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Summary 

This bachelor's thesis deals wi th the mathematical theory of fractional calculus and its 
applications in the field of control theory. We lay out the basics of control of linear 
time-invariant systems and discuss three of the classical problems - determining stabil i ty 
controllability, and observability. In the second part, we introduce the Riemann-Liouville 
and Caputo differintegrals and formulate the above mentioned problems for a fractional-
order linear time-invariant system. We discuss the solutions to them and show how they 
are derived. 

Abstrakt 

Tato bakalářská práce se zabývá matematickou teorií zlomkového kalkulu a jeho ap­
likacemi v oblasti teorie řízení. V prvn í části jsou uvedeny základy řízení l ineárních časově 
invariantních sys témů, a jsou dále d iskutovány t ř i klasické úlohy, a to určení stability, 
ř idi telnost i a pozorovatelnosti. V d ruhé části je zaveden Riemann-Liouvi l lův a C a p u t ů v 
diferintegrál a jsou formulovány výše zmíněné problémy pro l ineární časově invar iantní 
sys tém zlomkého řádu . Opět jsou d i sku tována řešení a jejich odvození. 

Keywords 
fractional calculus, fractional linear systems, control theory, stability, controllability, 
observability 

K l í č o v á slova 
zlomkový kalkulus, zlomkové l ineární systémy, teorie řízení, stabilita, ř idi telnost , 
pozorovatelnost 



R o z š í ř e n ý abstrakt 
Teorie řízení je odvě tv í aplikované matematiky a inženýrs tví zabývající se chováním dy­
namických sys témů. Začala se rozvíjet a široce up la tňova t ve 20. století , p ředevš ím v jeho 
druhé polovině díky rozvoji počí tačových technologií. Zároveň s jej ím rozmachem byly 
zkoumány možnost i aplikací ma tema t i cké teorie neceločíselných derivací na inženýrské 
úlohy, a ukázalo se, že m n o h é objekty a struktury v teorii řízení skrývají v tomto ohledu 
velký potenciá l . 
Problematika zlomkového kalkulu, neboli odvě tv í matematiky věnujícího se derivacím a 
in tegrá lům neceločíselného řádu , je t éměř tak s ta rá , jako klasický integrální a diferenciální 
počet . P r v n í zmínka pochází z korespondence mezi l 'Hospitalem a Leibnizem z roku 1695, 
kde spolu diskutovali možnost derivace o ř á d u \ . O d té doby byla tato oblast s tudována 
mnoha v ý z n a m n ý m i matematiky, můžeme jmenovat např ík lad Liouvi l la , Riemanna, E u -
lera nebo Ábela . Nebyly však dlouho známy aplikace na reálné problémy. To se však ve 
20. stolet í změnilo, a dnes je tato b o h a t á teorie využ ívána při modelování viskoelastických 
mater iá lů , pro te inů , ve zpracovávání signálů, robot íce a mnoha dalších odvětvích. 
Tato bakalářská práce je zaměřena na aplikace t é to oblasti matematiky v teorii řízení. 
P r v n í část se skládá z úvodu do řízení l ineárních časově invariantních sys témů. Jsou zde 
d iskutovány úlohy určení stability, ř idi telnost i a pozorovatelnosti. Co se týče stability, 
rozlišujeme zde několik p o j m ů , a to a sympto t i cká stabilitu, B I B O stabilitu a vn i t řn í sta­
bi l i tu . Text obsahuje jejich definice, věty, k teré určují p o d m í n k y pro dosažení stability, 
a několik př ík ladů sloužících k ilustraci. P rob lémy ř idi telnost i a pozorovatelnosti jsou 
rovněž zadefinovaný, pro jejich analýzu jsou uvedeny dvě možná kri téria. P r v n í m z nich 
je regularita příslušné Gramový matice, tedy existence její inverze. Toto kr i t é r ium pla t í 
pro obecnější p ř ípad l ineárního systému, jehož matice koeficientů mohou bý t závislé na 
čase. Je však náročnější na výpočet . Druhé kr i té r ium, čímž je p lná hodnost příslušné 
matice ř idi telnost i , respektive pozorovatelnosti, p la t í sice pouze pro sys témy nezávislé na 
čase, ale je výpoče tně jednodušš í . 
D r u h á část je věnována zlomkovému kalkulu. Nejprve jsou zavedeny dvě speciální funkce, 
které jsou pro teorii neceločíselných derivací klíčové, a to gamma funkce, k t e r á zobecňuje 
faktoriál, a Mittag-Lefnerova funkce, kterou lze chápa t jako generalizaci exponenciální 
funkce. Následně jsou zadefinovaný oba diferintegrály, k teré jsou v práci použity, tedy 
Riemann-Liouvi l lův a C a p u t ů v . Uvedeny jsou t aké jejich Laplaceovy transformace, k teré 
jsou klíčové pro analýzu l ineárních sys témů zlomkového řádu . Tyto sys témy jsou předs taveny 
v další kapitole. V té jsou nejprve pro Riemann-Liouvi l lův i C a p u t ů v sys tém odvozena 
vyjádření s tavového vektoru na čase. Dále je p rozkoumána asympto t i cká a B I B O sta­
bili ta, spolu s odvozením vět , k teré s tanovují jejich kri tér ia . Je zde ukázáno , že pro volbu 
ř á d u 0 < a < 1 je dosaženo větší oblasti stability. Pro ř idi telnost a pozorovatelnost jsou 
dále odvozena obě pozměněná kr i tér ia z p rvn í části práce. 

KIŠA, D. : Applications of fractional calculus in control theory. Brno: Vysoké učení 
technické v Brně , Fakulta s t rojního inženýrství , 2018. 37 s. Vedoucí bakalářské práce 
Ing. Tomáš Kisela , P h . D . 
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1 Introduction 
Control theory is a branch of mathematics and engineering that deals wi th the behaviour 
of dynamical systems. Al though the fundamental idea of automatic control is centuries 
old, the discipline underwent a rapid rise in the 20th century. This was especially true of 
the '50s and the '60s, when many interesting problems that lacked the underlying theory 
emerged in the context of increasing availability of efficient digital computing and events 
such as the Space Race. In the last few decades, it has been demonstrated that many 
objects and phenomena can be wi th great success modeled wi th the use of fractional 
calculus. 
The theory of fractional calculus - or of integrals and derivatives of non-integer order - is as 
old as classical calculus itself. It was first mentioned in 1695 in Leibniz's correspondence 
wi th l 'Hospital , where they pondered on the idea of a derivative of order one half. Since 
then, the topic has been studied by many great mathematicians, including Liouville, 
Riemann, Abe l , Euler or Gri inwald. For a long time, it was considered to be exclusively 
a field of pure mathematics. However, in recent history, many applications have been 
found. Besides control theory, which has already been mentioned, we can name modeling 
of viscoelastic materials, polymers and proteins, electromagnetism, chaos, robotics, signal 
processing, and many more. 
In this bachelor's thesis, we wi l l look at three principal problems of control theory -
stability, controllability, and observability of linear systems. First , we wi l l analyse them 
for integer-order systems, and then look at what changes when we move on to the fractional 
case. The thesis is organised as follows. 
In the second chapter, we wi l l describe some of the mathematical apparatus that wi l l be 
needed throughout the thesis. Next, we wi l l do a brief introduction to the world of control 
theory. There, we wi l l define the questions of stability, controllability, and observability 
and state the solutions to them for integer-order linear time-invariant systems. In the 
fourth chapter, we wi l l delve into the theory of fractional calculus and define the operators 
- or differintegrals - that we wi l l use in this thesis. A n d finally, in the last chapter, we wi l l 
examine fractional-order linear time-invariant systems and fine the conditions for their 
stability, controllability, and observability. 
The thesis draws from the books and articles listed on the last page. Specifically, the 
book [2] was used as a foundation for the introduction to control theory and integer-
order linear systems. The books [3] and [4] were the basis for defining the differintegrals, 
studying their properties and connections wi th the Mittag-Lefner function. The articles 
and works [1], [5], [6], [7] and [8] were used to state and prove the theorems about stability, 
controllability and observability. 
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2 Preliminaries 
In this chapter, we wi l l remind the reader of some of the essentials that wi l l be needed 
through the whole thesis. Namely, we wi l l define the Laplace transform, show that the 
exponential function can be extended to matrices and state the Cayley-Hamilton theorem 
and its corollaries. 

2.1 The Laplace Transform 

Definition 2.1 (The Laplace transform). Let f(t) be a real function defined on (0, oo). 
Then the Laplace transform of fit) is the function £{f(t)}(s) defined by 

/•OO 
C{f(t)}(s) = F(s) = / f(t)e~stdt (2.1) 

Jo 

for all complex numbers s such that the improper integral converges. 

Definition 2.2 (The inverse Laplace transform). Let F(s) be a complex function such 
that F(s) = £{f(t)}(s). Then the inverse Laplace transform of F(s) is a real function 
C~1{F(s)}(t) which has the property 

t-HHsmt) = /(*)• (2-2) 

2.1.1 Properties of the Laplace Transform 

The Laplace Transform has a number of important properties, some of which we wi l l state 
here. 

£{af(t) + Pg{t)}{8) = aC{f(t)}(s) + PC{f(t)}(s) (2.3) 

£{f'(t)}(s)=s£{f(t)}(s)-f(0) (2.4) 

C-'iFis) • G(s)}(t) = C-'iFisW) * C-HGis)}® (2.5) 

2.2 The M a t r i x Exponential 

The well known exponential function can be extended to accept a square matrix as its 
input. 

Definition 2.3 (The matrix exponential). Let A be an n x n real or complex matrix. 
Then the matrix exponential of A is defined by the power series 

fc=0 

where A 0 is defined to be the identity matrix I of the same dimensions as A . 
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Matr ix exponentials are important in expressing the solution of systems of ordinary dif­
ferential equations. Namely, the solution of the homogenous system 

x(t) = Ax ( t ) , x(0) = x 0, (2.7) 

where A is a constant matrix, is given by 

x(t) = e A 'x 0 (2.8) 

2.3 The Cayley-Hamilton Theorem 
The Cayley-Hamilton theorem is a crucial result in linear algebra. 

Theorem 2 . 4 . Let p(X) = det(XI— A) = 0 be the characteristic equation of a square 
matrix A. Then the matrix A satisfies the equation. Symbolically, we can express this as 

p(A) = O, (2.9) 

where O is the zero matrix. 

Corollary 2 .5. The Cayley-Hamilton theorem yields a way to express the nth power of a 
matrix. This is best explained on an example. Let 

0 3 
-2 5 

(2.10) 

Then the characteristic equation is given by 

p(A) = A 2 - 5 A + 6 = 0 (2.11) 

Since according to the theorem, A must also satisfy the equation, we get 

A2-5A + 6I=0 (2.12) 

A2 = 5A-6I (2.13) 

Analogously, we can express higher powers of A as well. 

Corollary 2 . 6 . Given an analytic function 

oo 

f(x) = J > f c * f c , (2.14) 
fc=0 

the analytic function of matrix A 

oo 

f(A) = J2^Ak (2.15) 
fc=0 

can be expressed as a matrix polynomial of degree less than n. 

n—l 

f{A) = Y,ckAk (2.16) 
fc=0 
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3 Basics of Control Theory 
Many important physical systems can be expressed in the form of a state-space represen­
tation, which models the system as a set of input, output and state variables related by 
first-order differential equations. A s the state variables are functions of time, the repre­
sentation is also often called the "time-domain approach". Most of this chapter draws 
from [2]. 
We wi l l concern ourselves mainly wi th the general linear system, which can be efficiently 
described in matrix form 

x ( t ) = A ( t ) x ( t ) + B(t)u(t), x ( * 0 ) = x o 

y(t) = C( t )x( t ) + D(t)u(t) 1 ' j 

and its simpler form, the linear time-invariant system 

x(t) = A x ( t ) + Bu( t ) , x(* 0) = xo 

y(t) = C x ( t ) + Du(t) 1 ' j 

The first equation wi l l be referred to as the state equation, the second as the output equa­
tion. 

For an nth order system (a system that can be represented by an nth order differential 
equation) wi th r inputs and m outputs, the matrix dimensions are as follows: 

x(t) G M n x l is the state vector 
A(t) G R n x n is the state matrix 
B(t) G M.nxr is the input matrix 
u(t) G Wxl is the input vector 
C( t ) G M m x n is the output matrix 
D(t) G M.mxr is the feedthrough matrix 
y(t) G M m x l is the output vector 

Remark. We wi l l use the abbreviation L T I for the qualifier linear time-invariant from now 
on. 

3.1 Transfer Function 

Transfer function representation is one of the most powerful tools in control system anal­
ysis. Given the system (3.2), the transfer function 

Y(s) 
T W = ^ (3.3) 

can be obtained by taking the Laplace transform of the system equations with zero init ial 
conditions. The state equation gives 

[si — A ] X ( s ) = B U ( s ) , (3.4) 
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where I is the n x n identity matrix 

1 0 
0 1 

0 0 

(3.5) 

B y solving for X ( s ) , we get 

X (s ) = [ s i - A ] _ 1 B U ( s ) . (3.6) 

From the output equation, we know that the output and state vectors are related by 

Y ( s ) = C X ( s ) + D U ( s ) = C [si - A ] _ 1 B U ( s ) + D U ( s ) . (3.7) 

This gives us the final expression for the transfer function 

Y(s) 
T(s) 

U(s) 
C [si - A] 1B(s) + D . (3. 

3.2 State-Transition Mat r ix 
The state-transition matrix $(t,to) is a matrix whose product wi th the state vector x at 
time to gives the state vector x at a later time t (see [5]). For the linear system (3.1), the 
solution is given by 

x(t) = $ ( M o ) x ( t 0 ) + I Ht,r)B(r)u(r)dT 
J t0 

(3.9) 

In the general case of the system (3.1), the state-transition matrix can be obtained from 
the system's fundamental solution matrix. 
The fundamental solution matrix P( t ) is an n x n matrix, where each column represents 
one of the n linearly independent solutions to the zero-input state equation 

x(t) = A(t)x(t) 

The matrix P( t ) wi l l then also satisfy the equation 

P ( t ) = A ( t ) P ( t ) 

The state-transition matrix is given by 

$ ( t , t 0 ) = P ( t ) P " 1 ( t 0 ) 

(3.10) 

(3.11) 

(3.12) 

and has the following properties. 

$ ( M ) = I 

$ ( t 2 , t i ) $ ( t i , t 0 ) = $(*2,to) 

$-1(t,t0) = Q(t0,t) 

Remark. For the linear time-invariant system (3.2), the matrix is given by the matrix 
exponential 

$ ( M o ) 3 A( i - i 0 ) (3.13) 
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3.3 Stability 
Determining the stability of a system is one of the central problems of control theory. In 
this section we wi l l present some of the commonly used definitions of stability and explain 
the differences between them. The definitions are taken from [2]. 

Definition 3.1 (Asymptotic Stabili ty). Consider the linear time-invariant system (3.2). 
We wi l l say that the system is asymptotically stable if all the states approach zero wi th 
time, that is when 

l im x(t) = 0 (3.14) 
t—¥00 

The necessary and sufficient condition for asymptotic stability is quite simple. 

Theorem 3.2. The system (3.2) is asymptotically stable if and only if all the eigenvalues 
of its state matrix A are in the left half-plane. 

Another form of stability is B I B O stability (bounded-input, bounded-output). 

Definition 3.3 ( B I B O Stabili ty). We say that the system (3.2) is BIBO stable if the 
system's output is bounded for every input that is bounded. 

| u ( £ ) | < 7 V | y ( t ) | < M (3.15) 

where M and N are finite upper bounds of u(t) and y(t). 

Here, the condition is very similar. 

Theorem 3.4. The system (3.2) is BIBO stable if and only if all the poles of the system's 
transfer function are in the left half-plane. 

Lemma 3.5. / / the system (3.2) is asymptotically stable, it is also BIBO stable. 

The converse is true only in the absence of pole-zero cancellations in the process of ob­
taining the transfer function. 

3.3.1 Internal Stability 

The notion of internal stability is similar to B I B O stability in that it is also concerned 
wi th the system transfer functions. We wi l l say that a system is internally stable if all 
signals within the system are bounded for al l bounded inputs. 
Apparently, internal stability is a stronger claim than B I B O stability. Equivalently, the 
difference between internal stability and B I B O stability can be stated using transfer func­
tions. Whi le B I B O stability requires the transfer function of the whole system to be 
stable, internal stability requires all possible transfer functions between all inputs and 
outputs to be stable. 

3.3.2 Examples 

Example 3.6. Consider the linear time-invariant system 

x(t) 
2 3 
-4 -5 

x(t) + u(t) 
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y(t) = [1 1] x(t). 

The eigenvalues of the system can be obtained by computing the determinant 

IA — sll 
2 - 8 3 

-4 - 5 - s 
s2 + 3s + 2 = (s + l ) ( s + 2) 

The real parts of both eigenvalues are negative, the system is therefore asymptotically 
stable and B I B O stable. 

Example 3.7. Consider the control system depicted in the figure 1 wi th transfer functions 

Y(s) 1 Y(s) s + l 
R(s) s + 2 D(s) ( s - l ) ( s + 2)" 

D 

Figure 1: A system wi th an input R, a disturbance D , and an output Y . 

The input-output transfer function is clearly stable, hence we can say that the system 
is B I B O stable. However, the transfer function between the disturbance and the output 
has a pole lying in the right half-plane and is therefore unstable. A n y disturbance in the 
system wi l l grow unbounded, the system is internally unstable. 

3.4 Controllability 
Another important part of control system analysis is determining its controllability. We 
say that a system is completely controllable if the system can be moved from any init ial 
state x(to) to any final state x(t/) by applying a control input u(t) over a finite time 
interval (t0,tf). Note that the definition does not say that a state can be maintained, but 
only that it can be reached. 
We wi l l also introduce the notion of controllability on an interval (see [5]). 

Definition 3.8 (Controllability on an interval). Let to, t/ G M. such that to < tf. We wi l l 
say that the system (3.2) is controllable on (to, tf) if and only if for all state vectors x 0, x/ 
there exists an input vector u(t) such that x (£ 0 ) = x 0 and x(t/) = x/. 

Remark. If a system is controllable on the interval (to, tf) for some input u(t), we wi l l say 
that the vector u(t) steers x 0 to xj on (t0,tf). 

Remark. A system is completely controllable if it is controllable on every interval (to,tf). 
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The next theorem draws from [5]. 

Theorem 3.9. The system (3.1) is controllable on (to, t/) if and only if the n x n con­
trollability gramian matrix given by 

Wc(t0,tf) = I 1 $(tf,T)B(T)BT(T)$T(tf,T)dT 
J to 

is invertible, where $(£/,£0) is the system's state transition matrix. 

(3.16) 

For a linear time-invariant system , there is a simpler method of determining its control­
lability that relies on constructing the so-called controllability matrix, as it can be shown 
that the matrix has the same rank as the controllability gramian matrix (see [2]). 

Definition 3.10 (Controllability matrix) . Consider the system (3.2). Then the control­
lability matrix of the system is given by 

Mr = [B I A B I ••• I A n _ 1 B l . (3.17) 

Theorem 3 .11. The system (3.2) is completely controllable if and only if its controllability 
matrix is of full rank. 

3.4.1 Examples 

Example 3.12. Consider the system 

x(t) 
-2 0 
0 -1 

x(t) + u(t). 

The system has the controllability matrix 

Mr = [B I A B 1 

where 

Thus. 

A B 
"-2 0" "0" "0" 
0 -1 1 -1 

0 0 
1 -1 

which is of rank 1. The system is not completely controllable. 

Example 3 .13. Consider another system, this time of order 3. 

"1 3 3" "1" 

*(*) = 1 0 0 x(t) + 0 
0 1 0 0 

u(t). 

We wi l l first compute the matrices A B and A 2 B . 
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A B 

A 2 B = 

"1 3 3" "1" "1" 
1 0 0 0 = 1 
0 1 0 0 0 

"1 3 3" "1" "4" 
1 0 0 1 = 1 
0 1 0 0 1 

Then the controllability matrix is given by 

IVL [B I A B I A 2 B 1 
1 1 
0 1 
0 0 

and the determinant is 
det(Mc) = 1 

The matrix is of full rank, the system is completely controllable. 

3.5 Observability 
Very similar to the previous concept is the notion of observability. A system is completely 
observable if any init ial state x ( t 0 ) can be reconstructed by examining the system output 
y(t) over a finite time interval (t0,tf). 

Definition 3.14 (Observability on an interval). Let to,tf G M. such that to < £/. We wi l l 
say that the system (3.2) is observable on ( t 0 , t / ) if and only if the ini t ial state x (£ 0 ) can 
be determined from the system output y(t) over a finite time interval ( t 0 , t / ) (see [5]). 

Theorem 3.15. The system (3.1) is observable on (to, t/) if and only if the nxn observ­
ability gramian matrix given by 

Wo(t0,tj ^tf,T)CT(T)C(T^T(tf,T)dT (3.18) 
«0 

is invertible, where $ ( t / , t 0 ) is the system's state transition matrix. 

Similarly to controllability, for the time-invariant system, we can define the observability 
matrix. 

Definition 3.16 (Observability matrix) . Consider again the linear time-invariant system 
(3.2). Then its observability matrix is given by 

C 
C A 

(3.19) 

C A n—l 

Theorem 3.17. The system (3.2) is completely observable if and only if its observability 
matrix is of full rank (see [2]). 
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Theorem 3.18. / / a system is uncontrollable or unobservable, it will have a pole-zero 
cancellation in its transfer function. Conversely, any pole-zero cancellation in the system's 
transfer function implies either uncontrollabity or unobservability. 

Remark. There is a strong connection between the observability and controllability matri­
ces. Namely, the observability test on the system (3.2) is equivalent to the controllability 
test on a dual system with the state equation 

x(t) = Ax ( i ) + C T u ( t ) (3.20) 

3.5.1 Examples 

Example 3.19. Consider the system 

x(t) 
1 2 
1 0 

x(t) + 
-2 
3 

u(t) 

y(t) = [1 0] x(t) . 

Its observability matrix can be calculated. 

M 0 = 
c "1 0" 

C A 1 2 

The determinant can be shown to be 

det(M0) = 2. 

Thus, the system is completely observable. 
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4 Basics of Fractional Calculus 
Fractional calculus is a branch of mathematical analysis that deals wi th differentiation 
operators and integration operators of arbitrary order. The idea of generalizing integer-
order derivatives and repeated integrals to real number orders is more than 300 years 
old, and there are several possible ways of defining them that are in use (see [3] and [4]). 
These definitions are usually named after their author and have distinct advantages and 
disadvantages. 
In this text, we wi l l only consider the Riemann-Liouvil le differintegral and the Caputo 
differintegral. However, before defining them, we wi l l examine a couple of special func­
tions. 

4.1 The Gamma Function 
In calculus of integer order, the factorial function naturally arises in expressions for the 
n-th derivative of a polynomial and the n-th integral. 

K = \ / • • • / f(T)dTdT1...dTn_1 = ——(t-TT-1f(T)dT (4.2) 
Ja Ja Ja \ n *-)• Ja 

Remark. The expression for the n-th integral above is called the Cauchy formula for 
repeated integration. 

The gamma function is an extension of the factorial function to complex numbers. For a 
natural number n, the following holds. 

T(n) = ( n - 1 ) ! (4.3) 

The next definition is taken from [3]. 

Definition 4.1 (The gamma function). Let z be a complex number wi th $l(z) > 0. We 
wi l l call the convergent improper integral 

oo 

r(z) := / tz-xe~ldt (4.4) 
Jo 

the gamma function of z. 

The gamma function also retains the recurrence relation 

zT(z) = T(z + l). (4.5) 

This, in addition to T ( l ) = 1 gives us the connection (4.3) to the factorial function. 

4.2 The Mi t t ag - Leffler Function 
The exponential function ez plays a key role in the theory of integer-order differential 
equations. For fractional differential equations, we wi l l use its two-parameter generaliza­
tion (for more information, see [3]). 
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Definition 4.2 (The two-parameter Mittag-Leffler function). 

Remark. If /3 = 1, we talk of the one-parameter Mittag-Leffler function denoted by 

OO u 

T(ak + 1) 

From the definition (4.2), we can derive many useful relationships, such as 

OO u OO u 
ZK xr^ ZK 

fc=0 v y fc=0 

Eh2{z) = (4.9) 

£ 2 j l ( z 2 ) = cosh(z) (4.10) 

£ 2 , 2 ( , 2 ) = ^ (4.11) 

Remark. We can also - analogously to the matrix exponential mentioned in (2.6) - define 
the matrix extension of the Mittag-Leffler function 

OO . /u 

W = Ef5s+7o- ( 4 ' 1 2 ) 

This family of functions wi l l see extensive use in the analysis of fractional order linear 
systems. 

4.3 The Riemann-Liouville Differ integral 

This approach uses Cauchy's formula for repeated integration (4.2) and generalizes it to 
an arbitrary order by defining the Riemann-Liouville integral (definition taken from [4]). 

Definition 4.3 (The Riemann-Liouville integral). Let a, b be real numbers, such that 
a < b. Let a be a positive real number. Let f(t) be integrable on (a, b) and t G {a, b). 
We wi l l call the expression 

mf{t) : = t ^ t f f(r)(t - rT-'dr (4.13) 

r(a) Ja 

the Riemann-Liouville integral of order a. 

We wi l l then define the Riemann-Liouvil le fractional derivative by using the above defined 
Riemann-Liouville integral followingly. 
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Definition 4 . 4 (The Riemann-Liouville fractional derivative). Let a, b be real numbers, 
such that a < b. Let a be a positive real number. Let fit) be integrable on (a, b) and 
t G (a,b). Let also f(t) be at least [a]-times differentiable on (a,b), where the symbol 
\a] denotes the ceiling function 

\a] = min{z G Z\z > a}. (4.14) 

We wi l l call the expression 

DaJ(t) := ^ \lW-af(t)] = — f f(T)(t-T)W-a-ldT (4.15) 

the Riemann-Liouville fractional derivative of order a. 

We can then combine these definitions to obtain the Riemann-Liouvil le differintegral. 

Definition 4 . 5 (The Riemann-Liouville differintegral). Let a, a, b be real numbers, such 
that a < b. Let fit) be integrable on (a, b) and t G (a, b). If a > 0, let also f(t) be at 
least [a]-times differentiable on (a, b). 

'12 f{t) f o r a < 0 

V>:f(t):={fit) f o r a = 0 (4.16) 

r ( ^ ) ^ £ / ( r ) ( t - r ) H — W for a > 0 

Remark. The symbol wi l l stand for the Riemann-Liouvil le differintegral throughout 
this thesis. 

The properties of the Riemann-Liouville differintegral wi l l be discussed later. 

4.4 The Caputo Differintegral 
A n alternative definition of the fractional derivative was proposed by Caputo. Caputo's 
derivative has a clear advantage over the Riemann-Liouville derivative when it comes to 
modelling fractional physical systems, in that the ini t ial conditions of the system are of 
integer orders and as such have known physical interpretations. 

Definition 4 . 6 (The Caputo differintegral). Let a, a, b be real numbers, such that a < b. 
Let fit) be integrable on (a, b) and t G (a, b). If a > 0, let also fit) be at least [a]-times 
differentiable on (a, b). 

{ D " / ( t ) for a < 0 CKf(t):=\Byala)ldM fM] _ „ . : n (4.17) 
dt^a yit) for a > 0 

We can see that the two differintegrals are equal for a <= 0, i.e. the fractional integrals 
are the same. However, the fractional derivatives differ. In Caputo's approach, the 
classical integer-order derivative is applied first, before the fractional integral, whereas in 
the Riemann-Liouville approach, it is the other way around. 
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If we assume stricter conditions for the order of the derivative a > 0, a N, we can write 
the fractional derivative in the form 

CVaJ(t) = ^ f it - T)W-a-lfW\r)dT. (4.18) 

r ( | a | - a Ja 

4.5 Properties of the Differ integrals 
The differintegrals keep some of the properties of classical derivatives and integrals, or 
generally have direct analogies to them. We can, for example, mention linearity, which is 
satisfied by both of our differintegrals. 

+ ug(t)) = fiD^f(t) + vUa

ag(t) (4.19) 

CVaM(t) + ug{t)) = ncKf(t) + vcKg(t) (4-20) 

However, we wi l l be more interested in the Laplace transforms of the differintegrals, 
because we wi l l need those to prove many of our theorems in the next chapter. This time, 
the transform of our operators wi l l produce different results (see [3] for more information 
and proofs). 

C{U2f{t)}{8) = saF(s) - s ^ - ^ f i a ) (4.21) 
fc=0 

N - i 
£{CKfms) = saF(s) - * a - f c -7 ( f c ) (<0 (4-22) 

fc=0 
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5 Fractional Order Linear Time-Invariant Systems 
Many physical and engineering phenomena can be efficiently described by fractional-order 
dynamical systems. In this chapter, we wi l l look at the fractional equivalents of the linear 
time-invariant system (3.2) discussed previously. Such systems see use in the field of 
control theory. 

Definition 5.1 (The Caputo L T I system). Let a G (0,1). We wi l l call the system 

c D £ x ( £ ) = A x ( t ) + Bu( t) , x(0) = x 0 

y(t) = C x ( t ) + Du( t ) , 
(5.1) 

where the vectors x , u, y and the matrices A , B , C , D have the same dimensions as in 
the system (3.2) the Caputo L T I system. 

We can express x(£) similarly to (3.9) (see [6]). First , we wi l l state two results which we 
wi l l not prove here. 

Lemma 5.2. 

Lemma 5.3. 

[saI- A}'1 = J2Ak~1> 
-ka 

C-L{s-a-L}(t) 

fe=i 

ť 

r(a + i) 
for a > — 1 

(5.2) 

(5.3) 

Theorem 5.4. Consider the system (5.1). Then the state vector x(t) at an arbitrary time 
t > 0 is given by the equation 

x{t) = Ea{Ata)xo + f it - T)a-lEa,a{A{t - T)a)Bu{r)dr. 
Jo 

Proof. Let us take the Laplace transform of the state equation. 

£ { c D £ x ( £ ) } ( s ) = £ { A x ( t ) + Bu(t)}(s) 

Then by (4.22), we get 

I ( s a X ( s ) - s a _ 1 x o ) = A X ( s ) + B U ( s ) 

X ( s ) = [saI - A ] " 1 • [BU(s) + s a _ 1 x o ] . 

B y using the lemma (5.2), we can rewrite this as 

X i s ) -ka 

k=l 

B U ( s ) + x 0 ^ A f c s - f c ö - 1 . 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
fc=0 

If we now take the inverse Laplace transform of the equation (5.8) above and use the 
properties (2.3) and (2.5), we obtain 

x ( f ) = £ - ' { -ka 

k=l 

}(t) * C-'iBVisM) + C-^xo A V * " - 1 } ^ ) . (5.9) 
fc=0 
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Now we use the lemma (5.3) to get 

A k - i t o 

x(t) 
^ r(afc) 

* [Bu(t)] + x 0 

AH k+ak 

k=0 
F(ak + 1) 

(5.10) 

Finally, if we recall the definition of the Mittag-Lemer function, we can write this as 

x(t) = lta-lEa,a{Ma)] * [Bu(i)] + x 0 £ a ( A f ) . (5.11) 

B y rearranging, we get the final formula. 

x(t) = Ea{Ata)x0 + f i t - r)a-lEa,a{A{t - r)a)Bu{r)dr (5.12) 
Jo 

• 
Similarly, we can define the linear-time invariant system with the Riemann-Liouville dif-
ferintegral. Note that the ini t ial condition is given by a fractional derivative. 

Definition 5.5 (The Riemann-Liouville L T I system). Let a G (0,1). We wi l l call the 
system 

D«x ( t ) = Ax( t ) + Bu( t ) , D « - 1 x ( 0 ) = x 0 

y(t) = Cx( t) + Du( t) , 1 ' j 

Theorem 5.6. Consider the system (5.5). Then the state vector x(t) at an arbitrary time 
t > 0 is given by the equation 

x{t) = ta~lEa,a(Ata)xo + f {t-T)a-lEa,a{A{t-T)a)Bu{T)dT (5.14) 
Jo 

Remark. The proof of this theorem is virtually identical to the theorem (5.4) for the 
Caputo L T I system. 

Now we can move on towards examining the notions of stability, controllability and ob­
servability of fractional-order systems. 

5.1 Stability 
In this section, we wi l l establish the conditions for asymptotic stability and B I B O stability 
for fractional-order linear time-invariant systems. 

5.1.1 Asymptotic Stability 

First , we wi l l state an important lemma that wi l l help us prove the theorem explaining 
the conditions for stability. The lemma is stated and proved in [3]. 

Lemma 5.7. Let a G (0,1) and (3 an arbitrary real number. Let z be a complex number 
such that ^ < \arg(z)\ < ir. Then for an arbitrary integer p > 1, the following asymptotic 
expansion is valid as \z\ —> oo. 

^•w = - t r ^ + ° ( w - 1 - ' ) <«5» 

17 



Now we can move forward and state the theorem for the Riemann-Liouvil le L T I system. 
The theorem is taken from [8] 

Theorem 5.8. The system (5.5) is asymptotically stable if and only if 

OiTT 

\arg(\i(A))\ > — Vz = l , . . . , r a , (5.16) 

where Aj is the ith eigenvalue of A. 

Proof. A s the stability of the system does not depend on the input vector u(t), we can. 
without loss of generality, set u(t) — 0. B y (5.6), we can then express the state vector as 

x(t)=x0ta-1Eata(Ata). (5.17) 

Let us suppose that the matrix A is diagonalizable. This implies that it can be written 
as 

A = T A T " 1 , (5.18) 

where A is the diagonal matrix of eigenvalues of A 

A = diag [ A i , . . . , A„]. (5.19) 

Remark. This is not necessarily true, but the idea of the proof is the same as in the 
general case, where we instead decompose A into T J T - 1 wi th J being the unique Jordan 
canonical form of A . The general proof involves more tedious calculations and wi l l be 
omitted. 

Then 

Ea,a{Ata) = T ^ A O T - 1 = Tdiag [E^X^),Ea,a{Xnta)} T " 1 . (5.20) 

Now if we consider our assumption 
Qf7T 

\arg{\i{A))\ > — Vz = l , . . . , r a , (5.21) 

we see that we can use the lemma (5.7). 

Ea,a(Xtr) = - J 2 r

( ^ n ~ " + O {IXri-1-") (5.22) 
I (a — ak) 

fe=i v ' 

This expression approaches 0 as t —> oo for al l % — 1, . . . , n. Because the matrix norm 
induced by the L 2 vector norm is given by the largest singular value of the matrix and 
singular values are square roots of eigenvalues, we can deduce that 

0 = l im Ea,a(Xita) = l im \\Ea,a(Ata)\\ = l im \\Ea,a(Ata)\\ = l im Ea,a(Ata). (5.23) 

Now going back to our expression for x(t) (5.17), we can see that 

l im x(t) = l im x o f * - 1 E a j C e ( A t a ) = 0 (5.24) 

and the proof is done. • 
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Remark. Observe that by choosing a — 1, this also proves the theorem (3.2) for integer-
order systems. 

Remark. Unlike in integer-order systems where the state x(t) decays to 0 at an exponential 
rate, in the fractional case, it decays algebraically at the rate of t~a. 

For the Caputo system (5.1), the condition for asymptotic stability is the same. The 
expression for x(t) 

x(t) = Ea(Ata)x0 (5.25) 

used in the proof is different, but it has no bearing on the validity of the proof, as the 
lemma (5.7) still holds. 

5.1.2 B I B O Stability 

We wi l l keep our usual definition of B I B O stability (3.15). Before we articulate the 
condition for B I B O stability, we wi l l derive the transfer function of the Caputo system 
(5.1). However, because the transfer function of a system is obtained by taking the Laplace 
transform of its equations wi th zero init ial conditions and the Laplace transforms of the 
Riemann-Liouville differintegral (4.21) and the Caputo differintegral (4.22) differ only in 
their treatment of the init ial condition, the transfer function of the Riemann-Liouville 
system (5.5) is the same. 
Now, when we were proving the theorem (5.4), we took the Laplace transform of the state 
equation and arrived at the equation (5.7) 

X (s ) = [saI - A ] " 1 • [BU(s) + s a _ 1 x o ] • (5.26) 

To reiterate, the transfer function is derived for the case xo = 0. The equation (5.26) 
then simplifies into 

X ( s ) = [saI - A ] - 1 • [BU(s)] . (5.27) 

The Laplace transform of the output equation is 

Y ( s ) = C X ( s ) + D U ( s ) . (5.28) 

When we substitute (5.27) into the output equation, we obtain 

Y ( s ) = C [saI - A ] " 1 • [BU(s)] + D U ( s ) . (5.29) 

The transfer function is defined as 

T M = g , (5.30) 

and so we reach the conclusion 

T (s ) = C[saI- A ] _ 1 B + D . (5.31) 

Theorem 5.9. Let A« be the ith pole of the transfer function T(s). Then the systems 
(5.1) and (5.5) are stable in the BIBO sense if and only if 

OiTT 

\arg(Xi(A))\ > — V i = l , . . . , n . (5.32) 

The theorem is taken from [1]. 
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Remark. Just like in the integer-order case, asymptotic stability implies B I B O stability, 
but the reverse implication is only true if no pole-zero cancellations occured in obtaining 
the transfer function. 

5.2 Controllability 
In studying controllability and observability, we wi l l only do so for the case of the Caputo 
differintegral. The reason for this is that in the Riemann-Liouville case, we cannot keep 
our usual definitions of controllability and observability, because the ini t ial conditions 
are given for a fractional derivative of order a — 1 which do not have a known physical 
interpretation. 
To reiterate, for the Caputo system (5.1), we can keep the definition of controllability 
introduced previously. 
First , we wi l l show that for a system to be controllable on (t 0 ,*/) , we only have to 
demonstrate that for every state x j , some input u(t) steers 0 to x j in the time interval 
(to,*/)-

Lemma 5.10. The system (5.1) is controllable on (t 0,*/) ^\/xf e W1 3u(t) e L2({t0, tf), Rm) : 
u{t) steers 0 to Xf on (to,*/)• 

Proof. The left implication is obviously true from the definition, because if the system 
is controllable, then every x 0 is steered to every x j by some u(t). We can then choose 
x 0 = 0 and the first part of the proof is done. 
Now let us prove the right implication. Let x 0 , x j e W1. Next, we choose an arbitrary x 0 

and define x / 
X / = X / - Ea(A(tf - t o D x 0 . (5.33) 

We assume that there exists u(t) that steers 0 to x / on (to,*/). Then by (5.4), we can 
express x j as 

x / = / " / ( t - r ) Q - 1 £ ; Q ! Q ( A ( t - T ) Q ) B u ( T ) d T (5.34) 
J t0 

Next, we substitute for x / . 

X / = Ea(A(tf - t o r ) x 0 + / ' ( * / - TT^E^Aitf - r)a)Bu(r)dr (5.35) 
J to 

A n d again, from (5.4) we know that this is the expression for x( t / ) if x(to) = xo-

x / = x ( t / ) . (5.36) 

The system is controllable on (to,t/). • 

Next, we wi l l state the necessary condition for the system (5.1) to be controllable. The 
theorem and the main ideas of the proof are taken from [6]. 

Theorem 5.11. The system (5.1) is controllable on ( t 0 , t / ) if and only if the n x n 
controllability gramian matrix given by 

Wc(t0,tf) = f ' ( t f - r)a-lEa,a{A{tf - r)a)BBTEa^(AT(tf - r)a)dr (5.37) 
J to 

is invertible. 
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Proof. Let us start wi th the right implication. Because the gramian matrix is invertible. 
we can choose the input vector to be 

u(t) = BTEajCe(AT(tf - t ) a ) W c " 1 ( t 0 , t / ) [ X / - Ea(A(tf - £ o r ) x 0 ] . (5.38) 

B y (5.4), we can express x( t / ) as 

x f o ) = EA(A(tf - t 0 ) a ) x 0 + f' (tf- r)a-lEATA{A{tf - r ) a ) B B T 

J to 

X Eaja(AT(tf - t)a)W:\tQ,tf) [X/ - Ea(A(tf - £ o r ) x 0 ] dr (5.39) 

The term W c

 1(t0,tf) [xj — Ea(A(tf — t 0 ) a ) x 0 ] inside the integral does not depend on 
r , which means that we can pul l it out and obtain 

x f o ) = ^ ( A f o - £ o r ) x 0 + W c ( * 0 , * / )W7 1 ( to , tf) [X/ - Ea(A(tf - t 0 ) a ) x 0 ] (5.40) 

Here we see that W c ( t 0 , t / ) W ~ 1 ( t 0 , t/) is by definition equal to I and the terms 
Ea(A(tf — t 0 ) a ) x 0 cancel each other out. We finally arrive to the conclusion 

X(tf) = X / . (5.41) 

Hence, the system is controllable. 
We wi l l prove the left implication by contradiction. We wi l l assume that the system is 
controllable, but the gramian matrix is not invertible. 
If the gramian matrix is not invertible, then there exists a nonzero x with the property 

x T W c x = 0. (5.42) 

Now, if we substitute the matrix into this equation, we obtain 

x T t f (tf - r)a-lEA,A{A{tf - T)A)BBTEA,A(AT(tf - r)a)dr 
to 

x = 0, (5.43) 

which is the same as 
rtj 

(tf - T)a-lxTEa,a(A(tf - T^BB1 Ea)a(Ar(tf - T)a)Mr = 0. (5.44) 
<0 

Now we use the fact that when taking a transpose of multiplied matrices, their order 
reverses and we can rewrite the equation (5.44) in the form 

[tf (tf - T)*-1 [±TEa)a(A(tf - r)A)B] [±TEa)Ct(A(tf - r)A)B]T dr = 0. (5.45) 
J to 

Let us define 
* = xTEa:Ct(A(tf - r)A)B. (5.46) 

The equation (5.45) becomes 

-tf 

f f (tf- T)a~l*WTdT = 0. (5.47) 
J to 'to 
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Since * is a matrix of dimensions 1 x r, the factor \1/\1/T is simply the squared L 2 - n o r m 
o f * . 

[f(tf-T)a-1\\q\\2dT = 0. (5.48) 
J to 

The integrand is greater or equal to zero for all r G (t0,tf), which implies that 

* = ±TEa,a(A(tf - r)a)B = 0 V r G (t 0, tf). (5.49) 

Now we can choose 
x0=[Ea{A{tf-to)a)]-1a. (5.50) 

Our assumption is that the system is controllable, which means that there exists a control 
u(t) that steers x 0 to 0. 

x f o ) = 0 = Ea(A(tf - t o r ) x 0 + f \ t f - r)a-lEa,a{A{tf - T)a)Bu(r)dr (5.51) 
J to 

Left-multiplying the above equation (5.51) by x T , we obtain 

x T x + / (tf - r y - ^ E ^ A i t f - T)a)Bu{r)dT = 0. (5.52) 
J to 

However, the term xTEa^a(A[tf — r ) a ) B inside the integral is known to be zero, and thus 

x T x = 0. (5.53) 

This is only true for x = 0, which is a contradiction wi th our assumption that x is nonzero. 
The negation of the implication is false and so the proof is done. • 

However, as is the case in integer-order systems, there exists an easier method of deter­
mining controllability (see [7]). 

Theorem 5.12. The system (5.1) is completely controllable if and only if its controllability 
matrix 

Mc = [B | AB | • • • | A^B] (5.54) 

is of full rank. 

Proof. B y (5.4), we can express the state vector x(t) as 

(5.55) x(t) = Ea(Ata)x0 + f it - r)a-lEa,a{A{t - r)a)Bu(r)dT. 
Jo 

Thanks to the corollary (2.6) of the Cayley-Hamilton theorem, we know that 

0 0 j.ka+a-1 n ~ x 

r - * E a A A n = £ f ^ y A * = y > W A * . (5.56, 
fc=0 v ' k=0 

If we substite this into the expression for x(t) (5.55), we obtain 

n-l „t 

x(t) - Ea(Ata)^ = A f c B / ck{t- T)u(r)dT. (5.57) 
k=0 
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This can be interpreted as meaning that the state vector x(t) is a linear combination of 
the vectors A f c B . We can rewrite the sum as the multiplication 

[B | A B | • • • | A n _ 1 B ] 

where dk(t) = J0* Ck(t — r)u{T)dr. If the rank of the matrix [B | A B | • • • | A n _ 1 B ] is less 
than n, then the column space of the matrix - which is the same as all linear combinations 
of A f c B - does not include all possible states x(t) and the system is uncontrollable. If the 
rank is equal to n, the column space is M n x l and the system is controllable. 

• 

d0(t) 
di(t) 

dn-i(t) 

(5.58) 

5.3 Observability 
In the case of the Caputo system (5.1), we can use the definition of observability mentioned 
in the third chapter. The necessary condition for observability is very similar to that of 
controllability (see [6]). 

Theorem 5.13. The system (5.1) is observable on (to, t/) if and only ifthenxn observ­
ability gramian matrix given by 

W0= ftf Ea(AT(T-t0)a)CTCEa(A(T-t0)a)dT (5.59) 
J t0 

is invertible. 

Proof. Since observability does not in any way depend on the input u(t), we can without 
loss of generality set u(t) = 0. Then by (5.4), we can express the state vector at time t as 

x(t) = £ Q ( A ( t - t 0 ) Q ) x 0 . (5.60) 

From the output equation, we then obtain 

y(t) = C £ Q ( A ( t - t 0 ) Q ) x 0 . (5.61) 

Now if we left-multiply (5.61) by Ea(AT(t — to)a)CT and integrate from to to t/, we get 

t f Ea(AT(r - t0)a)CTy(r)dT = f ' Ea(AT(r - t0)a)CTCEa(A(r - t0)a)x0dr = W o x 0 . 
to J to 

(5.62) 
W 0 is invertible and x 0 is uniquely determined to be 

xo = W ; 1 Ea(AT(r - t0)a)CTy(r)dT (5.63) 
J to 

If on the other hand the gramian matrix is not invertible, then there exists a nonzero x 
such that W G x = 0. However, if we then choose x = x 0 + x , we can see that it also 
satisfies the equation 

/ ' Ea(AT(r - t0)a)CTy(r)dr = W 0 x = W 0 [x 0 + x] = W o x 0 . (5.64) 
J to 

Two different vectors satisfy the equation (5.64) and thus the ini t ial state cannot be 
uniquely retrieved from the output. • 
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Nonetheless, there again exists a simpler condition (see [7]). 

Theorem 5.14. The system (5.1) is completely observable if and only if its observability 
matrix 

C 
CA 

CA n-l 

(5.65) 

is of full rank. 

Proof. Without loss of generality, we set u(t) = 0. B y (5.4), we can write 

y(t) = CEa{A(t-t0)a)x0. (5.66) 

We use the corollary (2.6) of the Cayley-Hamilton theorem and rewrite this in the form 

oo k a n-l 

fc=0 ^ ' k=0 

(5.67) 

This is the same as 

y(t) = [db( t ) , . . . , r f»- i (*) ] 

fc=0 

C 
C A 

C A n-l 

X 0 . (5.68) 

If the observability matrix is of full rank, it is invertible and we can express x 0 as a 
function of y(t). The system is observable. If the condition is not met, then the system 
is not observable. • 

We can see that the Caputo system (5.1)'s conditions for controllability are identical to 
those of the integer-order system (3.2). 
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6 Conclusions 
In the first part of the thesis, we defined the problems of determining stability, control­
lability, and observability of integer-order linear time-invariant systems. We then stated 
the theorems that assert the conditions that need to be met for a system to be stable, 
controllable, or observable, and listed a couple of examples. 
In the second part, we proceeded to define the Riemann-Liouville and Caputo differin-
tegrals and examined some of their properties and differences. After that, we defined 
the corresponding fractional-order linear time-invariant systems of order 0 < a < 1 and 
analysed their stability, controllability, and observability. Here, most of the theorems are 
accompanied wi th detailed proofs. 
The thesis should mainly serve as an introduction to fractional-order control and a sum­
mary of the most important results. It could be followed upon by looking at different 
kinds of systems, e.g. linear systems with time delay or nonlinear systems. Another inter­
esting direction of development could be t rying to find reasonable alternative definitions 
of controllability and observability for the Riemann-Liouville system. 
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