
VYSOKÉ UČENf TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

METODY AKCELERACE VERIFIKACE LOGICKÝCH OBVODŮ
NEW METHODS FOR INCREASING EFFICIENCY AND SPEED OF FUNCTIONAL VERIFICATION

ROZŠÍŘENÝ ABSTRAKT DIZERTAČNÍ PRÁCE
EXTENDED ABSTRACT OF A PHD THESIS

AUTOR PRÁCE Ing. MARCELA ŠIMKOVÁ
AUTHOR

VEDOUCÍ PRÁCE Doc. Ing. ZDENĚK KOTÁSEK, C S c
SUPERVISOR

BRNO 2015

Kl íčová s lova
Funění verifikace, verifikace založená na simulaci, Universal Verification Methodology, System-
Verilog, optimalizace, automatizace, genetický algoritmus, verifikace řízená pokrytím, metriky
pokrytí.

K e y w o r d s
Functional verification, simulation-based verification, Universal Verification Methodology, Sys­
tem Verilog, optimization, automation, genetic algorithm, coverage-driven verification, coverage
metrics.

The original of the thesis is available in the library of Faculty of Information Technology, Brno
University of Technology, Czech Republic.

Contents

1 Introduction 2
1.1 Thesis Contribution 3

2 Functional Verification in SystemVerilog 4
2.1 Verification Process 5
2.2 Verification Methodologies 7

3 Evolutionary Computing 8
3.1 M a i n Principles of Evolutionary Computing 8
3.2 Genetic Algorithms 10

4 Goals of the Ph.D. Thesis 12

5 FPGA-based Acceleration of Functional Verification 13
5.1 First Version of H A V E N 13
5.2 Second Version of H A V E N 16
5.3 Use-cases of H A V E N 18
5.4 M a i n Contributions of H A V E N 18

6 Automated Generation of U V M Verification Environments 19
6.1 Codasip Studio 19
6.2 Functional Verification Environments for Processors 20
6.3 Experimental Results 20
6.4 M a i n Contributions of Automated Generation 21

7 Automation and Optimization of Coverage-driven Verification 22
7.1 Automated C D V 22
7.2 Experimental Results 25
7.3 M a i n Contributions of G A Automation and Optimization 28

8 Optimization of Regression Suites 29
8.1 Evolutionary Optimization of Regression Test Suites 30
8.2 Experimental Results - A L U Case Study 31
8.3 M a i n Contributions of Regression Suites Optimization 32

9 Conclusions 33
9.1 Future Work 34
9.2 Related Publications and Products 34
9.3 Research Projects and Grants 36

1

Chapter 1

Introduction

Today's highly competitive market of consumer electronics is very sensitive to the time it takes to
introduce a new product (the so-called time to market). Figure 1.1 illustrates how many participants
of the Wilson Research Group Functional Verification Study [16], which is a blind study supported
by Mentor Graphics and conducted regularly by Wilson Research Group, can handle the original
time schedule of their projects. Unfortunately, it can be seen that for several years the trend is stable,
around 67 % of projects are behind the schedule.

Figure 1.1: Source [16]: Project's Schedule Completion Trends.

This has driven the demand for fast, efficient and cost-effective methods of verification of hard­
ware systems. They must tackle several challenges:

• defining the appropriate metrics to measure the progress in verification,

• restricting the time needed to discover and isolate a next error,

• creating sufficient tests to verify the whole design and manage the verification process.

In Figure 1.2, the overview of errors that are most commonly discovered by verification is
illustrated. It can be seen that logic and functional errors take the biggest portion of them, but the
good news is that they can be effectively handled by pre-silicon verification approaches.

2

E f f o r t a n d R e s u l t s
Trends: Types of Flaws

60%

Trends in Types of Flaws Resulting in Respins
Wilson Research Group and Mentor Graph cs, 2012 Fjnct o-s - B:.;-,-- Usee ?er:~s-or * Multiple answers possible

HF-JaruaryZOlJMasterSetWRGaMG StudyRe5ult5 www.inentor.com GrapTSKS

Figure 1.2: Source [16]: Types of flaws.

1.1 Thesis Contribution

We decided to focus our research on a pre-silicon verification approach called functional verification
as it is extensively used in industry nowadays. It utilizes sophisticated programming languages for
hardware verification, such as SystemVerilog [1], and standardized verification methodologies (e.g.
Open Verification Methodology (O V M) [15], Universal Verification Methodology (U V M) [28]).

In the thesis, every of the challenges mentioned in Chapter 1 is taken into account. It is believed
that the main contributions of this thesis are as follows.

• Various coverage metrics are discussed, how they capture design specifications and function­
alities and how they allow to measure the progress in verification. It is outlined, how the
functional coverage points (monitors) must be defined as it is quite tricky and a non-trivial
problem.

• The bottleneck concerning generation of suitable stimuli for the D U V that can adequately
activate all coverage points and achieve high coverage rate is also targeted in the thesis. A n
optimization technique is proposed that works in the background of the verification process
and automatically without the human intervention drives generation of stimuli so the unco­
vered properties of the system are checked.

• The time bottleneck is eliminated by accelerating functional verification runs in the F P G A
accelerator and by automated generation of verification environments with respect to the
U V M methodology.

• The verification process must be successfully managed also in the later phases of the develop­
ment of hardware systems, when the functionality is slightly modified or some optimizations
to the design are made. Therefore, an optimization technique is proposed that helps to cre­
ate small but coverage-effective regression suites from the stimuli already used in functional
verification.

3

http://www.inentor.com

Chapter 2

Functional Verification in SystemVerilog

Verification environments for functionai verification are impiemented in the SystemVeriiog lan-
guage usuaiiy with respect to some weii-known verification methodoiogy. Afterwards, they are
running in some R T L simuiator, e.g., QuestaSim from Mentor Graphics, Riviera-PRO from Aidec,
V C S from Synopsys or Incisive Enterprise Simulator from Cadence.

System Verilog is a complex programming language for hardware design and especially for
functional verification. While created as the next generation of the Verilog language, it has adopted
features from many other programming languages with great impact on its simulation and verifica­
tion capabilities. System Verilog provides a basis for building techniques that increase the efficiency
of verification processes. The description of some of these techniques follows:

• Object-Oriented Programming (OOP). This approach allows easier design of large systems
with support of common design patterns or reusable components. Verification environments
are more modular and thus easier to develop and debug. The mechanisms of encapsulation,
inheritance and polymorphism support the reuse of verification components, which leads to
an increase in productivity.

• Constrained-random stimuli generation. For checking full functionality of a larger design
it becomes more difficult to create a complete set of stimuli. A suitable solution is to create
test cases automatically using constrained-random stimuli generation to target corner cases
and stress conditions. Test scenarios are restricted to be valid using constraints. Constraints
define the correct form of the generated data and can be also used to guide verification tests
to interesting D U V states.

• Assertion-Based Verification (ABV). This is a technique used to formally express the in­
tended design behaviour, internal synchronization, and expected operations, using assertions
(i.e. properties that must hold at all times). Assertions can be expressed at many levels of
the device including internal and external interfaces (to detect critical protocol violations),
clock-domain crossings and state machines. Two examples of assertion languages are Prop­
erty Specification Language (PSL) and System Verilog Assertions (SVA).

• Cooperation with other programming languages. Direct Programming Interface (DPI) al­
lows System Verilog code to call functions in other programming languages as i f they were
native System Verilog functions. Data can be passed between the two domains through func­
tion arguments and results. Inter-operable environments and components may be used to
reduce the effort required to verify a complete product in case some parts of the product are
already prepared in other programming languages.

4

• Coverage-Driven Verification (CDV). Coverage is an important part in functional verifica­
tion [22]. Let us define a terminology connected with the coverage at first.

Coverage metric is one measurable attribute of a circuit, e.g. the number of executed lines
of code or the number of checked arithmetical operations. In general, it is possible to
specify different coverage metrics in functional verification which are connected either
with the source code or with the intended functionality.

Coverage space represents an ^-dimensional region defined by n coverage metrics.

Coverage model is an abstract representation of a circuit composed of selected i < n co­
verage metrics and their relationship. It forms an /-dimensional subspace of the n-
dimensional coverage space.

Achieving coverage closure means provoking the occurrence of each (or some threshold) of
the measurable properties [22]. R T L simulators offer coverage analysis and produce statis­
tics about which coverage items were covered during the verification runs. If there are holes
(unexplored areas) in the coverage analysis, the verification effort is directed to the prepa­
ration of suitable test scenarios which w i l l be able to cover these holes. That is the reason
why this approach is called coverage-driven verification. One option is to manually change
the constraints of the pseudo-random generator, the second option is to prepare direct tests.
The list of supported coverage metrics follows, some of them are generated automatically in
a simulator, other must be written by hand.

- Functional coverage is specified manually; it measures how wel l input stimuli cover
the functional specification of D U V . It focuses mostly on the semantics, e.g.: D i d the
test cover all possible commands or did the simulation trigger a buffer overflow? For
more precise definition and examples, see Chapter 4 in [22] or Chapter 18 in I E E E
SystemVerilog standard [1].

- Structural coverage is generated automatically by a simulation tool, so no extra H V L
code needs to be written because the code coverage tool included in many simulators
instruments the design automatically by analyzing the source code and adding hidden
code to gather statistics. In general, structural coverage measures how well input stimuli
cover the implementation (the source code) of D U V . For more precise definition and
examples, see Chapter 5 in [22] or Chapter 29 in I E E E SystemVerilog standard [1].
Typical structural coverage metrics are toggle coverage, code coverage and finite State
Machine coverage.

2.1 Verification Process
Verification is a complex task, therefore, a lot of effort should go into specifying when a D U V can
be considered as fully verified. Inspired by [6] we introduce the main steps of a verification process.

Specification and Requirements. In order to check a new implementation of D U V for its func­
tional correctness, we need a reference description, either a text specification or a previous refer­
ence implementation which represents the intention of the design. In many cases, the specification
is given on a higher level of abstraction so it does not capture the detailed behaviour of the design.

5

Verification Plan. A verification plan contains a description of features which need to be exer­
cised and techniques and tools which should be used to achieve the specific goals. Moreover, it
should contain a precise definition of all the resources that w i l l be needed and not only the compu­
tational resources but also human and financial resources.

• The stimuli generation plan chooses the character of input sequences:

a) Direct tests — each test contains direct sequences of stimuli which are targeted at a very
specific set of design elements.

b) Constrained-random stimuli generation tests — a more efficient way to verify com­
plex designs thoroughly is with constrained-random stimuli generation. Random tests
explore the space much faster than direct tests, reduce the number of required tests, and
increase productivity and quality of the verification process.

• The coverage plan specifies which coverage metrics w i l l be used to track the progress in
verification and what is the level of coverage that should be achieved in every such metric.

• The checker plan uses mechanisms for predicting the expected response and for comparing
the observed response (typically from external outputs of D U V) against the expected one.
The following list introduces several means of predicting expected responses.

a) Assertions — these are used to verify the response of the device based on internal
signals. Assertions work well for verifying local signal relationships; they can detect
errors in handshaking, state transitions and protocol rules. On the other hand, they are
not wel l suited for detecting data transformations, computation and ordering errors.

b) Scoreboarding — a scoreboard is used to dynamically predict the response of the de­
vice. Stimulus applied to the D U V is also passed to the transfer function which performs
all transformations on the stimulus to produce the form of the final response. Modified
stimulus is inserted into a data structure called transaction. The observed response from
the D U V in the form of the transaction is forwarded to the comparison function which
verifies whether it reflects the expected response or not. The transfer function may be
implemented using a reference (golden) model, even e.g. in the C, C++ language (and
integrated into the testbench through the DPI).

c) Offline checking — used to predict responses of the design before or after a simulation
of the design is done. In pre-simulation prediction, the offline checker produces a de­
scription of expected responses, which are dynamically verified against the observed
responses during the simulation. Some utilities can perform post-simulation compari­
son. In both cases the response can be checked at the cycle-by-cycle or the transaction
level with reordering.

Building Testbench. Verification environments (also called testbenches) determine the correct­
ness of the D U V . This is accomplished in general by:

1. generating stimuli,

2. applying stimuli to the D U V ,

3. capturing the response,

4. checking correctness of the response,

5. measuring progress against the overall verification goals.

6

Analysis of Coverage. Coverage tools gather information during a simulation and post-process
them in order to produce a coverage report. After analyzing both functional and structural cover­
age reports, new tests are written to reach uncovered areas of the design until a sufficient level of
coverage is achieved.

2.2 Verification Methodologies

Various methodologies were developed with collaboration of different companies:

• Verification Methodology Manual (VMM) [6] — was co-authored by verification experts
from A R M and Synopsys. V M M ' s techniques were originally developed for use with the
Open Vera language and were extended in 2005 for System Verilog.

• Open Verification Methodology (OVM) [15] — this methodology is the result of a joint
development between Cadence and Mentor Graphics to facilitate true System Verilog interop­
erability with a standard library and a proven methodology.

• Universal Verification Methodology (UVM) [28] — is a state of the art methodology that
extends O V M . In Figure 2.1, the architecture of the U V M testbench is shown.

Test plan

Coverage Scoreboard Configuration Coverage Scoreboard Configuration

Test suite

V , V 1
> r \

Sequences

(
Sequence

items)
C Constraints)

Agent

Monitor

Sequencer Driver

System Verilog
interface

Protocol
assertions DUV

Figure 2.1: The U V M verification environment.

The Test plan contains all the test cases that w i l l be evaluated during verification. Every
test case (Test suite) consists of several Sequences that encapsulate input stimuli (Sequence
items). There, the generator of pseudo-random stimuli can be utilized. Therefore, Constraints
can be present here which restrict the generated data. Sequence items are propagated to the
unit called Sequencer and from this unit to the Driver that drives input ports of D U V . Output
ports of D U V are monitored by the Monitor unit. Sequencer, Driver and Monitor are grouped
together in the structure called Agent. The purpose of Agents is to tie the components that are
logically bounded to some SystemVerilog virtual interface which corresponds to one or more
real interfaces of D U V (a virtual interface logically encapsulates input and output signals of
D U V) . If the D U V contains several interfaces of the same type, more Agents of the same type
are instantiated in the verification environment as well as more virtual interfaces. Assertions
that check the validity of protocols are also present here. Furthermore, Coverage monitors
measure user-defined functional properties. O f course, the most important part of testbenches
is Scoreboard which implements the reference functionality.

7

Chapter 3

Evolutionary Computing

This chapter familiarizes the reader with the basics about Evolutionary Computing (EC). The rea­
son for incorporating the chapter about Evolutionary Computing (EC) is that it w i l l be used as an
optimization tool in the techniques proposed in this Ph.D. thesis and therefore, it is reasonable to un­
derstand the essential terms. The theoretical background for this chapter is taken from [12, 30, 27].

3.1 Main Principles of Evolutionary Computing

Evolutionary computing is a computer science research area. It draws inspiration from the process
of Darwin's natural evolution [11]. Let us consider natural evolution simply as follows. A given
environment is filled with a population of individuals that compete for survival and reproduction.
The fitness of these individuals - determined by the environment - relates to how well they succeed
in achieving these goals, i.e., it represents their chances of survival and multiplying. In the context
of a stochastic problem solving process, we have a collection of candidate solutions. Their quality
(that is how wel l they solve the problem) determines the chance that they w i l l be kept and used as
seeds for constructing further candidate solutions. This phenomenon is also known as the survival
of the fittest.

3.1.1 Brief History

The idea of applying Darwinian principles to automated problem solving dates back to the forties,
long before the breakthrough of computers [13]. A s early as 1948, Turing proposed "genetical
or evolutionary search", and by 1962 Bremermann had actually executed computer experiments
on "optimizing through evolution and recombination". During the 1960s, three different imple­
mentations of the basic idea were developed in different places. In the U S A , Fogel, Owens, and
Walsh introduced evolutionary programming [14], while Holland called his method a genetic al­
gorithm [17, 18]. Meanwhile, in Germany, Rechenberg and Schwefel invented evolution strate­
gies [26, 29]. For about 15 years, these areas were developing separately; but since the early 1990s
they have been viewed as different representatives of one technology that has come to be known
as evolutionary computing [4, 5]. In the early 1990s a fourth stream following the general ideas
emerged. It was called the genetic programming [20, 21] and was introduced by Koza. The con­
temporary terminology denotes the whole field by evolutionary computing, the algorithms evolved
are termed as evolutionary algorithms, and it considers evolutionary programming, evolution strate­
gies, genetic algorithms, and genetic programming as sub-areas belonging to the corresponding
algorithm variants.

8

3.1.2 Evolutionary Computing and Global Optimization

Figure 3.1 shows three main stages of the evolutionary search for suitable candidate solutions of the
optimization problems, showing how the candidates might typically be distributed in the beginning,
somewhere halfway, and at the end of the evolution.

Figure 3.1: Typical progress of an E A illustrated in terms of population distribution. Source: [12].

In the first phase, the individuals are randomly spread over the whole search space (Figure 3.1,
left). After only a few generations this distribution changes, the population abandons low-fitness
regions and starts to "cl imb" the hills (Figure 3.1, middle). Later, the whole population is con­
centrated around a few peeks, some of which may be suboptimal (Figure 3.1, right). In principle,
it is possible that the population might climb the "wrong" h i l l , leaving all of the individuals posi­
tioned around a local but not global optimum. The distinct phases of the search process are often
categorized in terms of exploration (the generation of new individuals in as yet untested regions of
the search space), and exploitation (the concentration of the search in the vicinity of known good
solutions). Evolutionary search processes are often referred to in terms of a trade-off between ex­
ploration and exploitation. Too much of the former can lead to inefficient search and too much of
the latter can lead to a propensity to focus the search too quickly [12].

Another class of search methods is known as heuristics. These may be thought of as sets of
rules for deciding which potential solution should next be generated and tested. If randomization is
extensively utilized in the selection, these algorithms are called the heuristic stochastic algorithms.
The examples of them are random search, simulated annealing, hi l l climbing, swarm algorithms, as
well as evolutionary algorithms. More informations about them can be found in [7],[32].

Random search algorithm generates a candidate solution randomly in each step. This algorithm
remembers the candidate solution, i f its cost is better than the cost of the best up to now solution.
The computation ends when a desired solution is found or when the limit of iterations is reached.
Because of the stochastic nature of this algorithm, it is necessary to run the random search several
times with a different seed of the pseudo-number generator in order to gain statistically important
data. Nevertheless, this algorithm is weak for solving real world problems, because it lacks strategy
and does not exploit the knowledge gained during the computation.

Local search algorithms (simulated annealing, h i l l climbing, greedy) are iterative algorithms
that start with an arbitrary candidate solution to a problem, then attempt to find a better candidate
solution in the neighborhood by the local exploration. In order to evaluate the cost of candidate
solutions in the neighborhood it is necessary to precisely define the neighborhood using the so-
called cardinality constant. In the next step, a candidate solution with the best cost is selected and
serves as a starting point in the next step of the algorithm. The disadvantage of this algorithm is
that it often reaches a local extreme and the best possible solution is not found.

According to [30], any search strategy can be viewed as utilizing one or more operators which
produce new candidate solutions from those previously visited in the search space. Effective search

9

space algorithms should balance between two apparently antagonistic goals:

1. to exploit the neighborhood of the best up to now solution,

2. to explore also uninspected areas of the search space.

While the local search algorithms like h i l l climbing focus mainly on the neighborhood of the
best available solution, the random search moves through the whole state space but without exploit­
ing promising areas of the search space. From this simple comparison, the evolutionary algorithms
seem to be the best choice as they can meet both goals simultaneously. The ability of E A s to main­
tain a diverse set of points provides not only a means of escaping from local optima by mutation,
but also a means of coping with large and discontinuous search spaces.

3.2 Genetic Algorithms

Genetic Algorithm (GA) is the most widely known type of E A . A special attention is devoted to
G A in this thesis, because it w i l l be further used for solving optimization problems.

Representation of Individuals. G A uses mostly the binary representation, so the candidate so­
lution consists of a string of binary digits. For a particular application we have to decide how long
the string should be and how we w i l l interpret it. In choosing the genotype-phenotype mapping for
a specific problem, one has to make sure that the encoding allows that all possible bit strings denote
a valid solution to the given problem and that vice-versa, all possible solutions can be represented.

Mutation. For binary representations, the most common mutation operator allows each bit to flip
(i.e., from 1 to 0 or 0 to 1) with a small probability pm. This type of mutation is also called uniform.
The actual number of values changed is not fixed, but depends on the sequence of random values
drawn, so for encoding of length L, on average L.pm values w i l l be changed. Other type of mutation
operator is nonuniform mutation, where e.g. a Gaussian probability distribution on different bits is
used or the swap mutation that randomly picks two positions and swap their values.

Recombination. Recombination is applied probabilistically with a crossover rate pc, which value
is usually in the range [0.5, 1.0]. Mostly two parents are selected and then a random variable is
drawn from [0,1) and compared to pc. If the value is lower, two offspring are created via recom­
bination of two parents; otherwise they are created asexually, i.e., by copying the parents. Three
standard forms of recombination are used for binary representations. The one-point crossover gen­
erates randomly a position in the bit string in which both parents exchange their tails. The N-point
crossover generates n positions, both parents are broken in these positions and then the offspring
are created by taking alternative segments from the two parents. The uniform crossover treats each
gene (an element of chromosome) separately and makes a random choice about exchange.

Population Models. Two different population models are typically used in G A : the generational
model and the steady-state model. In the generational model, we begin with a population of size /J
in each generation, from which a mating pool of <u parents is selected. Next, X(= JJ) offspring are
created from the mating pool by the application of variation operators, and evaluated. After each
generation, the whole population is replaced by its offspring, which is called the "next generation".
In the steady-state model, the entire population is not changed at once, but rather a part of it. In
this case, X(< <u) old individuals are replaced by X new ones, the offspring. The percentage of the
population that is replaced is called the generation gap, and is equal toX//j.

10

Parent Selection. In the fitness proportional selection, the probability that an individual fi is
selected for mating is fi/Tfj=lfj. It means that the selection probability depends on the absolute
fitness value of the individual compared to the absolute fitness values of the rest of the population.
The rank-based selection sorts the population on the basis of fitness and then allocates selection
probabilities to individuals according to their rank, rather than according to their actual fitness
values. The mating pool of parents is sampled from the selection probability distribution. The
simplest way of achieving this sampling is known as the roulette wheel algorithm. Conceptually
this is the same as spinning a one-armed roulette wheel, where the sizes of the holes reflect the
selection probabilities. A random number is then generated uniformly from [0,1]. This random
number fits to some hole in the wheel and thus identifies the corresponding parent. The tournament
selection algorithm does not require any global knowledge of the population. It randomly picks k
individuals and selects the best one from them according to their fitness values.

Survivor Selection. From a set of <u parents and X offspring it is necessary to produce a set of <u
individuals for the next generation. The selection is usually made according to the age of individuals
(each individual exists in the population for the same number of iterations) or their fitness. Very
common scenarios are following: all parents are replaced by offspring, the best parents according
to their fitness values remain in the population and others are replaced by offspring, or just one best
parent is propagated to the next population (elitism).

3.2.1 Parameter Control in Genetic Algorithms

A simple G A might be defined by stating it w i l l use binary representation, uniform crossover, bit-
flip mutation, tournament selection, and generational replacement. For a full specification, however,
further details have to be specified, for instance, the population size, the probability of mutation pm,
the probability of crossover pc, and the tournament size. These data - called the strategy parameters
- complete the definition of E A and are necessary to produce an executable version. The values
of these parameters greatly determine whether the algorithm w i l l find an optimal or near-optimal
solution and whether it w i l l find such a solution effectively.

The technical drawbacks to parameter tuning based on experimentation can be summarized as
follows:

• Parameters are not independent, but trying all different combinations systematically is prac­
tically impossible.

• The process of parameter tuning is time consuming, even i f parameters are optimized one by
one, regardless of their interactions.

• For a given problem, the selected parameter values are not necessarily optimal, even i f the
effort made for setting them was significant.

During the history of E A s , considerable effort has been devoted to finding parameter values (for
a given type of E A , such as G A s) that were good for a number of test problems [3]. Unfortunately,
it was shown that specific problems (problem types) require specific setup for satisfactory perfor­
mance. There are also theoretical arguments that any quest for generally good E A , thus generally
good parameter settings, is lost a priori (No Free Lunch theorem [40]).

11

Chapter 4

Goals of the Ph.D. Thesis

The Ph.D. thesis focuses on finding new optimization techniques (in comparison to the state-of-the-
art methods) that w i l l improve various processes of functional verification. The attention is mainly
paid to these goals:

1. To speed-up the implementation of UVM-based verification environments by the automated
pre-generation of its components from the high-level specification of the verified circuit. In
this way, the manual intervention of verification engineers w i l l be restricted only to specific
U V M components, like preparing verification scenarios or implementing reference models.

2. To eliminate the simulation overhead inbuilt in UVM-based functional verification by using
an affordable and flexible F P G A accelerator. Flexibility w i l l be achieved by moving various
parts of the U V M testbench into the accelerator.

3. To automate and optimize reaching coverage closure in coverage-driven verification by a
well-tuned algorithm in order to meet all verification goals as soon as possible. The algorithm
w i l l be running in the background of the verification process and drive verification to the
unexplored areas of the coverage search space.

4. To optimize the set of verification stimuli and to reuse them also in the further phases of the
development cycle, for example, during regression testing and fault testing.

A l l the formulated goals and proposed techniques need to be evaluated by extensive experimen­
tal results. Therefore, D U V s of various complexity were selected for verification, ranging from a
simple arithmetic-logic unit to a RISC processor. When talking about expected results, in the first
goal, the automated pre-generation of basic components should significantly reduce time devoted
to preparing verification environments, because the main U V M components w i l l be generated in
the order of seconds. O f course, some parts of the U V M verification environment are quite hard to
be automatically generated (definition of verification scenarios, reference models) so it is expected
that these parts would have to be manually adjusted for some D U V s . The speed-up (the second
goal) should be achieved by accelerating simulation using the F P G A accelerator and the reaching
of maximum coverage (the third goal) should be gained by the intelligent testbench automation.
In the last goal, mainly the overhead of using specific tools for preparing regression tests should
be eliminated. The precondition is that verification is very often used in the development cycle of
hardware systems and it can be reused also in further phases of this cycle, for example, during the
regression testing. The original set of verification stimuli can be just optimized (mainly the redun­
dancy introduced by randomness can be reduced, while preserving the same level of coverage) and
then reused together with the verification testbench or its part.

12

Chapter 5

FPGA-based Acceleration of Functional
Verification

Building upon our experience with different verification approaches and existing studies deal­
ing with acceleration issues, in 2011 we introduced H A V E N (Hardware-Accelerated Verification
ENvironment), an open framework that exploits the inherent parallelism of hardware systems to
accelerate their functional verification by moving the verified system together with several neces­
sary components of the verification environment to F P G A . To provide advanced level of debugging
capabilities, the framework adopts some formal techniques (assertion-based verification) and func­
tional verification techniques (constrained-random stimulus generation, self-checking mechanisms)
and enables partial signal observability to achieve appropriate debugging visibility while running in
the F P G A . H A V E N is freely available and open source [35] so it can be used by academy projects
and small companies without dependency on expensive accelerators or emulators.

5.1 First Version of HAVEN

The first version of H A V E N was introduced in 2011 in the master thesis [31] and the basic principles
of verification acceleration were described in the paper on Haifa Verification Conference [36].

5.1.1 Design of Acceleration Framework

H A V E N framework is based on the SystemVerilog language and allows users to run either the non­
accelerated or the accelerated version of the same testbench with a cycle-accurate time behavior.
The non-accelerated version runs entirely in the R T L simulator, while the accelerated version uses
an F P G A to accelerate the verification runs. Providing these two versions allows to use the frame­
work efficiently in different stages of the design flow, starting with debugging base system functions
in a simulator to stress testing with millions of stimuli using hardware acceleration. After creating
the basic verification environment, switching between these two versions is as easy as changing a
single parameter of the verification.

The non-accelerated version of the framework presents a similar approach to functional verifi­
cation that is commonly used in verification methodologies. This version is highly efficient in the
initial phase of the verification process when testing basic system functionality with a small num­
ber of stimuli (up to thousands). In this phase it is desirable to have a quick access to the values
of all signals of the system and to monitor the verification progress in a simulator. Coverage statis­
tics (code coverage, functional coverage) provide a feedback about the state space exploration and

13

allows the user to arrange constrained-random test cases properly to achieve even higher level of
coverage. Despite all these advantages, the application of the non-accelerated version is very ineffi­
cient for the verification of complex systems and/or large number of stimuli. The rising complexity
of verified hardware systems increases the time of simulation and also memory requirements on the
storage of detailed simulation runs.

The accelerated version of the framework moves the D U V to a verification environment in the
F P G A . This scenario is depicted in Figure 5.1. A s the simulation takes the biggest portion of ve­
rification time, this approach may yield a significant acceleration of the overall process. Complex
systems can be verified very quickly and with much higher number of stimuli (in the order of mi l ­
lions and more). Behavioral parts of the testbench, such as planning of test sequences, generation
of constrained-random stimuli, and scoreboarding, remain in the software simulator. This partition­
ing is possible thanks to the transaction-based communication among the subcomponents and this
enables a transparent move of the components to a specialized hardware, while maintaining good
readability for verification engineers.

Software
Simulation

FPGA
Acceleration

Figure 5.1: Moving some part of the verification testbench from software to hardware.

5.1.2 Experimental Results

We performed a set of experiments using the C O M B O v 2 L X T 1 5 5 acceleration card [25] equipped
with the X i l i n x Virtex-5 F P G A in a server with two quad-core Intel Xeon E5420@2.50GHz pro­
cessors and 10 G i B of R A M . The data throughput between the acceleration card and the C P U was
measured to be over lOGbps for this configuration. We used Mentor Graphics' ModelSim SE-64
6.6a as the SystemVerilog interpreter and in the case of the non-accelerated version also as the D U V
simulator. Unfortunately, we were not able to compare H A V E N to other solutions for acceleration
of functional verification, because these are mostly not freely available commercial products.

We evaluated the performance of H A V E N on two hardware components: a simple First In First
Out (FIFO) buffer and a Hash Generator (H G E N) which computes the hash value of input data
using the Bob Jenkins's Lookup2 hash algorithm [19]. In order to fully exploit the capabilities of
the accelerated version of H A V E N it is necessary to verify a complex system. For this purpose we
also built systems with 2, 4, 8, and 16 H G E N units working in parallel. We focused on verification
of a large number of very short data transactions (1-36 B) .

14

During the experiments, we observed that a considerable amount of time is taken by generating
stimuli, therefore, we measured the times of verification runs without the time of stimuli generation,
as this value is the same for both the accelerated and the non-accelerated version. These results are
given in Fig . 5.2 which shows the relation between the complexity of the verified component and
the acceleration ratio (without the time of stimuli generation).

Acceleration

lOOOx

800 x
> 14 hoi irs —> ~ 1 min /

600 x

400 x
00
X
•z

<

20Q x̂ I

N X
X £
z w \

o w I
B ° •
E j £ —

0 2k 4k 6k 8k 10k 12k 14k Slices

Figure 5.2: Relation between the acceleration ratio and the complexity of the verified component.

Table 5.1 summarizes the number of Virtex-5 slices used by the verification core of the acce­
lerated version with the verified component (the column Slices) and the total number of occupied
slices of the F P G A together with N e t C O P E (the column Total slices); the total number of slices of
the used F P G A (Xi l inx Virtex-5 X C 5 V L X 1 5 5 T) is 24,320. The column Build time gives the time it
took to generate the firmware for the F P G A . It can be observed that this time increases significantly
as the total resource consumption approaches the capacity of the F P G A . The computed break­
even number of transactions, which is, loosely speaking, the number of transactions for which the
acceleration starts to be beneficial, is further given in the column B -E Transactions. Formally, this
number is defined as the number transbe as can be seen in Equation 5.1:

transbe transbe , c

777777V = build Jime H —— (5.1)
trans_per_sec (NAV) trans _per_sec (AV)

where buildJime is the build time of the firmware in seconds and trans_per_sec(AV) and trans_per_sec
(NAV) are the average numbers of transactions processed in a second by the accelerated and the
non-accelerated version respectively. It is easy to deduce Equation 5.2 for computing transbe-

, trans_per_sec(AV) •trans_per_sec(AfA\ /)
transbe = buudJime • — r (5.2)

trans_per_sec(AK) — trans_per_sec(A'AV/)

Lastly, the column B -E time gives the time at which the break-even number of transactions is
reached (i.e., the time of the run of the non-accelerated version).

15

Table 5.1: Properties of verified components.
Component Slices Total slices Build time [s] B-E trans. B-E time [s]
FIFO 420 (1.7%) 9,362 (38.5 %) 1,473 3,116,000 3,078
H G E N 947 (3.9 %) 9,787 (40.2 %) 1,724 622,000 2,188
HGENx2 2,152 (8.8%) 11,315 (46.5%) 1,895 222,000 2,061
HGENx4 3,762 (15.4%) 12,938 (53.2%) 2,340 196,000 2,486
HGENx8 7,448 (30.6 %) 16,304 (67.0%) 3,390 131,000 3,488
HGENxfö f 5,778 (64.9%) 22,096 (90.9 %) 7,909 75,000 7,965

5.2 Second Version of HAVEN

The second version of H A V E N which contains even more acceleration scenarios was introduced in
2012 in the technical paper on Haifa Verification Conference [34].

5.2.1 Design of Acceleration Framework

In this version, we further extended H A V E N with hardware acceleration of the remaining parts of
the verification environment. This enables the user to choose from several different architectures
which are evaluated and compared (in the following text, the term testbed w i l l be used for represent­
ing one architecture). We have shown that each architecture provides a different trade-off between
the comfort of verification and the degree of acceleration.

The new features added to H A V E N support seamless transition from the pre-silicon to the post-
silicon verification using several architectures of the verification testbed. The user can start with the
pure software version of the functional verification environment to debug the base system functions
and discover the main bulk of errors (it is the original non-accelerated version). Later, when the
simulation cannot find any new bugs in a reasonable time, the user can start to incrementally move
some other parts of the verification environment from software to hardware (generator of stim­
uli , scoreboard, transfer function, coverage monitor), with each step obtaining a different trade-off
between the acceleration ratio and the debugging comfort.

5.2.2 Testbed Architectures of H A V E N

In this section we show how the components introduced in the second version of H A V E N may
be assembled with the components of the first version in order to create several different testbed
architectures, each suitable for a different use case and a different phase of the overall verification
process.

Software version (SW-FULL). A l l components of the verification environment (stimuli genera­
tor, scoreboard) are in the software simulator (Fig. 5.3).

Figure 5.3: Software version (SW-FULL).

16

Hardware Generator version (HW-GEN). The architecture is similar to the SW-FULL version
with the exception of the Hardware Generator and the Constraint Solver, which are placed in the
F P G A and send generated stimuli in the form of transactions to the simulator.

Hardware D U V version (HW-DUV). In this architecture (Fig. 5.4), the Hardware Driver and the
Hardware Monitor fulfill the same functions as their counterparts in the SW-FULL version, but they
drive the input and output interfaces of the D U V running in the F P G A . The output transactions
produced by the D U V are directed from the Hardware Monitor to the Software Scoreboard.

Software
Generator

Generator
Controller

Input
Controller

Input
Wrapper

Hardware
Driver

FPGA

Sender
Software

Scoreboard +- Output Sorter
Controller

Output
Wrapper

Hardware
Monitor

Assertion
Reporter

Signal
Reporter

Figure 5.4: Hardware D U V version (HW-DUV).

Hardware Generator and D U V version (HW-GEN-DUV). This architecture is similar to the
HW-DUV version but the generator is in hardware, as in HW-GEN.

Hardware version (HW-FULL). A l l core components of the verification environment in this ar­
chitecture (Fig. 5.5) reside in the F P G A . The components in the software only set constraints for the
Constraint Solver and report assertion failures, coverage statistics, or display waveforms of signals
from hardware components.

Hardware
Generator

FPGA

Generator
Controller

Constraint
Solver

Hardware
Driver

Hardware
Driver

Hardware
Monitor

Transfer
Function

Hardware
Monitor

Sorter

Ou
Wra

put
pper

Hardware
Scoreboard

Assertion
Reporter

Signal
Reporter

Figure 5.5: Hardware version (HW-FULL).

17

5.2.3 Experimental Results

We performed a set of experiments using an acceleration card with the X i l i n x Virtex-5 F P G A
supporting fast communication through the PCIe bus in a P C with two quad-core Intel Xeon
E5620@2.40GHz processors and 2 4 G i B of R A M , and Mentor Graphics' Mode lS im SE-64 10.0c
as the simulator. We evaluated the performance of the architectures of H A V E N on several hardware
components: a simple F IFO buffer and several versions of a hash generator (H G E N) which com­
putes the hash value of input data, each version with a different level of parallelism (2, 4, 8, and 16
units connected in parallel). Table 5.2 shows the acceleration ratio of each of the architectures of
the H A V E N testbed against the SW-FULL architecture.

Table 5.2: Results of experiments: acceleration ratios.
Component FIFO HGEN HGENx2 HGENx4 HGENx8 HGEN x 16
HW-GEN 0.743 1.036 1.023 0.815 0.776 0.750
HW-DUV 3.062 7.089 23.458 33.688 52.896 117.708
HW-GEN-DUV 2.689 14.500 93.833 134.750 195.308 434.615
HW-FULL 13,429. 15,564. 54,925. 67,626. 74,347. 137,875.

We can observe several facts from the experiments. First, they confirm that the time of simu­
lation (SW-FULL) increases with the complexity of D U V , so it is not feasible to simulate complex
designs for large numbers of stimuli. Second, we can observe that it is not reasonable to use the
simulator with hardware acceleration of the stimuli generator only (HW-GEN), at least for simple
protocols like ours. In this case, the overhead of communication with the accelerator is too high.
However, for the case when the D U V is also in hardware (HW-GEN-DUV), hardware generation
of stimuli is (with the exception of the FIFO unit) advantageous compared to software generation
(HW-DUV). Lastly, we can observe that the major speed-up of the hardware version (HW-FULL)
makes this version preferable to be used for very large amounts of stimuli, e.g. when trying to reach
coverage closure. Running verification of H G E N x 16 for a bil l ion stimuli, which took less than
7 minutes in this version, would take more than 21 months in the SW-FULL version.

5.3 Use-cases of HAVEN

The H A V E N framework was further used in two different scenarios: for accelerating functional
verification of application-specific processors (ASIPs) [23] and as a part of the platform for testing
fault-tolerant electro-mechanical systems [24].

5.4 Main Contributions of HAVEN

To conclude this chapter, let us present the main contributions of the framework.

• The acceleration ratio over 100,000 x can be achieved for complex systems.

• Not only simple testbenches, but also complex UVM-based verification environments can be
accelerated.

• It is possible to use different testbed architectures of H A V E N , they represent a trade-off be­
tween the acceleration ratio and internal signal visibility of D U V .

• The acceleration board built from achievable F P G A s is cheaper than commercial solutions.

• H A V E N is freely available an open-source.

18

Chapter 6

Automated Generation of UVM
Verification Environments

When focusing on effectiveness while implementing functional verification environments we re­
alized that the reuse of testbench parts can significantly shorten the whole verification process.
Therefore, in addition to using reusable O V M and U V M libraries, in 2013 we devised an innovative
technique how to shorten the implementation phase even more with the automated pre-generation of
specific parts of the O V M / U V M verification testbenches (those tightly connected to specific D U V
architectures) according to the high-level description of a circuit [38].

As the core of current embedded systems is usually formed by one or more processors, we
decided to verify Application Specific Instruction-set Processors (ASIPs) in our experiments. In
ASIPs, it is necessary to test and verify significantly bigger portion of logic, tricky timing behaviour
and specific corner cases in a defined time schedule, so they represent a good working example.
Nevertheless, it is important to point out that this approach is applicable in general, so it can be
used also in the development cycle of other kinds of hardware systems.

6.1 Codasip Studio

A s a development environment we utilized the Codasip Studio from the Codasip company [10].
A s the main description language it uses architecture description language called C o d A L , which is
based on the C language and has been developed by the Codasip company in the cooperation with
the Brno University of Technology, Faculty of Information Technology.

The C o d A L language allows two kinds of descriptions. In the early stage of the design space ex­
ploration a designer creates only the instruction-set of A S I P (the instruction-accurate description).
It contains information about instruction decoders, the semantics of instructions and resources of
the processor. Using this description, programming tools such as a C/C++ compiler and simula­
tion tools can be properly generated. The C/C++ compiler is based on the open-source L o w Level
Virtual Machine (L L V M) platform [2]. A s soon as the instruction-set is stabilized a designer can
add information about processor micro-architecture (the cycle-accurate description) which allows
generating other programming tools like the cycle-accurate simulators and the H D L representation
of the processor (in V H D L , Verilog or SystemC). A s a result, two high-level models of the same
processor on different level of abstraction exist.

It is important to point out that in our generated verification environments, we took the instruction-
accurate description as a golden (reference) model and the H D L representation generated from the
cycle-accurate description is verified against it. The reason why the H D L is considered as D U V is

19

that it represents the final stage of the pre-silicon processor development. A t the time the golden
model is generated, also the connections to the verification environment are established via DPI
in SystemVerilog. Automated generation of golden models reduces the time needed for imple­
mentation of verification environments significantly. O f course, a designer can always rewrite or
complement the golden model manually.

6.2 Functional Verification Environments for Processors

In order to comfortably debug and verify ASIPs designed in the Codasip Studio as fast as possi­
ble, we designed a special feature allowing automated pre-generation of O V M / U V M verification
environments for every processor.

1. O V M / U V M Testbench. We support automated generation of object-oriented testbench en­
vironments created with compliance to open, standard and widely used O V M and U V M
methodologies.

2. Program Generator. For achieving the high level of coverage closure of every design of
processor it is possible to utilize either a generator of simple programs in some third-party
tool or already prepared set of benchmark programs.

3. Reference Methodology. A significant benefit of our approach is gained by automated
creation of golden models. We realized that it is possible to reuse formal models of the
instruction-accurate description of the processor at the higher level of abstraction and ge­
nerate C/C++ representation of these models in the form of reference functions which are
prepared for every instruction of the processor. Moreover, we are able to generate SystemVe­
rilog encapsulations, so the designer can write his/her own golden model with the advantage
of the pre-generated connection to other parts of the verification environment.

4. Functional Coverage. According to the high-level description of the processor and the low-
level representation of the same processor in H D L , we are able to automatically extract inter­
esting coverage scenarios and pre-generate coverage points for comprehensive checking of
functionality and complex behaviour of the processor.

6.3 Experimental Results

We generated verification environments for two processors. The first one is the 16-bits low-power
D S P (Harward architecture) called Codix Stream. The second one is the 32-bit high performance
processor (Von Neumann architecture) called Codix RISC. Detailed information about them can be
found in [9]. We used Mentor Graphics Mode lS im SE-64 10.0b as the SystemVerilog interpreter
and the D U V simulator. Testing programs from benchmarks such as EEMBS and MiBench or test-
suites such as full-retval-gcctestuite and perrenial testsuite were utilized during verification.

Table 6.1 expresses the size of processors in terms of required Look-Up Tables (LUTs) and
Flip-Flops (FFs) on the X i l i n x Virtex5 F P G A board. Other columns contain information about the
number of tracked instructions and the time in seconds needed for generation of SystemVerilog
verification environment and all reference functions inside the golden models (Generation Time).
In addition, the number of lines of program code for every verification environment is provided
(Code Lines). A designer typically needs around fourteen days in order to create basics of the
verification environment (without generation of proper stimuli, checking coverage results, etc.), so
the automated generation saves the project time significantly.

20

Table 6.1: Measured Results.

Processor LUTs/FF (Virtex5) Tracked Instructions Generation Time [s] Code Lines
Codix Stream 1411/436 60 12 2871
Codix RISC 1860/560 123 26 3586

Table 6.2 provides information about the verification runtime and results. A s Codix Stream is a
low-power D S P processor, some programs had to be omitted during experiments.

Table 6.2: Runtime statistics.

Processor Programs Runtime [min]
Codix Stream 636 28
Codix RISC 1634 96

The coverage statistics in Table 6.3 show that the instruction-set functional coverage reaches
only around fifty percent for both processors (i.e. a half of instructions were executed). The low
percentage is caused by the fact that selected programs from benchmarks did not use specific con­
structions which would invoke specific instructions. On the other hand, all processor register files
were fully tested (100% Register File coverage). The functional coverage of memories represents
coverage of control signals in memory controllers. Besides functional coverage, ModelSim simu­
lator provides also code coverage statistics like branch, statement, conditions and expression cov­
erage. According to the code coverage analysis we were able to identify several parts of the source
code which were not executed by our testing programs and therefore we had to improve our testing.

Table 6.3: Coverage statistics.

Processor Code Coverage [%] Functional Coverage [%] Processor
Branch Statement Conditions Expression Instr-Set Reg. File Memories

Codix Stream 87.0 99.1 62.3 58.1 51.2 100 87.5
Codix RISC 92.1 99.2 70.4 79.4 44.7 100 71.5

Of course, the main purpose of verification is to find bugs and thanks to our pre-generated veri­
fication environment we discovered several well-hidden bugs located mainly in the C/C++ compiler
or in the description of a processor. One of them was present in the data hazard handling when the
compiler did not respect a data hazard between read and write operation to the register file. Another
bugs caused jumping to incorrectly stored addresses and one bug was introduced by adding a new
instruction into the Codix RISC processor description. The designer accidentally added a structural
hazard into the execution stage of the pipeline.

6.4 Main Contributions of Automated Generation

The experimental results show that the automatic generation is fast and robust and we were able to
find several crucial bugs during the processors design. The generation process saves the implemen­
tation time rapidly, as it is possible to generate the complete verification environment in the order of
seconds. Nevertheless, from the experiments we realized that the coverage rates must be increased.
Therefore, during the last two years we were developing a universal generator of random assembly
programs that is able to further increase all coverage metrics for both processors over 90%. Some
preliminary experiments were published in [8].

21

Chapter 7

Automation and Optimization of
Coverage-driven Verification

In this chapter, our solution for automation and optimization of C D V which is based on evolutionary
computing [37] is introduced. In comparison with the standard C D V that utilizes the random search,
using this method, the convergence to the maximum coverage is much faster, fewer input stimuli
are used and no manual effort is required from the user. Moreover, the optimization is targeted to
the verification process itself without the dependence on the circuit that is verified.

7.1 Automated CDV

If the search space of all measurable properties defined by the coverage metrics is so big that it
cannot be explored by manual constraining of the pseudo-random generator, it is necessary to apply
some kind of automation. When speculating which algorithms are suitable for effective exploring
the coverage state space and finding good candidate solutions in C D V , we did a following rea­
soning. A s the randomization is natively used in functional verification, the heuristic stochastic
algorithms may be selected, because randomization plays a considerable role in their evaluation.
Heuristic algorithms were already described in Section 3.1.2 and from their simple comparison, the
evolutionary algorithms seem to be most beneficial for our work.

7.1.1 Automated C D V Driven by Genetic Algorithm

For C D V automation and optimization, we decided to use Genetic Algorithm (GA) . G A fits best
to this problem as it utilizes both genetic operators (crossover and mutation) and its candidate
solutions are encoded as chromosomes with a constant length of bit strings (chromosome is a coding
representation of a candidate solution). In some cases, G A serves just as an optimizer of specific
processes and its aim is not to find the best solution but only to preserve and employ the domain
knowledge. This is exactly what we need in C D V as we want to optimize the process of functional
verification continuously and to utilize the domain knowledge about the reached level of coverage.
Figure 7.1 demonstrates how GA-driven verification works and the following text explains, how it
differs from the basic G A .

In our proposal, every candidate solution is represented by a chromosome that encodes con­
straints (restrictions) for the pseudo-random stimuli generator (step 1). These constraints define
probabilities of values that can be set on the inputs of D U V . To get an idea about probability con­
straints, see Figure 7.2. For a better comprehension, see two case studies in Section 7.2.

22

Chromosome =
specif ic constraints

Pseudo-Random
Generator

Li St imul i

Evaluation of Chromosome =
x st imul i

GA
Coverage Analysis

Reference Mode l
(C/C++, SystemVerilog)

DUV
(VHDUVer i log)

property A
property B

property A -> B

property A-> B->A

X

OK/Fail

Fitness Function =
achieved coverage

Figure 7.1: The automated coverage-driven verification driven by a genetic algorithm.

00 01 10 0000 0001 0010
15% 8 0 % 5% 4% 17% 3 3 %

1 MOVI OP
1 5 % probab i l i t y that the MOVI signal wi l l be set to 00.
8 0 % probab i l i t y that the MOVI signal wi l l be set to 01 .
etc.

SystemVer i log generator of input s t imul i .

Figure 7.2: Probability constraints encoded in the chromosome.

Initial population of chromosomes is created randomly. In particular, it means that the pro­
babilities are set randomly. For evaluation of every chromosome, we instantiate the D U V and
all the U V M components within the U V M verification environment, make the proper connections
between modules, and then invoke verification in the R T L simulator. According to the constraints
in the chromosome, the generator produces a set of input stimuli that are applied to the inputs of
the D U V during verification (step 2). Using these stimuli, specific properties are verified and it is
reflected by the coverage measurement, how well it is done. The coverage status is used to compute
the fitness function using which the quality of the chromosome is evaluated (step 3).

The best chromosomes are propagated to the next generation using elitism. It can be specified
using the ELITISM parameter, how many best chromosomes w i l l be passed to the next generation.
Other chromosomes that participate in the next generation are represented by the offsprings of the
chromosomes in the current population that were created by the genetic operators crossover and
mutation. It is determined by the selection algorithm which chromosomes participate in making
offsprings. Two selection algorithms can be used, the roulette selection and the tournament se­
lection, the one that is used is defined by the test parameter SELECTION. TWO genetic operators are
applied. The first one is the two-points crossover, where the part of chromosome between two points
is switched between two parent chromosomes. The second genetic operator is mutation, which is in
our case represented by inversion of particular bits in the chromosome. The probability of crossover

23

is defined by the test parameter CROSSOVER_PROB and the maximum number of mutations and the
probability of mutation are defined by the test parameters MUTATIONSJVIAX and MUTATION_PROB. The
G A optimization terminates when the threshold number of generations is reached, or when a desired
coverage is achieved.

7.1.2 Integration into U V M

The GA-driven approach is provided as an extension of the basic functional verification environ­
ment prepared according to the U V M , following the principle of the object oriented programming
(OOP). Our aim was to integrate the G A components effectively so the interference to the standard
architecture of U V M is minimal.

For pseudo-random generation of initial populations, the inbuilt pseudo-random generator of
U V M / S y s t e m Verilog [39] is used. For generating input stimuli that are applied to D U V , the same
generator or some proprietary generator can be used. We utilize our own universal generator [8]
that is based on the Merssene Twister algorithm.

7.1.3 Tuning Parameters

G A needs to have all its parameters wel l tuned. For different optimization tasks, the values of these
parameters can differ and must be found at first. We conducted several experiments to find their
proper values for C D V optimization task.

We believe that the population size and the number of generations are the most important pa­
rameters that determine the amount of information stored and searched by the G A . Our rule of
thumb is to use a population size proportional to the coverage search space and the complexity
of D U V . However, we must consider also a real bottleneck in the G A performance which is the
time that is required for the evaluation phase of the chromosomes in the R T L simulation. It is
significantly longer than the time required for producing new generations of chromosomes using the
G A operators. The reason is that in order to evaluate each potential solution, we need to stimulate
the D U V for a number of simulation cycles depending on the complexity of the verified circuit
as well as the complexity of the coverage task. Therefore, the population size and the number of
generations must be selected wisely.

As can be seen in the experiments for A L U in Section 7.2.1, we decided to set the population
size up to 20 chromosomes, and the number of generations up to 40. The number of generations
was not higher than 40, because we were able to achieve 100% coverage for this number of gener­
ations. Despite A L U is a simple circuit, the coverage space is quite big and we generated a lot of
stimuli per one chromosome during verification. The exact number of stimuli was computed from
the average number of stimuli in the random search (AVG_RS) and from the number of generations
(GENERATIONS) according to Equation 7.1. The reason for this setting is that we wanted to challenge
the G A in achieving better results by restricting the number of stimuli which are applied to D U V per
generation. The overall number of stimuli is then computed as GENERATIONS * STIMULI_NUMBER and
we wanted to have it significantly lower than the average number of stimuli in the random search.

AVG-RS
STIMULI.NUMBER = . (7.1)

GENERATIONS
For the RISC processor, the population size was set up to 20 chromosomes, and the number of

generations up to 100. The reason is that we evaluated the processor for one program per chromo­
some, because it contains a significant number of instructions, even up to 1000.

After running empirical experiments for A L U , we believe that the probabilities of genetic op­
erators crossover and mutation can be fixed during most experiments. We determined the optimal

24

values for CROSSOVER_PROB and MUTATION_MAX that were later used also for the verification of the
processor. In this way we want to demonstrate that setting the G A parameters is not a bottleneck
when another system is verified. Or at least, we want to share our settings, which were beneficial
for both of our experimental circuits which are quite different in the matter of complexity.

Other parameters of G A were set according to the results of the empirical study. When using
the tournament selection, it is important to define a suitable size of tournament by the parameter
TOURNAMENT_SIZE. We decided to apply Equation 7.2.

TOURNAMENT.SIZE = 25% of POPULATIOKLSIZE. (7.2)

During mutation, it is specified at first, how many bits w i l l be mutated in the chromosome
(inverted). Afterwards, the mutation probability helps to determine i f the inversion really happens or
not. The maximal number of mutations is defined by the parameter MUTATION_MAX and is determined
using the bit width of chromosomes (CHR_BW) by Equation 7.3.

MUTATI0NJ4AX = 10% CHR.BW. (7.3)

7.2 Experimental Results

7.2.1 Arithmetic-logic Unit

A s the first evaluation circuit, the arithmetic-logic unit (A L U) was selected. The block diagram of
A L U and the description of its signals are provided in Figure 7.3.

CLK, RST, ACT (in): the clock, reset, activation signal.
REG_A (in): the first operand for every operation.
MOVI (in): the selection signal, according to its value the
second operand is picked either from data memory (MEM),
register (REG_B), or as an immediate value (IMM).
OP (in): the selected operation (16 options supported).
ALU_RDY, EX_ALU, EX_ALU_RDY (out): output
A L U signals.

Figure 7.3: The demonstration circuit - A L U .

For A L U , we focused on functional coverage metric. We were able to define 1989 functional
properties by the standard means of SystemVerilog language. The aim of verification is to check all
of these properties, so to achieve 100% functional coverage.

We decided to compare the results of the GA_driven search with the basic random search and
the constrained random search. In the GA-driven search, probability constraints for the pseudo­
random generator are encoded in the chromosome. A t first, input signals of A L U are divided into
two categories: data and control. A l l possible values of control signals are specified (every control
sequence is important and need to be checked). In case of A L U , these signals are: RST, ACT, MOVI,
OP. In case of data signals, ranges of all possible values are selected (as these possible values can
be reduced to "interesting" ranges using approximation). In A L U , these signals are: REGJV, REG_B,
MEM, IMM. Afterwards, probabilities are defined for every value of control signals and for every range
of data signals. For example, the input signal MOVI can have three valid values (00, 10, 01). In the

CLK RST ACT

MOVI •
REG A •
REG B REG B W MEM MEM w IMM — •

OP — •
ALU RDY

• EX_ALU
EX ALU VLD

25

chromosome, for every of them a number is specified that defines a probability with which these
values are generated as input of MOVI. For illustration, see Figure 7.2. Probabilities in the initial
population of chromosomes are created randomly.

The basic random search does not specify probability constraints for generating stimuli. In­
stead, they are generated randomly. This approach represents the standard concept that is used in
functional verification [39]. However, it can take a very long time to cover all of the properties,
because without the coverage feedback, the generated stimuli cover some properties repeatedly.

The constrained random search uses probabilities for constraining the stimuli generation as the
G A approach does but these probabilities are generated randomly. It means that good constraints
are not remembered and propagated further. B y this approach, we want to show that there is a
difference when probabilities are driven by G A and when they are random.

The graph in Figure 7.4 shows the comparison of the basic random search, the constrained
random search and the GA-driven search. It compares average values from 20 different measures
for every kind of search. The x axis represents the number of the required input stimuli while the y
axis represents the achieved level of coverage of functional properties for A L U .

CO
VE

RA
G

E

A - 4 -i k

-A-random
search

-•-constrained
random
search

proposed GA
search

CO
VE

RA
G

E

-A-random
search

-•-constrained
random
search

proposed GA
search

CO
VE

RA
G

E

-A-random
search

-•-constrained
random
search

proposed GA
search

CO
VE

RA
G

E

-A-random
search

-•-constrained
random
search

proposed GA
search

CO
VE

RA
G

E

-A-random
search

-•-constrained
random
search

proposed GA
search

CO
VE

RA
G

E

-A-random
search

-•-constrained
random
search

proposed GA
search

CO
VE

RA
G

E

1000 2000 3000 4000 5000 6000 7000 8000 9000

STIMULI NUMBER

Figure 7.4: The comparison of average values from the basic random search, the constrained ran­
dom search and the GA-dr iven search.

Parameters of G A in the graphs were set according to the results from the empirical study as
follows. The probability of crossover was set to 80%, and the probability of mutation to 60%. The
maximum number of mutations was set to 67 (see equation 7.3), tournament size to 5 (20% of the
population size, see equation 7.2), elitism to 1 (1 best chromosome is propagated).

It can be seen that G A achieves much better results than both random approaches. The conver­
gence to the maximum coverage is significantly faster and the number of required stimuli is lower.
It can be stated that for A L U , G A drives the generation of input stimuli successfully.

7.2.2 Codix R I S C Processor

Coverage metrics that are tracked for Codix RISC processor in verification are: code coverage
(statement, branch, expression, F S M) , functional coverage (requests, status and responses on the
bus interface), and instruction coverage (the complete instruction set and sequences of instructions).

26

In the standard process of Codix RISC verification, different test programs are evaluated. A t
first, benchmark programs are used. Then, random programs that are generated from the universal
generator [8] are applied.

In the described standard process, there is no feedback provided to the generator about the
achieved coverage. In the random approach, the generator just produces random programs and to
achieve reasonable coverage, considerable amount of them must be applied to the processor dur­
ing verification. To optimize this approach, we incorporated the G A algorithm that reads feedback
about the achieved coverage from verification and adds some additional constraints to the generator.
In particular, constraints that are added restrict the size of programs (100 - 1000 instructions) and
define the probability with which every instruction is generated to the program. A l l in all, the gen­
erator works with the original basic set of constraints, plus with the probability and size constraints
which values are modified by the G A . Figure 7.5 illustrates how the size and probability constraints
are encoded in the structure of chromosome and how they are processed by the generator.

MIN_SIZE MAX_SIZE INST_1 INST_2 INST_3 INST_4

140 856 5% 7% 17% 12%

The size of the program will be between 140 and 856 instructions.
Probability of generating instruction 1 is 5%.
Probability of generating instruction 2 is 7%.
etc.

I
Universal generator of processor programs.

Figure 7.5: The structure of the chromosome for the Codix RISC processor.

In the experiments, we compared the effectiveness of the G A optimization to two standard
approaches. In the first approach, the benchmark programs are used for the verification of the pro­
cessor. In the second approach, the universal generator of random programs is used. The proposed
GA-driven approach also uses the universal generator of random programs, but adds additional
constraints to the generator encoded in the chromosome. The graph in Figure 7.6 demonstrates the
results of the experiments. It compares average values from 20 different measures for every ap­
proach (using various seeds)The x-axis represents the number of evaluated programs on the Codix
RISC processor and the y-axis the achieved total coverage.

It can be seen that the average coverage that was achieved by 1000 benchmark programs was
88% and 97.3% by 1000 random programs. The GA-dr iven random generator was producing ran­
dom programs for 20, 50 and 100 generations (the 100 generations scenario is captured in the
graph). The size of the population was always the same, 10 chromosomes. For the experiment with
20 generations, the average coverage achieved was 97.78%. For the experiment with 50 genera­
tions 98.72%, for the experiment with 100 generations 98.89%. It means that for all experiments
with the G A optimization, we were able to achieve better coverage. It is also important to mention
other great advantage of this approach. When assembling the programs that were generated for the
best chromosome in every generation, we can get a set of very few programs but with very good
coverage. So for example, for the GA-optimization running 20 generations we can get the best 20
programs from every generation that are able to achieve 98.1% coverage. These programs can be
further used for regression testing effectively.

The time cost of the G A optimization was as follows. Evaluating one program in simulation

27

Figure 7.6: The comparison of average values from the benchmark programs, the random programs
and the GA-driven generated programs.

took in average 12.626 seconds, generating one program around 1 second and preparing new po­
pulation 0.095 second. Experiments ran on Intel Core i5 C P U 3.33 G H z , 8 G B of R A M and the
ModelS im simulator.

7.3 Main Contributions of GA Automation and Optimization

The main contributions of the proposed method are:

1. It automates C D V (which is usually a manual process) and this markedly reduces the effort
needed for preparing comprehensive verification stimuli.

2. It optimizes reaching coverage closure of measurable properties in comparison with the state-
of-the-art methods and this improves the productivity rapidly.

3. It can be integrated into the standard U V M environment while the integration was optimized
in a way that the interference to the U V M components is minimal.

4. G A serves unconventionally as an optimizer which is running in the background of the func­
tional verification process. It means that in contrast to the typical application of G A , it is not
determined only for searching the best candidate solution.

5. Profitable values of G A parameters were found for the C D V domain so it is not necessary to
tune them for verification of various circuits.

28

Chapter 8

Optimization of Regression Suites

In 2015 we published a coverage-directed optimization algorithm for creating optimized regression
suites from verification stimuli that were evaluated in an UVM-based verification environment [33].
The aim of the optimization was to effectively eliminate the redundancy introduced by the random­
ness of the generated stimuli but to preserve the coverage that was achieved in verification. Preserv­
ing the coverage guarantees that the optimized test suite w i l l check properly all the key functions
and properties of the system while running much faster and thus being more suitable for regression
testing. It is important to mention that the reason why we did not focus on optimizing the random
generator itself (in order not to produce so many redundant stimuli) is that in the standard process
of functional verification redundancy of stimuli is a beneficial factor [39], because properties of the
system are checked repeatedly. But after this phase, the redundancy is not needed anymore, so it
is good to have regression tests that are effectively prepared and are running faster. Therefore, we
decided to apply our optimization after the first phase of verification. Moreover, the already created
verification environment can be reused for running regression tests so it is not necessary to utilize
a separate approach for that purpose. The proposed optimization algorithm is open-source, coope­
rates easily with the UVM-based verification and does not depend on the hardware system that is
verified.

The optimization problem that need to be solved during optimization of stimuli is not straight­
forward. Some properties to be covered can be sequential i.e. they need a specific sequence of input
stimuli. Let us demonstrate this on a simple fragment of the finite-state automaton in Figure 8.1.

Figure 8.1: A fragment of an automaton that demonstrates sequential properties.

States of the automaton represent some verification scenarios, transitions represent processing
of input stimuli. We usually select only some states to be covered (they reflect verification targets),
for example, B, E, H in Figure 8.1. It can be seen that many transitions do not change the state of the

29

automaton, for example b, I, n. Therefore, stimuli processed in these transitions are redundant. As
the generator does not know this automaton (it can be very complex), it generates a lot of redundant
stimuli. From the automaton, followings facts can be deduced:

1. Online methods building regression tests by adding just the stimulus that increased coverage
cannot work. It is because one stimulus is often not enough but the whole sequence is needed.
Without the automaton, we cannot determine all important stimuli.

2. The optimization that tries to remove stimuli one-by-one according to some deterministic
algorithm is insufficient as well . It would either very likely suffer from huge time or space
requirements or, in some special cases, it would be unable to find an optimal solution at all.

When considering these facts, an optimization algorithm with a heuristic is needed which re­
moves more than one stimulus per one iteration so the computational overhead is reasonable. We
decided to use an evolutionary algorithm for this purpose, based on the comparison of the optimiza­
tion algorithms in Section 3.1.2.

8.1 Evolutionary Optimization of Regression Test Suites

The survey of the proposed optimization technique follows; it is divided into several steps:

1. Run the UVM-based functional verification for a selected D U V and collect stimuli until the
threshold in coverage is reached.

2. Optimize the collected stimuli by the proposed technique.

3. Rerun functional verification for the optimized suite during regression testing.

8.1.1 Core of the Optimization Technique

The optimization technique incorporates G A as the main optimization tool. When adjusting the
basic G A for the given problem, different lengths of candidate solutions are used (different num­
ber of stimuli is removed) and genetic operators (mutation and crossover) are customized, so they
allow the length reduction. The adapted G A is designed as follows. A n initial candidate solution
contains a collected sequence of stimuli from functional verification achieving the desired cov­
erage threshold. Initial candidate solutions differ in lengths depending on the seed used in the
constraint-random generator. Candidate solutions are represented by sub-sequences of stimuli from
the original sequence. Mutation is proposed in two different ways:

1. type delete: removes some stimuli from the regression suite.

2. type swap: the mutual swap of two stimuli in the sequence (the ordering of stimuli is impor­
tant).

As for crossover, with a specified probability sub-sequences of stimuli are swapped between
two candidate solutions. The fact that the lengths of candidate solutions are not fixed and their
structure is very simple, gives us an opportunity to present more liberal approach. In this approach,
the number of swapped stimuli between two candidates does not need to be the same. Also , the
positions of swapped stimuli can vary. The fitness value depends on two requirements:

1. If the candidate solution does not reach the coverage threshold, it should be greatly disadvan­
taged, so it w i l l not participate in the next generation.

30

2. The less simulation runtime the candidate solution consumes, the better, because the simula­
tion runtime is the most important factor in the optimization.

According to these requirements, we defined the fitness function as follows. When the coverage
threshold is reached, the fitness function returns the number of stimuli contained in the candidate
solution as the fitness value (the lower the fitness value the better). If the coverage threshold is not
achieved, a high constant value (disadvantageous) is returned. For this purpose, the interaction of
G A and the verification environment is needed. G A runs functional verification for every newly
created candidate solution. The coverage of the selected properties for these stimuli is measured
and returned to G A , where the fitness value is computed according to the coverage. The tournament
selection algorithm is used for selecting parents. As a termination condition, the inability to find
the new best candidate solution through several generations is considered.

Moreover, two improvements for the overall optimization process efficiency were implemented.
The first improvement allows a repeated reproduction and mutation of a candidate solution until the
coverage threshold is reached. O f course, just several attempts for each candidate solution are
allowed. The second improvement is in the adaptation of G A . This improvement is based on the
assumption that as the population evolves, creating a new offspring achieving the coverage threshold
gets harder. It is caused by parents containing a small number of redundant stimuli. As a result,
probabilities of genetic operators should be lowered.Both presented improvements depend on each
other. When the population is overfilled with candidate solutions with unsatisfactory coverage,
instead of many attempts for reproduction, the probabilities of genetic operators should be lowered.
A s a consequence, the next generations w i l l probably be refilled with solutions that accomplish the
coverage threshold.

8.1.2 G A Parameters

We performed extensive experiments with various settings of G A parameters and the following
seem to be beneficial: the population size set to 2, the probability of the type delete mutation set to
0.22, the probability of the type swap mutation set to 0.01, the maximal number of recreations set
to 2, the ratio of adaptation set to 0.5 and a very low probability of crossover. Eli t ism seemed to be
also beneficial; we always propagate one best candidate solution to the next generation.

8.2 Experimental Results - ALU Case Study

This case study shows the application of the proposed optimization technique to the sequential
arithmetic-logic unit (A L U) . However, we believe that the proposed algorithm is independent on
the circuit that is verified. For every scenario we take the test suite generated from functional
verification and shrink its size. A n d this does not depend on the characteristics of the D U V .

For A L U , we were able to define 28 coverage scenarios with 1989 functional properties. The
aim of verification is to cover all of these properties. The aim of coverage-directed optimization is
to remove stimuli which are redundant while the coverage level remains the same.

Experiments were running on Intel Xeon E5-2640, 2 .5GHz processor, the UVM-based verifica­
tion was executed in the ModelS im simulator from Mentor Graphics. After running the optimization
process, we gained several interesting results which are summarized in Table 8.1.

The main result is that the presented technique reduced the original sequence of stimuli to
the 5.59 % of its original size while preserving coverage at 100%. Figure 8.2 demonstrates the
dependency between the optimization runtime and the level of optimization. Note that for more
optimal solutions it is more difficult to remove another stimuli. It is important to point out that

31

The average fitness value of the initial population 5654
The fitness value of the best solution 316
The overall regression optimization [%] 94.41
The resulting coverage of the best solution [%] 100

Table 8.1: The optimization results.

the optimization process can be stopped whenever the optimization is satisfactory (in few minutes
after the started the optimization level was over 50%). On the contrary, it is also possible that even
more optimal solution than the one presented here can be found i f more generations were allowed
or population size was bigger. But in both cases, the optimization run is longer.

100 200 300 400
Genetic algorithm run time [minutes]

500

Figure 8.2: The dependency between the optimization runtime and the level of optimization.

8.3 Main Contributions of Regression Suites Optimization

The main contributions of the proposed technique are:

• It eliminates the redundancy in the original suite of stimuli so the optimized suite w i l l be
running much faster in simulation.

• It preserves the same level of coverage as was achieved by the original suite of stimuli.

• It reuses already created verification environment also for running regression tests so it is not
necessary to utilize a separate approach for that purpose.

32

Chapter 9

Conclusions

In the Ph.D. thesis, four optimization techniques are presented that help to optimize the process of
functional verification.

The first technique targets the time bottleneck of slow simulation when verifying real-world
systems.Our optimization technique accelerates verification runs by moving some or all parts of
the verification testbench to the F P G A accelerator. Our acceleration framework is called H A V E N
and offers five testbed architectures that represent a trade-of between the speed of verification and
the internal visibility of the behaviour of D U V . In our experiments with simple F I F O buffer and
complex hash generator architectures (H G E N) we have shown that very good acceleration ratios can
be achieved by H A V E N (over 100,000 x for the most complex system H G E N x l 6) . A s the H A V E N
framework is open-source, it was later used also for accelerating verification runs of processors
(ASIPs) and stands for the basic part of the platform for measuring fault resilience of electro­
mechanical hardware applications.

The second optimization technique focuses on automated generation of O V M / U V M based ve­
rification environments. A s we realized that many parts of the testbench components are replicated
between different projects and just modified for specific D U V s , we implemented an engine that
takes high-level specification of the D U V and is able to generate not only complete testbench com­
ponents, but also the reference model and the interconnection between the D U V and the testbench
from such specification. In this case, our experimental D U V systems were application-specific pro­
cessors (ASIPs). Using our engine, a complete verification environment is generated in the order of
seconds. When we compare it to the manual work that usually takes around two weeks, it is quite
significant improvement.

The third technique is used for automation and optimization of C D V There are several algo­
rithm for the coverage-space exploration and we selected the evolutionary exploration as the most
suitable one for C D V . We created an adapted genetic algorithm that takes the coverage feedback
from verification and prepares constraints for the pseudo-random generator which is used for gen­
erating stimuli. This whole process is running fully automatically, without any manual intervention
from the user. Experiments were performed on a simple A L U and on the RISC processor and in both
cases, the genetic algorithm running in the background of the verification process was recognized as
beneficial. For A L U , the GA-driven approach reduced the number of stimuli needed for achieving
100% coverage by more than 50%. For the RISC processor, the results were much more optimistic.
100 programs produced by the GA-driven generator were able to achieve 98.91% total coverage
while 1000 programs generated by the undriven generator or programs from the benchmark sets
were not able to reach this coverage level at all (they achieved 97.3% and 89.2% respectively).

Our last optimization technique is connected to regression testing. We devised an algorithm how
to optimize the stimuli used in functional verification in order to reuse them and create an optimal

33

regression test suite. This technique works offline after the standard verification phase. It takes
all the stimuli that were either randomly generated or prepared manually during verification and
reduces their number without decreasing the coverage achieved by the original set. The experiments
were once again performed on the A L U . The results are quite promising, in the case of A L U we
reduced the original sequence of stimuli to the 5.59% of its original size.

9.1 Future Work

Based on our existing work about automation and optimization of C D V , we plan to create an open-
source library that extends the standard U V M library by the configurable genetic algorithm. G A
w i l l primarily serve for the intelligent testbench automation. We w i l l also create some advanced
tests considering the settings of the E L I T I S M parameter, because it was tested only for the sim­
plest scenario with E L I T I S M set to 1 (just one best candidate solution is propagated to the next
generation).

As for the second direction of our future research, we w i l l focus on neural networks and their
possible application as an optimizer in functional verification. Neural networks have been used in
classification and recognition problems. Consequently, they can be used to classify subsets of the
D U V input stimuli that are suitable to activate the coverage points under consideration. The neural
network architecture may contain an input layer that maintains the D U V inputs, an output layer to
represent the logical status for each coverage scenario, and some hidden layers according to the
complexity of the C D V problem. Here, a pseudo-random generator may be used as primary test
generator where the tuning of neurons weights continuously changes over time according to the
coverage feedback. Backward tracing can be used to extract the useful directives for each coverage
point, where the neural network works as a useful test generator.

9.2 Related Publications and Products

Journal Publications.

• J. Podivínský, M . Šimková, O. Čekan, and Z . Kotásek. The evaluation platform for testing
fault-tolerance methodologies in electro-mechanical applications. In Microprocessors and
Microsystems, Elsevier, 2015, doi:10.1016/j.micpro.2015.05.011.

Conference Publications.

• M . Šimková, O. Lengál, and M . Kajan. H A V E N : A n Open Framework for FPGA-Accelerated
Functional Verification of Hardware. In Proc. ofHVC'll, Haifa, Israel, L N C S 7261, Springer,
2012, pp. 247-253, I S S N 0302-9743.

• M . Šimková. Acceleration of Functional Verification in the Development Cycle of Hardware
Systems. In Proc. of PAD'12, Prague, Czech Republic, C V U T , 2012, pp. 73-78, I S B N :
978-80-01-05106-1.

• M . Šimková, O. Lengál: Towards Beneficial Hardware Acceleration in H A V E N : Evaluation
of Testbed Architectures. In Proc. ofHVC'12, Haifa, Israel, L N C S 7857, Springer, 2013,
pp. 266-273, ISSN 0302-9743.

34

• M . Šimková, Z . Přikryl, T. Hruška, Z . Kotásek. Automated Functional Verification of A pp l i ­
cation Specific Instruction-set Processors. In Proc. IFIP Advances in Information and Com­
munication Technology, Heidelberg: Springer Verlag, 2013, vol. 4, no. 403, pp. 128-138.
ISSN 1868-4238.

• M . Šimková, C. Bolchini , Z . Kotásek. Analysis and Comparison of Functional Verification
and A T P G for Testing Design Reliability. In Proc. of IEEE DDECS'13, Karlovy Vary, Czech
Republic, I E E E Computer Society, 2013, pp. 275-278, I S B N 978-1-4673-6133-0.

• M . Šimková. New Methods for Increasing Efficiency and Speed of Functional Verification.
In Proc. of PAD'13, Pilsen, Czech Republic, University of West Bohemia in Pilsen, 2013,
pp. 111-116. I S B N 978-80-261-0270-0.

• J. Podivínský, M . Šimková, Z . Kotásek. Complex Control System for Testing Fault-Tolerance
Methodologies. In Proc. of MEDIAN'14, Dresden, Germany, COST, European Cooperation
in Science and Technology, 2014, pp. 24-27, I S B N 978-2-11-129175-1.

• J. Podivínský, O. Čekan, M . Šimková, Z . Kotásek. The Evaluation Platform for Testing
Fault-Tolerance Methodologies in Electro-mechanical Applications. In Proc. of Euromicro
DSD'14, Verona, Italy, I E E E Computer Society, 2014, pp. 312-319, I S B N 978-1-4799-5793-
4.

• M . Šimková. Application of Evolutionary Computing for Optimization of Functional Verifi­
cation. In Proc. of PAD'14, Liberec, Liberec University of Technology, 2014, pp. 135-140.
I S B N 978-80-7494-027-9.

• M . Kekelyová, M . Šimková, Z . Kotásek, T. Hruška. Application of Evolutionary Algorithms
for Optimization of Regression Suites. In Proc. of DDECS' 15, Belgrade, Serbia, I E E E Com­
puter Society, 2015, pp. 91-94. I S B N 978-1-4799-6779-7.

• J. Podivínský, M . Šimková, Z . Kotásek. Radiation Impact on Mechanical Application Driven
by FPGA-based Controller. In Proc. of MEDIAN'15, Grenoble, France, COST, European
Cooperation in Science and Technology, 2015, pp. 13-16.

• J. Podivínský, M . Šimková, O. Čekan, Z . Kotásek. F P G A Prototyping and Accelerated Ver­
ification of ASIPs. In Proc. of DDECS'15, Belgrade, Serbia, I E E E Computer Society, 2015,
pp. 145-148. I S B N 978-1-4799-6779-7.

• O. Čekan, M . Šimková, Z . Kotásek. Universal Pseudo-random Generation of Assembler
Codes for Processors. In Proc. of MEDIAN' 15, Grenoble, France, COST, European Cooper­
ation in Science and Technology, 2015, pp. 70-73.

Technical Reports.

• M . Šimková, O. Lengál, and M . Kajan. H A V E N : A n Open Framework for FPGA-Accelerated
Functional Verification of Hardware, FIT-TR-2011-05, Brno, Czech Republic, FIT B U T ,
2011, p. 16.

• M . Šimková, O. Lengál. Towards Beneficial Hardware Acceleration in H A V E N : Evaluation
of Testbed Architectures, FIT-TR-2012-03, Brno, Czech Republic, FIT B U T , 2012, p. 14.

35

Posters and Presentations.

• M . Šimková. H A V E N : A n Open Framework for FPGA-Accelerated Functional Verification
of Hardware, M E M I C S ' 2 0 1 2 , Znojmo, Czech republic.

• M . Šimková. Towards Beneficial Hardware Acceleration of Functional Verification, Verify­
ing Reliability (Dagstuhl Seminar 12341), Dagstuhl, Germany, 2012.

• M . Šimková, and J. Kaštil. Verification of Fault-tolerant Methodologies for F P G A Systems,
poster at First Median C O S T Action 2012, Annecy, France, 2012, pp. 55-58.

Software products.

• M . Šimková, O. Lengál, and M . Kajan: H A V E N : A n Open Framework for FPGA-Accelerated
Functional Verification of Hardware, software, 2012.

9.3 Research Projects and Grants

• Mathematical and Engineering Approaches to Developing Reliable and Secure Concurrent
and Distributed Computer Systems, GAČR, GD102/09/H042, 2009-2012, completed.

• Manufacturable and Dependable Multicore Architectures at Nanoscale, COST, IC1103,2011-
2015, running.

• Advanced recognition and presentation of multimedia data, B U T , FIT-S-11-2, 2011-2013,
completed.

• Methodologies for Fault Tolerant Systems Design Development, Implementation and Verifi­
cation, M E Y S , LD12036, 2012-2015, running.

• Application of methods and techniques of formal verification in the design of advanced digital
circuits, FRVŠ M E Y S , FR1086/2013/G1, 2013, completed.

• Participant of the Brno Ph.D. Talent Scholarship Programme, 2011 - 2014, completed.

• The IT4Innovations Centre of Excellence, MŠMT, E D I . 1.00/02.0070, 2011-2015, running.

• Architecture of parallel and embedded computer systems. B U T , FIT-S-14-2297, 2014-2016,
running.

36

Bibliography

[1] I E E E Standard 1800-2005 for SystemVerilog - Unified Hardware Design, Specification, and
Verification Language. I E E E , 2004.

[2] The L L V M Compiler Infrastructure Project, 2015. http://llvm.org/.

[3] Thomas Back, David B . Fogel, and Zbigniew Michalewicz, editors. Handbook of Evolutionary
Computation. IOP Publishing Ltd. , Bristol, U K , 1st edition, 1997.

[4] Thomas Back, David B . Fogel, and Zbigniew Michalewicz, editors. Evolutionary Computa­
tion I: Basic Algorithms and Operators. IOP Publishing Ltd. , Bristol, U K , U K , 1st edition,
1999.

[5] Thomas Back, David B . Fogel, and Zbigniew Michalewicz, editors. Evolutionary Computa­
tion 2: Advanced Algorithms and Operators. IOP Publishing Ltd. , Bristol, U K , U K , 2000.

[6] Janick Bergeron, Eduard Cerny, A lan Hunter, and Andy Nightingale. Verification Methodol­
ogy Manual for SystemVerilog. Springer-Verlag New York, Inc., Secaucus, N J , U S A , 2005.

[7] Jason Brownlee. Clever Algorithms: Nature-Inspired Programming Recipes. Lulu.com, 1st
edition, 2011.

[8] Ondřej Čekan, Marcela Šimková, and Zdeněk Kotásek. Universal Pseudo-random Generation
of Assembler Codes for Processors. In Proceedings of The Third Workshop on Manufacturable
and Dependable Multicore Architectures at Nanoscale, pages 70-73. COST, European Coop­
eration in Science and Technology, 2015.

[9] Codasip. Codasip A S I P Cores, 2015. https://www.codasip.com/products/cores/.

[10] Codasip. Codasip Studio, 2015. https://www.codasip.com/products/.

[11] Charles Darwin. The origin of species by means of natural selection, or, The preservation of
favoured races in the struggle for life/by Charles Darwin. John Murray London, 6th ed. with
additions and corrections, edition, 1898.

[12] Agoston E . Eiben and J. E . Smith. Introduction to Evolutionary Computing. SpringerVerlag,
2003.

[13] David B . Fogel. Evolutionary Computation: The Fossil Record. Wi l ey - IEEE Press, 1998.

[14] L . J . Fogel, A . J . Owens, and M . J . Walsh. Artificial intelligence through simulated evolution.
Wiley, Chichester, W S , U K , 1966.

[15] Mark Glasser. Open Verification Methodology Cookbook. Springer, 2009.

37

http://llvm.org/
http://Lulu.com
https://www.codasip.com/products/cores/
https://www.codasip.com/products/

[16] Wilson Research Group. The 2014 Wilson Research Group Functional Verification Study.
Published online, 2015.

[17] John H . Holland. Genetic Algorithms and the Optimal Allocation of Trials. SI AM Journal on
Computing, pages 88-105, 1973.

[18] John H . Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control and Artificial Intelligence. M I T Press, Cambridge, M A ,
U S A , 1992.

[19] Bob Jenkins. The Lookup2 hash algorithm. http://burtleburtle.net/bob/c/lookup2.c.

[20] John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natu­
ral Selection. M I T Press, Cambridge, M A , U S A , 1992.

[21] John R. Koza. Genetic Programming II. M I T Press, 55 Hay ward Street, Cambridge, M A ,
U S A , 1994.

[22] Andrew Pizial i . Functional Verification Coverage Measurement and Analysis. Springer Pub­
lishing Company, Incorporated, 1st edition, 2007.

[23] Jakub Podivínský, Marcela Šimková, Ondřej Čekan, and Zdeněk Kotásek. F P G A Prototyping
and Accelerated Verification of ASIPs. In Proc. of the IEEE International Symposium on
Design and Diagnostics of Electronic Circuits and Systems, pages 145-148. I E E E , 2015.

[24] Jakub Podivínský, Marcela Šimková, Ondřej Čekan, and Zdeněk Kotásek. The Evaluation
Platform for Testing Fault-Tolerance Methodologies in Electro-mechanical Applications. Mi­
croprocessors and Microsystems, 2015.

[25] Liberouter Project. C O M B O L X T Card, https://www.liberouter.org/combo-lxt/.

[26] I. Rechenberg. Evolutionsstrategie: optimierung technischer systéme nach prinzipien der
biologischen evolution. Frommann-Holzboog, 1973.

[27] Grzegorz Rozenberg, Thomas Back, and Joost N . Kok. Handbook of Natural Computing.
Springer Berl in Heidelberg, 2012.

[28] Ray Salemi. The UVM Primer: A Step-by-Step Introduction to the Universal Verification
Methodology. Boston Light Press, 2013.

[29] Hans-Paul Schwefel. Evolution and Optimum Seeking: The Sixth Generation. John Wiley &
Sons, Inc., New York, N Y , U S A , 1993.

[30] L . Sekanina. Evolvable Components: From Theory to Hardware Implementation. Springer
Berl in Heidelberg, 2004.

[31] Marcela Šimková. Hardware Accelerated Functional Verification. Master Thesis., 2011.

[32] James C. Spall. Stochastic optimization. In James E . Gentle, Wolfgang Hárdle, and Yuichi
M o r i , editors, Handbook of Computational Statistics. Springer Berl in Heidelberg, 2012.

[33] M . Šimková, M . Belešová, Z . Kotásek, and T. Hruška. Application of Evolutionary Algo­
rithms for Regression Suites Optimization. In Proc. of the IEEE International Symposium on
Design and Diagnostics of Electronic Circuits and Systems, pages 297-300. I E E E , 2015.

38

http://burtleburtle.net/bob/c/lookup2.c
https://www.liberouter.org/combo-lxt/

[34] M . Šimková and O. Lengál. Towards Beneficial Hardware Acceleration in H A V E N : Evalua­
tion of Testbed Architectures. In A . Biere, A . Nahir, and T. Vos, editors, Hardware and Soft­
ware: Verification and Testing, Lecture Notes in Computer Science, pages 266-273. Springer
Berl in Heidelberg, 2013.

[35] M . Šimková, O. Lengál, and M . Kajan. H A V E N : A n Open Framework for FPGA-Accelerated
Functional Verification of Hardware, 2012. http://www.fit.vutbr.cz/ isimkova/haven/.

[36] M . Šimková, O. Lengál, and M . Kajan. H A V E N : A n Open Framework for FPGA-Accelerated
Functional Verification of Hardware. In K . Eder, J. Lourenco, and O. Shehory, editors, Hard­
ware and Software: Verification and Testing, Lecture Notes in Computer Science, pages 247-
253. Springer Berl in Heidelberg, 2012.

[37] Marcela Šimková and Zdeněk Kotásek. Automation and Optimization of Coverage-driven
Verification. In 18th Euromicro Conference on Digital Systems Design, pages 87-94. I E E E
Computer Society, 2015.

[38] Marcela Šimková, Zdeněk Přikryl, Zdeněk Kotásek, and Tomáš Hruška. Automated Func­
tional Verification of Application Specific Instruction-set Processors. In Gunar Schirner,
Marcelo Götz, A c h i m Rettberg, Mauro C . Zanella, and Franz J. Rammig, editors, Embed­
ded Systems: Design, Analysis and Verification, volume 403 of IF IP Advances in Information
and Communication Technology, pages 128-138. Springer Berl in Heidelberg, 2013.

[39] Bruce Wil le , John Goss, and Wolfgang Roesner. Comprehensive Functional Verification:
The Complete Industry Cycle (Systems on Silicon). Morgan Kaufmann Publishers Inc., San
Francisco, C A , U S A , 2005.

[40] D . H . Wolpert and W. G . Macready. N o Free Lunch Theorems for Optimization. In Proc. of
the IEEE Conference on Evolutionary Computation, pages 67-82. I E E E , 1997.

39

http://www.fit.vutbr.cz/

