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1 INTRODUCTION

Recently, the proliferation of electronic systems and devices has led to an exponential increase in
the amount of digital information being generated and exchanged. While this trend has opened up
new opportunities for communication, commerce, and social interaction, it has also raised significant
concerns about privacy and digital identity protection. Cryptography, the science of secure communi-
cation, has emerged as a crucial tool for addressing these concerns, offering techniques to encode and
decode information in ways that can only be accessed by authorized parties.

However, traditional cryptographic methods are not always suitable for the complex and dynamic
environments of modern electronic systems, particularly in the case of wearable devices. These de-
vices, which are often resource-constrained and operate in uncontrolled environments, pose significant
challenges for cryptographic protocols, such as the need to maintain user authenticity and prevent
unauthorized access. To address these challenges, researchers are developing novel cryptographic
technologies that provide attribute-based authentication, enabling more granular control over access
to digital information based on user characteristics.

1.1 Thesis motivation

In safeguarding user identity, cryptographic algorithms are pivotal for ensuring the security and privacy
of sensitive information, offering properties like confidentiality, integrity, and authenticity. However,
in heterogeneous networks such as the Internet of Things (IoT), implementing standard cryptographic
algorithms becomes challenging due to limited computational resources in devices. Asymmetric ciphers
such as Rivest-Shamir-Adleman (RSA), Digital Signature Algorithm (DSA), or Diffie-Hellman (DH)
may not be supported by Central Processing Units (CPUs) and microcontrollers, and implementing
them in software may be difficult due to a lack of computational power. Fortunately, advanced
cryptographic schemes like Attribute-based Credentials (ABCs) [1, 2, 3], known for their efficient and
lightweight design, prove valuable in protecting user privacy on resource-constrained devices.

Attribute-based Credentials redefine authentication by using attributes, such as legal age or cit-
izenship, instead of traditional credentials, empowering users to selectively disclose information for
specific transactions. Compared to traditional authentication systems, ABCs [4, 5, 6] present notable
advantages in addressing identity theft, data breaches, and privacy concerns, finding applications in
finance and education. Their implementation on devices like smart cards was impractical until very
recently, according to [7, 8, 3, 9], while efficient large-scale revocation remains a challenge. Given the
widespread use of smart cards in critical domains, the development of privacy-enhancing technologies
becomes crucial for securing user identities in the digital age.

As the IoT and industrial networks expand, with wearable devices gaining increased power, ensur-
ing security and privacy in real-world applications becomes paramount. This is particularly crucial
in applications like the Collaborative Indoor Positioning System (CIPS), which presently jeopardizes
user security and privacy. CIPSs rely sensors and devices for locating individuals and objects within
indoor environments through inter-user communication. However, these systems confront significant
challenges such as user tracking, unauthorized access to location data, and data manipulation. Addi-
tionally, there are inherent risks of malicious attacks like spoofing or jamming [10]. Ensuring stringent
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security measures, spanning from data collection to processing, is imperative to fortify the integrity
of data and protect user identities within CIPSs. Inaccurate or corrupted location data can have se-
rious consequences, especially in safety-critical applications such as emergency response or industrial
settings. The prospective integration of ABCs in CIPSs holds the promise of elevating privacy and
security. The development of cryptographic protocols, encompassing user authentication and confi-
dentiality measures, is essential to instill confidence in CIPSs, positioning them as invaluable tools for
multi-user collaboration. This approach adeptly addresses security and privacy concerns, unlocking
the full potential of CIPSs while diligently safeguarding sensitive data and user identities.

1.2 Research questions and objectives

The advancement of wearable technology has unlocked novel opportunities for user authentication
and access control in various applications. However, guaranteeing the privacy and security of user
identities in such dynamic and resource-constrained environments poses considerable challenges. To
enhance the comprehension of attribute-based anonymous credential schemes and their application in
wearable environments, this thesis endeavors to explore these research questions:

• How can anonymous credential schemes be adapted to support user revocation while maintaining
privacy?

• What strategies can be employed to enable attribute-based authentication protocols on smart cards
with limited support for elliptic curve cryptography?

• What are the usability challenges associated with using anonymous credentials in various appli-
cations, and how can they be addressed?

• How can anonymous credential schemes be integrated into collaborative indoor positioning sys-
tems to enhance privacy and security?

• How can anonymous credential schemes be implemented in resource-constrained environments,
such as IoT devices?

• Are attribute-based authentication schemes suitable for ensuring user authenticity in dynamic
wearable architectures?

This thesis aims to contribute valuable insights into the effectiveness and scalability of attribute-
based anonymous credential schemes in ensuring user authenticity and security in dynamic wearable
architectures. The thesis focuses on addressing research questions and aims to design novel crypto-
graphic algorithms that efficiently protect user privacy and digital identity in electronic systems. To
attain this goal, the study tackles challenges such as inefficient revocation of invalid users, missing
identification of malicious users, and performance limitations on constrained devices like wearables.
The developed algorithms undergo testing and benchmarking on existing wearable hardware devices,
including smart cards, smartwatches, and smartphones.
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1.3 Contribution

This dissertation presents the following contributions:

• The Revocable Keyed-Verification Anonymous Credential (RKVAC) protocol, which allows for
user authentication using anonymous credentials and supports efficient revocation, even on
resource-constrained devices like smart cards.

• The implementation of the Keyed-Verification Anonymous Credential (KVAC) and RKVAC pro-
tocols for smart cards, leveraging Java Card technology. This involves exploiting the restricted
cryptographic Application Programming Interface (API) of the Java Card platform and applying
various optimization and acceleration techniques to further reduce execution times.

• The introduction of the Privacy-Enhancing Authentication System (PEAS) to assess the po-
tential of ABC schemes for real-world applications, evaluating their maturity and readiness for
deployment.

• The development of a novel decentralized privacy-preserving authentication mechanism for CIPS,
offering several key benefits, including anonymized location data sharing, decentralized authen-
tication, and offline revocation.
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2 REVOCABLE ATTRIBUTE-BASED CREDENTIALS ON SMART
CARDS

The practical identification and revocation of misbehaving users are crucial components of ABC
schemes. Unfortunately, the cryptographic protocols employed for verifying personal attributes and
revoking invalid users have been developed independently, resulting in considerable difficulties with
their integration. Despite the existence of efficient attribute verification [9] and generic ABC revoca-
tion schemes [3], the intricate nature of these protocols poses significant complexity challenges to their
combination. This chapter presents the RKVAC protocol as a solution to the challenge of integrat-
ing cryptographic protocols for attribute verification and revocation while preserving computational
feasibility for smart cards.

2.1 Cryptographic scheme

In this section, we aim to provide a comprehensive yet accessible overview of the key entities shaping
the RKVAC protocol design. Additionally, we offer a high-level exploration of the Show and Verify
algorithms. These algorithms are central to the protocol, playing a crucial role in enabling secure and
privacy-preserving information exchange.

To improve the clarity and legibility of this chapter, we included a table of all the symbols used
in our cryptographic protocol. Table 2.1 defines each symbol and its associated meaning, enabling a
thorough comprehension of the protocol’s components.

Tab. 2.1: Table of symbols

Symbol Definition

𝑞,G1,G2,G𝑇 , e, 𝑔1, 𝑔2 parameters for the selected pairing-friendly elliptic curve.
𝑗, 𝛼1, . . . , 𝛼𝑗 , ℎ1, . . . , ℎ𝑗 parameters for the revocation authority.
𝑘, 𝑒1, . . . , 𝑒𝑘, 𝜎𝑒1 , . . . , 𝜎𝑒𝑘 user randomizers, and signed randomizers.

𝑅𝐿,𝑅𝐻,𝑅𝐷 revocation list, list of revocation handlers, and revocation database.
𝑚𝐼𝐷,𝑚𝑟 user identifier and attribute for revocation.
𝑚1, . . . ,𝑚𝑛 attributes with the user’s information.
𝑠𝑘𝑅𝐴, 𝑝𝑘𝑅𝐴 key pair of the revocation authority (private and public keys).

𝜎𝑅𝐴 signature of the revocation authority.
𝑠𝑘𝐼 , 𝑠𝑘𝑉 private keys of the issuer and verifier (identical keys).

𝜎, 𝜎𝑥1 , . . . , 𝜎𝑛, 𝜎𝑥𝑟 cryptographic credential issued to the user.
�̂�, �̂�𝑒𝐼 , �̂�𝑒𝐼𝐼 , �̄�𝑒𝐼 , �̄�𝑒𝐼𝐼 cryptographic credential randomized by the user.

𝒟 keys to the attributes to be disclosed.
𝜌 random number used to randomize the cryptographic credential.

𝜌𝑣, 𝜌𝑖, 𝜌𝑚𝑟 , 𝜌𝑚𝑧 /∈𝒟 , 𝜌𝑒𝐼 , 𝜌𝑒𝐼𝐼

random numbers used to compute the protocol commitments and re-
sponses.

𝑡𝑣𝑒𝑟𝑖𝑓𝑦, 𝑡𝑟𝑒𝑣𝑜𝑘𝑒, 𝑡𝑠𝑖𝑔, 𝑡𝑠𝑖𝑔𝐼 , 𝑡𝑠𝑖𝑔𝐼𝐼 cryptographic commitments computed by the user.
𝑒 challenge used in the cryptographic protocol.

𝑠𝑚𝑧 /∈𝒟 , 𝑠𝑣, 𝑠𝑚𝑟 , 𝑠𝑖, 𝑠𝑒𝐼 , 𝑠𝑒𝐼𝐼 responses obtained during the execution of the cryptographic protocol.
𝑖 unique per-session value.
𝐶 unique one-time pseudonym.
𝜓 alias of �̂�, �̂�𝑒𝐼 , �̂�𝑒𝐼𝐼 , �̄�𝑒𝐼 , �̄�𝑒𝐼𝐼 .
𝜋 alias of 𝑒, 𝑠𝑚𝑧 /∈𝒟 , 𝑠𝑣, 𝑠𝑚𝑟 , 𝑠𝑖, 𝑠𝑒𝐼 , 𝑠𝑒𝐼𝐼 .

𝑡′𝑣𝑒𝑟𝑖𝑓𝑦, 𝑡
′
𝑟𝑒𝑣𝑜𝑘𝑒, 𝑡

′
𝑠𝑖𝑔, 𝑡

′
𝑠𝑖𝑔𝐼 , 𝑡

′
𝑠𝑖𝑔𝐼𝐼 cryptographic commitments reconstructed by the verifier.
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The RKVAC protocol operates within a precisely defined system model consisting of several entities
with distinct roles and responsibilities. To facilitate a more comprehensive understanding of the
protocol’s mechanisms, we hereby expound upon the entities involved in the system model depicted
in Figure 2.1:

• Revocation Authority: assigns and issues a unique revocation handler to each user during the
IssueRA phase. This attribute enables the revocation authority to revoke users when necessary.

• Issuer : assigns and emits personal attributes to users in a cryptographic credential, digitally
signing them to ensure their authenticity and integrity. This process is carried out using the
IssueI algorithm.

• User : acquires the cryptographic credential containing the personal attributes and leverages the
Show algorithm to anonymously prove the possession of necessary attributes to the verifier. The
user must provide evidence of the pseudonym’s non-revocation status, validating its legitimacy
for secure communication within the system.

• Verifier : validates the possession of the necessary attributes and the revocation status of the
revocation handler through the use of the Verify algorithm. By confirming the validity of
the attributes and the revocation status, the verifier can grant or deny access to the requested
service, maintaining the security and privacy of the system.

Show <-> Verify

IssueI

IssueRA

User Verifier

Revocation Authority

Issuer Revoked (?)

Fig. 2.1: Entities and algorithms constituting the RKVAC protocol

The flowcharts depicted in Figure 2.2 provide a high-level description of the Show and Verify
algorithms and are a valuable resource for gaining a thorough understanding of the protocols, their
underlying mechanisms, and the succession of steps involved in their execution. By illustrating the
key components of each algorithm and their interrelationships, the flowcharts enable readers to rapidly
comprehend the fundamental concepts of our cryptographic protocol.
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Start

Input
𝑛𝑜𝑛𝑐𝑒, 𝑒𝑝𝑜𝑐ℎ, 𝒟

Generate the pseudonym
𝐶

Randomize the credential
�̂�, �̂�𝑒𝐼 , �̂�𝑒𝐼𝐼 , �̄�𝑒𝐼 , �̄�𝑒𝐼𝐼

Construct the commitments
𝑡𝑣𝑒𝑟𝑖𝑓𝑦 , 𝑡𝑟𝑒𝑣𝑜𝑘𝑒, 𝑡𝑠𝑖𝑔 , 𝑡𝑠𝑖𝑔𝐼 , 𝑡𝑠𝑖𝑔𝐼𝐼

Determine the challenge
𝑒 = ℋ(. . . )

Calculate the responses
𝑠𝑚𝑧 /∈𝒟 , 𝑠𝑣 , 𝑠𝑚𝑟 , 𝑠𝑖, 𝑠𝑒𝐼 , 𝑠𝑒𝐼𝐼

Output
𝐶, 𝜓, 𝜋, 𝑚𝑧∈𝒟

Stop

(a) High-level Show algorithm

Start

Input
𝐶, 𝜓, 𝜋, 𝑚𝑧∈𝒟

Reconstruct the commitments
𝑡′𝑣𝑒𝑟𝑖𝑓𝑦 , 𝑡′𝑟𝑒𝑣𝑜𝑘𝑒, 𝑡′𝑠𝑖𝑔 , 𝑡′𝑠𝑖𝑔𝐼 , 𝑡′𝑠𝑖𝑔𝐼𝐼

Verify the challenge
𝑒

?= ℋ(. . . )

Compute the pairings
e(�̄�𝑒𝐼 , 𝑔2) ?= e(�̂�𝑒𝐼 , 𝑝𝑘𝑅𝐴)

e(�̄�𝑒𝐼𝐼 , 𝑔2) ?= e(�̂�𝑒𝐼𝐼 , 𝑝𝑘𝑅𝐴)

Check revocation status
𝐶 /∈ 𝑅𝐿

Output
𝑎𝑐𝑐𝑒𝑝𝑡 or 𝑟𝑒𝑗𝑒𝑐𝑡

Stop

(b) High-level Verify algorithm

Fig. 2.2: High-level definition of the Show and Verify algorithms

2.2 Implementation details

In this cryptographic protocol implementation, the system is divided into two distinct parts: the
desktop application and the smart card application. The desktop application acts as the revocation
authority, issuer, and verifier, while the smart card application represents the user.

The protocol was designed and implemented using elliptic curve cryptography. Specifically, for
the desktop application, we utilized the Barreto-Naehrig 254-bit (BN254) curve supplied by the mcl
library [11]. Moreover, we used the OpenSSL library [12] for the hash functions required by the protocol.
In contrast, to design the elliptic curve functions for the smart card application, we employed the
MULTOS assembly provided by the SmartDeck Software Development Kit (SDK) [13, 14, 15, 16].
The MULTOS assembly reference [15] was utilized to construct essential functionalities like modular
addition, subtraction, multiplication, elliptic curve addition, elliptic curve scalar multiplication, and
other pertinent functions. Through this SDK, the smart card application can proficiently execute
the required cryptographic computations while ensuring high-level security. By harnessing industry-
standard libraries and SDKs, the system can conduct the essential cryptographic computations with
high accuracy and dependability.

8



2.3 Experimental results

To ascertain the practicality and assess the efficiency and speed of the algorithms, we conducted a
series of experiments, with a focus on benchmarking the Show algorithm. Figure 2.3 presents the
results of these experiments, showcasing the benchmarks in milliseconds and accounting for protocol
run times and communication overhead.
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Fig. 2.3: Speed comparison of the Show algorithm and the transmission overhead

The graphical representations illustrate the runtime of the Show algorithm across a range of 2 to
5 attributes. It is worth noting that the revocation attribute remains hidden at all times; therefore,
the maximum number of attributes that can be disclosed is 𝑛 − 1. Consistency in runtime is observed
when all attributes are disclosed; however, for each undisclosed attribute, the proof generation time
increases by approximately 150 milliseconds due to additional cryptographic operations. Credentials
with a higher number of attributes exhibit longer computation times. The swiftest Show algorithm
execution records at 1,322 milliseconds, expanding to around 2 seconds when factoring in communica-
tion overhead. Conversely, the slowest execution time demonstrates a linear growth pattern with an
increasing number of attributes. Communication overhead for all transmissions amounts to approxi-
mately 700 milliseconds. Since the T=0 protocol is used, it is not feasible to reduce communication
time. Owing to their microsecond-scale execution on a Raspberry Pi 4 Model B, Verify algorithm
benchmarks are omitted from the analysis.
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3 BOOSTING REVOCABLE ATTRIBUTE-BASED CREDENTIALS
ON JAVA CARDS

In the previous chapter, we introduced an ABC scheme for smart cards and demonstrated its per-
formance on MULTOS-based smart cards. While these cards offer numerous benefits, they are less
accessible to the general consumer. Additionally, support for cryptographic operations on elliptic
curves is typically only available upon request. In contrast, Java Cards are more widely available.
Unfortunately, their support for elliptic curve cryptography is severely limited. This chapter outlines
strategies for optimizing the coprocessor’s capabilities to enable ABC schemes on Java Cards.

3.1 Java Card technology

In this section, we present a comprehensive overview of the Java Card technology, its usability for the
development of security applications, and its cryptographic support.

Java Card technology is a subset of the Java programming language that is specifically designed for
use in small, resource-constrained devices such as smart cards. It enables the secure execution of Java-
based applets on these devices. Java Card achieves great interoperability and platform independence
by combining the Java Card Virtual Machine (JCVM) and standard libraries with a well-defined and
documented API. This allows the same applet to run on different smart cards while maintaining
the highest certification levels and standard compliance, and permits applets to be developed on
one platform and deployed on another with minimal modification. The JCVM is a highly optimized
runtime environment that is designed to run on resource-constrained devices. It includes a set of core
Java classes, such as the Object class, as well as Java card-specific classes that provide access to the
smart card’s hardware resources.

Java Card Applets are small programs that run on the JCVM and provide specific functionality to
the smart card. They are written in Java and are compiled into bytecode that is compatible with the
JCVM. Applets are loaded onto the smart card and can be updated or deleted as needed. They are
state machines that respond to commands received via the reader device by transmitting and receiving
status codes and data.

One of the key features of Java Card technology is its security architecture. Java Card applets are
executed within a secure sandbox environment that isolates them from the rest of the smart card’s
operating system and other applets. This provides a high degree of security and prevents unauthorized
access to sensitive data or functions. In addition to its security features, Java Card technology provides
several benefits for smart card developers. Because it is based on the Java programming language, it
is easy to learn and use and provides a familiar development environment for Java developers.

Java Card technology is used in applications such as secure access control systems, electronic
payment systems, and public transportation systems. These applications rely on the security, interop-
erability, and platform independence of Java Card technology to provide secure and reliable services
to users.
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3.1.1 Cryptographic support

The Java Card API provides extensive support for a multitude of standard cryptographic algorithms,
including symmetric encryption protocols, public-key cryptosystems, and message digest algorithms.
One particularly notable feature of the Java Card API is its support for elliptic curve cryptography,
which has gained increasing attention as a viable alternative to conventional public-key cryptography
algorithms.

Elliptic Curve Cryptography (ECC) is based on the mathematical theory of elliptic curves and
is known for its superior security characteristics compared to traditional public-key cryptosystems.
Regrettably, the Java Card API lacks built-in support for essential elliptic curve primitives, including
point addition, scalar point multiplication, and modular arithmetic, among other crucial algebraic
operations necessary for ECC implementation.

It is worth noting that the Java Card API provides only partial access to the underlying algebraic
operations required for cryptographic algorithms. As a result, it is impractical to construct efficient
non-standard ECC applications using Java Card. Consequently, the current level of elliptic curve
operations support provided by the Java Card API is inadequate for implementing non-standard
cryptographic applications that require the use of ECC, such as attribute-based credential schemes.

3.2 Implementation details

This section discusses the application’s design, the implementation of modular and elliptic curve
operations, and the optimization techniques for KVAC and RKVAC to enhance their performance.

First and foremost, we used JCAlgTest [17], an automated testing tool, to determine the crypto-
graphic algorithms supported by Java-based smart cards. Based on these results and considering the
algorithms we need for the implementation of KVAC and RKVAC schemes, we chose the Java Card
J3H145. One of the key advantages of this card is the combination of accessible data memory and
support for the required cryptographic algorithms. On the other hand, its reduced Random Access
Memory (RAM) capacity makes it impossible to run the whole protocol on it. This slows down the
computation and, therefore, the execution time.

3.2.1 Application design

We built the Java Card application using the Model-View-Controller (MVC) design paradigm. This
approach allowed us to partition the code into three main components: models for data storage,
views for Application Protocol Data Unit (APDU) messages, and controllers for program logic. The
application’s models are crucial for processing and storing application data. To represent the system
entities, the program uses three core models: the revocation authority, the issuer, and the user.
Additionally, three auxiliary models separate the user data during the computation of the proof of
knowledge. Controllers direct the application logic and serve as a bridge between views and models.
Each core model has its own controller, with the user’s controller also managing their auxiliary models.
The application has only one view, which is the main class that drives the applet. This is due to the
smart card’s lack of a graphical interface, and thus, the transmission and reception of data through
APDU messages are considered views.
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In addition to the MVC components, we developed auxiliary code to enhance Java Card function-
ality. This code is divided into three parts: (i) arithmetic operations; (ii) memory management; and
(iii) utility classes. The arithmetic operations group comprises classes that implement modular and
elliptic curve operations. We designed a class to provide domain parameters for BN254 curves [18],
which are not officially supported by the Java Card API. We also defined data types to represent
elliptic curve information and implemented arithmetic functions to utilize the coprocessor as much
as possible. The memory management classes manage smart card resources, partitioning RAM into
segments for mathematical operations. We created a handler to temporarily lock these segments to
execute mathematical operations on them and speed up execution. Once the segment is no longer
required, it can be unlocked for future use. Lastly, due to constraints in the Java Card version, we
developed utility classes and methods for dealing with lists, bit processing, and other functions. These
utility classes, while not part of the MVC design, are crucial for the application’s development.

3.2.2 Arithmetic operations

Basic algebraic operations, such as modular arithmetic or elliptic curve calculations, are not supported
by the Java Card API. We set out to leverage the coprocessor as much as possible when implementing
the operations required by the KVAC and RKVAC schemes.

Hardware-accelerated execution of arithmetic operations is available through the BigNumber class
within the javacardx.framework.math package of the Java Card API. However, this package is
optional and not available on most smart cards. Therefore, we combined software implementation with
various hardware algorithms. Simple operations like addition, subtraction, negation, and division do
not exert excessive strain on the CPU. They do not demand any type of hardware acceleration because
the CPU can handle them. For this reason, we adopted the implementation of the Bignat library [19]
and tweaked it to meet our requirements. Nevertheless, multiplication and inversion, being more
costly operations, require the use of the coprocessor. We used RSA encryption with padding disabled
for these computations. To compute the modular multiplication, we combined software execution
with the coprocessor, using the RSA routine for square computations and the CPU for addition,
subtraction, and division by two. For modular inversion, we used the value 𝑞 − 2 as the exponent in
the RSA encryption routine to obtain the inverse of a number. To expedite multiplication, we may
reuse square computations (𝑎2 and 𝑏2) for common operands. Similarly, we could precompute the
common 𝑞 − 2 value to accelerate inverse execution. Note that 𝑞 is the prime order of the Elliptic
Curve (EC) base point. Finally, for modular reduction, we divided the value to be reduced by the
order of the elliptic curve.

The implementation of elliptic curve operations presented a challenge since execution on the
CPU would bring considerable overhead. Indeed, it was crucial to use hardware acceleration. We
harnessed the coprocessor’s capabilities through the utilization of the Password Authenticated Con-
nection Establishment (PACE) Generic Mapping (GM) algorithm and the variant of Elliptic Curve
Diffie-Hellman (ECDH) that yields the plain X and Y coordinates. Notably, these functionalities are
officially accessible as of Java Card version 3.0.5; nonetheless, we found their availability from version
3.0.4 onwards. Thus, we rely on the class KeyAgreement of the Java Card API to perform point
addition and scalar point multiplication operations.
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3.2.3 Acceleration techniques

We propose an off-card precomputation approach to accelerate the execution of the Show algorithm,
which is shown in Figure 2.2a at a high level. By precomputing roughly three of the four stated stages,
i.e., selecting a unique per-session value, generating the transaction pseudonym, and randomizing the
credential, we can minimize the execution times shown in Figure 3.1b by more than 50%. The Show
algorithm enables anonymous user authentication. However, for the same epoch value, the number of
authentications is limited to 100. Table 3.1 illustrates the amount of storage space necessary to store
each precomputation, as well as the precomputations for the 100 authentications.

Tab. 3.1: Space required for authentication precomputations

Stage 𝑛 = 1 𝑛 = 100

1) Select a unique per-session value 32 bytes 3.2 KB
2) Generate the transaction pseudonym 65 bytes 6.5 KB
3) Randomize the credential 517 bytes 51.7 KB
4) Compute the proof of knowledge (partial) 325 bytes 32.5 KB

Total 939 bytes 93.9 KB

The computation of the proof of knowledge for undisclosed attributes was omitted from the pre-
computation due to session data requirements. Specifically, the nonce and attributes to disclose are
not known in advance. Despite space constraints on the smart card, it was feasible to store the 100
precomputations. We also explored the inclusion of undisclosed attribute computations, considering
five disclosure states. However, due to space limitations, this was only implemented for testing and
benchmarking purposes.

3.3 Experimental results

To ascertain the feasibility of our approach, we conducted several experiments, measuring and com-
paring the execution speed with that of the MULTOS-based smart card implementation. Figure 3.1a
and Figure 3.1b illustrate the performance of the KVAC and RKVAC protocols using MULTOS and
Java Card technologies, respectively. Both figures depict the benchmarks in milliseconds and include
both computation time and communication overhead.

We can observe that the Java Card implementation of the KVAC protocol takes approximately
the same amount of time to disclose all of its attributes as the MULTOS implementation does without
disclosure. The protocol takes roughly one second longer to run for each attribute that is not disclosed.
The complexity of the RKVAC protocol is mirrored in the execution speed of the Java Card implemen-
tation, which is close to five times slower than the MULTOS implementation. Additionally, likewise
with the KVAC protocol, the execution time is increased by around one second for each undisclosed
attribute. However, we can appreciate that the communication overhead in Java Card is significantly
inferior to that of MULTOS. We achieve this gain by using the T=1 communication protocol, which
enables us to transmit all the data in a single message rather than split it into several packets.

We applied the acceleration techniques described in Subsection 3.2.3, obtaining the results de-
picted in Figure 3.2. Both acceleration techniques fully precalculate the first three phases of the Show

13



0 1 2 3 40

2,000

4,000

6,000

# Disclosed attributes

T
im

e
𝑡

[m
s]

5 attributes stored (KVAC)

MULTOS Java Card

1,334 1,203 1,130 1,028 926

5,697

4,785

3,597

2,572

1,404

(a) Execution of KVAC scheme

0 1 2 3 40
2,500
5,000

10,000
12,500
15,000

# Disclosed attributes

T
im

e
𝑡

[m
s]

5 attributes stored (RKVAC)

MULTOS Java Card

2,656 2,507 2,306 2,157 2,012

14,559
13,461

12,417
11,487

10,316

(b) Execution of RKVAC scheme

Fig. 3.1: Speed comparison between MULTOS and Java Card implementations
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Fig. 3.2: Speed comparison between acceleration techniques for RKVAC

protocol (see Table 3.1). Concerning the fourth phase, the first technique precomputes the values
𝑡𝑟𝑒𝑣𝑜𝑘𝑒, 𝑡𝑠𝑖𝑔, 𝑡𝑠𝑖𝑔𝐼 , 𝑡𝑠𝑖𝑔𝐼𝐼 and partially 𝑡𝑣𝑒𝑟𝑖𝑓𝑦, since the number of attributes to be disclosed is unknown.
Alternatively, the second technique precomputes the five possible values of 𝑡𝑣𝑒𝑟𝑖𝑓𝑦, i.e., when no at-
tributes are disclosed, when one attribute is disclosed, and so forth, and employs the one that is
necessary at the time. Through the use of these acceleration techniques, we detected a remarkable
decrease in the execution duration of the protocol.

Note that the issuer (i.e., an external device such as a Raspberry Pi) performs the authentication
precalculations. This information is stored on the smart card during the personalization phase for use
in the subsequent authentication process. We did not include the time necessary to precompute the 100
authentications since it is negligible, requiring less than a half-second for both acceleration techniques.
The execution times achieved are still far from those we found with the MULTOS-based smart cards.
Evaluating both acceleration techniques, we can glean that the gain obtained by precomputing the
attribute disclosure is impractical if we consider the memory space it requires. Moreover, due to space
limitations, it is not possible to store all 100 precomputations, including attribute disclosure, on the
smart card. We can state that the optimal configuration is the first acceleration technique.
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4 PRIVACY-ENHANCING AUTHENTICATION SYSTEM

In the previous chapter, we presented a comprehensive demonstration of how to implement an ABC
scheme using Java Card technology, given the challenges of procuring MULTOS smart cards. Nonethe-
less, the use of smart cards poses some functional challenges, including the lack of visibility regarding
the attributes requested and the absence of an option to accept or decline their disclosure. In this
chapter, we introduce the PEAS, a robust solution that is fully prepared for deployment in real-
world scenarios. PEAS is compatible with smart cards and works seamlessly with smartphones and
smartwatches.

4.1 System architecture and technical aspects

This section elucidates the technical aspects of our PEAS, which we have developed to enable secure
and anonymous access to both electronic services and physically protected areas. By leveraging our
technology, users can preserve their anonymity without disclosing their complete identity or becoming
subject to tracking or profiling by system administrators. Nevertheless, in the event of malicious
activities, the revocation authority plays a vital role in detecting and identifying any rogue users.
By collaborating with the revocation authority, PEAS guarantees that, although user identities are
anonymous, any illegal activity can still be traced back to the perpetrator.

Show <-> Verify

IssueI

IssueRA

User

Revoked (?)

Verifier

Revocation Authority

Issuer

Fig. 4.1: High-level topology of PEAS

PEAS represents user identity through multiple attributes, including but not limited to name,
surname, age, gender, and job title. During the verification process, only necessary identity attributes,
such as age, gender, and job title, are disclosed, ensuring that the user’s privacy is safeguarded.
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Furthermore, the authentication sessions of PEAS are mutually unlinkable, guaranteeing the non-
profiling and non-tracking of users.

The system is built upon the RKVAC technology proposed by Hajny et al. [20] and presented in
Chapter 2, which serves as the cryptographic core of the system. Likewise, we optimized and expanded
the RKVAC technology for deployment in real-world scenarios. PEAS is highly practical and adaptable
to various platforms, including smart cards, smartphones, smartwatches, and single-board computers,
commonly employed in IoT environments. Moreover, PEAS adheres to a user-centric approach, where
users have complete authority over their personal data, deciding which information to provide and
when to offer it to service providers. This approach ensures that irrelevant personal data is not stored,
aligning with the General Data Protection Regulation (GDPR).

Our implementation of PEAS comprises software applications for all entities involved in the au-
thentication process, namely the revocation authority, the issuer of attributes, the verifier of attributes,
and user devices holding personal attributes. Figure 4.1 provides a detailed illustration of the PEAS
architecture.

4.2 Implementation details

This section describes the development process and summarizes the main key points considered during
the design of the system. We utilized personal devices that were equipped with Personal Computer /
Smart Card (PC/SC) and Bluetooth interfaces to establish communication with the system. Specifi-
cally, the smart card interfaced with the system through the PC/SC interface in contact mode, whereas
the smartphone supported both contactless PC/SC (i.e., Near-Field Communication (NFC)) and Blue-
tooth connectivity. In contrast, the smartwatch exclusively relied on Bluetooth for communication
with the system.

We divided the implementation of the application into three components: (i) the libpeas library
for core functionality; (ii) the server-side to operate with the revocation authority, the issuer, and the
verifier; and (iii) the client-side for user functionality.

4.2.1 Core library

At the core of our application is the purpose-built libpeas library, a C-based framework with optimized
cryptographic functions for user revocation, authentication, verification, and attribute issuance. It fa-
cilitates efficient data transmission across interfaces like PC/SC, Bluetooth, and Transmission Control
Protocol (TCP), as well as secure database storage. This library ensures unparalleled performance
and security on various devices and relies on several third-party libraries. Specifically, we utilized
mcl [11] for elliptic curve cryptography; openssl [12] for cryptographic hash algorithm support;
pcsc-lite [21], ccid [22], and bluetooth [23] for device communications; and libcjson [24] and
libwebsockets [25] for web server connections.

The protocol was designed and implemented using elliptic curve cryptography. Among various
libraries, mcl stood out for its promising performance and high security [26], supporting Barreto-
Naehrig (BN) [18] pairing-friendly elliptic curves. We adopted the BN254 curve from mcl for our
implementation.
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4.2.2 Server-side specifics

The server implementation features a highly modular design, facilitating easy maintenance and ex-
pansion. It consists of a front-end and a back-end. The front-end, developed with Node.js [27] and
Vue.js [28], provides a user-friendly interface with distinct applications for each system entity: re-
vocation authority, issuer, user, and verifier. Each entity has specific functionalities, enhancing the
system’s security and user experience. The back-end uses the libpeas library to support cryptographic
operations based on the RKVAC. It also ensures robust system management, secure data storage,
and seamless communication with all entities.

DASHBOARD ABOUT

Hello, User! Fill in the information on this page

Wait until your request is reviewed

Done! Now you are registered

Customization

Turn dark mode on

Network

If your PEAS service is hosted
on a different domain or non-
default port, please update
this setting.

Custom network settings

Enter your name

Current device (default)
Attributes issued by the issuer will be stored on this device.

PC/SC
Sends issued attributes to a connected PC/SC-enabled device.

Bluetooth
Sends issued attributes to a paired Bluetooth-enabled device.

Raúl Casanova-Marqués

Last nameFirst name

Select an authentication method

CLEARCONTACT ISSUER

(a) Dashboard for users

DASHBOARD ABOUT

Greetings,
Verifier!

Select the required attributes

Start the verification server

Done! Now users can be verified

Customization

Turn dark mode on

Epoch

Current number

Select the required attributes to be disclosed

Personal

The verification server is up and running

SELECT

Access/Membership

Organizational/Working

Date of birth

Gender

Full name

STOP SERVER CLEAR

Required attributes

Current values

20020426
NEW EPOCH

(b) Dashboard for verifiers

Fig. 4.2: Example of web-based dashboards

Figures 4.2a and 4.2b depict the user and verifier web-based dashboards, respectively. These dash-
boards offer a spectrum of authentication methods, customizable attribute disclosure options, the
capability to modify the current epoch, and the ability to scrutinize the user’s access history. Com-
munication between the frontend, backend, and other entities is facilitated through various interfaces,
including the REpresentational State Transfer (REST) API, Command Line Interface (CLI), TCP
socket, and WebSocket. Lastly, we used Docker for straightforward deployment.

4.2.3 Client-side specifics

The implementation of PEAS for user devices involves the deployment of two distinct applications,
namely the MULTOS application for smart cards and the Android application for smartphones and
smartwatches. These applications are designed to be fully interoperable with each other and other
PEAS entities. Each of the applications can store up to nine personal attributes, with the tenth
reserved for the revocation attribute.
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We utilized the MULTOS ML4 smart card for the smart card application, chosen for its hardware
acceleration for modular arithmetic and elliptic curve operations. However, it only supports the
T=0 transmission protocol and has limited RAM, which can impact its effectiveness. The Android
applications, developed in Java and C, require at least SDK version 24 and use the mcl library,
along with standard Android and Java libraries. The smartphone version provides a 4-digit Personal
Identification Number (PIN) code for security, with an option for fingerprint access. Users can disable
attribute issuance for security reasons, and the application maintains a history of events (i.e., logs).
Communication with other system entities is facilitated using NFC and Bluetooth technologies. Users
can attach their smartphones to an NFC reader or select a paired terminal from a drop-down list and
confirm it by clicking on the Connect button if they intend to use Bluetooth.

LOGIN

You can use your fingerprint to log in

Privacy-Enhancing Authentication System

USER

PEAS

The application holds 4 attributes

Fingerprint authentication

Attributes issuance

Reset to the initial state

CLEAR ALL

Friday, March 25, 2022 
Card personalization

+

Friday, March 25, 2022 
Issuance of the revocation handler

Friday, March 25, 2022 
Issuance of the user’s attributes

Friday, March 25, 2022 
Proof of knowledge submitted

Tuesday, April 26, 2022
Card personalization

Tuesday, April 26, 2022
The application is already personalized!

!

+

(a) Application for smartphones

Wear
PEAS

The application 
holds 4 attributes

The application has been 
successfully personalized

CONNECT

peas-server
A4:B4:C4:D4:E4:F4

CONNECT

Proof of knowledge 
submitted

peas-server
A4:B4:C4:D4:E4:F4

(b) Application for smartwatches

Fig. 4.3: Example of Android-based applications

Figure 4.3a and Figure 4.3b illustrate the graphical interfaces of the PEAS application for Android-
based smartphones and smartwatches, respectively. The application shares fundamental similarities
with its smartphone counterpart, but with one significant distinction: it lacks a login dialog consist-
ing of a PIN code and fingerprint to enhance user-friendliness and convenience when accessing the
application on the go.

4.3 Experimental results

This section presents the benchmarks of the Show and Verify algorithm implementations. The findings
are organized according to the communication interface deployed. Figure 4.4 depicts the benchmarks
for devices enabled with PC/SC and Bluetooth capabilities.

In each scenario, we assume the cryptographic credential stores 10 attributes, of which 1, 3, 5,
7, and 9 are disclosed while the remaining attributes remain concealed. To prove knowledge of each
hidden attribute, the user’s device must compute a corresponding proof. Our benchmarks consider
both compute and transmission latency and are reported in milliseconds. The entities involved in the
tests were the issuer, verifier, and revocation authority, run on a conventional personal computer, and
the user entity, represented by a smart card, smartphone, and smartwatch.
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Fig. 4.4: Speed comparison of PEAS execution (client-side)

The smart card operates at a rate three to four times slower than the smartphone, as depicted
in Figure 4.4a. The smartphone and smartwatch demonstrate similar performance, as shown in Fig-
ure 4.4b. When comparing the results obtained from the smartphone with PC/SC and Bluetooth
interfaces, Bluetooth proves faster due to reduced communication overhead.
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Fig. 4.5: Total amount of transferred data during the authentication phase

Figure 4.5 presents the aggregate amount of data that must be transmitted during the authentica-
tion phase between the user and verifier. We consider all possible scenarios where the cryptographic
credential stores ten attributes and the disclosure process starts from none to all nine attributes. The
tenth attribute, which is the revocation attribute and is confidential to the user, is never disclosed.
It is worth noting that the amount of data transmitted by the user is significantly greater than the
amount transmitted by the verifier. The verifier only sends the authentication challenge, epoch iden-
tifier, and 1 byte of data that defines the disclosed attributes. In contrast, the user sends at least 570
bytes (all attributes are disclosed) and up to 858 bytes (all attributes are concealed). It is important
to note that the PEAS implementation does not transmit disclosed attributes from the user’s device
to the verifier. The verifier is aware of the disclosed attributes and only verifies if the user holds them
or not.
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5 ZERO-KNOWLEDGE PROOFS FOR SECURE COOPERATIVE
INDOOR POSITIONING

In the context of CIPS, safeguarding privacy and security is of paramount importance, given that these
systems process and handle sensitive location data that can be exploited to monitor and infringe upon
individuals’ privacy. However, existing solutions for CIPS do not provide adequate privacy protection,
primarily due to their reliance on centralized data sources, which may expose users to data breaches
and unauthorized access. Moreover, the positioning information in CIPS is often transmitted in
plaintext, further exacerbating the risk of privacy violations. This chapter introduces a novel approach
to addressing privacy and security concerns in CIPSs.

5.1 Cryptographic scheme

We propose an innovative decentralized attribute-based authentication protocol. This section discusses
the entities involved, as well as the high-level cryptographic design of the Show and Verify algorithms.

To aid in the clarity and readability of this chapter, we provide a table of symbols used throughout
our cryptographic protocol. Table 5.1 defines each symbol and its associated meaning, allowing for a
comprehensive understanding of the protocol’s components.

Tab. 5.1: Table of symbols

Symbol Definition

𝑞,G1,G2,G𝑇 , e, 𝑔1, 𝑔2 parameters for the selected pairing-friendly elliptic curve.
𝑚𝐼𝐷 attribute with the user’s identifier.
𝑚𝑟 attribute for revocation based on the week and year.

𝑠𝑘𝐼 ,𝒳0 key pair of the issuer (private and public keys).
𝑖𝑟, ℐ𝑟 shared key pair among system users (private and public keys).

𝜎, 𝜎𝑥0 , 𝜎𝑥𝑟 , 𝜎𝑥𝐼𝐷 cryptographic credential issued to the user.
�̂�, �̂�𝑥0 , �̂�𝑥𝑟 , �̂�𝑥𝐼𝐷 cryptographic credential randomized by the user.

𝜌 random number used to randomize the cryptographic credential.
𝜌𝜅, 𝜌𝐼𝐷 random numbers used to compute the protocol commitment and responses.
𝑡𝜅 cryptographic commitment computed by the user.
𝑒 challenge used in the cryptographic protocol.

𝑠𝜅, 𝑠𝐼𝐷 responses obtained during the execution of the cryptographic protocol.
𝜏 random number used to randomize the transaction identifier.
ℛ transaction identifier.
𝜓 alias of �̂�, �̂�𝑥0 , �̂�𝑥𝑟 , �̂�𝑥𝐼𝐷 .
𝜋 alias of 𝑒, 𝑠𝜅, 𝑠𝐼𝐷.
𝜆 information transmitted or received in plaintext.
𝜉 information transmitted or received in ciphertext.
𝑡′𝜅 cryptographic commitment reconstructed by the verifier.

The following entities comprise the system model presented in Figure 5.1.
• Issuer : issues the personal attribute gathered in a cryptographic credential using the Issue

algorithm. In our design, the issuer is also responsible for revoking invalid users from the
system. This is done to simplify interactions with other entities. The revocation attribute is
additionally aggregated to the cryptographic credential. The cryptographic credential is signed
by the issuer.
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• User : acquires the unique credential, including the attributes issued by the issuer, to gain access
to the system or service. Using the Show algorithm, the user then anonymously demonstrates
ownership of the attributes to the verifier. The user may additionally transmit information to
the verifier in either plaintext or encrypted format.

• Verifier : utilizes the Verify algorithm to confirm the user’s possession of the attributes. If the
ownership of the attributes is successfully validated and the user’s access has not been revoked,
the verifier accepts the received information. If not, the information will be rejected.

Issuer

Show <-> Verify

Issue

User Verifier

Revoke

Issue

Fig. 5.1: Entities and algorithms constituting the proposed protocol

The flowcharts presented in Figure 5.2 provide a high-level definition of the Show and Verify
algorithms and are a valuable tool for facilitating a comprehensive understanding of the protocols,
their underlying mechanisms, and the sequence of steps involved in their execution. By visually
presenting the key components of each algorithm and the relationships between them, the flowcharts
enable readers to quickly grasp the fundamental concepts of our cryptographic protocol.

5.2 Implementation details

The application was designed for several platforms, including single-board computers, smartphones,
smartwatches, and microcontrollers. Such heterogeneous device types are common in IoT ecosystems
and are representative of the different use cases that our protocol can support. While smartphones
and smartwatches are ideal for obtaining positioning data actively by users, single-board computers
and microcontrollers are better suited for industrial settings. They can enable autonomous vehicle
positioning or enhance the location sensing capabilities of other devices, further extending the reach
and flexibility of our solution.

We divided the implementation of the application into three components: (i) the Libre Collabo-
rative Indoor Positioning (LibreCIP) library for core functionality; (ii) the device wrappers to ensure
compatibility with the selected IoT devices; and (iii) the Bluetooth Low Energy (BLE) integration for
transmitting and receiving data using Bluetooth Low Energy.
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Fig. 5.2: High-level definition of the Show and Verify algorithms

5.2.1 Core library

The application relies on the LibreCIP library, a purpose-built software package implementing the
protocol. LibreCIP offers optimized cryptographic functions, including user authentication, data en-
cryption, and compression. It ensures efficient data transmission and storage while prioritizing security
and privacy. The library, designed for performance and security across various devices, is written in
C and utilizes third-party libraries such as mcl [11], relic-toolkit [29], lz4 [30], and the native
crypto library of RIOT [31]. Device-specific cryptographic backends, mcl and relic-toolkit, are
chosen during compilation. The protocol employs elliptic curve cryptography, specifically the BN254
curve from mcl and relic-toolkit. Data compression using lz4 is selected for its compatibility
with RIOT and its ability to reduce the original data size. The RIOT crypto library is utilized for
encryption, decryption, and cryptographic hashes, employing Advanced Encryption Standard (AES)
in Cipher Block Chaining (CBC) mode with 128-bit keys and Secure Hash Algorithm 3 (SHA-3) with
256-bit digests.
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5.2.2 Device wrappers

The wrappers for each device are written in their respective native languages. They consist of the User
Interfaces (UIs) of the devices as well as the BLE routines and libraries required for communication.
The UIs are designed based on the device type. For Android, iOS, Wear OS, and watchOS devices, we
created Graphical User Interfaces (GUIs). In contrast, we developed CLIs for the Raspberry Pi and
PinePhone Pro. We did not create UIs for the microcontrollers or the PineTime. Figure 5.3 depicts
the different device wrappers and the technologies used by each to call LibreCIP library functions.

LibreCIP

Swift Bridging Header

C/C++

Java Native Interface (JNI) 

iPhone

Apple Watch

Android Phone

Android Watch

Raspberry Pi

PinePhone Pro

PineTime

Arduino

Fig. 5.3: Interoperability between LibreCIP and different devices

5.2.3 Bluetooth Low Energy integration

Our protocol utilizes BLE advertising packets for data transfer. While Bluetooth 4.2 [32] and earlier
versions specified a 31-byte payload limit, Bluetooth 5.0 [33] expanded this capacity to 254 bytes with
Low-Energy Advertising Extensions. Considering device compatibility issues, we designed a packet
format compatible with Bluetooth 4.2. This structure allows data transmission by fragmenting it into
smaller packets, facilitating identification of the packet count and sequence for receivers.

5.3 Experimental results

To ascertain the feasibility of our approach and evaluate the performance and speed of the algorithms,
we conducted several experiments, benchmarking the entire protocol. Figure 5.4 illustrates the results
of the execution in milliseconds and includes BLE communication overhead. Interpreting the study’s
results requires considering certain limitations. The data collection took place in a controlled labora-
tory environment, potentially limiting the generalizability of the results to real-world scenarios with
crowded transmitting devices. Despite this, the findings suggest the protocol’s potential for privacy
protection in contemporary CIPSs. Future studies should aim to replicate these results in larger and
more diverse environments to comprehensively assess performance.
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Fig. 5.4: Speed comparison of the Show and Verify algorithms, and the transmission overhead

The computation times reveal notable differences across devices. High-end smartphones, like the
Samsung Galaxy S21+ 5G and iPhone 11, exhibit the fastest processing times (around 1.3 milliseconds
for Show and 2.9 milliseconds for Verify). In contrast, microcontroller boards like Arduino Nano
33 BLE and Arduino Nano 33 IoT, designed for IoT applications, demonstrate considerably slower
computation times (ranging from 197.345 to 329.624 milliseconds). This discrepancy arises from
the limited processing power and memory resources of microcontroller boards compared to more
advanced smartphone hardware. All widely used smartphones and smartwatches maintain Show and
Verify processing times below 15 milliseconds. The fastest device executes Show in 1.287 milliseconds,
while the slowest takes 9.154 milliseconds. For the Verify algorithm, the fastest execution is 2.896
milliseconds, and the slowest is 12.591 milliseconds. The Raspberry Pi 4 benchmarks, with execution
times in the order of microseconds, are omitted due to their negligible impact. Notably, the variability
in measurements, represented by error bars, is larger for smartphones, attributed to the complexity
of their operating systems introducing more variability compared to microcontrollers. Devices like
the Huawei Watch 2, Samsung Galaxy S8, PineTime, and Arduino Nano exhibit slower transmission
times, exceeding 30 milliseconds. This can be attributed to the utilization of outdated Bluetooth
technology. During development, energy profiling tools in Android Studio and Xcode were employed
to assess energy consumption, indicating no adverse effects on energy utilization.
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6 CONCLUSION

The research questions presented in Chapter 1 are addressed and answered in this section.

• How can anonymous credential schemes be adapted to support user revocation while maintaining
privacy?
Chapter 2 presents a novel attribute-based authentication scheme with pseudonymous-based
revocation. This design maintains user privacy while allowing for efficient revocation in case of
malicious behavior. The protocol has been successfully implemented and tested on MULTOS
smart cards, demonstrating its effectiveness even on resource-constrained devices.

• What strategies can be employed to enable attribute-based authentication protocols on smart cards
with limited support for elliptic curve cryptography?
Chapter 3 introduces techniques to adapt mathematical operations to the limitations of the Java
Card API. This has enabled the implementation of the attribute-based authentication protocol
from Chapter 2 on these cards. While not yet ready for real-world deployment, these results
open up new avenues for future research.

• What are the usability challenges associated with using anonymous credentials in various appli-
cations, and how can they be addressed?
The inability to visualize requested attributes or provide consent for disclosure hinders the seam-
less integration of anonymous credentials in real-world environments. Chapter 4 introduces a
platform that addresses the usability challenges of attribute-based authentication on smart cards.
It utilizes the cryptographic core from Chapter 2 and operates on mobile devices and smart-
watches, bridging the gap between attribute-based authentication and practical application.

• How can anonymous credential schemes be integrated into collaborative indoor positioning sys-
tems to enhance privacy and security?
Collaborative indoor positioning systems face inherent vulnerabilities due to their interaction
with unknown devices and the lack of cryptographic protocols to safeguard user privacy and
security. Chapter 5 presents a cryptographic scheme for collaborative indoor positioning sys-
tems. It provides anonymity through randomized identities, encrypted data transmission, and
automatic user revocation, enhancing privacy and security while fostering trust among users.

• How can anonymous credential schemes be implemented in resource-constrained environments,
such as IoT devices?
The cryptographic scheme from Chapter 5 has been implemented on Arduino boards, demon-
strating its applicability in IoT environments. This implementation utilized specialized libraries
tailored for IoT environments and optimized operating systems designed for low-power devices.

• Are attribute-based authentication schemes suitable for ensuring user authenticity in dynamic
wearable architectures?
The thesis affirms the suitability of attribute-based authentication schemes for wearable architec-
tures. Extensive implementations on various wearable devices have demonstrated their practical
viability and efficiency, ensuring user authenticity in dynamic environments.
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ABSTRACT
In response to escalating privacy concerns and the need for secure digital communication, crypto-
graphic mechanisms have been developed to ensure impervious information exchange. However, tra-
ditional cryptographic approaches are inadequate in dynamic and resource-constrained environments,
such as wearable devices. This thesis investigates attribute-based credential schemes, offering fine-
grained access control based on user-specific attributes. Specifically, it assesses the effectiveness and
scalability of attribute-based anonymous credential schemes within dynamic wearable device architec-
tures. The study focuses on enhancing these schemes by incorporating user revocation while preserving
privacy. Additionally, the research develops methods for attribute-based authentication protocols on
smart cards with limited elliptic curve cryptography support and addresses usability challenges. Fur-
thermore, the thesis explores the integration of anonymous authentication in collaborative indoor
positioning systems to ensure privacy and security. It also delves into implementing attribute-based
authentication in resource-constrained environments, including Internet of Things devices, and evalu-
ating its feasibility in dynamic wearable device architectures.
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