

Czech	University	of	Life	Sciences	Prague	
	

Faculty	of	Economics	and	Management	
	

Department	of	Information	Engineering	
	
	

	
	
	
	

Diploma	Thesis	
	

Modern	scalable	distributed		
cloud	native	applications	

	
	

Bc.	Ondřej	Svojše	
	
	

	
	

©	2021	CULS	Prague	

	

	
	

	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	

	
Declaration	

	
I	declare	 that	 I	have	worked	on	my	diploma	 thesis	 titled	"Modern	scalable	distributed	
cloud	native	applications"	by	myself	and	I	have	used	only	the	sources	mentioned	at	the	
end	of	the	thesis.	As	the	author	of	the	diploma	thesis,	I	declare	that	the	thesis	does	not	
break	copyrights	of	any	their	person.	

		
	

In	Prague	on	20.	3.	2021																																															___________________________	
		
		

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
.	
	
Acknowledgement	
	
I	would	like	to	thank	associate	professor	Vojtěch	Merunka	PhD.	for	advices	with	tackling	
the	 topic	 and	 also	 to	my	 colleagues	 from	Avast	 Software	 for	 consulting	 the	 topic	 and	
teaching	me.	

Modern	scalable	distributed	cloud	native	applications	
	

	
Abstract	
	
In	the	thesis	there	is	examined	the	state	of	modern	public	cloud	platforms	and	the	services	
offered	that	enable	them	to	operate	highly	scalable	applications	with	lower	costs.	First	
part	is	focused	on	technology	and	cloud	services.	The	way	they	shape	current	cloud	native	
application	development	and	the	platform	they	provide	for	developers	to	build	reliable	
and	resilient	solutions.	Looking	further	there	is	examined	elements	of	how	technologies	
such	as	containers	or	orchestrators	affect	application	architecture,	exploring	the	benefits	
and	challenges	introduced	with	this	new	way	of	doing	things.		
	
In	the	following	part	there	is	quantitative	analysis	of	a	developers	survey	conducted	in	a	
large	Czech	software	company	on	topic.	The	aim	of	it	is	to	find	out	the	views	developers	
have	on	learning	new	technologies,	public	cloud	and	key	factors	and	requirements	they	
view	for	delivering	good	SaaS	product	at	scale.		
	
Next	step	is	exploring	the	platform	of	a	large	cloud	infrastructure	provider.	Based	on	ideas	
and	patterns	there	is	documented	building	of	Kubernetes	cluster	with	many	services	that	
are	 communicating	with	 each	 other	 through	 asynchronous	messages	 bus	 like	 Apache	
Kafka	or	directly	through	HTTP	protocol	and	are	horizontally	scaling	instances	based	on	
workload.	Then	there	is	shown	the	importance	of	CI	/	CD	pipeline	in	delivery	to	achieve	
zero	downtime	deployments	of	individual	services.	Another	part	mentioned	in	the	first	
part	 of	 research	 is	 the	 observability	 of	 platforms,	 system	 be	 evaluated	 according	 to	
relevant	quality	metrics	 ISO/IEC 25023. The	 following	part	 is	 examining	ways	how	 to	
trace	the	request	going	through	the	cluster	and	important	metrics	for	keeping	eyes	on	day	
to	day	operation.	In	the	last	part	load	test	is	performed	and	observation	of	performance	
are	done.		
	
In	the	end	we	evaluate	the	objectives	of	the	thesis	and	conclude	the	results.		
	
	
	
	
Keywords:	 Public	 Cloud,	 Containerization,	 Orchestrators,	 Virtualization,	 Distributed	
Systems,	Cloud	Native	Applications,	Microservices,	Monitoring,	Tracing	
	
	
	
	
	

Moderní	škálovatelné	cloud	native	aplikace	
	
	
Abstrakt	
	
V	diplomové	 práci	 je	 zkoumán	 stav	 veřejných	 cloudových	 platforem	 a	 služeb	
poskytovaných	 za	 účelem	 spravování	 vysoce	 škálovatelných	 aplikací	 za	 nižší	 provozní	
cenu.	 První	 část	 se	 zabývá	 technologií	 a	 cloudovými	 službami.	 Způsob,	 jakým	 utváří	
současné	 trendy	 vývoje	 cloud	 native	 aplikací	 a	 platformy,	 které	 jsou	 poskytovány	
vývojářům	k	vybudování	spolehlivých	a	odolných	řešení.	Dále	se	práce	zabývá	výzkumem	
dopadu	 technologií	 jako	 je	kontainerizace	nebo	orchestrace,	na	aplikační	architekturu,	
zjišťování	výhod	a	výzev	spojených	s	tímto	novým	přístupem.	
	
Další	 část	 se	 zabývá	 kvantitativní	 analýzou	 ankety	 určené	 pro	 vývojáře,	 která	 byla	
provedena	 v	české	 softwarové	 firmě	 na	 dané	 téma.	 Cílem	 ankety	 je	 zjištění	 pohledu	
vývojářů	 na	 témata	 jako	 sebevzdělávání	 v	nových	 technologiích,	 otázky	 v	oblasti	
veřejných	cloudů	a	také,	 jaké	vidí	klíčové	faktory	a	požadavky	pro	doručení	dobrého	a	
škálovatelného	SaaS	produktu.	
	
Toto	 následuje	 praktický	 výzkum	 platformy	 a	 služeb	 velké	 cloudové	 společnosti.	 Na	
základě	 poznatků	 a	 schémat	 z	předchozí	 části	 práce	 se	 pustíme	 do	 vybudování	
Kubernetes	clusteru,	který	uvnitř	spravuje	spoustu	aplikací,	které	spolu	komunikují	přes	
asynchronní	 message	 bus	 Apache	 Kafka	 nebo	 napřímo	 přes	 http	 protokol	 a	 jsou	
horintálně	škálovatelné	v	závislosti	na	zátěži.	Dále	je	ukázána	důležitost	CI	/	CD	pipeline	
k	dosažení	 doručení	 služeb	 s	nulovými	 výpadky	 pro	 individuální	 služby.	 Na	 to	 celé	
navazuje,	jak	již	bylo	zmíněno	v	teoretické	části,	pozorovatelnost	platformy	a	zhodnocení	
kvality	systému	podle	relevantních	metrik	ISO/IEC 25023.	Dále	 je	na	clusteru	ukázáno,	
jaké	jsou	možnosti	trasování	požadavků	napříč	distribuovaným	HTTPem	a	také	důležité	
metriky,	které	je	nutné	sledovat	pro	udržení	stabilního	chodu.	V	poslední	části	jsou	oproti	
systému	spuštěny	zátěžové	testy	a	pozoruje	se	chování	aplikace.	Nakonec	se	vyhodnotí	
všechny	cíle	a	výsledky	diplomové	práce.	
	
	
Klíčová	slova:	Veřejný	Cloud,	Kontajnerizace,	Orchestrace,	Virtualizace,	Distribuované	
systémy,	Cloud	Native	Aplikace,	Microservices,	Monitoring,	Trasování	
	
	
	
	
	

Table	of	content	
	
	

1.1 Introduction .. 13

2 Objectives and Methodology ... 15
2.1 Objectives ... 15
2.2 Methodology .. 16

3 Literature Review .. 17
3.1 Cloud Infrastructure ... 17
3.1.1 Servers ... 17
3.1.2 Virtualization ... 18
3.1.3 Infrastructure	as	a	Service	(IaaS) .. 19

3.1.3.1 Data centers ... 19

3.1.3.2 Compute .. 19

3.1.3.3 Network ... 19

3.1.3.4 Storage ... 20

3.1.4 Platform	as	a	Service	(PaaS) ... 20
3.1.5 Software	as	a	Service	(SaaS) ... 20
3.1.6 Key Success Factors ... 21

3.1.6.1 Cost of Infrastructure ... 21

3.1.6.2 People Expertese ... 22

3.2 Containerization ... 23
3.3 Orchestrators .. 24
3.3.1 State	control ... 24
3.3.2 Service	Discovery .. 25
3.3.3 Routing ... 25
3.3.4 Load	Balancing .. 25
3.3.5 Scaling .. 25
3.3.6 Self-healing .. 26
3.3.7 Deployments	without	outage ... 27
3.3.8 Canary	releases	and	blue-green	deployments 27
3.3.9 Security .. 27
3.3.10 Managing	secrets ... 28
3.3.11 Introspection ... 29

3.4 Application Architecture Style ... 29
3.4.1 Factors: ... 30
3.4.2 Decision	Criteria .. 30
3.4.3 Monolithic	architecture .. 32

3.4.3.1 Modular Monolith ... 32

3.4.4 Microservice	architercute .. 34
3.4.4.1 Benefits of Microservices Architecture ... 35

3.4.4.2 Challenges of Microservice architecture ... 36

3.5 Cloud Native Applications ... 37
3.5.1 The	Twelve-factor	App ... 37

3.5.1.1 Codebase ... 38

3.5.1.2 Isolated Dependencies ... 38

3.5.1.3 Config .. 38

3.5.1.4 Backing Services ... 38

3.5.1.5 Build, Release, Run ... 38

3.5.1.6 Processes ... 39

3.5.1.7 Binding of Ports ... 39

3.5.1.8 Concurrency .. 39

3.5.1.9 Disposibility .. 39

3.5.1.10 Parity of Environments .. 40

3.5.1.11 Logging ... 40

3.5.1.12 Admin Processes ... 40

3.5.2 API	Design	and	Versioning ... 40
3.5.2.1 Semantic Versioning ... 41

3.5.2.2 The OpenAPI Specification ... 41

3.5.3 Service	Communication .. 42
3.5.3.1 Standard Protocols ... 42

3.5.3.2 Messaging Protocols .. 43

3.5.3.3 Asynchronous Messaging .. 43

3.5.3.4 IoT Communication with Backends .. 44

3.5.4 Reactive	Microservices ... 46
3.5.5 Quality Metrics – ISO/IEC 25023 .. 47

3.5.5.1 Performance Efficiency measures ... 48

3.5.5.2 Availability measures .. 48

3.5.5.3 Fault tolerance measures ... 49

3.5.6 Continuous	Delivery .. 50
3.5.6.1 Development Pipeline ... 51

3.5.7 Testing .. 52
3.5.7.1 Test Automation Pyramid ... 53

3.5.7.2 Unit Testing ... 54

3.5.7.3 Service Testing (Integration) ... 55

3.5.7.4 UI Tests ... 55

3.5.7.5 Performance Tests ... 55

3.5.7.6 Load Tests ... 56

3.5.7.7 Apache JMeter ... 56

3.5.8 Monitoring ... 56
3.5.8.1 Service Metrics .. 57

3.5.8.2 Basic Metrics ... 57

3.5.8.3 Alerting .. 58

3.5.9 Distributed	Tracing ... 59
3.5.10 Open Tracing .. 60

4 Practical Part .. 61
4.1 Data Collection & Analysis ... 61
4.1.1 Survey ... 61

4.1.1.1 Research questions .. 61

4.1.1.2 Survey results .. 62

4.2 Cloud Provider Comparison ... 68
4.2.1 Managed Services ... 69
4.2.2 Computation Power & Memory ... 70
4.2.3 Storage .. 71
4.2.4 Network (Ingress & Egress) ... 71

4.3 Prototype Cluster .. 72
4.3.1 Solution	Architecture	Specification ... 72

4.3.1.1 Implementation of Service Communication 73

4.3.2 Cluster Resources ... 74
4.3.3 Build and Deployment .. 76
4.3.4 Monitoring	and	Alerting ... 77

4.3.4.1 Distributed Tracing .. 80

4.3.5 Quality	Evaluation ... 81
4.3.5.1 Performance Tests Scenarios ... 81

4.3.6 ISO/IEC 25023 Product Quality Evaluation ... 83
4.3.6.1 Time Behaviour Measures ... 83

4.3.6.2 Availability Measures .. 84

5 Results and Discussion ... 88

6 Conclusions ... 90

7 Bibliography ... 92

	
List	of	pictures	
	
Figure	1:	Virtualization	layers	scheme	-	source:	(author) .. 18
Figure	2:	Infrastracture	layers	overview	-	source:	(author) .. 21
Figure	3:	Docker	architecture	-	source:	(Poulton,	2019) .. 24
Figure	4:	Monolithic	architecture	example	-	source:	(author) 32
Figure	5:	Modules	without	encapsulation	example	-	source:	(author) 33
Figure	6:	Microservice	architecture	example	-	source:	(author) 34
Figure	7:	Publisher	/	Subscriber	pattern	of	asynchronous	communication	-	source:	
(Hohpe,	2003) ... 44
Figure 8: UML sequence diagram illustrating backends and device communication – source:
(Mijic, 2018) .. 45
Figure 9: MQTT Proxy integration with broker - source: (WAEHNER, 2019) 46
Figure 10: REST proxy with Kafka Broker - source: (WAEHNER, 2019) 46
Figure 11: Relatinonship between types of quality measures - source: (ISO/IEC, 2016) ... 47
Figure 13: CI / CD Pipeline concept - source: (author) ... 51
Figure	14:	Mock	example	(source:	author) .. 52
Figure	15:	Stub	example	-	source:	(author) ... 53
Figure	16:	Fake	example	(source:	author) ... 53
Figure	17:	Test	Automatition	Pyramid	–	source:	(Bose,	2020) 54
Figure	18:	Recoverability	/	Impact	matrix-		source:	(Ligus,	2012) 59
Figure	19:	Tracing	data	model	-	source:	(Quan,	2019) ... 60
Figure 20: Participation statistic by profession .. 62
Figure 21: basic statistical calculation table .. 63
Figure 22: Graphical representations distributed by groups .. 63
Figure 23: Sources of learning for professionals ... 64
Figure 24: Most popular provider among respondes ... 67
Figure 25: Preffered benefits of Cloud .. 68
Figure 26: Development Environment Architecture – source: (author) 73
Figure 27: Device Service API definitions - source: (author) ... 74
Figure 28: Project creation - source (author) ... 75
Figure 29: VMs deployment in Cloud - source: (author) .. 76
Figure 30: Flow for building new versions – source: (author) .. 77
Figure 31: Sensor service application metrics output after startup – source: (author) 78
Figure 32: SensorService - Kafka Consumed Records Rate – source: (author) 79
Figure 33: SensorService - Kafka Consumed Bytes Rate – source: (author) 79
Figure 34: Cluster API metrics – source: (author) ... 80
Figure 35: Tracing interaction between device and sensor service - source: (author) 81
	
	
	
	
	
	
	
	
	

List	of	tables	
Table	1:	Example	of	versioning	(source:	author) ... 41
Table 2: Performance efficiency measure metrics ISO / EIC 25023 - source: (ISO/IEC, 2016)
 .. 48
Table 3: Availability measures metrics ISO/EIC 25023 - source: (ISO/IEC, 2016) 48
Table 4: Fault tolerance measures metrics ISO/EIC 25023 - source: (ISO/IEC, 2016) 49
Table	5:	List	of	survey	questions ... 61
Table 6: Question 3 - Categorical answers results ... 64
Table 7: Question 4 - Categorical answers results ... 65
Table 8: Q5 - descriptive analysis of responses .. 66
Table 9: Q7 - result ... 66
Table 10: Question 9 - answers evaluation ... 67
Table 11: Essential services terminology ... 69
Table 12: vCPU & RAM / per hour - pricing comparison ... 70
Table 13: Storage pricing per GB - comparison ... 71
Table 14: Ingress & Egress Port-hour / 1 GB connection price - comparison 71
Table	15:	Services	list ... 72
Table 16: List of deployed resources .. 75
Table	17:	List	of	selected	monitored	application	metrics	in	Sensor	Service 77
Table 18: Definition of test cases ... 82
Table 19: Cross DC Performance test results ... 83
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

List	of	abbreviations	
	
IoT								–			Internet	of	Things	
AWS					–			Amazon	Web	Services	
MS								–			Microsoft	
CI										–			Continuous	Integration	
CD									–			Continuous	Delivery		
API	 	–			Application	Programming	Interface			
GDPR			–			General	Data	Protection	Regulation	
CPU	 	–			Central	Processing	Unit	
RAM					–			Random	Access	Memory	
GPU						–			Graphical	Processing	Unit	
SaaS	 	–			Software	as	a	Service	
IaaS		 	–			Infrastructure	as	a	Service		
PaaS		 	–			Platform	as	a	Service	
HTTP			–			Hypertext	Transfer	Protocol	
mTLS			–			Mutual	Transport	Layer	Security	
VM								–			Virtual	Machine	
ISO – International	Organization	for	Standardization	
UML					–			Unified	Modeling	Language	
KYC						–			Know	your	customer
UX – User Experience
SLA							–		Service	Level	Agreement	
REST				–		Representational	state	transfer	
UDP – User Datagram Protocol

 14

1.1 	Introduction	

Once	upon	a	time	programs	ran	on	the	same	machine	as	they	were	accessed	from.	This	
has	changed	a	long	time	ago.	Now	almost	every	application	is	considered	a	distributed	
system	and	runs	on	multiple	machines	that	gets	accessed	by	many	users	from	all	over	
the	world.		
	
With	 the	 invention	 of	 the	 internet,	 almost	 everybody	 is	 capable	 of	 joining	 a	 shared	
network	 and	 exchanging	 data	 with	 counterparts	 all	 over	 the	 world.	 We	 can	 see	 an	
increasing	number	of	users	joining	the	internet	network	from	the	developing	countries	as	
well	as	many	new	devices	and	IoT	gadgets	that	are	becoming	our	extended	hands	and	feed	
the	network	with	tons	of	data.	
	
With	digitalization	happening	all	around	us	the	classical	approach	“business	as	usual”	is	
no	longer	enough.	Today's	organizations	operating	on	the	internet	need	to	deliver	user	
friendly,	reliable	and	scalable	solutions	fast.	Customer	demand	is	steadily	increasing	with	
more	 people	 coming	 online	 as	 well	 as	 organization	 opportunities	 to	 increase	 the	
engagement	or	revenue.	To	achieve	it,	it's	necessary	to	accelerate	the	delivery	of	goods	
and	 services,	 responses	 to	 potential	 risks	 such	 as	 security	 threats	 or	 changes	 in	 the	
economy	or	anticipate	regulatory	changes	and	the	impact	it	has	on	the	systems.		
	
Additional	 events	 like	 humanity	 being	 plunged	 by	 the	 global	 pandemic	 of	 Covid-19	
resulted	in	most	of	the	business	moved	from	traditional	retail	space	to	online	selling.	As	a	
side	 effect	 this	 also	 caused	 growth	 of	 the	 companies	 offering	 software	 solutions	 and	
resulted	in	necessity	of	delivering	fast	with	constant	feedback	loops	on	product.		
	
Software	and	technology	is	in	this	era	key	differentiator	for	organizations	to	deliver	value	
to	customers	and	stakeholders.	It	allows	for	rapid	growth	of	products	and	reach	all	across	
the	 globe.	 In	modern	 distributed	 computing	 it	 becomes	 ever	more	 attractive	 to	move	
infrastructure	to	public	cloud.	For	companies	this	brings	many	benefits	like	not	having	to	
focus	 on	 running	 the	 whole	 infrastructure	 operation.	 Cloud	 providers	 in	 general	 are	
having	 access	 to	 cheaper	 hardware	 and	 are	 able	 to	 solve	 common	 problems	 such	 as	
reliability	and	high	availability	through	their	own	software	solutions.	

 15

2 Objectives and Methodology

2.1 Objectives	

• Introduce	services	provided	by	cloud	infrastructure	and	explain	how	they	enable	
organizations	 to	 achieve	 higher	 development	 speed	 and	 lower	 costs.	
	

• Explore	 technologies	 that	 support	 running	 applications	 in	 the	 cloud	 in	 a	highly	
secure,	observable,	reliable	and	scalable	manner	with	minimal	costs	for	hardware	
utility.	

	
• Define	key	metrics	for	choosing	cloud	providers	and	compare	the	largest	on	the	

market.	
	

• Present	different	architectural	options	and	explain	their	suitable	use	cases	when	
building	web	based	systems.	Compare	their	applicability	in	cloud	environments.		

	
• Define	best	practices	for	building	cloud	native	applications.	

	
• Describe	the	process	of	continuous	integration	and	deployment	of	applications	in	

Cloud	without	downtimes.	
	

• Explore	suitable	testing	stacks	for	applications	in	the	cloud	to	minimize	amounts	
of	error	in	distributed	systems.	

	
• Show	ways	how	to	monitor	and	trace	requests	running	inside	distributed	systems.		

	
• Gather	opinions	and	feedback	on	the	topic	of	public	clouds	and	it’s	benefits		from	

professional	 software	 developers	
	

• In	 practical	 part	 develop	 a	 distributed	 system	 that	 gathers	 information	 from	
devices	or	IoT	gadgets	and	load	test	behavior	of	the	system	with	artificial	traffic.	
	

• Evaluate	developed	quality	system	based	on	relevant	selected	metrics	of	ISO/IEC
25023.	

	
	
	
	

 16

2.2 Methodology	

In	the	theoretical	part,	there	will	be	introduced	cloud	infrastructure	as	a	service	and	its	
benefits	for	organizations	to	reduce	overhead	in	their	operation.	Then	follows	exploration	
of	services	and	software	that	providers	offer.	Next	is	defining	key	metrics	for	organization	
and	then	comparing	offers	from	biggest	cloud	providers	like	AWS,	MS	Azure	or	Google	
Cloud	 Platform.	 In	 the	 next	 part	 there	 will	 be	 presented	 different	 application	
architectures,	how	they	relate	to	cloud	and	fitting	use-cases.	Based	on	research	of	cloud	
environment	 and	 application	 architecture	 deeper	 research	 into	 preferred	 application	
structure	and	properties	will	be	done.	We	explore	principles	and	patterns	necessary	to	
follow	in	a	cloud	environment	when	building	applications	deployed	as	containers.		

	
Then	the	testability	of	the	application	and	different	stages	of	testing	will	be	explored	to	
achieve	stable	CI/CD.	After	that	we	explore	what	are	the	options	on	how	to	monitor	the	
whole	 distributed	 system	 and	 how	 to	 trace	 errors	 in	 case	 they	 occur.	 As	 final	 part	 of	
theoretical	 research	 on	 the	 topic	 there	 will	 be	 conducted	 surveys	 for	 professional	
software	developers	with	the	aim	to	gather	feedback	on	experiences	with	different	cloud	
providers,	 unexpected	 surprises	 with	 cloud	 deployment	 and	 developer	 experience	 in	
comparison	with	traditional	self	hosted	servers.	

	
Goal	of	the	practical	part	is	to	demonstrate	knowledge	gathered	in	the	theoretical	part.	
Based	on	referenced	materials	will	develop	a	distributed	system	of	applications	deployed	
in	multiple	datacenters	on	cloud	that	is	able	to	collect	data	from	the	IoT	devices	or	users.	
Whole	 solution	 should	 be	 fully	 connected	 to	monitoring	 and	 have	 set	 up	 deployment	
pipelines	with	running	tests	for	continuous	delivery.	Final	test	of	the	solution	will	be	done	
through	 load	performance	 test	 that	 is	designed	 to	stress	 test	 the	solution	and	observe	
durability	 of	 the	 distributed	 system	 under	 large	 volumes	 of	 requests	 on	 application	
servers.		
	
In	the	end	we	evaluate	the	result	of	the	tested	prototype	and	draw	conclusions.	
	

	

 17

3 Literature Review
	

3.1 Cloud	Infrastructure	

Infrastructure	 in	 this	 context	 is	 generally	 all	 the	 software	 and	 hardware	 that	 enables	
running	 applications	 in	 remote	 environments.	 This	 includes	 everything	 necessary	 to	
support	 the	 lifecycle	 of	 the	 application.	 Through	 years	 of	 evolution	 and	 perfecting	
practices,	many	big	technological	companies	like	Amazon,	Microsoft	or	Google	to	name	a	
few,	were	able	to	make	large	business	out	of	leasing	computing	power	and	package	it	as	a	
service.	
	
Nowadays	the	main	reason	for	adoption	and	usage	of	public	cloud	is	for	organizations	to	
be	able	to	produce	value	faster	and	focus	on	core	business	products.	Organizations	strive	
to	 build	 only	what's	 necessary	 for	 creating	 and	 delivering	 products.	 Using	 services	 of	
other	providers,	keeps	lead	time	small	and	agility	high.	
	
Some	organizations	are	often	hesitating	with	the	choice	of	public	cloud	because	of	scarcity	
of	 “vendor	 lock-in”.	 It's	 important	 to	 consider	 also	 the	 fact	 that		 building	 your	 own	
infrastructure	is	not	having	the	same	effect	on	organizations.	It's	also	dependent	on	the	
choice	of	how	many	of	the	services	and	in	what	way	you	use	it.	
	
Moving	 to	 cloud	 native	 infrastructure	 certainly	 doesn't	 solve	 every	 problem	 and	 it's	
necessary	to	point	out	that	the	responsibility	to	choose	the	right	solution	always	carries	
the	organization	however	over	the	years	there	are	strong	indicators	of	success	for	many	
organizations	 operating	 in	 public	 clouds	 that	 have	 adopted	 the	 provided	 tools	 and	
patterns.	(Garrison,	2017)	
	

3.1.1 	Servers	

Compared	to	cloud	infrastructure	it's	quite	difficult	to	get	them	and	after	that	correctly	
set	up	to	be	able	to	run	your	applications.		
	
Since	the	beginning	of	computing	the	common	knowledge	about	physical	servers	was	they	
take	a	certain	size,	are	expensive,	make	a	lot	of	noise	and	require	a	lot	of	electricity	to	keep	
them	operational.		
	
Physical	servers	are	powerful	and	you	can	configure	them	in	any	way	imaginable.	They	
have	a	 relatively	 low	 failure	 rate	and	are	engineered	 to	avoid	 failures	with	 redundant	
power	supplies,	fans,	and	RAID	controllers.	They	also	last	a	long	time.	However	in	general	
owning	 servers	 leads	 to	 waste	 due	 to	 not	 fully	 utilizing	 them	 and	 adding	 additional	
maintenance	overhead.	Also	it's	not	simple	to	configure	them	in	an	optimal	way	to	run	

 18

multiple	applications,	avoid	software	conflicts,	set	up	correctly	network	routing	and	all	
user	access	rights.		
	
It's	 important	to	point	out	that	in	many	organizations	like	the	army	or	other	regulated	
fields	it's	often	not	advised	to	use	cloud	infrastructures	due	to	security	threats	connected	
with	just	being	online.	
	

3.1.2 Virtualization	

In	(VMWare,	2018)	is	defined	virtualization	as	the	process	of	running	virtual	instances	of	
computer	systems	in	layers	abstracted	from	the	actual	hardware.	From	the	perspective	of	
applications	running	 in	a	virtualized	environment	 it	appears	as	 if	 they	have	 their	own	
dedicated	machine	with	their	own	operating	system,	libraries	and	other	programs	unique	
systems.	 This	 computing	 technique	 solves	 decoupling	 of	 hardware	 from	 software.	 It	
allows	for	more	efficient	sharing	of	resources	between	various	workloads	running	on	a	
server.	 Technology	 that	 enables	 running	 multiple	 guest	 virtual	 machines	 by	 virtually	
sharing	its	resources	is	called	hypervisor.		
	
	

	
Figure	1:	Virtualization	layers	scheme	-	source:	(author)	

	
	
	
Issue	with	running	your	own	virtualization	platform	is	that	you	still	need	to	own	physical	
hardware	and	have	people	spending	time	maintaining	it	and	keeping	it	running.	With	the	
increasing	scale	of	IT	requirements	these	costs	grow.	
	

 19

3.1.3 Infrastructure	as	a	Service	(IaaS)	

IaaS	is	made	up	of	a	collection	of	physical	and	virtualized	resources	that	provide	support	
for	running	applications	and	workloads	in	the	cloud.	It's	one	of	many	services	offered	by	
cloud	providers	to	consumers.	IaaS	allows	organizations	to	get	rid	of	their	own	hardware	
and	rent	 it	 instead.	 In	this	model	 from	an	organization's	perspective	the	expense	 is	no	
longer	viewed	as	capital	expenditure	but		as	operational	expense	of	running	the	business.	
Organizations	 can	 pay	 for	 their	 infrastructure	 the	 same	 as	 they	 pay	 for	 electricity	 or	
human	resources.			
	
In	 addition	 the	 hosted	 infrastructure	 also	 comes	 with	 consumable	 application	
programming	 interfaces	 (API)	 that	 allows	 over	 the	 HTTP	 to	 create	 and	 orchestrate	
virtualized	infrastructure.	Whole	concept	is	to	get	rid	of	the	need	to	purchase	servers	and	
setting	them	up.	Instead	you	can	just	call	the	API	of	the	provider	and	create	the	on	demand	
infrastructure.	This	allows	organizations	to	elastically	increase	or	decrease	the	amount	of	
resources	they	use	based	on	the	demand	for	their	product.	(Education,	2019)	

3.1.3.1 Data	centers	

It's	standard	for	large	IaaS	providers	to	manage	large	data	centers	all	around	the	world.	
In	 data	 centers	 they	 store	 physical	 machines	 necessary	 to	 power	 all	 the	 layers	 of	
abstraction	that	provide	the	service	through	API	to	customers.	In	this	model	customers	
don't	interact	with	physical	infrastructure.		
	
Users	can	also	choose	the	availability	zones	for	hosting	the	services.	Different	zones	are	
logically	 and	 physically	 isolated	 locations	 with	 independent	 power	 and	 network	
infrastructures.	This	strengthens	 fault	 tolerance	by	eliminating	single	points	of	 failure.	
Also	this	allows	for	high	bandwidth	and	low	latency	within	the	region.	Also	having	this	
option	of	choice	helps	with	obeying	data	protection	laws	like	GDPR	in	Europe.	
	

3.1.3.2 Compute	

Typically	in	this	platform	are	used	virtualized	compute	resources	in	the	form	of	virtual	
machines.	 The	 provider	 is	 managing	 the	 hypervisors	 and	 end	 users	 can	 then	
programmatically	 create	 instances	 with	 desired	 compute	 power	 and	 memory.	 Most	
providers	offer	both	CPUs	and	GPUs	 for	different	 types	of	workloads.	 It's	 common	 for	
cloud	providers	also	to	provide	supporting	services	like	auto	scaling	and	load	balancing	
to	adjust	required	performance	on	fly.	
	

3.1.3.3 Network	

Networking	in	cloud	is	made	by	networking	hardware	such	as	routers	and	switches	that	
are	exposed	to	be	configured	programmatically	through	API.	

 20

3.1.3.4 Storage	

Storage	space	is	the	same	as	the	previous	components	manageable	through	API.	Cloud	
vendors	 provide	 services	 to	 help	 collect,	manage,	 secure	 and	 analyze	 data	 at	massive	
scale.	Ensuring	organization	data	is	secure,	safe	and	available	is	essential	and	therefore	
there	are	several	fundamental	requirements	when	considering	storing	data.	
	

- Availability	-	data	should	be	available	whenever	users	request	them.	
	

- Durability	-	data	should	be	stored	ideally	across	multiple	independent	locations	
and	multiple	devices	to	prevent	events	like	human	error,	natural	disasters	or	
hardware	failure	that	might	result	in	data	loss.	

	
- Security	-	data	should	be	encrypted	as	well	as	in	storage	as	in	transit.	Correct	

permissions	and	access	control	policies	should	be	put	in	place	to	prevent	
unwanted	data	access.	(AWS,	2019)	

	

Another	 benefit	 of	 this	 solution	 is	 waste	 choice	 of	 operating	 systems,	 advanced	
monitoring	 of	 the	 platform	 and	 tools	 built	 to	 support	 and	 automate	 running	 of	
applications.			
	
	

3.1.4 Platform	as	a	Service	(PaaS)	

As	 IaaS	 takes	 away	 hassle	with	managing	 hardware	 and	VMs,	 PaaS	 hides	 the	 layer	 of	
operating	 systems	 from	 the	 applications.	 This	 means	 for	 developers	 that	 they	 push	
application	code	and	define	the	dependencies.	Provider	interprets	the	dependencies	and	
is	 responsible	 for	 handling	 it	 according	 to	 instructions.	 In	 the	 case	 of	 PaaS	 the	
infrastructure	is	fully	managed	by	cloud	providers.	
	
From	developers	perspective	this	is	a	big	change.	Developers	no	longer	remotely	connect	
to	VMs	to	inspect	logs	from	applications	or	read	files	on	disk.	Lifecycle	and	management	
is	under	control	of	the	provider.	This	might	seem	like	a	limitation	but	it	turned	out	to	be	
a	great	benefit.	In	many	cases	it	shaped	how	cloud	native	applications	are	written	today.	

3.1.5 Software	as	a	Service	(SaaS)	

SaaS	takes	this	idea	of	outsourcing	a	step	further.	In	(Salesforce,	2020)	it’s	defined	as	a	
way	to	deliver	cloud-based	service	that	you	can	run	in	your	browser	from	any	device.	You	
don't	have	to	take	care	of	updates,	patches	or	maintenance;	everything	is	being	done	by	
the	service	provider	for	you.		
	

 21

	

	
Figure	2:	Infrastracture	layers	overview	-	source:	(author)	

3.1.6 Key Success Factors

3.1.6.1 Cost	of	Infrastructure	

In a research paper by (KyungWoon Cho, 2020), that explores key variables and impact on total
cost of running infrastructure in the cloud.

• Ingress / Egress (per cluster)
• CPU power used
• RAM amount used
• Storage amount used
• Managed services

 22

In the case of CPU the price of a model is determined according to the computing power that it
provides and is charged based on the unit price of the model and service time. With Storage
there it depends on combinations of storage volumes and number of I/O operations.

Egress and Ingress cost is the cost for the data that moves in and out of the cloud. Often
providers offer input of data in the network for free but charge large network fees to move them
out of the cloud elsewhere.

With services it’s individual it depends on how much of the software offered by 3rd parties is
the organization gonna decide to use.

Total Estimation Equation

This equation can be used to estimate cost of the infrastructure but usually there are other things
like services used along with it so it has to be také in consideration.

3.1.6.2 People	Expertese	

In order for organizations to sucessfully execute cloud computing strategies, they need the
right people with the right skills. According to (Burger, 2021) at the beginning of adoption of
third-party providers services, there is a critical need for people who know what services to
pick, who can negotiate service level agreements, and can integrate those off-site offerings
with on-site data and operations.

In (Humble, 2018) is recommended to estimate the people's expertise, organizations can use
simple tools as surveys. Data from well-designed and well-tested psychometrics surveys can
give quick feedback on identifying its own resources and talent. It allows to quickly and easily
analyze data in a reliable manner.

Descriptive	research	

In	(SVMK	Inc.,	2020)	says	that	descriptive	research	is	considered	conclusive	in	nature	due	
to	its	quantitative	nature.	Unlike	exploratory	research,	descriptive	research	is	preplanned	
and	 structured	 in	 design	 so	 the	 collected	 information	 can	 be	 statistically	 used	 on	
population.	

This	type	of	research	aims	to	better	define	an	opinion,	attitude,	or	behaviour	held	by	a	
specific	 group	 of	 people	 on	 given	 subject.	 This	 allows	 to	measure	 the	 signifikance	 of	

 23

results	 on	 the	 overall	 population	 that’s	 subjected	 to	 study,	 as	 well	 as	 the	 changes	 of	
respondent	opinions,	attitudes	and	behaviours	over	time.	

3.2 Containerization	

Containers	have	been	used	for	quite	some	time	now,	especially	by	large	tech	companies	
like	Google,	Microsoft	or	Amazon.	It's	a	piece	of	technology	that's	supposed	to	address	
shortcomings	of	the	VM	model.	
	
In	some	way	VMs	and	containers	are	quite	similar.	Major	difference	between	those	two	
is	that	containers	don't	require	a	full	operation	system.	All	containers	on	a	single	host	
share	the	one	OS	that	runs	on	it.	This	results	in	huge	freeing	up	of	system	resources	such	
as	CPU,	RAM	and	storage.	Also	reduces	potential	licensing	costs	and	overhead	with	
maintenance.	Containers	are	designed	to	be	fast	to	start	and	portable.		
	
In	the	last	few	years	there	were	several	advancements	that	enabled	massive	growth	of	
the	containerization	trend.	Particularly	kernel	namespaces,	control	groups,	union	
filesystems	and	Docker.		
It's	a	software	that	runs	on	most	common	platforms	like	Windows,	Mac	and	Linux.	
Docker	made	linux	containers	more	usable	and	simple	to	take	advantage	of.		
	
The	whole	solution	consists	of	3	main	components:	
	

1. Runtime	
2. Engine	/	daemon	
3. Orchestrator	

	
Purpose	of	runtime	is	to	start	and	stop	containers.	It	operates	on	the	lowest	level.	
Runtime	architecture	splits	on	lower-level	and	higher-level.	
	
Lower	level	is	called	“runc”	and	it's	job	is	to	interface	with	the	OS	and	manage	the	
container	state.	Higher-level	runtime	is	called	“containerd”.	It	manages	the	entire	
lifecycle	of	containers.	It	means	creating	network	interfaces,	pulling	images	and	
managing	lower-level	runc	instances.	
		
Engine	sits	on	top	of	containerd	and	performs	tasks	as	exposing	Docker	API,	managing	
images	and	managing	volumes.	(Poulton,	2019)	
	
	

 24

	
Figure	3:	Docker	architecture	-	source:	(Poulton,	2019)	

3.3 Orchestrators	

When	you	learn	how	to	containerize	distributed	applications	you	start	to	face	the	same	
problems	 and	 challenges	 that	 non-containerized	 applications	 face.	 It	 can	 be	 service	
discovery,	 load	balancing,	 scaling	and	 so	on.	To	 solve	 these	 issues	named	above	 there	
were	developed	software	solutions	that	we	call	orchestrators.		
	
Main	purpose	of	orchestration	is	to	achieve	expected	outcome,	mostly	making	sure	that	
all	containers	in	the	cluster	communicate	with	each	other	how	they‘re	supposed	to.		
	

3.3.1 State	control	

Typically	 use	 of	 an	 orchestrator	 includes	 specifying	 declarative	ways	 how	 application	
services	should	run.	We	want	to	declare	what	should	be	run	and	how	to	run	it.	This	 is	
usually	related	to	container	images,	opened	ports	and	properties	of	application	services.		
	
As	a	result	when	we	run	orchestrator	it	creates	all	the	application	services	we	requested	
with	ports	we	specified	and	makes	 sure	 they‘re	deployed	 to	 the	 cluster	where	 they‘re	
supposed	to	run.		
	

 25

3.3.2 Service	Discovery	

It‘s	 not	 recommended	 to	 use	 deterministic	 placement	 rules,	 this	 should	 be	 left	 to	 the	
orchestrator	itself.	Knowledge	of	for	example	service	A	shouldn‘t	be	where	to	discover	
service	B	that	it	relies	on.	In	distributed	and	scalable	applications	it	should	rather	rely	on	
orchestrators	to	give	these	indices	where	to	discover	services.	
	

3.3.3 Routing	

In	distributed	systems	are	typically	many	services	 interacting	with	each	other	through	
HTTP/s	protocol.	It‘s	application	developer‘s	expectation	that	orchestrators	HTTP	over	
this	task	of	routing	from	source	to	desired	destination.	When	routing	messages	between	
services	 running	 in	 containers,	 there	 can	happen	3	 situations.	 First	 is	 that	 source	 and	
target	 containers	 are	 in	 the	 same	 cluster	 node,	 then	 the	 second	 would	 be	 if	 source	
container	is	located	in	a	different	cluster	node	than	target	container	and	the	third	when	
data	comes	outside	the	cluster	and	has	to	be	routed	to	the	target	container	running	inside	
the	cluster.	All	those	scenarios	have	to	be	handled	by	the	orchestrator.	
	

3.3.4 Load	Balancing	

Precondition	 to	 run	 a	 highly	 available	 distributed	 application	 is	 to	 have	 redundancy	
between	 all	 components.	 Every	 application	 is	 run	 in	 multiple	 instances	 and	 if	 single	
instances	fail,	the	service	is	still	operational.	To	distribute	the	load	to	all	 instances	of	a	
service	and	not	letting	them	sit	idle	it‘s	necessary	to	make	sure	that	requests	are	evenly	
distributed	 among	 instances.	 This	 proces	 is	 called	 load-balancing.	 There	 are	 multiple	
algorithms	 how	 to	 distribute	 the	workload	 but	 the	most	 standard	 and	 process	 called	
“round	robin	algorithm”.	
	
Round	robin	load	balancing		is	one	of	the	simplest	methods	for	distributing	client	requests	
across	a	group	of	servers.	Going	down	the	list	of	servers	in	the	group,	the	round-robin	
load	balancer	forwards	a	client	request	to	each	server	in	turn.	When	it	reaches	the	end	of	
the	list,	the	load	balancer	loops	back	and	goes	down	the	list	again	(sends	the	next	request	
to	the	first	listed	server,	the	one	after	that	to	the	second	server,	and	so	on).	(Nginx,	2019)	
	

3.3.5 Scaling	

After	 containerizing	 our	 application	 we	 can	 let	 them	 run	 and	 be	 managed	 by	 the	
orchestrator.	Not	only	that	but	we	also	need	an	easy	way	to	handle	unexpected	increases	
of	 requests	 they	have	 to	process.	 In	 that	case	 the	orchestrator	usually	schedules	more	
instances	to	spawn	according	to	declarative	policy.	Load	balancers	will	then	automatically	
distribute	the	load	over	new	instances.		
	

 26

This	 happens	 fairly	 regularly	 in	 the	 real	 world.	 Typically	 we	 run	 as	 few	 instances	 as	
possible	 to	 reduce	 cost	 of	 the	 operation.	 It‘s	 normal	 that	 for	 example	 shopping	
applications	have	peaks	during	the	day	when	there	are	more	visitors	than	the	other	time.	
When	this	scenario	 is	spotted	the	orchestrator	simply	schedules	more	 instances	of	 the	
service	and	scales	horizontally.	
	
Horizontal	scaling	–	modify	compute	resources	of	an	existing	cluster.	
Vertical	scaling	–	modify	the	attributed	resources	(CPU,	RAM)	of	node	in	the	cluster.	
	
Furthermore	critical	services	should	be	evenly	distributed	across	all	data	centers	to	avoid	
outages.	All	these	decisions	and	many	more	are	responsibility	of	orchestrator.	
	

3.3.6 Self-healing	

One	 of	 the	 functions	 of	 an	 orchestrator	 is	 also	 to	monitor	 the	 health	 of	 all	 containers	
running	 in	 the	 cluster	 and	 automatically	 replace	 those	who	 appear	 faulty	with	 newly	
spawned	instances.	Naturally	there	are	different	conditions	upon	which	each	we	evaluate	
health	of	the	services	and	dependant	how	the	author	of	the	application	exposes	them.		
	
Orchestrator	defines	seams	or	probes,	over	which	application	can	communicate	with	it	
and	share	in	what	state	it	currently	is.	Fundamentally	we	have	probes	of	2	categories.	
Readiness	probe	states	
	

• The	ACCEPTING_TRAFFIC	state	represents	that	the	application	is	ready	to	accept	
traffic.	

	
• The	REFUSING_TRAFFIC	state	means	that	the	application	is	not	willing	to	accept	

any	requests	yet.	
	

Liveness	probe	states	
	

• The	 CORRECT	 value	 means	 the	 application	 is	 running	 and	 its	 internal	 state	 is	
correct.	

1. On	the	other	hand,	the	BROKEN	value	means	the	application	is	running	with	some	
fatal	failures.	

	
The	orchestrator	 task	 in	 this	 case	 is	 only	 to	define	how	 it‘s	 going	 to	 ask.	 It	means	 for	
example	through	HTTP	GET	request	and	expecting	predefined	answers	from	the	service	
like	UP	or	DOWN.	(Mohamandinia,	2021)	
	

 27

3.3.7 Deployments	without	outage	

	
For	 organizations	 it‘s	 not	 acceptable	 to	 have	 downtimes	 when	 business	 critical	
applications	need	to	be	updated.	Outage	usually	leads	to	bad	customer	experience	and	in	
damaging	the	reputation	of	the	organization.		Furthermore	with	applying	methodologies	
like	agile	development,	 the	 release	cycles	are	getting	shorter	and	shorter.	 It	no	 longer	
releases	a	couple	releases	each	year,	it	has	changed	to	multiple	updates	per	week.		
	
The	 role	 of	 orchestrator	 in	 this	 solution	 is	 the	 zero	 downtime	 update	 strategy	 it	
implements	to	ensure	smooth	deployments.	Application	services	are	updated	in	batches	
and	we	 call	 it	 “rolling	 updates”.	 At	 any	 given	 time	 few	 instances	 are	 taken	 down	 and	
replaced	with	a	new	version	of	the	application.	When	there	are	no	issues	the	orchestrator	
switches	the	rest	of	the	instances	while	the	HTTP	is	running.	In	case	of	failure	of	update,	
orchestrator	automatically	rollbacks	updated	instances	back	to	their	previous	version.	
	
	

3.3.8 Canary	releases	and	blue-green	deployments	

	
Those	two	options	make	new	versions	of	the	service	possible	that	are	installed	in	parallel	
with	the	currently	active	version.	Initially	the	new	version	is	accessible	only	internally	so	
it	 can	 be	 properly	 tested	 and	 run	 smoke	 tests	 against.	 After	 seeing	 everything	 runs	
smoothly,	the	operation	team	can	switch	to	exposing	it	on	production.	In	case	there	is	an	
issue	spotted	 it‘s	possible	to	switch	router	settings	to	point	back	on	the	old	version	to	
achieve	complete	rollback	of	deployment.	
	
With	canary	releases	router	is	configured	in	a	way	that	it	routes	a	certain	small	percentage	
of	total	traffic	to	the	new	version	of	the	application,	while	rest	of	the	traffic	still	is	routed	
to	 the	 old	 version.	 This	 enables	 developers	 to	 closely	 observe	 how	 the	 new	 version	
behaves	in	production	on	a	small	number	of	users	and	reduce	impact	of	the	error.		
	
Most	of	 the	orchestrators	support	by	default	 rolling	update	with	zero	downtime.	With	
blue-green	and	canary	releases	there	typically	is	extra	configuration	required.	
	

3.3.9 Security	

Security	 of	 the	 solutions	 is	 critical	 for	 organizations	 to	 protect	 data	 privacy	 of	 the	
customers	and	own	reputation.	Cyber	crime	rate	is	at	all-time	high	with	more	data	being	
transmitted	and	accessed	through	the	internet	people	or	organizations	become	targets	of	
hacker	groups	attacks.		
	

 28

To	protect	the	organization	against	outside	threats	there	has	to	be	an	established	secure	
software	supply	chain	and	enforced	28roces	security	rules.		
	
It‘s	necessary	 that	 the	 cluster	managed	by	 the	orchestrator	 is	 secure.	Only	 for	 trusted	
nodes	should	be	possible	to	join	and	each	node	should	incorporate	cryptographic	identity.	
Also	the	communication	between	the	nodes	itself	has	to	be	encrypted.	This	is	usually	done	
by	secure	transport	protocol	mTLS.	For	authentication	of	nodes	among	each	other	there	
are	used	certificates.	
	
Communication	inside	the	cluster	can	be	separated	into	three	types	often	referred	to	as	
planes.	
	
	
Management	 plane	 –	 is	 used	 to	 schedule	 service	 instances,	 create	 or	modify	 volumes	
inside	the	cluster,	calling	health	checks,	manage	secret	configuration	and	network.	
	
Control	plane	–	is	used	for	exchanging	information	between	all	nodes	of	the	cluster.	This	
can	be	for	example	to	update	the	local	IP	tables	in	the	cluster	for	routing	purposes.	
	
Data	plane	–	is	in	between	application	services	communication.	
	
Orchestrators	usually	HTTP	care	of	securing	management	and	controlling	planes	and	to	
secure	the	data	plane	is	up	to	application	developers.	
	

3.3.10 	Managing	secrets	

	
In	 applications	 we	 have	 to	 use	 secrets	 for	 example	 certificates	 to	 authenticate	 our	
application	 services	 with	 some	 external	 service	 or	 vice	 versa	 or	 we	 need	 a	 token	 to	
authenticate	and	authorize	our	service	when	calling	API.	As	mentioned	in	(Larsson,	2019)	
traditionally	all	the	configuration	secrets	were	stored	in	an	external	configuration	file	that	
application	loaded	them	from.	This	may	contain	sensitive	data	and	make	it	accessible	to	a	
broader	audience	then	is	desired.		
	
This	is	also	one	area	that‘s	being	solved	by	the	orchestrator.	Orchestrator	offers	a	way	to	
deal	with	sensitive	data	in	a	highly	secure	way.	Secrets	can	be	added	only	by	trusted	and	
authorized	 personnel.	 Values	 itselfs	 are	 encrypted	 and	 stored	 in	 a	 cluster	 database.	
Authorized	application	then	requests	the	secret	and	it‘s	forwarded	to	the	cluster	nodes	
that	run	an	instance	of	that	particular	service.		
	
Secret	is	never	stored	on	a	node,	it	gets	stored	into	RAM-based	volume	in	a	tmpfs	folder	
of	the	container,	so	it‘s	accessible	only	from	the	container	itself.	Information	transferred	

 29

between	 services	 are	 transmitted	 as	 plain	 text	 but	 the	 data	 packets	 are	 encrypted	 by	
mTLS.	
	
Content	Trust	Security	
	
another	 vulnerable	 part	 of	 the	 cluster	 are	 images.	 Often	 we	 can	 for	 added	 security	
configure	that	the	orchestrator	can	run	only	signed	images.	This	is	the	way	to	make	sure	
that	the	author	of	the	image	is	the	one	we	expect	it	to	be	and	it	was	not	tampered	with	by	
some	malicious	attacker.		
	
Signed	images	at	the	source	and	their	validation	at	the	target	guarantees	that	the	image	
that	orchestrator	is	going	to	run		not	compromised.	

3.3.11 	Introspection	

	
In	earlier	chapters	it	was	discussed	how	many	tasks	an	orchestrator	does	autonomously.	
But	there	is	still	a	necessity	for	operators	to	monitor	and	analyze	if	the	HTTP	works	inside	
the	cluster	as	intended.	Therefore	it‘s	important	to	be	able	to	introspect.		
	
Orchestrators	in	general	collect	a	lot	of	HTTP	metrics	from	cluster	nodes.	Those	metrics	
include	disk	usage,	CPU,	memory	usage	and	network	bandwidth.	It	should	be	available	in	
aggregate	 form	 across	 all	 nodes	 to	 enable	 analysis	 whether	 there	 is	 mistake	 in	 the	
application	 or	 per	 node	 form	 that	 enables	 for	 example	 to	 examine	 issues	 in	 specific	
datacenter.	
	
In	distributed	applications	it‘s	also	necessary	to	be	able	to	trace	requests	that	go	through	
various	services	inside	the	cluster.	This	support		i	salso	one	of	the	parameters	to	look	out	
for	when	choosing	a	good	orchestrator.	
	
For	 humans	 it‘s	 necessary	 to	 have	 all	 that	 data	 also	 accessible	 visually	 in	 29roces29	
graphs	so	the	decisions	can	be	made	based	on	properly	understanded	data.	Most	of	the	
orchestrators	also	allow	to	set	up	alerts	on	selected	metrics	to	give	an	operator	heads	up	
in	case	something	is	out	of	regular.	
	
	

3.4 Application	Architecture	Style	

Nothing	 is	 more	 contextual	 to	 a	 number	 of	 factors	 within	 an	 organization	 and	 what	
software	it	builds.	Choosing	an	architecture	style	represents	the	culmination	of	analysis	
and	 thought	 about	 trade-offs	 for	 architecture	 characteristics,	 domain	 considerations,	
strategic	 goals,	 and	 a	 host	 of	 other	 things.	However	 contextual	 the	 decision	 is,	 some	

 30

general	advice	exists	around	choosing	an	appropriate	architecture	style	(Marks	Richards,	
2020)	
	
	
It‘s	important	to	acknowledge	that	style	salso	shift	over	time	and	it‘s	driven	by	numerous	
factors.	
	
	

3.4.1 Factors:	

	
- Observations	 from	the	past	–	every	now	and	 then	new	architecture	styles	arise	

based	on	observations	of	shortcomings	of	the	previous	one.	
	

- Changes	in	the	ecosystem	–	software	is	constantly	being	developed	and	it‘s	difficult	
to	predict	where	it‘s	going	to	move	in	future.	Often	new	technologies	shift	the	view	
on	architecture	style	completely.	

	
- New	 Technologies	 –	 When	 significant	 new	 technologies	 appear	 the	 old	

architecture	may	 not	 be	merely	 replaced	 but	 rather	 shifted	 to	 an	 entirely	 new	
paradigm.	For	 example	with	popularizing	 container	 technology	 there	was	a	big	
shift	in	how	to	design	the	architecture	of	systems.	

	
- Acceleration	–	new	tools	lead	to	new	engineering	practices	which	have	an	impact	

on	design	and	capabilities	of	software.	Architects	must	constantly	observe	thost	
changes.	
	
	

- External	factors	–	sometimes	development	is	happy	with	infrastructure	they	run	
on	or	tool	they	use	but	the	licensing	cost	or	operational	cost	grow	disproportionate	
to	alternatives.	

	

3.4.2 Decision	Criteria	

	
It‘s	 necessary	 to	 HTTP	 in	 account	 all	 the	 various	 factors	 when	 selecting	 proper	
architectural	style.	Fundamentally	architect	designs	whatever	specified	domain	and	all	
other	structural	elements	required	to	make	the	HTTP	running	smoothly.		
	
	

- The	domain	-		one	of	the	most	important	aspects,	it	affects	operational	architecture	
characteristics.	Architects	don‘t	have	to	be	necessarily	subject	matter	experts,	but	

 31

should	have	at	least	a	good	understanding	of	major	aspects	of	the	domain	under	
design.	Discover	and	elucidate	the	architecture	characteristics	needed	to	support	
the	domain	and	other	external	factors.	

	
	

- Data	architecture	–	architects	have	to	collaborate	on	database,	schemas	and	other	
data	design	related	concerns.	It	should	be	understood	what	impact	the	data	might	
have	on	their	design.	Particularly	it‘s	important	when	having	more	to	work	also	
with	older	systems	to	design	proper	interaction	in	data	architecture	models.		

	
	

- Organizational	constraints	–	many	external	constraints	may	affect	final	design.	It	
can	be	for	example	the	cost	of	features	from	cloud	vendors	that	would	be	ideal	to	
use	or	company	plans	of	growth	into	a	certain	direction	in	future.	

	
	

- Knowledge	 of	 team	 structures	 and	 information	 streams	 –	 project	 specific	
requirements	 often	 affect	 architecture	 as	well,		 the	 architecture	 should	 be	well	
structured	to	ease	up	operational	processes	and	quality	assurance	processes.	For	
example	if	agile	engineering	teams	lack	maturity	in	the	organization,	it‘s	very	hard	
for	certain	architecture	styles	that	rely	on	those	practices	for	success,	which	will	
present	many	difficulties.			

	
	

- Distributed	 or	Monolithic	 architecture	 choice	 –	 architect	must	 determine	 if	 the	
single	 set	 of	 architecture	 characteristics	will	 be	 sufficient	 for	 the	 design,	 or	 do	
different	parts	of	the	HTTP	need	differing	architecture	characteristics	?	Single	set	
implies	 that	 a	 monolith	 is	 suitable,	 in	 other	 cases	 it	 implies	 a	 distributed	
architecture.	

	
- Type	 of	 communication	 between	 services	 –	 before	 doing	 any	 decision	 around	

communication	we	have	to	know	whether	the	communication	will	be	synchronous	
or	asynchronous.	Synchronous	communication	is	more	convenient	but	it	can	lead	
to	 scalability	 and	 reliability	 issues.	 On	 the	 other	 hand	 asynchronous	
communication	provides	benefit	in	terms	of	performance	and	scaling	possibilities	
but	also	makes	things	more	complicated.	In	asynchronous	communication	often	
many	 issues	 like	 data	 synchronization,	 deadlocks	 or	 race	 condition	 arise.	
Therefore	it	makes	sense	to	use	synchronous	communication	wherever	you	can	
predict	that	there	shouldn‘t	be	any	scalability	issues.		
	

	

 32

3.4.3 Monolithic	architecture	

Monolithic	architecture	is	the	traditional	unified	model	for	designing	a	service.	Monolithic	
means	that	the	whole	solution	is	composed	all	in	one	piece.	It‘s	tightly	interconnected	and	
interdependent	 rather	 than	 decoupled	 as	 in	 case	 of	 more	 modular	 architectures	 like	
microservices.	 Tightly-coupled	 architecture	 means	 that	 each	 component	 and	 the	
associated	components	must	be	present	in	order	for	code	to	compile	and	execute.		
	
This	also	means	that	if	any	component	must	be	updated,	you	have	to	update	the	whole	
application	whereas	 in	modular	 architectures	 it‘s	 enough	 to	 update	 only	 components	
that‘s	changed.	
	
There	are	also	benefits	of	this,	in	general	it‘s	easier	to	test	and	debug,	when	all	elements	
of	 a	 solution	 are	 in	 one	 place	 and	 also	 keeping	 correct	 dependencies.	 This	 type	 of	
architecture	is	more	recommended	for	simpler	solutions.	(Wigmore,	2016)	

	
	

	

Figure	4:	Monolithic	architecture	example	-	source:	(author)	

3.4.3.1 Modular	Monolith	

Modularization	is	a	technique	in	programming	and	software	design	that	emphasizes	
separating	functionality	of	a	program	into	independent,	interchangeable	modules,	such	

 33

that	each	contains	everything	necessary	to	execute	only	one	aspect	of	the	desired	
functionality.	A	module	interface	expresses	the	elements	that	are	provided	and	required	
by	the	module.	The	elements	defined	in	the	interface	are	detectable	by	other	modules.	
The	implementation	contains	the	working	code	that	corresponds	to	the	elements	
declared	in	the	interface.	(Grzybek,	2019)	
	
One	way	how	to	loosely	decouple	independent	parts	of	application	in	one	monolith	is	to	
split	the	independent	business	domains	into	several	modules	that	are:	
	

- independent	and	interchangeable	
- have	everything	necessary	to	provide	functionality	
- have	defined	interfaces	

	

	
Figure	5:	Modules	without	encapsulation	example	-	source:	(author)	

	

	
Figure	5:	Modules	with	encapsulation	example	-	source:	(author)	

	
	
	

 34

3.4.4 Microservice	architercute	

	
Service	oriented	architecture	in	which	applications	are	decomposed	into	loosely	coupled,	
small	services	based	on	area	of	functionality.	It‘s	important	to	keep	the	service	small	and	
decomposed	just	around	business	capability.	
	
It‘s	 often	 contrasted	with	monolithic	 architectures.	 In	 case	of	microservices	 instead	of	
managing	 a	 single	 codebase	 and	 sharing	 data	 schema	 and	 database	 as	 in	 monolithic	
applications,	 in	microservices	architecture	cod	eis	 	decomposed	 into	smaller	 codebase	
that	is	managed	independently.	All	the	services	in	this	case	contribute	to	achieve	a	single	
well-defined	 task.	Services	 run	 in	separate	processes	and	communicate	synchronously	
through	either	HTTP	API	or	asynchronously	through	message	contracts.	(Newman,	2021)	
	
	
	

	
Figure	6:	Microservice	architecture	example	-	source:	(author)	

	
	

 35

3.4.4.1 Benefits	of	Microservices	Architecture	

Well	 implemented	 microservices	 architecture	 increases	 the	 release	 velocity	 of	 large	
applications	and	enables	business	to	deliver	value	faster	and	more	reliably.		

	
	

Agility	
	
Compare	 to	 monolithic	 applications	 where	 fast	 and	 reliable	 deployments	 can	 be	
challenging.	Having	small	change	in	one	feature	area	can	be	held	up	by	a	change	to	another	
feature.	 In	 large	 applications,	 time	 spent	 on	 testing	 will	 increase	 and	 it	 can	 take	 up	
significant	 time	 to	 deliver	 new	 change.	 By	 decomposing	 an	 application	 into	 smaller	
services,	the	time	necessary		
	
	
Fault	Isolation	
	
In	monolithic	applications,	a	single	library	fallacy	or	module	can	cause	large	problems	for	
the	whole	application.	This	can	be	as	little	as	memory	leak	imported	through	mistakes	in	
external	 libraries	 and	 can	 affect	 stability	 and	 performance	 of	 applications.	 When	 the	
services	 are	 isolated	 and	 operate	 independently,	 defects	 can	 be	 contained	 in	 single	
service.		
	
	
Scaling	and	resource	utility	
	
In	general	applications	scale	horizontally	or	vertically.	It	means	that	one	option	of	scaling	
is	 increasing	 resources	 on	 a	 given	 machine	 that	 applications	 run	 on	 or	 scale	 out	 by	
increasing	the	number	of	deployed	instances	and	route	users	across	all	of	them.	Usually	
applications	 have	 many	 features	 and	 many	 of	 them	 could	 have	 different	 resource	
requirements.	Some	features	scale	easily,	whereas	others	might	require	a	lot	of	memory	
and	 therefore	 limit	 the	 possibility	 of	 vertical	 scaling.	 Decoupling	 those	 features	 into	
separate	services,	teams	can	help	to	meet	individual	resource	and	scale	requirements.	
	
	
Team	Responsibilities	
	
Having	 many	 small	 services	 greatly	 helps	 with	 splitting	 responsibilities	 among	
engineering	 teams.	 Making	 people	 responsible	 for	 designing,	 running	 and	 operating	
improves	 the	 motivation	 of	 the	 team	 to	 keep	 things	 clean	 whereas	 in	 monolithic	
application	all	 components	are	 intertwined	and	 it‘s	hard	when	making	 changes	 to	not	
affect	other	areas	in	application.		
	

 36

Observability	
	
Decomposing	application	into	many	services	enables	us	to	gain	deeper	insights	into	
individual	parts,behavior	of	the	features	and	their	interaction.	Also	it‘s	easier	to	identify	
and	optimize	the	services	based	on	HTTP	metrics	such	as	proces	utilization	or	memory	
usage.	It‘s	easier	to	tie	them	back	to	the	feature	when	they	run	in	a	separate	process	or	
container.	
	

3.4.4.2 Challenges	of	Microservice	architecture	

As	mentioned	in	chapter	3.4.3,	there	are	trade-offs	when	choosing	one	or	the	other.	
Despite	gaining	more	popularity	in	modern	stacks,	microservices	architecture	has	its	
own	challenges	that	need	to	be	addressed.	The	fact	that	it‘s	popular	to	use	in	new	
applications	doesn‘t	have	to	neccessary	mean	that	it‘s	suitable	for	every	scenario	
(Sabella,	2018).		
	

Complexity		
	
Distributed	 systems	 are	 complex	 by	 their	 nature.	When	 application	 is	 decoupled	 into	
many	services,	it‘s	necessary	to	use	network	calls	for	data	exchange	between	them.	This	
adds	 a	 bit	 of	 latency	 and	 experience	 transient	 failures,	 and	 the	operations	 can	 run	on	
different	machines	 with	 a	 different	 time.	 It‘s	 not	 assumed	 that	 even	 in	 the	 cloud	 the	
latency	is	zero,	infinite	bandwidth	and	the	network	is	always	secured.	In	fact	there	are	
many	 false	 assumptions	 that	 developers	 commonly	 have	 like	 that	 the	 topology	 of	 the	
network	will	not	change,	there	is	one	administrator,	transport	is	for	free.	Many	developers	
that	 are	 not	 familiar	 with	 distributed	 systems	 often	 make	 false	 assumptions	 when	
entering	this	world.	
	
Consistency	and	Data	Integrity	
	
Having	 decentralized	 data	 means	 that	 data	 will	 often	 exist	 in	 multiple	 places	 with	
relationships	spanning	different	systems.	(Lee,	2018)	says	it‘s	not	sufficient	to	perform	
transactions	across	all	those	systems.	There	is	a	necessity	to	deploy	different	operational	
models	to	data	management.	To	do	it	new	patterns	for	dealing	with	this	have	arised.		
	
	
Versioning	integration	
	
In	microservices	architecture	 it‘s	 important	 to	pay	attention	 to	 forward	and	backward	
compatibility	between	services	that	rely	on	mutual	communication.	To	ensure	services	
can	communicate	there	are	usually	contract	tests	between	services.	This	guarantees	that	
API	 interfaces	 are	 compatible	 with	 each	 other.	 This	 layer	 certainly	 adds	 additional	

 37

overhead	compared	to	monolithic	applications	when	the	whole	solution	compiles	in	one	
place.	
	

Service	dependency	management	
	
In	monolithic	applications	the	advantage	is	that	all	libraries	and	dependencies	get	to	be	
compiled	into	one	package	and	tested	as	a	whole.	With	microservices,	dependencies	are	
managed	differently,	requiring	environment-specific	routing	and	discovery.		
	
	
Availability	
	
Despite	the	isolation	of	faults	in	microservices	design,	It‘s	still	an	issue	if	one	service	fails	
to	 serve	 the	 functionality	 that	 it	 should	provide.	Therefore	 services	 should	 implement	
resilient	 patterns,	 or	 possibility	 of	 functionality	 downgraded	 in	 the	 event	 of	 outage.	
Implementing	health	and	readiness	checks	is	vital	part	for	detecting	flaws	in	application	
communication	 in	 time	 and	 preventing	 degraded	 experience	 for	 users.		 (Boris	 Scholl,	
2019)	
	

3.5 Cloud	Native	Applications	

When	 building	 an	 application	 that‘s	 supposed	 to	 be	 deployed	 and	 run	 in	 a	 cloud	
environment	it‘s	necessary	to	keep	in	mind	that	all	major	cloud	providers	such	as	Google,	
Microsoft	or	Amazon	offer	various	guides	on	how	to	integrate	with	their	platform	specific	
tools	and	patterns	to	follow.		
	
In	the	modern	era,	software	is	commonly	delivered	as	a	service	in	front	of	SaaS.	Therefore	
many	developers	come	together	and	put	experiences	during	development,	operation	and	
scaling	of	hundreds	of	apps	into	a	document	called	“The	Twelve-Factor	App”.		
	

3.5.1 The	Twelve-factor	App	

	
This	document	was	published	to	raise	awareness	about	recurring	problems	in	modern	
application	development.	It	offers	a	set	of	broad	conceptual	solutions	to	those	problems	
with	accompanying	terminology.		
	

 38

3.5.1.1 Codebase	

Applications	should	always	be	tracked	in	a	version	control	system	like	Git,	Subversion	or	
Mercurial.		
	
Only	 one	 codebase	 per	 application	 but	 many	 deployments.	 This	 is	 typically	 multiple	
instances	 of	 the	 application	 running	 like	 production,	 staging	 and	 development	
environment.	

3.5.1.2 Isolated	Dependencies	

The	full	and	explicit	dependency	specification	is	applied	uniformly	to	both	production	and	
development.	
	

3.5.1.3 Config	

Storing	config	into	the	environment	variables.	Environment	variables	are	easy	to	change	
between	deploys	without	changing	any	code	and	extra	rebuild.	
	
Config	file	shouldn‘t	contain	any	credentials.		
	

3.5.1.4 Backing	Services	

Like	 the	database	 are	 traditionally	managed	by	 the	 same	 systems	administrators	who	
deploy	the	app’s	runtime.	In	addition	to	these	locally-managed	services,	the	app	may	also	
have	services	provided	and	managed	by	third	parties.	

	
Code	for	a	twelve-factor	app	makes	no	distinction	between	local	and	third	party	services.	
To	the	app,	both	are	attached	resources,	accessed	via	a	URL	or	other	locator	/	credentials	
stored	in	the	config.		

	

3.5.1.5 Build,	Release,	Run	

Build	stage	converts	code	 from	the	source	repository	 into	an	executable	bundle	called	
build.	It	fetches	dependencies	and	compiled	binaries	and	assets.	

	
Release	 stage	 takes	 build	 from	 the	 previous	 stage	 and	 combines	 it	 with	 specified	
configuration	files	and	is	ready	for	execution	on	selected	environments.	

	
Run	stage	runs	application	 in	 the	execution	environment	by	execution	run	commands.	
	

 39

3.5.1.6 Processes		

Twelve-factor	processes	are	stateless	and	share-nothing.	Any	data	that	needs	to	persist	
must	be	stored	in	a	stateful	backing	service,	typically	a	database.	

	
The	memory	space	or	filesystem	of	the	process	can	be	used	as	a	brief,	single-transaction	
cache.	For	example,	downloading	a	large	file,	operating	on	it,	and	storing	the	results	of	the	
operation	in	the	database.	The	twelve-factor	app	never	assumes	that	anything	cached	in	
memory	or	on	disk	will	be	available	on	a	future	request	or	job	–	with	many	processes	of	
each	type	running,	chances	are	high	that	a	 future	request	will	be	served	by	a	different	
process.	Even	when	running	only	one	process,	a	restart	(triggered	by	code	deploy,	config	
change,	 or	 the	 execution	 environment	 relocating	 the	 process	 to	 a	 different	 physical	
location)	will	usually	wipe	out	all	local	(e.g.,	memory	and	filesystem)	state.	
	
Some	web	systems	rely	on	“sticky	sessions”	–	that	is,	caching	user	session	data	in	memory	
of	the	app’s	process	and	expecting	future	requests	from	the	same	visitor	to	be	routed	to	
the	same	process.	Sticky	sessions	are	a	violation	of	twelve-factor	and	should	never	be	used	
or	 relied	upon.	Session	state	data	 is	a	good	candidate	 for	a	datastore	 that	offers	 time-
expiration,	such	as	Memcached	or	Redis.	
	

3.5.1.7 Binding	of	Ports	

Application	 is	self	contained	and	doesn‘t	 rely	on	runtime	 injections	of	web	server	 into	
execution	environment	to	create	web-facing	service	

	
The	web	app	exports	HTTP	as	a	service	by	binding	to	a	port,	and	 listening	to	requests	
coming	in	on	that	port.	
	

3.5.1.8 Concurrency	

Processes	 in	 the	 twelve-factor	app	HTTP	strong	cues	 from	 the	unix	process	model	 for	
running	 service	 daemons.	 Using	 this	 model,	 the	 developer	 can	 architect	 their	 app	 to	
handle	diverse	workloads	by	assigning	each	type	of	work	to	a	process	type.	For	example,	
HTTP	requests	may	be	handled	by	a	web	process,	and	 long-running	background	 tasks	
handled	by	a	worker	process.	

	

3.5.1.9 Disposibility	

Processes	are	disposable,	meaning	they	can	be	started	or	stopped	at	a	moment’s	notice.	
This	 facilitates	 fast	 elastic	 scaling,	 rapid	 deployment	 of	 code	 or	 config	 changes,	 and	
robustness	of	production	deploys.	

	

 40

Processes	should	aim	to	minimize	startup	time.	
	

Processes	 should	 also	 be	 robust	 against	 sudden	 death,	 in	 the	 case	 of	 a	 failure	 in	 the	
underlying	hardware.	

	

3.5.1.10 Parity	of	Environments	

The	twelve-factor	app	is	designed	for	continuous	deployment	by	keeping	the	gap	between	
development	and	production	small.	

- Make	the	time	gap	small:	a	developer	may	write	code	and	have	it	deployed	hours	
or	even	just	minutes	later.	

	
- Make	the	personnel	gap	small:	developers	who	wrote	code	are	closely	involved	in	

deploying	it	and	watching	its	behavior	in	production.	
	

	
- Make	the	tools	gap	small:	keep	development	and	production	as	similar	as	possible.	

3.5.1.11 Logging	

It	should	not	attempt	to	write	to	or	manage	log	files.	Instead,	each	running	process	writes	
its	event	stream,	unbuffered,	to	stdout.	During	local	development,	the	developer	will	view	
this	stream	in	the	foreground	of	their	terminal	to	observe	the	app’s	behavior.	
	

3.5.1.12 Admin	Processes	

One-off	admin	processes	should	be	run	in	an	identical	environment	as	the	regular	long-
running	processes	of	the	app.	They	run	against	a	release,	using	the	same	codebase	and	
config	as	any	process	run	against	 that	 release.	Admin	code	must	ship	with	application	
code	to	avoid	synchronization	issues.		(Wiggins,	2017)	
	

3.5.2 API	Design	and	Versioning	

	
	API	is	a	prime	interface	for	communication	of	services	and	therefore	it	is	important	to	
have	proper	documentation	in	place	and	versioning	of	API.	Versioning	is	not	that	easy,	
especially	given	that	there	are	many	different	approaches	that	can	be	implemented	in	a	
project.		
	
Generally	there	are	3	main	approaches.	One	is	the	“The	knot”	where	consumers	of	your	
API	are	tied	to	a	single	version	and	when	changes	in	the	API	are	made,	all	consumers	need	

 41

to	change	as	well.	This	approach	is	disadvantageous	for	consumers	because	they‘re	forced	
to	upgrade	when	each	new	API	version	is	released.		
	
Next	approach	 is	called	“point-to-point”	where	all	API	versions	keep	running	and	each	
consumer	uses	the	version	they	need	to.	Consumers	can	migrate	to	the	new	versions	when	
they	decide	to.	Compared	to	the	first	approach,	this	strategy	is	kinder	to	consumers	but	
on	the	other	hand	creates	difficulty	with	the	maintenance	of	older	versions.	
	
Last	 approach	 is	 called	 “compatible	 versioning”.	 All	 consumers	 talk	 to	 the	 same	 API	
version.	Old	 versions	 are	deprecated	 and	no	 longer	 exist	 because	 the	 latest	 version	 is	
backward	compatible.		
	

3.5.2.1 Semantic	Versioning	

It‘s	 the	 most	 standard	 in	 the	 industry.	 The	 semantic	 versioning	 of	 the	 API	 can	 look	
following:	
	
	

	
Table	1:	Example	of	versioning	(source:	author)	

Type	 Major	 Minor	 Patch	

Example	 1.	 2.	 1.	
	
	

• Major	version	is	increased	when	you	make	API-incompatible	changes.	
• Minor	version	is	increased	when	you	add	backward-compatible	features.	
• Patch	version	is	increased	when	you	make	backward-compatible	bug	fixes.	

This	type	of	versioning	can	be	applied	to	the	level	of	API	that	communicates	to	consumers	
for	signalizing	changes	that	were	made.	
	

3.5.2.2 The	OpenAPI	Specification	

(Miller,	 2017)	 defines	 it	 as	 specification	 defines	 standard,	 programming	 language-
agnostic	interface	description	for	REST	APIs,	which	allows	both	humans	and	computers	
to	discover	and	understand	capabilities	of	a	service	without	requiring	access	to	the	source	
code,	external	documentation,	or	inspection	of	network	requests.	When	properly	defined	
via	OpenAPI,	 a	 consumer	 can	understand	 and	 interact	with	 the	 remote	 service	with	 a	
minimal	 amount	 of	 implementation	 logic.	 Similar	 to	 what	 interface	 descriptions	 have	

 42

done	for	application	level	programming.	The	goal	of	specification	is	to	remove	guesswork	
in	integration	external	service.	
	

3.5.3 Service	Communication	

Services	communication	through	the	network	are	essential	topics	in	distributed	systems	
because	 of	 the	 impact	 it	 has	 on	 performance	 of	 systems.	 Therefore	 it‘s	 necessary	 to	
understand	all	options	available	during	 the	design	phase	and	 implementation	of	cloud	
native	application.	Communication	can	be	separated	to	the	external	and	internal.	External	
means	 the	 requests	 exchanged	 between	 services	 within	 our	 cluster	 and	 external	 are	
typically	integrations	on	3rd	party	services	or	end	user	requests.		

	

3.5.3.1 Standard	Protocols	

The	 most	 common	 protocol	 for	 communication	 between	 server	 and	 client	 is	 HTTP,	
however	it‘s	not	the	most	efficient	one.	Large	distributed	systems	can	be	composed	out	of	
hundreds	of	 services	and	chosen	protocol	 for	data	exchange	 is	an	essential	 factor	 that	
affects	performance.		

Websockets

Websockets	represent	standard	bidirectional	real-time	communication	between	server	
and	clients.	They	allow	us	to	open	a	long	single	TCP	socket	connection	that‘s	bidirectional.	
Full	duplex	messages	can	be	 instantly	distributed	with	minimal	 latency.	Connection	of	
websockets	is	initiated	by	standart	handshake	through	HTTP	request	to	the	server	after	
that	it‘s	replaced	with	Websocket	connection.	It	allows	to	transfer	large	volumes	of	data	
with	relatively	low	latency.	

gRPC
	
This	protocol	is	fairly	new	and	is	gaining	popularity	through	friendliness	to	developer	and	
high	performance.	It	uses	protocol	buffers	which	represent	the	way	of	defining	serializing	
structured	data	into	binary	format.	Binary	format	is	very	efficient	and	enables	for	small	
payloads	and	quick	transmission.	

HTTP 2
	
This	protocol	 is	 designed	 for	 low	 latency	 and	multiplexing	 requests	over	 a	 single	TCP	
connection	 by	 using	 streams.	 Another	 change	 over	 the	HTTP	1.x	 is	 that	 it‘s	 no	 longer	
textual	protocol	but	it	changed	into	binary	format	of	messages	which	are	more	efficient	
to	transmit.		
	

 43

3.5.3.2 Messaging	Protocols	

	
Cloud	 native	 applications	 embrace	 event.-driven	 and	 message-based	 communication.	
There	are	many	messaging	protocols	like	STOMP,	WAMP,	AMQP,	MQTT	to	name	a	few.	
Probably	the	2	most	popular	are	the	following.	
	

Message	Queue	Telemetry	Transport	
	
Binary	 protocol	 primarily	 used	 in	 the	 domain	 of	 IoT	 and	 machine-to-machine	
communication.	It‘s	designed	to	work	in	conditions	with	low	bandwidth	connection	and	
unpredictable	network.	Often	is	used	for	communication	between	sensors	and	gateways.	
The	 protocol	 is	 based	 on	 publisher	 /	 subscriber	 messaging	 mechanism.	 It	 transmits	
messages	through	sending	compact	binary	payload.	
	
Advanced	Message	Queueing	Protocol	
	
Same	as	the	previously	mentioned	protocol	AMQP	is	also	a	binary	protocol.	It‘s	designed	
around	 reliable	 queuing	 feature	 rich	 transactions.	 Compared	 to	 MQTT	 it‘s	 not	 as	
lightweight	 or	 fast,	 but	 is	 often	 preferred	 by	 various	 vendors	 due	 to	 reliability	 and	
interoperability.	
	

Generally	when	 choosing	 between	 these	 2	 protocols	 it	 depends	 on	what	 the	 use	 case	
requires.	MQTT	is	more	designed	for	fast	simple	operations	on	the	other	hand	if	there	is	
necessity	 for	 interoperability	 and	 advanced	 functionality	 that	 goes	 beyond	 simple	
messaging	AMQP	would	be	more	suitable.	
	

3.5.3.3 Asynchronous	Messaging	

Asynchronous	messaging	stands	for	message-based	communication	that	enables	loosely	
and	light	coupling	between	microservices	and	interactions	through	passing	standardized	
messages.	 When	 using	 asynchronous	 communication,	 microservice	 publishes	 events	
when	something	happens	and	another	microservice	subscribes	when	it	needs	to	be	aware	
of	it.		
	
	

 44

	
	

Figure	7:	Publisher	/	Subscriber	pattern	of	asynchronous	communication	-	source:	(Hohpe,	2003)	

3.5.3.4 IoT	Communication	with	Backends	

In	previous	chapters	3.5.3.1	–	3.5.3.3	Were	described	communication	types	that	support	
machine-to-machine	communication.	Knowing	when	to	use	them	is	essential	to	achieve	
proper	results	in	terms	of	performance,	response	and	robustness.		
	
In	(Mijic,	2018)	are	describe	two	possible	patterns	to	communicate	with	the	IoTs.	The	
request/response	mechanism	requires	an	established	channel	between	parties.	It	may	be	
used	 for	 individualized	 information	 exchanges.	 The	 request/response	 mode	 isn’t	
plausible	when	some	condition	(event)	must	trigger	many	of	devices	to	execute	an	action.	
In	this	case,	there	are	two	general	choices.	
	

- Initiating	loop	sending	matching	command	to	all	IoT’s	from	matching	device	list.	
	

- Send	event	to	centralized	service	that	notifies	devices	via	message.	

The	publish/subscribe	pattern	is	inherently	decentralized.	Figure	8	shows	a	sequence	of	
actions	that	accompany	this	mechanism.	The	publish/subscribe	mode	creates	fast,	local	
action	 loops	 that	don’t	 swamp	 the	 central	node.	Moreover,	 a	 triggering	device	doesn’t	
need	to	maintain	a	separate	device	list	for	each	event.	The	protocol	layer	is	optimized	to	
manage	the	device	network;	thus	it	can	efficiently	handle	registrations	and	notifications.	

 45

Figure 8: UML sequence diagram illustrating backends and device communication – source: (Mijic, 2018)

Apache	Kafka	

Kafka	 is	 an	 event.	 Streaming	 platform	 that	 combines	 messaging,	 storage	 and	 stream	
processing	to	secure,	reliable	and	highly	scalable	infrastructure	pipeline.	Kafka	enables	
integration	with	any	source	or	sink.	Kafka	allows	continuous	streaming	and	processing.	
The	 main	 benefits	 according	 to	 (WAEHNER,	 2019)	 are	 stream	 processing,	 high	
throughput	and	good	integration	with	the	rest	of	the	enterprise.	

As	mentioned	at	the	beginning	there	are	two	options	that	can	be	used	for	communication.		

	

MQTT	Proxy	for	data	ingestion	

This	proxy	allows	organizations	to	eliminate	the	additional	cost	in	comparison	with	MQTT	
broker.	 MQTT	 Proxy	 accesses,	 combines,	 and	 guarantees	 that	 IoT	 data	 flows	 into	 the	
business	without	adding	additional	layers	of	complexity.	
	
It’s	horizontally	scalable,	consumes	and	pushes	data	from	IoT	devices	and	forwards	it	to	
Kafka	Broker.	The	Kafka	broker	is	the	source	of	truth	responsible	for	persistence,	high	
availability,	and	reliability	of	the	IoT	data.		
	
	

 46

Figure 9: MQTT Proxy integration with broker - source: (WAEHNER, 2019)

REST	Proxy	for	IoT	Integration	

Implementation	with	IoT	through	HTTPs	is	usually	much	faster	due	to	easier	deployment	
and	 technology	 complexity.	 HTTP	 is	 push	 based	 so	 it	 makes	 security	 much	 simpler.	
Scalability	is	controlled	in	a	standart	manner	through	load	balancer	and	it	supports	up	to	
1000	requests	/	second.		

	

Figure 10: REST proxy with Kafka Broker - source: (WAEHNER, 2019)	

	
	

3.5.4 Reactive	Microservices	

The	 term	 “reactive”	 refers	 to	 programming	 models	 that	 are	 built	 around	 reacting	 to	
change,	usually	network	components	react	to	I	/	O	Events,	UI	controllers	react	to	user	
inputs	and	others.	Main	purpose	of	this	paradigm	is	to	be	able	to	react	to	events	as	the	
operations	complete	or	data	becomes	available.	
	
The	key	expected	benefit	is	ability	to	scale	with	a	small,	fixed	number	of	threads	and	less	
memory.	That	makes	applications	more	resilient	under	load,	because	they	scale	in	a	more	
predictable	 way.	 In	 order	 to	 observe	 it	 you	 need	 to	 have	 the	 right	 use	 case	 for	 this	

 47

scenario.	This	typically	refers	to	a	scenario	when	service	A	waits	for	result	from	service	B	
and	after	that	calls	service	C.		
	
In	such	microservices	it‘s	assumed	that	applications	do	not	block,	therefore	non-blocking	
servers	use	a	small,	fixed-size	thread	pool	event	loop	workers)	to	handle	requests.	(Spring	
Foundation,	2020)	
	

3.5.5 Quality Metrics – ISO/IEC 25023

Standard	 ISO	 /	 IEC	 25023	 defines	 metrics	 of	 quality	 for	 quantitative	 measuring	 of	
software	product	from	the	view	of	individual	characteristics	described	in	ISO	/	IEC	25010.		
	
(ISO/IEC,	 2016)	 Software	 product	 quality	 can	 be	 evaluated	 by	 measuring	 internal	
properties,	or	by	measuring	external	properties	(typically	by	measuring	the	behaviour	of	
the	code	when	executed),	or	by	measuring	quality	in	use	properties	(when	the	product	is	
in	 real	 or	 simulated	 use).	 Appropriate	 internal	 properties	 of	 the	 software	 are	 a	
prerequisite	 for	 achieving	 the	 required	 external	 behaviour	 and	 appropriaty	 external	
behaviour	is	a	prerequisite	for	achieving	quality	in	use.	
	
	
	

Figure 11: Relatinonship between types of quality measures - source: (ISO/IEC, 2016)

	

From	the	point	of	view	of	topic	scalable	distributed	cloud	native	applications,	 it	makes	
sense	to	focus	on	relevant	metrics	from	the	area	of	performance	efficiency	and	reliability.		

	

 48

3.5.5.1 Performance	Efficiency	measures	

Performance	 efficiency	 measures	 are	 used	 to	 assess	 the	 performance	 relative	 to	 the	
amount	of	resources	used	under	stated	conditions.	Resources	can	include	other	software	
products,	 the	 software	 and	hardware	 configuration	 of	 the	 systém,	 and	materials	 (e.	 g.	
Storage	media)	
	

	

Table 2: Performance efficiency measure metrics ISO / EIC 25023 - source: (ISO/IEC, 2016)	

ID	 Name	 Description	 Measurement	
function	

PTb-1-G	 Mean	response	time	 How	long	is	the	mean	
time	taken	by	the	
system	to	respond.	

𝑋 = 	 $ (𝐴
!"#	%&	'

𝑖)	/	𝑛	

Ai	=	time	taken	by	
system	to	respond.	

n	=	number	of	
responses	measured	

PTb-2-G	 Response	time	
adequacy	

How	well	does	system	
response	time	meet	the	
specified	target	?	

	𝑋	 = 	𝐴	/	𝐵	

A	=	Mean	response	
time.	

B	=	Target	response	
time	specified	

	

3.5.5.2 Availability	measures	

Availability	 measures	 are	 used	 to	 assess	 the	 degree	 to	 which	 a	 system,	 product	 or	
component	is	operational	and	accessible	when	required	use.	

Table 3: Availability measures metrics ISO/EIC 25023 - source: (ISO/IEC, 2016)	

ID	 Name	 Description	 Measurement	
function	

RAv-1-G	 System	availability	 For	what	
proportion	of	the	
scheduled	system	
operational	time	is	

	𝑋	 = 	𝐴	/	𝐵	

 49

the	system	
available	?	

A	=	System	
operation	time	
actually	provided.	

B	=	System	
operation	time	
specified	in	the	
operation	
schedule.	

	

3.5.5.3 Fault	tolerance	measures	

Fault	 tolerance	measures	are	used	 to	assess	 the	degree	 to	which	a	systém	operates	as	
intended	despite	the	presence	of	hardware	or	software	faults.	

	

Table 4: Fault tolerance measures metrics ISO/EIC 25023 - source: (ISO/IEC, 2016)	

ID	 Name	 Description	 Measurement	function	

RFt-1-G	 Failure	
avoidance	

What	proportion	of	
fault	patterns	has	been	
brought	under	control	
to	avoid	critical	and	
serious	failures?	

	𝑋	 = 	𝐴	/	𝐵	

A	=	Number	of	avoided	
critical	and	serious	failure	
occurences	(base	on	test	
cases)	

B	=	Number	of	executed	
test	cases	of	fault	pattern,	
during	testing	

RFt-3-G	 Mean	down	time	 How	long	does	the	
system	stay	unavailable	
when	a	failury	occurs	

𝑋 = 	 $ (𝐴
!"#	%&	'

𝑖	 − 	𝐵𝑖)	/	𝑛	

Ai	=	Time	at	which	the	faul	
tis	reported	by	the	systém	

Bi	=	Time	at	which	faul	tis	
detected	

n	=	number	of	faults	
detected	

	

 50

3.5.6 Continuous	Delivery	

Continuous	delivery	is	a	set	of	practices	and	disciplines	in	which	software	delivery	teams	
produce	 valuable	 and	 robust	 software	 in	 short	 cycles.	 Functionality	 is	 added	
incrementally	and	the	software	can	be	reliably	released	at	any	time.	This	maximizes	the	
opportunity	 for	 rapid	 feedback	 and	 learning,	 both	 from	 a	 business	 and	 technical	
perspective.	
	
Automation	of	Releases	
	
The	build	pipeline	must	provide	rapid	feedback	for	the	developers	 in	order	to	support	
daily	 work	 cycles	 related	 to	 code	 changes.	 Operation	 of	 the	 pipeline	 must	 be	 highly	
repeatable	and	reliable.	The	goal	is	to	achieve	100%	of	automation	or	as	close	you	can	get	
to	it.	Here	is	list	of	steps	that	should	be	always	automated:	
	

• Compilation	and	static	analysis	of	code		
	

• Testing	(chapter	3.5.7)	
	

• Provisioning	of	all	environments	
	

• Monitoring	and	alerting	systems	in	place	(chapter	3.5.8)	
	

• Data	store	migrations	
	

• HTTP	testing,	performance	and	security	testing	
	

• Tracking	and	auditing	history	of	changes	
	
	
	
	
	
	
	
	
	
	
	
	

 51

3.5.6.1 Development	Pipeline	

In	the	Figure	13	is	shown	an	example	of	a	typical	build	pipeline.	It	starts	with	a	process	of	
continuous	integration.	Code	that	developers	write	is	continuously	committed	to	a	shared	
repository	 where	 it‘s	 managed	 by	 version	 control.	 This	 gets	 automatically	 built	 and	
packaged	 into	 an	 artifact.	 After	 This	 stage	 is	 finished	 it‘s	 submitted	 to	 a	 series	 of	
automated	 tests	 and	 HTTP	 quality	 attribute	 verification	 stages,	 before	 going	 through	
manual	testing.	Then	build	is	promoted	to	the	stage	environment	where	the	configuration	
should	 ideally	 mirror	 the	 production	 environment.	 Finally	 then	 it‘s	 promoted	 to	
production	and	delivered	between	customers.	(Daniel	Bryant,	2018)	
	

Figure 12: CI / CD Pipeline concept - source: (author)	

 52

3.5.7 Testing	

Every	piece	of	code	 that	 is	deployed	 to	 the	production	environment	among	customers	
needs	 to	 be	 thoroughly	 tested.	 Velocity	 of	 deployments	 and	 releases	 for	 cloud	 native	
solutions	tends	to	be	high	and	you	can	no	longer	rely	just	on	doing	manual	tests.	In	order	
to	 increase	 release	velocity	with	 confidence	 that	 changes	will	 not	break	anything,	 you	
need	to	have	solutions	properly	covered	with	automated	tests.	
	
Most	of	the	functionality	should	be	tested	locally	through	unit	tests	and	integration	tests.	
It	 can	 ensure	 that	 all	 components	 work	 well	 together	 and	 a	 smaller	 portion	 of	 test	
coverage	 should	 be	 on	 the	UI	 layer.	 Point	 of	 this	 effort	 is	 to	 reduce	 long	 running	 and	
manual	tests.	
	
Test	Doubles	
	
For	most	 of	 the	 testing	 are	 used	mocked	 objects.	 Mocked	 objects	 are	 something	 that	
simulates	 functionality	 of	 real	 objects.	 For	 example	 using	 a	 mocked	 credit	 card	 or	
authorization	token	so	you	don‘t	have	to	use	real	instances	of	those	for	your	testing.	The	
common	three	of	those	types	are	mocks,	stubs	and	fakes.		
	
With	Mocks	you	define	specific	expectations	of	what	should	be	returned	from	the	object.	
Main	purpose	of	using	mock	is	to	test	interactions	between	objects.	For	example	setting	
up	 a	mock	of	 a	 dependent	 payment	 service	 that	 on	 invoking	 returns	 certain	 expected	
values.		
	

	
Figure	13:	Mock	example	(source:	author)	

	
	
Stubs	don‘t	contain	any	logic,	they	simply	return	values	defined	by	the	test	author.	They‘re	
useful	when	you	need	to	simulate	the	specific	state	of	the	object.	

 53

	

	
Figure	14:	Stub	example	-	source:	(author)	

	

Last	of	those	three	types	is	fake.	It‘s	typically	a	simple	implementation	of	API	that	behaves	
like	a	 real	 thing.	This	 can	be	very	helpful	especially	 for	 stabilization	of	 the	 tests	when	
services	you	deal	with	are	difficult	to	automate	testing	on	or	they‘re	not	very	stable	and	
therefore	without	using	such	a	thing	as	a	fake,	it	would	cause	instability	of	tests.		
	
	

	
Figure	15:	Fake	example	(source:	author)	

	

3.5.7.1 Test	Automation	Pyramid	

Testing	Pyramid	is	a	framework	that	helps	developers	and	quality	assurance	engineers	to	
ensure	 quality	 of	 software	 keeps	 very	 high	 as	 the	 codebase	 grows.	 It	 reduces	 time	

 54

required	 for	developers	 to	 identify	 if	newly	 introduced	code	could	cause	any	breaking	
changes.	It‘s	a	helpful	framework	to	build	more	reliable	test	suites.	
	
Pyramid	consists	of	3	 layers	that	should	be	included	in	an	automated	test	suite.	 It	also	
outlines	the	sequence	and	frequency	of	these	tests.	Point	of	this	is	to	provide	immediate	
feedback	to	ensure	code	changes	do	not	disrupt	service.	(Bose,	2020)	
	
	

	
Figure	16:	Test	Automatition	Pyramid	–	source:	(Bose,	2020)	

	

3.5.7.2 Unit	Testing	

In	the	context	of	microservice,	unit	test	covers	only	the	given	service	that	it‘s	designed	to	
test.	In	general	there	are	many	unit	tests	in	each	service.		
	
A	unit	consists	of	a	line	of	code,		method	or	a	class.	Unit	testing	refers	to	testing	a	particular	
unit	for	a	piece	of	code.	Best	practices	say	that	unit	tests	should	be	kept	small	and	very	
specific	in	what	it	tests.	Aim	of	developers	is	to	have	a	large	percentage	of	coverage.		Unit	
tests	should	be	designed	to	verify	if	the	methods	or	classes	behave	as	developers	expect.	
During	the	writing	or	modifying	of	code	it‘s	very	useful	for	developers	to	constantly	verify	
if	the	design	does	what	it‘s	supposed	to.	
	
Unit	 testing	 alone	 doesn‘t	 determine	 the	 behavior	 of	 the	 HTTP.	 Unit	 tests	 have	 good	
coverage	of	each	of	the	core	modules	of	the	HTTP	in	isolation.	To	verify	that	each	module	
correctly	interacts	with	its	collaborators,	more	coarse-grained	testing	is	required.	
	

 55

3.5.7.3 Service	Testing	(Integration)	

Distributed	systems	are	typically	made	out	of	multiple	services.	Integration	is	defined	as	
the	set	of	interactions	among	those	services.	Testing	interactions	between	services	with	
external	systems	is	called	integration	testing.	Integration	testing	starts	when	two	of	the	
components	are	available	and	ends	when	all	component	interfaces	have	been	tested.	The	
final	round	of	integration	involving	all	components	is	called	HTTP	integration.	
	
Architecture	and	design	gives	details	of	interactions	within	the	systems	however,	testing	
the	 interactions	between	one	HTTP	and	another	 requires	detailed	understanding	how	
they	work	together.	This	introduces	complexity	in	procedures	and	in	what	needs	to	be	
done.	 Recognizing	 this	 complexity,	 a	 phase	 in	 testing	 is	 dedicated	 to	 test	 these	
interactions,	 resulting	 in	 the	 evolution	 of	 a	 process.	 This	 ensuing	 phase	 is	 called	 the	
integration	testing	phase.	(Srinivasan	Desikan,	2007)	
	

3.5.7.4 UI	Tests	

At	the	top	of	the	pyramid	are	UI	tests.	Among	these	3	test	types	that	are	essential	in	testing	
of	the	HTTP,	UI	tests	should	represent	the	fewest	number	of	tests	of	all	types.	In	general	
UI	tests	are	costly	to	write	and	difficult	to	maintain	however,	they	are	useful	during	testing	
usability	and	accessibility.	Example	of	UI	tests	would	be	the	scenario	of	simulating	the	end	
user	 process	 of	 achieving	 a	 certain	 business	 use	 case.	 It	 could	 start	 like	 opening	 the	
browser,	 then	go	 to	a	 certain	 section	and	 trigger	 the	buy	process	 in	 the	HTTP.	 In	 this	
example	 we	 can	 very	 well	 test	 not	 only	 if	 the	 functionalities	 work	 but	 also	 if	 the	
functionalities	are	accessible	in	all	browsers	and	their	response	times.		
	

3.5.7.5 Performance	Tests	

Performance	tests	are	used	to	test	how	the	application	or	HTTP	performs	and	measure	it.	
This	could	mean	for	example	how	long	it	took	to	execute	a	certain	scenario.	You	can	write	
performance	tests	on	multiple	levels.	It	can	be	on	the	function	or	unit	level	to	measure	
how	long	a	function	or	request	takes	to	respond.	Performance	tests	often	help	to	pinpoint	
bottlenecks	and	allow	us	to	investigate	why	functions	HTTP	a	certain	amount	of	time	to	
execute.	It‘s	an	excellent	way	to	track	performance	of	the	HTTP	and	establish	baselines	to	
which	it	compares	to.	This	allows	also	for	measuring	the	difference	between	versions	of	
the	 HTTP	 as	 the	 developments	 continue	 and	 identify	 mistakes	 or	 newly	 created	
bottlenecks	that	might	block	successful	execution	of	other	functionalities.	Depending	on	
how	critical	performance	to	the	HTTP,	It	can	be	specified	what	should	be	expected	and	
measure	outcomes	on	different	environments.	

 56

3.5.7.6 Load	Tests	

Those	are	types	of	performance	tests	that	have	purpose	to	determine	the	behavior	of	the	
HTTP	under	certain	conditions.	These	conditions	can	for	example	simulate	typical	load	on	
the	HTTP	that	it‘s	under	most	of	the	time	or	exceptional	peaks	that	it	goes	through	during	
certain	periods	of	the	day.	This	is	a	good	way	to	determine	what	is	the	maximal	load	that	
the	HTTP	can	handle	and	identify	the	breaking	point.	Based	on	those	results	it‘s	common	
to	define	alerting	thresholds	for	monitoring	systems.	
	

3.5.7.7 Apache	JMeter	

To	perform	 load	 and	performance	 test	 there	 can	be	use	 tools	 such	 as	 JMeter	 (Apache	
Software	Foundation,	2011)	describes	it	as	tool	for	test	performance	both	on	static	and	
dynamic	resources,	Web	dynamic	applications.	

	
It	can	be	used	to	simulate	a	heavy	load	on	a	server,	group	of	servers,	network	or	object	to	
test	its	strength	or	to	analyze	overall	performance	under	different	load	types.	

Functionalities:	

Ability	to	load	and	performance	test	many	different	applications/server/protocol	types:	

- HTTP,	HTTPS	(Java,	NodeJS,	PHP,	ASP.NET,	…)	
- SOAP	/	REST	Webservices	
- Database	via	JDBC	
- Message-oriented	middleware	(MOM)	via	JMS	
- Mail	-	SMTP(S),	POP3(S)	and	IMAP(S)	
- Native	commands	or	shell	scripts	
- TCP	
- Java	Objects	

3.5.8 Monitoring	

Monitoring	 remains	 a	 critical	 part	 of	 managing	 the	 distributed	 HTTP.	 Especially	
microservices-based	 applications	 have	 different,	 more	 intensive,	 monitoring	
requirements.	Necessity	of	monitoring	is	evident	because	sooner	or	later	the	applications	
are	going	to	fail.	 In	general	systems	are	not	 just	binary	either	up	or	down	but	also	can	
operate	in	degraded	state	that	impacts	performance.	These	degraded	states	have	a	direct	
negative	impact	on	the	end	user.	Monitoring	the	behavior	of	systems	can	alert	operators	
to	make	adjustments	in	time	and	prevent	fatal	failure	of	the	HTTP.		
	

 57

3.5.8.1 Service	Metrics	

All	 systems	 generate	 a	 large	 number	 of	 metrics	 for	 us	 to	 track.	 This	 can	 be	 found	
immediately	when	metrics	collecting	software	is	installed.	It	gives	useful	information	like	
response	times	of	processes	or	cache	hit	rates	and	other.		
	
In	general	most	of	 the	 frameworks	 for	writing	webservices	have	built	 in	 libraries	 that	
expose	basic	metrics	themselves.	As	a	bare	minimum	is	to	track	error	rates	and	response	
times	of	web	servers	or	better	of	individual	endpoints.	These	metrics	inform	us	of	how	
our	systems	behave	and	also	about	communication	with	external	services	and	users.		
	
Metrics	should	also	be	visualized	into	human-readable	form	like	graphs,	so	they	can	be	
properly	 analyzed.	 For	 this	 there	 are	 many	 open	 source	 platforms	 like	 for	 example	
Grafana.	
	

3.5.8.2 Basic	Metrics	

Error	rate	

This	metric	should	indicate	rate	failing	requests	(4xx,	5xx	HTTP	responses).	
	
Incoming	request	rate	

Usually	measured	in	HTTP	requests	per	second	(or	reads/writes/transactions	per	time	
unit	if	this	is	a	database),	it	indicates	how	much	traffic	is	coming	into	your	HTTP.	
	
Latency	

Latency	is	the	time	it	took	for	your	service	to	process	a	request.	The	latency	is	usually	
broken	down	to	successful	and	unsuccessful	requests.	
Utilization	

Utilization	gives	you	information	about	the	usage	of	different	pieces	of	your	system.	For	
example,	you	would	monitor	utilization	of	 the	nodes	 in	 the	Kubernetes	cluster	making	
sure	memory,	disk,	and	CPU	usage	are	in	normal	ranges.		
	
Recommendations:	
	

• Track	response	times	and	error	rates	for	each	service.	
	

• Aggregate	 host-level	 metrics	 like	 CPU	 together	 with	 application-level	 metrics.	
	

• Standardize	format	of	collecting	metrics.	
	

 58

• Track	health	of	all	downstream	responses.	
	

• Have	a	single	queryable	tool	for	aggregating	and	storing	logs.	
	

• Ensure	 your	 metric	 storage	 tool	 allows	 you	 to	 maintain	 data	 long	 enough	 to	
understand	 trends	 in	 your	 HTTP.	
	

• Have	 data	 visualized	 in	 graphs	 in	 a	 way	 that	 makes	 possible	 to	 read	 and	
understand	them	properly.	
	
	

Prime	importance	is	to	collect	relevant	data	and	ability	to	anylize.	Applications	should	be	
instrumented	 by	 developers	 to	 report	 application-specific	 events.	 In	 (Swersky,	 2018)		
article	 is	stated	that	operations	teams	must	gather	data	not	 just	 from	applications,	but	
from	the	supporting	platforms	and	deployment	systems.	Open	source	and	paid	solutions	
are	available	to	support	both	publication	and	storage	of	monitoring	events.	This	data	is	
critical	to	support	a	distributed	system	that	is	resilient,	reliable	and	highly	available.		
	

3.5.8.3 Alerting	

Core	functionality	of	an	alarm	is	to	trigger	detection	of	abnormality	in	time	series.	Alerting	
is	essential	functionality	in	most	monitoring	platforms.	It	should	have	a	flexible,	feature-
rich	 plotting	 engine	 that	 supports	 for	 graphing	 multiple	 time	 series	 and	 include	 an	
alerting	 engine	 that	 supports	 sophisticated	 alarm	 configurations	 like	 aggregation	 and	
suppression.		
	
Process	of	alerting	is	full	of	unstable	variables	of	a	qualitative	nature,	and	it	presumes	an	
element	of	responsibility.	Priorities	are	open	to	interpretation,	but	the	level	of	severity	
usually	depends	on	what’s	at	stake.	The	extent	of	pressure	involved	in	incident	response	
varies	from	organization	to	organization,	but	the	overal	process	has	a	common	pattern.	
(Ligus,	2012)	
	
Goal	of	alerting	is	to	notify	operators	when	following	conditions	occur:	
	

• Increase	response	times	
	

• Loss	of	availability	
	

• Surpassing	ordinary	error	rate	
	
Operator	 who	 receives	 an	 alert	 has	 the	 task	 to	 isolate	 and	 identify	 the	 source	 of	 the	
problem	and	mitigate	 the	 impact	 in	 the	shortest	 time	possible.	Challenge	 in	alerting	 is	
defining	the	right	levels	of	sensitivity	this	may	often	lead	to	false	alarms.		

 59

	
Recoverability	and	impact	into	three	levels	each,	as	depicted	on	picture	below,	to	describe	
the	severity	of	undesired	events.	The	matrix	illustrates	a	classification	of	events	into	nine	
separate	bins,	from	most	to	least	severe.	
	
	
	

	
Figure	17:	Recoverability	/	Impact	matrix-		source:	(Ligus,	2012)	

3.5.9 Distributed	Tracing	

Distributed	request	tracing	is	a	method	used	to	profile	and	monitor	applications.	It	helps	
to	 identify	 failures	 in	 the	HTTP	 and	 causes	 of	 degraded	 performance.	 It‘s	 designed	 to	
debug	and	monitor	modern	distributed	software	architecture	such	as	microservices.	
	
Systems	 behave	 differently	 under	 load	 and	 at	 scale.	 The	 specification	 of	 the	 HTTP‘s	
behavior	 often	 diverge	 from	 the	 actual	 behavior	 of	 the	 HTTP.	 It‘s	 important	 to	
contextualize	requests	as	they	transit	through	the	HTTP.	Tracing	is	a	very	simple	concept	
where	requests	flow	from	one	service	to	another	in	the	HTTP,	through	ingress	and	egress	
points,	 tracers	 add	 logic	 where	 it‘s	 possible	 to	 perpetuate	 a	 unique	 identifier	 that‘s	
generated	when	the	entry	request	 is	made.	As	the	request	transits	 it	gains	a	new	span	
assigned	from	another	component	that	gets	added	 into	the	trace.	Trace	represents	the	
whole	journey	of	the	requests	throughout	the	HTTP.	Span	represents	individual	hop	along	
the	way	and	contains	certain	tags	and	metadata	used	for	contextualizing	requests.		(Long,	
2016)	

 60

3.5.10 Open Tracing

Main	goal	is	to	describe	the	semantics	of	transactions	in	distributed	systems.	Describing	
those	transactions	should	not	be	influenced	by	any	particular	backend	way	like	to	60roces	
or	represent	data.		
	
Traces	are	defined	explicitly	by	their	“Spans”.	Trace	can	be	thought	of	as	a	directed	acyclic	
graph	of	Spans,	where	the	edges	between	Spans	are	called	“References”.		
	

	
	

Figure	18:	Tracing	data	model	-	source:	(Quan,	2019)	

	
Span	
	
Each	span	as	a	unit	inside	the	acyclic	graph	encapsulates	following	metadata:	
	

• An	operation	name	
• A	start	timestamp	
• A	finish	timestamp	
• Key	/	pair	values	of	Span	tags	(custom	metadata)	
• Span	Context	

	

A	Span	may	reference	zero	or	more	other	contexts	that	are	causally	related.	OpenTracing	
defines	two	types	of	references.	One	of	them	is	“ChildOf”	that	points	at	the	previous	Span	
and	second	is	called	“FollowsFrom”.			(Cloud	Native	Computing	Foundation,	2016)	
	
Zipkin	
	
Zipkin	is	a	distributed	tracing	system.	It	helps	gather	timing	data	needed	to	troubleshoot	
latency	problems	in	service	architectures.	Features	include	both	the	collection	and	
lookup	of	this	data.	(OpenZipkin,	2017)	
	

 61

4 Practical Part
	

4.1 Data	Collection	&	Analysis	

To	address	questions	about	potential	for	speed	of	adoption	of	cloud	native	applications	
among	developers,	a	descriptive	research	survey	was	used.	Method	 for	data	collection	
was	an	anonymous	questionnaire	with	colleagues	from	Avast	Software.	
	

4.1.1 Survey	

All	 the	research	questions	were	contained	in	the	survey.	There	were	three	reasons	for	
choosing	 anonymous	 self-completed	 surveys	 outlined	 in	 chapter	3.1.6.2	 to	 collect	
qualitative	and	quantitative	information.		
	
Tool	used	 for	gathering	data	was	Google	Forms.	Google	 forms	allows	us	 to	 set	up	and	
manage	surveys	that	are	quickly	shareable	through	links.	The	survey	had	45	attendees.	
Every	participant	had	the	opportunity	to	self	identify	his	profession	at	the	beginning	of	
the	survey.		
	
Main	goal	is	to	access	willingness	to	learn,	general	expertise	and	opinions	around	trying	
new	technologies	product	development,	cloud	technologies	and	practices.	
	

4.1.1.1 Research	questions	

Table	5:	List	of	survey	questions	

	
Question	

1.	 How	much	of	your	work	time	do	you	dedicate	to	learning	new	things	?	

2.	 What	is	the	source	of	acquiring	new	skills	for	you	?	

3.	 Have	you	in	the	last	few	years	encountered	some	technology	that	would	
significantly	impact	your	work	?	If	yes,	please	write	the	name	and	impact	it	had.	

4.	 What	do	you	see	as	key	aspects	for	delivering	good	SaaS	software	?	

5.	 Rate	impact	of	having	automatised	CI	on	your	project.	

6.	 What	are	the	key	factors	/	requirements	that	you	look	for	when	choosing	a	
solution	on	which	to	deploy	an	application	?	

7.	 Have	you	ever	used	a	public	cloud	provider	platform	for	building	any	application	?	

 62

8.	 If	the	answer	is	yes,	which	one	?	

9.	 Name	key	benefits	you've	identified	using	some	of	the	cloud	provider	platforms	
over	self	managed	infrastructure.	

	

4.1.1.2 Survey	results	

In	the	graph	from	Figure 19	we	can	see	that	largest	groups	of	participant’s	profession	was	
backend	developers,	fullstack	developer	and	quality	engineers.		
	
	

Figure 19: Participation statistic by profession – source: (author)

	
	
	
This	section	explores	explanatory	analysis	of	professionals	to	learn	new	technologies.	
	
Result	of	the	questions,	how	much	time	do	people	involved	in	product	development	spend	
by	 studying	 new	 technologies	 and	 acquiring	 new	 knowledge?	 that	 largest	 group	 of	
respondents	which	consists	of	45,5	%	of	all	responses	spends	10-20%.	off	their	working	
time	on	learning	new	things.	Average	time	for	all	participants	is	14,28	%	of	their	work.	

	

 63

Figure 20: basic statistical calculation table – source: (author)

Figure 21: Graphical representations distributed by groups – source: (author)

	
	
	
Next	question	focuses	on	what	are	the	sources	of	acquired	knowledge.	Assumption	is	that	
for	 most	 of	 the	 people	 it	 might	 be	 combination	 of	 conferences,	 reading	 books,	
experimenting	with	emerging	technology	and	knowledge	transfer	among	colleagues.	
	
We	can	also	assume	that	 for	most	of	 the	people	 it’s	usually	combination	of	multiple	of	
multiple	sources,	therefore	the	question	has	multiple	answers.	
	

0 5 10 15 20 25

10—20

5—10

20—40

0—5

Frequency

In
te

rv
al

s [
 %

]

'Intervals [%]': 10—20 has noticeably higher
'Frequency'.

 64

Figure 22: Sources of learning for professionals – source: (author)

	
As	we	can	see	in	Figure 22,	the	most	common	sources	of	new	knowledge	are	ideas	shared	
between	colleagues,	experimenting	and	books	or	videos.	Most	common	combination	of	
answers	were	options	Colleagues,	experimenting	and	books.		
	
In	 following	 question	when	 respondets	 are	 asked	 about	 encountering	 technology	 that	
meaningfully	impacted	their	day	to	day	work	life.	First	due	to	nature	of	the	answers,	data	
were	labeled	into	categories.	
	
	
 Table 6: Question 3 - Categorical answers results	

Answer	category	
Total	respondents	who	
answered	

%	of	respondents	
who	answered	

Docker	 15	 29	%	
Packaging	tools	 4	 8	%	
Orchestrators	 7	 13	%	
Public	Clouds	 12	 23	%	
Virtualization	 4	 8	%	
Deployment	Tools	 4	 8	%	
Web	Frameworks	 4	 8	%	
Integration	
Frameworks	

2	 4	%	

	
	

 65

Based	on	the	answers	we	can	say	that	containerization	that	is	described	in	chapter	3.2.	
respondents	 sense	as	 impactful.	 Second	 the	most	meaningful	 technology	are	based	on	
responses	orchestrators		(chapter	3.3).	Third	is	the	opportunity	of	using	public	clouds.
	
From	 the	 answers	 we	 can	 conclude	 that	 the	 most	 significant	 difference	 in	 product	
development	 in	 the	 last	 couple	 years	 had	 development	 of	 containerization	 and	
orchestration	 technologies.	 This	 is	 very	 likely	 connected	 to	 the	 impact	 they	 have	 on	
integration	of	product	changes	and	testability	of	software.
	
This	question	is	exploring	opinions	regarding	what’s	important	in	SaaS	product	delivery.	
In	Table 7	 results	 show	 that	most	 of	 the	 respondents	 seem	as	 key	 to	 success	 product	
delivery	reliability	of	the	services,	quality	and	testability.	
	
	
 Table 7: Question 4 - Categorical answers results

Answer	category	
Total	respondents	who	
answered	

%	of	respondents	
who	answered	

Scalability	 5	 7	%	

Availability	&	
Reliability	

24	 34	%	

Quality	&	
Testability	

18	 25	%	

KYC,	UX	 8	 11	%	
Security	 9	 13	%	
Cost	 7	 10	%	

	
	

Following	question	 is	connected	 	to	automation.	As	stated	 in	chapter	3.5.6,	automation	
pipeline	 is	mission	critical	 for	most	of	 the	projects.	This	confirms	also	responses	 from	
survey	where	average	of	importance	is	4,2	out	of	5	from	44	responses	as	we	can	see	in	
Table 8.	
	
	
	
	
	
	
	
	
	
	

 66

 Table 8: Q5 - descriptive analysis of responses	

IMPORTANCE	OF	CI	
PIPELINE	IN	PROJECT	

Mean 4,272727273
Standard Error 0,139326515
Standard Deviation 0,924187547
Sample Variance 0,854122622
Minimum 2
Maximum 5
Sum 188
Count 44
Confidence Level(95,0%) 0,280978696

	
	
Next	questions	were	more	focused	on	finding	out	whether	respondes	have	any	experience	
with	 cloud	 platforms	 and	 what	 they	 are	 looking	 for	 when	 choosing	 provider	 for	
deployment	their	solutions.	
	

Table 9: Q7 - result

Answer Count
Yes 29
No 15
Grand Total 44

	
	
	
	
The	answers	indicate	that	almost	2/3	of	respondents	have	at	some	point	used	public	cloud	
for	deployment	of	software.	Next	question	 is	exploring	preferred	providers	among	the	
respondes.
	
	
	

 67

Figure 23: Most popular provider among respondes – source: (author)	

	
Most	common	choice	was	AWS,	according	to	comments	it	provides	all	requested	services	
for	a	fair	price.	According	to	(Stalcup,	2021),	AWS	dominates	the	market	with	31	%	share	
among	the	cloud	providers.
	
Last	 question	 is	 focused	 on	 what	 are	 the	 key	 factors	 when	 choosing	 a	 public	 cloud	
provider	 over	 self	managed	 deployments.	 This	 question	 is	 open	 so	 the	 answers	were	
labeled	in	categories.	

	 	
	 Table 10: Question 9 - answers evaluation	

Answer	category	
Total	respondents	who	
answered	

%	of	respondents	
who	answered	

Observability	 8	 17	%	
Scalability	&	
Performance	

11	 24	%	

Reliability	&	SLA	 19	 41	%	
Faster	
Deployments	 8	 17	%	

	
	
Based	on	results,	the	main	benefit	of	using	public	cloud	is	reliability	and	the	service-level	
agreement	that	clearly	states	quality,	availability	and	responsibilities	of	the	service	that	
customer	is	using.		
	

0 5 10 15 20 25

Amazon Web Services

Microsoft Azure

Google Cloud Platform

Other

Count

Pr
ov

id
er

'Provider': Amazon Web Services appears most
often.

 68

Figure 24: Preffered benefits of Cloud – source: (author)

	
Overall	result	indicate	that	professionals	in	field	of	software	product	developments	are	
positively	accepting	the	shift	that’s	happening	with	delegating	more	responsibilities	on	
cloud	providers	and	being	able	to	focus	more	on	their	„core	business“.		
	

4.2 Cloud	Provider	Comparison		

This	part	of	the	practical	thesis	focuses	on	taking	in	count	all	the	key	variables	mentioned	
in	 chapter	3.1.6,	 affecting	 choice	of	 cloud	provider.	Goal	of	 this	 is	 to	estimate	 the	best	
offering	based	on	publicly	available	pricing	tables.		
	
In	the	cloud	provider	market	the	 largest	3	service	providers	are	according	to	(Stalcup,	
2021),	Amazon	with	33	%	of	market	share,	second	Microsoft	with	20	%	of	market	share	
and	third	Google	with	7	%.	
	
The	 thing	 that’s	 not	 evaluated	 in	 this	 analysis	 is	 the	 fact	 that	 most	 of	 the	 large	
organizations	 that	 use	 IaaS,	 SaaS	 or	 PaaS	 commonly	 are	 charged	 based	 on	 individual	
pricing	model.	
	
	
	
	
	
	
	

0 5 10 15 20

Reliability & SLA

Scalability & Performance

Faster Deployments

Observability

Total respondents who answered

An
sw

er
 c

at
eg

or
y

'Answer category': Reliability & SLA has
noticeably higher 'Total respondents who

answered'.

 69

4.2.1 Managed Services

First	metric	to	mention	are	managed	services	offered	on	platforms.	As	we	can	see	in		
Table 11,	all	of	the	major	players	on	the	market	offer	the	same	set	of	essential	features	
with	having	them	named	and	using	different	implementations.	
	
	
 Table 11: Essential services terminology

Service	 AWS	 Azure	 GCP	

Compute	 Elastic	Cloud	
Compute	

Virtual	
Machines	 Compute	Engine	

App	Hosting	 Elastic	Beanstalk	 Cloud	
Services	 App	Engine	

Serverless	
Computing	 AWS	Lambda	 Azure	

Functions	 Cloud	Functions	

Container	
Support	

ECS/EKS	
Containers	

AKS	
Container	
Service	

Kubernetes	
Engine	

File	Storage	 S3	Storage	Service	 Azure	
Storage	 Cloud	Storage	

Block	Storage	 Elastic	Block	
Storage	 Azure	Blob	 Persistent	Disc	

Backup	Options	 AWS	Glacier	 Azure	
Backup	 Cloud	Storage	

Data	
Orchestration	 Data	Pipeline	 Data	

Factory	 Cloud	DataFlow	

Data	
Management	 AWS	Redshift	 SQL	Data	

Warehouse	 Google	BigQuery	

NoSQL	Database	 DynamoDB	 Cosmos	DB	 Cloud	DataStore	

	
	
Prices	 of	 these	 services	 are	 various,	 although	 they	 serve	 the	 same	 purpose	 the	
implementation	and	choice	of	technology	may	favour	one	over	the	other.		
	
When	it	comes	to	the	pricing	in	these	areas	it’s	very	specific,	for	example	some	providers	
calculate	 writes	 /	 reads	 /	 updates	 in	 databases	 and	 so	 on.	 For	 those	 purposes	 each	

 70

provider	offers	a	calculator	that	based	on	the	services	you	add	in	computes	the	estimated	
price.	
	

4.2.2 Computation Power & Memory	

Table 12	shows	converted	prices	into	the	same	metrics.	It	focuses	on	2	of	the	most	saw	
upon	aspect	of	virtual	machines	and	their	computation	power	and	memory.	The	prices	
show	the	cost	of	running	various	virtual	machine	sizes	per	hour.		
	
	

Table 12: vCPU & RAM / per hour - pricing comparison	

Type	 vCPU	 RAM	 AWS	 Azure	 GCP	

General	
Purpose	

2	 8GB	 $0.0928	 $0.0850	 $0.1070	

4	 16GB	 $0.1856	 $0.1700	 $0.2140	

8	 32GB	 $0.3712	 $0.3390	 $0.4280	

Compute	
Optimized	

2	 4GB	 $0.0850	 $0.0850	 $0.0813	

4	 8GB	 $0.1700	 $0.1690	 $0.1626	

8	 16GB	 $0.3400	 $0.3380	 $0.3253	

Memory	
Optimized	

2	 16GB	 $0.1330	 $0.1330	 $0.1348	

4	 32GB	 $0.2660	 $0.2660	 $0.2696	

8	 64GB	 $0.5320	 $0.5320	 $0.5393	

	
	
Despite	 the	assumption	of	AWS	having	 the	biggest	market	 share,	 therefore	due	 to	 the	
economy	of	scale	should	have	 lowest	prices,	 it	appears	 that	 the	 lowest	cost	 for	virtual	
machines	of	various	sizes	has	Microsoft	Azure.		
	
When	it	comes	to	various	instances	of	virtual	machines,	commonly	cloud	providers	offer	
to	pay	upfront	for	a	certain	size	and	price	with	large	discounts.	This	might	be	tricky	though	
because	of	the	advancements	that	are	constantly	happening	in	computing.	In	general	the	
standard	billing	model	is	„pay	as	you	go“	where	you	pay	for	the	resources	that	you	use.	
	

 71

4.2.3 Storage

Table 13 shows comparison of storage pricing for all the providers per gigabyte of space. The
price may slightly vary based on the location of the storage. In this category the cheapest offer
has Microsoft Azure.

Table 13: Storage pricing per GB - comparison	

Platform	 Product	 Price	

Azure	
Standard	
(GPv2)	storage	
	

$0.0183	
	

AWS	 Amazon	S3	 $0.024	
	

GCP	 Cloud	Storage	 $0.023	
	

	
	

4.2.4 Network (Ingress & Egress)

Following costs are based on two billing elements. First is outbound data transfer and second
port hours. The cost might slighly vary based on the location of the trafic. All the providers
have specified zones and the tarifs that apply on certain territories. In Table 14 we can see
average price for the 1 GB connection.
	
Table 14: Ingress & Egress Port-hour / 1 GB connection price - comparison	

Type	 AWS	 Azure	 GCP	

Egress	 $0.30	 	
$0.224	 0.2778	

Ingress	 free	 free	 free	
	
	
Based	on	the	metrics	we	defined	in	chapter		3.1.6.1,	Microsoft	Azure	cloud	offers	the	most	
favourable	 prices.	 Needless	 to	 say	 that	 the	 standard	 prices	 can	 drastically	 vary	 from	
upfront	billing	or	individual	deals	that	large	organizations	get.	In	general	there	is	a	rule	
that	the	more	you	consume	the	less	you	pay	per	unit.	When	it	comes	to	software	support	
there	 is	 a	 large	 offering	 for	 all	 of	 them	 but	 specific	 cases	 may	 prefer	 different	
implementations.
	

 72

4.3 Prototype	Cluster	

Aim	of	this	chapter	is	to	use	all	the	best	practices	describe	around	building	cloud	native	
applications	that	are	data	intensive	and	scale	horizontally,	described	in	chapter	3.5	in	the	
theoretical	 part	 and	 construct	 cluster	 of	 containerized	 microservices	 written	 in	
programming	 language	 Java,	 	 running	 in	 Kubernetes	 orchestrated	 cluster	 deployed	 in	
Google	Cloud	Platform.		
	
Prototype	application	is	a	solution	of	warehouse	management	software.	In	warehouses	
there	 are	 typically	 many	 information	 exchanges	 between	 machines.	 Therefore	 the	
prototype	aim	is	to	test	how	to	enable	durability	and	scaling	but	at	the	same	time	being	
able	to	increase	testability	and	observability.		
	

4.3.1 Solution	Architecture	Specification	

In	chapter	3.4.2	were	discuss	decision	criteria	of	choosing	proper	architectural	structure	
for	the	software	solution.	In	this	case	data	intensive	solution	is	being	design.	Taking	all	
the	criterias	in	count	there	was	proposed	following	architecture	(
Figure	25).		
	
This	software	solution	consists	of	5	microservices	described	in	Table	12.	
	
	
Table	15:	Services	list	

Service		 Function	

Sensor	Service	
Recieves	and	stores	data	from	the	sensors	placed	in	the	
warehouse.		

Device	Service	 Controls	and	remotely	manages	devices	in	warehouse.	

Report	Service	 Aggregates	infrormations	from	devices	and	sensors	into	
actionable	reports.	

Warehouse	Service	 Represents	management	of	quantities	and	items	in	warehouse.	

User	Service	 Holds	system	user	details	with	roles	and	permissions.	

	
	
To	 achive	 higher	 throughput	 of	 informations	 services	 communicate	 with	 each	 other	
through	combination	of	synchronous	and	asynchronous	channels	that’s	closer	described	
in	chapter	3.5.3.	
	

 73

	

Figure 25: Development Environment Architecture – source: (author)

4.3.1.1 Implementation	of	Service	Communication	

To	connect	with	IoT	devices	we	using	pattern	of	REST	proxy.	Advantages	of	this	decision	
are	shown	in	chapter	3.5.3.4.	There	are	many	ways	and	protocols	that	can	be	implemented	
but	it’s	usually	complicated	to	set	up	and	it	takes	more	time	to	think	through	correctly.	In	
this	 pattern	 device	 communicates	 to	 REST	 proxy	 and	 then	 asynchronous	 message	 is	
published	to	Kafka	Broker.	Then	service	that	is	suppose	to	subscribe	to	this	message	does	
so.		
	
	
OpenAPI Definitions
	
Definitions	 of	 API	 is	 documented	 through	 the	OpenAPI	 3.0	 that’s	 further	 described	 in	
chapter	3.5.2.2.	This	way	of	documenting	allows	easy	integration	for	other	services	calling	
the	API	and	removes	guesswork.	
	

 74

Going	further	based	on	this	standart	definitions	in	Java	through	plugin	can	be	generated	
web	client	that	speeds	up	proces	of	integration	and	reduces	amount	of	code	programmer	
has	to	write	do	implement	communication	between	services.	
	
Using	OpenAPI	3.0	also	provides	with	having	very	clearly	defined	API	contracts	in	human	
readable	manner.		
	
	

Figure 26: Device Service API definitions - source: (author)	

	
	
From	this	definition	it’s	clear	what	is	the	URI	path,	required	parameters	for	the	request	
and	response	type	the	API	returns.	Also	it’s	possible	to	automatically	generate	CLI	cURL	
command	that	calls	the	API	and	try	out	whether	it	works.	

4.3.2 Cluster Resources

First	to	be	able	to	run	our	microservices,	we	need	to	make	sure	that	 in	the	cloud	exist	
required	resources	to	run	it	on.	Most	of	them	were	covered	in	theoretical	part	of	thesis	in	
chapter	3.1.		
	

 75

Based	on	our	application	architecture	requirements	(chapter	4.3.1)	is	specified	table	of	
resources	neccessary	to	run	the	solution	on.		
	
	
 Table 16: List of deployed resources	

Resource	 Description	 Amount	

API	Gateway	
API	Gateway	Network	http	Load	
Balancing	Egress	to	Load	Balancer	 1	

Apache	Kafka	
Confluent	Cloud	

Software	bus	using	stream-processing.	 1	

E2-standard-2	 Compute	Engine	(vCPU:	2,	RAM	8GB)	 5	

Postgresql	

Relational	database	management	system	
emphasizing	extensibility	and	SQL	
compliance	
	

4	

Graphite	
Graphite	collects,	stores,	and	displays	
time-series	data	in	real	time.	
	

1	

	
	
In	a	first	part	it’s	needed	to	create	project	that	encapsulates	all	the	resources	that	it’s	being	
lunched	under.		
	
	

Figure 27: Project creation - source (author)	

	
	
After	project	initialization,	in	GCP	we	can	create	the	virtual	machines	that	microservices	
will	be	deployed	to.	As	described	in	chapter	3.4.4,	to	keep	cost	for	the	virtual	machines	
low	we	use	instances	with	less	computing	power.	In	case	of	unexpected	workload	more	
instances	will	be	initiated	by	Kubernetes	orchestrator.	This	is	another	example	of	benefit	
because	for	example	in	monolithic	applications	(chapter	3.4.3).	In	monolithic	application	
in	order	to	scale	up	one	part	of	the	system	you	need	to	deploy	it	as	a	whole	on	stronger	
instances	and	therefore	it	leads	to	higher	cost	for	usage.	
	

 76

Figure 28: VMs deployment in Cloud - source: (author)	

	

4.3.3 Build and Deployment

This	flow	is	designed	based	on	chapter	3.5.6.	To	get	the	application	deployed	in	our	cluster	
on	 GCP	 we	 first	 need	 to	 create	 the	 infrastructure,	 this	 step	 builds	 and	 executes	
infrastructure	 changes	 towards	 the	 cloud	 provider.	 It	 ensures	 to	 create	 resources	
necessary	for	running	the	application	like	databases,	queues	and	others.	
		
In	the	meantime	application	is	being	built	by	package	building	technology	Maven	which	
results	in	a	docker	image	that	is	pushed	to	the	vendor	container	registry.	
	
During	this	proces	also	different	there	are	set	up	different	stages	and	run	the	test	layers.	
(chapter	3.5.7)	
	
Snippet	bellow	shows	the	configuration	of	deployment	new	docker	image	to	development	
environment.	
	
dev_deploy:	
dev:	deploy	
image:	$CI_REGISTRY_IMAGE:latest	
only:	
-	develop	
script:	
-	npm	ci	
-	cd	/	&&	config	credentials	--provider	gcp	--key	$GCP_ACCESS_KEY_ID_DEV	--secret	
$GCP_SECRET_ACCESS_KEY_DEV	&&	cd	-	
-	SLS_DEBUG=*	--dev	dev	
-	for	r	in	$DEPLOY_REGIONS;	do	SLS_DEBUG=*	deploy	--verbose	--force	–dev	dev	--region	$r;	
done	
	
	

 77

When	an	image	is	pushed	in	a	container	registry,	then	deployment	can	be	executed.	It	can	
be	a	simple	"kubectl	set	image"	command	(not	recommended)	up	to	more	sophisticated	
deployment	using	a	deployment	manager.	This	step	ensures	that	all	nodes	for	the	app	get	
the	new	docker	image	previously	pushed	to	registry.	
	
	

	
Figure 29: Flow for building new versions – source: (author)

	

4.3.4 Monitoring	and	Alerting	

In	 this	 solution	all	microservices	are	pushing	application	metrics	 that	are	collected	on	
application	actuator	through	UDP	protocol	on	port	8125.	
	
The	metrics	that	we’re	interested	in	are	described	in	chapter	3.5.8.	Project	applications	
are	set	up	in	a	way	to	be	able	to	reliably	observe	what’s	going	on	in	the	distributed	system	
and	provide	information	about	the	system	and	server	communication.		
	
Error!	Reference	source	not	found.	contains	the	most	important	selected	metrics	in	S
ensor	Service	and	description	of	their	meaning.	
	
Table	17:	List	of	selected	monitored	application	metrics	in	Sensor	Service	

Metric	 Group	 Description	

Records	Lag	 Kafka	Consumer	 Difference	between	a	consumer’s	current	log	
offset	and	producer’s	log	offset.	

 78

Consumed	
Bytes	Rate	 Kafka	Consumer	

Monitors	network	throughput.	Sudden	drop	
in	rate	of	records	consumed	might	indicate	
that	some	consumers	are	failing.	
	

Fetch	Rate	 Kafka	Consumer	

Fetch	rate	of	consumers	is		a	good	indicator	
of	overall	health.	Fetch	rate	approaching	
zero	could	mean	issue	on	consumers.	
	

Aggregate	of	
All	HTTP	
Metrics	

HTTP	Server		 Shows	individual	endpoints	success	/	error	
rates	and	latency	of	calls	over	time.	

Aggregate	of	
Client	Calls	 HTTP	Client	

Describes	the	amount	of	calls	with	particular	
service	through	the	client	and	monitors	the	
amount	of	errors	and	response	latencies.	

Healthcheck	
probes	

Application	
Health	/	
Readiness	

Important	part	of	self-healing	strategy	in	
services	–	described	further	in	chapter	3.3.6.	

VM	properties	 System	 Reports	load	on	CPU,	Heap	size	and	other	
system	metrics.	

Transactions	 Database	 Monitors	rate	of	error	and	latency	in	DB	
transactions.	

	
Emittating	of	metrics	can	be	displayed	through	netcat	command	on	UDP	port	8125	on	the	
VMs.	Then	we	see	a	stream	of	metrics	that	are	in	realtime	eagerly	pushed	(shown	in	Figure	
30).	
	
Used	Command:		nc	-ukvl	8125	
	

Figure 30: Sensor service application metrics output after startup – source: (author)

 79

As	we	 can	 see	 this	 form	 is	 not	 very	 readable	 and	 based	 on	 information	 from	 chapter	
3.5.8.1.	To	be	able	make	the	actionable	decisions	the	output	metrics	of	applications	are	
visualized	into	the	graphs	in	monitoring	platform	Grafana.	

Following	 examples	 in	 Figure	 31	 and	 Figure	 32	 show	 visualizing	 of	 application	 kafka	
consumer	metrics	in	human-readable	form.	

Figure 31: SensorService - Kafka Consumed Records Rate – source: (author)

Figure 32: SensorService - Kafka Consumed Bytes Rate – source: (author)

 80

Figure 33: Cluster API metrics – source: (author)

As	 described	 in	 chapter	 3.5.8.3	 based	 on	 long	 term	 observation	 of	 the	 application’s	
behaviour	is	determined	critical	and	warning	levels	of	service	degradation.	These	level	
are	 individual	 for	 each	metric.	When	 the	 level	 is	 exceeded	 it	 automatically	 alerts	 the	
responsible	person.	
	

4.3.4.1 Distributed	Tracing	

In	the	chapter	3.5.9	of	the	theoretical	part	were	described	concepts	of	request	tracing	in	
distributed	 applications.	 Ability	 to	 pin-point	 errors	 and	 analyse	 request	 flow	 in	
distributed	systems	is	crucial.	In	the	thesis	prototype	solution	to	address	this	need	was	a	
used	tool	following	standard	open	tracing	protocol	Zipkin.	
	
To	 enable	 this	 tool	 all	 the	 applications	 have	 to	 include	 dependency	 on	 Zipkin	 library	
implementation.	Zipkin	monitoring	platform	is	then	treated	just	as	another	containerized	
service.		Once	it’s	deployed	to	the	cloud,	applications	can	register	the	address	and	report	
the	spans	and	traces	from	the	requests.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 81

Examples	of	this	interaction	and	tracing	can	be	found	in	Figure 34.	
	

Figure 34: Tracing interaction between device and sensor service - source: (author)

1. Shows	details	about	total	duration	of	request	and	depth	of	requests.	
2. Visualized	interaction	with	breakdown	of	individual	requests.	
3. Pin-pointing	where	the	error	occurred	during	multiple	service	calls.	

4.3.5 Quality	Evaluation	

In chapter 3.5.7 were explained test practices and selected relevant quality metrics to this
solution.
	
Based	on	assumptions	and	goals	of	the	thesis	in	this	chapter	of	the	practical	part,	test	case	
scenarios	were	designed	to	verify	the	quality	of	the	prototype	system	deployed	in	Google	
Cloud	Platform.		

For evaluation of the quality based on tests results will be used ISO/IEC 25023 product quality
metrics.

4.3.5.1 Performance	Tests	Scenarios	

Performance testing is done to provide a good picture on how the system will behave under real
load of requests. As the topic of the thesis is reliability and scalability cloud applications, the
goal is to design test cases that will verify stability and availability of the system with large
input from the outside traffic.

 82

As	 a	 testing	 tool	 will	 be	 used	 Apache	 JMeter	 that	 is	 designed	 to	 load	 test	 functional	
behavior	and	measure	performance.	Location for the test of calling services was selected
Prague, Czech Republic.

During the results were filtered 99th percentile to remove outliers that might cause inaccuracy
in observations.
	

Table 18: Definition of test cases

Test
number

Description HTTP
method

Amount of
Requests

Amount of
Users

Services

1
Adding new
devices into
platform

POST 50 000 300 2

2

Deleting specific
devices by
deviceId from the
platform

DELETE 50 000 300 2

3

Getting reports of
all devices in the
warehouse with
sensors they use.

GET 50 000 150 3

4
Finding all placed
devices in the
warehouse.

GET 50 000 300 2

5 Find device by Id. GET 50 000 300 1

After	executing	test	cases	through	Apache	JMeter	the	tests	results	are	shown	in	Table	19.	
Average	response	value	was	on	average	very	low	which	indicates	good	responsibility	of	
the	solution.	Also	the	error	rate	on	requests	was	0.00	%	which	indicates	excellent	fault	
tolerance.	During	the	test	it	was	recorded	that	service	capacity	started	to	be	fully	utilized.	
Based	on	policy	in	orchestrator	were	auto-scalled	more	instances	to	handle	the	load.	This	
process	was	also	further	described	in	chapter	3.3.	
	
Also	important	to	notice	is	that	services	that	have	a	chain	of	more	remote	synchronous	
calls	start	 to	have	 increasing	 latency	that	 is	caused	due	to	 I	/	O	blocking	of	 the	thread	
during	 synchronous	 processing	 of	 the	 tasks.	 This	 could	 be	 solved	 by	 modification	 of	
design	by	delegating	those	actions	to	asynchronous	processing	through	Kafka	message	
bus	(chapter	3.5.3.3)	if	possible	or	leveraging	reactive	microservices	that	were	described	
in	chapter	3.5.4.	

 83

Table 19: Cross DC Performance test results

Test number Average Response Time [ms] Error rate [%]

 Belgium DC Netherlands DC
1 92.13 101.30 0.00
2 72.33 80.29 0.00
3 153.66 158.13 0.00
4 123.20 135.65 0.00
5 36.45 43.93 0.00
	

4.3.6 ISO/IEC 25023 Product Quality Evaluation

Evaluation	of	solution	quality	is	done	by	using	product	relevant	metrics	from	ISO	/	EIC	
25023	that	were	further	described	in	chapter	3.5.5.	Based	on	research	in	the	theoretical	
part	of	 the	 thesis	were	 chosen	metrics	 focusing	on	 responsiveness,	performance,	 fault	
tolerance	and	availability	of	solution.			
	
Following	part	shows	evaluation	of	those	metrics	based	on	results	presented	in	previous	
chapter	4.3.5.1.	
	

4.3.6.1 Time	Behaviour	Measures	

Time	behaviour	measures	are	used	to	evaluate	the	degree	to	which	responsiveness	and	
processing	 times	 of	 the	 solution	 performs	 its	 functions	 meet	 the	 requirements	 of	
stakeholders.	
	
PTb-1-G	Mean	Response	Time	
	
Indicates	how	long	it	takes	to	the	system	to	respond	to	user	or	system	tasks.	To	evaluate	
this	 metrics	 data	 from	 performance	 tests	 in	 Table 19	 	 were	 used.	 Total	 number	 of	
observations	from	all	endpoints	were	250	000	requests	but	for	the	statistic	were	sums	of	
averages	for	each	test	result.Cross DC Performance test results	
	
Calculation:	
	

𝑋 = 	 $ (𝐴
!"#	%&	'

𝑖)	/	𝑛.			

	
Ai	=	Time	taken	by	system	to	respond.	

n	=	Number	of	responses	measured.	
	

 84

Result	:	
	
Ai	=	996.79	ms						n	=	10	
	
X	=	99,679	ms	
	
In	this	case	the	smaller	result	value	is	better	by	the	standard	evaluation	number	that	is	
less	or	equal	to	1	second	is	still	considered	a	good	result.	Therefore	it	can	be	concluded	
that	the	system	is	very	responsive	when	it	comes	to	speed	of	response	to	user	or	system	
tasks.	
	
	
PTb-2-G	Response	time	adequacy	
	
Calculation:	
	
𝑋	 = 	𝐴	/	𝐵	
	
A	=	Mean	response	time.	

B	=	Target	response	time	specified.	
	
Result	:	
	
A	=	99.679	ms						B	=	500	ms	
	
X	=	0,199	
	
As	 in	 the	previous	 result	 the	 smaller	 result	 value	 is	better	by	 the	 standard	evaluation	
number	 that	 is	 less	 or	 equal	 to	 targeted	 response	 time	 specified	 can	 be	 evaluated	 as	
system	fulfilling	expectation	when	it	comes	to	response	time.	
	

4.3.6.2 Availability	Measures	

Availability	measures	are	used	to	evaluate	the	degree	to	which	a	solution	is	operational	
and	accessible	when	required	 for	use.	One	of	 the	goal	of	 the	solution	examined	 in	 this	
practical	part	was	to	achieve	high	availability	which	is	expressed	through	the	percentage	
of	uptime	in	a	given	year.	
	
These	metrics	are	important	to	measure	as	the	service	uptime	is	often	mentioned	in	SLA.	
	

	

 85

RAv-1-G	System	availability	

Describes	 what	 proportion	 of	 the	 scheduled	 system	 operational	 time	 is	 the	 system	
available.	In	this	case	the	system	was	available	for	3	weeks	and	needless	to	say	that	as	for	
the	prototype	the	load	was	very	inconsistent.	As	system	time	operation	schedule	we	use	
the	total	time	since	the	system	was	deployed	and	system	operation	time	actually	provided	
is	the	time	that	services	have	been	operational	during	the	scheduled	period.	

Calculation:	

𝑋	 = 	𝐴	/	𝐵	

A	=	System	operation	time	actually	provided.	

B	=	System	operation	time	specified	in	the	operation	schedule.	

Result:	

A	=	504	hours		B	=	504	hours	

X	=	1	

System	uptime	was	100	%		out	of	the	scheduled	time.	This	signalizes	that	there	were	no	
issues	with	infrastructure	or	application	itself.	This	statistic	might	be	little	biased	due	to	
the	unstable	load	of	requests	on	the	service.	Most	of	the	traffic	was	recorded	in	time	of	
running	 performance	 tests.	 Results	 such	 as	 this	 are	 great	 because	 it	 meets	 all	 the	
availability	SLA	requirements.	

	

4.3.6.3 Fault	Tolerance	Measures	

Fault	tolerance	measures	are	used	to	evaluate	the	degree	to	which		a	solution	despite	the	
presence	of	software	or		hardware	faults	is	still	able	to	operate.		

Those	faults	can	be	also	in	the	external	systems	that	solutions	rely	on.		
	
RFt-1-G	Failure	avoidance	
	
Describes	what	proportion	of	fault	patterns	has	been	brought	under	control	in	order	to	
avoid	critical	failures	in	solution	and	prevent	outage	of	service.		
	
To	explore	fault	tolerance	of	the	system	there	was	artificaly	during	tests	brought	down	
several	machines	in	the	cluster.	Expected	result	based	on	architecture	was	that	instances	
would	self	heal	(described	in	chapter	3.3.6)	and	be	able	to	load	balance	the	traffic	among	
healthy	instances.	

 86

Calculation:	

𝑋	 = 	𝐴	/	𝐵	

A	=	Number	of	avoided	critical	and	serious	failure	occurrences	(base	on	test	cases).	

B	=	Number	of	executed	test	cases	of	fault	pattern,	during	testing,	

Result:	

A	=	50	

B	=	50	test	cases	

X	=	1	

During	the	test	orchestrator	was	able	based	on	the	architecture	of	the	cluster	to	cover	
requests	coming	inside	through	load	balancing	on	other	instances	that	were	running	in	
parallel,	 this	 is	one	of	 the	 features	of	 the	orchestrator.	 In	the	end	the	result	 is	 that	 the	
system	was	able	to	handle	failures	introduced	by	the	test	with	100%	success	rate.		

It’s	 necessary	 to	 say	 that	 there	 are	 test	 cases	 that	would	 definitely	 brought	 down	 the	
service.	For	example	outage	in	cloud	provider	infrastructure.	This	would	inevitably	lead	
to	 downtime	 in	 whole	 cluster.	 Therefore	 even	 these	 unlikely	 scenarios	 have	 to	 be	
accounted	for	and	have	back	up	plans	in	occurence	of	the	event.	

RFt-3-G	-	Mean	Down	Time	

This	metric	describes	how	long	does	the	system	stay	unavailable	when	a	failure	occurs.	
As	mentioned	in	chapter	4.3.6.2,	during	the	observed	period	of	testing	the	system	had	100	
%	uptime	which	could	make	this	statistic	redundant.	

Important	test	case	emulated	and	very	relevant	to	this	statistic	was	the	fault	pattern	of	
turning	off	one	of	the	services.	Base	on	alerting	setup	in	case	of	fault	occurrence	in	any	
microservice	 (more	described	 in	 chapter	 3.5.8.3),	 the	 examined	part	was	how	quickly	
alerting	 platforms	 would	 notify	 operators	 since	 the	 occurrence	 of	 error.	 The	 refresh	
period	of	service	status	check	is	an	interval	of	30	seconds.		

	

	

	

	

 87

The	test	scenario	is	trying	to	uncover	how	long	it	takes	from	the	service	removal	to	the	
alerting	system	to	send	notification	to	the	operator.	

Calculation:	

𝑋 = 	 $ (𝐴
!"#	%&	'

𝑖	 − 	𝐵𝑖)	/	𝑛	

Ai	=	Time	at	which	the	fault	is	reported	by	the	system.	

Bi	=	Time	at	which	fault	is	detected	/	alert	received.	

n	=	number	of	faults	detected.	

Result:	

Ai:		17:06:33	
	
Bi:		17:06:52	
	
N:	1	
	
X	=	19	seconds		
	
	
The	expected	result	value	can	vary	from	0	to	infinite.	In	this	case	it	was	19	seconds	to	alert	
since	 the	 error	 has	 occurred	 in	 the	 service.	 As	mentioned	 the	 default	 checks	 that	 are	
supposed	 to	 catch	 unavailability	 in	 the	 service	 run	 every	 30	 seconds.	 This	 result	 is	
considered	as	very	good.	It	enables	the	operation	team	responsible	for	smooth	run	of	the	
service	to	react	quickly	and	prevent	damages	that	might	be	caused	by	outage.	
	
	

 88

5 Results and Discussion
	
In	 the	 theoretical	 part	 was	 described	 the	 technology	 enabling	 cloud	 computing	 and	
continuing	further	the	layers	of	technology	built	on	top	of	it,	that	enables	organizations	to	
outsource	their	infrastructure	from	the	public	cloud	providers	in	order	to	focus	on	their	
core	business	and	be	able	to	deliver	faster	with	lower	costs.		
	
Continuing	further	in	the	theoretical	part	were	explored	tools	to	manage	cloud	operations	
that	optimize	cost,	performance	and	availability	of	hosted	solutions.	Also	different	models	
of	 using	 cloud	 infrastructure	 and	 their	 scope	 were	 introduced.	 Then	 important	 key	
success	factors	for	adopting	and	running	tight	ship	in	cloud	environments	were	described.	
These	key	metrics	were	further	explored	In	practical	part	by	market	research	of	cloud	
providers	with	largest	market	share.	
	
Cost	of	key	cloud	resources	was	compared	between	Google,	Amazon	and	Microsoft	cloud	
platforms	and	then	evaluated	according	to	predefined	metrics.	From	was	found	out	that	
even	though	Amazon	Web	Services	has	largest	market	share,	it’s	not	necessary	cheapest	
as	many	people	might	assume.	Surprisingly	Microsoft	had	the	best	prices	for	leasing	most	
of	the	cloud	resources	but	Google	also	offered	some	lucrative	features.		

	
As	mentioned	 in	 the	 theoretical	 part,	 working	 in	 a	 cloud	 environment	with	managed	
services	might	be	a	big	mindset	shift	for	many	developers,	therefore	in	practical	part	was	
a	research	survey	conducted	to	explore	opinions	and	relationship	to	this	topic	of	public	
clouds.	Survey	had	44	participants	from	company	Avast	Software	that	are	professionally	
involved	in	product	development.	After	evaluation	all	questions	were	concluded	and	the	
overall	 result	 indicates	 that	 participants	 are	 positively	 accepting	 the	 shift	 that’s	
happening	with	 delegating	more	 responsibilities	 to	 cloud	 providers	 and	 being	 able	 to	
focus	more	on	core	business.		

	
Next	goal	was	defining	best	practices	for	writing	cloud	native	applications.	This	started	in	
the	 	 theoretical	 part	 by	 comparison	 the	 benefits	 and	 challenges	 of	 monolithically	
applications	 with	 microservices.	 To	 summarize	 it,	 the	 outcome	 was	 that	 monolithic	
applications	are	easier	to	operate	from	the	beginning	but	as	the	solution	grows	and	more	
people	need	to	work	together,	it	adds	additional	overhead	to	development	and	is	not	very	
suitable	to	run	in	containers.	This	also	makes	horizontal	scaling	difficult.		
	
Then	best	practices	in	writing	microservices	called	“The	Twelve	Factor	App”	which	is	an	
industry	standard	guide	on	how	to	avoid	common	pitfalls	that	come	with	microservice	
development.		This	was	followed	up	by	describing	service	communication	using	different	
synchronous	protocols	or	asynchronous	messaging.	Next	was	establishing	API	contracts	
between	services	based	on	the	Open	API	3	standard	that’s	widely	used	in	industry	for	API	
integration.		
	

 89

Another	part	of	 lifecycle	was	CI	/	CD	patterns	used	for	cloud	native	microservices	and	
their	 automation	with	 testing	 stack	 in	 order	 to	 be	 able	 not	 just	 flexibly	 deploy	newer	
versions	to	the	production	at	any	time	with	low	risk	of	breaking	system	but	also	deploy	
different	versions	gradually	for	limited	amounts	of	users	traffic	called	canary	releases.		
	
With	distributed	systems	due	to	the	increased	complexity	it’s	necessary	to	be	always	able	
to	identify	what’s	happening	inside	the	cluster.	Practices	for	cloud	monitoring,	alerting	
and	distributed	tracing	of	requests	coming	in	and	out	of	the	platform	were	extensively	
covered	and	defined	application	and	system	metrics	important	to	keep	closer	eye	on.		
	
Practical	work	also	covers	the	prototype	solution	of	distributed	warehouse.	This	solution	
consists	 of	 5	 microservices	 connected	 by	 message	 bus	 Apache	 Kafka	 as	 well	 as	
communicating	 through	 API	 integration	 established	 based	 on	 an	 exposed	 Open	 API	
contract.	 These	 services	 run	 inside	 the	 Kubernetes	 cluster	 deployed	 on	 Google	 Cloud	
Platform.	 On	 the	 deployed	 cluster	 is	 set	 up	 monitoring	 of	 selected	 metrics	 that	
applications	 push	 through	 the	 UDP	 port	 to	 Grafana	 monitoring	 platform	 where	 the	
outcomes	of	applications	and	message	queue	are	visualized	on	graphs.	The	most	critical	
metrics	 determining	 the	 status	 of	 the	 services	 are	 closer	 monitored	 and	 have	 set	 up	
alerting	conditions.	Next	chapter	then	shows	the	implementation	of	distributed	tracing	
and	ability	to	trace	interaction	of	requests	with	all	the	microservices	and	based	on	context	
sharing	report	to	observability	solution	Zipkin.	It	enables	to	break	down	the	behaviour	of	
request	and	visualize	the	order	of	calls	with	latencies	inside	the	cluster.	
	
To	 evaluate	 durability,	 scalability	 and	 availability	 of	 this	 cluster.	 Next	 chapter	 breaks	
down	 the	 test	 cases	 that	 were	 run	 against	 the	 service	 to	 determine	 it’s	 stability	 and	
performance	quality.	The	test	consisted	of	a	total	of	250	000	HTTP	requests	that	run	at	a	
rate	of	300	concurrent	requests.	Goal	of	this	was	to	performance	test	all	the	endpoints	
exposed	on	the	services	and	evaluate	the	response	latencies	and	error	rates	of	services.	
Results	of	these	tests	were	that	the	average	latency	for	all	endpoints	was	99.679	ms	and	
no	errors	occurred.		
	
Quality	of	service	was	further	examined	by	using	relevant	selected	metrics	from	ISO/IEC	
25023	that	were	described	in	the	theoretical	part	of	the	thesis.	Evaluation	of	these	metrics	
have	shown	that	the	system	is	highly	available	and	very	responsive.	Also	it’s	necessary	to	
add	that	it	would	be	helpful	to	simulate	a	higher	load	of	requests	to	explore	the	tipping	
point	of	break.	
	
	
	
	
	
	
	

 90

6 Conclusions

To	sum	everything	up	it’s	visible	that	organizations	in	the	IT	industry	are	more	inclined	
to	migrating	 infrastructure	 to	 the	 public	 cloud.	 It	 offers	 great	 infrastructural	 support,	
availability	 for	hosting,	 tooling	and	 scaling	 flexibility.	That	 results	 in	 faster	delivery	of	
products,	potentially	more	customers	and	better	costs.		
	
In	order	to	successfully	execute	cloud	computing	strategy,	it’s	necessary	to	have	required	
people	expertise	on-board.	In	order	to	estimate	experiences	with	cloud	solutions	and	the	
overall	positivity	around	adoption	a	survey	was	concluded	in	Czech	software	company	
Avast	 Software.	 Based	 on	 result	 of	 participants,	 the	 impression	 was	 that	 most	 of	 the	
people	 involved	 in	 software	 product	 development	 see	 positively	 the	 changes	 that	 are	
happening	around	cloudification.		
	
Based	 on	 computing	 resources	 and	 services	 costs,	 offerings	 of	 largest	 cloud	 services	
providers	 analyzed	 and	 compared.	 Microsoft	 Azure	 cloud	 seemed	 to	 have	 the	 most	
favourable	 prices.	 Needless	 to	 say	 that	 the	 standard	 prices	 can	 drastically	 vary	 from	
upfront	billing	or	individual	deals	that	large	organizations	are	able	to	get.	When	it	comes	
to	software	support	there	is	a	large	offering	for	all	of	them	but	specific	cases	may	prefer	
different	implementations.	
	
When	running	applications	in	the	cloud	it’s	important	to	keep	in	mind	organization	pay	
for	every	resource	it	uses.	This	led	to	shift	from	large	overdimensioned	instances	hosting	
monolithical	application	that	often	required	running	standby	machines	in	order	to	ensure	
high	availability.		
	
In	the	public	cloud	the	trend	is	to	build	compact	services	also	known	as	microservices	
packaged	in	containers	that	can	be	operated	through	orchestrator	components	such	as	
Kubernetes	 or	 EKS	 to	 name	 a	 few.	 Orchestrators	 ensure	 management	 of	 service	
containers	and	enable	 for	self-healing	of	services	and	elastic	horizontal	auto-scaling	of	
instances	that’s	evenly	load	balanced.		
	
In	the	thesis	the	goal	was	to	explore	what	it	takes	to	deploy	a	cluster	of	services	and	the	
tooling	 required	 for	operation	such	solutions.	As	a	main	part	prototype	cluster	with	5	
microservices	connected	to	Kafka	message	queue	managed	by	Kubernetes	orchestration	
was	bult.		
	
In	the	work	was	shown	the	ease	of	deployment	of	new	services	and	setting	up	monitoring	
and	tracing	platforms	connecting	them	together	inside	the	Google	Cloud	Platform.	This	
example	was	sucessfully	shown	how	monitoring	of	applications	and	managed	services	in	
the	cloud	works	as	well	as	distributed	tracing	of	remote	calls	between	the	services.	The	

 91

microservices	 were	 integrated	 through	 Open	 API	 3.0	 specification	 standard	 and	
asynchronous	messaging.		
	
To	 test	 if	 the	solution	meets	 the	requirements	set	 in	 the	work,	performance	 test	cases	
were	prepared	 in	Apache	 JMeter	 and	 run	against	 the	deployd	distributed	 system.	The	
results	 were	 recorded	 and	 evaluated	 based	 on	 Time	 measure,	 fault	 tolerance	 and	
availability	metrics	according	 to	 ISO/IEC	25023.	Results	were	really	good	and	met	 the	
expectation	of	the	software	product	in	this	category.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 92

	

7 References

AWS. 2019. Cloud Storage. https://aws.amazon.com/. [Online] Amazon, 1 12, 2019. [Cited:
12 29, 2020.] https://aws.amazon.com/what-is-cloud-storage/.

Boris Scholl, Trent Swanson, Peter Jausovec. 2019. Cloud Native. Massachusetts, USA :
O'Reilly Media, Inc., 2019. 9781492053828.

Bose, Shreya. 2020. Testing Pyramid : How to jumpstart Test Automation.
browserstack.com. [Online] 1 21, 2020. [Cited: 11 12, 2020.]
https://www.browserstack.com/guide/testing-pyramid-for-test-automation.

Cloud Native Computing Foundation. 2016. The OpenTracing Semantic Specification.
opentracing.io. [Online] 11 29, 2016. [Cited: 12 2, 2020.]
https://github.com/opentracing/specification/blob/master/specification.md.

Daniel Bryant, Abraham Marín-Pérez. 2018. Continuous Delivery in Java. Massachusetts,
USA : O'Reilly Media, Inc., 2018. 9781491986028.

Education, IBM Cloud. 2019. What is IaaS (Infrastructure-as-a-Service). IBM Cloud Learn
Hub. [Online] IBM, 7 12, 2019. [Cited: 12 15, 2020.] https://www.ibm.com/cloud/learn/iaas.

Grzybek, Kamil. 2019. Modular Monolith: A Primer. kamilgrzybek.com. [Online] 12 3,
2019. [Cited: 12 27, 2020.] http://www.kamilgrzybek.com/design/modular-monolith-primer/.
Ligus, Slawek. 2012. Effective Monitoring and Alerting. Massachusetts, USA : O'Reilly
Media, Inc., 2012. 9781449333522.

Long, Josh. 2016. Distributed Tracing with Spring Cloud Sleuth and Zipkin. spring.io.
[Online] Spring Foundation, 2 15, 2016. [Cited: 11 28, 2020.]
https://spring.io/blog/2016/02/15/distributed-tracing-with-spring-cloud-sleuth-and-spring-
cloud-zipkin.

Marks Richards, Neal Ford. 2020. Fundamentals of Software Architecture. Massachusetts,
USA : O'Reilly Media, Inc., 2020. 9781492043454.

Mohamandinia, Mona. 2021. Liveness and Readiness Probes in Spring Boot. baeldung.com.
[Online] Tarnum Java SRL, 2 8, 2021. [Cited: 2 19, 2021.] https://www.baeldung.com/spring-
liveness-readiness-probes.

Newman, Sam. 2021. Building Microservices, 2nd Edition. Massachusetts, USA : O'Reilly
Media, Inc., 2021. 9781492034025.

Nginx. 2019. What Is Round-Robin Load Balancing? nginx.com. [Online] Nginx, Inc., 8 12,
2019. [Cited: 11 19, 2020.] https://www.nginx.com/resources/glossary/round-robin-load-
balancing/.
Poulton, Nigel. 2019. Docker Deep Dive. Birmingham : Packt Publishing, 2019.
9781800565135.

 93

Salesforce. 2020. saas. salesforce.com. [Online] Salesforce.com, inc, 2 3, 2020. [Cited: 12 29,
2020.] https://www.salesforce.com/saas/.

Spring Foundation. 2020. Web on Reactive Stack. docs.spring.io. [Online] 8 12, 2020.
[Cited: 12 5, 2020.] https://docs.spring.io/spring-framework/docs/current/reference/html/web-
reactive.html.

Srinivasan Desikan, Gopalaswamy Ramesh. 2007. Software Testing: Principles and
Practices. Chennai : Pearson India, 2007. 9788177581218.

Swersky, Dave. 2018. The Hows, Whys and Whats of Monitoring Microservices.
thenewstack.io. [Online] 6 21, 2018. [Cited: 11 26, 2020.] https://thenewstack.io/the-hows-
whys-and-whats-of-monitoring-microservices/.

VMWare. 2018. VMWare.com. [Online] VMware, Inc., 8 12, 2018. [Cited: 12 26, 2020.]
https://www.vmware.com/topics/glossary/content/hypervisor.

Wiggins, Adam. 2017. Manifesto. 12factor.net. [Online] 1 1, 2017. [Cited: 12 19, 2020.]
https://12factor.net/.

Wigmore, Ivy. 2016. Monolithic architecture. whatis.techtarget.com. [Online] 5 1, 2016.
[Cited: 12 26, 2020.] https://whatis.techtarget.com/definition/monolithic-architecture.

Quan, Adam. 2019. Distributed Tracing, OpenTracing and Elastic APM . www.elastic.co.
[Online] 19. 2 2019. [Citace: 28. 12 2020.] https://www.elastic.co/blog/distributed-tracing-
opentracing-and-elastic-apm.

Garrison, Justin. 2017. Cloud Native Infrastructure. Newton, Massachusetts, USA : O'Reilly
Media, Inc., 2017. 9781491984307.

Hohpe, Gregor. 2003. Enterprise Integration Patterns. Amsterdam : Addison-Wesley, 2003.
0321200683.

Larsson, Magnus. 2019. Hands-On Microservices with Spring Boot and Spring Cloud .
místo neznámé : Packt Publishing, 2019. 9781789613476.

Mijic, Dejan. 2018. Scalable Architecture for the Internet of Things . místo neznámé :
O'Reilly Media, Inc., 2018. 9781492024125.

Sabella, Anthony. 2018. Orchestrating and Automating Security for the Internet of Things:
Delivering Advanced Security Capabilities from Edge to Cloud for IoT. místo neznámé :
Cisco Press, 2018. 9780134756936.

WAEHNER, KAI. 2019. Internet of Things (IoT) and Event Streaming at Scale with Apache
Kafka and MQTT. www.confluent.io. [Online] 10. 10 2019. [Citace: 3. 1 2021.]
https://www.confluent.io/blog/iot-with-kafka-connect-mqtt-and-rest-proxy/.

Laporte, Claude Y. 2018. místo neznámé : Wiley-IEEE Computer Society Press, 2018.
9781118501825.

 94

Miller, Darrel. 2017. OpenAPI Specification. openapis.org. [Online] OpenApi Initiative, 26.
7 2017. [Citace: 10. 1 2021.] http://spec.openapis.org/oas/v3.0.0.

KyungWoon Cho, Hyokyung Bahn. 2020. A Cost Estimation Model for Cloud Services and
Applying to PC Laboratory Platforms. www.researchgate.net. [Online] 7. 1 2020. [Citace: 5.
1 2021.]

https://www.researchgate.net/publication/338464515_A_Cost_Estimation_Model_for_Cloud
_Services_and_Applying_to_PC_Laboratory_Platforms.

Burger, Loraine. 2021. Why Cloud Computing Is Essential to Your Organization .
https://www.simplilearn.com/. [Online] 2. 2 2021. [Citace: 15. 2 2021.]
https://www.simplilearn.com/why-cloud-computing-is-essential-to-organization-article.

Humble, Jez. 2018. Accelerate. místo neznámé : IT Revolution Press, 2018. 9781942788331.

Stalcup, Katy. 2021. AWS vs Azure vs Google Cloud Market Share 2021: What the Latest
Data Shows. parkmycloud.com. [Online] 10. 2 2021. [Citace: 16. 2 2021.]
https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-share/.
—. 2021. AWS vs Azure vs Google Cloud Market Share 2021: What the Latest Data Shows .
https://www.parkmycloud.com/. [Online] 21. 2 2021. [Citace: 26. 2 2021.]
https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-
share/#:~:text=As%20of%20February%202021%2C%20Canalys,%25%2C%20Alibaba%20C
loud%20close%20behind..

ISO/IEC. 2016. System and software Quality Requirements and Evaluation (SQuaRE) -
Measurement of system and software product. Geneva : INTERNATIONAL STANDARD
ISO / IEC, 2016. ISO / IEC 25023.

SVMK Inc. 2020. The 3 types of survey research and when to use them .
www.surveymonkey.com. [Online] 20. 12 2020. [Citace: 15. 1 2021.]
https://www.surveymonkey.com/mp/3-types-survey-research/.

Apache Software Foundation. 2011. Apache JMeter. https://jmeter.apache.org/. [Online] 2.
11 2011. [Citace: 15. 1 2021.] https://jmeter.apache.org/.

OpenZipkin. 2017. https://zipkin.io/. https://zipkin.io/. [Online] 12. 1 2017. [Citace: 1. 15
2021.] https://zipkin.io/.

Lee, James. 2018. Hands-On Big Data Modeling. místo neznámé : Packt Publishing, 2018.
9781788620901.

