By examining these

techniques and tools, the sections seek to provide a thorough understanding of the

complexities and efficiencies in the web scraping process.

3.2.1 Web Scraping Techniques

3.2.1.1 Manual Scraping

Although the term “web scraping” is most commonly defined as an automated

process for data collection without user manual interaction [29][47][39], a number of

studies designate the manual copy-pasting method as a valid web scraping technique

[26][20].

Manual scraping is typically executed by copying and pasting data into a local file,

such as a spreadsheet. This technique is simple and straightforward, but it requires

16

attention to the details and a user who must manually navigate through web pages, identify

relevant data, and manually extract it. This technique is usually used in cases where:

 The amount of necessary data to collect is minimal.

 On websites where automated tools struggle due to the complex design of the

website or security measures.

 In cases where a high level of accuracy is required and there is a risk of errors with

automated processes.

3.2.1.2 HTML parsing

HTML parsing in web scraping is an essential technique used for extracting

information from web sites. HyperText Markup Language serves as a standard markup

language for creating and structuring web pages and web applications. A webpage consists

of a sequence of elements, indicated by tags, that determine the structure and styling of the

content [47]. Knowledge of HTML parsing is crucial for web scraping since it allows the

extraction and manipulation of data from these elements.

The process usually starts by fetching the target webpage’s HTML code, often

using HTTP requests. The next step involves using specialized libraries, which will be

explored in details later in this chapter of the thesis. These libraries parse HTML,

converting it into a structured, navigable format, enabling precise navigation and extraction

of data based on specific tags, attributes, and their hierarchical relationships.

However, HTML parsing has its own limitations, especially when dealing with

asynchronous dynamic content. In such cases, HTML retrieved via standard HTTP

requests might not contain all the data visible after rendering in a web browser. Such

complexities highlight the need for a good understanding of both static and dynamic

content handling.

3.2.1.3 DOM parsing

The Document Object Model (DOM) is the concept developed and standardized by

the World Wide Web Consortium (W3C). DOM presents a web page as a hierarchical tree

structure, and this structure is central to understanding and manipulating the content of a

web page, especially when dealing with dynamic content.

The key component of DOM parsing lies in its approach to web page interpretation.

Unlike traditional methods that rely on the static HTML, DOM parsing involves the use of

17

a functional web browser or browser-like environment [26][20][16]. Such a setup allows

for the execution of client-side scripts, which are usually responsible for generating

dynamic content on the webpage. Therefore, the resultant DOM tree includes not only the

basic HTML elements, but also any content generated or modified by these scripts.

Central to this technique are tools like Selenium or Puppeteer, which simulate the

functionality of web browsers. These tools are designed to render web page and run

embedded scripts, thereby creating a DOM tree that represents the final content as it

appears to end-users. This approach allows for the retrieval of data that would otherwise be

unattainable through the basic HTML parsing described in 3.2.1.2. Although these tools

are briefly mentioned here, a more comprehensive examination of their capabilities and

applications will be presented later in this chapter, providing a more detailed overview of

their roles in the web scraping process.

Building upon this, the role of browser developer tools becomes clear. These

integrated into browser tools provide developers with a real-time view of the DOM [16]

and how it changes in response to user interactions and script executions. Figure 2, viewed

through developer tools in a web browser Chrome, exemplify the use of such tools. On the

figure, we can see a series of thumbnail images within a gallery on the ČZU Faculty of

Economics and Management news article web page. Upon clicking one of these

thumbnails, Figure 3 illustrates the changes made to the DOM: a lightbox component has

been added to the layout, including an enlarged image that is positioned in the middle of

the viewport. The new element is dynamically inserted and accompanied by style

alterations, including adjustments to the z-index and visibility values. These alterations

demonstrate the interactive features of DOM, facilitated by JavaScript, and illustrate the

kind of dynamic content manipulation that must be considered in the web scraping process.

18

Figure 2. DOM Tree of ČZU website before user interaction. Source: own.

Figure 3. DOM Tree of ČZU website after user interaction. Source: own

3.2.1.4 XPath parsing

“XPath (short for XML Path) is a query language used for navigating and selecting

portions of an XML document. Founded by the W3C in 1999, it is occasionally used in

languages such as Python, Java, and C# when dealing with XML documents.” [29]

Looking at the name, one can assume that this is a technique for XML documents,

however, it is also applicable to HTML documents [26]. Fundamentally, XPath operates on

four core concepts [29]:

 Node selection. Node is an individual element or attribute in the XML or HTML

document hierarchy, identifiable by tags or properties, and XPath differentiates

between root and non-root nodes. As an example, ‘/div’ targets a div node at the

document’s root, but ‘//div’ selects all div nodes regardless of their position.

19

 Attribute selection. XPath allows to isolate nodes based on their attributes, such as

selecting nodes with ‘src’ attribute, which specifies the path of the resource file.

 Positional selection. XPath allows to select nodes according to their position in the

document.

 Wildcard Selection. Using the asterisk XPath enables the selection of various

characters or nodes, enhancing the flexibility in targeting elements.

XPath parsing shares similarities with DOM parsing in terms of navigation a

document’s structure. However, while DOM parsing engages with the entire document’s

tree structure through a browser or browser-like environment, XPath takes a more targeted

approach, querying specific elements within a tree for greater precision.

This parsing technique is conducted by creating an expression that precisely locates

and extracts elements within HTML or XML and such a process is typically executed via

web scraping tools like Selenium or Scrapy [47].

As a practical example, it is demonstrated how the names of products in the ČZU

shop, presented in Figure 4, can be extracted using an XPath query. In the figure, it can be

seen that each product is contained within a ‘<div>’ element classed as ‘product’ and the

product name itself is nested within a ‘’ tag tagged with a ‘data-micro=’name’’

attribute. In order to extract the names of products, the XPath expression

‘//div[@class='product']//span[@data-micro='name']/text()’ can be utilized, where

 ‘//’ indicates that the search should consider entire document.

 ‘div[@class='product']’ targets ‘div’ elements with class having ‘product’ as

value.

 ‘span[@data-micro='name']’ similar to previous targets ‘span’ elements with

attribute ‘data-micro’ having ‘name’ value.

 ‘/text()’ selects the text nodes of the ‘span’ elements children.

However, executing this query directly in a browser’s console will result in a

NodeList consisting of text node objects, where each object represents a product name but

is accompanied by other node-related data. Therefore, for illustrative purposes and to

present product names in a more user-friendly format, JavaScript can be used to execute

this query and display results in a more readable format. The code snippet to perform this

action is as follows:

20

Source Code 1. XPath Query with JS to Extract Product Names from ČZU shop.

Source: own
// XPath query to find text within spans under divs with 'product' class
var xpathResult = document.evaluate("//div[@class='product']//span[@data-
micro='name']/text()", document, null, XPathResult.ORDERED_NODE_SNAPSHOT_TYPE,
null);
// Iterate through the results and log context
for (var i = 0; i < xpathResult.snapshotLength; i++) {
// Trim and log the text of each node
console.log(xpathResult.snapshotItem(i).nodeValue.trim());
}

Upon executing the JavaScript snippet in the browser’s console, the result is an

organized array of product names, as shown in Figure 5. This array is a direct result of the

code iterating over each ‘’ element identified by the XPath and extracting the clean

context.

Although XPath can be considered as powerful web scraping technique, it is not

without its drawbacks and challenges. Since XPath queries are based on the DOM

structure, this means that any changes in layout, classes, or attributes can break the parser.

Also, this method itself is quite complex and may not be entirely practical in cases with

web pages that use dynamic content generation, and therefore this technique implies the

need for a deep understanding of DOM and the creation of more complex queries.

Figure 4. Elements containing the names of products in the ČZU shop. Source: own

21

Figure 5. Product names array resulted from executing an XPath query. Source: own

3.2.1.5 API scraping

Mitchell Ryan in his book “Web Scraping with Python: Collecting More Data from

the Modern Web” defines web scraping as the practice of obtaining data by any means

other than interacting with the Application Programming Interface (API) [29]. This

definition positions traditional web scraping techniques discussed previously as distinctly

separate from API usage. While API interaction is not a traditional web scraping

technique, it is crucial for efficient web data retrieval nowadays.

Fundamentally, an API is a set of rules and protocols for building and interacting

with software applications. It allows different software programs to communicate with

each other by defining methods of requesting and receiving data. This ease of use and

structured access that the API provides make it an integral part of modern data retrieval

techniques and a very important aspect in the field of web scraping. As indicated in a

number of studies, APIs provide the easiest and most direct way to access data from the

websites that provide API, such as Twitter (X), Facebook, LinkedIn and Google

[47][20][10].

However, the use of APIs for data retrieval has its limitations since not all websites

provide API, and those that do may have restrictions. Key challenges that may be listed

[47]:

 Limited Availability. The targeted website does not provide API.

 Cost and Access Restrictions. Some APIs are not free, and rate limited which

means limited access time.

22

 Partial Data Exposure. APIs may limit the scope of information that can be

retrieved.

In the cases listed above, the traditional web scraping methods discussed in this

chapter become dominant. They allow data to be retrieved and manipulated without relying

on APIs, so this flexibility makes them an important tool when working with websites that

do not provide or have restrictive API policies.

3.2.2 Web Scraping Tools

After examining various web scraping techniques, it becomes essential to discuss

the tools that make these techniques possible. This section aims to provide a

comprehensive overview of the most notable tools in the web scraping field, highlighting

their features, capabilities, limitations, and applications. By investigating these tools, we

can understand what functionality they have and how they are used, which will play a

crucial role in creating a web scraper prototype in the practical part of this thesis.

3.2.2.1 Beautiful Soup

“Beautiful Soup is a Python library for pulling data out of HTML and XML files. It

works with your favorite parser to provide idiomatic ways of navigating, searching, and

modifying the parse tree” [4]. This succinct definition provided in the official

documentation of this library encapsulates the essence of Beautiful Soup as a tool that

simplifies the process of data extraction from web documents.

At its core, Beautiful Soup serves as a foundational tool for HTML and XML

analytics. It was designed to make the process of web scraping more accessible and

efficient, particularly in parsing and extracting data from webpage, and the library achieves

this by converting markup documents content into a navigable tree of Python objects [4].

For instance, every tag in the HTML is converted into a Beautiful Soup object, which can

be manipulated as any other Python object. Therefore, library allow precise selection based

on tags, attributes, and their hierarchies. This allows for easy searching and manipulation

of the DOM tree, which is crucial for extracting specific targeted data from web pages.

Another key strength of library is its compatibility with various parsers

[29][52][46], such as lxml [46], known for speed and efficiency, or html5lib for handling

malformed HTML [29]. Such a choice of parser can provide more flexibility in scraping

23

different web content, ensuring optimal parsing performance across diverse web

environments.

As a practical example of Beautiful Soup’s use, its ability and functionality will be

demonstrated to scrape product names, prices, and links to products from the ČZU

merchandise shop. As it can be seen in Figure 6, the webpage is organized into product

cards, each within a ‘div’ tag with ‘class “products”’. Inside the cards located a structured

data, which can be targeted for extraction. The product name is wrapped in a ‘span’ tag

with ‘data-micro=”name”’ attribute, link to a product located in a ‘a’ tag with

‘class=”name”’ attribute and the price is in a ‘div’ with ‘data-micro=”offer”’ where the

numerical price is stored in the ‘data-micro-price’ attribute. To extract targeted data, a

Python script, as demonstrated in Source Code 2, can be used.

The script starts by importing the necessary modules: requests to make web

requests, Beautiful Soup from bs4, json for formatting and saving data as JSON, and

urljoin from urllib.parse for handling URL paths correctly.

Inside ‘scrape_products’ function, which takes URL as its parameter, the request.get

fetches the content of the webpage at the given URL and Beautiful Soup parses the fetched

HTML content (response.txt) using Python’s built-in HTML parser. Then the script starts

to iterate over each product card. For each product it extracts:

 Name from a ‘span’ tag with ‘data-micro=”name”’

 Absolute URL by joining the URL with relative link from ‘href’ attribute in ‘a’ tag

with class ‘name’

 Price from ‘data-micro-price’ attribute within a ‘div’ tagged with ‘data-

micro=”offer”’

Then data is stored into the list and saved into products.json. As a result, the

extracted data is compiled into a JSON structure, providing a clear and organized view, as

demonstrated in Figure 7.

While Beautiful Soup is an effective tool, it has its own challenges and limitations.

Since it relies on the static structure of HTML, it has a drawback while working with

dynamic content employed by JavaScript. Therefore, it is usually required tools like

Selenium for dynamic content. Also, for full-scale web scraping processes, it often needs

to be supplemented with other libraries. For instance, in a practical example, it was

combined with request for web requests and json for data storage. However, despite these

limitations, Beautiful Soup is still a great asset for data extraction tasks.

24

Source Code 2. ČZU Merchandise Shop Scraper Using Python and Beautiful Soup.

Source: own
import requests
from bs4 import BeautifulSoup
import json
from urllib.parse import urljoin

def scrape_products(url):
 response = requests.get(url)
 soup = BeautifulSoup(response.text, 'html.parser')

 products = []
 for product_div in soup.find_all('div', class_='product'):
 # Extract product name
 name = product_div.find('span', {'data-micro': 'name'}).text.strip()

 # Extract product link
 full_link = urljoin(url, product_div.find('a', {'class':
'name'}).get('href'))

 # Extract product price
 price = float(product_div.find('div', {'data-micro':
'offer'}).get('data-micro-price'))

 products.append({
 'name': name,
 'price': price,
 'link': full_link
 })

 return products

Base URL
url = 'https://www.shop.czu.cz/en/merch/'

Scrape products
products_data = scrape_products(url)

Save the data to a JSON file
with open('products.json', 'w') as json_file:
 json.dump({'products': products_data}, json_file, indent=4)

print('Products data saved to products.json')

25

Figure 6. ČZU merchandise shop website structure. Source: own.

Figure 7. Extracted data from the ČZU merchandise shop in JSON. Source: own

26

3.2.2.2 Selenium

“Selenium is a powerful web scraping tool that was originally developed for the

purpose of automated website testing. Selenium works by automating browsers to load a

website, retrieve its contents, and perform actions like a user would when using the

browser. As such, it’s also a powerful tool for web scraping. Selenium can be controlled

from various programming languages, such as Java, C#, PHP, and of course, Python.”

[47]. The above quote from the book by Seppe Vanden Broucke Bart Baesens gives an

excellent insight into how this framework can play an important role in the field of web

scraping. Selenium, originally designed for automated website testing [29][47][13], has

transformed into a powerful web scraping tool, capable of accurately imitating website as

they appear in web browsers. Due to the fact that the framework was originally created to

automate websites testing, it provides many key features to automate the web scraping

process, allowing to execute user-like actions such as clicking buttons, filling out forms,

waiting for dynamic content to be load, and much more [13].

Central to Selenium’s functionality is its reliance on third-party browsers,

facilitated by WebDrivers [29][47]. According to the official Selenium documentation

[48], WebDriver is an API and protocol that establishes a language-neutral interface for

controlling the behaviour of web browsers, where each browser is supported by a specific

WebDriver implementation, known as a driver. The driver is the key component that

delegates the command to the browser and manages the communication between the

Selenium and the browser. When user utilize Selenium, the typical process involves

opening a browser window where it is possible to visually observe the navigation and

interaction as the script executes. However, while it might be useful for debugging and

development, it comes with certain drawbacks. Running a browser in its full graphical

mode can be resource-intensive, and this might not be ideal for environments where

resources are limited, such as server setups without display [47].

To address these challenges, Selenium offers support for “headless” browsers. Such

browsers operate without the traditional graphical user interface, running “invisibly” in the

background. This headless mode is partially valuable since it still allows to perform all

necessary tasks – such as rendering HTML, handling cookies, and executing JavaScript

[47]. The primary literature used for this thesis, specifically books from Mitchell Ryan [29]

and Seppe Vanden Broucke Bart Baesens [47], as well as other sources [16], most often

use or describe tools like PhantomJS for this feature. PhantomJS is a headless web browser

27

scriptable with JavaScript which could be used as a driver in Selenium [37]. However, as

of March 2024, PhantomJS is no longer in development and is not actively maintained

[37]. This shift has resulted in an increased focus on alternative headless browser choices,

particularly headless versions of popular browsers like Chrome and Firefox and tools like

Puppeteer. Vitaly Slobodin, the previous maintainer of PhantomJS, has highlighted the

unavoidable transition to headless Chrome, emphasizing its advantages over PhantomJS

[37]. And in March 2018 PhantomJS’s developers ceased updating, urging users to switch

to more advanced and sustainable headless browsing solutions.

However, despite the advancements and versatility of technologies discussed

previously, they face various challenges and limitations. A study by Jonker et al. [18]

illustrates how properties unique to these tools, such as ‘window.navigator.webdriver’ or

‘document.$cdc_asdjflasutopfhvcZLmcfl_’ in ChromeDriver, the WebDriver

implementation for the Google Chrome browser, can be detected by bot detection

mechanisms. These properties can lead to blocking or other countermeasures from web

sites against automated scraping activities.

Researchers from the same study [18] conducted a scan across the top 1 million

websites ranked by Alexa, uncovering those 127,799 sites had scripts matching bot

detection patterns. 93.76% of these scripts were focused on targeting PhantomJS. Other

patterns identified included WebDriver on 1.31% of sites, Selenium on 1.34%, and

Chrome in headless mode on 0.99%. However, the majority of web sites only triggered a

single detection pattern, predominantly ‘PhantomJS(?![a-zA-z-])’. The study also

discovered that the most complex site had 23 different detection patterns.

These findings highlight that while Selenium and headless browsers are powerful

tools, they are also detectable. This underscores the need for continuous adaptation in the

web scraping process to stay ahead of detection mechanisms.

3.2.2.3 Scrapy

Scrapy is an open-source and collaborative web crawling framework for Python,

designed to extract data from various web sites efficiently and systematically. Scrapy

operates on Python and utilizes Twisted [12], an event-driven networking framework,

which enhances the capabilities of handling massive amounts of data dynamically. The

architecture of the framework is meticulously designed, consisting of several key

components such as “Engine”, “Scheduler”, “Downloader”, “Spiders” and the “Item

28

Pipeline” as shown in Figure 8. The “Engine” serves as the central component of the

system, directing data flows and triggering events. The “Scheduler” is responsible for

querying requests, the “Downloader” is in charge of retrieving data, and “Spiders”, which

are user-defined classes, are where specific scraping rules are set. After the extraction, the

“Item Pipeline” performs crucial tasks like data cleansing, validation, and storage.

Figure 8. Scrapy architecture. Source: [3]

Furthermore, Scrapy, which was developed with Twisted as mentioned before,

employs non-blocking, asynchronous code to facilitate concurrency [3]. This feature

allows this tool to handle multiple requests simultaneously, significantly reducing the time

required for data extraction [12].

In addition, the extensibility of Scrapy is another point of strength. It provides

support for a wide range of middleware and plugins, therefore providing a customisation to

specific project requirements. This flexibility provides a way for dealing with complex

web scraping tasks, such as rotating proxies, handling CAPTHAs, or integrating with

various data storage solutions [12].

The study by Lotfi et al. [26] compared Scrapy with other tools like Beautiful Soup

and Selenium, which were described in sections 3.2.2.1 and 3.2.2.2, highlighting Scrapy as

a superior tool for large-scale and complex scraping tasks between Python tools.

29

However, although Scrapy possesses powerful features, it also presents certain

challenges. Its complexity and asynchronous nature, while advantageous for large-scale

tasks, can pose a steep learning curve for novices. In addition, managing web sites that

heavily rely on JavaScript might require additional setups, like integration with headless

browsers.

3.3 Web Scraping Challenges

In this chapter of the thesis, a comprehensive examination of various challenges

inherent in the practice of web scraping will be conducted. This chapter aims to examine

the complexities of scraping dynamic content and the continual adaptation to changing web

structures. A pivotal point of the discussion will be on anti-scraping measures implemented

by websites, and strategies and techniques to work around these limitations will be

examined. Through this exploration, the chapter aims to provide a thorough understanding

of various multifaceted challenges, outlining the technical and operational strategies to

overcome them.

3.3.1 Dynamic Content

The evolution of web scraping has progressed in tandem with dynamic nature of

web content, presenting unique challenges. Dynamic content on webpages is usually

generated through client-side programming languages like JavaScript, which alter the

webpage’s structure or content in response to user interaction or asynchronous events.

According to the World Wide Web Consortium (W3C), JavaScript is used by 98.8% of all

websites, underscoring its pivotal role [45]. Another key component of dynamism is

Asynchronous JavaScript and XML (AJAX). AJAX allows web pages to communicate

with servers and update content without needing to reload a page. Many modern web pages

nowadays use this technology, for example, to fetch new e-mails, notifications, update a

live news feed, and all this without page refresh [47]. Therefore, this technology poses

another challenge for the traditional web scraping stack of technologies that rely on the

static HTML content of a page.

To address these challenges, tools like Selenium, described in 3.2.2.2, or Puppeteer

can be employed. As already mentioned in the previous sections of the thesis, such tools

can automate the process of interaction with a web page, for example, by clicking on

30

specific buttons in order to update the DOM Tree and load the necessary data to extract

into it.

Furthermore, another approach to this topic involves intercepting AJAX calls. This

method involves monitoring and analysing the network traffic generated by the web

browser. This can be accomplished using browser developers tools or other network

sniffing tools, which allows to observe the details of each AJAX request, including its

URL, parameters, and response data. Such replication is usually achieved by creating

HTTP requests that mimic the original AJAX call. This approach bypasses the need to load

or interact with the entire web page, leading to more efficient data extraction.

3.3.2 Targeted Anti-Scraping Measures

A significant challenge that arises in the constantly evolving field of web scraping

is the implementation of targeted anti-scraping measures by web sites. The purpose of

these countermeasures is to prevent automated access to the data, safeguard against

unauthorised data extraction, and preserve website integrity. This section aims to analyse

the specifics of such measures, their influence, and viable techniques for overcoming these

challenges.

3.3.2.1 CAPTCHA

“CAPTCHA stands for Completely Automated Public Turing Test to tell Computers

and Humans Apart. As the acronym suggests, it is a test to determine whether the user is

human or not. A typical CAPTCHA consists of distorted text, which a computer program

will find difficult to interpret but a human can (hopefully) still read. Many websites use

CAPTCHA to try and prevent bots from interacting with their website.” [24]

CAPTCHAs are one of the most common anti-scraping techniques, typically it

requires the user to perform specific task, such as recognizing distorted text or identifying

object in an image. However, this approach for bot detection is considered not the most

convenient for the end user and shows that constantly forcing the user to undergo such

tests significantly spoils the web experience [24][40]. However, CAPTCHA systems have

evolved significantly beyond their initial designs. A notable development in this arena is

Google’s reCAPTCHA v3, which represents a significant shift in how user verification is

approached.

31

reCAPTCHA v3 is an artificial intelligence system based on machine learning

algorithms and, unlike its predecessor, operates largely in the background, assessing user

interaction with a website to assign a risk score [2] between 0.0 and 1.0, where a score

close to 1.0 means that the user is more likely human.

Nevertheless, solutions for solving CAPTCHA systems have been found and can be

used to successfully bypass such a system. For example, in studies conducted by Bursztein

et al. [7] and Bock et al. [5], it was demonstrated how ML-based systems can bypass

distorted text, image-based, and audio-based CAPTCHAs, such as the first and second

versions of reCAPTCHA. Furthermore, a study by Akrout et al. [2] successfully employed

the proposed Reinforcement Learning (RL) formulation, which proved remarkably

effective, achieving a success rate of over 90% in defeating reCAPTCHAv3.

Another noteworthy aspect of the study by Bock et al. [5] was their use of Selenium

for automating interaction with web page. The researchers discovered that the

reCAPTCHA system was initially able to detect Selenium-driven interactions. However,

the authors successfully modified the Selenium Web Driver for Mac OS X, making it

undetectable.

Similarly, the study by Akrout et al. [2] also proves that reCAPTCHA is able to

detect Selenium. Upon investigation, it was discovered that reCAPTCHA consistently

returned low scores for interactions driven by Selenium and further analysis of the HTTP

queries revealed the presence of automated headers in Web Driver, along with other

different variables that are not typically found in a regular browser. However, both studies

also demonstrate that this can be circumvented in various ways, such as by creating

proxies, using third-party libraries, and other sophisticated methods. Taking all the above-

mentioned aspects into account, we can say that this outcome underscores a crucial point:

systems like reCAPTCHA are still foolproof against common web scraping tools.

3.3.2.2 IP Rate Limiting & IP Rotation

Internet Protocol (IP) Rate Limiting is a network-level security mechanism used by

web sites to prevent internet threats like web scraping. The mechanism is straightforward:

it allows a specific number of requests from a single IP address within a specified

timeframe. For instance, a web site might permit only 100 requests per hour from an IP

address. Going beyond this limit usually leads to the servers rejecting more requests from

the restricted IP for a certain time, often indicated by an HTTP 429 status code (Too many

32

requests). However, while this mechanism can be effective against basic scraping

activities, its efficiency is low against more sophisticated methods involving rotational IP

addresses.

The strategy of IP rotation through the use of proxy or Virtual Private Network

(VPN) emerges as a crucial technique not only for bypassing rate limits but also for

overcoming various different web scraping problems, such as website bans. Even after

taking all precautions, the risk of being detected as a bot and being blocked still remains,

and sometimes it can happen due to the fact that the web scraping process occurs from one

IP address [16]. In such cases, the person responsible for maintaining a targeted web site

will take measures to include this IP address in a blacklist, i.e., block it.

In response to this risk, a scraper can periodically change the IP address from which

requests are made. This process involves routing traffic through different intermediaries,

such as a proxy or VPN, each providing a unique IP and potentially varying the

geographical origin of requests.

Automation of IP rotation can be also achieved through web the scraping tools

discussed before. For example, the Scrapy framework supports middleware for HTTP

proxies [11] such as “scrapy-proxies”, which streamlines the process of changing proxies

and thus minimizes the risk of scraper detection and blacklisting [16].

However, while the use of proxies offers a good advantage, it’s also important to

consider the reliability of these resources. For example, free proxies available on the web

may look like a cost-effective solution, but their stability and availability are often

questionable. A study by Achsan and Wibowo [1] highlights this concern. Authors in their

study analysed the availability of 5,043 proxy servers and discovered that only 1,931

(38.23%) of these servers were available. Furthermore, only after two days, the number

dropped to 1,576 (31.26%). Additionally, 4.83% of the proxies were reported to be very

slow.

Thus, while proxies and VPNs are invaluable for web scraping purposes, achieving

effective IP rotation often requires additional investments in stable proxy lists and paid

VPNs, however, given the above, such an investment can be very profitable since it allows

to bypass possible blocks and restrictions from websites.

33

3.3.2.3 Honeypot Traps

Honeypot traps in terms of web scraping are invisible decoy traps designed to be

hidden from normal users but detectable by scraping bots, therefore, interaction with these

traps flags the bot as a scraper [32]. Honeypot traps can be applied to almost any element

presented on a website, including links, images, files, and more [29]. Such traps are usually

styled with CSS to evade visual detection, meaning that they are hidden from a typical

browser user but detectable by bots parsing HTML. However, tools like Selenium can still

distinguish visible and hidden elements. For example, the ‘is_displayed()’ function in

Selenium is particularly useful in this context, allowing to identify and avoid interaction

with hidden elements.

However, the challenge with honeypot traps lies in their dual nature. While it is

recommended to avoid hidden elements, it can be counterproductive [29] and lead to data

loss. A scraper must strike a delicate balance between recognizing and interacting with

hidden elements in order to make scraping effective but also avoid detection. Nevertheless,

it is safe to say that by using more advanced web scraping techniques that mimic human

behaviour, it is possible to avoid falling into such traps.

3.3.2.4 Behavioural Patterns

Behavioural analysis is becoming a crucial tool in detecting web bots, as it

differentiates between humans and automated scripts by examining user actions such as

mouse movement, keystroke dynamics, and even browsing patterns. The most common

methods for web bot detection based on behavioural patterns are analysis of mouse

movements and keystroke dynamics [8][32]. Keystroke analysis involves the calculation of

the duration at which speed text was typed and at what speed different keys were pressed.

The dynamic of the mouse is usually calculated by its movement. Many studies on

biometric behaviour have found that human behaviour is often much more unpredictable

and complex than the behaviour of an automated program. This is manifested by the fact

that web bots tends to move the cursor in a straight line and at constant speed, and also

press keys at certain intervals.

One exemplary study in this area is presented in research conducted by Chu et al.

[8]. The authors of this study presented a method for identifying and blocking bots by

analysing Human Observational Behaviours (HOBs), exploiting previously mentioned

mouse and keystroke behavioural biometrics. The authors of the study developed a

34

prototype for an automatic classification system consisting of a client-side JavaScript

logger and a server-side detector. The logger records a user’s input data and streams it to

the server-side detector. The detector analyses the given data and extracts biometric-related

features utilizing the C4.5 machine learning classification algorithm. The results of such a

system demonstrated 99% detection accuracy with minor overhead.

However, the efficacy of behaviour analysis is constantly challenged by the

advancement of tools and techniques capable of mimicking human behaviour. Notably, in

the previously mentioned study by Akrout et al. [2] about reCAPTCHA v3, the authors

also set a goal to mimic human mouse movement since the system from Google also relies

on behavioural analysis. The authors assumed that an average user would not move the

mouse pixel by pixel, thus defining a cell size for mouse movement steps and random

mouse allocating on a web page. In order to adapt to various screen resolutions, they

proposed a divide-and-conquer technique. This involved breaking the grid into small sub-

grids and applying their trained agent to these to find an optimal path. This research

underscores the race between web security measures and the evolving sophistication of

automated systems designed to bypass them.

3.3.2.5 Technical indicators

Technical indicators are another approach in web bot detection used by web sites to

distinguish between humans and automated bots.

One of the key elements in this detection mechanism is the browser fingerprint,

which encompasses an array of browser characteristics such as user agent strings,

JavaScript engine speed, screen resolution, and installed fonts [18]. Integral to this part are

HTTP headers, which are part of the HTTP request from browser to server, providing

information such as browser type and language preferences. HTTP headers are not directly

related to fingerprint, however, they contribute significantly in identifying profile of the

user and bot. Since the information from HTTP headers is easy to acquire in real-time, this

method can be implemented into web server software without any challenges [40].

One of the most pertinent examples of sophisticated bot detection based on

technical indicators can be drawn from the study conducted by Jonker et al. [18] where the

authors encountered a web site which can detect and block Selenium-based visitors. The

authors found the use of specific scripts and the presence of HTTP headers related to a

35

company specialized in web bot detection. After manual deobfuscation, authors discovered

that scripts provided three main functionalities:

 Behaviour-based detection, which was described previously in this section.

 Code injection routines, allowing to include CAPTCHA to the page.

 DOM properties-based detection where multiple built-in objects and functions were

accessed through JavaScript, as demonstrated in Figure 9.

In Figure 9 it can be observed that the script uses

‘window[document]["documentElement"]["getAttribute"]("selenium")’ to check if the

Selenium attribute is present in the DOM tree. Additionally, it identifies unique bot

properties like ‘document.$cdc_asdjflasutopfhvcZLmcfl’ specific to ChromeDriver and

gathers browser data such as supported MIME types through ‘navigator.MimeTypes’. This

is a very important part for understanding and developing ways to bypass such detection,

since the practical part of the thesis will also use Selenium as one of the tools.

Figure 9. Example from bot-detection script. Source: [18]

 Luckily, such challenges can be overcome. In the same study by Jonker et al. [18]

authors were able to bypass detection by changing only one property. Furthermore, the

integration of external libraries and tools alongside previously discussed tools like

Selenium can enhance the ability to manipulate various browser attributes, including

the user-agent [29][47]. User-agent is a string that the browser sends to websites,

identifying itself and providing details like the browser type, operating system, and

version. By altering the user-agent along with other parameters, it’s possible to create a

more convincing human-like browsing profile.

36

 By skilfully integrating these techniques, scrapers may evade detection in such

cases, ensuring more successful data collection.

3.4 Legal & Ethical Considerations

This chapter of the thesis shifts the focus from the technical aspects of web scraping

to its legal and ethical dimensions. The objective of this chapter is to examine the delicate

equilibrium between efficient data collection and compliance with legal and ethical norms.

Here we will elucidate the fundamental laws and ethical standards that govern web

scraping practices, underscoring the significance of data gathering within these boundaries

to uphold both legal and ethical responsibility.

3.4.1 Legal Aspects of Web Scraping:

It is worth noting that web scraping is a fairly new area that is currently actively

developing, and its legal aspects are quite extensive and complex. However, key aspects

related to this topic will be considered.

At the time of writing this bachelor's thesis, no direct legislation has been found

directly related to web scraping, however, web scraping is guided by a set of fundamental

legislative practices such as copyright infringement, breach of contract, and trespass to

chattels [23][22]. Next, each of these practises will be examined to determine their effect

on web scraping.

3.4.1.1 Terms of Use

One of the key factors surrounding the debate about the legality of web scraping is

the website’s Terms of Use (ToU). ToU defines a list of rules for the use of a web site and

also often has information about what information is collected on the website and how this

information is used. Such an agreement is often established through mechanisms where the

website provides the user with a “checkbox” and the opportunity to read the terms of this

agreement. The agreement between the user and the website is concluded after the user

clicks on the “checkbox”, proving that he has read the rules, and a violation of these rules

may lead to a “breach of contract” on the side of the website’s user [23]. This is due to the

fact that the presence of clauses in the ToU that explicitly prohibit web scraping is not

sufficient on its own to legally preclude such activities; what is crucial is the explicit

consent of the user to these terms.

37

The method by which the ToU are presented to users also may play a significant

role. For example, the method described above for providing conditions using the

clickwrap checkbox requires active actions from the user, unlike cases when the site may

simply contain a link to ToU [20][17]. The last example may raise questions regarding the

user’s awareness of these terms and may not have strong legal affects.

3.4.1.2 Copyrighted Material

If data is scraped and republished without permission, particularly if the content is

clearly protected by copyright law, it might lead to legal proceedings for copyright

infringement. However, it is important to note that copyright laws do not automatically

grant ownership of user-generated content to web site owners [23]. For instance, a website

featuring user reviews does not inherently own the copyright to these reviews.

Furthermore, the “fair use” principle allows for the use of copyrighted material on a

limited scale for specific purposes such as criticism, comments, news reporting, and

research [47].

3.4.1.3 Trespass to chattels

“Trespass to chattels” is a legal concept that can be invoked when scraping

activities interfere with a website’s functioning, therefore, overloading or damaging a web

site or web server. However, the damage should be material and easy to prove in order for

the owner to be eligible for financial compensation [23].

According to Mitchell Ryan [29], for a web scraping activity to be considered

trespass to chattels, three key criteria need to be satisfied:

 Lack of consent. This clause means a violation of ToU, which was described in

more details previously.

 Actual harm. The scraping activity must cause material harm to the website owner.

 Intentionality. The act of scraping must be intentional. If a person develops a

scraper, he is generally aware of its potential impact on a website’s server.

3.4.2 Ethical Aspect of Web Scraping

While considering the ethical side of the question, it is important to distinguish

between what is legally permissible and what is justified from an ethical point of view.

Since the rapid evolution of digital data, technologies, and methods, which frequently

38

outpaces the development of legal frameworks and ethical principles, there is a continuous

need for innovative solutions to address emerging ethical challenges [27].

3.4.2.1 Robots.txt

Robots Exclusion Protocol, or robots.txt, is a file located in the root directory of

most websites (e.g., www.google.com/robots.txt) and serves as a set of guidelines for web

crawlers defining the specific sections of the website that should not be accessed or

extracted by scraping. From an ethical perspective, it is considered a fundamental courtesy

since it represents a web site’s explicit wishes about how their content should be accessed

and used [29][27].

However, the robots.txt file is not legally binding and serves more as a sign saying,

“Please don’t go to these parts of the site.” [29]. Therefore, while the law might not

enforce adherence to robots.txt, ethical web scraping practices demand a higher standard of

conduct that respects the intentions and constraints established by web site administration.

3.4.2.2 Potential damage

Web Scraping activity can unintentionally harm website functionality. For example,

an excessively large number of requests to a web server from a scraper can cause a “denial

of service” (DoS) attack [27], which overloads the server’s network and thereby interferes

with the normal operations of the web site [47]. This not only affects the site’s

performance but also impacts its users, underscoring the need for responsible scraping

practices.

3.4.2.3 Privacy Concerns

The capability of web scraping to efficiently amass vast amounts of information

poses another ethical concern regarding privacy. For example, the data such as user

interactions, posts, and personal views gathered using web scraping techniques on social

network platforms has the potential to expose sensitive information such as political or

religious beliefs. The implications of such data collection are profound, especially when

utilized by government agencies or law enforcement for surveillance, potentially impacting

human rights related to freedom of speech, association, and protection against

unreasonable searches [14].

http://www.google.com/robots.txt

39

40

4 Practical Part

The previous chapters of this bachelor thesis have laid the foundation for

understanding various aspects of web scraping, including its tools and techniques,

challenges, legality, and ethical considerations. This obtained theoretical foundation opens

the way to the practical application of the acquired knowledge, and in this part, the

beginning of the practical implementation of the acquired skills is initiated.

4.1 Motivation and Goals

The primary motivation behind this practical case study is to illustrate the versatility

and efficiency of web scraping as a data collection tool, expanding its use to fields such as

research and development. The primary intention is to demonstrate that scraping is not

limited to its use in its most known areas, such as business intelligence [13] for gaining

insights into price data, trends, competitors’ prices, and market dynamics [15] but also may

make significant contributions to scientific and technological advancements. This is

particularly relevant in the growing field of computer vision, where large and varied

datasets are essential for training and refining neural networks.

To exemplify this, the practical goal of the case study will be to focus on the creation

of a comprehensive image dataset of motorcycles, categorized by manufacturer, model,

and year of production. This dataset may serve as a resource for vehicle make and model

recognition tasks, which is an important area in modern systems for monitoring road traffic

and activity, analysing traffic behaviour [25], security access control systems in parking

lots, buildings, and other restricted areas [36]. In addition, it can also complement license

plate recognition systems, providing a higher level of security against fraudulent use of

license plates in cases of traffic crimes [36].

However, the practical part of this work hopes to not only demonstrate the process of

creating a dataset for such an industry but also demonstrate the potential of the methods

and practices which can be useful for the entire field of artificial intelligence and machine

learning. The applicable methods and techniques in this part can show a general idea of

how such a practice of web scraping can help collect any other dataset for further research

and development, for example, in the field of computer vision, providing a valuable

resource for training neural networks. By showcasing the creation of this dataset, the thesis

aims to expand the understanding of scraping activities as a versatile tool for technological

41

research and development, emphasizing its role in fostering innovation and progress in the

current digital era.

4.2 Data Analysis & Data Source

4.2.1 Data analysis

In this segment of the practical part, the project sets a clear and structured goal: the

compilation of an image dataset encompassing 15 distinct motorcycle models from a

variety of manufacturers. This number was chosen strategically to balance

comprehensiveness with feasibility. The task of collecting a detailed dataset, even for a

single brand alone, could potentially require the efforts of an entire team of data analysts.

This complexity arises from the fact that each manufacturer of motorcycles may have a

multitude of models, and each model can span several generations, usually separated by

years of manufacturing, each having its own visual features. Consequently, the significant

challenge arising if the objective is to precisely identify a particular model from a

manufacturer utilizing computer vision techniques, it necessitates analysis of each

generation of the respective model. A potential solution to this challenge may involve

combining visually similar models into a single class for neural network training. This

approach, while feasible, is notably labour-intensive and time-consuming.

However, considering that one of the primary tasks of this part is to showcase the

technical application of web scraping in dataset creation rather than the preparation of an

initial data list, a more focused approach has been adopted. This involves the compilation

of a list of popular models based on various publicly available online sources [19][49][31].

This method ensures that the selected models retain popularity and relevance in the current

market, thereby also increasing the practical value of the dataset.

4.2.2 Data list preparation

This section of the thesis is dedicated to the creation of an initial input list for which

images will be collected, consisting of manufacturer, model, and production years.

At the moment of writing this thesis, no specific studies categorizing motorcycle

models based on sales popularity were found. Therefore, as previously mentioned, the

compilation of this list was primarily driven by information sourced from a variety of

online sources.

42

An important aspect of the data list is the inclusion of the model years of

production. As highlighted in section 4.2.1, motorcycle models often undergo generational

changes, each usually distinguished by unique visual characteristics. Thus, for example,

one model may have dozens of generations starting from 1960 to the present day. Due to

this reason, the list prioritizes the latest generations of specific models that are currently in

production at the moment of writing this thesis. The selection process involved a detailed

review of information from motorcycle manufacturers and online resources [30] that

provides insights into model evolution and current market relevance. This approach

ensured the accuracy and relevance of the data for the practical part, and the result list is

demonstrated in Table 1.

Manufacturer Model Production years

Aprilia RS660 2020-2024

Aprilia RSV4 2017-2024

BMW F900XR 2019-2024

BMW M1000R 2020-2024

BMW R1250GS 2018-2024

BMW R18 2020-2024

Ducati Scrambler 800 2016-2024

Harley-Davidson Street Glide 2016-2024

Honda CB500F 2017-2024

Honda PCX125 2017-2024

Kawasaki Ninja 400 2018-2024

Kawasaki Z900 2018-2024

KTM Super Duke 1290 2021-2024

KTM Duke 390 2017-2024

Yamaha MT-07 2016-2024

Table 1. Data list of manufacturers, models, years of production. Source: own

4.2.3 Data source

In order to compile a dataset, it is necessary to identify an initial source from which

data can be extracted. In a study similar to the practical part of this thesis, Tafazzoli et al.

[41] embarked on compiling a car dataset also specifically aimed at vehicle make and

model recognition (VMMR), which was categorized by manufacturer, model, and years of

production. Central to their approach was the utilization of online platforms related to

vehicle sales as the initial source of data. A significant benefit of this approach is the

inherent diversity and richness of the dataset. As the authors of the study [41] noted,

images on these platforms are typically uploaded by a variety of different users, therefore,

it is ensured that the images are taken from various view angles and with different devices.

43

Such variability of images adds a level of uniqueness and realism, which are crucial for

developing robust and accurate neural networks in VMMR tasks.

Therefore, for the initial data resource, websites related to motorbike sales were

selected, specifically websites autoscout24.com and motohunt.com. These websites were

selected for their comprehensive list of different manufacturers and models, as well as their

wealth of data. However, it is crucial to understand the significant disadvantage of this

method. Images from such websites frequently contain irrelevant data, such as pictures of

buildings, specific motorcycle components, people, and so on.

Nevertheless, such challenges, as well as solutions and techniques for data filtering,

will be discussed in subsequent sections of the thesis.

4.3 Web Scraping System Planning

As the delve into the practical part continues, it becomes crucial to define the

technological stack that will facilitate the creation of a dataset. As the core of a future

scraping system was chosen Python due to the fact that most of the literature on which this

thesis is based uses it as the main programming language, and many other studies identify

it as one of the best languages specifically for web scraping [47][16].

In conjunction with Python, it is also planned to use the tools described earlier in the

theoretical part, specifically Selenium for automating web browsers, which is important for

sites with dynamic content, as well as Beautiful Soup for data extraction. Initially, the

Scrapy framework described in 3.2.2.3 was considered for use, however, after further

evaluation, this framework was considered unsuitable for the practical part of this thesis.

Scrapy is known for its effectiveness in large-scale projects [12], especially those requiring

advanced features such as proxy rotation and captcha solving, which are beyond the scope

of this study.

Following the technological stack establishment, the next stage is to delve into the

conceptual architecture of the web scraping system, as illustrated in Figure 10.

44

Figure 10. Conceptual architecture of web scraping system. Source: own.

The planned process initiates with a standalone CSV file containing links to search results

for the needed motorcycle model on the targeted website. This file serves as a starting

point for the scraping process. Subsequently, a specialized management module is utilized

with the primary purpose of orchestrating scrapers, effectively distributing the URLs from

the CSV file to them. The scrapers themselves are designed to extract URLs leading to

individual pages containing images from the search results, and then retrieve images from

these individual motorcycle pages.

Upon data extraction, the system employs a specialized filtering module to ensure the

quality of the data, guaranteeing that only relevant and high-quality images are retained.

Following the filtration process, the images are stored on a filesystem, adhering to a

particular naming convention and file architecture. Concurrently, the metadata of images is

stored in a database, facilitating enhanced data analysis capabilities.

The subsequent sections of the practical part will provide a comprehensive explanation of

each stage in this process. This will include detailed information about how the

management module orchestrates scrapers, the specific methodologies used for data

extraction and filtering, as well as the reasons for the chosen approaches. These

discussions will offer a more profound understanding of the operational dynamics of each

component, emphasizing their importance in the overall efficiency of the web scraping

system.

45

4.4 First scrapers

The approach to scrape motorcycle sales websites involves an analysis of their

common structural patterns. Such websites typically allow for searches based on specific

parameters like manufacturer, model, and years. The search result leads to individual sales

pages, each containing information and images needed to extract. In order to effectively

extract data, it was chosen to employ a two-module strategy for each website. The first

scraper will be designed to collects URLs from the search result, which will be manually

provided by inputting a URL leading to the desired motorcycle’s search result on the

website. This method can be classified as manual scraping [26][20], although it is not the

most efficient way, this approach was found satisfactory due to the manageable size of the

motorcycle data list. The second scraper will then proceed to retrieve images from the

individual motorcycle listings. Another crucial parameter is the nature of the websites,

which can be categorized into two main types: static and dynamic. For websites with a

static nature, Beautiful Soup will be used primarily, whereas for the handling of dynamic

websites, Selenium will be utilized.

4.4.1 Static nature scrapers

As was mentioned earlier, scrapers can be categorized as static and dynamic. In the

case of motohunt.com, an analysis was conducted to determine its nature. The analysis

entailed evaluating the website’s response patterns, understanding the method of content

loading, and determining if the website utilize client-side scripts for content rendering. As

a result, it was discovered that this targeted website is more static, and most of the content

is directly embedded in the HTML code delivered by the server without requiring

additional client-side programming.

4.4.1.1 Links Scraper

As previously noted, a search on sales sites gives us a list of links leading to

individual sales pages. This way allows for the extraction of these links, which can then be

passed to another module for scraping images. As a result, a script was developed for

extracting links, as illustrated in Source Code 3.

The ‘MotoHuntLinksScraper’ utilizes BeautifulSoup for parsing HTML and

extracting relevant links and is initialized with a ‘base_url’ parameter, defaulting to:

46

https://motohunt.com/. This URL serves as the starting point for link scraping activities.

The other functional components are responsible for:

 Link Identification. When the method ‘extract_links’ is called, it employs

BeautifulSoup to parse the HTML content, searching for ‘div’ elements with the

‘class card-body nolinkcolor’. Within these elements, it locates ‘a’ tags containing

the ‘href’ attribute, the values of which are the links to individual motorcycle sale

pages. These links are then processed through the ‘ScrapingUtils.get_full_url’

method which helps to construct the full URL. This method of the utility class

ensures that relative links from ‘href’ are correctly converted to absolute URLs,

considering the base URL of the website.

 Pagination handling. To navigate through multi-page results, the method

‘find_next_page_link’ identifies the link to the next page in the pagination sequence

by searching for specific elements utilizing BeautifulSoup.

 Links Scraping. The ‘scrape_all_links’ method is designed to extract links across

multiple pages, beginning from a given start URL. It also uses the

‘ScrapingUtils.get_random_user_agent’ method to vary user-agent strings in

HTTP requests, thereby reducing the risk of scraper detection [29][47]. The method

continues to accumulate links until there are no more pages left to scrape.

Source Code 3. Links Scraper. Source: own
from bs4 import BeautifulSoup
from utils.scraping_utils import ScrapingUtils

class MotoHuntLinksScraper:
 def __init__(self, base_url="https://motohunt.com"):
 self.base_url = base_url

 def extract_links(self, html_content):
 soup = BeautifulSoup(html_content, 'html.parser')
 links = []
 for card_body in soup.find_all("div", class_="card-body nolinkcolor"):
 a_tag = card_body.find("a", href=True)
 if a_tag:
 full_link = ScrapingUtils.get_full_url(self.base_url,
a_tag['href'])
 links.append(full_link)
 return links

 # Pagination handling
 def find_next_page_link(self, html_content):
 soup = BeautifulSoup(html_content, 'html.parser')
 next_link_tag = soup.find("span", id="results-text").find("a",
id="next", href=True)
 if next_link_tag:

https://motohunt.com/

47

 return ScrapingUtils.get_full_url(self.base_url,
next_link_tag['href'])
 return None

 def scrape_all_links(self, start_url):
 all_links = []
 next_page = start_url
 while next_page:
 # Requests via random user agents
 headers = {'User-Agent': ScrapingUtils.get_random_user_agent()}
 page_content = ScrapingUtils.get_page_content(next_page,
headers=headers)
 if page_content:
 links = self.extract_links(page_content)
 all_links.extend(links)
 next_page = self.find_next_page_link(page_content)
 else:
 break
 return all_links

4.4.1.2 Image Scraper

After successfully gathering URLs, the next step involves the extraction of images

presented on individual sales pages. For this task, ‘MotoHuntImageScraper’ was

developed and illustrated in Source Code 4.

Source Code 4. Image Scraper for a Static Nature Website. Source: own
import time
from bs4 import BeautifulSoup
from utils.scraping_utils import ScrapingUtils

class MotoHuntImageScraper:
 def __init__(self, base_url="https://motohunt.com"):
 self.base_url = base_url

 def extract_and_download_images(self, page_url, subfolder_name):
 headers = {'User-Agent': ScrapingUtils.get_random_user_agent()}
 page_content = ScrapingUtils.get_page_content(page_url,
headers=headers)

 if not page_content:
 print(f"Error while processing page {page_url}")
 return

 soup = BeautifulSoup(page_content, 'html.parser')
 carousel_inner = soup.find("div", class_="carousel-inner")
 if carousel_inner is None:
 print("No images found on page.")
 return

 for carousel_item in carousel_inner.find_all("div", class_=["carousel-
item", "carousel-item active"]):

48

 img_tag = carousel_item.find("img")
 if img_tag and img_tag.get("data-src"):
 image_url = img_tag["data-src"]
 file_path =
ScrapingUtils.download_image_with_unique_name(image_url, subfolder_name,
headers)
 time.sleep(0.3)
 if file_path:
 print("Image downloaded successfully:", file_path)
 else:
 print(f"Failed to download image {image_url}")

This class was specifically designed to navigate through each previously gathered

URL, parse the HTML content of the page, identify needed images, and download them.

The ‘extract_and_download_images’ method starts by sending a web request with

previously described user-agents to mimic different browsers. Then it retrieves the HTML

content of the page using ‘ScrapingUtils.get_page_content’. Upon receiving HTML

content, the method employs Beautiful Soup to parse it and look for the ‘div’ with

‘carousel-inner class’. Then scraper iterates through each ‘carousel-item’ within the

carousel, extracting the URLs of the images and passing them to

‘ScrapingUtils.download_image_with_unique_name’, a method designed to download and

save images with unique filenames in a specified subfolder, thus preventing file name

collision and ensuring organized data storage. In addition, the method also respects ethical

standards by using a time delay [29] between image downloads in order to avoid

overloading the web server.

4.4.2 Dynamic nature scrapers

Prior to the development of a scrapers for second targeted website, specifically for

autoscout24.com, a comprehensive analysis of the site was conducted, following the same

methodology of identifying common response patterns, analysis of client-side scripts and

methods of content loading. This analysis revealed distinct dynamic features that

significantly influence the scraping strategy. Such discovered dynamic features include:

 Cookie acceptance modal window. One notable difference from the previous

targeted website is the presence of a modal window for accepting cookies. This

window obstructs access to the main content of the site, necessitating the automatic

acceptance of cookies.

 Lazy loading of images. Another notable feature is the implementation of lazy

loading for images in galleries. This technique delays the loading of images until

they are needed, specifically until the user interacts with the gallery. For instance,

49

on the motorcycle sale page, only two first photos are present in the DOM tree of

the website. To upload other images, user must scroll through the gallery.

Considering these factors, Selenium was chosen as the primary tool to automate

and address the dynamic challenges. A two-module strategy of scraping links and images,

similar to the approach in 4.3.1, was chosen. However, dynamic features did not have a

major impact on the creation of the link scraper, therefore, the scraper for links extraction

has the similar logic as the scraper illustrated in Source Code 3 but has modified selector

logic for Beautiful Soup. The primary challenge lay in the image scraper, however, this

was effectively overcome using Selenium, as demonstrated in Source Code 5.

Source Code 5. Image Scraper for a Dynamic Nature Website. Source: own
import time
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.common.exceptions import NoSuchElementException, TimeoutException
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.chrome.options import Options
from utils.scraping_utils import ScrapingUtils

class ScoutImageScraper:
 def __init__(self):
 chrome_options = Options()
 user_agent = ScrapingUtils.get_random_user_agent()
 chrome_options.add_argument(f"user-agent={user_agent}")

 self.driver = webdriver.Chrome()

 # Cookie modal window handler
 def handle_cookies(self):
 try:
 WebDriverWait(self.driver, 10).until(
 EC.visibility_of_element_located((By.CSS_SELECTOR, 'div[data-
testid="as24-cmp-container"]'))
)
 accept_button = self.driver.find_element(By.CSS_SELECTOR,
 'button[data-testid="as24-
cmp-accept-all-button"]')
 accept_button.click()
 time.sleep(2)
 except TimeoutException:
 print("Cookie modal not found or already accepted.")
 except Exception as e:
 print(f"Error handling cookies: {e}")

 def extract_and_download_images(self, url, subfolder_name):
 print(f"Processing URL: {url}")
 self.driver.get(url)

50

 self.handle_cookies()
 slide_number = 1
 while True:
 try:
 image_element = self.driver.find_element(By.CSS_SELECTOR,
 f'div[aria-label="Go
to Slide {slide_number}"] picture img')
 image_url = image_element.get_attribute('src')
 if image_url:
 # Make request with random user agent and save with uuid
 file_path =
ScrapingUtils.download_image_with_unique_name(image_url, subfolder_name,
headers={
 'User-Agent': ScrapingUtils.get_random_user_agent()})
 if file_path:
 print(f"Image saved successfully to {file_path}")
 else:
 print(f"Failed to download image from {image_url}")
 # Gallery sliding logic
 next_button = self.driver.find_element(By.CSS_SELECTOR,
'button[aria-label="Next Slide"]')
 next_button.click()
 slide_number += 1
 time.sleep(0.6)
 except NoSuchElementException:
 print("No more slides found. Moving to the next URL...")
 break

 def close_driver(self):
 self.driver.quit()

The scraper starts by initializing Selenium Chrome WebDriver with Chrome

options, then random user-agent is assigned for each session. The other functionalities

include:

 Cookie handling. WebDriver through the method ‘handle_cookie’ automatically

detects and interacts with the cookie acceptance modal window. Utilizing

Selenium’s ‘WebDriverWait’ and ‘EC.visibility_of_element_located’, scraper waits

for the presence of specific CSS elements related to the cookie window and then

simulates a click on the acceptance button granting access to the main content of

the web page.

 Dynamic Image Extraction. The method ‘extract_and_download_images’

demonstrates Selenium’s capabilities to handle dynamic content. Scraper identifies

elements within the gallery using a CSS selector specific to each slide, then

retrieves the image URL from the ‘src’ attribute of the ‘img’ element. For each

image URL, the method from the utility class downloads the image, saving it with a

51

unique filename. Further, the method uses CSS selectors to find a button for

moving to the next slide in the gallery and simulates a click on this button. This

ensures that the next image is loaded into the site’s DOM tree and the entire

extraction process is repeated until there are no more images in the gallery. Thus,

this approach allows to handle the lazy loading and extract all the images.

4.4.3 Evaluation of scrapers

During the course of this practical part, two fully functional scrapers consisting of

two modules each were developed. The scrapers work sequentially, with the Link Scraper

module first handling a URL that leads to a search result page specific to the desired

motorcycle model on the designated website. Subsequently, it extracts links that lead to

individual motorcycle pages. Next, the Image Scraper module retrieves images from these

pages.

Furthermore, an evaluation of these scrapers was conducted to evaluate their

efficiency. During a 25-minute test run, the scraper designed for motohunt.com

successfully extracted 1,293 images. On the other hand, the scraper for autoscout24.com

extracted 687 images within the same timeframe. The variance in output results can be

explained by the differences in the scraping techniques employed for each website. A

scraper designed for a static website does not utilize Selenium, resulting in much better

performance by avoiding the need to automate interactions with the website for handling

dynamic content challenges.

At this stage, it is evident that the initial scrapers are effectively performing their

main functions, providing a strong foundation for further development. However, there is a

significant opportunity to refine and optimize the existing scraping strategy. The

subsequent part of this thesis will explore scalable strategies to increase the volume of data

extraction while maintaining the quality and integrity of the acquired images.

4.5 Scalability and Optimization

This section of the thesis focuses on enhancing the current web scraping system with

the aim of scaling up the amount of data extracted. The main focus will be on refining the

current setup to increase its efficiency.

52

4.5.1 Scrapers orchestration

In the progression of scraping system development, an important step is the

orchestration of the developed scrapers. The orchestration involves strategically

coordinating various developed scraping scripts to operate simultaneously, therefore

optimizing and scaling the data collection process. The main motivation behind this

approach arises from the need to enhance efficiency and manage the scraping of different

websites concurrently.

Choosing the appropriate mechanism for parallel execution in this context is

crucial. Thereby, multithreading and multiprocessing emerge as two notable practices in

parallel programming, each offering distinct advantages and applicability [29][34].

Multithreading involves running multiple threads within a single process. It’s a technique

ideal for Input/Output operations, such as waiting for data from external sources like

network responses. However, multithreading in Python is constrained by the Global

Interpreter Lock (GIL), which allows only one thread to execute Python bytecode at a time,

potentially limiting performance gains in CPU-bound tasks and creating bottlenecks [29].

On the other hand, multiprocessing is a form of true parallelism and involves

utilizing multiple process units, each potentially operating on separate CPU cores, or even

utilizing a GPU to execute different sections of a program concurrently [34]. Processes in

multiprocessing setup bypass GIL, which allows execution of the same code lines and

modifying separate instantiations of the same object, thereby eliminating the bottlenecks in

multithreading [29].

Considering the aspects outlined, multiprocessing is identified as the most suitable

choice for the scraping orchestration core. Currently, only two scrapers for two websites

have been developed, one for a website with a more static nature and the other for a

website with a more dynamic nature. However, the previously adopted modular design

approach facilitates the seamless integration of additional scrapers for other websites. As

indicated in the section 3.3.1, JavaScript is employed on 98.8% of websites according to

the W3C [45], therefore it's likely that possible future targeted websites will also be

dynamic in nature. Consequently, the scraping of such sites often may require the use of

Selenium, which, as mentioned in 3.2.2.2, known for its resource-intensive nature,

particularly in CPU usage. This highlights the logic behind selecting multiprocessing,

culminating in the creation of a scraper orchestration manager, as illustrated in Source

Code 6.

53

Source Code 6. Scraper Orchestration Manager. Source: own
import csv
import os
import time
import multiprocessing
from collections import defaultdict
from urllib.parse import urlparse
from scripts.motohunt_links import MotoHuntLinksScraper
from scripts.motohunt_images import MotoHuntImageScraper
from scripts.autoscout_links import ScoutLinksScraper
from scripts.autoscout_images import ScoutImageScraper
from utils.log_urls import LogInvalidUrls

class ScraperManager:
 # Mapping of domains for scrapers
 SCRAPER_MAPPING = {
 "motohunt.com": {
 "link_scraper": MotoHuntLinksScraper,
 "image_scraper": MotoHuntImageScraper
 },
 "www.autoscout24.com": {
 "link_scraper": ScoutLinksScraper,
 "image_scraper": ScoutImageScraper
 }
 }

 def __init__(self, csv_file, max_concurrent_tasks_per_site):
 self.csv_file = csv_file
 self.max_concurrent_tasks_per_site = max_concurrent_tasks_per_site

 parent_directory =
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
 self.csv_file = os.path.join(parent_directory, 'data', 'bLinks.csv')
 self.urlLogger = LogInvalidUrls(
os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))),
'bLinksLogs'))

 # Check for csv
 def wait_for_csv(self):
 while not os.path.exists(self.csv_file):
 print(f"bLinks.csv not found in 'data' folder. Please add the file
to continue... Recheck in 10 seconds")
 time.sleep(10)

 # Read and parse CSV, return dict of sites with their URLs and folder names
 def read_csv(self):
 self.wait_for_csv()
 sites = defaultdict(list)
 invalid_urls = []

 with open(self.csv_file, 'r') as file:
 reader = csv.reader(file, delimiter='|')
 for row in reader:
 if len(row) != 2:

54

 invalid_urls.append((' | '.join(row), "Incorrect format:
expected URL | FolderName"))
 print("Incorrect CSV line")
 continue

 url, folder_name = row[0].strip(), row[1].strip()
 parsed_url = urlparse(url)
 if not parsed_url.scheme or not parsed_url.netloc:
 invalid_urls.append((url, "Invalid URL"))
 continue

 domain = parsed_url.netloc
 sites[domain].append((url, folder_name))

 self.urlLogger.log(invalid_urls)
 return sites

 # List of async tasks
 def scraping_for_domain(self, domain, url_pairs):
 print(f"Starting scraping for domain: {domain}")
 # Create a pool of worker processes for concurrent execution
 with multiprocessing.Pool(self.max_concurrent_tasks_per_site) as pool:
 # Async execute tasks for each URL pair in parallel
 results = [pool.apply_async(ScraperWorker.run_scrapers,
args=(url_pair,)) for url_pair in url_pairs]
 # Wait for all results to complete before proceeding
 for result in results:
 result.get()

 def start(self):
 sites = self.read_csv()
 processes = []

 for domain, url_pairs in sites.items():
 # Start a separate process for each domain
 p = multiprocessing.Process(target=self.start_scraping_for_domain,
args=(domain, url_pairs))
 processes.append(p)
 p.start()

 for process in processes:
 process.join()

class ScraperWorker:
 @staticmethod
 def run_scrapers(url_folder_pair):
 url, subfolder_name = url_folder_pair
 domain = urlparse(url).netloc
 # Get the corresponding scraper classes for the domain
 scraper_classes = ScraperManager.SCRAPER_MAPPING.get(domain)

 if not scraper_classes:
 print(f"No scraper found for {url}")
 return
 # Initialize the scrapers

55

 link_scraper = scraper_classes["link_scraper"]()
 image_scraper = scraper_classes["image_scraper"]()
 # Perform scraping
 all_links = link_scraper.scrape_all_links(url)
 print(f"Scraped {len(all_links)} links from {url}")
 # For each link, call the method to extract and download images
 for link in all_links:
 image_scraper.extract_and_download_images(link, subfolder_name)
 print(f"Completed image scraping for {url}")

if __name__ == '__main__':
 csv_file = 'bLinks.csv'
 max_concurrent_tasks_per_site = 3 # Specify if needed
 manager = ScraperManager(csv_file, max_concurrent_tasks_per_site)
 manager.start()

The ‘ScraperManager’ class begins with a declaration of the

‘SCRAPER_MAPPING’ dictionary. This mapping associates each domain with its

respective scraping classes: one for links (‘link_scraper’) and another for images

(‘image_scraper’). For example, motohunt.com is mapped to ‘MotoHuntLinksScraper’

and ‘MotoHuntImageScraper’, both illustrated in 4.3.1. This design allows a flexible

choice of suitable scrapers depending on the domain being proceeded, hence enabling a

modular and scalable system. The other functionality includes:

 Configuration and initialization. The class is initialized with two parameters:

‘csv_file’ and ‘max_concurrent_tasks_per_site’. The ‘csv_file’ specifies the path to

the ‘bLinks.csv’ file, which contains the URLs leading to the search result page of

specific needed motorcycle on targeted websites. As described previously, these

links are collected manually, and the format of each line in the ‘bLinks.csv’ file

should be “URL | FolderNameToSaveImages”. Lastly, the

‘max_concurrent_tasks_per_site’ sets a limit on the number of processes that can

be run per website.

 CSV file processing. The ‘wait_for_csv’ method checks for the presence of a

‘bLinks.csv’ file. Once the CSV file is located, the ‘read_csv’ method parses it to

extract URLs and corresponding folder name for image storage. Method organize

URLs by their domains, ensuring tasks are allocated correctly. Additionally, the

method validates each line in CSV, checking for proper format. Invalid formats are

logged using the ‘LogInvalidUrls’ utility class, therefore providing a mechanism to

track and address input data errors.

56

 Domain-based scraping. The method ‘scraping_for_domain’ creates a pool of

worker processes based on the value of ‘max_concurrent_tasks_per_site’. This

pool allows simultaneous execution of multiple scraping processes across different

URLs within the same domain.

 Orchestration of scraping tasks. The ‘start’ method serves as the orchestration for

the entire scraping activity. Method iterates over each domain obtained from the

‘read_csv’ method and initiates a separate process for each domain’s scraping

tasks.

Another component integral to this scraping system is the ’ScraperWorker’ class.

This class operates in tandem with ‘ScraperManager’, focusing on the execution of

specific scraping tasks. Using the static ‘run_scrapers’ methods, it dynamically selects and

initialize the appropriate scraper class based on the URL’s domain.

4.5.2 Orchestrated scraping system evaluation

After creating an orchestrator for scrapers, the next stage involves testing the

system to assess its efficiency. The method adopted for this evaluation mirrored the

approach described in 4.3.3, involving a controlled 25-minutes test run. The primary

objective of this test was to determine the quantity of data that could be extracted within

this timeframe, utilizing the enhanced scraping system. As a result, the current scraping

system successfully downloaded 6,551 images within 25 minutes. This output was

distributed across two targeted websites, with 4,594 images from motohunt.com and

1,957 images from autoscout24.com. This increase in data retrieval, as compared to the

initial tests, demonstrates the efficiency of the orchestrated system in scaling up the data

extraction process.

However, during the test, it was observed that both targeted websites have limits on

the number of advertisements displayed for specific motorcycle search. One website

limited its display to 400 advertising, while the second one to 216. Such a limitation

directly influences the number of extracted links. Consequently, the overall number of

extractable images decreases. To address this restriction, the website requires users to use

filters for more precise searches, such as filtering by specific years or price ranges.

Therefore, by using website filters throughout the link collection process for search result

pages, it will be possible to gather all links of individual motorcycle sales pages and extract

57

a larger amount of images. However, given the amount of data obtained from the test, it

was deemed unnecessary to implement such measures at this stage.

4.5.3 “Raw” dataset creation

After evaluating the orchestrated scraping system, the following stage is to collect

the initial “raw” dataset of motorcycle images based on the predefined list of motorcycle

models in Table 1. The process starts by manually collecting URLs from two targeted

websites, which are directed to pages displaying search results of specific needed

motorcycle. After manually collecting links and placing them into a specified CSV file, the

scraping manager was initiated, and within a couple of hours, a total of 38,551 images

were extracted. On average, from 1000 to 4000 images for each motorcycle model. The

exception was one model that was not present on one of the targeted websites.

However, it is crucial to acknowledge that the dataset compiled at this stage is “raw”

in nature. Although it contains a large number of images, as previously mentioned in 4.2.3,

some of them are irrelevant, therefore, such images require filtering to separate them from

motorcycle images.

4.6 Data Quality & Filtration

As previously mentioned in the study conducted by Tafazzoli et al. [41], while the

chosen method of collecting data from online sales platform is beneficial for computer

vision tasks due to the diversity of data, it also has its disadvantages in the form of

irrelevant images. These may include images of buildings, people, specific parts of

motorcycles such as steering wheels or wheels, or images captured at angles that do not

fully show the entire motorcycle. An example of such images is shown in Figure 11.

The dataset currently contains multiple irrelevant images, which might significantly

impact the main possible application of the dataset, specifically the performance and

accuracy of neural networks models to recognize the manufacturer and model of

motorcycle. Therefore, the challenge at this stage is to ensure the quality of scraped images

and their relevance.

To address this challenge, this section of the thesis sets a primary objective to

choose and implement a methodology that can effectively distinguish and separate full

motorcycle images from those that are irrelevant or unsuitable for the dataset intended use.

58

Figure 11. Irrelevant & Motorcycle images. Source: own

4.6.1 Manual filtration

One straightforward approach is manual filtration. This method involves analysing

and categorizing each image individually to keep only the relevant images in the dataset

and remove others. The strength of this method in its accuracy, as it relies on human

judgement to identify nuances in images that an automated system might overlook.

However, the practical value of this approach decreases as the dataset grows. With

the web scraping system potentially incorporating more scrapers and a boarder range of

motorcycles to scrape, the volume of data quickly increases. Therefore, manual filtration

rapidly becomes very time-consuming and the potential for human error and inconsistency

grows. As such, while manual filtration may be effective for small datasets, its

applicability is limited for larger, more complex datasets, therefore, more automated,

scalable solutions for data filtration are becoming essential.

4.6.2 Automated filtration

The utility of an automated system for filtering large datasets was effectively

showcased in a study conducted by Lyu et al. [28], where authors successfully used the

YOLO (You Only Look Once) object detection algorithm to remove irrelevant images,

such as noisy photos and car interiors from their car dataset. To filter the motorcycle

dataset, this study took a similar approach but utilizing YOLOv8 developed by Ultralytics.

This enhanced version of YOLO will be used to precisely identify and separate images that

59

do not align with the main objective of the dataset, focusing on retaining images that fully

portray motorcycle.

However, images classified as irrelevant will not be removed but will be kept for

possible future research value. This decision is based on a study conducted by Yang et al.

[51], where image filtering was also applied to compile a dataset of car images. As

highlighted in the study, specific images of car components, such as, for example,

headlights, were found to have a potential for further research and use. Therefore, retaining

irrelevant images that may contain individual parts of a motorcycle is viewed as a strategic

step that lays the foundation for future advancements and analysis.

4.6.2.1 Classify model creation

In the initial phase of creating a model for image separation, the pre-trained

YOLOv8 model for object detection was selected, and the first step involved annotating

objects within images, with the aim of training the model to distinguish between relevant

and redundant images in the dataset. However, the initial approach of utilising an object

detection model did not completely reflect the main objective of data filtration. The

primary requirement was not to identify and locate objects but rather to classify each image

as a whole.

Subsequently, a more suitable solution was found. The focus has shifted to the

utilization of a pre-trained model specifically for image classification. According to

Ultralytics documentation [43], classifier models are more suited for filtration tasks, as

they are designed to identify the class to which an image belongs without needing to

identify the object’s position or precise shape. Accordingly, a dataset for training a neural

network was prepared in accordance with Ultralytics’ dataset preparation guidelines [44]

for classifier models. For this purpose, 3057 images of random, unique, and diverse

motorcycles were selected utilizing a previously developed scraping system and divided

into two classes. The first class labelled as “motorcycle”, comprised of 2000 clear images

of motorcycles and the second class labelled as "redundant”, consisted of 1057 images that

were previously discussed as irrelevant. Each class of dataset was further divided

according to the 70/30 rule, with 70% allocated for training and 30% for validation. This is

a common approach that has been observed in many other studies [9][35].

After compiling the training dataset, the neural network was trained for 30 epochs,

where each epoch represents a complete cycle through the entire training dataset [35].

60

Following the training, performance metrics were recorded and analysed, as illustrated in

Figure 12.

Figure 12. Results of training neural network model for classification. Source: own

The first graph, labelled as “Loss vs epochs”, demonstrates the model’s learning

evolution across 30 epochs. The training loss, represented by the blue line, decreases from

the initial epochs and stabilizes as the number of epochs progresses. This indicates an

enhancement in the model’s image classification accuracy [35]. The validation loss,

represented by the red line, decreases at a slower rate and shows minor fluctuations, which

may indicate the moments where the model is learning from the new validation data.

The second graph, titled “Validation accuracy vs epochs”, displays the model’s

accuracy on the validation set over epochs.

In order to calculate neural network model accuracy, it is necessary to analyse the

confusion matrix, a matrix that precisely illustrates the performance of the learning

algorithm [35], which is illustrated in Figure 13.

61

Figure 13. Confusion matrix of a trained model. Source: own

The equation for accuracy, represented in Equation 1, is given by:

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁

Equation

1

The values of TP, TN, FN, and FP are directly derived from the confusion matrix

illustrated in Figure 13, where:

 TP (True Positive). Correctly identified motorcycle images, shown in the top left

cell of the confusion matrix.

 TN (True Negative). Correctly identified images as not being motorcycle

(redundant class), shown in the bottom right cell.

 FN (False Negative). Motorcycle images, incorrectly classified as redundant

images, shown in the bottom left cell.

 FP (False Positive). Redundant images, incorrectly classified as motorcycle,

displayed in the top right cell of the matrix.

After calculating the values, it was determined that the accuracy of the neural

network model is approximately 96.19%. Such a level of accuracy indicates that the neural

62

network has effectively learned patterns from the training data and is able to apply them to

validation data. This is crucial for the model's ability to perform well on unseen images,

demonstrating its reliability and effectiveness in classifying and filtering motorcycle

images within the dataset.

4.6.2.2 Wrapping model

Following the creation of the classification model, a specific separate module was

created to use a trained model on scraped images, as demonstrated in Source Code 7. The

‘ImageFilterer’ is designed to interact with the filesystem, where images are stored and

organized into folders based on manufacturer, model, and years of production. Upon

module execution, each image is classified as either a “motorcycle” or “redundant” and

then automatically placed in subfolders with their respective name inside the parent folder

where the “raw” images were originally stored.

Source Code 7. Image Filtration Module. Source: own
import shutil

from pathlib import Path

from PIL import Image

from ultralytics import YOLO

from concurrent.futures import ThreadPoolExecutor

class ImageFilterer:

 def init(self, weights_path, image_extensions=None):

 self.model = YOLO(weights_path)

 self.image_extensions = image_extensions or ['*.jpg', '*.jpeg',

'*.png', '*.webp']

 def process_image(self, image_path, motorcycle_folder,

redundant_folder):

 try:

 result = self.model(Image.open(image_path))[0]

 if result.probs.top1 == 0 and result.probs.top1conf > 0.50:

Class 0 is 'motorcycle'

 shutil.move(image_path, motorcycle_folder /

image_path.name)

 else:

 shutil.move(image_path, redundant_folder /

image_path.name)

 except Exception as e:

 print(f"Error processing {image_path}: {e}")

 def process_folder(self, folder_path):

 try:

 motorcycle_folder = folder_path / 'motorcycle'

 redundant_folder = folder_path / 'redundant'

 os.makedirs(motorcycle_folder, exist_ok=True)

 os.makedirs(redundant_folder, exist_ok=True)

63

 for ext in self.image_extensions:

 for image_path in folder_path.glob(ext):

 self.process_image(image_path, motorcycle_folder,

redundant_folder)

 # Rename the processed folder

 if "FILTERED" not in folder_path.name:

 processed_folder_name = folder_path.name + "__FILTERED"

 processed_folder_path = folder_path.parent /

processed_folder_name

 folder_path.rename(processed_folder_path)

 except Exception as e:

 print(f"Error processing folder {folder_path}: {e}")

if __name == "main":

 script_directory = os.path.dirname(os.path.abspath(file))

 # Initialize the ImageFilterer

 weights_path = os.path.join(script_directory, 'weights',

'moto_filterer.pt')

 if not os.path.exists(weights_path):

 print("Weights file not found. Please check the weights

directory.")

 exit()

 image_filterer = ImageFilterer(weights_path)

 # Ask user for parent folder and number of threads

 parent_folder_path = input("Please enter the path to the parent

folder: ")

 parent_folder = Path(parent_folder_path)

 max_workers = int(input("Please specify number of threads: "))

 # Process each folder in parallel

 with ThreadPoolExecutor(max_workers) as executor:

 futures = []

 for subfolder in parent_folder.iterdir():

 if subfolder.is_dir() and "__FILTERED" not in

subfolder.name:

futures.append(executor.submit(image_filterer.process_folder,

subfolder))

 for future in futures:

 future.result() # Wait for all threads to complete

The module starts by initializing a trained model for classification and the optional

parameter ‘image_extensions’ to specify the types of images to process. Other

functionalities of the module include:

 Image processing. The method ‘process_image’ takes an image file path and the

paths for subfolders, then it uses a trained model to classify each image and place

them to corresponding subfolders based on classification. If the model classified the

64

image as a motorcycle with confidence above 50%, the image moved to the

“motorcycle” subfolder, otherwise it goes to the “redundant” subfolder.

 Folder-level processing. The method ‘process_folder’ creates a “motorcycle” and

“redundant” subfolders and iterates over all images, applying the ‘process_image’

method to each.

To enhance the efficiency of handling big volumes of data, the module employs

multithreading. As a result, this parallel processing reduces the time required for filtering

images, making the module more robust and scalable.

Subsequently to the quantitative analysis in 4.5.2.1, a qualitative evaluation was

conducted. The trained model, encapsulated within this module, underwent a classification

test on approximately 1200 random images of motorcycles, and personal observation was

employed to monitor the performance of the model. The results showed a high level of

accuracy, with the model accurately classifying most of the images. Despite occasional

misclassifications, the overall performance can be regarded as satisfactory. This

demonstrates the model’s readiness for practical application in filtering the “raw” dataset

created in 4.4.3.

4.7 Data Storage & Final Dataset

This final section of the practical part focuses on establishing the optimal

methodologies for storing and analysing the dataset after the filtration step. Furthermore,

this section marks the creation of the final dataset, achieving one of the main objectives of

this thesis.

4.7.1 Cloud storage

Effective data storage is crucial for handling large datasets. And one of such

effective solutions can be cloud storage, which offers scalability and reliability. For

example, Amazon Simple Storage Service (S3) is a good candidate, offering a scalable

cloud-based storage with variable object sizes, ranging from a minimum of 1 byte to a

maximum of 5 gigabytes [6].

The architecture of S3 is designed to manage an almost “infinity” number of

objects, each organized within a system known as “buckets”. Buckets are the primary

containers that store data objects, functioning similar to the directories in a file system.

Each object within S3 is encapsulated in a byte-stream format and may be uniquely

65

identified by a Uniform Resource Identifier (URI), which is associated with a specific

bucket. Moreover, S3’s architecture, by utilizing a SOAP or REST-based interface, allows

seamless data retrieval (‘get(uri)’) and updating mechanisms (‘put(uri, bytestream)’) [6].

Given these attributes, S3 could serve as great storage for a motorcycle dataset,

especially in the case of the possible further scalability of the scraping system. In fact, the

book “Python Web Scraping Cookbook” [16] by Michael Heydt, which helped in the

development of scrapers, provides practical insights into how images can be effectively

loaded into S3 buckets, thus, considering all the aspects above, initially it was planned to

use a cloud storage approach.

However, it is crucial to clarify that this service is not free. The costs associated

with data storage were important factors to consider, especially since this work is an

academic rather than commercial project. Consequently, a different storage solution was

selected. Nonetheless, in the context of large-scale projects, cloud-based storage solutions

can be the optimal choice for extensive datasets.

4.7.2 Relational Database Approach

In considering alternative storage solutions, the option of utilizing relational

databases was also explored, particularly for image storing. Nevertheless, this approach is

generally not regarded as good practice due to several inherent limitations.

Images in relational databases are typically stored as binary large objects (BLOBs),

and a large number of BLOB objects can significantly increase the size of the database.

Such an increase in size often leads to performance issues, meaning that database will

require more resources and time for operations such as backups, replication, data retrieval,

and upload.

Despite these challenges, the storage of smaller binary objects, such as image

thumbnails, may be acceptable. As an example, research conducted by Sears et al. [38]

indicates that relational databases are more efficient for objects smaller than 256 kilobytes,

whereas filesystems are better suited for handling objects larger than 1 megabyte.

Therefore, considering the specifics of scraped images in the motorcycle dataset,

where images typically exceed 1 megabyte, it was decided not to use the database as

primary storage. Nevertheless, it was decided not to completely remove the use of

database. The database can effectively store metadata for each image, including details

such as manufacturer, model, year of production, and classification results from a

66

previously trained neural network model. By utilizing a database in this manner, it may

simplify data organization and facilitate data analysis, making the relational database a

great tool for the overall data management strategy and results analysis.

4.7.3 File System Storage

The final decision in terms of this bachelor thesis was to leave the existing logic for

storing the images inside the file system after scraping and filtration procedures.

A file system is an essential component of any computer, designed to specifically

store, organize, and manage files on storage devices. As indicated in the previously

mentioned study by Sears et al. [38], this approach can be considered optimal for images,

which typically exceed 1 megabyte in size, and most of the images in the current dataset

fall under these criteria. Furthermore, all scraped images are organized according to a

particular file structure and naming conventions. As a result, it makes it easier to handle

and access vast amounts of data.

However, as previously mentioned, to enhance data analysis capabilities, the

metadata of each image will be stored in a relational database. Such an approach

effectively combines the advantages of filesystem and database, optimizing overall

management. The methodology and implementation of this technique will be provided in

the following sections of this chapter.

4.7.4 Database Implementation

For the efficient storage and management of image metadata, the relational

database management system MySQL was chosen. The first step involves the creation of a

database called “Motostorage”, within this database, a table named “images” was

established with a structure illustrated in Source Code 8.

Source Code 8. Schema for Storing Image Metadata. Source: own

CREATE TABLE images (
 id INT AUTO_INCREMENT PRIMARY KEY,
 manufacturer VARCHAR(255),
 model VARCHAR(255),
 year_start INT,
 year_end INT,
 image_type ENUM('motorcycle', 'redundant'),
 file_path VARCHAR(800),
 file_name VARCHAR(255),
 date_added TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 UNIQUE (file_name)
);

67

Each field within the table serves the following purposes:

 ‘id’. A primary key, unique auto-incremented identifier for each record.

 ‘manufacturer’, ‘model’, ‘year_start’, ‘year_end’, ‘image_type’. Fields for storing

specific details of the image, reflecting the manufacturer, model, years of

production, and category of image as either “motorcycle” or “redundant”.

 ‘file_path’, ‘file_name’. Fields for storing information about the image name and

location.

 ‘date_added’. Timestamp to record a date and time when a record was inserted.

 ‘UNIQUE’. Constraint for f’'ile_name’ to avoid duplicates.

After initial database preparation, the next step involves developing a module

responsible for placeholding the logic of uploading metadata. Consequently, the module

represented in Source Code 9 was developed to facilitate this process.

Source Code 9. Database Uploader Module. Source: own

import mysql.connector
from mysql.connector import Error

class DatabaseUploader:
 def __init__(self, config):
 self.config = config
 self.connection = None
 self.connect()

 def connect(self):
 # Establish connection through config file
 try:
 self.connection = mysql.connector.connect(**self.config)
 self.connection.autocommit = True
 except Error as e:
 print(f"Error connecting to MySQL database via config file: {e}")

 def insert_metadata(self, manufacturer, model, year_start, year_end,
image_type, file_path, file_name):
 if self.connection.is_connected():
 cursor = self.connection.cursor()
 # Ignore clause in case of duplicates, MySQL 5.7.5 and higher
 add_image_query = (
 "INSERT IGNORE INTO images "
 "(manufacturer, model, year_start, year_end, image_type,
file_path, file_name) "
 "VALUES (%s, %s, %s, %s, %s, %s, %s)"
)
 image_data = (manufacturer, model, year_start, year_end,
image_type, file_path, file_name)
 cursor.execute(add_image_query, image_data)
 cursor.close()

 def close(self):

68

 # Close db connection
 if self.connection.is_connected():
 self.connection.close()

The ‘DatabaseUploader’ initializes with a configuration file, which contains the

database connection credentials. Other functionalities include:

 Connection establishment. The ‘connect’ method establishes a connection to the

MySQL database using the provided configuration from the config file.

 Metadata insertion. Method ‘insert_metadata’ takes multiple parameters about

image metadata and inserts this data into the table using a SQL query.

 Connection close. The ‘close’ method ensures that the database connection is

properly closed after operations are completed.

After the creation of the ‘DatabaseUploader’, the filtration module, referenced in

Source Code 7, was modified. The main modifications include new methods which utilise

the data upload logic. Now, due to modifications made, after the filtration step, the user is

prompted to decide whether to enter the metadata of the filtered images into the database.

4.7.5 Final Dataset Creation

This section represents the achievement of one of the main objectives of this thesis:

the creation of the final motorcycle dataset. To start this final phase, the “raw” dataset

obtained in 4.4.3 underwent the filtration procedure utilizing the modified filtration

module. Subsequently, the images were sorted and classified, then their metadata was

loaded into the database for further analysis.

Consequently, once metadata has been loaded, it is possible to conduct analysis of

the results obtained. For this purpose, a particular SQL query demonstrated in Source

Code 10 was utilized.

Source Code 10. SQL Query for Manufacturer Image Summary. Source: own

SELECT
 IFNULL(manufacturer, 'Total') AS manufacturer,
 COUNT(DISTINCT model) AS total_models,
 SUM(CASE WHEN image_type = 'motorcycle' THEN 1 ELSE 0 END) AS
motorcycle_images,
 SUM(CASE WHEN image_type = 'redundant' THEN 1 ELSE 0 END) AS
redundant_images,
 COUNT(*) AS images_per_manufacturer
FROM
 images
GROUP BY
 manufacturer WITH ROLLUP;

69

The query is designed to display the list of manufacturers, including the number of

unique models they have, the counts of “motorcycle” and “redundant” images, and the

total number of images for each manufacturer. In addition, query display a summarized

row labeled “Total”, which represents the sum of all images and models in the table.

The output of this query is visually represented in Figure 14. An analysis of the

query output revealed that the database now contains 15 distinct motorcycle models and a

total of 38,551 images. This result is in perfect alignment with the data that was previously

collected and described in 4.4.3, meaning that all 38,551 images from the “raw” dataset

were filtered and successfully loaded.

Figure 14. Visual Summary of Image Metadata by Manufacturer. Source: own.

To further contextualize the dataset, an analysis was performed according to the

initial data list provided in Table 1, which outlined the targeted manufacturers and models

and served as the foundation for dataset creation.

In order to show results achieved, the SQL query from Source Code 10 was

modified, as illustrated in Source Code 11.

Source Code 11. SQL Query for Image Count by Attributes. Source: own

SELECT
 manufacturer, model, year_start, year_end,
 SUM(CASE WHEN image_type = 'motorcycle' THEN 1 ELSE 0 END) AS
motorcycle_images,
 SUM(CASE WHEN image_type = 'redundant' THEN 1 ELSE 0 END) AS
redundant_images,
 COUNT(*) AS images_total
FROM
 images
GROUP BY
 manufacturer, model, year_start, year_end;

70

The new query provides the count of images by each manufacturer and model,

including the start and end years. And the results of this query have been placed in Table 2

for better visualization.

Manufacturer Model Production

years

Motorcycle

images

Redundant

images

Total

images

Aprilia RS660 2020-2024 1219 709 1928

Aprilia RSV4 2017-2024 2018 1535 3553

BMW F900XR 2019-2024 2003 1350 3353

BMW M1000R 2020-2024 593 441 1034

BMW R1250GS 2018-2024 2098 1650 3748

BMW R18 2020-2024 2522 2107 4629

Ducati Scrambler 800 2016-2024 1779 1141 2920

Harley-Davidson Street Glide 2016-2024 1915 1038 2953

Honda CB500F 2017-2024 999 540 1539

Honda PCX125 2017-2024 282 170 452

Kawasaki Ninja 400 2018-2024 775 273 1048

Kawasaki Z900 2018-2024 1064 427 1491

KTM Super Duke 1290 2021-2024 1718 835 2553

KTM Duke 390 2017-2024 2073 1211 3284

Yamaha MT-07 2016-2024 2877 1189 4066

Table 2. Final dataset results overview. Source: own.

Upon reviewing the results, it is evident that the main goal of gathering data on the

selected models has been successfully achieved. The dataset contains mostly models with

more than 1000 high-quality motorcycle images. Notable exceptions include certain

recently released models with a lower marketplace presence at the moment and one model

(PCX15) potentially listed under a different name on one of the targeted websites.

Nevertheless, the developed scraping system and filtration module have

demonstrated effectiveness and scalability, meaning that the existing system allows for

potential expansion in terms of image quantity. For the current scope of the thesis, the

quantity and quality of the scraped images are considered satisfactory. This

accomplishment represents the completion of the practical part of the thesis, achieving the

primary objective of compiling a comprehensive and well-organized motorcycle dataset.

71

5 Results and Discussion

5.1 Results

5.1.1 Web Scraping Methodology and Implementation

The initial phase of this study involved a thorough analysis of web scraping

methodologies and tools. This investigation played a crucial role in understanding how

web scraping, as an automated method of data extraction, may play a significant role in

obtaining large quantities of data for various different applications.

5.1.2 Developed Scraping & Filtration System

In the practical part of the thesis, the techniques and tools described in the

theoretical part were successfully employed in the form of a scraping system capable of

acquiring a large volume of images. The system was designed with a focus on modularity

and scalability, consisting of a specifically structured module for each targeted website and

an orchestrator for these modules.

Each scraping module in a system consisted of two closely linked scrapers, one for

gathering links and the other for collecting images. The link collection scraper within each

module was designed to extract URLs that leads to specific needed motorcycle page. Once

the URLs are gathered, a second scraper, designed for image collection, retrieves images

from these pages.

Further, to simplify and scale a scraping process, the specialized orchestrator was

developed to manage the operations of scraping modules, allowing simultaneous

multiprocessing data acquiring. The developed orchestrator maximized the efficiency of

the scraping process, showcasing the system’s capability to manage multiple data

extraction activities concurrently.

Furthermore, to enhance the quality and relevance of the scraped data, an

automated filtering process utilizing the YOLO algorithm was developed. By utilizing this

algorithm to train a specialized neural network model, the process of filtering data to

separate motorcycle images from unrelated or irrelevant content was successfully

automated, ensuring the dataset’s quality and relevance for further use in the field of

VMMR. Additionally, the system incorporated a feature for appending images metadata to

the database, facilitating more efficient analysis and interpretation of the scraped data.

72

In summary, the scraping system developed in this thesis demonstrates a good

degree of modularity, efficiency, and adaptability. Through a dual-script architecture

within each scraping module, coupled with an orchestrator and advanced filtering, the

system may serve as a sophisticated tool for motorcycle dataset compilation. In addition,

the approach demonstrated through the development of this system can be used as a

foundation not only for collecting images of motorcycles but also for gathering images to

compile any other dataset for computer vision tasks.

5.1.3 Compiled dataset

The creation of the motorcycle dataset represents the culmination of the practical

part and the accomplishment of the main objective of this thesis. Featuring 15 unique

models from various manufacturers and encompassing a total of 38,551 images and 23,935

high-quality, diverse clean images of motorcycles, the compiled dataset, detailing the

make, model, and production years, serves as an excellent starting point for Vehicle Make

and Model Recognition (VMMR) applications.

It is important to note that a key aspect of Vehicle Make and Model Recognition

(VMMR) and other machine learning endeavours is having an adequate number of images

per class to ensure effective training. In this context, considering the compiled dataset, the

amount of images collected for each motorcycle model seems to be sufficient for effective

neural network training. However, it is important to note that the quantity of images for

each class is abstract and relies entirely on the specific of project and the architecture on

which the training of the model for object recognition and classification will be based.

Another important aspect to mention is that the current dataset focuses on only 15,

primarily recent and popular, models. Nevertheless, as previously stated in the first chapter

of the practical part, the aim was not only to compile a dataset but also to demonstrate the

underlaying architecture patterns to accomplish this and similar tasks. And the developed

scraped system, with its modular and scalable design, enables straightforward expansion of

the dataset. Therefore, if the objective is to create a dataset not only for 15 unique models

but, for example, for more than 100 models, the current system will allow this to be

accomplished.

73

5.2 Discussions

5.2.1 Insights on the Developed Scraping System

One notable aspect of the developed system is its reliance on manual user input. As

outlined in the practical part, the user is required to manually search for a needed

motorcycle on a targeted website, then manually retrieve the URL leading to the search

result on the page and paste it into a specialized CSV file in a specific format.

An alternative method could involve automating the scraping process by removing

dependence on the user. As an example, the system may automatically scrape each model

from a specific manufacturer, save the results, and then repeat the process for another

manufacturer. However, this automatic approach has its own disadvantages, primarily due

to the complexity and variety within motorcycle models. As previously mentioned,

different generations of a single model can have differences in their visual appearance.

Therefore, scraping each model without considering their generations might result in a

dataset with reduced utility for tasks requiring precise make, model, and generation

identification.

Furthermore, such an automatic approach may have another disadvantage. During

scraping, it was discovered that not all models may be present on the targeted website, or

they may have different name. For instance, only a limited number of images were

obtained for the model “Honda PCX125” since this particular model was not listed on one

of the targeted websites, which is focused on sales for the North American region. Upon

analysing publicly available sources, it was discovered that this model is mainly produced

for the Asia-Pacific and European markets. Consequently, the number of advertisements of

this specific model was limited on the website for the North American market.

These factors once again demonstrate that the process of gathering the information

for the required motorcycles to scrape can be resource-intensive and time-consuming.

Therefore, due to the factors described above, a decision was made to reach a compromise

and leave the system’s reliance on the user.

5.2.2 Data Quality and Filtering

Data quality was a crucial factor to consider during the course of this thesis. The

context of this study primarily deals with media files, particularly with images, which

required a specialized approach. Since the method of scraping vehicle sales websites

74

inherently introduce the challenge of extracting images with irrelevant content [41], to

address this, a specialized neural network model based on the YOLO algorithm was

introduced for content filtering. This approach aligns with many other studies in similar

domains, confirming its suitability and effectiveness as the primary solution.

However, an area for potential optimization lies in the current standalone nature of

the filtering process. Currently, filtering can only be done after the scraping process, and

this introduces an extra step before the data becomes clean and usable. For instance,

implementing real-time filtering synchronized with the scraping process, wherein data is

automatically sorted in the directory where images are saved, could speed up the overall

acquisition of the final dataset and remove the dependence on manual intervention for

starting the filtering process.

In summary, while the current method successfully separates relevant from

irrelevant images, thereby ensuring the quality of the data, the merging of scraping and

filtering processes represents a great potential for further improvements.

5.2.3 Reflections on the Compiled Dataset

The main application of the compiled dataset is in Vehicle Make and Model

Recognition (VMMR) tasks within the field of computer vision. The current dataset

contains a solid amount of high-quality images for 15 different motorcycle models,

primarily selected based on their newness and growing popularity in the market. This

choice ensures that the dataset is relevant and up-to-date, reflecting current trends in the

motorcycle industry.

However, a key consideration regarding the dataset is its size. Although the choice

of selecting exactly 15 models was justified due to complexness in initial data analysis and

data list preparation, considering the unique visual characteristics of different models

generations, this dataset may not be sufficient for more complex, extensive VMMR

projects. Nevertheless, at the time of writing this thesis, no substantial studies were found

that specifically focus on the motorcycle model recognition. This factor indicates an

unexplored area in the field of VMMR, therefore, the current dataset, despite its limitations

in size, can be considered the foundation and starting point for studies dealing with

motorcycle recognition. If there is a need to expand a dataset by obtaining more data for

further models, the developed scraping system will effectively handle this operation,

allowing growth with minimum challenges.

75

In summary, the compiled dataset provides a fundamental basis for VMMR

applications, particularly in the context of motorcycles. The current scope, emphasizing

recent and gaining popularity models, provides a solid starting point for future research in

this field.

76

6 Conclusion

In conclusion, the research conducted in this bachelor thesis has showcased the

synthesis of theoretical insights and practical implementations in the field of web scraping.

The theoretical part of this study involved a thorough analysis of web scraping

methodologies and tools, providing essential insights into the complexities and potentials

of automated data extraction for various applications. This analysis also addressed various

challenges, ethical and legal nuances, providing excellent foundation for the subsequent

practical work.

The practical part of this thesis successfully applied knowledges gained from

theoretical study. As a result, a scraping system was developed to efficiently extract a wide

array of motorcycle images. Advanced filtration techniques were integrated to ensure the

data quality, and a database system was implemented for effective data analysis. The result

of these efforts was the creation of a comprehensive motorcycle image dataset, categorized

by make, model, and production years, serving as a valuable resource for Vehicle Make

and Model Recognition tasks in computer vision field.

Overall, this thesis not only fulfils its primary goal of developing a motorcycle image

dataset but also contributes to a deeper understanding of web scraping methodologies,

emphasizing their versatility as a tool for various applications. This study highlights that

while web scraping can be highly effective in computer vision, its utility may cover a

broad range of other various fields, demonstrating its potential as a universal solution for

data collection challenges.

77

7 References

[1] ACHSAN, Harry T. Yani and WIBOWO, Wahyu Catur. A Fast Distributed Focused-

web Crawling. Procedia Engineering, [s.l.], v. 69, 2014, p. 492-499. ISSN 1877-7058. DOI

10.1016/j.proeng.2014.03.017.

[2] AKROUT, Ismail, FERIANI, Amal, and AKROUT, Mohamed. Hacking Google

reCAPTCHA v3 using Reinforcement Learning. 2019 Conference on Reinforcement

Learning and Decision Making (RLDM). 2019. DOI 10.48550/arXiv.1903.01003

[3] Architecture overview. Architecture overview - Scrapy 2.11.0 documentation [online].

1 January 2024. [Accessed 9 January 2024]. Available from:

https://docs.scrapy.org/en/latest/topics/architecture.html

[4] Beautiful Soup documentation. Beautiful Soup Documentation - Beautiful Soup 4.12.0

documentation [online]. [Accessed 29 November 2023]. Available from:

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

[5] BOCK, Kevin, PATEL, Daven, HUGHEY, George, and LEVIN, Dave. uncaptcha: A

low-resource defeat of recaptcha’s audio challenge. In: USENIX Workshop on Offensive

Technologies. 2017.

[6] BRANTNER, Matthias, FLORESCU, Daniela, GRAF, David, KOSSMANN, Donald

and KRASKA, Tim. Building a database on S3. Proceedings of the 2008 ACM SIGMOD

international conference on Management of data. 9 June 2008. DOI

10.1145/1376616.1376645.

[7] BURSZTEIN, Elie, AIGRAIN, Jérôme, MOSCICKI, Angelika, and MITCHELL, John

C. The End is Nigh: Generic Solving of Text-based CAPTCHAs. In: Workshop on

Offensive Technologies. 2014.

[8] CHU, Zi, et al. Blog or block: detecting blog bots through behavioral biometrics.

Computer Networks [online]. 2013, 57(3), 634–646 [viewed 19 January 2024]. ISSN

1389-1286. Available from: doi:10.1016/j.comnet.2012.10.005

[9] DEQUITO, C J, DICHAVES, I J, JUAN, R J, MINAGA, M Y, ILAO, J P, M O

CORDEL, II and DEL GALLEGO, N P. Vision-based bicycle and motorcycle detection

using a YOLO-based network. Journal of Physics: Conference Series. 1 May 2021. Vol.

1922, no. 1, p. 012003. DOI 10.1088/1742-6596/1922/1/012003.

[10] DONGO, Irvin, CADINALE, Yudith, AGUILERA, Ana, MARTÍNEZ, Fabiola,

QUINTERO, Yuni and BARRIOS, Sergio. Web scraping versus Twitter API. Proceedings

of the 22nd International Conference on Information Integration and Web-based

Applications & Services. 2020. DOI 10.1145/3428757.3429104.

[11] Downloader middleware. Downloader Middleware - Scrapy 2.11.0 documentation

[online]. 15 January 2024. [Accessed 17 January 2024]. Available from:

https://docs.scrapy.org/en/latest/topics/downloader-

middleware.html#scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware

78

[12] FAN, Yuhao. Design and implementation of distributed crawler system based on

Scrapy. IOP Conference Series: Earth and Environmental Science. 2018. Vol. 108, p.

042086. DOI 10.1088/1755-1315/108/4/042086.

[13] FERRARA, Emilio, DE MEO, Pasquale, FIUMARA, Giacomo and

BAUMGARTNER, Robert. Web data extraction, applications and techniques: A survey.

Knowledge-Based Systems. November 2014. Vol. 70, p. 5–30. DOI

10.1016/j.knosys.2014.07.007.

[14] GOLD, Zachary and LATONERO, Mark. Robots Welcome? Ethical and Legal

Considerations for Web Crawling and Scraping. Washington Journal of Law, Technology

& Arts, vol. 13, no. 3, 2018, p. 275. Available at:

https://digitalcommons.law.uw.edu/wjlta/vol13/iss3/4.

[15] HENRYS, Kasereka. Importance of web scraping in e-commerce and e-marketing.

SSRN Electronic Journal. January 2021. DOI 10.2139/ssrn.3769593.

[16] HEYDT, Michael. Python Web Scraping Cookbook: Over 90 proven recipes to get

you scraping with Python, micro services, Docker and AWS. Packt Publishing, 2018.

ISBN 9781787285217.

[17] Internet “data scraping”: A Primer for counseling clients. New York Law Journal

[online]. 15 July 2013. [Accessed 23 January 2024]. Available from:

https://www.law.com/newyorklawjournal/almID/1202610687621/

[18] Jonker, H., Krumnow, B., Vlot, G., 2019. Fingerprint Surface-Based Detection of

Web Bot Detectors. In: K. Sako, S. Schneider, P. Ryan, eds. Computer Security –

ESORICS 2019. Lecture Notes in Computer Science, vol 11736. Cham: Springer.

Available from: https://doi.org/10.1007/978-3-030-29962-0_28

[19] JOSELYN, Raven. Europe’s top 10 motorcycle thrills: 2023 best-sellers unleashed.

Cars & Bikes [online]. 22 December 2023. [Accessed 13 February 2024]. Available from:

https://www.automobilesnext.com/2023/12/europes-top-10-motorcycle-thrills-2023-best-

sellers-unleashed/

[20] KHDER, Moaiad. Web scraping or web crawling: State of Art, Techniques,

approaches and application. International Journal of Advances in Soft Computing and its

Applications. 2021. Vol. 13, no. 3, p. 145–168. DOI 10.15849/ijasca.211128.11.

[21] Kirjazovas, V. (2020, November 5). Web scraping automotive industry data. Web

Scraping Automotive Industry Data. https://oxylabs.io/blog/web-scraping-in-automotive-

industry

[22] Krotov, V., & Johnson, L. (2022). Big web data: Challenges related to data,

technology, legality, and ethics. Business Horizons.

https://doi.org/10.1016/j.bushor.2022.10.001

[23] Krotov, V., Johnson, L., & Silva, L. (2020). Legality and Ethics of Web Scraping.

Communications of the Association for Information Systems, 47, 539–563.

https://doi.org/10.17705/1cais.04724

79

[24] LAWSON, Richard. Web Scraping with Python: Successfully scrape data from any

website with the power of Python. Packt Publishing, 2015. ISBN 9781782164364.

[25] LEE, Hyo, ULLAH, Ihsan, WAN, Weiguo, GAO, Yongbin and FANG, Zhijun. Real-

time vehicle make and model recognition with the residual SqueezeNet architecture.

Sensors. 26 February 2019. Vol. 19, no. 5, p. 982. DOI 10.3390/s19050982.

[26] LOTFI, Chaimaa, SRINIVASAN, Swetha, ERTZ, Myriam and LATROUS, Imen.

Web scraping techniques and applications: A literature review. SCRS CONFERENCE

PROCEEDINGS ON INTELLIGENT SYSTEMS. January 2021. P. 381–394. DOI

10.52458/978-93-91842-08-6-38.

[27] Luscombe, A., Dick, K., & Walby, K. (2021). Algorithmic thinking in the public

interest: navigating technical, legal, and ethical hurdles to web scraping in the social

sciences. Quality & Quantity. https://doi.org/10.1007/s11135-021-01164-0

[28] LYU, Y., SCHIOPU, I., CORNELIS, B., and MUNTEANU, A. Framework for

Vehicle Make and Model Recognition—A New Large-Scale Dataset and an Efficient Two-

Branch–Two-Stage Deep Learning Architecture. Sensors, 2022, vol. 22, no. 21, article

8439. Available at: https://doi.org/10.3390/s22218439.

[29] Mitchell, Ryan. Web Scraping with Python: Collecting More Data from the Modern

Web. 2nd edition. O'Reilly Media, Inc., 2018. ISBN 978-1491985571

[30] Motorcycles Database. autoevolution [online]. [Accessed 13 February 2024].

Available from: https://www.autoevolution.com/moto/

[31] NASH, Carole. Top 10... best selling motorcycles and scooters of 2023: Carole Nash.

Carole Nash UK [online]. 15 January 2024. [Accessed 13 February 2024]. Available from:

https://www.carolenash.com/news/blogs/jake-dixon/detail/top-10-best-selling-

motorcycles-and-scooters-of-2023

[32] PARK, K.S., PAI, V.S., LEE, K.-W., and CALO, S.B. Securing web service by

automatic robot detection. In: Proceedings of the 2006 USENIX Annual Technical

Conference. Boston, MA, USA, 30 May–3 June 2006, p. 255-260.

[33] Patel, H. (2018, December 31). How web scraping is transforming the world with its

applications. Medium. https://towardsdatascience.com/https-medium-com-hiren787-patel-

web-scraping-applications-a6f370d316f4

[34] PRUDENTE, Norlan. Web Crawler Optimization. [online] Accessed on 25 February

2024 from: https://nprudente.com/files/WhitePaper.pdf.

[35] RASCHKA, Sebastian, and Vahid MIRJALILI. Python Machine Learning: Machine

Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition.

Packt Publishing, 2019. ISBN 9781789955750

[36] SARFRAZ, M. Saquib, SAEED, Ahmed, KHAN, M. Haris and RIAZ, Zahid.

Bayesian prior models for vehicle make and model recognition. Proceedings of the 7th

International Conference on Frontiers of Information Technology. 16 December 2009. DOI

10.1145/1838002.1838041.

80

[37] Scriptable headless browser. PhantomJS [online]. [Accessed 14 December 2023].

Available from: https://phantomjs.org/

[38] SEARS, R., INGEN, C.V., and GRAY, J. To BLOB or Not To BLOB: Large Object

Storage in a Database or a Filesystem? 2007. Available at:

https://doi.org/10.48550/arXiv.cs/0701168.

[39] SINGRODIA, Vidhi, MITRA, Anirban and PAUL, Subrata. A review on web

scrapping and its applications. 2019 International Conference on Computer

Communication and Informatics (ICCCI). 2019. DOI 10.1109/iccci.2019.8821809.

[40] SUCHACKA, Grażyna, et al. Efficient on-the-fly Web bot detection. Knowledge-

Based Systems [online]. 2021, 223, 107074 [viewed 15 January 2024]. ISSN 0950-7051.

Available from: doi:10.1016/j.knosys.2021.107074

[41] TAFAZZOLI, Faezeh, FRIGUI, Hichem and NISHIYAMA, Keishin. A large and

diverse dataset for improved vehicle make and model recognition. 2017 IEEE Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW). July 2017. DOI

10.1109/cvprw.2017.121.

[42] TAYLOR, Petroc. Data Growth Worldwide 2010-2025. Statista [online]. 16

November 2023. [Accessed 18 November 2023]. Available from:

https://www.statista.com/statistics/871513/worldwide-data-created/

[43] ULTRALYTICS. Classify. Classify - Ultralytics YOLOv8 Docs [online]. 3 February

2024. [Accessed 23 February 2024]. Available from:

https://docs.ultralytics.com/tasks/classify/

[44] ULTRALYTICS. Image classification datasets overview. Ultralytics YOLOv8 Docs

[online]. 7 January 2024. [Accessed 24 February 2024]. Available from:

https://docs.ultralytics.com/datasets/classify/

[45] Usage statistics of client-side programming languages for websites. W3Techs

[online]. [Accessed 14 January 2024]. Available from:

https://w3techs.com/technologies/overview/client_side_language

[46] UZUN, E., YERLİKAYA, T. and KIRAT, O., 2018. Comparison of python libraries

used for web data extraction. Journal of the Technical University-Sofia Plovdiv Branch,

Bulgaria. [online], 24, pp.87-92. Available at: https://erdincuzun.com/wp-

content/uploads/download/plovdiv_2018_01.pdf [Accessed 3 December 2023].

[47] Vanden Broucke, Seppe; Baesens, Bart. Practical Web Scraping for Data Science:

Best Practices and Examples with Python. 1st edition. Apress Berkeley, CA, 2018. ISBN

978-1-4842-3581-2

[48] WebDriver. Selenium [online]. [Accessed 14 December 2023]. Available from:

https://www.selenium.dev/documentation/webdriver/

[49] WHITE, Walter. Europe: Most selling motorcycles in 2023. Auto User Guide

[online]. 21 October 2023. [Accessed 13 February 2024]. Available from:

https://www.autouserguide.com/blogs/europe-most-selling-motorcycles-in-2023/

81

[50] WIRFS-BROCK, Allen and EICH, Brendan. JavaScript: The first 20 years.

Proceedings of the ACM on Programming Languages. 2020. Vol. 4, no. HOPL, p. 1–189.

DOI 10.1145/3386327.

[51] YANG, Linjie, LUO, Ping, LOY, Chen Change and TANG, Xiaoou. A large-scale car

dataset for fine-grained categorization and verification. 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 24 September 2015. DOI

10.1109/cvpr.2015.7299023.

[52] ZHENG, Chunmei, HE, Guomei and PENG, Zuojie. A study of web information

extraction technology based on Beautiful soup. Journal of Computers. 30 July 2015. Vol.

10, no. 6, p. 381–387. DOI 10.17706/jcp.10.6.381-387.

82

8 List of pictures, tables, source codes, equations, and

abbreviations

8.1 List of figures

Figure 1. Amount of data generated worldwide. Source: [42] ...14

Figure 2. DOM Tree of ČZU website before user interaction. Source: own.18

Figure 3. DOM Tree of ČZU website after user interaction. Source: own18

Figure 4. Elements containing the names of products in the ČZU shop. Source: own20

Figure 5. Product names array resulted from executing an XPath query. Source: own21

Figure 6. ČZU merchandise shop website structure. Source: own.25

Figure 7. Extracted data from the ČZU merchandise shop in JSON. Source: own25

Figure 8. Scrapy architecture. Source: [3] ...28

Figure 9. Example from bot-detection script. Source: [18] ..35

Figure 10. Conceptual architecture of web scraping system. Source: own.44

Figure 11. Irrelevant & Motorcycle images. Source: own ...58

Figure 12. Results of training neural network model for classification. Source: own60

Figure 13. Confusion matrix of a trained model. Source: own ..61

Figure 14. Visual Summary of Image Metadata by Manufacturer. Source: own.69

8.2 List of tables

Table 1. Data list of manufacturers, models, years of production. Source: own42

Table 2. Final dataset results overview. Source: own. ...70

8.3 List of source codes

Source Code 1. XPath Query with JS to Extract Product Names from ČZU shop. Source:

own ..20

Source Code 2. ČZU Merchandise Shop Scraper Using Python and Beautiful Soup.

Source: own ...24

Source Code 3. Links Scraper. Source: own ...46

Source Code 4. Image Scraper for a Static Nature Website. Source: own47

Source Code 5. Image Scraper for a Dynamic Nature Website. Source: own49

83

Source Code 6. Scraper Orchestration Manager. Source: own.. 53

Source Code 7. Image Filtration Module. Source: own .. 62

Source Code 8. Schema for Storing Image Metadata. Source: own 66

Source Code 9. Database Uploader Module. Source: own.. 67

Source Code 10. SQL Query for Manufacturer Image Summary. Source: own 68

Source Code 11. SQL Query for Image Count by Attributes. Source: own 69

8.4 List of equations

Equation 1. Equation for calculation neural network model accuracy 61

8.5 List of abbreviations

AJAX - Asynchronous JavaScript and XML

Amazon S3 - Amazon Simple Storage Service

API - Application programming interface

BLOB - Binary Large Object

CAPTCHA - Completely Automated Public Turing test to tell Computers and Humans

Apart

CSS - Cascading Style Sheets

DOM - Document Object Model

HTML - Hypertext Markup Language

HTTP - Hypertext Transfer Protocol

JSON - JavaScript Object Notation

REST - Representational State Transfer

SOAP - Simple Object Access Protocol

SQL - Structured Query Language

URI - Uniform Resource Identifier

URL - Uniform Resource Locator

VMMR - Vehicle Make and Model Recognition

VPN - Virtual private network

XML - Extensible Markup Language

XPath - XML Path Language

YOLO - You Only Look Once

	efe11cf6b49e5634a5f78f353e8e5abafe9a58662abb37ab268f93a267c090c2.pdf
	efe11cf6b49e5634a5f78f353e8e5abafe9a58662abb37ab268f93a267c090c2.pdf
	efe11cf6b49e5634a5f78f353e8e5abafe9a58662abb37ab268f93a267c090c2.pdf
	1 Introduction
	2 Objectives and Methodology
	2.1 Objectives
	2.2 Methodology

	3 Literature Review
	3.1 Overview of Web Scraping
	3.1.1 History of Web Scraping
	3.1.1.1 Early Development (Late 1990s – Early 2000s)
	3.1.1.2 Technological Advancements (Mid-2000s)
	3.1.1.3 Integration with Big Data and AI (2010s – Present)

	3.2 Web Scraping Tools and Techniques
	3.2.1 Web Scraping Techniques
	3.2.1.1 Manual Scraping
	3.2.1.2 HTML parsing
	3.2.1.3 DOM parsing
	3.2.1.4 XPath parsing
	3.2.1.5 API scraping

	3.2.2 Web Scraping Tools
	3.2.2.1 Beautiful Soup
	3.2.2.2 Selenium
	3.2.2.3 Scrapy

	3.3 Web Scraping Challenges
	3.3.1 Dynamic Content
	3.3.2 Targeted Anti-Scraping Measures
	3.3.2.1 CAPTCHA
	3.3.2.2 IP Rate Limiting & IP Rotation
	3.3.2.3 Honeypot Traps
	3.3.2.4 Behavioural Patterns
	3.3.2.5 Technical indicators

	3.4 Legal & Ethical Considerations
	3.4.1 Legal Aspects of Web Scraping:
	3.4.1.1 Terms of Use
	3.4.1.2 Copyrighted Material
	3.4.1.3 Trespass to chattels

	3.4.2 Ethical Aspect of Web Scraping
	3.4.2.1 Robots.txt
	3.4.2.2 Potential damage
	3.4.2.3 Privacy Concerns

	4 Practical Part
	4.1 Motivation and Goals
	4.2 Data Analysis & Data Source
	4.2.1 Data analysis
	4.2.2 Data list preparation
	4.2.3 Data source

	4.3 Web Scraping System Planning
	4.4 First scrapers
	4.4.1 Static nature scrapers
	4.4.1.1 Links Scraper
	4.4.1.2 Image Scraper

	4.4.2 Dynamic nature scrapers
	4.4.3 Evaluation of scrapers

	4.5 Scalability and Optimization
	4.5.1 Scrapers orchestration
	4.5.2 Orchestrated scraping system evaluation
	4.5.3 “Raw” dataset creation

	4.6 Data Quality & Filtration
	4.6.1 Manual filtration
	4.6.2 Automated filtration
	4.6.2.1 Classify model creation
	4.6.2.2 Wrapping model

	4.7 Data Storage & Final Dataset
	4.7.1 Cloud storage
	4.7.2 Relational Database Approach
	4.7.3 File System Storage
	4.7.4 Database Implementation
	4.7.5 Final Dataset Creation

	5 Results and Discussion
	5.1 Results
	5.1.1 Web Scraping Methodology and Implementation
	5.1.2 Developed Scraping & Filtration System
	5.1.3 Compiled dataset

	5.2 Discussions
	5.2.1 Insights on the Developed Scraping System
	5.2.2 Data Quality and Filtering
	5.2.3 Reflections on the Compiled Dataset

	6 Conclusion
	7 References
	8 List of pictures, tables, source codes, equations, and abbreviations
	8.1 List of figures
	8.2 List of tables
	8.3 List of source codes
	8.4 List of equations
	8.5 List of abbreviations

