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Abstract

The aim of this thesis is to explore the possibilities of implementing Hamiltonians acting on
collective symmetric spin states of multiatomic sets. If the experiment allows to construct
the linear and quadratic functions of the components of the collective spin operator Ĵ , the
task is to find out to what extent it is possible to emulate the effects of higher powers of these
operators on the system under investigation. In particular, the motivation is the preparation and
transformation of quantum states for the purposes of quantum information processing. In the
introductory part of the thesis we will analyze the properties of the operator Ĵ and discuss some
important experimental arrangements with regard to the processing of quantum information. In
the main part there will be research results focused on possibilities of construction of higher order
Hamiltonians and their optimization with respect to number of steps and required accuracy.
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Abstrakt

Cílem této práce je prozkoumat možnosti implementace hamiltoniánů působících na kolektivní
symetrické spinové stavy mnohaatomových souborů. Pokud experiment umožňuje konstruovat
lineární a kvadratické funkce složek operátoru kolektivného spinu Ĵ , úkolem je zjistit, do jaké
míry lze emulovat působení vyšších mocnin těchto operátorů na zkoumaný systém. Motivací je
zejména příprava a transformace kvantových stavů pro účely zpracování kvantové informace.
V úvodní části diplomové práce bude proveden rozbor vlastností operátoru Ĵ a prodiskutují
se některá důležitá experimentální uspořádání s ohledem na zpracování kvantové informace.
V hlavní části pak budou vlastní výzkumné výsledky zaměřené na možnosti konstrukce hamil-
toniánů vyšších řádů a jejich optimalizace s ohledem na počet kroků a požadovanou přesnost.
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Introduction

Clasical computers cursed us with the internet, smarthones and even sent humans to the Moon.
But there are many problems too complicated for classical computers; for example simulation
of interactions between molecules in quantum chemistry could be performed efficiently using a
quantum computer [1].

Let us imagine all kinds of computers of both classical and quantum types. Classical computers
are a part of our daily lives. We use digital computers at home, at school, or at work. These
are computers that allow us to process data, i.e., logical and numerical values. Another type of
computers are analog computers [2, 3]. The idea behind these computers is that using electrical
or mechanical systems we can produce an analog of another physical system. So, for example,
using a set of electronic components, such as resistors (R), inductors (L) and capacitors (C),
we are able to create circuits with behavior corresponding to the behavior of a mechanical
oscillator. Thus, in general, we employ these computers to create analogies to other physical
systems.

We also have two options to process information in quantum world, the first is to work with
discrete variables [4], which technically corresponds to digital computing, and the other is to
use continuous variables [4, 5, 6], a regime corresponding to analog computers. With continuous
variables we can simulate various continuous quantum systems. Were we able to do this, we
would have a universal continuous variable computer.

Nowadays we have a lot of linear operations in quantum physics at our disposal, even in quantum
optics. However, by using only these simple operations we are unable to achieve universal
computation, even on the polynomial Hamiltonian class [7]. To achieve this we need nonlinear
operators such as X̂3. To give a general idea of what a universal computer actually is, we chose
3 key points that Richard Feynman and David Deutsch mentioned [1, 8]. According to them,
universal quantum computer is

1. an assembly of independent qubits, each of which functions according to the probabilis-
tic nature of quantum mechanics, including superposition and entanglement of quantum
states, as well as a universal quantum logic gate set which supports all of the operations
possible at the quantum mechanical level for each qubit,

2. can simulate or implement any and all operations of a classical computer, for example
classic Turing machine,
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3. and is capable of simulating physics, especially quantum mechanics, but the rest of physics
as well.

In this work we will focus on a particular problem in the construction of continuous variable
quantum computers. Since we work in continuous variables, we don’t have qubits, however, we
encode information into continous properties of collective spin systems. In our case we work with
squeezed spin states; we need a large amount of these states and we need them to communicate
with each other. Furthermore to build an universal quantum computer we need to be able to
simulate any Hamiltonian. If we consider a general Hamiltonian in Taylor’s expansion, we find
linear, quadratic, and higher order terms. The linear and the quadratic terms can be realized
in the lab, but to construct higher order terms is a problem. We will tackle a narrow part of
this problem by developing operators of cubic nonlinearities.

The goal of this diploma thesis is to find a way to create a cubic operator in the simplest
way possible, and to make this procedure experimentally accessible to be one step closer to
realizing universal computers. Our procedures are based on collective spins of trapped atoms
because nonlinear operations in this media are much more accessible than, for example in
quantum optics, where some nonlinear operations like Kerr’s nonlinearity are quite inefficient
and difficult to achieve.
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Chapter I

Theoretical framework

We briefly overview the necessary theoretical framework. We define collective spin and introduce
different representations of collective spin operators; we review some of the basic operations and
states our work relies on.

1.1 Collective spin operators

The spin 1
2 of one particle can be described using a set of measurable operators [9]

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −ı
ı 0

)
, σ̂z =

(
1 0
0 −1

)
(1.1.1)

satisfying the commutation and anti-commutation relations

[σ̂i, σ̂j ] = 2ıϵijkσ̂k, (1.1.2)
σ̂iσ̂j + σ̂j σ̂i = 0, for i ̸= j. (1.1.3)

The operators defined in (1.1.1) are commonly called Pauli operators [9] and correspond to the
projection of the spin onto one of the three orthogonal axes (x, y, z). We now consider a system
of N particles with spin 1

2 . The collective angular momentum operators are then given by [10]

Ĵα = 1
2

N∑
l=1

σ̂lα, α = x, y, z (1.1.4)

where σlα are the Pauli matrices (1.1.1) for the l-th particle. Alternatively we can employ
the Schwinger’s representation which allows us to rewrite (1.1.4) in terms of two-mode bosonic
system. We consider the â1,2 and â†

1,2 operators, where âi (â†
i ) annihilates (creates) an atom in

state |gi⟩ (|ei⟩). These operators satisfy the bosonic commutation rules[
âi, â

†
j

]
= δij . (1.1.5)
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We then proceed to define the angular momentum operators Ĵx, Ĵy and Ĵz as

Ĵx = 1
2

(â†
1â2 + â1â

†
2),

Ĵy = 1
2ı

(â†
1â2 − â1â

†
2),

Ĵz = 1
2

(â†
1â1 − â†

2â2),

(1.1.6)

satisfying the commutation relations similar to (1.1.2) based on (1.1.4)[
Ĵk, Ĵl

]
= ıϵklmĴm, k, l,m ∈ {x, y, z}. (1.1.7)

We can also define the operator of total number of atoms

N̂ = â†
1â1 + â†

2â2 (1.1.8)

satisfying relation

Ĵ2 = ĴxĴx + ĴyĴy + ĴzĴz = N̂

2
·
(
N̂

2
+ 1

)
. (1.1.9)

1.2 Linear and quadratic operations

We will introduce basic operations at most quadratic Hamiltonians in terms of Ĵi. The unitary
operator corresponding to the linear Hamiltonian

Ûrot(β) = eıĴiβ, (1.2.1)

essentially rotates the spin state around some axis. Here i corresponds to x, y, z axes and β

gives the angle of rotation. It is possible to write in a completely general form

Ûrotgen(Ω⃗) = eı(ĴxΩx+ĴyΩy+ĴzΩz). (1.2.2)

Similarly the unitary operator corresponding to the quadratic Hamiltonian [11] it can be gen-
erally defined in shape

Ûquadraticgen(χ, τ) = e
ı
∑
j,k

χjkĴj Ĵkτ

, j, k ∈ {x, y, z}, (1.2.3)

here χjk are components which gives the strength of the non-linearity and τ is the time param-
eter. But we will be interested in one particular case of a quadratic Hamiltonian

Ûquadratic(χ, τ) = eıĴ2
z χτ , (1.2.4)
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which is called one-axis twisting [12], it is experimentally achievable quadratic operation [13,
14].

1.2.1 Experimental realization

One of the possibe approaches to generating spin dynamics similar to those of the one-axis
twisting Hamiltonian Ĥ ∝ Ĵ2

z relies on repeated interaction of the atomic ensemble with light
circulating in an optical resonator. The atoms of 87Rb are trapped in a standing-wave dipole
trap inside of an optical resonator. The probe beam has frequency twice as large as the frequency
of the optical trap. The reason is that we need all trapped atoms feel the same maximum field
strength.

If we tune frequency halfway between the spin levels g1, g2 (figure I.1), we can ideally change
the distance of these two levels due to AC Stark effect [15]. Changing the distance of these spin
levels results in a change in the effective refractive index of the medium of the optical cavity.
By changing the refractive index we control the field strength inside the cavity. Hamiltonian
describing field

Ĥ ∝ k · Ĵz + ĉ†ĉ, (1.2.5)

where Ĵz is the difference in the number of particles (1.1.6) in the levels g1, g2 , ĉ†ĉ corresponds
to the intensity of the radiation and k is a radiation dependent parameter. Thus, by changing
the refractive index, we increase the intensity, so the parameter k will approach the value of Ĵz

and the Hamiltonian becomes Ĥ ∝ Ĵ2
z .

Probe

Figure I.1: a) The atoms are trapped in standing-wave dipole trap inside an optical resonator.
b) The cavity is tuned halfway between the optical transition frequencies for the two spin states
(g1, g2).

Other interesting quadratic Hamiltonians we encounter are

ÛquadraticTA(χ, τ) = eı(ĴkĴj+Ĵj Ĵk)χτ , j, k ∈ {x, y, z}, (1.2.6)

whose corresponds to the two-axis countertwisting. Possible physical realization of such a
Hamiltonian has been studied recently in [16, 17].
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Another possible way to form one-axis twisting is through the use of Bose-Einstein condensate
with 87Rb [18]. In essence collisions between atoms in dissimilar states differ, leading to Ĵ2

z

interaction, but alas this method is not reversible.

1.3 Dicke states

Before we define a coherent spin state, we introduce Dicke states. We consider a single particle
of spin J and the ground state |0⟩ as the state such that

Ĵz |0⟩ = J |0⟩ , (1.3.1)

where Ĵz is the operator of the z component of spin. We define a ladder operator [9]

Ĵ− = Ĵx − ıĴy. (1.3.2)

We then have

(
Ĵ−
)p

|0⟩ =
(

p!2J !
(2J − p)!

) 1
2

|p⟩ 0 ≤ p ≤ 2J (1.3.3)

where |p⟩ is the Dicke state and the eigenstate of Ĵz such that

Ĵz |p⟩ = (J − p) |p⟩ . (1.3.4)

If we consider N two level systems, the dimension of the underlying Hilbert space becomes 2N .
This exponential spatial complexity effectively forbids classical numerical simulations involving
larger systems. Under specific circumstances [19, 20] we can get around this issue by introducing
so called Dicke states. The spatial complexity then becomes N + 1 instead of 2N . Let us, for
example, consider the case of a three particle system (N = 3). We consider state with different
orientations of spins, either spin up (↑) or spin down (↓). We have

|0⟩D ∝ |↓↓↓⟩ ,

|1⟩D ∝ |↑↓↓⟩ + |↓↑↓⟩ + |↓↓↑⟩ ,

|2⟩D ∝ |↑↑↓⟩ + |↓↑↑⟩ + |↑↓↑⟩ ,

|3⟩D ∝ |↑↑↑⟩ ,

(1.3.5)

where |·⟩D denotes the Dicke state.
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1.4 Coherent spin states

Similar to the defined coherent state of a harmonic oscillator [21, 22], we define a spin coherent
state. It is possible to use (1.2.1) to define a coherent state as the ground state rotation

|η⟩ = Ûrot(β) |0⟩ , (1.4.1)

another way to define a coherent state is using a Dicke state (1.3.4)

|η⟩ = C− 1
2

2J∑
p=0

( 2J !
p!(2S − p)!

) 1
2
ηp |p⟩ , (1.4.2)

where η runs over the the complex plane and C is a normalization factor. We have

⟨η|η⟩ = C−1
2J∑

p=0

2J !
p!(2S − p)!

|η|2p = C−1
(
1 + |η|2

)2J
(1.4.3)

and hence the normalized coherent spin state is

|η⟩ =
(
1 + |η|2

)−J
2J∑

p=0

( 2J !
p!(2S − p)!

) 1
2
ηp |p⟩ . (1.4.4)

1.5 Visualization of spin states

Figure I.2: Picture of the Bloch sphere.

Most of our numerical simulation results are
presented using Bloch spheres [23] which
are a unit 2-spheres, with opposing points
corresponding to mutually orthogonal states
and others points correspond to the coherent
states. The north and south poles of the Bloch
sphere are typically chosen to correspond to
the standard basis vectors of Ĵz, which means
spin-up and spin-down states. The points
on the surface of the sphere correspond to
pure states of the system, whereas the inte-
rior points correspond to mixed states, but this applies to a two-level system. In our case, these
are N two-level systems, so the Bloch sphere is for us only a geometric figure to which we apply
Q-function.

Some results are presented using Hammer’s projection [24] of the Bloch sphere, which means
projection of three dimensional Bloch sphere into two dimensional space. Using the 2:1 elliptical
outer shape as the Mollweide projection, Hammer projection intended to reduce distortion in the
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regions of the outer meridians, where it is extreme in the Mollweide projection. The longitude
and latitudes can then be calculated by

ϕ = 2 arctan
(

zx

2 (2z2 − 1)

)
,

θ = arcsin(zy),
(1.5.1)

where ϕ is the longitude from the central meridian and θ is the latitude. The x, y, z variables
are the ellipse coordinates.

Figure I.3: Picture of the Bloch sphere in the Hammer’s projection.

1.6 Husimi Q-function

Instead of describing quantum systems in terms of density matrices we can also employ descrip-
tion using Husimi Q-function [22, 25]:

Q(α) = 1
π

tr {ρ̂ |α⟩ ⟨α|}

= 1
π

⟨α| ρ̂ |α⟩
(1.6.1)

where ρ̂ is a density matrix, |n⟩ is a Fock state and |α⟩ is given by

|α⟩ = e
|α|2

2

∞∑
n=0

αn

√
n!

|n⟩ . (1.6.2)

We can adapt the function (1.6.1) defined for harmonic oscillator and analogously obtain

Q(η) = 1
π

tr {ρ̂ |η⟩ ⟨η|}

= 1
π

⟨η| ρ̂ |η⟩ .
(1.6.3)

for coherent spin states (1.4.4).
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a)

c)

b)

Figure I.4: Visualization of different states using Q-function mapped onto Bloch sphere. a)
Coherent spin state. b) Evolution of coherent spin state under (1.2.4) unitary. c) Cubic non-
linearity (2.1.5) applied to coherent spin state.
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Chapter II

Cubic Hamiltonian for collective
spins

It is well known [7] that at least a single non-Gaussian operation is needed to construct universal
continous variable quantum computer. In this chapter we review one possible method [26] of
creating a cubic nonlinearity in terms of the collective spin operators Ĵi. We build on this
approach and consequently propose a novel, experimentally feasible procedure.

2.1 Universal procedure

A procedure that equally for all states is considered universal. In our case we are interested in
a universal procedure producing a perfect cubic nonlinearity.

It is possible to create higher order polynomials of collective spin operators (1.1.6) using a
commutator sequence. This idea was initially developed by Braunstein and Loyd [7] and applied
to bosonic harmonic oscillator [7]. It was later extended by Opatrný [26] to collective spin
operators and exploited to creat cubic nonlinearity. Opatrný consequently succeeded in finding
the sequence

Ĵ3
z = ı

4

[(
Ĵ2

y − Ĵ2
x

)
,
(
ĴxĴy + ĴyĴx

)]
+

ı

4

[(
ĴzĴy + ĴyĴz

)
,
(
ĴzĴx + ĴxĴz

)]
+ 1

4
Ĵz.

(2.1.1)

Here the quadratic terms such as
(
ĴxĴy + ĴyĴx

)
appear in each commutator. We would like to

propose an experimentally feasible procedure beased on (2.1.1) using only linear and quadratic
operators (1.2.1) and (1.2.4) as these linear and quadratic operations are experimentally acces-
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sible [27, 28]. With the aid of the commutator identities

[A+B,C] = [A,C] + [B,C] ,

[A,A] = 0,

[A,B] = − [B,A] ,

[A,BC] = [A,B]C +B [A,C] ,

(2.1.2)

and the product relation

e−ıA∆t · e−ıB∆t · eıA∆t · eıB∆t = e[A,B]∆t2 + O
(
∆t3

)
. (2.1.3)

and with the help of the approximation(
eτÂ · eτB̂

)
= e(Â+B̂)τ + O

(
τ2
)
, (2.1.4)

it is possible to obtain the cubic unitary operator

Ûcubic(χτ) = eıĴ3
xχτ (2.1.5)

as a sequence of linear and quadratic operators by breaking down the quadratic operators in
the commutators in (2.1.1) using (2.1.2), (2.1.3) and (2.1.4)

eı(Ĵ2
y −Ĵ2

x)χτ ≈ eıĴx
π
2 · eıĴ2

z χτ · e−ıĴx
π
2 · eıĴy

π
2 · e−ıĴ2

z χτ · e−ıĴy
π
2 , (2.1.6)

eı(ĴxĴy+Ĵy Ĵx)χτ ≈ e−ı
π

√
(2)

4 (Ĵx−Ĵy) · eı(Ĵ2
z )χτ · eı

π
√

(2)
4 (Ĵx−Ĵy) ·

e−ı
π

√
(2)

4 (Ĵx+Ĵy) · e−ı(Ĵ2
z )χτ · eı

π
√

(2)
4 (Ĵx−Ĵy), (2.1.7)

eı(Ĵz Ĵy+Ĵy Ĵz)χτ ≈ eıĴx
π
4 · eıĴ2

z χτ · e−ıĴx
π
4 · e−ıĴx

π
4 · e−ıĴ2

z χτ · eıĴx
π
4 , (2.1.8)

eı(Ĵz Ĵx+ĴxĴz)χτ ≈ e−ıĴy
π
4 · eıĴ2

z χτ · eıĴy
π
4 · eıĴy

π
4 · e−ıĴ2

z χτ · e−ıĴy
π
4 . (2.1.9)

Finally we obtain (2.1.5) in the form of

Ûuniversal(χτ) = e−ı(Ĵ2
y −Ĵ2

x)√
χτ · e−ı(ĴxĴy+Ĵy Ĵx)√

χτ · eı(Ĵ2
y −Ĵ2

x)√
χτ ·

eı(ĴxĴy+Ĵy Ĵx)√
χτ · e−ı(Ĵz Ĵy+Ĵy Ĵz)√

χτ · e−ı(Ĵz Ĵx+ĴxĴz)√
χτ · (2.1.10)

eı(Ĵz Ĵy+Ĵy Ĵz)√
χτ · eı(Ĵz Ĵx+ĴxĴz)√

χτ · eı 1
4 Ĵzχτ ,

which contains 49 linear and quadratic unitary operators from (2.1.6) — (2.1.9). If we look at
the relationship between (2.1.5) and (2.1.10), it is as follows

Ûcubic(χτ) ≈ Ûuniversal(χτ) (2.1.11)

which is caused by the used approximations.
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2.2 Local procedure

Unlike the universal procedure, a local procedure only works with certain states. We are unable
to guarantee a perfect outcome for each and every possible state. While this is a significant
drawback, giving up universality may have its advantages, such as reduced complexity of all the
interactions involved in the procedure.

This approach was discovered during the analysis of the complexity of the cubic operator
(2.1.10). We noticed the asymmetrical effects of the unitary operator

Û = ei(ĴxĴy+Ĵy Ĵx)τ . (2.2.1)

on squeezed coherent spin states (figure II.1). The effect, demonstrated in the first row of the
figure II.1, can be exploited to create a formula emulating the cubic operator (2.1.10) using the
experimentally available linear and quadratic operators

Ûlocal(α1, . . . , α8, t1, t2, t3) = eiĴzα8 · eiĴxα7 · Ĉ(t3)·

eiĴzα6 · eiĴxα5 · eiĴyα4 · B̂(t2)·

eiĴyα3 · eiĴzα2 · eiĴyα1 · Â(t1),

(2.2.2)

where the expressions Â(t), B̂(t), and Ĉ(t) read

Â(t1) = e−i π
4 Ĵy · eiĴ2

z t1 · ei π
2 Ĵy · e−iĴ2

z t1 · e−i π
4 Ĵy ,

B̂(t2) = e−i π
4 Ĵy · e−iĴ2

z t2 · ei π
2 Ĵy · eiĴ2

z t2 · e−i π
4 Ĵy ,

Ĉ(t3) = e−i π
4 Ĵy · e−iĴ2

z t3 · ei π
2 Ĵy · eiĴ2

z t3 · e−i π
4 Ĵy .

(2.2.3)

In the formula (2.2.2) the most important expressions are Â, B̂ and Ĉ representing deformation.
The other linear terms only compensate the deflection of the state around some of the axes,
improving the overall performance of the emulated operator.
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Figure II.1: Drawing of Q-function on the Bloch spheres. The first sphere in the first and
second rows shows the initial compressed coherent state at which evolution is observed. The
first row corresponds to the case where it is asymmetric (that is, imperfect breakdown given
by the right side of the equation (2.1.7)) and the second row corresponds to the perfect case
where asymmetry does not manifest (corresponds to perfect evolution, hence the left side of the
equation (2.1.7)).

15



Chapter III

Numerical analysis

In the third chapter we analyze the performance of the preparation procedures from the previous
chapter. To this end we employ numerical simulations and discuss the difficulty of finding global
optimum of a non-convex function of eleven variables.

The analysis of the procedures was initially performed with coherent states; we used a cluster
of 7 coherent states spatially restricted to 1.31% area of the Bloch sphere depicted in Fig. III.1.
This cluster corresponds to a mixed state of 1.89 qubits in terms of von Neumann entropy

S = −tr(ρ̂ log2 ρ̂), (3.0.1)

and improved on this by using squeezed coherent states instead. Consequently we reached 2.39
qubits with 6.5 dB of squeezing for a cluster of 7 states with 30% overlap between adjacent
states. The spatial configuration of the cluster is depicted in Fig. III.1.

Figure III.1: The Bloch sphere covered by the Q-function is located in the left area of the
image. The Bloch sphere in Hammer projection is covered with Q-function in the right part of
the picture. Black ellipses highlight input compression states.
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3.1 Functionality of the universal procedure

In Chapter II, we reviewed a method employing a sequence of commutators. We will now carry
out a numerical analysis of the unitary evolution given by the formula (2.1.1) using all the
necessary approximations and relations (2.1.6) — (2.1.9).

As a figure of merit we utilize fidelity, that is, the overlap

F = |⟨ψ|ϕ⟩|2 (3.1.1)

between states |ψ⟩ and |ϕ⟩

|ψ⟩ = Ûcubic(χτ) |η0⟩ , (3.1.2)
|ϕ⟩ = Ûuniversal(χτ) |η0⟩ , (3.1.3)

where |η0⟩ corresponds to a squeezed coherent state.

First we look at the functionality of the breakdown (2.1.10) using a linear and quadratic oper-
ator. We let this unitary operator evolve in time and compare it to the effects of exact cubic
operator

Ûuniversal (χτ) = eıĴx
π
2 · e−ıĴ2

z χτ · e−ıĴx
π
2 · eıĴy

π
2 · eimathĴ2

z χτ · e−ıĴy
π
2 ·

e−ı
π

√
(2)

4 (Ĵx−Ĵy) · e−ı(Ĵ2
z )χτ · eı

π
√

(2)
4 (Ĵx−Ĵy)·

e−ı
π

√
(2)

4 (Ĵx+Ĵy) · eı(Ĵ2
z )χτ · eı

π
√

(2)
4 (Ĵx−Ĵy)·

eıĴx
π
2 · eıĴ2

z χτ · e−ıĴx
π
2 · eıĴy

π
2 · e−ıĴ2

z χτ · e−ıĴy
π
2 ·

e−ı
π

√
(2)

4 (Ĵx−Ĵy) · eı(Ĵ2
z )χτ · eı

π
√

(2)
4 (Ĵx−Ĵy)·

e−ı
π

√
(2)

4 (Ĵx+Ĵy) · e−ı(Ĵ2
z )χτ · eı

π
√

(2)
4 (Ĵx−Ĵy)·

eıĴx
π
4 · eıĴ2

z χτ · e−ıĴx
π
4 · e−ıĴx

π
4 · eıĴ2

z χτ · eıĴx
π
4 ·

e−ıĴy
π
4 · e−ıĴ2

z χτ · eıĴy
π
4 · eıĴy

π
4 · eıĴ2

z χτ · e−ıĴy
π
4 ·

eıĴx
π
4 · eıĴ2

z χτ · e−ıĴx
π
4 · e−ıĴx

π
4 · e−ıĴ2

z χτ · eıĴx
π
4 ·

e−ıĴy
π
4 · eıĴ2

z χτ · eıĴy
π
4 · eıĴy

π
4 · e−ıĴ2

z χτ · e−ıĴy
π
4 ·

eı 1
4 Ĵzχτ .

(3.1.4)

In figure III.2 we observe that the fidelity drops rapidly to zero after a very short time and
oscillates around zero. This is due to the expansion of (2.1.10) using linear and quadratic terms
using formula (2.1.3) and the approximation (2.1.4). This causes asymmetric behavior and does
not correspond to the exact cubic nonlinearity.

However, this situation is not hopeless, there is a method we can use, namely the Suzuki-Trotter
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Figure III.2: The plotted curve corresponds to the fidelity of the exact cubic operator and the
universal procedure for N = 60 atoms.

decomposition, which is an important tool in numerical simulation and control of physical
systems [27, 28].

The main idea of this method is that we repeatedly act on individual operators for a short
period of time

(
e

τ
n

Â · e
τ
n

B̂
)n

= e(Â+B̂)τ + O
(
τ2

n

)
(3.1.5)

Ideally, for an infinite number of iterations, the equtaion (3.1.5) becomes

lim
n→∞

(
e

τ
n

Â · e
τ
n

B̂
)n

= e(Â+B̂)τ (3.1.6)

The use of this method on equation (3.1.4) is shown using numerical simulation and subsequent
plotting in figure III.3. We can see simulations made for different sized systems. An interesting
thing that can be seen from this graph is that, with the number of atoms in the system increasing
we need to increase the number of iterations of Suzuki-Trotter decomposition resulting in a
greater number of steps to achieve fidelity of at least F = 0.9.

The figure III.4 shows the Q-function of the resultant states applied to the Bloch sphere (for
all system sizes listed in the figure III.3) for 10 000 iterations of Suzuki-Trotter decomposition.
Once we reach the systems sizes over 80 particles, a large number of iterations are needed (more
than 10 000 iterations) and the state itself is not as well deformed as we would expect (the
third and fourth lines of the figure III.4). Even 2000 iterations may be hard for the experiment
because it would mean a sequence of larger quantities (corresponding to the number of individual
unitary operators) of laser pulses.
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Figure III.3: Dependence of fidelity on the number of iterations of Suzuki-Trotter decomposition
of the relation (2.1.1) for different numbers of particles N . The graph is plotted for a specific
time χτ = π
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a) b)

c) d)

e) f)

g) h)

Figure III.4: Q-functions of individual states are shown on the Bloch sphere. The left block of
the spheres shows the states created by the commutation method, and the right block shows
the states created by the exact cubic Hamiltonian. The individual pairs of spheres correspond
to a given number of atoms with value of fidelity: a), e) N = 40, F = 0.97; b), f) N = 60,
F = 0.90; c), g) N = 80, F = 0.79; d), h) N = 100, F = 0.65. These correspond to the time of
evolution χτ = π

2
√

N3 and the number of iterations n = 10000.
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3.2 Functionality of the local procedure

Now we come to a more interesting part, namely to numerical analysis of the functionality of
the local preparation procedure. This means verifying the functionality of the cubic operator
(2.2.2) formed by the sequence of 23 operators. The problem with this approach, compared to
the universal process, is that unlike in the universal case, we have no prior knowledge of the
optimal values of the eleven parameters for Ûlocal in (2.2.2) and have to find them numerically.

We optimize these eleven parameters to obtain the highest match with the exact cubic operator
(2.1.5), that is to maximize the average fidelity

F = 1
n

n∑
m=1

Fm, (3.2.1)

where Fm are the fidelities of the n clustered states (in our case seven states) given by

Fm = |⟨ψm|ϕm⟩|2. (3.2.2)

The |ψm⟩ and |ϕm⟩ are given as the evolution of the initial squeezed coherent states

|ψm⟩ = Ûcubic(χτ) |ηm⟩ , (3.2.3)
|ϕm⟩ = Ûlocal(α1, . . . , α8, t1, t2, t3) |ηm⟩ , (3.2.4)
|ηm⟩ = eıĴzβ |η0⟩ , β ∈ ⟨−π, π⟩, (3.2.5)

with |η0⟩ representing the squeezed coherent state.

3.2.1 Optimization

The fidelity (3.2.1) is a function of 11 variables — t1, t2, t3, α1, . . . , α8 — appearing in emulating
operator (2.2.2). In order to find a global maximum of this function we need to investigate its
properties and choose an appropriate optimization method.

Following the axial restrictions of (3.2.1), depicted in the Figure III.5, we quickly conclude that
(3.2.1) is not a convex function. We can also observe oscillatory behaviour in t1, t2 and t3

variables.

Since we are dealing with a non-convex problem we are unable to get away with a simple local
optimization; instead we must choose a different, global approach. We uniformly sample the
parametric space and perform local optimization from different starting points, making use of an
unconstrained quasi-Newtonian method implemented in the standard library function fminunc
of the MATLAB software suite [29] with BFGS [30, 31] method used to calculate the matrix of
second derivatives of the objective function (3.2.1).
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Figure III.5: Potential of parameters. Parameters α1 - α8 correspond to rotation angles of linear
operators 1.2.1 and parameters t1, t2 and t3 are time parameters of quadratic operator 1.2.4. In
each plot only a single parameter is varied while all the other parameters are fixed to the zero
values.
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The results obtained by utilizing this optimization strategy are presented in Fig. III.6 (potential
of optimized parameters for χτ = 2.7 · 10−3 is shown in the figure III.7). We show the fidelity
of the local, optimized strategy (in red), the universal strategy with 5000 iterations (in blue)
and with no interaction whatsoever (yellow). The fidelity is calculated with respect to the ideal
cubic interaction.
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Figure III.6: Figure of results after optimization. We see 3 curves with points, points correspond
to individual samples of the simulation. The yellow curve corresponds to when we do nothing
with the initial state, red corresponds to the universal procedure with 5000 iterations and blue
corresponds to the local optimized procedure.

There are only 10 optimized points in Fig. III.6 due to computation complexity. The simulation
was performed for N = 60 particles; we used 300 random samples of parameters to find the
global optimum in each of the 10 points. Even though we performed the underlying local
optimization in parallel each point took over 30 minutes on average to calculate.

While the optimal fidelity is well behaved the optimal parameters vary rapidly between adjacent
points; rendering continous interpolation impossible. Since we need to know the parameters at
any given time we are forced to address this issue. Fortunately we have several options.

The first option is to optimize for each infinitesimal point of the time continuum. This is time
consuming and, since the parameters change rapidly, ineffective and experimentally infeasible.
The second option is to fix the optimal parameters between discrete points. As it turns out this
is not the brightest idea. In the third approach we perform further local optimization starting
from the globally optimal points. For the sake of simplicity we utilize a steepest descent method,
following the numerically calculated gradient of (3.2.1).

These three options are discussed in Fig. III.8. It is clear that naively fixing the parameters (the
second option) performs poorly. In contrast the steepest descent starting from global optima
(third option) performs rater well.
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Figure III.7: Potential of optimized parameters for χτ = 2.7 · 10−3. Parameters α1 - α8
correspond to rotation angles of linear operators 1.2.1 and parameters t1, t2 and t3 are time
parameters of quadratic operator 1.2.4. In each plot only a single parameter is varied while all
the other parameters are fixed to their optimal values.
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Figure III.8: Figure of results after the second (numerical gradient) optimization. We see
few curves, let start with the purple one, this curve corresponds to the universal procedure
(2.1.10) using the Suzuki-Trotter decomposition (5000 iterations), the second one is the blue
dashed curve corespond to the local procedure (2.2.2) optimized by BFGS optimizetion, the
third curves are green and they corespond to using optimized parameters (ten time samples)
for a wider range of times (based on only one optimization) and last curves - blue full curves,
coresponds to numerical gradient optimization based on optimized points obtained by BFGS
optimization.

3.2.2 Optimization functionality

We managed to optimize parameters to create a cubic operator quite well. We reach fidelity
up to F = 0.97 for the effective interaction time χτ = 2.7 · 10−3. The question is how well
this optimization works. We did this optimization for only seven states and we are interested
in knowing how our optimized formula works on the entire Bloch sphere. While our procedure
works with squeezed states we decided to use coherent states because there would otherwise be
issues with problem of ambiguity of the orientaton of the squeezed states at the poles

pole coverage and orientation of squeezed states. The sphere was covered with 80 000 coherent
states. First, we observed the evolution of these states due to the exact (3.2.3) cubic operator.
We then calculated fidelity (overlap) with states that were affected by the optimized operator
sequence (3.2.4).

Figure III.9 shows the functionality of our optimized formula. The fidelity of the procedure is
displayed on Block sphere in Hammer’s projection. In the picture the ellipse highlighted by the
dashed black line represents the area for which the optimization was performed, that is, our
seven coherent states. This area corresponds to 1.31% of the whole Bloch sphere. We can see
that over time, the functional area is getting smaller. We begin by covering the entire sphere
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(which is logical for the time of cubic deformation χτ = 0, when there is no change in the state),
to the area that corresponds to 7% of the total area of the Bloch sphere (for cubic deformation
χτ = 2.7 · 10−3). The size of the area was determined by the boundary fidelity F = 0.8,
when F < 0.8 does not belong to the calculated area, when F > 0.8 this area is included.
For the demonstration we chose four different values of the time, to see how much the area of
functionality changes, these spheres (figure III.9 row two and row three) corresponding to cubic
deformation for values of the time χτ = 0.6 · 10−3 and χτ = 1.8 · 10−3. We explain why the area
is diminishing by the fact that with the increasing time of cubic deformation, the demand for
asymmetry we use is growing of the time. However, we get this asymmetry maximally in the
area from the Ĵx axis in the range −π

2 to π
2 then somewhat different deformations occur, which

are not useful to us for cubic deformation. This would be the functionality of the optimized
sequence (2.2.2) on the bloch sphere full of coherent states. Now comes the next thing we
would like to verify. It is the robustness of optimized parameters to change the size of the
system (change of the number of particles N).
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Figure III.9: Projection of fidelity on the Bloch sphere. The black highlighted ellipse indicates
the optimized area. The first sphere (first row) corresponds to cubic deformation for χτ = 0
and the last sphere (last row) corresponds to cubic deformation for χτ = 2.7 · 10−3.
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3.2.3 Robustness with respect to unknown atome numbers

One of the things we want to determine is the robustness of optimized parameters in respect to
change of the number of particles in the system. Once our procedure becomes experimentally
feasible, the exact number of particles may not be known as the exact number of atoms in the
system might have Poissonian distribution and fluctuate around N accuracy of ±

√
N .

We use our optimized formula and map it to systems with numbers of atoms up to ±
√
N . A

numerical simulation was performed where we had an optimized formula for N = 100 (to get
an integer from the square root) and the maximum time χτ = 1.26 · 10−3 of cubic deformation
corresponds to the maximum time t = 2.7 · 10−3 of cubic deformation for N = 60 atoms. The
results are shown in the figure III.10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10
-3

0

0.2

0.4

0.6

0.8

1

Figure III.10: The change of fidelity depending on the number of particles in the system. The
parameters used to analyze robustness where local procedure is optimized for N0 = 100. The
points in the figure correspond to tested samples.

In the figure III.10, we can see that fidelity, for almost all system sizes except for the optimized
N = 100, falls below F = 0.8 and in some cases (N = 90, N = 110) even below F = 0.2.
Fidelity decreases with every added or removed particles. The question is, what is the cause
of this problem. It is possible that the optimization method is improperly chosen or the whole
local procedure formula is inappropriate. One way is to look at what the resulting states look
like and how they should look like (let’s show only extreme cases and optimized, that is, when
N = 90, N = 100, N = 110). We use squeezed coherent states and act on them both by the
exact cubic operator and the optimized ones and draw their Q-function on the Bloch sphere,
and consequently it becomes more readable where the problem arises.
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Figure III.11: Bloch spheres with result states (Q-function). In the first row, we can see the
results using an optimized local method that is optimized for a particular N and we use it for
N +

√
N and N −

√
N . In the second row we can see the exact case for N , N +

√
N and

N −
√
N , where N = 100.

If we look at the figure III.11 of the first row in the first and the third sphere, we can see that
cubic deformation occurs in systems of sizes N = 90 and N = 110, but the states are more
deflected from the Ĵx-axis than after the exact cubic deformation (second row of the figure
III.11). There are several ways to solve this problem.

Our first solution is based on the application of a linear operator. This operator, with a correctly
selected rotation angle γ, rotates the state to the correct position and thus obtains a higher
fidelity. To get an idea of how the deviation angle γ changes on the size of the system, we have
simulated a wider particle count range N = ⟨86, 114⟩ for one particular time χτ = π

2
√

N3 . We
performed fit, in the MATLAB program, on the obtained data by numerical simulation (the figure
III.12). Second-order polynomial function was used to fit the simulated values

γ(N) = p1 ·N2 + p2 ·N + p3, (3.2.6)

when the pi parameters were obtained by the MATLAB and have these values

p1 = 2.212 · 10−4,

p2 = −6.501 · 10−2, (3.2.7)
p3 = 4.315.
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Figure III.12: Fit on simulated data. Dependence of the γ rotation parameter on the number
of particles N in the system.

When we apply a linear operator (1.2.1) with the correct value of the γ parameter to the
resulting state, the fidelity is increased in the case of N = 110 atoms from F = 0.06 to F = 0.80
(the difference with and without rotation is shown in Figure III.13). The gamma angle was
calculated for all time cases shown in the figure III.10 and the results are shown in the figure
III.14.

Figure III.13: A representation of what the compensation using a linear operator. This example
is directly for N = 110 when a local procedure is optimized for N = 100. The left two
spheres correspond to the local procedure (in this order: local procedure, local procedure +
compensation) and the right sphere corresponds to the exact case for N = 110.

When we look at the resulting figure III.14 of fidelity after the rotation compensation, we can
see that fidelity even for extreme cases of the number of particles of the system has increased
quite a bit and does not get below the limit of F = 0.8.
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Figure III.14: The change of fidelity depending on the number of particles in the system, for
N0 = 100. in this case, the resulting state deflection is compensated by the rotation (linear
operator (1.2.1)).

Another way to improve fidelity for different sized systems is to adjust the optimization it-
self. It means to adjust the condition that we optimize, to include both fidelity and boundary
possibilities, ie in our case for N = 90 and N = 110. The optimized expression reads

Fall = F90 + F100 + F110. (3.2.8)

instead of (3.2.1).

Therefore, if we optimize (3.2.8), we achieve relatively high fidelity, the results are shown in
figures III.15 and III.16. The fidelity does not get below F = 0.89 after the new optimization,
but the problem is the difficulty of optimization and its long duration. Instead of 10 time points,
we optimized in 5, with this optimization taking 3 times longer than in the cases mentioned in
the section 3.2.1.
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Figure III.15: The change of fidelity depending on the number of particles in the system, where
N0 = 100. In this case is local procedure optimized for wider interval for different number of
particles as opposed to figure III.10.

Figure III.16: Bloch spheres with result states (Q-function). In the first row, we can see the
results using an optimized local method that is optimized for for wider interval for different
number of particles. In the second row we can see the exact case for N , N +

√
N and N −

√
N ,

where N = 100.
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Conclusion and outlooks

The aim of this work was to find a way of creating a cubic operator of collective spin system
in the simplest possible way. We started with the derived formula (2.1.1), which was based
on commutation identities. Theoretically we should get an operator identical to the exact
cubic operator. Our further motivation was to create a cubic operator that could be realized
experimentally, that is, only using operators that can be accessed in a contemporary laboratory
settings. This meant taking formula (2.1.1) and breaking it down to (1.2.1) and (1.2.4) operators.
Due to this approximative process our formula corresponded to the exact cubic operator only
for short time periods. For longer times the fidelity with the exact operator fell quite low. It was
necessary to perform a numerical analysis of the approximative formula. During the analysis,
we encountered one term that was asymmetrical and later turned out to be useful in alternative
construction of a cubic operator. To reduce the error caused by approximations and to reduce
the asymmetry of the behavior of individual terms, we used Suzuki-Trotter decomposition,
which led to the resolution of our problems, but only in the numerical sense as it was necessary
to make thousands of iterations of the formulua (3.1.4). In essence this would mean a sequence
of a larger number of laser pulses, complexity of which would be prohibitive in experimental
setting.

As was mentioned, we encountered a term that exhibited unsymmetrical behavior in the nu-
merical analysis of individual parts of the formula (2.1.1). By using this term and sequences of
other linear and quadratic operators, we were able to create a formula behaving like an exact
cubic operator.

However, we ecountered a problem while analyzing our formula of a local processes for different
times. The procedure had to be optimized for each time step and we had to optimize a function
of 11 parameters. To determine the optimization method we looked at the shape of the optimized
function in respect to the individual parameters. After considering its behaviour we decided to
employ quasi-Newtonian optimization with BFGS Hessian approximation method and a simple
globalization strategy.

After successful optimization, it was necessary to determine the efficiency of the local procedure.
Our procedure was optimized for 7 coherent states covering roughly 1.31% of Bloch’s sphere.
We analyzed the area of the sphere where we got fidelity F > 0.8 and found it to be roughly
7%, which is about five times the area we have optimized for.
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The last part of this work was to analyze the robustness of the parameters depending on the
size of the system, that is how robust procedure is if we optimize its paremeters for a certain
system size, for example N = 100 and then use these parameters for a system with N = 110
particles.

It turned out that with the increasing system size the fidelity rapidly decreases and after visual-
ising the resulting states on the Bloch sphere we saw that the deformation still corresponded to
the cubic deformation, but that the state was deflected. Therefore, we introduced compensation
by linear operator, essentially performing a rotation and obtained, for the most extreme cases
such as N = 90 increase of fidelity from F = 0.09 to F = 0.9.

The second option that we considered was updating the original optimization and modifying to
account for different numbers of particles. For the N =

[
N0 −

√
N0, N0 +

√
N0
]

interval with
N0 = 100 we found out the fidelity does not fall below F = 0.89. However, the time complexity
of the optimization increased significantly.

To sum up, we have managed to create a cubic operator using a sequence of 23 linear and
quadratic operators that can be implemented in laboratory setting. We reached fidelity F = 0.97
for the time χτ = 2.7 ·10−3 for N = 60, and F = 0.96 for the time χτ = 1.26 ·10−3 for N = 100.
We have accomplished the goals we set in the beginning, that is we achieve J3

z in relatively
few iterations. We hope our method will be, in time, realized experimentally. In the future we
would like to use this relatively simple approach to construct higher order operators.
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