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Summary

This bachelor’s thesis deals with the mathematical theory of fractional calculus and its
applications in the field of control theory. We lay out the basics of control of linear
time-invariant systems and discuss three of the classical problems - determining stability,
controllability, and observability. In the second part, we introduce the Riemann-Liouville
and Caputo differintegrals and formulate the above mentioned problems for a fractional-
order linear time-invariant system. We discuss the solutions to them and show how they
are derived.

Abstrakt

Tato bakalarska prace se zabyva matematickou teorii zlomkového kalkulu a jeho ap-
likacemi v oblasti teorie fizeni. V prvni ¢asti jsou uvedeny zaklady fizeni linedrnich ¢asové
invariantnich systému, a jsou dale diskutovany tii klasické tlohy, a to urceni stability,
fiditelnosti a pozorovatelnosti. V druhé ¢asti je zaveden Riemann-Liouvilluv a Caputuv
diferintegral a jsou formulovany vyse zminéné problémy pro linearni ¢asové invariantni
systém zlomkého radu. Opét jsou diskutovana feSeni a jejich odvozeni.

Keywords
fractional calculus, fractional linear systems, control theory, stability, controllability,
observability

Klicova slova
zlomkovy kalkulus, zlomkové linearni systémy, teorie Tizeni, stabilita, Tiditelnost,
pozorovatelnost



Rozsiteny abstrakt

Teorie Tizeni je odvétvi aplikované matematiky a inzenyrstvi zabyvajici se chovanim dy-
namickych systému. Zacala se rozvijet a Siroce uplatnovat ve 20. stoleti, predevsim v jeho
druhé poloviné diky rozvoji poc¢itacovych technologii. Zaroven s jejim rozmachem byly
zkoumany moznosti aplikaci matematické teorie necelociselnych derivaci na inzenyrské
ulohy, a ukézalo se, Ze mnohé objekty a struktury v teorii tizeni skryvaji v tomto ohledu
velky potencidl.

Problematika zlomkového kalkulu, neboli odvétvi matematiky vénujicitho se derivacim a
integralum necelociselného tadu, je témér tak stara, jako klasicky integralni a diferencialni
pocet. Prvni zminka pochézi z korespondence mezi I’'Hospitalem a Leibnizem z roku 1695,
kde spolu diskutovali moznost derivace o fadu % Od té doby byla tato oblast studovana
mnoha vyznamnymi matematiky, miuzeme jmenovat napiiklad Liouvilla, Riemanna, Eu-
lera nebo Abela. Nebyly vsak dlouho znamy aplikace na realné problémy. To se vSak ve
20. stoleti zménilo, a dnes je tato bohatd teorie vyuzivana pii modelovani viskoelastickych
materidll, proteinu, ve zpracovavani signalu, robotice a mnoha dalsich odvétvich.

Tato bakalarska prace je zaméfena na aplikace této oblasti matematiky v teorii fizeni.
Prvni ¢ast se sklada z ivodu do fizeni linedrnich ¢asové invariantnich systému. Jsou zde
diskutovany tulohy urceni stability, Tiditelnosti a pozorovatelnosti. Co se tyce stability,
rozlisujeme zde nékolik pojmu, a to asymptotickd stabilitu, BIBO stabilitu a vnitini sta-
bilitu. Text obsahuje jejich definice, véty, které urcuji podminky pro dosazeni stability,
a nekolik piikladu slouzicich k ilustraci. Problémy fiditelnosti a pozorovatelnosti jsou
rovnéz zadefinovany, pro jejich analyzu jsou uvedeny dvé mozna kritéria. Prvnim z nich
je regularita prislusné Gramovy matice, tedy existence jeji inverze. Toto kritérium plati
pro obecnéjsi ptipad linedrniho systému, jehoz matice koeficienti mohou byt zavislé na
matice tiditelnosti, respektive pozorovatelnosti, plati sice pouze pro systémy nezavislé na
case, ale je vypocetné jednodussi.

Druha c¢ast je vénovana zlomkovému kalkulu. Nejprve jsou zavedeny dvé specialni funkce,
které jsou pro teorii necelociselnych derivaci klicové, a to gamma funkce, ktera zobecnuje
faktorial, a Mittag-Leflerova funkce, kterou lze chapat jako generalizaci exponencidlni
funkce. Nasledné jsou zadefinovany oba diferintegrély, které jsou v praci pouzity, tedy
Riemann-Liouvilluv a Caputuv. Uvedeny jsou také jejich Laplaceovy transformace, které
jsou klicové pro analyzu linedrnich systému zlomkového radu. Tyto systémy jsou predstaveny
v dalsi kapitole. V té jsou nejprve pro Riemann-Liouvilluv i Caputuv systém odvozena
vyjadreni stavového vektoru na case. Dale je prozkouméana asymptoticka a BIBO sta-
bilita, spolu s odvozenim vét, které stanovuji jejich kritéria. Je zde ukazano, ze pro volbu
fadu 0 < a < 1 je dosazeno vétsi oblasti stability. Pro riditelnost a pozorovatelnost jsou
dale odvozena obé pozménénd kritéria z prvni ¢asti prace.

KISA, D.: Applications of fractional calculus in control theory. Brno: Vysoké uceni
technické v Brné, Fakulta strojniho inzenyrstvi, 2018. 37 s. Vedouci bakalarské préace
Ing. Tomas Kisela, Ph.D.
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1 Introduction

Control theory is a branch of mathematics and engineering that deals with the behaviour
of dynamical systems. Although the fundamental idea of automatic control is centuries
old, the discipline underwent a rapid rise in the 20th century. This was especially true of
the ’50s and the ’60s, when many interesting problems that lacked the underlying theory
emerged in the context of increasing availability of efficient digital computing and events
such as the Space Race. In the last few decades, it has been demonstrated that many
objects and phenomena can be with great success modeled with the use of fractional
calculus.

The theory of fractional calculus - or of integrals and derivatives of non-integer order - is as
old as classical calculus itself. It was first mentioned in 1695 in Leibniz’s correspondence
with "'Hospital, where they pondered on the idea of a derivative of order one half. Since
then, the topic has been studied by many great mathematicians, including Liouville,
Riemann, Abel, Euler or Griinwald. For a long time, it was considered to be exclusively
a field of pure mathematics. However, in recent history, many applications have been
found. Besides control theory, which has already been mentioned, we can name modeling
of viscoelastic materials, polymers and proteins, electromagnetism, chaos, robotics, signal
processing, and many more.

In this bachelor’s thesis, we will look at three principal problems of control theory -
stability, controllability, and observability of linear systems. First, we will analyse them
for integer-order systems, and then look at what changes when we move on to the fractional
case. The thesis is organised as follows.

In the second chapter, we will describe some of the mathematical apparatus that will be
needed throughout the thesis. Next, we will do a brief introduction to the world of control
theory. There, we will define the questions of stability, controllability, and observability
and state the solutions to them for integer-order linear time-invariant systems. In the
fourth chapter, we will delve into the theory of fractional calculus and define the operators
- or differintegrals - that we will use in this thesis. And finally, in the last chapter, we will
examine fractional-order linear time-invariant systems and fine the conditions for their
stability, controllability, and observability.

The thesis draws from the books and articles listed on the last page. Specifically, the
book [2] was used as a foundation for the introduction to control theory and integer-
order linear systems. The books [3] and [4] were the basis for defining the differintegrals,
studying their properties and connections with the Mittag-Leffler function. The articles
and works [1], [5], [6], [7] and [8] were used to state and prove the theorems about stability,
controllability and observability.



2 Preliminaries

In this chapter, we will remind the reader of some of the essentials that will be needed
through the whole thesis. Namely, we will define the Laplace transform, show that the
exponential function can be extended to matrices and state the Cayley-Hamilton theorem
and its corollaries.

2.1 The Laplace Transform

Definition 2.1 (The Laplace transform). Let f(¢) be a real function defined on (0, c0).
Then the Laplace transform of f(t) is the function £{f(¢)}(s) defined by

LUWOYs) = Fs) = [ fe e (21)
0
for all complex numbers s such that the improper integral converges.

Definition 2.2 (The inverse Laplace transform). Let F(s) be a complex function such
that F'(s) = L{f(t)}(s). Then the inverse Laplace transform of F(s) is a real function
L7 F(s)}(t) which has the property

LTF()}E) = f(t). (2.2)

2.1.1 Properties of the Laplace Transform

The Laplace Transform has a number of important properties, some of which we will state
here.

L{af(t) + Bg(t)}(s) = aL{f(t)}(s) + BL{f(t)}(s) (2.3)
L{f (1)} (s) = sL{f (1)} (s) = £(0) (2.4)
L7HF(s) G(s)}t) = L7H{F(s)}(t) » L7{G(5)}(2) (2.5)

2.2 The Matrix Exponential

The well known exponential function can be extended to accept a square matrix as its
input.

Definition 2.3 (The matrix exponential). Let A be an n X n real or complex matrix.
Then the matriz exponential of A is defined by the power series

et = — (2.6)

where A° is defined to be the identity matrix I of the same dimensions as A.
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Matrix exponentials are important in expressing the solution of systems of ordinary dif-
ferential equations. Namely, the solution of the homogenous system

x(t) = Ax(t), x(0) = xo, (2.7)

where A is a constant matrix, is given by

x(t) = e*'xq (2.8)

2.3 The Cayley-Hamilton Theorem

The Cayley-Hamilton theorem is a crucial result in linear algebra.

Theorem 2.4. Let p(\) = det (\I— A) = 0 be the characteristic equation of a square
matriz A. Then the matrix A satisfies the equation. Symbolically, we can express this as

p(A) = 0O, (2.9)
where O is the zero matrix.

Corollary 2.5. The Cayley-Hamilton theorem yields a way to express the n'* power of a
matriz. This is best explained on an example. Let

A— {02 ﬂ . (2.10)
Then the characteristic equation is given by
p(A) =X —5A+6=0 (2.11)
Since according to the theorem, A must also satisfy the equation, we get
A* -54+6I=0 (2.12)
A* =54 — 61 (2.13)

Analogously, we can express higher powers of A as well.

Corollary 2.6. Given an analytic function
flz) = Zakxk, (2.14)
k=0
the analytic function of matriz A
f(A) =) a,A* (2.15)
k=0

can be expressed as a matriz polynomial of degree less than n.

f(A) = Z_:CkAk (2.16)



3 Basics of Control Theory

Many important physical systems can be expressed in the form of a state-space represen-
tation, which models the system as a set of input, output and state variables related by
first-order differential equations. As the state variables are functions of time, the repre-
sentation is also often called the "time-domain approach”. Most of this chapter draws
from [2].

We will concern ourselves mainly with the general linear system, which can be efficiently
described in matrix form

x(t) = A(t)x(t) + B(t)u(t), x(to) = xo

(3.1)
y(t) = C(x(t) + D(t)u(t)
and its simpler form, the linear time-invariant system
%(t) = Ax(t) + Bu(t), x(to) = %o .

y(t) = Cx(t) + Du(t)

The first equation will be referred to as the state equation, the second as the output equa-
tion.

For an n'" order system (a system that can be represented by an n'* order differential
equation) with r inputs and m outputs, the matrix dimensions are as follows:

(t) € R™! is the state vector

(t) € R™™ is the state matrix

(t) € R™ " is the input matrix

(t) € R™! is the input vector

(t) € R™ ™ is the output matrix

(t) € R™*" is the feedthrough matrix
y(t) € R™*1 is the output vector

S W

CQ

Remark. We will use the abbreviation LTI for the qualifier linear time-invariant from now
on.

3.1 Transfer Function

Transfer function representation is one of the most powerful tools in control system anal-
ysis. Given the system (3.2), the transfer function

Y(s)

T =5(5)

(3.3)

can be obtained by taking the Laplace transform of the system equations with zero initial
conditions. The state equation gives

[sI - A] X(s) = BU(s), (3.4)

5



where I is the n x n identity matrix

1 0 . 0
01 ... 0
I=|. . (3.5)
0 0 1
By solving for X(s), we get
X(s) = [sI - A] 7 BU(s). (3.6)

From the output equation, we know that the output and state vectors are related by
Y(s) = CX(s) + DU(s) = C [s — A] "' BU(s) + DU(s). (3.7)
This gives us the final expression for the transfer function

1

=C|[sI-A] B(s)+D. (3.8)

3.2 State-Transition Matrix

The state-transition matrix ®(t, 1) is a matrix whose product with the state vector x at
time o gives the state vector x at a later time t (see [5]). For the linear system (3.1), the
solution is given by

x(t) = B(t, to)x(ty) + / B(t, 7)B(r)u(r)dr (3.9)

to
In the general case of the system (3.1), the state-transition matrix can be obtained from
the system’s fundamental solution matrix.
The fundamental solution matrix P(¢) is an n x n matrix, where each column represents
one of the n linearly independent solutions to the zero-input state equation

x(t) = A(t)x(t) (3.10)
The matrix P(¢) will then also satisfy the equation

P(t) = A(t)P(1) (3.11)

The state-transition matrix is given by

d(t, 1) = P(H)YP (ty) (3.12)

and has the following properties.

O(t,t) =1
DO (ta,t1)D(t1,t0) = D(t2,20)
D (t, tg) = P(t, 1)
Remark. For the linear time-invariant system (3.2),
exponential

the matrix is given by the matrix

D(t, 1) = eAlt=t0) (3.13)



3.3 Stability

Determining the stability of a system is one of the central problems of control theory. In
this section we will present some of the commonly used definitions of stability and explain
the differences between them. The definitions are taken from [2].

Definition 3.1 (Asymptotic Stability). Consider the linear time-invariant system (3.2).
We will say that the system is asymptotically stable if all the states approach zero with
time, that is when
lim x(t) =0 (3.14)
t—00
The necessary and sufficient condition for asymptotic stability is quite simple.
Theorem 3.2. The system (3.2) is asymptotically stable if and only if all the eigenvalues
of its state matriz A are in the left half-plane.

Another form of stability is BIBO stability (bounded-input, bounded-output).

Definition 3.3 (BIBO Stability). We say that the system (3.2) is BIBO stable if the
system’s output is bounded for every input that is bounded.

@) <N = |y(t)| <M (3.15)
where M and N are finite upper bounds of u(t) and y(t).
Here, the condition is very similar.

Theorem 3.4. The system (3.2) is BIBO stable if and only if all the poles of the system’s
transfer function are in the left half-plane.

Lemma 3.5. If the system (3.2) is asymptotically stable, it is also BIBO stable.

The converse is true only in the absence of pole-zero cancellations in the process of ob-
taining the transfer function.

3.3.1 Internal Stability

The notion of internal stability is similar to BIBO stability in that it is also concerned
with the system transfer functions. We will say that a system is internally stable if all
signals within the system are bounded for all bounded inputs.

Apparently, internal stability is a stronger claim than BIBO stability. Equivalently, the
difference between internal stability and BIBO stability can be stated using transfer func-
tions. While BIBO stability requires the transfer function of the whole system to be
stable, internal stability requires all possible transfer functions between all inputs and
outputs to be stable.

3.3.2 Examples

Example 3.6. Consider the linear time-invariant system

O AU R

7



y(t) =1 1]x(¢).
The eigenvalues of the system can be obtained by computing the determinant

2—s 3

|A—sI|:} 4 5

S}:sz+3s—|—2:(s+1)(s+2)-

The real parts of both eigenvalues are negative, the system is therefore asymptotically
stable and BIBO stable.

Example 3.7. Consider the control system depicted in the figure 1 with transfer functions

R(s) s+2 D(s) (s—1)(s+2)

Y(s) 1 Y(s) s+1

Figure 1: A system with an input R, a disturbance D, and an output Y.

The input-output transfer function is clearly stable, hence we can say that the system
is BIBO stable. However, the transfer function between the disturbance and the output
has a pole lying in the right half-plane and is therefore unstable. Any disturbance in the
system will grow unbounded, the system is internally unstable.

3.4 Controllability

Another important part of control system analysis is determining its controllability. We
say that a system is completely controllable if the system can be moved from any initial
state x(tp) to any final state x(t;) by applying a control input u(t) over a finite time
interval (to,%s). Note that the definition does not say that a state can be maintained, but
only that it can be reached.

We will also introduce the notion of controllability on an interval (see [5]).

Definition 3.8 (Controllability on an interval). Let t9,¢; € R such that ty < t;. We will
say that the system (3.2) is controllable on (to,ty) if and only if for all state vectors xo, Xy
there exists an input vector u(t) such that x(ty) = xo and x(t;) = xy.

Remark. If a system is controllable on the interval (o, t;) for some input u(¢), we will say
that the vector u(t) steers x¢ to x; on (to,ts).

Remark. A system is completely controllable if it is controllable on every interval (o).

8



The next theorem draws from [5].

Theorem 3.9. The system (3.1) is controllable on (ty,ts) if and only if the n x n con-
trollability gramian matrix given by

Wi(to, t/) = /t " B(t;,7)B(r) BT ()T (1, 7)dr (3.16)

is invertible, where ®(ts,ty) is the system’s state transition matric.

For a linear time-invariant system , there is a simpler method of determining its control-
lability that relies on constructing the so-called controllability matrix, as it can be shown
that the matrix has the same rank as the controllability gramian matrix (see [2]).

Definition 3.10 (Controllability matrix). Consider the system (3.2). Then the control-
lability matriz of the system is given by

M.=[B|AB|---| A" 'B]. (3.17)

Theorem 3.11. The system (3.2) is completely controllable if and only if its controllability
matriz is of full rank.

3.4.1 Examples
Example 3.12. Consider the system

x(t) = {02 01} x(t) + m u(t).

The system has the controllability matrix

M. = [B | AB],
where
=[S0 =)
Thus,
o[t o]

which is of rank 1. The system is not completely controllable.

Example 3.13. Consider another system, this time of order 3.

1 3 3
x(t)=11 0 0| x(t)+ [0f u(t).
010

We will first compute the matrices AB and A%B.

9



1 3 3] 1 1
AB=1{1 0 of o]l =11
0 1 of |0 0

1 3311 4
A’B=11 0 0of 1| =11
01 0[]0 1

Then the controllability matrix is given by

[y
[y

1
M, =[B| AB | A’B] = |0
0

and the determinant is
det(M,) =1

The matrix is of full rank, the system is completely controllable.

3.5 Observability

Very similar to the previous concept is the notion of observability. A system is completely
observable if any initial state x(ty) can be reconstructed by examining the system output
y(t) over a finite time interval (to,ts).

Definition 3.14 (Observability on an interval). Let ty,¢; € R such that ¢, < t;. We will
say that the system (3.2) is observable on (to,tr) if and only if the initial state x(¢y) can
be determined from the system output y(¢) over a finite time interval (o, tf) (see [5]).

Theorem 3.15. The system (3.1) is observable on (to,ts) if and only if the n x n observ-
ability gramian matrix given by

tf

Wiltoty) = [ @lty.7)C (1) OO (1. )i (3.18)
to

is invertible, where ®(ts,ty) is the system’s state transition matric.

Similarly to controllability, for the time-invariant system, we can define the observability
matrix.

Definition 3.16 (Observability matrix). Consider again the linear time-invariant system
(3.2). Then its observability matriz is given by

C
CA

: (3.19)
CAn—l

Theorem 3.17. The system (3.2) is completely observable if and only if its observability
matriz is of full rank (see [2]).

10



Theorem 3.18. If a system is uncontrollable or unobservable, it will have a pole-zero
cancellation in its transfer function. Conversely, any pole-zero cancellation in the system’s
transfer function implies either uncontrollabity or unobservability.

Remark. There is a strong connection between the observability and controllability matri-
ces. Namely, the observability test on the system (3.2) is equivalent to the controllability
test on a dual system with the state equation

x(t) = Ax(t) + CTu(t) (3.20)

3.5.1 Examples
Example 3.19. Consider the system
1 2 -2

0=y o <0+ 5]

y(t)=[1 0]x(t).

Its observability matrix can be calculated.
C 10
M, = {CA} - L 2} '

The determinant can be shown to be
det(M,) = 2.

Thus, the system is completely observable.

11



4 Basics of Fractional Calculus

Fractional calculus is a branch of mathematical analysis that deals with differentiation
operators and integration operators of arbitrary order. The idea of generalizing integer-
order derivatives and repeated integrals to real number orders is more than 300 years
old, and there are several possible ways of defining them that are in use (see [3] and [4]).
These definitions are usually named after their author and have distinct advantages and
disadvantages.

In this text, we will only consider the Riemann-Liouville differintegral and the Caputo
differintegral. However, before defining them, we will examine a couple of special func-
tions.

4.1 The Gamma Function

In calculus of integer order, the factorial function naturally arises in expressions for the
n-th derivative of a polynomial and the n-th integral.

%(t”) = n! (4.1)

1;;:/: /aw---/:f(f)dmﬁ...dfn_l _ ﬁ/t (t— )y f(F)dr (42)

Remark. The expression for the n-th integral above is called the Cauchy formula for
repeated integration.

The gamma function is an extension of the factorial function to complex numbers. For a
natural number n, the following holds.

['(n)=(n—1)! (4.3)
The next definition is taken from [3].

Definition 4.1 (The gamma function). Let z be a complex number with $(z) > 0. We
will call the convergent improper integral

[(z) := / t* e tdt (4.4)
0
the gamma function of z.
The gamma function also retains the recurrence relation

2(z) =T(z +1). (4.5)

This, in addition to I'(1) = 1 gives us the connection (4.3) to the factorial function.

4.2 The Mittag - Leffler Function

The exponential function e* plays a key role in the theory of integer-order differential
equations. For fractional differential equations, we will use its two-parameter generaliza-
tion (for more information, see [3]).
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Definition 4.2 (The two-parameter Mittag-Leffler function).

4.
;Falwrﬁ a>0, B>0 (4.6)

Remark. If B =1, we talk of the one-parameter Mittag-Leffler function denoted by

=y — (4.7)
prt I( ak +1)

From the definition (4.2), we can derive many useful relationships, such as

E(2) = Z ﬁ = Z Z—, =e” (4.8)

Bu(e) = £ (1.9
Ey1(2%) = cosh(z) (4.10)
Eys(2%) = sing(z) (4.11)

Remark. We can also - analogously to the matrix exponential mentioned in (2.6) - define
the matrix extension of the Mittag-Leffler function

e e}

ZF ak+5 (4.12)

k=0

This family of functions will see extensive use in the analysis of fractional order linear
systems.

4.3 The Riemann-Liouville Differintegral

This approach uses Cauchy’s formula for repeated integration (4.2) and generalizes it to
an arbitrary order by defining the Riemann-Liouville integral (definition taken from [4]).

Definition 4.3 (The Riemann-Liouville integral). Let a, b be real numbers, such that
a < b. Let a be a positive real number. Let f(¢) be integrable on (a,b) and t € (a,b).
We will call the expression

ITf(t): / f()(t — 1) dr (4.13)

the Riemann-Liouville integral of order «.

We will then define the Riemann-Liouville fractional derivative by using the above defined
Riemann-Liouville integral followingly.

13



Definition 4.4 (The Riemann-Liouville fractional derivative). Let a, b be real numbers,
such that a < b. Let a be a positive real number. Let f(¢) be integrable on (a,b) and

€ (a,b). Let also f(t) be at least [a]-times differentiable on (a,b), where the symbol
[a] denotes the ceiling function

[a] = min{z € Z|z > a}. (4.14)
We will call the expression

el dlel .
(1 0) = s [ - s

the Riemann-Liouville fractional derivative of order a.

D) =

We can then combine these definitions to obtain the Riemann-Liouville differintegral.

Definition 4.5 (The Riemann-Liouville differintegral). Let o, a, b be real numbers, such
that @ < b. Let f(t) be integrable on (a,b) and ¢ € (a,b). If a > 0, let also f(t) be at
least [a]-times differentiable on (a, b).

Igf(t) for a <0
D f(t) :== < f(t) for a =0 (4.16)
I‘(nl ) Cclltrri]] f f(r)(t —n)lel=e=1dr for a > 0

Remark. The symbol D¢ will stand for the Riemann-Liouville differintegral throughout
this thesis.

The properties of the Riemann-Liouville differintegral will be discussed later.

4.4 The Caputo Differintegral

An alternative definition of the fractional derivative was proposed by Caputo. Caputo’s
derivative has a clear advantage over the Riemann-Liouville derivative when it comes to
modelling fractional physical systems, in that the initial conditions of the system are of
integer orders and as such have known physical interpretations.

Definition 4.6 (The Caputo differintegral). Let «, a, b be real numbers, such that a < b.
Let f(t) be integrable on (a,b) and t € (a,b). If @ > 0, let also f(t) be at least [«]-times
differentiable on (a, b).

D f(t) for a <0

o 4.17
D (fel=a) [# (t)} for a > 0 (4.17)

‘D f(t) = {
dtlel

We can see that the two differintegrals are equal for o <= 0, i.e. the fractional integrals

are the same. However, the fractional derivatives differ. In Caputo’s approach, the

classical integer-order derivative is applied first, before the fractional integral, whereas in

the Riemann-Liouville approach, it is the other way around.
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If we assume stricter conditions for the order of the derivative a > 0, ¢ N, we can write
the fractional derivative in the form

“DUf(t) = ﬁ / (t— 7)[a1_a_1f([a])(7)d7. (4.18)

4.5 Properties of the Differintegrals

The differintegrals keep some of the properties of classical derivatives and integrals, or
generally have direct analogies to them. We can, for example, mention linearity, which is
satisfied by both of our differintegrals.

DZ (uf (1) +vy(t)) = uDg f (1) + vDgg(t) (4.19)

“Dg(uf(t) +vg(t)) = p“Dgf(t) + v Dgg(t) (4.20)

However, we will be more interested in the Laplace transforms of the differintegrals,
because we will need those to prove many of our theorems in the next chapter. This time,
the transform of our operators will produce different results (see [3] for more information
and proofs).

[a]—1

L{D; f(t)}(s) = s"F(s) = Y _ s"Dg™*"! f(a) (4.21)
fa] -1
LEDG ()} (s) = sF(s) = Y s* 7 fW(a) (4.22)
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5 Fractional Order Linear Time-Invariant Systems

Many physical and engineering phenomena can be efficiently described by fractional-order
dynamical systems. In this chapter, we will look at the fractional equivalents of the linear
time-invariant system (3.2) discussed previously. Such systems see use in the field of
control theory.

Definition 5.1 (The Caputo LTI system). Let o € (0,1). We will call the system

“Dix(t) = Ax(t) + Bu(t), x(0)=x,

y(t) = Cx(t) + Du(t), (5.1)

where the vectors x, u, y and the matrices A, B, C, D have the same dimensions as in
the system (3.2) the Caputo LTI system.

We can express x(t) similarly to (3.9) (see [6]). First, we will state two results which we
will not prove here.

Lemma 5.2. -
[s°T— A]7 =) AFlshe (5.2)
k=1

Lemma 5.3.

L) = a1 (5.3)

(v +1)

Theorem 5.4. Consider the system (5.1). Then the state vector x(t) at an arbitrary time
t > 0 s given by the equation

(t) = Eo(At")xy + /Ot (t —7)* ' Eq ol A(t — 7)%) Bu(r)dr. (5.4)

Proof. Let us take the Laplace transform of the state equation.

L{“Dix(t)}(s) = L{Ax(t) + Bu(t)}(s) (5.5)
Then by (4.22), we get

I(s%X(s) — 5°71x9) = AX(s) + BU(s) (5.6)

X(s) =[s"T— A]""- [BU(s) + s* x| . (5.7)

By using the lemma (5.2), we can rewrite this as

X(s) = [Z ARtghe

If we now take the inverse Laplace transform of the equation (5.8) above and use the
properties (2.3) and (2.5), we obtain

BU(s) +x0 »_ AFs7ho1, (5.8)
k=0

x(t) = L7

> Ak_ls_’m] )« L7HBU(s)}(t) + L7 {xo Y AFs7F1}(1).  (5.9)

k=1 k=0
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Now we use the lemma (5.3) to get

x(t) = ;AF_(TtZ)_ *[Bu(t)]%—x();%. (5.10)

Finally, if we recall the definition of the Mittag-Leffler function, we can write this as
x(t) = [t* " Eqo(At*)] * [Bu(t)] + xo B (AL®). (5.11)

By rearranging, we get the final formula.
t
x(t) = Eo(AtY)xg + / (t — 7)* ' Eqo(A(t — 7)*)Bu(r)dr (5.12)
0

O

Similarly, we can define the linear-time invariant system with the Riemann-Liouville dif-
ferintegral. Note that the initial condition is given by a fractional derivative.

Definition 5.5 (The Riemann-Liouville LTT system). Let a € (0,1). We will call the
system
Dyx(t) = Ax(t) + Bu(t), D 'x(0) = xg

y(t) = Cx(t) + Du(t), (5.13)

Theorem 5.6. Consider the system (5.5). Then the state vector x(t) at an arbitrary time
t > 0 s given by the equation

2(t) = 1t Eg o At) @y + /t (t — 1) ' Eqo(A(t — 7)%) Bu(r)dr (5.14)

Remark. The proof of this theorem is virtually identical to the theorem (5.4) for the
Caputo LTT system.

Now we can move on towards examining the notions of stability, controllability and ob-
servability of fractional-order systems.

5.1 Stability

In this section, we will establish the conditions for asymptotic stability and BIBO stability
for fractional-order linear time-invariant systems.

5.1.1 Asymptotic Stability

First, we will state an important lemma that will help us prove the theorem explaining
the conditions for stability. The lemma is stated and proved in [3].

Lemma 5.7. Let o € (0,1) and B an arbitrary real number. Let z be a complex number
such that %+ < |arg(z)| < m. Then for an arbitrary integer p > 1, the following asymptotic
expansion is valid as |z| — 0.

P —k

EQA(Z) = —;m—*—O“Z’rl_p) (515)
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Now we can move forward and state the theorem for the Riemann-Liouville LTT system.
The theorem is taken from [§]

Theorem 5.8. The system (5.5) is asymptotically stable if and only if

larg(n(A))| > % Vi=1,...,n, (5.16)

where \; is the it eigenvalue of A.

Proof. As the stability of the system does not depend on the input vector u(t), we can,
without loss of generality, set u(t) = 0. By (5.6), we can then express the state vector as

x(t) = xot* ' Eg o At®). (5.17)

Let us suppose that the matrix A is diagonalizable. This implies that it can be written
as
A =TAT!, (5.18)

where A is the diagonal matrix of eigenvalues of A
A =diag [\, ..., \]. (5.19)

Remark. This is not necessarily true, but the idea of the proof is the same as in the
general case, where we instead decompose A into TJT ™! with J being the unique Jordan
canonical form of A. The general proof involves more tedious calculations and will be
omitted.

Then
Eoo(At?) = TE, (M) T = Tdiag [Eqo(MtY), ..., Eqo(Mt®)] T (5.20)

Now if we consider our assumption

T

larg(Ni(A))| > - Vi=1,...,n, (5.21)
we see that we can use the lemma (5.7).
Eqo(Nit®) = Zp: (Aut?)” + O (A7) (5.22)
k=1 C
This expression approaches 0 as t — oo for all @ = 1,...,n. Because the matrix norm

induced by the L, vector norm is given by the largest singular value of the matrix and
singular values are square roots of eigenvalues, we can deduce that

0= lim Fyo(A\tY) = lim [|[Eqo(AtY)] = lim || Eso(AtY)|| = lim E, o(AY).  (5.23)
t—00 t—00 t—00 t—00
Now going back to our expression for x(¢) (5.17), we can see that
lim x(t) = lim xot* ' E,o(At*) =0 (5.24)
t—00 t—00

and the proof is done. O
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Remark. Observe that by choosing a = 1, this also proves the theorem (3.2) for integer-
order systems.

Remark. Unlike in integer-order systems where the state x(t) decays to 0 at an exponential
rate, in the fractional case, it decays algebraically at the rate of t~¢.

For the Caputo system (5.1), the condition for asymptotic stability is the same. The
expression for x(t)

x(t) = E,(AtY)xg (5.25)
used in the proof is different, but it has no bearing on the validity of the proof, as the
lemma (5.7) still holds.

5.1.2 BIBO Stability

We will keep our usual definition of BIBO stability (3.15). Before we articulate the
condition for BIBO stability, we will derive the transfer function of the Caputo system
(5.1). However, because the transfer function of a system is obtained by taking the Laplace
transform of its equations with zero initial conditions and the Laplace transforms of the
Riemann-Liouville differintegral (4.21) and the Caputo differintegral (4.22) differ only in
their treatment of the initial condition, the transfer function of the Riemann-Liouville
system (5.5) is the same.

Now, when we were proving the theorem (5.4), we took the Laplace transform of the state
equation and arrived at the equation (5.7)

X(s) =[s“I— A]""- [BU(s) + 5% 'x0] . (5.26)

To reiterate, the transfer function is derived for the case xog = 0. The equation (5.26)
then simplifies into

X(s) = [s*T— A" - [BU(s)] . (5.27)
The Laplace transform of the output equation is
Y(s) = CX(s) + DU(s). (5.28)
When we substitute (5.27) into the output equation, we obtain
Y(s) = C[s*T— A]"" - [BU(s)] + DU(s). (5.29)
The transfer function is defined as
T(s) = 58 (5.30)
and so we reach the conclusion
T(s) = C[s°I - A] 'B+D. (5.31)

Theorem 5.9. Let \; be the i'" pole of the transfer function T(s). Then the systems
(5.1) and (5.5) are stable in the BIBO sense if and only if

larg(Mi(A))| > % Vi=1,...,n. (5.32)

The theorem is taken from [1].
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Remark. Just like in the integer-order case, asymptotic stability implies BIBO stability,
but the reverse implication is only true if no pole-zero cancellations occured in obtaining
the transfer function.

5.2 Controllability

In studying controllability and observability, we will only do so for the case of the Caputo
differintegral. The reason for this is that in the Riemann-Liouville case, we cannot keep
our usual definitions of controllability and observability, because the initial conditions
are given for a fractional derivative of order v — 1 which do not have a known physical
interpretation.

To reiterate, for the Caputo system (5.1), we can keep the definition of controllability
introduced previously.

First, we will show that for a system to be controllable on (¢y,t;), we only have to
demonstrate that for every state x;, some input u(t) steers 0 to x; in the time interval

(to, ty)-
Lemma 5.10. The system (5.1) is controllable on (to,ts) < Vay € R™ Ju(t) € L*({to, t;) ,R™) :
u(t) steers 0 to x; on (to,ty).

Proof. The left implication is obviously true from the definition, because if the system
is controllable, then every x, is steered to every x; by some u(t). We can then choose
X = 0 and the first part of the proof is done.

Now let us prove the right implication. Let x, x; € R". Next, we choose an arbitrary x,

and define x
)~Cf =Xf— EQ(A(tf - to)a)Xo. (533)

We assume that there exists u(t) that steers 0 to X; on (fo,ts). Then by (5.4), we can
express Xy as

%, — /t "t = 1) By o (A(t — 7)) Bu(r)dr (5.34)

Next, we substitute for x;.
tf
x; = Ea(Alty — to))x0 + / (ty — 1) Eua(Alt; — 1)) Bu(r)dr  (5.35)
to
And again, from (5.4) we know that this is the expression for x(¢s) if x(to) = xo.
Xf = X(tf). (536)
The system is controllable on (to,tr). O

Next, we will state the necessary condition for the system (5.1) to be controllable. The
theorem and the main ideas of the proof are taken from [6].

Theorem 5.11. The system (5.1) is controllable on (to,ty) if and only if the n x n

controllability gramian matrix given by

W.(to, tf) = / "t = 1) Bun(Alty — 7)) BB By o(AT(t; — ) dr  (5.37)

to

1s invertible.
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Proof. Let us start with the right implication. Because the gramian matrix is invertible,
we can choose the input vector to be

u(t) = BT B, o (AT (t; — )" )W (to, t) [xy — EalA(ty — t0)*)Xo] - (5.38)
By (5.4), we can express x(ts) as

x(ty) = Ea(Alty ~ )30+ [ (ty = 1) EoaAlty - 1)7)BB"

to

X B o AT (ty =))W (to, 1) [x7 — Ea(Alty — to)*)x0] dr (5.39)

The term W, ' (to,tf) [x; — Ea(A(t; —t9)*)xo| inside the integral does not depend on
7, which means that we can pull it out and obtain

X(ty) = Ea(A(ty —to)*)%o + Wolto, tr) W (fo, t5) [xp — Ea(A(ty —to)*)x0]  (5.40)

Here we see that W (to, ;)W ' (to,t;) is by definition equal to I and the terms
Eo(A(ty —ty)*)xo cancel each other out. We finally arrive to the conclusion

x(ty) = x;. (5.41)

Hence, the system is controllable.

We will prove the left implication by contradiction. We will assume that the system is
controllable, but the gramian matrix is not invertible.

If the gramian matrix is not invertible, then there exists a nonzero x with the property

W x = 0. (5.42)

Now, if we substitute the matrix into this equation, we obtain

X' { / f (tr = 7)° " Bau(A(ty — 7)) BBTE,o(AT(t; — 7)%)dr | % = 0, (5.43)

to
which is the same as
ly
/ (tr — 7)) 'K By o(Aty — 7)) BBTE, o (AT (t; — 7)*)%dT = 0. (5.44)
to

Now we use the fact that when taking a transpose of multiplied matrices, their order
reverses and we can rewrite the equation (5.44) in the form

/ ! (ty = 7)* " [X Eao(Alty — 7)*)B] [XT Eau(Alty — r)a)B}T dr = 0. (5.45)

to

Let us define
U=x"E,.(A(t; —7)")B. (5.46)

The equation (5.45) becomes
tf
/ (t; — 1) WUl dr = 0. (5.47)
to
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Since W is a matrix of dimensions 1 x r, the factor W7 is simply the squared Ly-norm
of U.

/tf (t; — 7)1 |2 dr = 0. (5.48)
to
The integrand is greater or equal to zero for all 7 € (¢, t;), which implies that
U=x"E,.(A(t; —7)*)B=0 V7€ (tot;). (5.49)
Now we can choose
xo = [Ea(Alty = t0)")] " x. (5.50)

Our assumption is that the system is controllable, which means that there exists a control
u(t) that steers xo to 0.

ty
x(t}) = 0 = En(Alt) — to)")x0 + / (t; — ) Ean(Alt; — 7)) Bu(r)dr  (5.51)
to
Left-multiplying the above equation (5.51) by %X, we obtain
ty
x'x + / (t; — 1) X Eqpo(A(ty — 7)*)Bu(r)dr = 0. (5.52)
to

However, the term x” E, ,(A(t; — 7)*)B inside the integral is known to be zero, and thus
x'x = 0. (5.53)
This is only true for x = 0, which is a contradiction with our assumption that x is nonzero.

The negation of the implication is false and so the proof is done. O

However, as is the case in integer-order systems, there exists an easier method of deter-
mining controllability (see [7]).

Theorem 5.12. The system (5.1) is completely controllable if and only if its controllability

matrizc
M,=[B| AB|---| A" 'B] (5.54)

1s of full rank.

Proof. By (5.4), we can express the state vector x(t) as
t
x(t) = Ea(At?)xo + / (t —7)* Ena(A(t — 7)")Bu(r)dr. (5.55)
0

Thanks to the corollary (2.6) of the Cayley-Hamilton theorem, we know that

00 tka—i—a 1

n—1
1 B, o (ALY) FhaTaA = > an(t)AR. (5.56)
=0 k=0

If we substite this into the expression for x(t) (5.55), we obtain

x(t) — B, (At*)x ZAk / colt — T)u(r)dr. (5.57)
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This can be interpreted as meaning that the state vector x(t) is a linear combination of
the vectors A"B. We can rewrite the sum as the multiplication

do(t)
[B|AB|---| A"'B] dlft) : (5.58)
dua(t)
where dj(t fo ce(t — T)u(r)dr. If the rank of the matrix [B | AB |---| A" 'B] is less

than n, then the column space of the matrix - which is the same as all linear combinations
of AkB - does not include all possible states x(t) and the system is uncontrollable. If the

rank is equal to n, the column space is R™! and the system is controllable.
O

5.3 Observability

In the case of the Caputo system (5.1), we can use the definition of observability mentioned
in the third chapter. The necessary condition for observability is very similar to that of
controllability (see [6]).

Theorem 5.13. The system (5.1) is observable on (to,tr) if and only if the n x n observ-
ability gramian matrix given by

W, = / AT (7 — 10)%) CF CEL(A(T — to)*)dr (5.59)

1s invertible.

Proof. Since observability does not in any way depend on the input u(t), we can without
loss of generality set u(t) = 0. Then by (5.4), we can express the state vector at time t as

x(t) = Eo(A(t — t9)")xo. (5.60)
From the output equation, we then obtain
y(t) = CEa(A(t —10)")%o. (5.61)
Now if we left-multiply (5.61) by F.(AT(t —t5)*)C” and integrate from t, to ts, we get
/ " Bu(AT (7 — 1)) CTy(r)dr = / " Bu(AT (7 — 1)) CT CEL(A(r — t0)"Jxodr = Wi,
’ ’ (5.62)
W, is invertible and xg is uniquely determined to be

xg =W, / AT (T — 1)) Cly(r)dr (5.63)

If on the other hand the gramian matrix is not invertible, then there exists a nonzero x
such that W, x = 0. However, if we then choose X = x; + X, we can see that it also
satisfies the equation

ty
/ Ea(AT(r — 1)) CTy(r)dr = Wk = W, [x0 + %] = Woxo.  (5.64)

to
Two different vectors satisfy the equation (5.64) and thus the initial state cannot be
uniquely retrieved from the output. O
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Nonetheless, there again exists a simpler condition (see [7]).

Theorem 5.14. The system (5.1) is completely observable if and only if its observability
matriz

C

CA
M,=| (5.65)

cA™!
s of full rank.

Proof. Without loss of generality, we set u(t) = 0. By (5.4), we can write
y(t) = CEL(A(t — to)")Xo. (5.66)

We use the corollary (2.6) of the Cayley-Hamilton theorem and rewrite this in the form

0 tka i n—1 .
y(t) =C kzzg mA Xg = C kzzg A dk(t)Xo. (567)
This is the same as
C
CA
y(t) =[do(),....dua(®)] | . | X0 (5.68)
CA™!

If the observability matrix is of full rank, it is invertible and we can express x, as a
function of y(t). The system is observable. If the condition is not met, then the system
is not observable. O

We can see that the Caputo system (5.1)’s conditions for controllability are identical to
those of the integer-order system (3.2).
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6 Conclusions

In the first part of the thesis, we defined the problems of determining stability, control-
lability, and observability of integer-order linear time-invariant systems. We then stated
the theorems that assert the conditions that need to be met for a system to be stable,
controllable, or observable, and listed a couple of examples.

In the second part, we proceeded to define the Riemann-Liouville and Caputo differin-
tegrals and examined some of their properties and differences. After that, we defined
the corresponding fractional-order linear time-invariant systems of order 0 < o« < 1 and
analysed their stability, controllability, and observability. Here, most of the theorems are
accompanied with detailed proofs.

The thesis should mainly serve as an introduction to fractional-order control and a sum-
mary of the most important results. It could be followed upon by looking at different
kinds of systems, e.g. linear systems with time delay or nonlinear systems. Another inter-
esting direction of development could be trying to find reasonable alternative definitions
of controllability and observability for the Riemann-Liouville system.
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