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Abstract 
This diploma thesis deals with blockchain technology with focusing on the consensus protocols, 
especially on proof-of-stake protocols type. This thesis describes blockchain technology followed 
by description of consensus in this technology. First part precisely describes a comparison 
of specific proof-of-stake protocols based on the theoretical knowledge. Second part of thesis 
focuses on the design and the implementation of a testbed. The testbed is used for comparison 
of proof-of-stake protocols practically. In the last section of thesis, we discuss our observed 
properties of proof-of-stake protocols and on this basement we indicate some next ways 
of evolution and improvement in the consensus and proof-of-stake protocols. 

Abstrakt 

Tato diplomová práce se zabývá technologii blockchain se zaměřením na konsenzus protokoly, 
zvláště protokoly typu proof-of-stake. V této práci naleznete popis těchto protokolů následovaný 
popisem konsenzu v technologii blockchain. Prvotní kapitoly detailněji popisují a porovnávají 
jednotlivé proof-of-stake protokoly na základě teoretických znalostí. Druhá část práce se zaobírá 
návrhem a implementací testbedu, který je následně použitý pro praktické porovnání 
proof-of-stake protokolů. V závěrečné částí práce je diskutováno nad zjištěnými výsledky 
pozorováním testbedu a zjištěnými vlatnostmi protokolů. Na tomto základě práce ve svém konci 
naznačuje další směřování consesus protokolů, ba jejich případné zlepšení, a zvláště 
proof-of-stake typu protokolů. 
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Rozšířený abstrakt 

Tato diplomová práce se zabývá technologií blockchain, se zaměřením na konsenzus protokoly. 
Blockchain je poměrně nová technologie, která je na velkém vzestupu. Vzestup nové technologie 
je doprovázený hledáním nových optimálnějších postupů, které technologie využívá. Jedním 
z těchto postupů je nový přístup ke konsenzu. Tento přístup je označovaný jako proof-of-stake 
(proof-of-stake protokoly). Primární zaměření práce je tento typ konsenzu, kde si práce klade 
zacil zlepšení již existujích proof-of-stake protokolů. Práce tohoto dociluje díky vytvoření 
testbedu pro porovnání již existujících variant proof-of-stake protokolů, na jejímž základě práce 
navrhuje zlepšení současných protokolů. 

Na začátku práce naleznete popis blockchain technologie jako takové. Práce zde uvádí 
koncept blockchainu, jeho výhody i nevýhody. Součástí popisu je nastínění i použití blockchain 
technologie v praxi. Na základě těchto podnětů je uvedeno, proč je dobré se zlepšování této 
technologie věnovat. V první části se práce věnuje jednotlivým konsenzus přístupům, jakožto 
proof-of-work, proof-of-stake, proof-of-capacity a další. 

V třetí kapitole nalezneme definici vlastností a zranitelností, pomocí kterých můžeme 
konsenzus protokoly porovnávat. Následně jsou zde rozebrány již exitující testbedy, které práce 
využívá jako zdroj inspirace a to i přesto, že v současné době existují spíše testbedy a simulace 
pro proof-of-work protokoly. 

Následně práce popisuje jednotlivé, již existující proof-of-stake protokoly - Algorand, 
Ouroboros, Ouroboros Praos, Casper, Tezos. Protokoly jsou popsány z technické stránky, tedy jak 
konsenzu dosahují a jaké jsou pro jeho dosazení potřeba předpoklady. U protokolů jsou zkoumány 
jejich výsledné vlasnosti, založené na definici v předchozí kapitole. Vlastnosti jsou zasazeny 
do tabulek, které přehledným způsobem sumarizují porovnání protokolů na teorietickém základě. 

V druhé části se práce věnuje návrhu, implementaci a vyhodnocení našeho testbedu. Návrh 
nového testbedu nalezneme v kapitole 6. Při návrhu bylo zohledňováno možnosti širšího použití 
testbedu. Ikdyž je testbed primárně navržený pro tři protokoly - Algorand, Casper, Ouroboros, 
taktestbed sekundárně počítá s budoucími rozšířeními pro další protokoly. Návrh testbedu je 
následovaný jeho impelementací. Popis implementace nalezneme v kapitole 7. Pro implementaci 
bylo zvoleno simulační prostředí frameworku NS-3 v kombinaci s programovacím jazykem C++. 
Kapitola popisuje jak implementaci testbedu jako takového, tak i jednolivých proof-of-stake 
protokolů. Tyto protokoly jsou instanciovány do jádra vytvořeného simulátoru. V rámci 
implementace jednolitvých protokolů se také zaměřujeme na evaluaci jejich správné 
implementace. V této kapitole nechybí ani uvedení postupů, které implementaci zjednodušují, či 
zefektivňují simulaci různých stavů, např. stavů vedoucím k útokům na dosazení konsenzu. 

Výsledně implentovaný testbed simuluje a porovnává protokoly v několika simulacích. 
Veškeré výsledky jsou uvedeny v kapitole 8. Výsledky těchto simulací jsou zaneseny do grafů či 
tabulek. Tabulky a grafy nám pak vizuálně popisují výkonost, propustnost, škálovatelnost 
implementovaných protokolů v různých situacích. Součástí simulací jsou i protokolově závislé 
simulace, které se zaměřují na zkoumání protokolově specifikických parametrů, např. Velikosti 
komise v případě protokolu Algorand. 



Na závěr této práce, diskutujeme a navrhujeme možná zlepšení současných proof-of-stake 
protokolů. Návrhy jsou založeny jak na teoetickém, tak i na praktickém provnání protokolů. 
Návrhy se týkají zlepšení definovaných vlastností protokolů. Mezi výsledky patří např.: 
doporučená velikost komise pro protokol Algorand, doporučený typ algoritmu pro dosažení lepší 
škálovatelnosti a další doporučení, která nalezneme v kapitole 8 a 9. 

Finálně, implementovaný testbed, položil základní kámen pro simulace proof-of-stake 
protokolů. Programátoři jednotlivých proof-of-stake protokolů si díky němu mohou ověřovat své 
teze praktickým způsobem. Simulátor je navržený pro další rozšiřování a to jak dalších 
proof-of-stake protokolů, tak i nových typů simulací. Díky těmto dvoum vlastnostem mohou být 
stále rozšiřovány návrhy pro zlepšení či navrhovány protokoly lepší a zcela nové. 
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1 Introduction 
Nowadays, the word „blockchain" is commonly known, mostly because of cryptocurrency 
Bitcoin. A lot of people connect Bitcoin and blockchain together, but the right definition is: 
Bitcoin is the cryptocurrency that is implemented on the base of blockchain technology. 

Blockchain is a new technology with huge potential for lots of applications that connect 
more and more participants. The potential is based on the decentralization. Blockchain is now 
widely used in the cryptocurrencies, but there will come out new types of applications, like 
in the financial sector, electronic elections, medical (medical history), and so on. 

In the blockchain does not exist any centralized authority. However, for the credibility 
of the blockchain network, there must be some regulations and the policy of blockchain traffic. 
For regulation of traffic in the chain, the blockchain uses consensus protocols. The most known 
type of algorithm, or protocol is a proof-of-work protocol, which is used in many applications, 
Bitcoin network. This protocol has some disadvantages though, that we will talk about in the first 
chapter of the thesis. The second most known protocol is a proof-of-stake. Proof-of-stake is 
a newer consensus approach, that tries to improve disadvantages of the proof-of-work approach. 
Proof-of-stake is currently used in some blockchain applications. 

For implemented proof-of-work protocols already exists some theoretical and practical 
comparison, but, for proof-of-stake protocols there are only a few of them. So, the first goal of this 
thesis is going through more known implementations of proof-of-stake approach, explaining their 
functionality and comparing them on the theoretical base. 

On the detailed explanation and comparison of proof-of-stake based protocols we design 
testbed, that will compare proof-of-stake protocols practically by the simulations. By comparison 
we can suggest the protocol's improvement, or new protocol. 

At the beginning of thesis (chapter 2) we discuss the blockchain technology. The thesis 
writes there brief introduction of the actual status of blockchain technology and its usage. 
The chapter 2 contains some information about actual existing type of consensus and its 
description. 

The chapter 3 writes about already existing testbeds and simulations. The proof-of-stake 
type of consensus actually does not have many testbeds. That is the reason why in this chapter 
writes mainly about proof-of-work testbeds and simulations. The chapter describes all mentioned 
testbeds, and it writes about their properties that can be used for our proof-of-stake testbed. 

Chapters 2 and 3 describe theoretical existed problem. The chapter 4 writes about the 
motivations and goals of this thesis, which are based on the chapters above. 

A l l main representatives of proof-of-stake protocols are described in the chapter 5. 
Chapter 5 describes protocols - Algorand, Ouroboros, Ouroboros Praos, Casper, Tezos. At the end 
of chapter, all protocols are compared and results of the comparison are written into tables. 

The chapter 6 writes about designing of our testbeds for 3 selected protocols - Algorand, 
Ouroboros, Casper. In the chapter we can find a description of the designing process, description 
of used technologies, and the final design. The chapter is followed by chapter 7 that describes 
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proccess of implementation of the testbed. The chapter mentions some problems and solutions 
in the implementation part as well. 

Chapter 8 shows the results of the simulator. There are results of testbed. A l l results are 
discussed and compared there. There are simulations of network throughput, scalability with 
discussion that is related to the privacy, security, finality. 

Last chapter, chapter 9 summarizes the process of testbed creation, and the chapter creates 
a summary for the whole thesis with final recommendation for the proof-of-stake type 
of consensus. 

4 



2 Consensus protocols 
The consensus is the key element of whole blockchain technology with huge impact 
on throughput and security. The chapter writes about consensus protocols in the blockchain 
technology. The chapter describes main approaches of consensus with the next focus to 
proof-of-work and proof-of-stake consensus type. The chapter describes process of consensus by 
specific approaches and it discusses their advantages and disadvantages. 

Blockchain is a distributed continuously growing database. In the blockchain network does 
not exist a central authority. Blockchain network consists of participants (nodes). Every node can 
add some information to the blockchain database. Consensus protocols are described 
by algorithms. Consensus algorithms describe the validation of adding data into the blockchain 
database. 

There are 3 types of blockchain networks we know about [1]. Permissionless blockchain 
like Bitcoin, where anybody can assign to network of blockchain, write/read an information. 
The second type is permissioned blockchain, where you can become a member only by given 
permissions. That permissions can be given by network, without central authority, although it can 
be. The third type is private blockchain, which is created for private domain or group of nodes. 

This thesis focuses on the permissionless blockchain. For reaching the consensus in this 
type of blockchain network there are used consensus protocols. There is no possibility 
of the central direction of a network. On the other hand, in this type of consensus protocols, there 
are more problems connected to consensus. 

An individual node can drop down and consensus protocol has to resolve it. 
Consensus protocol works above some network, so there is a possibility of interrupting 
the connection. 
Ensure fair distribution of votes in the consensus. 
Consensus protocol has to be secure and resistant against attacks. 
Consensus protocols ensure, that the blockchain's data become immutable. 

Consensus in blockchain can be established in many ways. Consensus is based on multiple 
entities that may not trust each other. Basic idea is to reach consensus by voting nodes 
of the network. Participants of blockchain communicate over the network and cooperate together 
to construct consensus without a central authority. That idea is based on the public election, so 
i f 51% will agree, the consensus is valid. The problem is how to divide the power of votes into 
nodes. And this is the main difference between consensus protocols. Some of them are based 
on CPU power - proof-of-work. Another one, proof-of-stake, is based on the amount of „money" 
that node owns. 

5 



Consensus protocols are a cornerstone of every blockchain technology. Almost all 
properties of the blockchain (throughput, security, scalability, and others - chapter 3.1) are based 
on the implementation of consensus. In the stacked model of blockchain we can find 
the consensus layer in the lower layers. It is illustrated by figure Figure l 1 . 

Ride-sharing j Logistics ! j Asset management j ! ! 

Appl icat ion Layer 

i ~, i ^ i " 

Algorithms ; ! Mechanisms ; ! Smart Contracts ; 
1 ._ i 1 _ i 

Contract Layer 

Issuance ; Allocation 

Incentire Layer 

! PoW • • Po$ 1 • DPoS i !____.._.__ J 

Co us e nsus Layer 

! P2P Network 
1 ' 1 1 1 

; Data Forwarding; Data Verification; 
i 1 i 1 i 

Network Layer 

I Data Blocks 
i 

; Merkle Trees 

1 ' i ' 1 

; | lime Stamps ; ; Hash Functions ; 
i • i • i 

I ! Encryption \ [ | 

Data Layer 

I I I I 

Devices ! | Vehicles J | Assets 

Physical L a y e r 

Figure 1: Stack model of the blockchain technology 

2.1 Proof-of-work 

One of the consensus approaches is proof-of-work. The proof-of-work is based on the physical 
resources "Nodes vote with their CPU power, expressing their acceptance of valid blocks 
by working on extending them and rejecting invalid blocks by refusing to work on them. 
Any needed rules and incentives can be enforced with this consensus mechanism" [2]. The idea 
of proof-of-work protocol was firstly published in 1993 by Cynthia Dwork and Moni Naor [3] and 
was later applied by Satoshi Nakamoto in the Bitcoin paper in 2008 [2], 

1 https://www.researchgate.net/figure/An-ITS-Oriented-Blockchain-Model_fig4_332320425 
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The division of votes among all nodes is accomplished by resolving the mathematical 
puzzle. A l l blocks of blockchain ledger contaion some data like identification of previous block, 
sender, receiver and transaction data. The goal of the mathematical puzzle is to calculate SHA-256 
hash (or any other hash algorithm) of the block. Proof-of-work adds some requirements on 
the transaction hash. One and main requirement: a hash produced by miners (miner is a node that 
wants to participate on the consensus) has to be lower than number or equal to it, which is set 
by blockchain network. To reach this format of the hash, proof-of-work protocols add one field 
into blockchain block called „Nonce". The nonce is a 32 bit number. The goal of miners is 
to choose nonce's value into hash that is equal to or lower than target hash chosen by network. 
The nonce is the only value that can be changed by a miner in the blockchain block. There is not 
any sophisticated method of nonce's value calculation. The only way is to use brute force method. 

Every block also contains „target" hash information, which define the maximum value 
of the produced hash. Final hash is a 256-bit number. Final hash starts with few zero „0" numbers. 
Count of zeros is determined by blockchain network. By the count of zeros, the network can 
control the difficulty of nonce calculation. The 32-bit size of the nonce means that there are four 
billion possible combinations. However, technically, it is much higher due to something called 
the extra nonce [4]. The structure is illustrated by Figure 22. 

BLOCK #1 

BLOCK #1 CONTENT 
PREV:8 
SENDER:John 
RECEIVER:jenny 
AMOUNT:199 
NONCE:22683 

BLOCK #1 HASH 
I 808aed7d33ebf71c24cl5119c925acf9d9d45f8f9972a34e2c8blaabe29163a7 

BLOCK n 

BLOCK #2 CONTENT 
PREV: 
eececd7d33ebf7lc24cl5ll9c92Sacf9d9d45f8f9972e34e2c8blaabe29l63a7 
SENDER:yang 
RECEIVER: j "in 1  

AMOUNT:266 
NONCE: 192742 

i m « 
eoee277ae4c7a791d84331403bea782b71el572a4f36735bba9dfece47324bf2 

BLOCK *3 

BLOCK #3 CONTENT 
PREV: 
eee6277ae4c7a791dS4331463bea7S2b71el572a4f35735bba9df6i:647324bf2 
SENDER:giacomo 
RECEIVER:alehandro ' 
AMQUNT;396 
NONCE:78122 

BLOCK #3 HASH 
e6eelfS5667434abfSdlcd9049748d86aa46ae4be4alf263166612976fcbe77b 

BLOCK #4 

PREV: 
6eeelf95687434abf9dlcd9D49748d86aa46ae4be4alf263166el2976fc:be77b 
SENDER:satoshi 
RECEIVER: p1 Mpoppi 
AMOUNT:30 
NONCE:38468 

eeeebb2dba697e7f63deea5elll71alSlff27895f4a74dlfc9de91cebcfc6S31 

Figure 2: Blockchain structure 

2 https://medium.com/(fiyuliannm 
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A practical example of the calculation is below [5]. Every block in the example contains 
two main (hash calculation perspective) values. Nonce value and final block hash. Final hash, red 
part of the block, is calculated above block content, blue part. Requirements to final hash are it 
starts with 5 zeros. Miner is trying to calculate the target hash with 5 leading zeros, only by brute 
force method and changing nonce value. 

Proof-of-work algorithm is mostly used in cryptocurrencies. But there are some 
disadvantages of this protocol: 

51% attack [6] - The history of blockchain is not changeable, because actual block points 
to the previous block by its hash, and that block points to his ancestor and so on. If you 
want to change some block, you have to recalculate all following confirmed blocks. In the 
context of proof-of-work protocol, it is possible, i f you have majority of network 
performance. If anybody owns that performance, he is able to create fraudulent blocks of 
transactions for himself while invalidating the transactions of others in the network. 
Electricity consumption [7] - Another disadvantage is electricity consumption. During 
the calculation of mathematical puzzle, a CPU or any other device only tries to calculate 
right nonce's number. That is processed by the brutal force method. The brutal force 
method is not effective, so almost every electricity is consumed by useless results 
of nonce's value. 

2.2 Proof-of-stake 

,froof of Stake (PoS) concept states that a person can mine or validate block transactions 
according to how many coins he or she holds. This means that the more Bitcoin or altcoin owned 
by a miner, the more mining power he or she has. "[8] 

The first idea was published in the bitcointalk forum [9]. The motivation of that protocol 
was to save a huge amount of the computation power and in the perfect way also to create a more 
safe algorithm. 

In the proof-of-stake protocol do not exist miners, but transaction validation is done 
by validators. The validator does not have to mine new blocks, validators only validate new blocks 
of the blockchain database. Validator's power is limited by percentage of token that her or his 
ownership of stake. For example, validator has 1 percentage of money (tokens), he is able 
to validate theoretically 1% of the transactions. 1% only theoretically because it depends 
on the specific proof-of-stake algorithm and used method. The selection of validator is illustrated 
by Figure 33. 

3 https://lisk.io/content/5-academy/2-blockcMn-basics/4-how-does-blockchain-work/7-proof-of-stake/8-

pos-infographic.jpg 
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In Proof of Stake, each validator owns some stake in the network, and has to lock it in order to be selected. 

2 

1 

For example, if you owned 
1% of the cryptocurrency, 

you would be able to mine 
1% of all its transactions. 

sometimes a locked up 
deposit is required. 

Anyone who holds the 
base cryptocurrency 
can become a 
validator, although 

A validators chance of 
mining a block is based 
on how much of a stake 
(or cryptocurrency)they 
have. 

The PoS protocol will randomly 
assign the right to create a block 
in between selected validators, 
based upon the value of their 
stakes. 

The chosen validator is 
rewarded by a part or the 
whole of the transaction fee. 

I I ' A w i n 
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Y 
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Figure 3: Proof of stake validator selection 

The main idea is based on the percentage of validator ownership. However, the idea has one 
big disadvantage. If the network detects, that validator (forger) validated fraudulent 
transactions, there is no punishment. In this way, the next improvement is: The validator sends his 
money to the stack (stake) and starts doing the validation. When the network detects suspicious 
behavior, the forger node will lose a part of its stake. 

In the proof-of-stake do not exist rewards for making blocks. The validator takes 
a transaction fee for every validated transaction as a reward for validating the transaction. 

The proof-of-stake algorithms use a pseudo-random election process to select a node as 
the validator of the next block, based on a combination of factors that could include: the staking 
age, randomization and the node's wealth. The most used algorithms for choosing validator are 
Randomized Blockchain Selection and Coin Age Selection. In the Randomized Blockchain 
Selection, the validators are selected by the combination of amount of stake and by the lowest 
hash value. The second one, Coin Age Selection algorithm chooses, how long is their token 
waiting and the number of coins that are staked. Practically, it can be calculated like multiplying 
the number of days by the number of coins in the stake. 

Proof of stake algorithm is now used in some cryptocurencies like: Ok cash [10], N A V coin 
[ l l ] , N E O [12],ARK[13],LISK[14], Cardano [15]. 

But the most discussed theme in nowadays cryptocurrencies and proof-of-stake protocols is 
the Ethereum cryptocurrency [16]. This cryptocurrency plans to change used the consensus 
algorithm. Ethereum actually uses the proof-of-work protocol, on the other hand, 
the implementators plan to migrate to the proof-of-stake protocol. For that purpose, the Ethereum 
should be divided into two separate cryptocurrencies. The first one is called Ethereum version 1.x 
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with „old" proof-of-work algorithm and the second one Ethereum 2.0, which will be hard fork 
of Ethereum 1.x with proof-of-stake consensus algorithm [16]. 

In the list blockchain protocols (cryptocurrencies), each cryptocurrency has its own set 
of rules and properties for what the implementors of cryptocurrency think that is the best solution 
and combination of rules for their application. 

This is a reason why we can find more wide types of solutions than in the context 
of proof-of-work protocols. This thesis is focused on the differences between specific 
proof-of-stake protocols implementation in next chapters. 

2.3 Proof-of-burn 

Proof-of-burn is an alternative approach for proof-of-stake or proof-of-work consensus type. 
Proof-of-burn, as the new alternative, is being tested. It is also popularly called proof-of-work 
without energy waste. 

That consensus protocol is based on the burning (destroying) coins, that can be termed like 
virtual currency tokens. The basic idea was published by Iain Stewart, the designer of 
proof-of-burn algorithm - „Burnt coins are mining rigs. Essentially, a miner burns his/her coins to 
buy a virtual mining rig that gives him/her the power to mine blocks. The more coins burned by 
the miner, the bigger the ensuing virtual mining rig" [17]. 

Burning of coins is processed by sending coin to un-specdable address [18] also called 
„eater address" . Those addresses are randomly generated without the private key. Thankfully, that 
address has not any private key associated with it, there is no way how to get to „burned" coins. 
Sending the tokens to burn does not consume many resources and it ensures that the network is 
still alive and active. 

Participants can burn token from other blockchain technologies. So, it is possible to burn 
coins based on the proof-of-work protocol in the proof-of-burn algorithm. Thankfully, 
proof-of-burn inherits cons and pros of the algorithm that is used for coins burn. 

The idea of the proof-of-burn technique is that users are willing to undergo a short-term loss 
for long-term investment by burning a cryptocurrency. Burned coins grant the right to write blocks 
in the proportion to the burned virtual tokens. Basically, i f you burn more coins, then you have 
more right to mine blockchain block. Participants of burning can be rewarded for their activities. 

Practically, proof-of-burn is used in the algorithm named Slimcoin [19]. Slimcoin actually 
combines three algorithms - proof-of-work, proof-of-stake and proof-of-burn. Proof-of-work 
prepares coins for burning. Proof-of-stake manages mining rights, and the whole system follows 
proof-of-burn ideas. In Slimcoin, the burn of coins does not give rights to the next block, but you 
can get a chance to receive blocks in the future time period - about a year. 
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2.4 Proof-of-capacity 

Proof-of-capacity is also called proof-of-space. It is based on the same idea as proof-of-work 
protocol. Protocol calculates the nonce's value to satisfy requirements to the final hash. 

But the proof-of-capacity does not use CPU or any other hardware to keep calculating, 
which means trying to find the right value of nonce. Proof-of-capacity tries to use the node 
hard-drive volume. Proof-of-capacity uses node hard-drive to save the list of possible solutions 
of the hash activities. That is calculated before mining activity comes. The bigger size 
of hard-drive = the node can store more possible solutions and it has a higher chance to win 
mining reward, resolve a mathematical puzzle. 

Mining in the proof-of-capacity protocol is divided into two parts. First called plotting and 
second one mining. During the first part, the protocol calculates files, exactly plot files. Each file 
contains a large number of precalculated hashes. In the second part, the protocol starts mining. 
Mining is being processed on the incoming data with the support of the saved plot files. 
The protocol cooperates with hard-drive and tries to find right solution based on the precalculated 
files. 

Proof-of-capacity protocols have less electricity consumption than the classic proof-of-work 
algorithm. Some literature says that the proof-of-capacity consumes only 1% of electricity, 
compared to proof-of-work algorithm. Another benefit is the price of hardware. Hard-drives are 
much cheaper than expensive ASIC hardware. 

Burstcoin [20] is a cryptocurrency, that uses proof-of-capacity. 

2.5 Proof-of-authority 

Proof-of-authority protocols are validated and approved transactions for a future block made 
by validators. Validators allow putting the transaction in the block. 

Proof-of-authority protocols are based on the reputation. That algorithm was inspired by the 
proof-of-stake algorithm, where nodes stake their coins. In the proof-of-authority nodes stake their 
reputation instead. Becoming a validator can be a long process, because future validator has 
to invest their reputation in the stake. In that context, the new node does not have enough 
reputation or it has an only little reputation, so it is pretty challenging to become a validator. It's 
a long-term process, because validator creates a better reputation over a long period, based 
on its behavior. 

The protocol is more suitable for private blockchain protocols, which are used in private 
networks. That can be used in certain businesses and corporations, especially for high 
performance and precondition of high trustability of network nodes. 
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3 Consensus protocols testbeds 
Consensus protocols have properties and vulnerabilities that are practically compared and 
discussed. The first part of this chapter is about consensus protocol's properties and vulnerabilities 
that will be studied in the next chapters. 

Consensus protocols are researched by simulations or testbeds. The research can be focused 
on throughput, security, or any other properties. In the thesis we want to go through some 
proof-of-stake protocols an observe them. For that, we will use testbed. By the testbed, we will 
verify our speculations, which can improve the proof-of-stake type of consensus. But at first, we 
describe some exist testbeds and inspire there. 

3.1 Studied properties 

Each consensus protocol has its own implementation with another motivational idea. Some 
protocols are focused on the performance, some on the anonymity, and others to security. We have 
different approaches on the comparison of those protocols and their properties. Each subsection of 
this chapter describes properties and vulnerabilities individually. 

Properties are focused on the bases of blockchain consensus protocols, especially 
proof-of-stake protocols. Declared properties will be used in the next chapters for specific 
protocols comparison. 

3.1.1 Implementation and design properties 

In the context of proof-of-stake consensus protocols, we can divide consensus algorithms 
into 3 groups by used type of blocks validation [21], 

Lottery based protocols - These protocols are based on running lottery when output is 
leader or committer which will validate next new block for the blockchain database. During 
the processing of the lottery, the majority of calculation is done into nodes internally. This leads to 
the biggest advantage - small traffic over the network. Protocols often use ,The Follow 
the Satoshi algorithm' [2]. Nevertheless, the biggest disadvantage of the lottery-based protocols is 
a chance of electing more nodes as leaders and then the creation of multiple blocks with same 
height = forks. The fork is a division of blockchain database history, and in the future, only one 
way of division will be truthful. Forks might potentially lead to some attacks - described 
in section 3.1.3. 

Voting based protocols - New attached block is not validated by a leader, but all 
participants are voting, the new block is produced only collaboratively. But that voting needs a lot 
of network communication. Protocols that use the voting approach, almost always include 
Byzantine fault tolerant (BFT) protocols. On the opposite, the voting based protocol is a very low 
probability of forks creation, for example, Algorand [22]. 

Combination - In fact, practically strictly lottery-based or voting-based protocols do not 
exist. The practically used protocol is trying to combine the pros of all approaches to get a better 
consensus protocol. For example in Algorand, which uses BTF, all nodes are not voting (more 
in the next chapter). 
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3.1.2 Behavioural properties 

The behaviour of every consensus protocol depends on the selected technology, implementation, 
features and other parameters. But for the consensus protocols' comparison are used properties 
that are described below. Protocols can be evaluated by that. There is a list of metrics [21] used in 
practice: 

Scalability - determines the property of protocols, how protocol reacts 
to increasing/decreasing the number of participants. Some protocols can be designed for 
a dedicated scale number of participants. Scalability also describes the change of other 
properties like throughput or security in case of number of participants change. There is 
no value or measurement. Scalability is described in words. 
Throughput - describes performance of the protocol. Throughput represents the number 
of transactions per second. Measurement of throughput may have some assumptions. 
Throughput varies over protocols. Throughput highly depends on the type of consensus 
protocol (Byzantine Fault-tolerand, The Follow the Satoshi,...) 
Security - it describes susceptibility/defensibility to some vulnerabilities. The form 
of security is a verbal description based on the theoretical models. 
Privacy - privacy expresses the protocol's property, how a protocol works with privacy 
users' data, and how much of private data are published. Also, privacy describes 
traceability of coin owners. Anonymity is a part of the privacy description. 
Failure-tolerance - property of protocol describes how protocols deal with some network 
issues. For example participant network outage, connection problems, etc.. That property 
is a word described property, but it can be evaluated numerically, for example, percentage 
of participant that can fail. 
Liveness - ensures that honestly generated transaction has been available for other 
network nodes. Liveness is stated as an amount of time until generated transaction is 
available for other network nodes. 
Safety - ensures, when a honest node accepts a transaction than other honest nodes accept 
this transaction. 
Finality - finality depended on the safety. Finality expresses time or depth of the accepted 
block in blockchain history when the block can not be removed or overturned. 
Energy efficiency - the ratio between electricity consumption and completed work. 
Theoretically, it might be calculated like watt per transaction. But really, protocols are 
mostly strictly divided into two groups: poorly efficient (proof-of-work) and efficient 
(proof-of-stake). 
Immutability - property of protocol and generated blockchain, that can not be easily 
modified. 
Decentralization - describes, i f the protocol depends on some type of centralization 
(authority). Also describes, i f all participants have the same influence to consensus. 
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3.1.3 Protocols' vulnerabilities 

This subchapter describes basic blockchain vulnerabilities and focuses on the consensus protocol's 
vulnerabilities, especially proof-of-stake vulnerabilities. Subchapter does not focus on 
the complete list, but it focuses mainly on discussed problems. The goal is to describe types 
of vulnerabilities that will be used and compared in the next chapters and in the testbed. 

51% vulnerability [2] - is the most known type of blockchain attack. The attack consists 
of one attacker, who owns more than 50% of voting (mining - depends on consensus 
context) power. That power might be owned by more nodes, but practically, nodes belong 
to one dishonest behavior. 
It is hard to avoid 51% attack, because consensus protocols assume some percentage 
of honest nodes. Exactly more than 50% honest users, or 2/3 in BTF (Byzantine fault 
tolerant) protocols. But in contrast, when the attack is detected, the value 
of cryptocurrency gets rapidly low. 
Double-Spending Attack [23]- the second most known type of blockchain attack through 
all types of blockchain, consensus protocols. The attack refers to a consumer, who uses 
the same cryptocurrency coin multiple times for outcome transaction. The attack is 
usually a consequence of the 51% attack. This type of attack has a higher impact 
on protocols with lower finality. 
Breaking Network Assumptions - some protocols assume synchronized communication 
or any other assumptions. An attacker tries to break those assumptions. It is hard to 
defend, because protocols assume these properties of a network. 
Time De-Synchronization Attacks - some consensus protocols are based on physical 
time. For example, Ouroboros needs the division of physical time into epochs and slots 
(more in chapter 4). Epochs and slots are identified by the division. An attacker tries to 
break system time to break participant's nodes synchronization. 
Selfish Mining - vulnerability theoretically possible in proof-of-stake protocols (need 
predictable randomness for election) [24], but practically realized in proof-of-resouce 
protocols. The attacker builds part of the chain on his own and tries to publish it into 
the public chain. Because the attacker knows part of the chain he made, he can mine 
without any additional effort. 
Nothing-at-Stake [25] - it is proof-of-stake's specific vulnerability. The vulnerability can 
occur, i f there is a fork in chain of blocks. When the fork occurs, the miners (validators) 
can perform work on both chains. And that could theoretically make double-spending 
problem. The attacker creates a fork and performs double-spending attack. The rest 
of miners are mining in their best self-interest - mine both chains. So, the chain, that 
becomes a part of public blockchain, is highly depended on the attacker's mining, because 
other miners are mining on both chains of the fork, as well. This attack is proof-of-stake 
specific attack, because node (validator) can validate more branches together without 
risking its stake. It is trying to increase its chance to be rewarded. 
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Grinding Attack [26]- a type of attack, where the attacker tries to increase his chance 
of being selected in the future. The attacker tries to find a combination of different 
parameters (dependent of consensus protocol). For example, i f the election process 
of proof-of-stake protocol is dependent on a hash of the previous block, then the attacker 
can use that dependence for a future election's participants. New randomness for each 
election process, like V R F process, is the way how to avoid this type of attack. 
Fake stake - proof-of-stake specific attack. The voting power of one participant's 
conclusion is depended on its stake. The attack/problem is based on validation 
of the participant's stake, which should be increasing along the chains, which are getting 
longer. During validation, the attacker might claim, that they own more stake than they 
actually do [27]. 

3.2 Actual existing testbeds 

In the introduction we explain what a testbed is. The testbed is a process and a way how to test 
and verify some scientific theories or new technologies. The testbed can be implemented as some 
hardware testing or software testing. In this thesis, we will use software testing. Software testbed 
is a method for testing new ideas and approving some preconditions. Software testbed is 
implemented like isolated software, that simulates the behavior of new software future running 
environment. The testbed is based on the proof of concept. 

Between existed testbed exits some testbed or studies that are trying to compare 
or simulated consensus protocols properties. Almost all testbeds are focused on proof-of-work 
protocols. Only a few studies focused on the proof-of-stake protocols, because proof-of-stake 
approach is only a few years old. 

In this chapter, we go through testbed that focused on the proof-of-work and proof-of-stake 
protocols. We describe them minutely and we highlight properties that can be used for our 
designed testbed. 

3.2.1 Bitcoin simulator 

Bitcoin simulator [28] is an instance of the framework [29], which uses a bitcoin network 
instance. 

The framework consists of two key parts. First, a blockchain instance, and second, 
ablockchain security model. Blockchain instance can be theoretically classical proof-of-work 
blockchains like bitcoin, litecoin, ethereum (or any other PoW-based). Output of concrete instance 
blockchain simulation is a block rate that is used as input for security model based on Markov 
Decision Processes (MDP) [30] for double-spending and selfish mining. 

The first part - blockchain instance captures the dynamic setting of clasical proof-of-work 
protocols properties - number of nodes, number of blocks in simulation, block size, and more 
[28]. To reach more realistic simulation, the framework implements network layer simulation 
by advertisement - based information propagation, unsolicited block pushes, the relay network, 
the sendheader propagation mechanism among others. 
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The second part - security model. Extended Markov Decision Processes (MDP) is used 
as a model. By this process is determined optimal adversarial strategies. In the opposite, 
it determines combination of different blockchain setting, that leads to high vulnerability, 
especially double-spending attack and selfish mining. 

Framework for network simulation uses NS-3 network simulator [29]. NS-3 is a discrete 
event simulator for a system that is based on the internet network. NS-3 supports all ordinary 
network protocols. The simulator focuses on easy simulations with sufficiently realistic behavior 
for classical purposes. 

3.2.2 StrongChain Demo 

Simulator, [31] that illustrates communication between nodes in realtime. The simulator is based 
on basic internal blockchain implementation by account/balance model [32]. 

The purpose of the simulator is just to demonstrate some features and vulnerabilities 
by proof-of concept, like selfish mining. On the other hand, the simulator demonstrates, how real 
simulator can be implemented without any sophisticated tools nor any other frameworks. 
The simulator is based on the basic Python libraries. 

3.2.3 SimBlock 

It is a simulator application developed in July 2019, that supports simulating of the behaviour 
of about 10 000 nodes with using a single PC. Application is Java-based and the code is publicly 
available on the internet [33]. Simulator currently supports Bitcoin, Litecoin and Dogecoin 
network. 

The application is focused on performance and throughput testing. The result of simulation 
[34] is compared with the simulator [35]. The SimBlock divides accounts into regions 
(like America, Asia, ...), where the delay can be configured. The application is based on pure Java 
programming language and ordinary libraries. There are no frameworks of third parties. 

SimBlock is an event-driven application. Each participant of the simulator (blockchain 
node) communicate with other nodes by ordinary P2P communication. The node generates 
messages and mining events. The simulator reacts to those events. The simulator uses an internal 
instance of blockchain algorithms. The output is in the JSON format and it is challenging 
for humans to read it. However, the implementators of Simblock also developed 
visualizer - simblock-visualizer. That visualizes the layout of nodes around the world and 
communication with each other. The layout of nodes is illustrated by Figure 4 4. 

4 https ://dsg-titech. github. io/simblock/ 
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Figure 4: Simblock visualization via SimBlock-visualizer 

Simblock was implemented like proof-of-work simulator for blockchains like Bitcoin. 
But in the last months (October 2019) we could see some work on proof-of-stake simulation 
in GIT history. 

3.2.4 Framework - Evaluating PoW Consensus Protocols's Security 

Framework for evaluation of proof-of-work protocols security [36]. Framework code calculates 
optimal strategies of different proof-of-work protocols. Calculations are based on the models that 
are defined as mathematical functions. Each part of the model (mathematical function or equation) 
defines evaluation of some blockchain property or vulnerability, these functions define evaluation 
metrics. The security model is based on the Markov decision processes. 

The framework is trying to focus on proof-of-work protocols vulnerabilities, identifying 
them and evaluating them. It is based on evaluation analyzed behaviour of protocols in defined 
condition with the defined setting. The output of analysis is measurement of the protocol's 
vulnerabilities in the context of the defined pre-conditions. The analysis also creates a basement 
for suggested improvements. 

The whole framework is based on calculations. The framework is not a simulation 
of protocol instances. The framework was implemented in the Matlab with support of the MDP 
toolbox for Matlab. The source code of the framework is available for public [37], 
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4 Problem definition (motivation) 
As we mentioned in the chapter before, we know lots of types of consensus protocol types. Every 
type of protocol has its own advantages and disadvantages. Also, every of the protocol can 
be better in specific usage than other protocols. In this thesis we will focus on the proof-of-stake 
type of consensus protocols. 

Actually, the proof-of-work type of consensus protocols is used most often. Proof-of-work 
protocols are widely used, because proof-of-work protocols used to be protocols that guarantee 
general targets of the blockchain network, like throughput, safety, scalability, finality. But 
actually, the proof-of-work type of consensus comes to an edge of its properties. The biggest 
disadvantage of proof-of-work protocols are (properties are related mainly to Bitcoin 
implementation proof-of-work consensus): 

Efficiency - proof-of-work type of consensus has huge problems with efficiency. 
The protocol calculates a lot of calculations, but only an insignificant part of them are 
effective calculations. Other calculations are there only for the construction 
of the proof-of-work type of the consensus. That leads to high electricity consumption 
of the whole network. Efficiency is an increasing problem, that starts to be a global 
problem. Here is a comparison with other human activities, and its energy 
used - Figure 53. 
Performance - performance, or throughput of the network, is limited. Limitation 
of the throughtput is made because of security parameters - We can improve throughput 
but with worse security as a consequence. 
Finality - in the proof-of-work protocols it might create lots of forks. That property is 
highly limited for marking the block as finished. 

Mentioned disadvantages motivate lots of blockchain network implementators to try other 
consensus approaches. As the best alternative to proof-of-work protocols seems to be 
proof-of-stake protocols. Proof-of-stake protocols declare better properties (mainly mentioned) 
than proof-of-work protocols. This is the main reason, why this thesis focuses 
on the proof-of-stake consensus protocols. 

In the proof-of-stake protocols field exist a few approaches on how to implement them. 
The approaches are described in the next chapter. In the next chapter, there are also discussed 
advantages and disadvantages of particular approaches. 

In nowadays exists only a theoretical comparison between proof-of-stake implementation 
approaches. Also, exists only a theoretical comparison between specific proof-of-stake protocols. 
There are no testbeds or simulations that compare proof-of-stake approaches. But thanks 
to the practical comparison of protocols, we can find new strategies of implementations, new 
potential problems or other properties of protocols, to make it better. 

As the solution of that, we will create proof-of-stake testbed inspired by proof-of-work 
testbeds. In the testbed, we will compare a few proof-of-stake protocols. We will study specific 
protocols' behaviour in specific situations. We will focus on the declared properties 

5 https://dl9czvic2hcumt.cloudfront.net/content/2020/02/bitcoin-energy-consumption-vs-banks-gold-

paper.jpg 
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of the protocols. As a result of testbed-based comparison, we will get data based on the metrics 
that will declare protocols suitably. 

The result will be used for the improvement of proof-of-stake protocols. Result should give 
us the answer for the question, „which protocol is better and why", or „when is this protocol better 
than others and why". Based on the result we can create suggestions to get better actual protocols, 
or we can design a brand new proof-of-stake protocol. 

As the next result of the thesis, a proof-of-stake community gains a testbed with simulator. 
The simulator will include 3 proof-of-stake protocols instances and the simulator will be opened 
to new protocols instances. Thanks to that, implementators of the new proof-of-stake protocol will 
be able to compare this new protocol with existing protocols. Also, implementators will be able 
to compare configurations of this new protocol. 

Comparison of Environmental Costs 

Energy Used (GJ) Tonnes COj Produced Emission Trend 

Gold Mining 475 million 54 million Increasing 

Gold Recycling 25 million 4 million Decreasing 

Paper Currency & Minting 39.6 million 6.7 million Increasing 

Banking System 2340 million 390 million Increasing 

Bitcoin Mining 3.6 million 0.6 million Decreasing 

Figure 5: Blockchain (bitcoin) electricity consumption 
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5 Proof-of-stake protocols 
In this part of the thesis we will write about specific proof-of-stake algorithms. In the chapter, You 
can found a description of 5 proof-of-stake protocols - Algorand, Ouroboros, Ouroboros Praos, 
Casper, Tezos. The chapter will describe the properties of algorithms like throughput, scalability, 
security, privacy, failure-tolerance, liveness, safety, finality, etc. In the second part of that chapter, 
there is a summarization and a comparison of the protocols. 

Proof-of-stake's next problem is a subjectivity for new validation nodes. By subjectivity we 
mean, when the node joins into the network, it has only a little amount of information about the 
whole network. So its decisions are based on subjective judgment - two different nodes can make 
other decisions, because their decisions are based on different information. 
In contrast, proof-of-work does not has this problem, because the proof-of-work network is based 
on objective decisions. For preventing from this problem the proof-of-stake protocols can use 
these types of mechanisms: 

Limitation of validating nodes - only currently bonded nodes. 
Withdrawal of stake must go through some period. Often called the „thawing" period 
Forbid reverting blocks that were created before some length of blockchain. 

Basically, the blockchain network is designed as peer-to-peer networks where all peers 
participate in the protocol equally to other peers. Network and protocol designs guratentee, that 
one node can participate in other nodes. But in some ways, the network based on proof-of-stake 
protocol may have the same trait of the server-peer network. That is because from all participants 
of the network, is created a list of chosen nodes (based on it's stake), that will validate transactions 
processed by the network. That trait of the network depends on the type of proof-of-stake 
approach of validator choose. 

In the beginning, the base idea of the proof-of-stake protocol was: the voting power 
of validator is calculated from the amount of currency that the validator owns. But Vitalik, in July 
2014 described a problem called „nothing-at-stake" [38]. The problem presents this scenario: 
^Validators can effectively break safety by voting for multiple conflicting blocks at a given block 
height without incurring cost for doing so". In other words: The system (network) is not punishing 
validator for voting to the different forks at the same time. In the concept proof-of-work networks, 
the validators (minners) are punished by distribution its mining power to two or more, forks where 
only one will be selected and others will be rejected. So, mining power used for that forks will be 
wasted. That problem is in a lot of proof-of-stake protocols be solved by „slashing". 

Slashing is process where validator creates deposit. Deposit is used as insurance 
for validator's inappropriate behavior, especially validation of the new blocks. A l l blocks 
validations by validator stand on validator's deposit. If the voted block will be approved by other 
validators then all validators get back their deposit with a transaction fee. On the other hand, 
the validator's deposit will be slashed. 
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5.1 Casper 

Casper is a proof-of-stake protocol for Ethereum cryptocurrency. Casper is used 
in Ethereum named version 2, which migrates from proof-of-work algorithm to the proof-of-stake. 
Casper's protocol's family is divided into two separated algorithms. First, „Casper the Friendly 
Finality Gadget" (FFG) [39] is a form of hybrid proof-of-stake/proof-of-work system. FFG is 
determined for migration of the Ethereum to the world of proof-of-stake networks. In the base, 
the FFG uses more srategy from proof-of-work protocols. And the proof-of-stake strategy is used 
to reach more scalability and lower energy consumption. The second one, Casper "the Friendly 
Ghost (TFG)" and Casper „Friendly Binary Consensus (CBC)" are pure proof-of-stake algorithms 
[40]. They are implemented by Vlad Zamfir. CBC or TFG are planned as a final protocol for 
the Ethereum network. Both protocols are long term projects and now they are in process 
of development. 

Casper protocols can be also called Bounded proof-of-stake (BPoS) consensus protocols. 
„They lock up part of their stake for a certain amount of time (like a security deposit), and 
in return they get a chance proportional to that stake to select the next block. Their voting power 
in the protocol is proportional to the amount of stake they are willing to lock up. Once the deposit 
is in place, it cannot be removed until a specified amount of time has passed. If these users are 
dishonest, they forfeit their deposit along with the privilege of participating in the consensus 
process." [22] 

One of Casper's family opinions is that Casper favours availability over consistency. Casper 
adopts a locking mechanism of stake. That means: the validator's stake is locked for a certain 
period of time in order to prevent invalid behaviour of validator. This is the main solution 
of „nothing-at-stake" problem. Another issue, which Casper implements, is approval of new 
validators by old validators. Approval of new network's validators ensures more trustworthiness 
of the whole network. 

A key goal of Casper is achieving "economic finality". A block of the blockchain is 
economically finalized, when the block is a part of the blockchain forever or the block is denied 
and the actors voting that finalized blocks are penalized. 

Economic finality in Casper is attained by validators' deposit. The deposit is submitted 
by validators. Thanks to the deposit, the validators can participate in voting the blockchain blocks. 
Finally, i f the block was economically finalized, then the validators get back their deposit together 
with a transaction fee. On the other hand, i f the block will be denied, then the validator's deposit is 
slashed. 

Next feature for economic finality: Casper has an unique feature that Casper has 
parameterizable safety thresholds. By that functionality, one validator can have different 
thresholds for economic finality. Also, Casper does not limit the quantity of active validators 
instead of some other proof-of-stake protocols like Tendermint, whict limit that one. 
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Very discussed issue of consensus protocols is performance. On the other hand, validators 
(in context of PoW - miners) are working only on validation of transactions. Validators earn only 
transaction fees, so their income is limited by their permeability. That means, the validators have 
a direct influence to increase permeability of the network. However, the network performance is 
limited by slower validators during the sync. 

Casper's protocols come from a second category called Byzantine fault tolerant based 
proof-of-stake protocols. It follows some rules which guarantee safety and liveness, and Byzantine 
Fault Tolerance up to 1/3 of validators. 

The biggest advantage of Casper, like proof-of-stake, is that attackers can be identified and 
their deposit can be destroyed immediately. 

Properties at a glance: 
Available - Casper's nodes may have their blocks fork until they come to a consensus. 
Asynchronously safe. 
Live - Casper's decisions can be live in partial synchrony, but are not live in asynchrony. 
Cartel-resistant - Casper's entire premise is built upon resisting an oligopolistic attacker 
so no colluding set of validators can overtake the protocol. 
Safety - Depends on each validator's estimate safety threshold. 

5.2 Algorand 

Algorand [41] is the first permissionless or permissioned pure proof-of-stake based blockchain. 
Algorand is an open source project developed mainly by MIT engineers lead by Silvio Micali 
[22]. The main idea is to build simple and fast consensus protocol and blockchain above them. 
This is the motivation, why the Algorand bases on hte pure proof-of-stake algorithm - the creators 
of Algorand say it is the protocol „without any complications". Algorand has developed from 2017 
and first launch was in June 2019. The whole consensus in the Algorand is created by expanded 
Byzantine consensus. 

Some blockchain protocols suffer from balance against latency and confidence 
in transactions. For example, for high confidence we need long latency and conversely. Algorand 
tries to break dependency confidence to latency. Algorand fosuses on radical improvement 
a latency (performace) against actual existing blockchain protocols. 

The key of whole Algorand is the new block generation use „new and fast Byzantine 
agreement protocol" also called like „BA*" [41]. This B A expands from classical 
message-passing Byzantine consensus with focusing on the performance and speed. B A * consists 
of 3-step loop. The B A * with more than 2/3 of the honest players ends in every loop with 
agreement by probability 1/3. This limitation the B A * inherits from classical Byzantine consensus 
protocols. The player is a randomly selected user among the a set of all users. The set of players of 
B A * is much smaller than set of all users, the set of players is s subset of all users. The selection 
of players is local - made, randomly among all users based on the user's stake weights. And this is 
the main property of the Algorand proof-of-stake views. For the election of the user, the B A * uses 
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verifiable random function (VRFs) [42] in private and non-interactive way. The computing is 
based on user's private key and public information of the blockchain. Since player is selected in 
private way, and adversary does not know who is a part of set selected users. 

Each loop of the B A * consists of 3 steps. For each step the algorithm randomly selects 
the set of players from sets of all users. Also, members of the actual step do not know the next set 
of players, thankfully, there is no way, how to secretly pass internal value. Each step 
of the algorithm consists of players repeatedly exchanging the boolean value. A l l players' steps 
are not synchrony, so each player can process the loop at different times. 

B A * works above the gossip network. That network is similar to the Bitcoin network. 
The network is used by players (a small set of randomly selected users). The player owns public 
and private key. The private key uses the gossip network to sign all messages. That ensures 
messages cannot be forged. Gossip protocol is communicating over the TCP protocol. Figure 66 

shows how are players selected and then passed into the gossip network with final consensus 
broadcasting. 

• • • • • • • 
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Figure 6: Algorandplayers selection 

Although the Algorand is based on public a decentralized network, it still has some 
properties of centralization, especially in the early stages. One of them are tokens. In the early 
stages, the founder holds a set of tokens, which is not more than 49% and uses them to moderate 
network with only a few users. When the count of users increases, the percentage of the founder's 
tokens decrease. By that point, the implementator ensures network security in early stages. 

Algorand's transaction history can't fork with overwhelmingly high probability and it 
avoids the double-spending problem. That probability is very low ( it is about 10"18). Traditional 

6 https://people.csail.mit.edu/riickolai/papers/gilad-algorand-eprint.pdf 
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blockchain protocols support „forking" of the blockchain ledger. After that can exist two short 
parallel forks of blockchain history according to different users. After several blocks of the chain 
have been added, we can be sure that all blocks are the same for all users. Algorand users can rely 
on the payments contained in the new block as soon as the block appears. This approach highly 
supports the time of a transaction process. 

Although the network almost can't generate fork, the network implements various fork 
resolution procedures inspired by proof-of-work algorithms. 

Because of using the B A * , avoiding fork agreement and other properties, the Algorand does 
not need any mining strategies. Users, especially players of agreement, do not stake their tokens 
(money) so the Algorand does not need any mining reward. The function of network is based only 
on users and B A * . 

Practically, Algorand is able to create a new block of the blockchain in less than 40 seconds 
in experiments. Algorand is based on theoretical [43] and practical tests [44], 

Algorand assumes for its work some theoretical values like: 
more than 2/3 of players are honest 
blockchain fork is created with probability less than 10"18 

Properties at a glance: 
Throughput - was only tested. 1Mbyte block of transactions with 50,000 users was 
confirmed in 22 seconds. That is approx 2200 transactions per sec. 
Scalability - Algorand achieves high scalability by choosing a players (committee) 
for each B A * round. Impact on performance depends of the size of the committee. 
In Algorand persists a problem with joining new user to the existing network. A new user 
has to fetch all existing blocks. 
Security - Algorand uses for security V R F function. Algorand is also based 
on asynchronous cipher methods. Algorand assumes, that 2/3 of users are honest, 
but Algorand does not actually implement some type of punishment for dishonest users. 
Hight part of security is also based on the non-fork implements and short steps of each 
consensus round. 
Privacy - Privacy is based on private keys. Users do not keep any private values except 
privacy key. Privacy key is used for signatures. 
Fault-tolerant - B A * protocol is inherited from classical B A protocols, that are 
fail-tolerant and benefit Algorand implement technique - Lazy Honesty [41] 
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5.3 Ouroboros 

Ouroboros is a proof-of-stake protocol [45], which uses the election algorithm the Follow 
the Satoshi (FTS) validator's selection. Ouroboros is actually used in Cardano cryptocurrency. 

The process of the Ouroboros consensus is based on the discreet division of real time into 
epochs and the epoch into slots. Practically, an epoch has 10*k slots, where the slot's size is about 
minutes and k is a security parameter [15]. Each slot of epoch has its own voted leader. 

Ouroboros uses cryptographic flow named publicly verifiable secret sharing (PVSS) [46], 
By using PVSS, stakeholders create committee and vote new epoch leaders. Each stakeholder 
publishes a secret random number. That number will be revealed during the epoch. At the end of 
the actual epoch, a final public random number will be combined and determines each slot's 
leader for next epoch. The process is divided into these phases: 

1) Committee formation - each stakeholder processes hte first part of PVSS scheme. Each 
stakeholder (committee member) creates a random number privately. 

2) Commit phase - each stakeholder processes the second part of P V V S scheme. 
Stakeholder commits this encrypted number by stakeholder's public key. The stakeholder 
sends a message to other committee members. So each committee member should receive 
messages from other members. 

3) Reveal phase - Each member sends an „opening" phrase to other members and 
the members are available to open a secret - reveal the random number. 

4) Recovery phase - a group of members can contain some adversary. In this phase, 
committee members check who has not revealed their number. And i f some members have 
not revealed the number, the member posts his number to them once again. 

5) Create seed - By combining (XOR) all secrect numbers we create a seed for FTS 
algorithm. 

Those procedures explained above ensure unbiasedness during committee voting. The seed will be 
used for FTS algorithm. FTS algorithm needs randomness and seed is that randomness. 

FTS collects all the smallest atomic pieces of coin, in the Cardono cryptocurrency called 
„Lovelace" and their owners that is owned by stakeholder. FTS randomly selects one Loverlace 
and its owner becomes a slot leader. This part is a base of proof-of-stake behaviour, because more 
coins stakeholder owns, then higher probability stakeholder's selection. 

To reduce a count of commit messages and to make protocol faster, the ouroboros limits 
size of committee member by minimal stake limit. The number of PVSS messages is in the m 2 

category, where m is a committee size. 
A l l messages sent in the Ouroboros network are synchronous. There is a chance of 

desynchronization attack (described in the Ourobors Praos paper - [47]) against Ouroboros 
i f the condition of synchronous network is not accomplished. But phases of seed creation can't be 
asynchronous, because of security reasons and a chance of unbiasedness selection of the leader. 
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Properties at a glance: 
Throughput - has been only tested yet. The result was 257.6 trancation/sec [45] with 
the assumption mentioned in the Ouroboros paper. 
Scalability - scalability of Ouroboros should be well, mainly because of limited 
committee size. But that claim is not practically confirmed. 
Security - Ouroboros is a high secure blockchain consensus algorithm. Firstly, Ouroboros 
implementation focuses on security. Basic types of blockchain attacks were tested in [45] 
Privacy - Ouroboros does not focus on privacy primarily. 
Liveness - Liveness is ensured and based on theoretical calculations. Value is dynamic 
by protocol configuration. But practically is depended on multiple slot's time (minutes) 
Finality - Finality is ensured and based on theoretical calculations. 

5.4 Ouroboros Praos 

The Clasical Ouroboros is sometimes described as an evidence of proof-of-stake algorithms 
security. Ouroboros Praos [47] is an improvement of ordinary Ouroboros, which is based 
on practical experiences. Ouroboros Praos uses the same division of time into epochs and slots 
like ordinary Ouroboros. 

For randomness, Ouroboros Praos uses a verifiable random function (VRF) instead 
of PVSS. V R F generates pseudo-random number based on an input - private key and other 
chain-based input. Anyone with a pair public key/ private key can verify, that the number was 
produced by chain-based input. It also verifies, that pseudo-random number was not produced 
before. 

The agreed nonce is used as chain-based input for each epoch. The Nonce is produced by 
VRF values in block headers of the previous epoch. For each slot of the epoch, all participants 
calculate random number by VRF. If the number is less than value proportional to their stake, then 
the participant becomes a leader for that slot. It is possible that more participants, or none, become 
the leader of a slot. Code below shows, how this process works describes code 1. 

T = calculateMyThreshold(myAmountOfStake) 
f o r e a c h l . . n S l o t s -> i : 

y, p r o o f = VRF(myPrivateKey, concat(epochNonce, i , "TEST")) 
i f y < T: 

g e t R e a d y T o G e n e r a t e B l o c k A t ( i , y, p r o o f ) 

Code 1: Pseudocode - VFR + leader selection 
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The described process is the main difference between Praos and classical Ouroboros. 
Participants are not limited by their stake to become a leader. Anyone with some stake can become 
a leader. On the other hand, by that process, there can be more leaders to one slot. And when more 
leaders are elected in the one slot, they will create a fork of blockchain, even i f leaders are honest. 
That can lead to vulnerabilities. 

Properties at a glance: 
Throughput - is not mentioned 
Scalability - a little bit better than Ouroboros, by another voting process 
Security - Ouroboros Praos is not vulnerable against grinding attack, than ordinary 
Ouroboros 
Privacy - Praos uses VRF, slot leader is not known publicly ahead of time. But that 
property is used more for security benefit than privacy 
Liveness - same as Ouroboros 

5.5 Tezos 

Tezos [48] is a decentralized blockchain that uses a proof-of-stake model for consensus. 
Consensus mechanism in Tezos does not have its own name. In this subchapter, we will call it 
Tezos as a consensus protocol name. 

Tezos algorithm uses „liquid proof of stake" LPoS, liquid democracy model. Model is based 
on direct and representative democracy, that floudly changes. Validators are called bakers and 
validation process is called baking - baking blocks. 

The liquid democracy is illustrated by Figure 7 1. At the beggining, people vote for other 
people directly. The influence of voting is based on the stake - number of own tokens. That voted 
people (delegated) can vote for other people by their own tokens and also by assigned tokens. 
If a person does not like their own voted delegate, then a person takes back own vote. 
The described process is also found in Delegated proof-of-stake DPoS. 

To become a baker (validator), a baker must hold at least a roll of tokens (roll corresponding 
to 10 000 tokens). Each block of the blockchain is baked by baker and signed by 32 other random 
bakers. If blockchain is successfully baked and signed, then the successful baker gets a reward. 

7 https://static.blockgeeks.com/wp-content/uploads/2019/04/image3.png 
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Liquid Democracy 

Figure 7: Liquid Democracy 

5.6 Protocols comparison 

This chapter is a summary of protocols comparison. Comparison is based on theoretical 
information, that is described above. Also, information is based on the papers cited in bibliography 
part of the paper, and the paper [49]. In some parts of table is cited short explanation why 
the protocol has those properties. 

The first table (Table 1) compares protocols in fundamental properties like throughput, 
security, etc..Second table (Table 2) is focused on vulnerability comparison, some information in 
that table is based only on theoretical information, because a vulnerability of protocols has not 
been practically confirmed. 
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Throughput Scalability Security Privacy Liveness Finality 

Casper 's Scalable 
But not mentioned how Based main on stake deposit — No liveness proof 

Algorand 1000 transactions/sec Very high Good - V R F Good - V R F About minute 
(with strong synchrony) Immediate 

Ouroboros 257 transactions/sec High Secure focused blockchain Not focused Multiple of slot's time 
(minutes) High, Ensured 

Ouroboros Praos Little better than Ouroboros Y E S 

Tezos 40 transactions/sec Low 

Table 1: Protocols properties comparison 



Casper's Algorand Ouroboros Ouroboros Praos Tezos 

51% vulnerability PoS benefit - higly secure against attack 
Easy to handle - economic finality Cannot resist 34% of adversarial control PoS benefit - secure against attack PoS benefit-higly secure again attack 

Double-spending Attack No mechanism to avoid that 
Ordinary PoS level vulnerability Avoid forks - avoid double-spending Possible butwith lower change than clasical bitcoin Lots of forks - but consequence? Defense 

Assumptions 
Requires a 2/3 graction of 

a deposited stake to be controlled by honest nodes 
No explicict claims about network 

Requires a 2/3 graction of 
a deposited stake to be controlled by honest nodes 

Network is synchronous 
Stakeholders do not remain offline for long period of time Network is synchronous . . . 

Time De-synchronization attack Immune but high influence to liveness If more than 50% parties get desynchronized our 
protocol can fail Susceptible to adesynchronization attack . . . . 

selfish mining No mining Own reward mechanins 
Selfish mining attacks are neutralized 

. . . 

Nothing-at-stake Possible but reduced: 
Detection the vialation - penalize melfeasant validator No defence 

No big defence 
But, no motivation for stakeholders 
no higher profits by joining the attack 

. . . 

Grinding attack . . . . . . . . Tossing protocol - is not possible Possible . . . 

Fake stake . . . . . . . . Secure against attack . . . 

Table 2: Protocols vulnerability comparison 



6 Design 
The goal of this thesis is a real comparison of proof-of-stake protocols, to evaluate cons and pros 
and propose possible improvements. For that purpose, a testbed will be created. This chapter wil l 
describe suggestion of atestbed's solution. The capter is divided into few separate parts. The first 
part is about basic testbed idea and base architecture. The second part of the chapter explains 
concrete suggestions of a solution. And, the third part mentions some used technologies and 
techniques. 

In the previous chapter, we compare protocols theoretically. On this basement, we will 
design a testbed. Its design mainly focuses on the creation of the simulator, which will make same 
conditions for each proof-of-stake protocol. Throughput, scalability, and security are primary 
properties that designed testbed is focused on. 

6.1 Design idea 

In the third chapter, we were talking about the stack model of blockchain technology. We will use 
this model for the basic design. The stack model consists of a few layers, from physical (network) 
layer to application layer. The layer of consensus protocols lay between them. For design 
purposes, we separated the stack model into 3 parts, by Figure 88. 

i jj 11 •] i 1 
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Figure 8: Stack model divisition 

8 https://www.researchgate.net/figure/An-ITS-Oriented-Blockchain-Model_fig4_332320425 
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First, the blue part in the illustration consists of layers under the consensus layer. These layers care 
about networking, communication nodes between themselves, encryption and so on. That layer 
ensures the foundations of the consensus layer. In the context of the testbed, the layer is 
dispensable for implementation. The second part is consensus layer, coloured red in 
the illustration. This part is the whole center of the implemented testbed. Last layers are above 
the consensus layer. These layers get some practical sense to the blockchain technology. 
These layers contain some specific cryptocurrencies algorithms, smart contract implementation, 
etc. In the highest layer of this part, we can found user's applications for blockchain technology 
using. 

As a part of application, we will create simulator to simulate bottom, blue, part of the stack 
model. In the real world, the blockchain technologies, especially blockchain technologies, which 
use proof-of-stake algorithms, communicate over the internet network. The internet is a huge, 
non-foreknow network. The internet is almost always illustrated like some network - cloud. 
Blockchain uses the internet network like a medium for communication, but the blockchain 
technology builds its own network topology above it. 

Proof-of-stake protocols use the blockchain network, which is built over internet network. 
Blockchain network is P2P (peer-to-peer) network. So, in the simulation does not necessary 
to simulate internet network, it is possible to simulate only P2P network. This decision leads 
to some cons and pros. The disadvantage of the decision is a loss of some connectivities with real 
world using. Simulation loses unexpected behaviour of internet network and delay in 
communication, especially in communication across geographically distant continents. 
On the other hand, a huge positive is that the testbeds will be more focused on the main topic -
consensus protocols. Internet simulation can add some unexpected and non-deterministic 
behaviour of implemented testbeds. 

Those informations above lead to implementation of only P2P. P2P network will be 
implemented as a simple TCP based network. The network will not pay attention to any of 
complicated parts like routers, switches, etc. A l l nodes will have their own connection to all other 
nodes. It is illustrated by Figure 99. 

The red part, is a layer of the consensus protocols. The layer implements some specific 
proof-of-stake protocols. We can assume, that every node in the P2P network is a participant of 
the blockchain network. So, basically, it is possible to implement the same proof-of-stake 
behaviour on each node. On this base, we can instantiate the same behaviour on every network 
node. 

9 https://cdn.steemitimages.com/DQinZAFtWv5imtESqJdab7kZiCycT5FMKutoda2y^ 
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Figure 9: Peer-to-Peer Network 

For the implementation of more proof-of-stake protocols in one simulator some procedure 
needs to be created. For the implementation of one protocol, it is possible to start specific design 
and programming right at the moment, because in paragraphs above, we demonstrated the basic 
way of implementation. But, testbed, dedicated to more protocols, needs to create a design for 
that. Layers of networking are solved, so we can focus only on the consensus layer design. 
The main idea is to separate common properties, implement them like the base of consensus layer. 
That creates basic interface for implementation of various proof-of-stake protocols. A simple idea 
is demonstrated, with selected protocols and using of network layer, in the Figure 10. 

The green part, does not need any design or implementation, because we focus 
on the results of consensus layer. Instead of that part (layer), we will create metrics, that will 
evaluate results of the testbed. Based on the evaluated results we can create comparison and 
design improvements of actual protocols. Specific metrics and way of evaluation are described 
in the chapter below. 

33 



Algorand instance Oil rob or os instance Casper instance 

Simulator core 
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Figure 10: Basic idea of the consensus layer design 

6.2 Network part design 

In the previous chapter, we indicated the way of the design of the network part of the blockchain 
stack. A l l things considered: Common idea is to build point-to-point network and simulate higher 
layers of the stack model above it. 

In the process of designing, we were looking for a framework or library that perfectly 
supports simulations of various types of network. On the other way, it will be enough, 
i f the library supports only IPv4 and mesh topology. Also, the list of requirements is a possibility 
to implement its own behaviour of each participant of the network. Frameworks fulfilling 
requirements are Mininet [50] and NS-3 simulator [29]. For the implementation of the testbeds, 
we decide to use the NS-3 simulator, especially for its bigger user group. The next reason why we 
use this framework, is that the NS-3 is used in the Bitcoin simulator mentioned in the chaper 3. 
So, the framework is verified for blockchain simulations. 

NS-3 is a discrete-event network simulator. NS-3 is a free software under G N U GPLv2 
licence. The simulator focuses on networking simulation. It supports simulation, from simple 
networking like point-to-point topology to complex topologies that can contain devices like 
switch, router, wifi AP, etc. A big advantage is that the simulator bases on the discrete event, 
which enables to run simulator in the simulation time, not in real time. 

The framework is a complex network simulator. It puts together small parts (layers) to final 
simulation. The framework is implemented like a connection network layer into functional unit. 
In the beginning, some implementations create a physical layer of network - nodes, topology. 
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Within next implementations, we create the next network layers that can use implementations 
from lower layers. On the last application layer, it forms applications to nodes. A l l these parts are 
implemented in the core of the simulator. A specific implementation of simulation only uses layers 
and connects them into functional unit. In the testbeds, we will use that procedure too, but in 
the end, we will implement our proof-of-stake specific applications for nodes of the network. 

NS-3 is implemented in the C++ programming language [51], but it provides API for 
python programming language. The API can be used only for simulations that uses already 
implement parts, devices, nodes in the core of framework. For own implementation of the testbeds 
we need to redefine behaviour of nodes, and this code is available only in C++ source code. 
So, the implementation of testbed will be written in the C++ programming language. 

As the physical design of topology, we decided to use bus topology. Decision is made with 
regard to NS-3 simulator. Implementation of more than 10 nodes in the mesh topology is quite 
complicated because every node needs x-1 ports where x is a count of nodes. Bus topology is 
almost the same as designed topology mesh. But in the bus topology does not exist a dedicated 
physical connection between two nodes. It is illustrated by Figure l l 1 0 . In the bus topology, every 
node has one port, that is connected to the common line. In the routing, bus topology does not 
change routing against mesh topology. Nodes can communicate directly with each other. 

a a a 
Figure 11: Bus topology 

For routing, we will use classical IPv4 stack. By using IPv4 stack, we will avoid 
any network-specific problems. Theoretically, the IPv4 stack is possible to observe millions of 
nodes, but practically, it depends on the simulator performance. In the design, we suppose 
simulation from a hundred to a few thousand nodes. 

10 https://Lbp.blogspot.com/DWD0m2Ag4Y/XQR9Fmqi5VI/AAAAAAAAACs/me70TxvwhHsuRAGF 

xLNe!i0brKPJTaiuwCLcBGAs/sl600/bus.png 
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6.3 Consensus part design 

For testbed, we choose protocols: Casper - the Friendly Ghost, Algorand, Ouroboros. 
The selection is based on the previous chapter. In the previous chapter, we describe proof-of-stake 
protocols and these three protocols are representative of different approaches of the proof-of-stake 
consensus. Also, protocols declare different behavior in various states. By this decision, we expect 
high differences in the comparison. It will highlight the positive and negative of its approach, and 
it will lead to the final recommendation of proof-of-stake protocol's design and implementation. 

In the Table 3 is a small repetition of three protocol properties and differences by chapters 
above. 

Casper (TFG) Algorand Ouroboros 

BFT based protocol 
Locked deposit 
Voluntary size of the deposit 
Not limited count of validators 
Scalable 

BFT based protocol - BA* 
Deposit = count of owner all tokens 
Limited count of validators 
Random selection of committee 
VRF function 
Very high scalability 
1000 transactions/sec 
Liveness - lower minutes 

FTS based protocol 
Deposit = count of owner all tokens 
Use PVSS flow 
Selection of validators - FTS 
257 transactions/sec 
High scalability 
Liveness - minutes 

Table 3: Differences of proof-of-stake protocols 

As it was defined already NS-3 simulator divides whole simulator implementation into 
layers. The simulator contains the application layer part, where consensus protocols are 
implemented. The implementation of proof-of-stake protocols can be divided into three parts: 
Data part of the blockchain implementation, common properties of proof-of-stake and blockchain, 
specific properties of the protocol. By the data part of blockchain is defined as the data stored 
in the blockchain - whole blockchain composite by blocks and transactions - blockchain database. 
The division is based on a pre-condition that the implementation of the data part of blockchain 
is almost same for all protocols. If that pre-condition will be broken during implementation, it is 
possible to implement the required feature into the data part of blockchain without any influence 
on other protocols, other protocols will not be using this feature. 

The data part of the blockchain is designed like classical blockchain structure. It is 
illustrated by Figure 12". In the context of selected C++ programing language, that the blockchain 
is designed like class that contains a vector of block class instances. 

Common properties will be implemented in the base class for specific proof-of-stake 
protocols. Common properties will contain regular transaction generation, receiving new blocks, 
receiving new transactions and other properties. Also, in the common properties will be calculated 
with every node's stake, every node will hold its stake. 

11 https:/^log.ttendmicro.com/wp-content/uploads/2018/03/blog-1024x349.png 
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Figure 12: Blockchain scheme 

6.4 Design of comparison - metrics 

The protocols' properties, defined in the chapter above, will be compared and researched. 
There are properties defined from another perspective. Properties are converted in the way, that 
allows them to express properties as a number. By that, it is possible to get a number result 
of specific protocols and it is able to compare them and visualize in tables or graphs. 

Throughput - is defined as a count of flowed blocks through network per defined time. 
In the testbed, we will be calculating the count of transaction per second. Throughput 
comparison of protocols will be based on the same network's pre-conditions. 
For example, the same network size, same count of network participants. 
As a pre-condition, it calculates the same behavior of network participants - count of 
honest/dishonest participants. The metric acquires a positive number from 0 to 
theoretically infinity. 
Scalability - Metric, that express scalability of the blockchain network, which is related to 
the throughput. It explores the influent size of the network (count of participants) 
to performance. In the scalability, it will not calculate with dishonest participants. 
By discovered relation throughput x scalability is defined scalability in this thesis. 
Security - In basic, there are defined 8 types of proof-of-stake attacks (chapter 3.1.3). 
We define the security of the protocol like count of attacks that the protocol is resisted 
against. The security metric acquires number on a scale 0 to 8, where 8 is the best result, 
protocol resists against all defined attacks. 
Privacy - Privacy defines i f data in blockchain are visible to all nodes or public. Privacy 
will not be the main goal of protocols comparison - of the practical part of the thesis 
(testbed). 
Failure-tolerance - It defines, that a protocol is resistant against breaking pre-condition 
to network part (layer). In the testbed, there was not defined numeric metrics that 
describes it. But a part of tests and comparisons will be fail-tolerance resistance testing. 
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Liveness - It was defined above (chapter 3.1.2). The liveness states as amount of time till 
generated transaction will be available for other network nodes. In that context, 
the testbed will compare the protocols. 
Safety - A research of safety in the testbed will be calculated like boolean value -
True/False. The value depends on the safety definition above (chapter 3.1.2). That means: 
i f protocol complies the definition, then the value is True else it is False. 
Finality - In the context of implemented testbeds, the finality is defined as time, after that 
the block is finally accepted, and there is no way how to change or delete block and its 
data from the blockchain database. 
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7 Implementation 

This chapter writes about the implementation of the testbed. The whole implementation process is 
divided into 3 parts. The first part is an implementation of the core of the testbed, we can call it 
a framework. The Second part is description of an implementation of two selected protocols12. 
The third part focuses on the validation of implemented testbed against the real protocol 
implementations. 

We will write about these three parts in this chapter, but before that, we will describe detail 
technical solutions by framework NS-3. 

7.1 Source code organization 

NS-3 simulator's implementation is structured into modules. Some of the modules are core 
modules for base simulator running. We can find there basic implementation like the simulation 
of the discrete time, logging, base network communication, etc. Other modules use or extends 
the functionality of base modules and create applications for specific purposes, like point-to-point 
communication, wifi network, etc. 

Each of these modules contains source code, that implements the functionality 
of the module. Moreover, almost every module has some runnable examples of using this module 
or runnable tests. Programators can inspire there because in examples are mostly main functions 
of module showed. One module can use the functionality of other modules. So, wifi module uses 
core modules, log modules, etc.. 

The way of implementation of our testbed into NS-3 is based on the module source code 
organization. The testbed is designed like one module of the NS-3 simulator. The testbed module 
is called „proof-of-stake-testbed". This module uses other modules for communication, logging, 
etc.. By that, the source code of the testbed stands alone. The source code is separated directly 
from NS-3 simulator. This also creates other benefits like a comfortable use of the version control 
system. 

12 We implemented only two types of protocols. The Casper implementation was above our planned 

programming capacity - Casper protocol was not implemented completely. 
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The module of the ns-3 simulator is organized as a directory. Our implemented module is 
based on the existing modules of NS-3 simulator. So, the module is designed and implemented 
in this directory structure, that is illustrated by Figure 13: 

docs - documentation folder. Contains document about testbed. 
model - main folder of the testbed functionality. We can find there almost all source code. 
The directory is divided into logical parts: 

3 core models - source code for testbed basement, called a framework. There are source 
codes of blockchain functionalities and basic applications for work with blockchain. 

3 Ouroboros models - extended core models and implemented Ouroboors protocol 
behaviour. 

3 Algorand models - extended core models and implemented Algorand protocol 
behaviour. 

3 Casper models - extended core models and implemented Casper protocol behaviour, 
helper - it is a directory that contains supportive source codes for models. We can find 
here network factories=blockchain factories. The directory is also divided into logical 
parts: 

3 Core helpers 
3 Ouroboros helpers 
3 Algorand helpers 
3 Casper helpers 
test - source code for tests 
utils - source code for independent functionality. Supports functions and other 
independent programs. 
examples - code of runnable examples of the testbed. The directory contains 
implemented applications that create field for comparative throughput, security, 
scalability, and other explored properties of protocols. 
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Figure 13: Module structure 
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7.2 Core models 

Code models are source codes that provide basic functionality of blockchain and provide 
the basement for implementation of specific proof-of-stake protocols. 

This list of models is logically divided into 3 parts: Blockchain simulation, proof-of-stake 
based application, helpers. 

In the blockchain simulation is necessary to implement the blockchain database. 
The blockchain database is implemented by OOP (Object-oriented programming). The base 
structure is shown here, Figure 14, in the class diagram. The structure is composed of three 
elements BlockChain, Block, and Transaction. 

Blockchain is the main element that will be created in every instance for each network 
node. Blockchain provides an interface for working with the whole blockchain database. 
Blockchain instance contains all blockchain blocks. Saving block into the database is implemented 
like a two-dimensional vector by C++. By that , it creates chain depencency of blocks and also 
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forks support. So, the database of blocks is NxN sized vector. The length of the vector expresses 
block dependence between each other and the height of the vector are forks of blockchain support. 

Block is an element created in every round of consensus protocol. Block is mainly created 
by validator(s). Block contains transactions added by validator(s). 

BlockChain 
+ GetTopBlockO^ "Block 

+ HasBlock( Block "block) 

+ AddBlock(Block 'block) 

+ GetTotalHeight(): int 

+ GetBlocksCount(f: in1 

o 

Block 
+ GetBlockHeiflht(): int 

+ GelBlDckSizeO: int 

+ IsBlockFullt): boDl 

+ AddTransaction(): Transaction 

+ GetTransactionsCJ: vector 

+ GetTransactionBySenderflnt senderld): vector 

+ GetTransactionByReceiver(int senderld): vector 

+ GetPreviousBlockO: 'Block 

Figure 14: Blockchain class diagram 

- o 

Transaction 
+ GetSenderldO: inl 

+ GetReceiverldC): int 

In the design chapter, we introduced a structure of the organization NS-3 applications. 
For the reminder, application is a program running on the network node. In the TCP/IP stack 
model, the application is on the top level - client application. 

Application of proof-of-stake is an application that extends the clasical NS-3 application. 
It creates an abstract class that provides basic functionality for proof-of-stake protocols' 
simulation. Generalized functionality of proof-of-stake protocols si implemented there. 
By the abstract application, it creates protocol's specific application for Algorand, Ouroboros, 
and others proof-of-stake protocols. The abstract application ensures basic operations with 
blockchain. For example, the abstract application ensures receiving new transactions. But, the 
abstract application does not ensure protocol-specific behaviour, like voting for the leader in 
Ouroboros protocol. 

List of properties that provide abstract application: 
Receives messages - receives messages and resolves a type of message. 
Receives transactions - process after receiving transaction. 
Generation of transaction - random generation of new transactions. 
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The abstract application implements only receiving a message and resolving a type of this 
message. If the abstract application does not know the type of message, then abstract application 
lets parse message by specific protocol application. 

One type of messages that abstract application parse, is a transaction message type. 
The transaction is received, saved in the node and broadcasted to other know nodes. 

The abstract application provides a generation of transactions. The generation 
of transactions is based on random generation. The generated transaction is sent broadcastly. 
Actually, it is possible to set up the frequency of generation in two ways. It is possible to generate 
transaction with frequency by classical random C++ function or by Possion distribution. 
Both ways of generation support setting main parameters in the config file. For random function, 
it is possible to set up the maximal time of two generated transaction delay. For Poisson 
distribution, it is possible tu setup mean value. 

Core helpers. The implementation creates one main element that lightens 
the implementation of the client's applications. If we think of ordinary proof-of-stake programs, 
then the program has to solve lots of complicated things. Especially, things relate to 
a decentralized way of communication. The way how to lighten the implementation is the creation 
of the main element. 

As a solution, we implemented the „helper". Helper is one instance of the class, singleton. 
Every application (node) in the testbed has its own access to this helper, ilustrated in Figure 15. 
Helper is independent of implementation of applications. Helper provides only interface 
for questions, tasks, which can be complicated implemented in the node. Helper supervises 
consistency. For example, we can demonstrate the function of helper on the node question, „How 
many coins has node number 5?". In a decentralized way, it is a quite complicated question. Node 
has to go through its local blockchain copy and calculate node stack. Also, the node has to deal 
with some problems with the synchronization. But, i f the node has access to the helper, it asks 
the helper. Helper stores this data locally and returns answer clearly, without any synchronization 
problems, because the helper provides the same data for every node - singleton. 

Helper (singleton) 

Node 1 Node 2 Node N 

Figure 15: Helper structure 
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7.3 Communication model 

7.3.1 Messages 

NS-3 simulator supports the communication between nodes byclassical string messages. But, 
for our communication, we need to transfer more structured data, like sending new transactions, 
blocks, parts of blockchain, and others. 

For sending structured data like the text we decided to use JSON format. The decision of 
using JSON format was based on the property, that JSON is human-readable. 

The base structure of JSON is: 

{ 
t y p e : 12, 

timestamp: 1588490943, 

o t h e r _ d a t a 

} 
Code 2: JSON message structure 

Every message contains two required fields - type, timestamp. The type field demonstrates 
a type of the message. Type is an integer. By the value of type field, we can sort message. 
The second parameter is a timestamp. The value of the timestamp field is a classical Unix 
timestamp. The field contains a value of message created time. Also, a message has another 
specific fields. Other fields depend on the type of message. 

JSON is a string with a special syntax. It can be created like a classical string without 
any support of programming language. But, creating and updating JSON as a plain string is quite 
complicated and uncomfortable. For better programmmer comfort, it is preferable to use 
some library that is supplied by the user (programmer) friendly interface to work with JSON. 

For this testbeds and simulator was chosen library RapidJSON [52]. RapidJSON is 
a parser/generator of JSON for the C++ programming language. NS-3 supports adding libraries 
to source code of simulator. So, RapidJSON library was added to the simulator in accordance with 
NS-3 documentation. 

In the source code, every JSON serializable and JSON deserializable message (transaction, 
block,...) implements two methods. Methods ToJSON and FromJSON. Method ToJSON, creates 
rapidjson document instance with filled data. Rapidjson document instance can convert 
to the string. Method FromJSON is a static method. It receives rapidjson document as a parameter 
and returns the instance of the deserialized object. 
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7.3.2 Network 

In the design chapter, we designed bus topology network. This type of network is suitable for 
tuning the implementation of consensus protocols. Also, this type of network is suitable for small 
or specific consensus protocol tests. This is because the bus topology network is characterized 
by straight and expected behaviour, without any network complications, because every node of 
the network can contact other nodes directly. 

But this bus topology network is not suitable for more complex simulations of blockchain 
technology. Bus topology network absences some type of unexpected behaviour across 
the network communication. 

As more complex network topology we introduce two network topologies - in the Figure 16 
and Figure 17 u . 

The first network is compound by N local networks. The local network contains M nodes. 
The implemented network supports 254 nodes on each local network, but practically, we use local 
networks with size about 8 nodes. Local networks are connected together by one node of each 
local network. This creates the whole network topology. Edge nodes, that connect local networks 
together, are critical nodes. We can investigate behavior of network without the proper function 
of these nodes. Network addressing is based on the IPv4. Address space is 192.168.0.0 with mask 
255.255.255.0. That means, we can create 254 networks, and every sub-network with 254 nodes. 
So, theoretically we can create and run 64 516 nodes. Practically, that count is a little bit lower, 
because some nodes are not only in one network. However, as a precondition for the testbed, 
the count of possible nodes is sufficient. 

The second network type is compound by N nodes. Each node has a connection to 
another X random node. To be exact, X = 8. This type of network is called a distributed network. 
Address space is 192.168.0.0 with mask 255.255.0.0. It is possible to create anodes by that, 
where N=64516/X. The Network is resistant against the fail of nodes. This type of network is 
highly used in the blockchain simulations. 

13 https://neuvorkcultmes.org/unlikeus/resources/articles/what-is-a-federated-neuvork/ 
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Figure 17: Network version 3 - distributed network 
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7.4 Ouroboros implementation 

7.4.1 Implementation 

For ouroboros implementation into testbeds, it needs to follow three steps. Ouroboros application 
creation, Ouroboros helper creation, extension types of messages. 

Ouroboros consensus protocol is compound by four protocol steps (described in the 
chapter 5). Commitment phase, Reveal phase, Recovery phase, and Follow the satoshi phase. 
A l l these phases (steps) are implemented into the Ouroboros simulation. But, some parts 
of implementation are lightened against the original implementation of the protocol. A l l changes 
of lightweights are described below. Things that were lightweights have no, or only minimal 
impact to the results. Reasons why these things have no impact are described below too. 

In the commitment phase, the node creates a secret, encrypts it, and broadcasts it to other 
nodes. In our implementation, the generation of secret does by a random function. So the secret is 
a pseudo-random integer. When other nodes receive the secret, nodes save it and broadcast it 
to other nodes. By that, the secret spreads over the whole network. A l l nodes save that secret. 
The secret will be used in future phases. Especially in the fourth phase for the FTS algorithm. 
In original code, the secret is encrypted by RSA. In our implementation, the secret is not 
encrypted and it is plain-text broadcasted. That is the main part of lightweight, with no impact 
on results. In the testbed, we focus primarily on the consensus protocols properties and 
vulnerabilities, but we do not focus any other types of vulnerabilities. In this thing, we did not 
focus on the vulnerabilities that are caused by non-encrypted data, that go through the network. 

Second, revealed phase is left out in our implementation, because in our implementation 
secrets are not encrypted. Also, third phase is lighweighted, because we can consider the same 
precondition as mentioned in the paragraphs before - encryption by RSA. This point can has some 
minimal impact on network load and we have to think about it in future simulations. 

The fourth phase is a phase, where Follow the satoshi algorithm is used. In our 
implementation, Follow the satoshi algorithm is lightened. For lightening the FTS 
implementation, it uses the services of global helper (described above). Helper generates a leader 
of the slot by pseudo random and by a selection of one coin (Lovelace). Owner of this coin 
becomes a leader for slot. Helper in basic implementation generates only one leader for one slot. 
Helper saves that the leader of slot is this node. So, when another node wants to know, who is 
the leader of some slot, then helper returns that value from its internal memory. 
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7.4.2 Evaluation 

Here, we evaluate the proper implementation of the Ouroboros protocol. We will evaluate protocol 
implementation as a blackbox. We choose a few main properties, and then, these properties will be 
compared - Ouroboros paper definition with our Ouroboros implementation. As main properties 
of the Ouroboros protocol implementation we choose: 

Ouroboros needs a synchronization. 
Ouroboros can create blockchain forks. 
Ouroboros uses FTS (Follow the satoshi) algorithm. 

Synchronization - In the first phase, we ran protocol with the synchronized state. 
The protocol testing was running a few times with different protocol's setting and we were 
observing, i f the protocol's behavior is proper - protocol works in loops and in each loop a block 
is created. Finally, in every executed test, the protocol produces a block in every loop, and all 
nodes cooperated on the consensus. 

In the second phase, we ran a protocol with broken synchronized state. We broke 
assumptions only on some nodes. We had been observing, i f the protocol will be able to work 
without synchronization assumption and how the protocol reacts to that. Finally, the protocol was 
able to run only partially. It creates, especially on the broken nodes, „strange" blocks (blocks 
that do not fit to the global blockchain database). 

Fork - In the first phase, we ran the protocol with only one leader per loop and we 
observed, i f protocol creates some fork. The protocol in this configuration should not create 
any fork during testing. Finally, the protocol in this configuration did not create blockchain forks. 

In the second phase, we ran a protocol, and, for every loop we selected more leaders with 
different voting opinions. We expected that blockchain creates some forks. The number of forks 
during blockchain history should be equal to a number of different voting opinions. Finally, 
the protocol created a number of forks that were equal to the number of opinions. 

Follow the satoshi - Ouroboros practically uses the FTS algorithm. However, in our 
implementation of the Ouroboros, Ouroboros does not use the FTS algorithm. In our 
implementation, for the leader's selection was not used pure original FTS, but for selection of the 
leader we used a centralized helper element, that simulates the FTS algorithm. We compared FTS 
with our solutions by blackbox approach. We supposed, that the FTS does not need any 
communication. It needs only a seed as an input and as an output the FTS produces the leader of 
the loop. Our central solution has the same input and output of leader selection. We established 
a solution of the FTS as resolved, based on this idea. 
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7.5 Algorand implementation 

7.5.1 Implementaion 

The process of the Algorand node is an asynchronous process with few steps. Steps are: 

1) block proposal 
2) soft vote 
3) certify vote 

Algorand's functionality is based on the two concepts, Variable Random Function, 
and Participant Keys. The implementation of these two concepts is discussed below. 

On the white paper, we can find out, that the Algorand process is defined as more accounts 
on one node. In our implementaion, we neglect this and we create only one account in one node. 

Implementation of Algorand extends simulator basement - application extension, helper 
extension, message types extension with Algorand specific messages. 

Algorand helper extends the base helper that proposes the function of node stack 
manipulation. Algorand helper uses this function and on that function, it creates support for V R F 
simulation. That means, V R F is not implemented in the applications but V R F is simulated 
by a centralized way. Helper creates committee members, that are originally based on the VRF, 
and propose them to applications (nodes). This approach provides central control over committee 
members creation and we can easily manipulate with them. Central control has no impact 
on nodes decentralization. The central element is used for more comfortable simulations 
of various scenarios. 

Algorand application extends the basic application. Application implements all three steps 
of Algorand process - block proposal, soft vote, certify vote. The application proposes new block, 
but not every application does it. Application, that proposes a new blocks, is based 
on the Algorand helper and its simulation of VRF. 

The next two steps, soft and certify vote steps, are also based on the helper decisions. 
After the successful process of voting, all applications are able to add proposed blocks 
to blockchain. Algorand protocol contains some other phases, for example, recovery phase. These 
phases are not implemented in our testbed. Testbed contains only the main part of Algorand 
process. 
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7.5.2 Evaluation 

In this chapter, we describe an evaluation of the proper Algorand implementation. For evaluation, 
we choose the main properties of the protocol. These properties are based on the Algorand paper: 

Algorand uses BFT* protocols 
Algorand is an asynchronous protocol 
In the Algorand it is almost impossible to create blockchain forks 
Algorand is composed of phases - block proposal, soft vote, certify vote 
Algorand uses V R F function 

Asynchronization - Defined Algorand protocol is an asynchronous protocol. Each node 
of the network has not been in synchronization with other nodes. 

To test this property we made two tests. The first test worked in a synchronous state and the 
second test worked asynchronously. Results should be the same, because the Algorand supports 
an asynchronization communication. After the run, we compare results of those two tests, already 
mentioned. The results were almost the same, there were only little differences, that had no direct 
influence on the global blockchain. Finally, the evaluation of asynchronous state was successful. 

Phases and BFT* - Algorand protocol is composed of three main phases, that implement 
partially BFT protocol. Our implementation of the Algorand protocol is also made of those main 
phases. Phases are implemented separately to support the protocol asynchronization property. 
Each node starts phases individually by its clocks, and each node reacts individually to phases by 
received messages. 

Forks - We tested different settings of protocol, different committee sizes, different network 
sizes, etc (chapter 8). Implemented protocol during tests had no tendency to create blockchain 
forks. So, this point of main Algorand properties was accomplished. 

VRF - Algorand uses for committee selection the V R F algorithm. V R F function generates 
a secret without any communication among the users (nodes). V R F is running by node and by that 
the node knows i f it will be a part of the committee. In our implementation, the V R F is replaced 
by a solution with a centralized approach. The principle is almost the same as the solution of FTS 
in other implemented protocols (for example - Ouroboros - chapter 7.4.2). For the selection of the 
committee, the implemented Algorand protocol uses centralized helper element. V R F function 
does not need any communication for its calculation. The helper does not need it as well. Helper 
and calculation of pseudo-VRF may be described by pattern Singleton. There exists only one 
helper instance that provides the calculation of V R F and it has control over the nodes calculations. 
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8 Tesbed results 
This chapter contains the results of the testbeds. Subchapters are divided by logic. The first 
subchapter writes about testbed setting, used HW, and simulator basic properties for using. The 
second subchapter focuses on the simulations on the network part of the simulator. And the last 
subchapter describes simulations of Ouroboros and Algorand protocols. In each part, there is 
a discussion that discusses protocols' advantages based on the observation. 

Results of simulation are often illustrated in the graphs. Graphs can be in some cases is hard 
to read in detail, so in the appendix, you can found results in tables. 

8.1 Simulator description 

For simulations, we primarily use a laptop with configuration: Intel Core i5-7200 2,5Ghz, 32GB 
R A M . This laptop was powerful enough for simulations that are described below. But for 
advanced simulation, we suppose to use more powerful HW, especially for the lower time 
of the simulation. 

During the simulation, the simulator was able to simulate less than 1500 nodes effectively. 
More nodes led to too higher H W requirements. When we simulated the biggest network of all 
simulations, the simulator used about 10 GB of the R A M memory and one real second processed 
1/78,2 of simulation's second. 

We observed simulator behavior and requirements through all performed simulations, and 
here are properties of the simulator from the user's point of view: 

One simulation is able to run on only one C P U core - one run simulation uses for its 
running only one CPU core. The simulator NS-3 does not support parallelization. 
It restricts using simulator a little, because parallelization can lead to faster simulations. 
But in a practical way, we can run more simulations separately at the same time and create 
parallelization manually. 
RAM consumption - simulations with bigger networks (1000+ nodes) need quite a lot of 
R A M memory, especially i f a decentralized network is used in the simulation. During 
the testing, we found out, that for simulation of 1000 nodes the simulator needs approx 
8-16GB. The number depends on the protocol setting. 
Average real-time vs. simulation time - We observed that the average proportion 
between real-time vs. simulation time is about 1/32.3 on the network with 512 nodes. 
It means - one simulated second takes 32.3 seconds in real-time. 

51 



8.2 Network part simulations 

Before simulations of specific proof-of-stake protocols, we had simulated behaviour 
of the network part of the simulator. In the simulations, we observed the behaviour of network, 
especially when we have changed network size or when we have selected some nodes and have 
turned them off - simulation of fail state. 

Observing of the network was based on the number - number of hops. This number is 
defined as a number of nodes that message goes through, until it reaches the end of its journey. 
This number was observed on the broadcast sending. In the simulation, we observed every 
message that goes through system and we noted maximal number of hops and the average number 
of hops. Then, we used that number in graphs. 

Next two graphs show us behaviour of decentralized network: 
Graph 1 (Table 4) illustrates the relation between network size and number of hops. 
We can see that relation between network size and number of hops is linear. 
Graph 2 (Table 5) illustrates the relation between the number of failed nodes vs. number 
of hops. For simulation we use network with 128 nodes. We can see that the decentralized 
network is resistant against the failed nodes. The critical point is around 65% of nodes that 
failed. On the scale 0% - 50% failed nodes, the network does not indicate any influence of 
that behaviour. 50% - 70% indicate that the network is fragmented, but it is still operable. 
If in the network is more than 70% failed nodes, than the network is unusable because, 
the network is fragmented into a small parts, that are not connected to each other. That is 
a reason why the result show a very low number - number of hops. 
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Graph 1: Network size x hops number 
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Graph 2: Count of failed node x hops number 

On the results of network layer simulations, we can claim that the network part has a low 
influence on the consensus layer. Mainly, because the distributed network is in the design part 
based on the low predisposition to the error states. So, the next simulations have not to consider 
any influence of the network layer. 

8.3 Throughput comparison 

We ran simulations - their goal was to compare Ouroboros and Algorand protocol, 
by the perfomance (throughput) side. Simulations simulated basic processes in the network and 
we observed the throughput of individual protocols. In the network there were not any attacks, 
breaking assumptions, nodes fails, etc. Network consist of the 128 nodes. During the simulations 
we observed setting of protocols and its influence to the performance. 

We found out, that performance of protocol is highly dependent on the protocol setting. 
We can explain it on the block size parameter, which has one of the most influential 
to the protocol's performance. As a result we created graph 3 (Table 6), that visualize this 
influence. We can see that the dependency between block size and performance is almost linear, 
especially in the lower numbers of the block size. 
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Almost same behaviour we observed when we changed any of protocols settings. 
For example, when we change slot size in the Ouroboros protocol, then it has the almost same 
influence on the performance results. When we set slot number lower, it leads to higher 
performance, because protocol, as the whole unit, generates blocks in higher frequency. 

The result mentioned above may lead to the edge of the setting of individual protocols, 
where all parameters of the protocol setting will be set for higher performance. But, this way 
of protocol setting can probably cause attack issues and vulnerabilities. So, the implementators 
of protocol have to test the protocol and choose the right combination and balancing 
of the protocol setting. 

It leads us to the recommendation for all proof-of-stake protocols. Implementators should 
invest in protocol setting testing. By optimization of protocol setting, they can significantly 
improve protocol throughput. 
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8.4 Scalability comparison 

Simulation for comparison the scalability of the protocols, we observed by the change 
of throughput (performance) and change of the network load. We observed change of network 
performance (transactions/sec) and the changed count of messages, which go through the network 
when we increase the number on nodes in the network. Based on these results we made other 
ideas in the scalability issues. During simulation protocols were configured to classical setting 
(defined in its papers) and block size of 800 transactions. 
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The change of network load was observed on two metrics. The first metric is a count 
of messages that nodes send into the network. The second metric is a count of messages that all 
nodes received together. The number of received messages should be the same or higher 
than the number of sent messages. Especially, in this type of network, where the broadcast is used 
quite often. By observing two parameters we can indicate the trend of changing network load. 
On the trend, we can build next speculation and comparison of protocols. 

In the graphs, we show results based on the network load. Graph 4 (Table 7) represents 
the results of the Algorand protocol and the second, Graph 5 (Table 8) represents results 
of the Ouroboros protocol. 

We can see almost the same trend in both protocols. Same trend with unexpected behaviour 
in the last measurement. This unexpected behaviour is based on a bigger change of transaction 
generation, because simulation was not able to simulate 512 nodes with top-level number 
of transaction generation. So, for our next conclusions, we will ignore the last measurrment 
because it is irrelevant. 

At first, we can say that the Ouroboros and Algorand have almost the same behaviour 
in the scalability property. But by closer look, we can see that Algorand has more scalability issues 
than Ouroboros. That is because on the top result, Algorand generates about 5% more messages 
than Ouroboros and Algorand's nodes receive 5% more messages than Ouboros' nodes. We can 
tell that 5% is not a big number. But, we have to consider that 50% of network traffic is 
the generation of new transactions made by random nodes. 
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Graph 4: Algorand scalability 
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So, based on the network load, we concluded, that Algorand is a little bit worse 
in the scalability property than Ouroboros. We can assign that property to leaders group creation 
and voting in that group with compare to FTS protocol. But, that was only one comparison 
of scalability. Let's look at a comparison based on the performance. 
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Graph 5: Ouroboros scalability 

The next step is a comparison by throughput. We observe the throughput of protocols. 
This comparison has the same setting as the previous comparison. So, at the last measurement, 
we can see the unexpected result explained above. 

Graph 6 (Table 9) illustrate the results of observing both protocols with vary network sizes. 
Again, we can see the almost same trend in each protocol result. Based on the results, we can 
divide results into two groups. 

The first group consists of results that are identify by lower network size. We can see 
that the Algorand has better results and performance against the Ouroboros protocol. We attached 
this result to Algorand straight behaviour and straight goal - to create and to finalize blockchain 
block. 

In the second group, there are results that show Ouroboros higher throughput in comparison 
to Algorand protocol. Algorand has lower throughput, because of creating and using the BFT 
committee. Throughput is lower by about 20%. 
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Graph 6: Protocols scalability 

A l l things considered, in our testbed, the Ouroboros has better results for scalability issues. 
But, we have to mention, that the results were based on the basic network without any network 
complications, attacks, forks of blockchain, and others. So, via this result we can express, 
that the Ouroboros is better for pure network and its scalability. This is base on the simplest way 
of block voting. On the other hand, Ourobors has some problems in practical networks, 
the Algorand can be much better. It is caused by more by Algorand's more sophisticated way 
of block creating. 

On that result based, we can create a recommendation or we propose improvement. 
We have to look at recommendations (improvement) from a scalability perspective. Proof-of-stake 
protocols that use the FTS algorithm for leader selection are more suitable for bigger networks and 
primarily for networks that generate forks exceptionally. On the other hand, protocols based 
on the BFT algorithm are more suitable for smaller networks with more potential forks. 

8.5 Algorand specific tests 

One of the important parameters of the Algorand protocol is committee size. The simulator 
enables to change committee size. The committee size in the simulator is generated by Poisson 
distribution and the config file of the simulator enables to set Mean value of it. 

We did simulations of different committee size. Simulations were based on the network size 
consists of 128 nodes and blocks with 800 transactions. During simulations, we observed 
the impact of that changes to throughput and network traffic. The results of the observation were 
written into graphs 7 and 8 (Table 10). 
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Graph 7: Algorand: change of commitee size 

The first result shows i f we increase committee size then the network traffic increase. 
The increase of network communication can affect network throughput. The real impact of that to 
throughput is discussed in the next paragraphs. The best size of the committee, graph-based, 
is about number 10. The higher committee leads to higher network traffic, also very low 
committee size leads to higher network traffic and it can also lead to some vulnerabilities. 

The second graph 8 shows the influence of committee size to the protocol's throughput. 
In the graph is the dependency of the count of transactions that go through the network during 
simulation and committee size. We can see that the better result is about 30 committee size. 
On the other side, results are almost the same, because results difference is low. Also, we have to 
think about the random generation of transactions. Summary, the committee size has no direct 
impact, or only very low, to protocol's throughput (we talk about non-extreme committee size). 
But committee size has a direct impact on other properties of the protocol, for example, security. 
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Finally, on the results, we can create a conclusion that the best committee size about 
20 nodes. This number is based on our results. For future use of this committee size, it has to be 
verified by the next simulations - different network sizes, simulation of attacks, and others to 
prove this number. 

8.6 Results conclusion 

We observed proof-of-stake protocols behaviour. The behaviour of Algorand and Ouroboros 
protocols. During observing we focused on the performance, throughput, and scalability 
of the protocols. Here we discuss suggestions testbed's results-based to improve proof-of-stake 
protocols. 

In some simulations and their results, we can see that the performance is highly dependent 
on the protocol setting. It leads to, that imlementators of the protocol should, go through lots of 
different settings of their protocol and they should try to find out the best setting. The setting can 
be and should be, different for different types of used protocol. It should be different for different 
of the used network layer, different lower layers, different network size. By that approach, 
implementators of protocol reach better performance without any restrictions of security or 
scalability. A l l that is based on the idea which says, all observed protocols have almost the same 
graph trend in the basic use. 

Simulations that focuses on the scalability of simulated protocols get us some ideas to 
improve actual proof-of-stake protocols. By simulations and its results, we can assume that better 
scalability is reached by protocol with lower communication between nodes and algorithm FTS. 
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In this testbed, the representant is the Ouroboros protocol. Mainly, it is reached by lower network 
load and higher throughput of the network. Here we can suggest the idea that for better scalability 
is better to design and use protocol with lower communication load, especially which do not use 
broadcast communication. 

In the Algorand protocol, we inspected committee size and its influence to protocols 
throughput. Tests with committee size were executed by the network with 128 nodes. During 
inspecting, we discovered that the best committee size is 20 nodes. This number was almost same 
for the network with double network size. On the smaller networks - on the testbed results, we can 
claim, that the best committee size in the Algorand is about 20 nodes. 

Summary of all results can lead to that the Ouroboros protocol is better than the Algorand 
protocol. But, in real application, it may or may not be true. The testbed focuses mainly 
on simulations that do not work with any type of attack or breaking of assumptions 
of the protocol. Maybe, on the „attacker" type of simulation, the Algorand will be much better 
than the Ouroboros protocol. The reasons are mentioned in chapter 5. Briefly, Algorand focus 
to high finality and blockchain without forks. So, as summary of testbed's results, we focused 
on the part of proof-of-stake protocols behaviour. We came with some suggestions 
to improvement of actual protocols, but for design a new „better" protocol, that will be based 
on the result of this testbed, it needs to do more broad simulations than was done in this thesis. 
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9 Conclusion and future directions 

This diploma thesis writes about proof-of-stake type of consensus in the blockchain technology. 
This thesis describes proof-of-stake protocols and compares them. For comparison, the thesis 
represents the creation process of the testbed that is followed by observing the testbed's results. 
Stand on the results, the thesis suggests improvements of proof-of-stake protocols. 

At the beginning of the thesis, we introduced the main types of consensus, containing 
proof-of-stake consensus as well. Every protocol's characterization of the consensus approach 
described the main purpose of usage, also, pros and cons of this approach. Chapter 3 introduced 
the existing testbeds. It described, what the testbed is, also, it wrote about existing testbeds and 
simulations in the consensus of blockchain, especially in the proof-of-work and proof-of-stake 
approach. 

Chapter 5 of the thesis wrote about the specific implementation of the proof-of-stake 
consensus approach. As main specific proof-of-stake protocols were chosen Algorand, Ouroboros, 
Ouroboros Praos, Casper FFG, Casper TFG, and Tezos. Our choice was based on the different 
approaches to the proof-of-stake consensus. We introduced the main properties of these 
proof-of-stake protocols in this part, and by them, we compared these protocols. As observed 
properties we added a description of possible attacks, that was used also for the comparison 
of the protocols. These protocols were described precisely and compared. As the result 
of the chapter we created tables that visualized the results of comparison theoretically based. 

In the third section (chapters 6 and 7), we designed a testbed for proof-of-stake protocols 
comparison, based on the theory, which was introduced in the previous part. We presented our 
idea of testbed creation, that during designing gets exact properties. The section contains also 
a description of the testbed implementation. As an output of the section, we designed and 
implemented the testbed. There are described some details of solutions that were used for testbed 
implementation. After the implemented testbed part comes the fourth part of the thesis, which is 
testing and observing testbed results. 

Chapter 8 of the thesis wrote about testbed results. During the testing, we observed and 
compared two proof-of-stake protocols, Algorand and Ouroboros. Casper protocol was 
implemented partially. Unfortunately, the Casper implementation was above our planned 
programming capacity. Casper and Algorand use BFT algorithm, and the goal of the thesis is 
to compare substantially different protocols. Thus, this decision did not significantly affect results 
of the work. The chapter showed results pictured mainly in graphs. A l l results are described. 
The type of used configuration is explained and, last, but not least, how results reflected 
in practical life. By the results, we are able to suggest some behaviour and possible improvements 
in actual proof-of-stake protocols. 

The goal of work was to implement testbed that compares a few existing proof-of-stake 
consensus protocols and, based on that, to be able to suggest improvements of these protocols. 
Despite some implementation problems, such as complication of proof-of-stake protocol 
implementations, we theoretically compared 3 protocols, however, we implemented 2 protocols 
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fully. The thesis and testbed laid the groundwork for proof-of-stake protocols comparison. 
It compared the main proof-of-stake approaches between each other by its papers and definitions. 
By designing and implementation, the thesis and implemented simulator showed the way how 
proof-of-stake protocols can be practically evaluated and compared. By the combination 
of theoretical research and testbed simulations, the thesis suggested improvements of actual 
proof-of-stake protocols. 

The simulator showed a good groundwork for the proof-of-stake simulations. 
Implementators can verify their conclusions. So, in the future, we would like to extend the number 
of implemented proof-of-stake protocols in the testbed. And we want to extend the number 
of implemented types of simulations. By these two points, we can suggest the next new 
improvements or we can design a new proof-of-stake protocol, that will be based 
on the combination of the best-observed properties from all protocols. 
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Appendix A 

Contents of the included storage media 
This thesis - dp.pdf 
Source code14 - directory src 
Demonstration video with subtitles - demo _algorand.mp4 + demo algorand.srt 

14 Available at: https://github.com/honza66/proof-of-stake-testbed 
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Appendix B 

Results tables 

Network s ize (nodes count) Max. - number of hops Average - number of hops 

8 2 1,15 

16 2 1,35 

32 4 1,68 

64 8 3,42 

128 16 7,76 

256 32 14,6 

512 64 31,25 

1024 128 48,5 

Table 4: Network size x hops number 

Percentage of failed nodes Max. Message hops Average message hops 

0 % 16 8,17 

1 0 % 16 8,15 

2 0 % 17 8,6 

3 0 % 17 8,82 

4 0 % 19 8,94 

5 0 % 19 9,15 

6 0 % 24 11,57 

7 0 % 24 11,62 

8 0 % 2 1,46 

Table 5: Count of failed nodex x hops number 
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Block size (trans, count) Algorand (trans/sec) Ouroboros (trans/sec) 

100 19,27 24,1 

200 38,55 48,1 

300 57,33 71,98 

400 76,69 95,89 

500 98,3 119,65 

600 113,38 125,6 

700 131,52 140,56 

800 145,21 161,53 

900 167,8 173,62 

1000 182,12 225,6 

Table 6: Algorand and Ouroboros performance (block size dependecy) 

Network size (nodes count) Sent messages count Received messages count 

32 183197 2518812 

64 712294 10595320 

128 2830499 43694208 

256 11333823 178149425 

512 4854145 768849425 

Table 7: Algorand scalability 

Network size (nodes count) Sent messages count Received messages count 
32 180313 2478983 
64 700110 10413281 
128 2775769 42849968 
256 11037961 173499911 
512 4847482 76876649 

Table 8: Ouroboros scalability 
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Network s ize (nodes count) Ouroboros Algorand 

32 110,5 61,89 

64 123,86 122,63 

128 192,77 154,21 

256 195,37 155,1 

512 150,81 97,81 

Table 9: Protocols scalability 

Committee s ize Sent messages count Received messages count Transactions count 

4 461158 7118977 2537 

8 391075 6037088 2539 

12 393890 6080579 2540 

16 412413 6366591 2545 

20 427545 6599971 2544 

24 446036 6885431 2550 

28 459671 7096083 2548 

32 480777 7421841 2554 

36 482996 7456032 2558 

40 511713 7899301 2548 

44 518720 8007622 2540 

48 525958 8119121 2539 

52 558104 8615451 2543 

56 582226 8987726 2534 

60 586988 9061458 2538 

Table 10: Algorand committee size 
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