
The University of South Bohemia in České Budějovice
Faculty of Science

PV Power Forecasting using Distributed Machine Learning for

Smart Energy Grid (An extension to Federated Learning)

Master´s thesis

Muhammad Ammar Zafar

Advisor: Prof. Dr. Andreas Kassler

České Budějovice 2024

Bibliographical details:
Zafar, M.A., 2024: PV Power Forecasting using Distributed Machine Learning for
Smart Energy Grid (An extension to Federated Learning). Mgr. Thesis, in
English. – 97 p., Faculty of Science, University of South Bohemia, České
Budějovice, Czech Republic.

Annotation:
This thesis investigates the application of federated learning and tree-based
models, such as LightGBM and Catboost, in Photovoltaic (PV) power
forecasting. Addressing challenges in accuracy, uncertainty, and scalability, the
study designs a robust federated learning architecture tailored for tree-based
forecasting models. The novel aggregation strategy efficiently combines
updates from multiple nodes, enhancing forecast accuracy.

Declaration:
I declare that I am the author of this qualification thesis and that in writing it I
have used the sources and literature displayed in the list of used sources only.

Place, date.
Student's signature

Abstract

The intermittent nature of renewable energy resources like Photovoltaic (PV) poses a
challenge to energy forecasting, grid balancing, and scheduling. Accurate and reliable
forecasts of energy generation and consumption are needed to optimize the performance
of the smart energy grid. Machine Learning (ML) has shown great potential in addressing
these challenges. However, existing approaches have limitations in terms of accuracy,
uncertainty, and scalability. Federated learning is a technique that allows machine
learning models to be trained and applied on distributed data sources without the need to
centralize the data. In the context of PV production and consumption forecasting models,
federated learning can be used to train and apply these models on data from different
prosumers, such as different households or buildings, while preserving the privacy of the
data owners. This thesis investigates PV power forecasting using federated learning and
tree-basedmodels, such as LightGBMandCatboost. The importance of accurate PVpower
forecasting for renewable energy integration is highlighted, along with the challenges for
data aggregation for tree-based models. The research objectives are outlined: to design
and create a robust federated learning architecture specifically tailored for tree-based
forecasting models, such as LightGBM and Catboost, to design and implement a novel
aggregation strategy that efficiently combines updates from these models obtained from
multiple nodes in the federated learning architecture, and to evaluate those models in a
distributed test-bed on data-set coming from the smart grid community and compare the
performance in terms of forecast accuracy to non-distributed approaches. The evaluation
shows that the developed approach reduces the Mean Absolute Error (MAE) for Catboost
Production by 88.1%, LightGBM Consumption by 14.93%, and Catboost Consumption by
79.5%. For LightGBMProduction it remained almost same. After using federated learning,
Mean Quantile Loss (MQL) andMean Prediction Interval Range (MPIR) also significantly
decreased.

Keywords

Machine Learning (ML), Photovoltaic(PV), A Friendly Federated Learning Framework
(FLWR), Mean Prediction Interval Range (MPIR), and Mean Quantile Loss (MQL),
Random Forests (RF), LightGBM, CatBoost

ii

Acknowledgements

I am immensely grateful to all those who have contributed to the completion of this thesis.
Without their unwavering support, valuable insights, and encouragement, this journey
would not have been possible.

First and foremost, I extend my deepest gratitude to my thesis advisor, Prof. Dr. Andreas
Kassler, for his constant guidance and mentorship. His expertise and dedication have
been instrumental in shaping the direction of this research and improving the quality
of my work. I am indebted to him for his patience, valuable feedback, and belief in my
abilities.

I also extend my heartfelt appreciation to the faculty members of the M.Sc Artificial
Intelligence and Data Science for their encouragement, stimulating discussions, and
constructive criticism throughout my academic journey. Their commitment to excellence
in teaching and research has been a constant source of inspiration.

My sincere thanks go to the Mr. Phil Aupke who generously dedicated their time and
shared their insights, making this research possible. Their contributions are invaluable
and have enriched the findings of this thesis.

I am thankful of my family and friends’ constant encouragement and patience throughout
this trying time. My endurance has been motivated by their support, love, and confidence
in me.

Finally, I want to extend my sincere gratitude to all the researchers, writers, and scholars
whose work served as the basis for my thesis. Our understanding remains shaped and
inspired by their contributions to the discipline.

iii

Contents

1 Introduction 1
1.1 Background . 2
1.2 Problem Description . 2
1.3 Thesis Objective . 3
1.4 Research Questions . 4
1.5 Methodology . 4
1.6 Outline . 5

2 Background and Literature Review 6
2.1 Background . 6

2.1.1 Time Series Forecasting and Evaluation Metrics for Interval Ranges 6
2.1.2 Tree-Based Models . 12
2.1.3 Gradient Boosting Machine (GBM) 15
2.1.4 Distributed Learning Approaches 19
2.1.5 Federated Learning . 21

2.2 Literature Review . 26
2.2.1 Time Series Forecasting . 26
2.2.2 Distributed Time Series Forecasting 28
2.2.3 Federated Learning based Forecasting 30

2.3 Relation to Research Questions . 31

3 Design 32
3.1 Data Collection . 32
3.2 Data Preprocessing . 34
3.3 Model Selection . 35

3.3.1 LightGBM . 35
3.3.2 Catboost . 36
3.3.3 Quantile Regression . 37
3.3.4 Hyper-Parameters . 38
3.3.5 GridSearchCV . 39

3.4 Federated Design . 40

iv

CONTENTS

3.5 Aggregation for Tree-based models . 41

4 Implementation 44
4.1 Federated Setup . 44
4.2 GridSearchCV . 46
4.3 Clients . 47
4.4 Server . 49
4.5 Multi-model tree Aggregation . 51

5 Evaluation and Result 55
5.1 Federated Inference . 55
5.2 Predictions . 56

5.2.1 Variations based on weather forecast 62
5.3 Evaluations . 66

5.3.1 Probability Distribution Analysis: CDF and PDF Plots 67
5.3.2 Regression Metrics . 72

5.4 Summary . 76

6 Conclusions and Future Work 77
6.1 Conclusion . 77
6.2 Future Work . 78

References 82

v

Chapter 1

Introduction

The use of renewable energy sources, especially photovoltaic (PV) systems, has grown
significantly in recent years as a crucial element of sustainable energy policies. With
its eco-friendly qualities and ability to lower greenhouse gas emissions, photovoltaic
power generating has become a prospective replacement for conventional fossil fuel-
based electricity generation. However, the intermittent nature of solar energy poses
considerable difficulties for gridmanagers and energy planners in preserving grid stability
and guaranteeing resource efficiency.

One critical aspect in effectively integrating PV systems into the power grid is accurate and
reliable forecasting of PV power production and consumption. Accurate forecasts enable
grid operators to anticipate fluctuations in power input and output, thereby optimizing
grid management, minimizing imbalances, and making informed decisions about backup
power sources.

Moreover, while accurate PV power forecasting is essential for efficient grid operations,
there is a growing concern about preserving data privacy, especially with the increasing
use of smart meters and data-intensive monitoring systems. Energy consumption data
contains sensitive information about households and businesses, and its unauthorized
access or misuse could compromise individuals’ privacy and security.

To address the challenges of both accurate PV power forecasting and data privacy
preservation, novel approaches are required that can leverage the power of data while
ensuring privacy protection. Onepromising avenue is the application of federated learning
that is decentralized machine learning framework that enables multiple parties to train
models collaboratively while keeping their data locally stored and without sharing raw
data. Federated learning can enable effective model training across numerous distributed
sources without compromising the privacy of individual data contributors, which has the
potential to resolve the conflicting goals of accurate forecasting and data privacy.

1

CHAPTER 1. INTRODUCTION

1.1 Background

In the realm of PV power forecasting, machine learning (ML) based approaches have
gained significant traction. Advanced techniques, such as deep learningmodels like LSTM
(Long Short-Term Memory) networks and CNN (Convolutional Neural Networks), have
been actively explored by researchers. These deep learning models have demonstrated
promising results in capturing complex temporal patterns inherent in PV power
production and consumption data, leading to improved forecast accuracy. The ability to
learn from historical patterns and make accurate predictions in dynamic environments
makes these models particularly suitable for PV power forecasting.

However, Forest-based models like LightGBM [23] and Catboost [40]have shown
considerable success in Multi-Variate Time Series Forecasting [20]. These ensemble
methods leverage decision trees to capture interactions between variables and provide
robust predictions. In the context of PV power forecasting, the application of LightGBM
and Catboost has shown significant potential for capturing complex relationships between
meteorological and operational factors, leading to accurate and reliable predictions of PV
power generation.

The combination of federated learning with advanced machine learning techniques, such
as tree-based models, presents a promising avenue for enhancing PV power forecasting
[54]. By leveraging the strengths of federated learning’s privacy-preserving capabilities
and the predictive power of these advanced ML models, the accuracy and efficiency of PV
power forecasting can be further improved. The integration of federated learning with
tree-based models has the potential to revolutionize the field of PV power forecasting,
contributing to more efficient renewable energy integration and sustainable energy
management.

1.2 Problem Description

In this thesis, the main challenge is of developing a PV power forecasting model using
federated learning, with a specific emphasis on forest-based regression models such as
LightGBM and CatBoost. The main hurdle lies in creating a framework that facilitates
efficient aggregation of updates from these forest models, all while preserving the key
advantages of federated learning, namely privacy and data decentralization.

One of the core issues addressed is that existing federated learning frameworks, like FLWR
(A Friendly Federated Learning Framework), lack built-in support for aggregatingweights
specifically tailored to forest-based models. This limitation poses a significant obstacle in
effectively employing forest-based models within a federated learning setup for PV power
forecasting.

2

CHAPTER 1. INTRODUCTION

Another aspect of the challenge is related to the nature of forest-based models
themselves. Thesemodels often consist of multiple trees, and each tree is typically trained
independently. As such, accommodating multiple models training per client within
the federated learning framework becomes a challenging task that requires innovative
solutions.

The central focus of this thesis is to devise a novel aggregation mechanism that
can overcome these challenges effectively. This mechanism should enable seamless
integration of forest-based models’ updates from multiple nodes while retaining data
privacy and ensuring efficient communication among the participating devices. By
addressing these critical issues, the research aims to unlock the potential of federated
learning for PV power forecasting, leveraging the strengths of forest-based models in
capturing complex temporal patterns inherent in solar energy generation data.

The outcome of this research is expected to contribute to the field of federated learning
and its applicability to PV power forecasting. By devising a robust aggregation approach
tailored to forest-basedmodels, the thesis aims to broaden the scope of federated learning
applications, providing privacy-preserving, accurate, and efficient forecasting solutions
for the renewable energy sector. The research outcomes have the potential to advance
the state-of-the-art in decentralized machine learning approaches, impacting various
domains beyond PV power forecasting.

1.3 Thesis Objective

The first objective of this thesis is to design and create a robust federated learning
architecture specifically tailored formultivariate time series forecasting, with a focus onPV
power prediction. This architecture will enable distributed devices or nodes to collaborate
and train predictive models collectively without sharing raw data. The goal is to ensure
data privacy while harnessing the collective knowledge of all nodes to enhance forecasting
accuracy.

The second objective is to implement and evaluate tree-based regression models, such
as LightGBM and CatBoost, within the federated learning framework. These ensemble
models have shown promise in handling complex interactions within time series data and
are well-suited for PV power forecasting. The goal is to assess the performance of these
models in terms of accuracy, robustness, and efficiency within the federated setting.

The third objective is to design and implement a novel aggregation strategy that efficiently
combines updates from tree-based regressionmodels obtained frommultiple nodes in the
federated learning architecture. The objective is to develop an aggregation mechanism
that preserves data privacy, minimizes communication overhead, and ensures accurate
and reliable PV power forecasts.

3

CHAPTER 1. INTRODUCTION

The fourth objective is to evaluate those models in a distributed test-bed on data-set
coming from the smart grid community and compare the performance in terms of forecast
accuracy to non-distributed approaches.

1.4 Research Questions

1. How does Federated learning impact forecast accuracy of Multi-Variate Time Series
Forecasting in the context of Renewable Energy Systems?

2. How can Federated Learning be implemented on tree-based models?

1.5 Methodology

This thesis follows a traditional methodology for a thesis that aims to develop forecasting
models using Machine Learning. Performing federated inference for PV production and
consumption models requires careful consideration of data preparation, model selection,
federated learning setup, federated inference, evaluation, and deployment. By following
these steps, it is possible to train accurate and robust PV production and consumption
forecasting models on distributed data sources while preserving the privacy of the data
owners.

Firstly the data collected by [3] from Swedish households having PV installations and
battery storagewill be used. The data will include the variety of features, such as the power
generation of PV, household consumption, weather data, and time of day. The data will
be preprocessed to remove outliers, missing values, and redundant features. The data will
be scaled to normalize the range of values.

Secondly suitablemodel architectures for the PV production and consumption forecasting
task are to be chosen. The models should be designed to handle the variability in
the data from different sources and to be robust to changes in the data distribution
over time. Considering all this proposed models will be[15] GBQR – Catboost, GBQR -
LightGBM

Thirdly, Set up a federated learning framework consisting of a central server and multiple
clients, each of which has its own local data. The server sends the initial model parameters
to each client, and the clients train the model on their local data.

Lastly, the performance of the proposed frameworkwill be evaluated using variousmetrics
like Mean Absolute Error (MAE), Mean Prediction Interval Range (MPIR), and Mean
Quantile Loss (MQL). The results will be compared with existing ML techniques.

4

CHAPTER 1. INTRODUCTION

1.6 Outline

Chapter 2 provides a comprehensive background on time series forecasting and its
application in PV power forecasting. Traditional forecasting methods for multi-variate
time series are explored, alongwith the unique challenges facedwhen predicting PV power
production and consumption. The chapter also delves into federated and distributed
learning, presenting an overview of federated learning, and its advantages over traditional
centralized machine learning. Privacy and security concerns in federated learning are
discussed, along with emerging research trends in this field.

Chapter 3 outlines the research design adopted for this study. The data collection
and preprocessing procedures for PV power data are detailed, focusing on handling
missing data and outliers. The design of the federated learning architecture for PV
power forecasting is presented, elucidating the selection of participating nodes and their
respective roles. Algorithms for aggregation approaches for FedAvg are presented

Chapter 4 explains the challenges associated with aggregating forest-basedmodel updates
in federated learning and implementations. The proposed novel aggregation mechanism
is introduced, offering an efficient means of combining model updates from various
nodes while ensuring data privacy. The chapter presents the technical details of the
aggregation approach and how it addresses the unique requirements of federated PV
power forecasting.

Chapter 5 presents the results of the research. A comprehensive performance comparison
is conducted, evaluating the forecasting accuracy of federated tree-based models against
traditional centralized models. The predictive capabilities of LightGBM and Catboost
in the federated learning setting are compared. In this chapter, the implications of the
obtained results are discussed in-depth. The forecasting performance of federated forest
models is interpreted, highlighting their strengths and limitations. The impact of the novel
aggregation approach on forecast accuracy and efficiency is analyzed.

Chapter 6 presents a concise summary of the key findings and contributions of the
thesis. The research objectives are revisited, and their fulfillment is affirmed. The
significance of the novel aggregation approach in the context of federated PV power
forecasting is emphasized, highlighting its potential impact on the field of renewable
energy forecasting.

5

Chapter 2

Background and Literature Review

In this chapter the background and related work is introduced that is necessary for
understanding the concepts of this thesis. This will range from research on time series
forecasting techniques to underlying concepts about federated learning.

2.1 Background

This section provides detailed technical background of all the concepts used in this thesis,
such as time series forecasting, evaluation metrics, tree-based models, and federated
learning.

2.1.1 Time Series Forecasting and Evaluation Metrics for Interval
Ranges

Time series forecasting and multivariate time series forecasting [20] are key tasks in
predictive analytics and machine learning, and they play an important role in gaining
valuable insights and generating informed decisions from temporal data. Time series
forecasting is concerned with predicting the future values of a particular variable over
time by examining its previousmeasurements. This analytical method is very useful when
dealing with data that has a distinct temporal pattern, such as stock prices in financial
markets, temperature measurements in climate research, or monthly sales numbers in
retail analytics. In time series forecasting, several well-established approaches are used,
each customized to particular data qualities and trends. Classical techniques, such as
Autoregressive Integrated Moving Average (ARIMA), are appropriate for stable time
series, whereas sophisticated models, such as Long Short-Term Memory (LSTM) neural
networks, are well-suited for capturing long-term relationships in sequences.

Multivariate time series forecasting, on the other hand, broadens the scope to include

6

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.1.1: Time series models [47]

7

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

the prediction of future values for many connected variables that change over time. The
behavior of these variables is interrelated in many real-world circumstances, and their
interactions can have a major impact on each other’s dynamics. In an e-commerce
scenario, for example, projecting the sales of multiple products at the same time
becomes critical, taking into account not just their past sales patterns but also the
influence of marketing efforts, consumer preferences, and external circumstances such
as holidays and special events. This interdependence presents modeling challenges and
complications since it necessitates capturing detailed linkages and dependencies between
variables.

To address these challenges, numerous specialized algorithms for multivariate time
series forecasting have been developed. Vector Autoregression (VAR) models, for
example, use lagged values from many time steps to model variable interdependence.
State space models provide a versatile framework for modeling temporal dynamics and
adding external variables. Deep learning methods, such as Multivariate Long Short-
Term Memory (MLSTM) networks, have showed significant promise in dealing with
complexmultivariate time series data, efficiently capturing both short-termand long-term
dependencies in recent years.

Both time series forecasting and multivariate time series forecasting are essential tools
for comprehending and predicting temporal data patterns. This expansion enables
decision-makers to get deeper insights, find complicated relationships, and generatemore
accurate forecasts in a variety of complex scenarios ranging from finance and economics
to healthcare and beyond. The significance of these forecasting techniques will continue
to be at the forefront of data science and predictive modeling as the value of temporal data
analysis develops in an increasingly data-driven world.

Mean Absolute Error (MAE)

Photovoltaic (PV) power forecasting is a crucial aspect of efficient energy management,
enabling grid operators and consumers to optimize energy consumption from renewable
sources. It is becoming increasingly important to accurately forecast the amount of power
generated by photovoltaic panels (PV), particularly solar power, in order to maintain the
stability of the power grid, reduce the amount of energy that is wasted, and facilitate the
smooth incorporation of renewable energy sources into the power grid. Theuse ofmachine
learning techniques has emerged as a powerful tool for improving the accuracy and
reliability of PV power forecasting. This has enabled more precise and timely predictions
to be made, even in the face of complex and dynamic weather conditions.

The Mean Absolute Error, or MAE, is a metric that is frequently utilized for the purpose
of evaluating the efficacy of various forecasting models. The MAE is a measure of the
accuracy of a model’s prediction that is both comprehensive and easy to understand. This
measure enables direct comparisons to be made between various methods of forecasting.

8

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

The MAE quantifies the extent to which the model’s predictions diverge from the actual
observations by calculating the average absolute difference between the predicted values
and the true values. A smaller MAE value indicates a higher level of accuracy, which
indicates that the model’s predictions are closer to the real world situation.

Within the framework of the study, the MAE was selected to serve as the primary
evaluation metric for the purpose of assessing the efficacy of a number of different PV
power forecasting models. The MAE served as a reliable and objective indicator of
prediction accuracy, which made it easier to make comparisons between the various
methods of forecasting in order to find the model that was the most successful.

Finding the average absolute difference between the values that were predicted and those
that were actually observed across all of the test samples was required in order to compute
the MAE. The MAE can be expressed in mathematical terms as follows:

MAE =
1

n

n∑

i=1

|yi − ŷi| (2.1)

Here, n denotes the number of test samples, yi represents the true value of the target
variable for the ith sample, and ŷi is the predicted value of the target variable for the ith

sample.

The mean absolute error (MAE) is a straightforward and easily interpretable metric that
provides insights into the overall accuracy of the model’s predictions. The mean absolute
error (MAE) is a measure that is used to determine how far, on average, the model’s
predictions stray from the actual values. This is done by evaluating the magnitude of the
absolute errors.

Using the MAE as the evaluation metric enabled quantitative comparisons of the
performance of various forecasting models, including the federated learning approach,
with conventional methods such as LightGBM and Catboost. These comparisons were
made possible by the fact that theMAEwas used as the evaluationmetric. The superiority
of the federated learning approach as a method for producing more accurate predictions
for PV power forecasting was demonstrated by the observed reductions inMAE associated
with that method.

In addition to this, the MAE delivered valuable information that helped identify areas
of the forecasting models that could use some improvement. For instance, if the MAE
was higher for certain weather conditions or time periods, this indicated that there may
be potential difficulties in capturing the variations in photovoltaic power generation or
consumption under those conditions. Having an understanding of such patterns made it
easier to fine-tune the model and improve its overall performance.

In conclusion, the Mean Absolute Error (MAE) was able to function as an effective

9

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

and objective evaluation metric for the PV power forecasting models. The adoption of
this approach allowed for the validation of the federated learning approach’s superiority
over conventional methods and provided valuable insights for further research and
improvements in sustainable energy management. Its adoption also allowed for the
validation of the superiority of federated learning over conventional methods. In spite
of the continued rise in popularity of renewable sources of energy, PV power forecasting
that is both accurate and reliable will continue to play a critical role in maximizing the
benefits that can be derived from these sources and fostering a more sustainable energy
future. The application of MAE in this study exemplifies the significance of employing
reliable evaluation metrics in advancing the field of photovoltaic power forecasting and
improving energy management practices for the purpose of making the world a greener
and more sustainable place.

Mean Quantile Loss (MQL)

When evaluating quantile regression models, particularly those used in PV power
forecasting, the Mean Quantile Loss (MQL) is an important metric that is used. Quantile
regression, as opposed to traditional regression, which focuses on predicting the mean of
the target variable, aims to predict different quantiles of the target variable, providing a
more comprehensive view of the data distribution. Traditional regression is focused on
predicting the mean of the target variable.

MQL =
1

N

N∑

i=1

LΣ(yi, ŷi) (2.2)

Here, N denotes the number of test samples, yi represents the true value of the target
variable for the ith sample, and ŷi is the predicted value of the target variable for the ith

sample.

The MQL is a measurement that determines how accurate the quantile predictions are,
and it reflects the degree to which themodel’s estimated quantiles coincide with the actual
quantiles of the target variable. It is computed as the average absolute difference between
the predicted quantiles and the true quantiles across a set of test samples. This difference
is taken across all of the samples. If the MQL is lower, this indicates that the model’s
estimated quantiles are closer to the true values. This, in turn, indicates that the prediction
accuracy is higher.

Because it enables a more in-depth comprehension of the uncertainty connected to the
predictions, the MQL is particularly useful in PV power forecasting. We are able to gain
insights into the model’s ability to estimate the variability of PV power production and
consumption by evaluating the performance of the model at various quantiles.

TheMeanQuantile Loss is a crucialmetric for assessing the accuracy of quantile regression

10

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

models in PV power forecasting. These models are used to predict the amount of power
that will be generated from photovoltaic cells. Utilizing it yields useful information
about the performance of the model at various quantiles, which enables a more in-depth
evaluation of prediction intervals and uncertainty estimation. We are able to improve the
reliability of PV power predictions and enhance sustainable energymanagement practices
if we incorporate the MQL into the process of evaluation.

Mean Prediction Interval Range (MPIR)

When evaluating prediction intervals in forecasting models, including PV power
forecasting, the Mean Prediction Interval Range (MPIR) is an essential metric to use. The
use of prediction intervals allows one to get an idea of the degree of uncertainty that is
associated with the model’s predictions by providing a range of values within which actual
observations are likely to fall with a certain probability.

The mean width of the prediction intervals across a group of test samples is what the
MPIR is designed to measure. If the MPIR is lower, this indicates that the prediction
intervals are more precise and narrower, which suggests that the uncertainty estimation
is improved.

MP IR =
1

N

N∑

i=1

(ŷu,i − ŷl,i) (2.3)

Here, N denotes the number of test samples, yi represents the true value of the target
variable for the ith sample, and ŷi is the predicted value of the target variable for the ith

sample.

When it comes to the forecasting of PV power, the MPIR is an extremely important
component in determining the accuracy of the prediction intervals. Accurate prediction
intervals provide grid operators and consumers with valuable information, which aids in
the making of informed decisions regarding energy consumption and the management of
the grid.

It is possible to conduct a thorough analysis of the performance of the forecasting model
by including the MPIR in the evaluation process alongside other metrics such as the
Mean Absolute Error (MAE) and the Mean Quantile Loss (MQL). This will allow for the
achievement of a comprehensive evaluation. Thesemetrics are improvedwith the addition
of the MPIR, which supplements them by providing insights into the model’s ability to
estimate uncertainty and overall reliability in PV power predictions.

When it comes to assessing the accuracy of prediction intervals in PV power forecasting,
the Mean Prediction Interval Range is an important metric to take into consideration.
Its application contributes to more informed decision-making in energy management

11

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

practices by providing valuable information about the uncertainty associated with the
model’s predictions. We are able to improve the precision and dependability of PV power
forecasting if we take into account the MPIR during the evaluation process. This will help
to contribute to energy utilization that is more efficient and sustainable.

2.1.2 Tree-Based Models

Tree-based models are a popular class of machine learning algorithms due to their ease
of use, interpretability, and versatility in a variety of tasks [49]. These models are built
on the decision tree concept, in which data is recursively partitioned into subsets based
on specific feature values. Each internal node in the tree represents a decision based
on a specific feature, while each leaf node represents a prediction or outcome. The
Random Forest, an ensemble learning technique that combines multiple decision trees
to make predictions, is one of the most popular tree-based models. Random Forests
are well-known for their robustness, resistance to overfitting, and ability to handle large,
high-dimensional datasets. Gradient Boosting is another powerful ensemble technique
that builds decision trees sequentially to correct errors from previous trees. Gradient
Boosting models, such as XGBoost and LightGBM, are widely used in machine learning
competitions and real-world applications due to their exceptional performance.

The interpretability of tree-based models is one of their main advantages [49]. Decision
trees provide an easy-to-understand visual representation of how the model makes
decisions. The reduction in impurity brought by each feature during tree construction can
easily be used to calculate feature importance. This information on feature importance
is useful for feature selection, understanding model behavior, and extracting actionable
insights from data.

Tree-based models [1] are also good at dealing with missing data. When they encounter
missing values during predictions, they can simply follow the available branches.
Furthermore, tree-based models are less sensitive to outliers than linear models. During
the recursive partitioning process, outliers are isolated, reducing their impact on the
overall model.

Regularization techniques can be used on tree-based models to prevent overfitting.
This includes limiting the maximum depth of trees, requiring a minimum number of
samples to split a node, and pruning to remove nodes that contribute little to the model.
Regularization improves the generalization performance of the model and keeps it from
becoming overly complex.

Tree-based models have a wide range of applications in a variety of domains [1]. They
are used in classification tasks such as customer churn prediction, sentiment analysis,
and spam detection. Tree-based models are used in regression tasks to predict house
prices, sales forecasts, and demand forecasting. Anomaly detection for network traffic,

12

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

fraud detection, and fault diagnosis are also useful to them. Tree-based models are
also important in developing personalized recommendation systems for e-commerce
platforms and content recommendations.

Discrete Trees

A discrete tree is a finite structure with a fixed number of vertices (nodes) and edges
(connections between nodes) [1]. The important feature of such trees is that each pair
of vertices is connected by a separate path of distinct edges. The vertices in this abstract
representation are not allocated precise places in space. However, by selecting a root
vertex and assigning it to the origin (0, 0,..., 0), the tree can be embedded in d-dimensional
space. The additional vertices are then transferred to points in d-space using either lattice
coordinates or unit length vectors. During the embedding process, several vertices of the
abstract tree may be transported to the same position in d-space.

Variousmodels of randomn-vertex abstract trees can be investigated to inject randomness
into both the tree structure and the embedding. Combinatorial models are based on
the assumption that all n-vertex trees are equally likely. However, multiple rules and
constraints on allowed degrees of vertices may exist, resulting in many versions of this
paradigm. Conditioned branching processes, on the other hand, include a population
process that begins with one person and ends with a random number of children (mean 1,
variance between 0 and 1). When this technique is applied to a total population size of n,
the resulting family tree has a random n-vertex structure. The combinatorial aggregation
model is another way, in which start with n vertices and no edges and then iteratively add
random edges that do not form a cycle until a random n-vertex tree is received.

Although these models appear to be different at first glance, some combination models
(with specific conventions) are known to be comparable to conditioned branching
process models (with specific offspring distributions). Furthermore, substantial
evidence, supported by research and interchange-of-limits arguments, reveals that the
combinatorial aggregation model corresponds with the other models as n approaches
infinity.

These randomn-vertex abstract trees have applications inmathematics, computer science,
and biology. They shed insights into population dynamics, network structure, and
branching process behavior. Understanding the features of these discrete tree models is
critical for many applications because it allows us to understand the statistical behavior of
complex systems and guides the development of efficient algorithms to analyze large-scale
networks and hierarchical data structures.

13

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Continuous Trees

Continuous trees are a fundamental machine learning model used to predict continuous
numeric values. They are also known as regression trees or decision trees for regression.
Continuous trees are specifically built to handle regression tasks, whereas typical
classification trees aremeant for discrete class label prediction. The purpose of regression
is to forecast a continuous output, like as the price of a house based on its qualities or the
sales of a product based on historical data.

A continuous tree’s fundamental structure is similar to that of a classification tree, with a
hierarchical arrangement of nodes expressing feature-based judgements [1]. A specific
attribute is examined at each internal node of the tree to discover the optimum split
that splits the data into subgroups with similar target values. The splitting procedure is
repeated until leaf nodes are reached, each of which corresponds to a specific region of
the input feature space.The ability of continuous trees to provide real-valued predictions
is what sets them apart. Once the tree is built, each leaf node is assigned a constant value,
which is often the average of the target values in that region. The prediction for unseen
data is made by traversing the tree, beginning at the root and following the path given by
the feature criteria until it reaches a leaf node. The forecast for the input data is the value
linked with the leaf node.

The interpretability of continuous trees is one of its major features. The resulting
tree structure may be viewed and comprehended, revealing important details about
how the model produces predictions. This transparency is especially useful in
instances where interpretability is critical for decision-making and comprehending the
underlying elements. Continuous trees also have the capacity to capture intricate non-
linear interactions between features and the target variable. Continuous trees can
successfully model sophisticated data patterns that linear models may not capture by
recursively partitioning the feature space based on the most informative splits.Despite
their advantages, continuous trees have certain limits. They are prone to overfitting,
particularly when the tree grows too deep and complicated. Techniques like as
regularization, pruning, and setting a limit depth for the tree are frequently used to address
issue.

Ensemble approaches such as Random Forest and gradient boosting frameworks like
as LightGBM have gained favor in recent years for enhancing the performance of
continuous trees. LightGBM, in particular, is well-known for its efficiency and speed in
constructing large ensembles of continuous trees, making it ideal for big data and real-
time applications.

14

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.1.3 Gradient Boosting Machine (GBM)

Gradient Boosting Machines (GBMs) are a potent class of machine learning algorithms
that fall under the umbrella of ensemble learning. These models excel in both regression
and classification tasks, leveraging the principle of boosting to sequentially train a series
of weak learners, where each learner focuses on rectifying the errors of its predecessor.
This cumulative refinement process ultimately produces a robust finalmodelwith superior
predictive capabilities. The core of GBMs lies in minimizing a chosen loss function, which
quantifies the disparity between predicted and actual target values. Through an iterative
approach, the algorithm calculates the negative gradient of the loss function concerning
the currentmodel’s predictions andupdates themodel in the direction of steepest decrease.
By introducing a learning rate, users canmodulate the step size of parameter adjustments,
balancing convergence speed with robustness. GBMs rely on a collection of weak learners,
often shallow decision trees or stumps, which, when combined, contribute significantly
to the ensemble’s overall strength. Regularization techniques, such as constraining tree
complexity or implementing early stopping, prevent overfitting and fine-tune model
performance. Notably, variants like XGBoost, LightGBM, and CatBoost have evolved
from the basic GBM algorithm, incorporating optimizations and efficiencies to cater to
specific challenges, solidifying GBMs as a favored choice for intricate data relationships
and accurate predictions in diverse machine learning applications.

Input:

• Training dataset: {(x1, y1), (x2, y2), . . . , (xn, yn)}

• Number of iterations: M

Initialize:

• Initial prediction: F0(x) = initial_prediction_value

Form = 1 toM :

1. Compute negative gradient: rim = −
[
∂L(yi,F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

2. Fit a weak learner (e.g., decision tree) to the negative gradient: hm(x) =

FitWeakLearner(X, rm)

3. Update the model: Fm(x) = Fm−1(x) + λ · hm(x)

Output:

• Final ensemble model: FM(x)

15

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Gradient Boosting Quantile Regressions

Gradient Boosting Quantile Regression (GBQR) is a powerful statistical technique used
for estimating conditional quantiles of a response variable. Unlike traditional regression
methods that focus on estimating the conditional mean, quantile regression provides a
more comprehensive picture of the data distribution by estimating various quantiles. This
approach is particularly useful when dealing with data that is asymmetric, heteroscedastic,
or contains outliers.

The GBQR algorithm is an extension of the gradient boosting machine (GBM) framework,
which is an ensemble learning technique that combines multiple weak learners (usually
decision trees) to create a strong predictive model. In GBQR, the objective is to minimize
a specific loss function known as the pinball loss, which quantifies the difference between
the actual response and the estimated quantile.

The process of GBQR involves iteratively fitting decision trees to the residuals of the
previous iteration. At each step, the decision tree is trained to approximate the negative
gradient of the pinball loss function, which ensures that the algorithm converges towards
more accurate quantile estimates. The hyperparameters, such as the learning rate,
number of trees, and depth of the trees, play a crucial role in controlling the model’s
performance and preventing overfitting.

Input:

• Training dataset: {(x1, y1), (x2, y2), . . . , (xn, yn)}

• Number of iterations: M

• Quantile levels: τ1, τ2, . . . , τk

Initialize:

• Initial predictions: F0,τ (x) = initial_prediction_value

Form = 1 toM :

1. For each quantile level τ , compute residuals:

ri,τ =

{
yi − Fm−1,τ (xi), if yi > Fm−1,τ (xi)

0, if yi ≤ Fm−1,τ (xi)

2. Fit a weak learner to the residuals: hm,τ (x) = FitWeakLearner(X, rτ)

3. Update the model for each quantile level:

Fm,τ (x) = Fm−1,τ (x) + λ · hm,τ (x)

16

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Output:

• Final ensemble quantile regression models: FM,τ (x) for τ = τ1, τ2, . . . , τk

LightGBM

LightGBM [27] stands out as an advanced open-source gradient boosting framework
developed by Microsoft. Its technical foundations lie in innovative strategies that
optimize and expedite the gradient boosting algorithm for machine learning tasks. One
of its key contributions is the introduction of histogram-based learning, which replaces
conventional data pre-sorting with histogram binning. This approach enhances memory
efficiency and accelerates training by facilitating efficient gradient computation and node
splitting during tree construction. A standout feature of LightGBM is its leaf-wise tree

Figure 2.1.2: LightGBM tree [46]

growth strategy as shown in 2.1.2, which strategically expands the tree by selecting the
leaf node with maximum loss reduction for expansion. This strategy often leads to deeper
and more accurate trees while preventing overfitting through built-in regularization
techniques. Additionally, the framework implements Gradient-based One-Side Sampling
(GOSS), a technique that intelligently selects a subset of data points based on gradient
information, effectively speeding up training whilemitigating overfitting risks. LightGBM
also supports exclusive feature bundling for categorical features, GPU acceleration for
training efficiency, and early stopping for optimal model convergence. The flexibility to
define custom objective functions andmetrics, as well as its compatibility with distributed

17

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

computing environments, further underline LightGBM’s technical versatility. Through its
active community of contributors and continual development, LightGBM remains at the
forefront of machine learning technology [23], providing researchers and practitioners
with an efficient and accurate tool for tackling challenging tasks, particularly those
involving large and intricate datasets.

Input:

• Training dataset: {(x1, y1), (x2, y2), . . . , (xn, yn)}

• Number of iterations: M

Initialize:

• Initial predictions: F0(x) = initial_prediction_value

Form = 1 toM :

1. Compute gradients and Hessians:

gi =
[
∂L(yi,F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

, hi =
[
∂2L(yi,F (xi))

∂F (xi)2

]
F (x)=Fm−1(x)

2. Construct histograms for features based on the gradients and Hessians

3. Find the best splits for each feature’s histogram

4. Create a new tree structure using the best splits

5. Update leaf values using a gradient-based optimization (e.g., Newton’s method)

Output:

• Final ensemble model: FM(x)

Catboost

Catboost stands as a significant advancement in gradient boosting frameworks with its
distinctive focus on effectively handling categorical features [40]. This framework’s
technical foundation is rooted in its innovative ”ordered boosting” technique, which
seamlessly integrates categorical variables into the boosting process. Unlike conventional
approaches that require one-hot encoding, Catboost employs a permutation-based
strategy, allowing it to naturally manage categorical attributes while conserving memory
and curtailing overfitting. The framework’s ordered boosting method sorts data points
based on categorical feature values, yielding balanced splits that contribute to superior
predictive accuracy during tree construction. Furthermore, Catboost adopts symmetric
tree structures to ensure consistent data distribution across leaf nodes, thus enhancing
themodel’s generalization capabilities. ImplementingGradient-basedOne-Side Sampling
(GOSS) amplifies training speed by selectively emphasizing data points with more

18

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

substantial gradients, simultaneously mitigating overfitting concerns. This framework
also offers an array of regularization techniques, encompassing L2 regularization and
diverse loss functions tailored to various tasks. Additionally, Catboost is GPU-accelerated,
boasts robust handling of missing values, supports early stopping, and facilitates feature
scaling, all contributing to its reputation for efficiency and practicality. As a memory-
efficient solution with integrated hyperparameter optimization tools, Catboost emerges as
a versatile and powerful gradient boosting framework, particularly well-suited for datasets
that encompass amix of data types, and remains a favored choice acrossmachine learning
applications.

Input:

• Training dataset: {(x1, y1), (x2, y2), . . . , (xn, yn)}

• Number of iterations: M

• Learning rate: η

• Categorical features: categorical_features

Initialize:

• Initial predictions: F0(x) = initial_prediction_value

Form = 1 toM :

1. Compute gradients and Hessians:

gi =
[
∂L(yi,F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

, hi =
[
∂2L(yi,F (xi))

∂F (xi)2

]
F (x)=Fm−1(x)

2. Construct histograms for features (including categorical features) based on the
gradients and Hessians

3. Find the best splits for each feature’s histogram

4. Create a new tree structure using the best splits

5. Update leaf values using a gradient-based optimization (e.g., Newton’s method)

Output:

• Final ensemble model: FM(x)

2.1.4 Distributed Learning Approaches

When considering distribution, there are two main ways of dividing the problem across
multiplemachines: parallelizing the data or parallelizing themodel [50]. It is also possible
to employ both methods simultaneously.

19

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

In the Data-Parallel approach, the data is divided asmany times as there are worker nodes
in the system. Each worker node applies the same algorithm to different datasets. All
worker nodes have access to the same model, either through centralization or replication,
resulting in a single coherent output. This technique is applicable to machine learning
algorithms that assume independent and identical distribution (i.i.d.) of data samples,
which includes most ML algorithms.

In the Model-Parallel approach, each worker node processes exact copies of the entire
datasets but operates on different parts of the model. The model is formed by aggregating
all the model parts. However, the model-parallel approach cannot be automatically
applied to every machine learning algorithm because the model parameters generally
cannot be divided. In the next section we expand upon this concept by introducing
federated learning that uses model-parallel approach.

LightGBM Distributed

LightGBM’s distributed mode is a sophisticated framework designed to harness the
power of distributed computing environments for efficient and rapid training on massive
datasets [27]. At its core, the distributed mode capitalizes on the strengths of data
and feature parallelism, asynchronous communication, and optimized histogram-based
learning.

When distributed across multiple worker nodes, the training dataset undergoes data
partitioning, with each worker taking responsibility for a distinct subset of data.
This data parallelism not only enables efficient processing of extensive datasets but
also facilitates load balancing to prevent performance bottlenecks.A central technical
innovation in LightGBM’s distributedmode revolves around its histogram approximation
technique. Each worker independently constructs histograms tailored to its local
data subset, capturing essential statistical insights required for informed node splits
during tree construction. Periodic merging of these local histograms ensures a
comprehensive understanding of the global dataset distribution, a crucial aspect of
accurate modeling.

The power of asynchronous communication amplifies training speed and accelerates
convergence. Workers independently update their models and gradients while
intermittently exchanging essential informationwith a central coordinator. This approach
minimizes idle time and fosters continual progress, even while communication is
underway. Fault tolerance mechanisms are also integrated into the framework. Should
a worker node experience failure, the training process can recover and continue without
substantial interruptions. The global synchronization points, such as histogram merging,
are designed to gracefully handle minor worker failures.

In addition to its distributed capabilities, LightGBM’s asynchronous communication and

20

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

optimization techniques distinguish it. The integration of data and feature parallelism,
along with the targeted use of asynchronous communication, drives its effectiveness
in handling enormous datasets and complex models. LightGBM’s distributed mode
showcases a remarkable synergy between theoretical innovation and practical application,
contributing to its reputation as a high-performance gradient boosting framework in
distributed computing environments.

2.1.5 Federated Learning

Federated learning (FL), as a distributed machine learning paradigm, presents an
innovative and privacy-preserving approach to PV power forecasting [12]. In this
decentralized framework, multiple devices or edge nodes within a smart energy grid
collaboratively contribute to training a global forecasting model without sharing their
raw data. Instead, each node performs local model training using its own data and only
communicates the model updates to a central server or aggregator. This unique approach
ensures that the sensitive PV power data remains decentralized and private, as the raw
data never leaves the individual devices or nodes.

By leveraging federated learning in PV power forecasting, several significant benefits are
achieved. Firstly, data privacy and security aremaintained since the rawdata is not shared,
minimizing the risk of data breaches or privacy violations. Secondly, federated learning
enables the utilization of collective knowledge fromvarious nodes, ensuring that the global
forecasting model is enriched with insights from diverse data sources.

This collective intelligence enhances the accuracy and generalization capability of the
forecasting model, particularly in dynamically changing environments. The application
of federated learning to PV power forecasting facilitates accurate predictions without
compromising the privacy of individual data sources. Each device or node contributes
to improving the global model’s accuracy through local model updates, while keeping
their respective data secure and private. This is especially crucial in scenarios where data
sharing might be restricted due to privacy regulations, ownership concerns, or sensitive
information.

Centralized Federated Learning

In Centralized FL, a central server coordinates model training across multiple client
devices [12]. The server sends the model’s initial parameters to clients, who compute
updates using their local data. These updates are then aggregated on the server to refine
the model. While providing better control over the learning process, this approach may
raise privacy concerns due to central data aggregation.

21

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.1.3: Centralized Federated Learning [12]

Decentralized Federated Learning

In contrast, Decentralized FL operates without a central server. Client devices
directly communicate and collaboratively update the model [12]. This mode minimizes
privacy risks associated with central aggregation, but it introduces challenges such as
communication overhead and synchronization issues.

Heterogeneous Federated Learning

Heterogeneous FL extends FL to handle varying device capabilities, network conditions,
and data distributions [12]. It accommodates devices with distinct processing power and
data characteristics. This adds complexity to aggregation methods, as different devices
may contribute unequally.

Iterative Nature

Federated Learning often follows an iterative pattern. In each round, clients update the
model using local data and communicate with a central entity to aggregate updates. This
iterative process iteratively enhances themodel’s accuracy whilemaintaining data privacy.
Techniques like Federated Averaging are used for aggregation, where model parameters
are averaged to create a new global model.

22

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.1.4: De-centralized Federated Learning [12]

Figure 2.1.5: Federated Learning steps [13]

23

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Aggregation Algorithms

Federated Stochastic Gradient Descent (FedSGD) operates within the framework of
traditional stochastic gradient descent (SGD), wherein gradients are calculated on mini-
batches comprising a fraction of total data samples [13]. In the federated context, these
mini-batches resemble distinct client devices housing localized data.

In FedSGD, the central model is disseminated to clients, with each client independently
computing gradients using its local data. These gradients are then transmitted to the
central server, which amalgamates them in proportion to the number of samples per client.
This collective effort culminates in the calculation of the gradient descent step, effectively
advancing the central model.

Federated Learning with Dynamic Regularization (FedDyn) addresses the regularization
aspect present in traditional machine learning, where penalties are introduced to the loss
function for enhanced generalization [13]. In federated learning, the global loss originates
from local losses derived across heterogeneous devices. Acknowledging the divergence
betweenminimizing global and local losses due to client disparities, FedDyn endeavors to
generate regularization terms for local losses. This dynamic regularization adapts to data
statistics, such as data volume or communication costs, thereby harmonizing local losses
to converge towards the global loss.

Federated Averaging (FedAvg) extends the FedSGD paradigm [13]. Here, clients
undertake multiple local gradient descent updates and share the adjusted weights
of their local models. The central server aggregates these client weights, thereby
consolidating the model parameters. By starting from a shared initialization, Federated
Averaging generalizes the concept of FedSGD—averaging gradients aligns with averaging
weights. Consequently, Federated Averaging accommodates local weight tuning before
transmission to the central server for collective averaging.

Input:

• Clients: C1, C2, . . . , Cn

• Initial global model: M0

• Number of communication rounds: T

For t = 1 to T :

1. For each client Ci:

• Update local model: M t
i ← M t−1

i − η∇fCi
(M t−1

i)

24

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2. Calculate weighted average of local models:

M t ← 1

n

n∑

i=1

wiM
t
i

3. Update global model: Mglobal ← M t

Output:

• Trained global model: Mglobal

FLWR (A Friendly Federated Learning Framework)

FLWR (A Friendly Federated Learning Framework) is an advanced federated learning
framework that was designed to tackle the challenges of scalability, compatibility, and
deployment in real-world systems, and that is what we will be discussing in this section
of the methodology. Researchers and developers are given the ability to work with a large
number of clients through the use of Flwr, which enables workloads with tens of millions
of clients to be completed without a hitch. The machine learning framework is agnostic
to other machine learning frameworks, which makes it compatible with widely used
options such asKeras andPyTorch and even rawNumPywithout automatic differentiation
[15].

One of Flwr’s most notable qualities is its adaptability, which allows it to run on a
wide variety of platforms, including mobile, edge devices, and the cloud. Flower can be
used by researchers on servers such as Amazon Web Services, Google Cloud Platform,
and Microsoft Azure, as well as on mobile devices running Android and iOS. Flower is
compatible with even edge devices such as Raspberry Pi and Nvidia Jetson, which makes
it easier to conduct research and deploy across a wide variety of environments.

Flwr acts as a bridge between research and production, providing a seamless transition
from the conception of an idea to its actual implementation. Models developed using
Flower can be easily integrated into real-world systems with minimal engineering effort
and proven infrastructure. This process, which begins as a research project, is made
possible by Flower.

Flwr’s ability to function across a variety of operating systems and hardware platforms
is made possible by the fact that it is platform-agnostic. Because of its adaptability, it is
ideally suited for heterogeneous edge device environments, in which various devices may
run on a variety of different configurations.

Another one of Flwr’s defining characteristics is its usability. Developers are able to
construct a fully functional federated learning system with only twenty lines of Python
code. Researchers and developers will have amuch simpler time getting started with their

25

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

preferred machine learning frameworks thanks to the user-friendliness of the framework
and the comprehensive code examples it provides.

Researchers and developers are given the ability to conduct large-scale distributed
machine learning with relative ease thanks to its capability as a robust and scalable
federated learning framework. Flower is a leading choice for developing privacy-
preserving and scalablemachine learning solutions for a variety of real-world applications
due to its compatibility with a wide variety of frameworks and platforms, as well as its
seamless integration from research to production.

2.2 Literature Review

The literature on PV power forecasting is vast and covers various aspects like data
collection, preprocessing, feature selection, and model selection. The use of ML
techniques for PV power forecasting has been explored by various researchers. Classical
ML techniques like Support Vector Machines (SVM), Artificial Neural Networks (ANN),
and Random Forests (RF) have been used to predict PV power generation. Deep Learning
(DL) techniques like Convolutional Neural Networks (CNN), Long Short-Term Memory
(LSTM), and Autoencoders have also been applied to PV power forecasting. With all
these developments the need for finding best model for time series forecasting becomes
imminent.

2.2.1 Time Series Forecasting

Recently, deep learning techniques such as Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) have been applied to time series point forecasting.
Authors of [32] conducted a review on the use of deep learning in time series modeling
across various fields of study.

A study [8] conducted a comparative study on the performance of different RNNs applied
to the Short Term Load Forecasting problem and concluded by arguing that ERNN and
ESNmay represent themost convenient choice in time series prediction problems, both in
terms of performance and simplicity of their implementation and training. Authors of [10]
investigated the application of attention models for Seq2Seq models on both univariate
and multivariate time series. These extensions perform significantly better than the
original attention model as well as state of-the-art baseline methods based on ARIMA
and random forests [9] applied dilated CNNs specifically on financial time series, and
concluded that even though time series forecasting remains a complex task and finding one
model that fits all is hard, they showed that the WaveNet is a simple, efficient and easily
interpretable network that can act as a strong baseline for forecasting. Nevertheless there
was still room for improvement. However, these studies were all based on the Recursive

26

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

strategy.

Researchers in [44] analyzed the performance of different multi-step strategies using a
Multi-Layer Perceptron (MLP), highlighting the effectiveness of the Direct Multi-Horizon
strategy. For probabilistic forecasting using encoder-decoder models, [48] proposed
DeepAR, a Seq2Seq architecture that utilizes an identical encoder and decoder. DeepAR
directly outputs parameters of a Negative Binomial distribution. This approach is similar
to [38], where an MLP predicts Gaussian parameters. The training of DeepAR involves
maximizing likelihood and using Teacher Forcing during training, while during prediction,
it samples from the estimated parametric distribution multiple times to generate a series
of sample paths. Theirmethod differs fromDeepAR by using themore practically relevant
Multi-Horizon strategy, a more efficient training approach, and directly generating
accurate quantiles.

In the domain of quantile forecasting using neural networks, [45] used anMLP to generate
quantile forecasts for financial returns, while [55] designed a quantile autoregressive
neural network for stock price prediction. This approach fed previously estimated
quantiles into the model instead of the mean estimate or a sampled instance. Neither of
these approaches utilized sequential nets and their temporal nature effectively. Taylor’s
approach relied on an external model, and this approach faced challenges in justifying the
feedback of quantiles into the model.

Study [53] presents a framework that addresses general probabilistic multi-step time
series regression. Their approach leverages the power of Sequence-to-Sequence Neural
Networks, such as recurrent and convolutional structures, to capture the temporal
characteristics of the data. They also utilize the non-parametric nature of Quantile
Regression for probabilistic forecasting. Additionally, they take advantage of the efficiency
offered by Direct Multi-Horizon Forecasting.

In reference [56], the authors introduce a neural network model based on quantile
regression for load forecasting, aiming to estimate the range of uncertainty in load
predictions. In [41], the authors focus on developing an uncertainty model for PV
generation using regression techniques. They employ quantile scores as a metric to
measure the uncertainty in their forecasts. Similarly, in [2], the authors employ bootstrap
confidence intervals to quantify the uncertainty in predictedPVpower. The authors of [43]
discuss the forecasting uncertainty specifically for residential net load. In this particular
article, the authors evaluate various machine learning models and provide additional
insights regarding the impact of factors such as prosumer location, load consumption
profile, and dataset size on prediction accuracy. While common assessment metrics like
Root Mean Square Error (RMSE), MAE, and pinball loss function are mentioned, this
paper offers a broader examination of these models and presents novel findings related
to the mentioned influencing factors. The evaluation results demonstrate the superior
performance of the proposed Bayesian deep learning-based method and highlight the

27

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

improvements contributed by the Clustering Stage and the PV visibility.

A latest research [3] implementedmultipleMachine Learning (ML)models to forecast the
power generation of photovoltaic (PV) systems and the household consumption in a smart
energy grid. Additionally, they incorporated a measure of uncertainty in their predictions
by providing quantile values as bounds to assess the level of uncertainty.

For nearly a decade, there has been active research on processing large amounts of time
series data. One notable work in this field focuses on processing trillions of subsequences
of time series using the dynamic timewarping distancemeasure, which is computationally
expensive. Since then, several new proposals have emerged to tackle the challenge of
processing time series data on an even larger scale. These include the FastShapelet (FS)
algorithm [42], which reduces the time complexity of the original method at the expense
of accuracy, a generic and scalable framework for automated anomaly detection in large-
scale time series data [25], a fast and scalable Gaussian process modeling approach for
astronomical time series [16], and a scalable distance-based classifier for time series called
proximity forest [34]. These works demonstrate the increasing interest in processing
larger sets of time series data. However, these approaches still face limitations imposed by
traditional computationmodels and systems, such as insufficient resources to handle large
problems, which can lead to memory storage issues or unacceptable running times.

To address the aforementioned limitations, the Distributed FastShapelet Transform
(DFST) algorithm [5] was introduced as the first time series classification algorithm
developed in a distributedmanner. DFST combines the low complexity of the FastShapelet
(FS) algorithm with the performance of the Shapelet Transform (ST) [29]. ST uses
the distance between selected shapelets and each time series in the dataset as input
features, making it a feature-based method. The performance of ST depends on the
machine learning algorithm used on the transformed dataset, but it achieves competitive
results compared to the best state-of-the-art approaches. Additionally, the DFST method
allows the application of existing vector-based algorithms in Apache Spark to time series
problems, expanding the range of tools available for processing this type of data. However,
this approach is limited to supervised problems.

2.2.2 Distributed Time Series Forecasting

Time series analysis presents unique characteristics compared to traditional vector-
based problems. These include time dependency, trend, seasonality, and stationarity,
among others, which must be taken into account when designing algorithms. These
characteristics add complexity to the methods or impose certain limitations on them,
making it challenging to apply the proposed methods in distributed environments. For
example, the FS algorithm analyzes the entire dataset sequentially to construct the
best decision tree based on the discovered shapelets, evaluating each shapelet with the

28

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

complete dataset. In contrast, DFST evaluates shapelet candidates in a distributed
manner on the data available in each node and saves the most valuable ones. This
is necessary because the shapelet evaluation process is computationally demanding,
making it infeasible to apply it to the complete dataset in Big Data environments. In
addition to the feature-based approach used in DFST and ST, there are other works
that focus on extracting features from time series data without relying on shapelets.
These approaches involve applying various mathematical operations to derive valuable
information about the underlying structure and behavior of time series [17, 18], selecting
the most representative features based on theoretical considerations [22], or conducting
extensive experimentation to identify a set of 22 characteristics [33] that are deemed the
most representative among the original set of features. Unsupervised feature extraction
techniques have been successfully applied in other domains [39]. Recently, it has been
demonstrated that a set of well-known complexity measures and time series features can
achieve competitive results in univariate [4] andmultivariate [6] time series classification.
To extend this approach to a distributed environment [19], it is necessary to filter and
prepare the selected features to be completely independent of each other and not rely on
relationships between different time series or additional information. These conditions
allow for their inclusion in a distributed environment, thereby expanding the limited range
of tools available for time series processing in Big Data environments.

Authors of [7] proposes the Scalable and Distributed Transformation for Univariate
and Multivariate Time Series (SCMFTS) using a MapReduce framework, which enables
a scalable and distributed approach for processing time series data in Big Data
environments. SCMFTS is based on well-known time series features and aims to provide
a traditional vector-based representation for time series data. By transforming time
series data into this vector-based representation, SCMFTS enables the application of
algorithms that are not specifically designed for time series problems. The SCMFTS
approach leverages the MapReduce paradigm to distribute the computation needed for
transforming time series data across multiple machines in a cluster. The map operation
applies the transformation independently to each instance of the dataset, while the reduce
operation combines the results from the map operation. This distributed approach allows
SCMFTS to handle large volumes of time series data that would be impractical to process
on a single machine. By utilizing well-known time series features, SCMFTS provides a
vector-based representation that can be used with a wide range of algorithms. This means
that existing algorithms that are not specifically tailored for time series analysis can be
applied to time series problems using SCMFTS. This approach expands the available tools
for processing time series data in Big Data environments, allowing for more efficient
and scalable analysis. Overall, SCMFTS offers a scalable and distributed transformation
method for univariate and multivariate time series data, enabling the use of non-time
series specific algorithms and increasing the capabilities of time series analysis in Big Data
environments.

29

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Open Prediction System (OPS) [20], an automated system for developing predictive
models. OPS is a versatile predictive system that can be applied to various problem
domains. It specifically focuses on predicting outcomes in multivariate time series data,
addressing challenges commonly faced by utility companies involved in the distribution
and control of their commodities.

2.2.3 Federated Learning based Forecasting

Federated Learning (FL) is a technique that enables a set of devices to train on local data
and send updates to a shared model using distributed stochastic gradient descent (SGD)
[35]. It has shown promise in numerous fields, including IoT-based energy control in
smart buildings [11, 36], public health [24], traffic prediction [31], and load forecasting
[14, 37]. FL has also been used in predicting socio-demographic characteristics for energy
utilities to offer diversified services to their consumers [51]. Researchers have compared
FL with centralized and localized forecasting in electrical load forecasting, and the results
show that FL performs better than centralized forecasting in situations where access to
training data is not possible but is worse than localized forecasting [37]. A recent study
[26] proposes an innovative federated deep generative learning framework for renewable
scenario generation, which outperforms the state-of-the-art centralizedmethods. Another
study [28] introduces an FL-based Bayesian neural network (FL-BNN) to preserve the
privacy of utilities in behind-the-meters (BTMs) estimation, enabling a customizedmodel
for each client. The FL-BNN model outperforms the centralized BNN model and other
benchmarks. However, the existing work related to FL-based solar forecasting [57]
lacks an in-depth analysis of the impact of different input variables, despite the highly
correlated time series used for training. Although the FL training process keeps raw
data decentralized, optimizing a shared model can be vulnerable to non-IID data [21].
Therefore, the proposed forecasting scheme aims to trainmultiple customizedmodels that
fit various real-world data sources instead of a global model.

In [52], a new solar forecasting framework is introduced that combines a spatial and
temporal attention-based neural network (STANN) with federated learning (FL). The
framework is designed to handle multi-horizon forecasting scenarios ranging from 5 to 30
minutes. The STANNmodel is composed of a feature extractor and a forecaster, which can
be trained on different local datasets for improved localization. The framework allows for
global parameter aggregationwithout the need for data gathering, which further enhances
the accuracy of the forecasts. The FL technique employed in the frameworkmakes it highly
flexible and adaptable to a variety of data sources.

The raw data stays at each location while the weights from several local models are
combined on a central server to create a common model. This aggregation functions
well for parametric approaches like Linear Regression and Neural Networks since it is
simple to compute an average or other kind of aggregate of the values. However, it is still

30

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

not obvious how non-parametric ML techniques like Random Forests and Decision Trees
can be combined in this way. [54] and [30] have provided some insights on performing
federated learning on tree based models.

Authors of [30] address these issues and propose Federated Forest, a privacy-preserving
machine learning model that achieves the same level of accuracy as the non-privacy
preserving approach. Federated Forest is a lossless learning model of the conventional
random forest method. They built a secure cross-regional machine learning system on top
of it that enables a learning process to be jointly trained over clients from various regions
using the same user samples but different attribute sets, processing the data stored in each
of them without transferring their raw data.

Authors of [54] suggest Pivot, a cutting-edge approach to privacy-preserving vertical
decision tree training and prediction, which makes sure that only the final tree model
and the prediction output, as agreed to by the clients, are disclosed. Pivot does not rely
on any reliable third parties and offers defense against a marginally honorable adversary
who might compromise m out of m clients. However this area is still open for new
developments and integration into an existing frameworks.

2.3 Relation to Research Questions

1. How does Federated learning impact forecast accuracy of Multi-Variate Time Series
Forecasting in the context of Renewable Energy Systems?

2. How can Federated Learning be implemented on tree-based models?

In this entire background and literature review section, the key components to understand
these questions and finding relevant answers were discussed. There was detailed
discussion on Multi-Variate Time Series and tree-based models like LightGBM and
Catboost. Background and relevant research on these topics was presented to familiarize
readers with them. Secondly, the evaluation metrics were presented and explained in
depth to allow readers to understand how the performance of forecasts of these models
can found to answer the question. Lastly there was introduction of Distributed Learning,
and consequently Federated Learning that is the key topic in this research question. Alot
of research work has been reviewed to show readers what has been already achieved in
this topic, and what is yet to be discovered, especially in domain of Renewable Energy
Systems.

31

Chapter 3

Design

One way to implement federated learning for PV production and consumption forecasting
models is to use a federated learning framework. This framework consists of a central
server and multiple clients, each of which has its own local data. The server sends the
model parameters to each client, and the clients train the model on their local data. The
clients then send the updatedmodel parameters back to the server, which aggregates them
and updates the globalmodel. This process is repeated formultiple rounds until themodel
converges.

To apply federated learning to PV production and consumption forecasting models, the
data from different sources must be preprocessed and standardized to ensure consistency
across the different sources. Thismay involve normalizing the data, removing outliers, and
filling in missing data. The model must also be designed to handle the variability in the
data from different sources and to be robust to changes in the data distribution over time.
Another consideration when using federated learning for PV production and consumption
forecastingmodels is the selection of the clients that participate in the training and testing
process. The clients should be selected to represent a diverse set of data sources to ensure
that themodel is trained on a representative sample of the data. The clients should also be
selected based on their ability to contribute high-quality data to the training process.

3.1 Data Collection

The collection of data from seven different households located in Uppsala, Sweden, over
a period of 14 months was done and provided by authors of [3]. This work is extension
of research in [3]. The data was recorded at an hourly resolution and served as the
foundation for creating a comprehensive dataset used to train and evaluate our forecast
algorithm. This dataset is represented as an N × k feature matrix, where N represents
the number of data points, and k denotes the number of features. Each feature vector

32

CHAPTER 3. DESIGN

within the matrix contains a combination of household measurements and additional
weather-related features obtained from the Swedish Meteorological and Hydrological
Institute (SMHI). The inclusion of these weather features was intended to enhance the
accuracy of our machine learning model in predicting both photovoltaic (PV) production
and household energy consumption.

Table 3.1.1 presents theweather features thatwere integrated into the dataset, eachwith its
respective unit ofmeasurement. These features include temperature, dew point, humidity,
precipitation, wind direction, wind speed, air pressure, and global radiation. On the other
hand, Table 3.1.2 outlines the prosumer features incorporated in the dataset, which are
directly related to individual households and their energy dynamics. These prosumer
features include bought power, produced power from the installed PV system, sold power
back to the main grid, and the total consumed power by the household. By combining
the prosumer features with the weather features, we aimed to create a comprehensive
dataset that captures the key factors influencing PV production and energy consumption
in households. It is worth noticing as the data is captured per hour, and denotes value
of power for that hour, it is taken in Watts (W). This will stay the metric for all the true
values of power productions and consumption and their predictionsmade in course of this
research.

This dataset was utilized to train and evaluate our machine learning model, with the
ultimate goal of improving the accuracy of PV production and consumption predictions
for smart energymanagement systems. By leveraging the wealth of information from both
householdmeasurements and weather-related data, we sought to enhance the capabilities
of our forecast algorithm and provide more reliable and efficient energy management
solutions for residential prosumers.

Feature Unit

Temperature C
Dew Point C
Humidity Percentage
Precepitation L/m2

Wind Direction Degrees
Wind Speed m/s
Air Pressure mBar

Global Radiation W/m2

Table 3.1.1: Weather Features

33

CHAPTER 3. DESIGN

Feature Unit

Bought Power W
Produced Power W
Sold Power W

Consumed Power W W

Table 3.1.2: Prosumer Features

3.2 Data Preprocessing

The outcome variable represents either the production or consumption of electricity by
the household. The consumption value is derived from the equation:

PConsumed = PImport + PProduced−PExport (3.1)

where PImport represents the electricity bought from the main energy grid, PProduced is
the electricity generated by the installed PV system, and PExport is the electricity sold
back to the main grid. Figures 3.2.1 3.2.2 in the paper shows histograms and Kernel

Figure 3.2.1: Histograms of the power production with fitted KDEs [3]

Density Estimations (KDE) of the produced and consumed power. Figure 3.2.1 displays
the histogram of produced power, with and without night times. During training and
evaluation, night times were removed for production data since PV cells do not generate
electricity at night. Figure 3.2.2 illustrates the consumption of all prosumers (households
with PV systems). Notably, P Consumed can sometimes fall into the negative range in
the observed dataset, indicating instances when the household sells stored energy from its
battery back to the main grid without producing or buying additional energy.

34

CHAPTER 3. DESIGN

Figure 3.2.2: Histograms of the power consumption with fitted KDEs [3]

3.3 Model Selection

The model selection process in our research involved considering two powerful gradient
boosting algorithms, namely LightGBM and CatBoost. These algorithms are well-known
for their efficiency, scalability, and ability to handle categorical features effectively. Three
models for upper quantile, lower quantile, and mean are created for both of them. To
ensure the optimal performance of thesemodels, GridSearchCV is employed, awidely used
hyperparameter tuning technique.

3.3.1 LightGBM

LightGBM(LightGradientBoostingMachine) [23] has emerged as a powerful and efficient
tool for accurate PV power forecasting. As the integration of solar energy sources
continues to grow, the need for precise and reliable predictions of PV power generation
becomes crucial for grid stability and efficient energy management. LightGBM’s
exceptional speed and efficiency are major advantages, making it capable of processing
large-scale datasets with high-dimensional features efficiently. This is particularly
valuable in real-time applications, where quick updates and adjustments are required as
weather conditions change rapidly.

One of the significant challenges in PV power forecasting is dealing with the nonlinear
behavior of solar energy generation due to varying weather conditions and other factors.
LightGBM’s ability to build complex models by combining multiple decision trees allows
it to capture these nonlinear relationships effectively. This enhances the accuracy of PV
power forecasts, as themodel can adapt to the dynamic and intricate nature of solar energy

35

CHAPTER 3. DESIGN

generation.

Moreover, LightGBM natively handles categorical features without the need for extensive
data preprocessing, making it well-suited for PV power forecasting tasks. Categorical
variables such as weather conditions, time of day, and day of the week can be critical
predictors for PV power generation. LightGBM efficiently utilizes this information in
its models, enhancing the forecasting accuracy by considering the impact of various
factors.

PV power generation datamay contain outliers due to factors like equipmentmalfunctions
or unusual weather events. LightGBM’s robustness to outliers ensures that these
extreme values do not unduly influence the forecasting model. This feature is essential
for maintaining the accuracy and reliability of the forecasts even in the presence of
unpredictable events.

As the deployment of solar energy systems expands, the volume of data for PV power
forecasting also grows. LightGBM’s scalability and support for distributed computing
make it well-suited for handling large datasets, allowing it to scale efficiently and meet
the demands of increasing data volumes.

Additionally, LightGBM can be adapted to provide forecasts for different quantiles,
offering amore comprehensive understanding of the uncertainty associatedwithPVpower
predictions. This ability is particularly valuable in decision-making processes that require
quantifying risk and reliability. By providing forecasts for various quantiles, LightGBM
allows energy planners and grid operators to make more informed decisions and design
robust energy management strategies.

Furthermore, LightGBM’s ability to provide insights into feature importance allows
domain experts to understand which variables have the most significant impact on the
forecasted PV power output. This knowledge can be leveraged to optimize the design
and maintenance of solar energy systems, leading to improved energy utilization and
efficiency.

3.3.2 Catboost

Catboost [40], an open-source machine learning library developed by Yandex, has
emerged as a powerful tool for accurate PV power forecasting. Its unique features make
it well-suited for handling the challenges in predicting photovoltaic power generation.
One of the key advantages of Catboost is its native handling of categorical features
without requiring manual preprocessing, allowing it to efficiently incorporate weather
conditions, seasonal variations, and time of day as essential predictors for accurate
forecasts. Moreover, Catboost’s robustness to overfitting is crucial when dealing with
noisy PV power generation data, ensuring that the model does not excessively fit to noise

36

CHAPTER 3. DESIGN

and maintains its accuracy.

In addition to handling nonlinear relationships effectively, Catboost’s built-in support
for time series data is highly relevant for PV power forecasting, as it can capture
temporal patterns in solar energy generation. Furthermore, the library’s default
hyperparameter settings often provide competitive performance, reducing the need for
extensive tuning and simplifying the modeling process for users without deep machine
learning expertise.

Another advantage of Catboost is its interpretability, offering insights into feature
importance, enabling energy experts to understand which variables contribute the most
to PV power forecasts. This transparency enhances the overall understanding of the
forecasting process and validates the relevance of domain-specific features.

Catboost’s ability to be accelerated using GPUs further improves its computational
efficiency, making it suitable for large-scale training tasks, especially when dealing with
extensive historical data for PV power forecasting.

Incorporating Catboost into PV power forecasting pipelines empowers researchers and
energy experts to build robust and accurate prediction models. Its efficient handling
of categorical features, robustness to overfitting, and support for time series data make
it an excellent choice for capturing the complexity of solar energy generation patterns.
Moreover, its ease of use with default hyperparameters and interpretability features make
it accessible to a wide range of users, contributing to efficient and effective forecasting in
the renewable energy domain.

3.3.3 Quantile Regression

Quantile Regression (QL) is a technique used in machine learning to estimate specific
quantile values of a target variable. It involves training separate models for each quantile
value of interest using the quantile loss function, as defined in Equation 3.2. The quantile
loss function shown in Equation 2.2 allows the model to focus on predicting the desired
quantile of the target variable, rather than the mean, which is the focus of traditional
regression methods.

L(y, ŷp; p) = max(p(y − ŷp), (1− p)(ŷp − y)) (3.2)

QR aim to estimate three quantile values: ŷl, ŷm, and ŷu, representing the lower, median,
and upper quantiles, respectively. Each quantile value is associated with a specific level
of uncertainty in the data. For example, ŷmrepresents the median, which divides the data
into two equal halves, while ŷl and ŷu provide estimates for the lower and upper bounds,
respectively.

37

CHAPTER 3. DESIGN

To achieve this, separate models are trained for each quantile value, using the quantile
loss function during training. The quantile loss function penalizes the model differently
based on the quantile value being estimated, and this encourages the model to produce
more accurate predictions for the corresponding quantile.

The beauty of QR is its flexibility in choosing the regression algorithm. Any regressor
that can use the quantile loss function during training is suitable for QR. This means that
various regression algorithms, such as linear regression, decision trees, random forests,
or even more advanced techniques like gradient boosting algorithms (e.g., LightGBM,
Catboost) can be utilized for QR. This flexibility allows us to tailor the choice of regression
algorithm to the specific characteristics of the data and the problem at hand, ultimately
leading to more accurate and robust quantile estimations.

3.3.4 Hyper-Parameters

Hyperparameters are parameters that are set before the learning process begins and
cannot be learned directly from the data. In order to achieve the best possible
performance from tree-based models like Gradient Boosting Machines (GBM), there are
a number of significant hyperparameters that need to be tuned. The following are some
hyperparameters that are frequently used in forest-based models:

1. Max Depth (max depth): This hyperparameter determines the maximum depth that
can be reached by any one of the individual decision trees that make up the ensemble. A
deeper tree has the potential to recognize more intricate patterns in the data, but it also
raises the risk of overfitting. It is essential to set an appropriate value for the max depth
variable in order to strike a balance between the level of model complexity and the level of
generalization.

2. NumLeaves (num leaves): This hyperparameter in LightGBMallows the user to specify
the maximum number of leaves that can exist on a single tree. Increasing the number of
leaves in a model can make the model more complicated, but it also raises the possibility
that the model is being overfit. It is absolutely necessary to tune this parameter in order
to achieve the best possible balance between the generalization and complexity of the
model.

3. LearningRate (learning rate): Also knownas the shrinkage rate or step size, the learning
rate determines the size of the step at which the model is updated during each boosting
iteration. The learning rate is controlled by the learning rate variable. The model may
become more robust and it may be easier to avoid overfitting if the learning rate is slowed
down. However, in order to achieve goodperformance, itmay require additional iterations
of the boosting process.

4. N Estimators (n estimators): The value of this hyperparameter indicates the total

38

CHAPTER 3. DESIGN

number of boosting stages and trees that are included in the ensemble. Improving the
performance of themodel by increasing the number of estimatorsmay come at the expense
of an increase in the computational cost. It is necessary to strike a healthy balance between
the amount of training time spent and the performance of the models.

5. Subsample (subsample): This hyperparameter controls the fraction of samples that
are used for fitting the individual trees in each boosting iteration. The default value for
this hyperparameter is 1. Randomness is introduced into the training process when the
subsample parameter is set to a value that is less than 1.0. This can help improve model
generalization.

6. The Colsample Bytree (colsample bytree) hyperparameter is used in XGBoost to specify
the fraction of features that will be randomly selected for each tree. It adds an element of
randomness and has the potential to help reduce overfitting by employing a unique subset
of features for each tree.

7. Reg Alpha (reg alpha): This hyperparameter, which also goes by the name L1
regularization, includes an L1 penalty term in the objective function while it is being
trained. It does this by encouraging sparsity in the importance of features, which helps
to prevent overfitting.

8. Reg Lambda (reg lambda): This hyperparameter, which is also referred to as L2
regularization, includes an L2 penalty term in the objective function while it is being
trained. It does this by assigning a penalty to large coefficient values, which helps to
prevent overfitting.

Because it has such a direct bearing on the performance of the model and its capacity
for generalization, hyperparameter tuning is an essential step in determining the values
that should be used for these parameters. When looking for the optimal combination of
hyperparameters, it is common practice to employ search strategies such as grid search,
random search, or Bayesian optimization. In addition, the performance of the model is
assessed using cross-validation in order to prevent overfitting and evaluate how well it
works with a variety of hyperparameter settings.

3.3.5 GridSearchCV

GridSearchCV is a systematic approach that automatically explores a pre-defined set
of hyperparameters for each model and evaluates their performance on the dataset.
It exhaustively searches through all possible combinations of hyperparameter values,
facilitating the identification of the best combination that maximizes the model’s
performance. In tables 3.3.1 and 3.3.2 for both LightGBM and CatBoost, we defined a
range of hyperparameter values to explore during the GridSearchCV process.

The hyperparameters included learning rates, tree depths, number of estimators,

39

CHAPTER 3. DESIGN

regularization parameters, and more, depending on the specific requirements of each
algorithm. GridSearchCV then assessed the performance of each model using cross-
validation, which involves splitting the dataset into multiple subsets and iteratively
training the model on one subset while evaluating it on the other. This helps prevent
overfitting and provides a more robust evaluation of the models.

Using GridSearchCVwith LightGBM, Catboost, or any othermodel in a federated learning
context can yield benefits, it’s essential to strike a balance between optimizing model
performance and minimizing communication overhead. Customizing hyperparameters
for federated learning characteristics can lead to improved convergence and overall model
quality in this decentralized and collaborative learning paradigm

Parameters Range

max depth [3, 4, 5]
num leaves [10, 15, 20]
learning rate [0.05, 0.1, 0.15]
n estimators [50, 100, 200]
subsample [0.5, 0.7, 0.9]

colsample bytree [0.5, 0.7, 0.9]
reg alpha [0.01, 0.1, 1]
reg lambda [0.01, 0.1, 1]

Table 3.3.1: Initial parameters for LightGBM customized for GridsearchCV

Parameters Range

max depth [3, 4, 5]
learning rate [0.05, 0.1, 0.15]
n estimators [50, 100, 200]
subsample [0.5, 0.7, 0.9]

Table 3.3.2: Initial parameters for Catboost customized for GridsearchCV

By applying GridSearchCV to both LightGBMand Catboost, we systematically determined
the optimal hyperparameter configurations for each algorithm. These configurations were
chosen based on their ability to produce the best results for our energy consumption and
PV production forecasting tasks.

3.4 Federated Design

Here the design of the federated setup is shown, with in depth implementation in
next chapter. It should be noted that this setup is an extension of the existing FLWR
Framework, as the aggregation function for FedAVG is changed to aggregation fr fit, which

40

CHAPTER 3. DESIGN

aggregates tree-based models and at the same time can handle multiple models per client
(typically one). We would need this as we want to predict the upper quantile, lower
quantile, andmean of every client. LightGBMandCatboost only support one ”alpha” value
permodel that actually handles if a prediction is going to be for the upper quantile or lower
quantile or mean.

Figure 3.4.1: Federated Learning Design with modified flwr framework

3.5 Aggregation for Tree-based models

As a main core of this thesis, aggregate fr supports aggrgation of tree-based models.
Currently, in FedAVG strategy flwr uses aggregate function to create glabal model for
parameters received from clients. Below you can find algorithms for both functions.
Implementation will be discussed in detail in next chapter.

The twoprovided algorithms, aggregate fr and aggregate, both tackle the task of calculating
a weighted average of model weights in a federated learning context. While both
algorithms fulfill this objective, aggregate fr stands out as a more comprehensive and
specialized solution, particularly advantageous when dealing with tree-based models like
LightGBM and Catboost.

The algorithm commences by calculating the total number of examples used in training
across all clients. It then proceeds to create a list named weighted weights, where each
element is a dictionary representing model weights from a client, scaled by the number of
examples they utilized.

41

CHAPTER 3. DESIGN

Algorithm 1 FedAvg Aggregate

Require: results: List of Tuples, each containingmodelweights andnumber of examples
used for training by a client

Ensure: weights_prime: Averaged model weights
1: Initialize num_examples_total as 0
2: Initialize an empty list weighted_weights
3: for each tuple (weights, num_examples) in results do
4: Append [layer × num_examples for layer in weights] to weighted_weights
5: Increment num_examples_total by num_examples
6: end for
7: Initialize an empty list weights_prime
8: for each layer in the zipped list of weighted_weights do
9: Calculate average weight: weights_prime ← 1

num_examples_total

∑n
i=1 layer[i]

10: end for
11: return weights_prime

Algorithm 2 FedAvg Aggregate fr

Require: results: List of Tuples, each containingmodelweights andnumber of examples
used for training by a client

Ensure: weights_prime: Averaged model weights
1: Initialize num_examples_total as 0
2: Initialize an empty list weighted_weights
3: for each tuple (weights, num_examples) in results do
4: Convert weights to a dictionary
5: for each key key in weights do
6: Multiply weights[key] by num_examples
7: end for
8: Append the weighted weights dictionary to weighted_weights
9: Increment num_examples_total by num_examples
10: end for
11: Initialize an empty dictionary weights_prime
12: for each key key in weighted_weights[0] do
13: Initialize an empty list layer_updates
14: for each weighted weights dictionary weights in weighted_weights do
15: Append weights[key] to layer_updates
16: end for
17: Compute average weight:

weights_prime[key] = 1
num_examples_total

∑n
i=1 layer_updates[i]

18: end for
19: return weights_prime

42

CHAPTER 3. DESIGN

The distinctive aspect of the aggregate fr algorithm lies in its careful treatment of tree-
based models. As these models often involve intricate hierarchical structures, preserving
their architecture during aggregation is crucial for maintaining accurate and meaningful
updates. To achieve this, the algorithm iterates through the keys of the dictionaries
within weighted weights. For each key, representing a model layer or node, it aggregates
the corresponding weights contributed by clients and calculates their average, while
considering the number of examples used by each client. This approach ensures that
the complex decision tree structures are adequately reflected in the aggregated model
weights.

In comparison to the more succinct aggregate algorithm, which uses list comprehensions
and zipped lists for averaging, aggregate fr takes a more nuanced and model-specific
approach. While aggregate provides a concise way of averaging weights, it lacks the
tailored treatment necessary for tree-based models. This key difference makes aggregate
fr stand out as the algorithm of choice when dealing with tree-based ensembles, ensuring
that the intricacies of decision tree architectures are preserved during the aggregation
process. In essence, the aggregate fr algorithm excels in its ability tomaintain the integrity
of tree-basedmodels while aggregating weights, setting it apart from themore generalized
approach of the aggregate algorithm.

This Design sections gives the overall blueprint for the second research question of
how federated learning can be implemented to tree-based models. It highlights key
modifications to the FLWR framework that can help use it on models like LightGBM and
Catboost.

43

Chapter 4

Implementation

The implementation of this thesis involved four experiments, each focused on a specific
combination ofmodels and target variables. The selectedmodels for the experiments were
LightGBM for PV production and consumption predictions, as well as Catboost for the
same predictions. The experimental setup revolved around using the FLWR framework,
with individual client files specific to and located inside each NVIDIA Jetson Nano device,
and a common FLWR server file residing in the HP Elitebook CPU.

4.1 Federated Setup

For this research federated setup was a well-thought-out configuration that leveraged the
power of four NVIDIA Jetson Nano devices, each of which acted as a client, and an HP
EliteBook CPU,which served as the central server as shown in 3.4.1. Each of theseNVIDIA
Jetson Nano devices acted independently as a client. The selection of these edge devices
was deliberate and strategic, taking into consideration their robust GPU capabilities,
which make them exceptionally well suited for computationally intensive activities such
as the training of machine learning models. In addition, because of their small size and
energy-efficient design, they were ideal for edge computing, a type of computing that
places significant emphasis on the efficient use of resources and power.

A comprehensive setup procedure was carried out on each Jetson Nano client prior to
the beginning of the federated learning process. Following the installation of the Ubuntu
18 image, we decided to use the Archiconda package manager rather than the Anaconda
one. Because of this decision, package management was simplified, and we were able to
integrate all of the essential machine learning libraries and frameworks that were required
for the prediction task without any problems.

The setup linked all of the Jetson Nano computers to a neighborhood Wi-Fi network and
set up SSH connections in order tomake it easier for the clients and server to communicate

44

CHAPTER 4. IMPLEMENTATION

with one another and work together. This ensured that the data exchange during the
federated learning process was both smooth and secure, which is essential formaintaining
the confidentiality and safety of the data.

Jetson Nanos Data

Client 1 Prosumer 1 and Prosumer 2
Client 2 Prosumer 3 and Prosumer 4
Client 3 Prosumer 5 and Prosumer 6
Client 4 Prosumer 7

Table 4.1.1: Distribution of Prosumers data among Clients

As can be seen in table 4.1.1, each client device was given its own unique subset of the data
that was collected from prosumers to work with. Client 1 was responsible for the data of
prosumers 1 and 2, Client 2 was responsible for the data of prosumers 3 and 4, Client 3
was responsible for the data of prosumers 5 and 6, and Client 4 was responsible for the
data of prosumer 7. We divided prosumers like this to accomdate seven prosumers in four
jetson nanos. For real world implementation each prosumer representing a household
shall have its own edge device, either jetson nano or jetson xavier etc as the selection
of edge device will not effect the overall framework much as long as they support flwr,
LightGBM and Catboost dependencies. This distribution ensured that data pertaining
to households were kept separate and were only used for the training of local models.
We were able to achieve a setup that respected our clients’ privacy and allowed them to
contribute to the model without disclosing sensitive information about other households
thanks to the partitioning of the data in the manner described above. Moreover, this
specific distribution of prosumers to edge devices was done based on its better model
fitting shown more in detail in chapter 5 in Figures 5.3.6 and 5.3.7.

The central processing unit (CPU) of the HP EliteBook acted as the server and played an
essential part in the coordination of the federated learning process. It then performed
model aggregation, which was a crucial step in the process of building a global model
that encapsulated the knowledge from all of the participating households without
compromising data privacy. It did this after receiving the locally trained models from the
customers. Model aggregation is a thoughtfully craftedmethod that combines the updates
sent in by each client without compromising their individual privacy. By taking this
approach, the server was able to derive useful insights from the collective intelligence of all
edge devices without accessing individual data, thereby ensuring that privacy regulations
were adhered to.

The tremendous potential of federated learning in real world applications was
demonstrated by the combination of the FLWR (Federated Learning with Weights and
Biases) framework and NVIDIA Jetson Nano devices. The FLWR framework, with its
effective communication protocol, allowed for the collaboration and aggregation of local

45

CHAPTER 4. IMPLEMENTATION

models to take place in a seamless manner across all of the edge devices. The fact
that federated learning preserves users’ privacy was an extremely helpful feature, as it
made certain that sensitive data pertaining to households remained confidential and was
safeguarded.

In addition, the computational capabilities of the Jetson Nano clients were an essential
factor in the successful completion of the federated learning tasks. The GPU acceleration
that wasmade available by the JetsonNano devices sped up the process of trainingmodels
and aggregating their results, which cut down on the total amount of time needed for
federated learning iterations.

The demonstration of the value of edge devices and federated learning in the context
of addressing critical challenges in sustainable energy management was made possible
by the successful implementation of federated learning for the purpose of predicting PV
production and consumption. The findings of the research showed that the distributed and
privacy-preserving nature of federated learning, when combined with the computational
power of edge devices, could provide a solution that is both efficient and effective for data-
driven energy predictions in smart grids.

This setup brought to light the potential of federated learning in a variety of other fields
where protecting data privacy and maximizing computational efficiency are of the utmost
importance. This research highlighted the significance of edge devices like the NVIDIA
Jetson Nano in the context of federated learning. The use of edge devices in real-
world applications is becoming more widespread, and one example is the NVIDIA Jetson
Nano.

In general, the combination of edge devices and federated learning presents a promising
pathway for the development of scalablemachine learning solutions that also protect users’
privacy. Federated learningwill play a pivotal role in unlocking the potential of distributed
data for knowledge discovery while ensuring individual privacy as the world moves into
the era of the Internet of Things (IoT) and edge computing. This will be accomplished as
the world prepares for the IoT and edge computing. The collaboration of edge devices and
central servers, which is made possible by federated learning frameworks such as FLWR,
paves the way for a future in which intelligence, efficiency, and privacy are not mutually
exclusive concepts.

4.2 GridSearchCV

1 self.lgb_lower = LGBMRegressor(alpha=lower_quantile , boosting_type='gbdt',
objective='quantile', metric='quantile')

2 self.grid_search_lower = GridSearchCV(self.lgb_lower , params, cv=5, n_jobs=-1)
3 self.lgb_upper = LGBMRegressor(alpha=upper_quantile , boosting_type='gbdt',

objective='quantile', metric='quantile')

46

CHAPTER 4. IMPLEMENTATION

4 self.grid_search_upper = GridSearchCV(self.lgb_upper , params, cv=5, n_jobs=-1)
5 self.lgb_mean = LGBMRegressor(alpha=0.5, boosting_type='gbdt', objective='

quantile', metric='quantile')
6 self.grid_search_mean = GridSearchCV(self.lgb_mean, params, cv=5, n_jobs=-1)

Listing 4.1: GridSearchCV applied to LightGBM

We can see in the code above that for both Catboost and LightGBM, we take three models
that gives us lower quantile, upper quantile, and mean. After the GridSearchCV process
was complete, we selected the best-tuned versions of LightGBM and CatBoost as the final
models for our federated learning task. The selectedmodels were instrumental in enabling
accurate and reliable predictions, contributing to the effectiveness and efficiency of the
smart energy management system for residential prosumers.

4.3 Clients

The first experiment aimed to predict PV production using the LightGBM model. The
dataset containing the measurements from different households in Uppsala, Sweden, was
preprocessed and divided into chunks according to table 4.1.1. Each Jetson Nano device
acted as a client, holding a specific combination of twoprosumers per client fromprosumer
data. This was done to accomodate seven prosumers with four jetson nanos, and The
LightGBMclient application on each JetsonNano trained a localmodel using its respective
data chunk. During the training process, the models communicated only with the central
FLWR server on the HP Elitebook CPU to exchange model parameters. This ensured that
no raw data was shared, guaranteeing data privacy.

1 def fit(self, parameters , config):
2 if parameters:
3 weight1 = parameters[0].item()
4 weight1['n_estimators'] = int(weight1['n_estimators'])
5 weight1['max_depth'] = int(weight1['max_depth'])
6 weight2 = parameters[1].item()
7 weight2['n_estimators'] = int(weight2['n_estimators'])
8 weight2['max_depth'] = int(weight2['max_depth'])
9 weight3 = parameters[2].item()
10 weight3['n_estimators'] = int(weight3['n_estimators'])
11 weight3['max_depth'] = int(weight3['max_depth'])
12

13 self.grid_search_lower = LGBMRegressor(**weight1, alpha=0.25,
boosting_type='gbdt', objective='quantile', metric='quantile')

14 self.grid_search_upper = LGBMRegressor(**weight2, alpha=0.75,
boosting_type='gbdt', objective='quantile', metric='quantile')

15 self.grid_search_mean = LGBMRegressor(**weight3, alpha=0.5
boosting_type='gbdt', objective='quantile', metric='quantile')

16

17 self.grid_search_lower.fit(self.x_train, self.y_train.ravel())

47

CHAPTER 4. IMPLEMENTATION

18 self.grid_search_upper.fit(self.x_train, self.y_train.ravel())
19 self.grid_search_mean.fit(self.x_train, self.y_train.ravel())
20

21
22

23 return [self.grid_search_lower.best_params_ ,
24 self.grid_search_upper.best_params_ ,
25 self.grid_search_mean.best_params_], len(self.x_train), {}

Listing 4.2: Model Fit fuction for FLWR client for LightGBM Production (Experiment 1)

The provided Python code snippet encapsulates a method named fit within a client class,
which serves the purpose of training and evaluating a set of three LightGBMmodels using
a grid search strategy. Upon receiving parameters, which represent model weights, the
method initializes the best estimators of lower, upper, and mean quantile models using
these weights. Subsequently, the models undergo training utilizing the x train and y train
data.

The trained models are then employed to predict outcomes on the x test dataset. To
ensure meaningful interpretation, the predictions are transformed back to their original
scale using an inverse transformation performed by scaler y.inverse transform. The
transformed arrays are flattened for subsequent computations.

A suite of evaluation metrics, encompassing measures such as CFE, MQL, PIR, and MAE,
is computed through the utilization of the error metrics function. These metrics serve
to quantify the predictive performance of the models and provide insights into their
effectiveness.

Two pandas DataFrames are established to structure and store the results. The first
DataFrame, named df production, encompasses columns for true values, predicted values,
interval lower bounds, interval upper bounds, mean quantile losses, and mean absolute
errors. The second DataFrame, df production results, captures the computed evaluation
metrics.

Subsequently, the calculated results are preserved as CSV files. The df production
DataFrame, housing prediction intervals and associated metrics, is stored in the file
named lightgbm prod client1.csv. Meanwhile, the df production results DataFrame,
encapsulating comprehensive evaluation outcomes, is saved in the file lightgbm prod
Evaluation client1.csv.

The method concludes by returning a list containing the optimal parameters for the three
distinct models, along with the length of the training dataset, denoted by len(self.x train),
and an emptydictionary. It is evident that this fitmethodnot only orchestrates the training
and evaluation process for LightGBM models but also meticulously records and presents
the results in a structured and informative manner.

48

CHAPTER 4. IMPLEMENTATION

The second experiment focused on predicting PV consumption using the LightGBMmodel.
Similar to Experiment 1, the datasetwas divided into chunks, and each JetsonNano served
as a client, holding specific prosumer data.

The third experiment aimed to predict PV production using the Catboost model, and
the fourth experiment focused on predicting PV consumption using the Catboost model.
Similar to Experiment 1, all the experiments’ clients used same approach for model
fitting.

Each FLWR client has a client class with fit being the main function that outputs model
parameters to the server. Normally FLWR supports a single model per client, but in
our implementation shown above we are getting parameters for three models: lower
quantile, upper quantlie, andmean. For all threemodels, we then fit andmake predictions
according to work inspired from [3]. The new models parameters of all three models are
sent to server in return along with size of training data. This is part of this research’s
contribution that each client support multiple models that is explained in detail in section
Multi-model Tree Aggregation.

4.4 Server

The FLWR server application on theHPElitebook CPUmanaged the aggregation ofmodel
parameters received from the Jetson Nano clients during training. It ensured that the
global model was updated based on the aggregated parameters without compromising the
privacy of individual prosumer data. During the inference phase, federated inference was
employed, allowing each Jetson Nano device to make predictions locally using the trained
global model without sharing raw data.

1 class FedModelstrategy(fl.server.strategy.FedAvg):
2 def __init__(self, min_fit_clients=4, min_available_clients=4):
3 super().__init__()
4 self.min_fit_clients = 4
5 self.min_available_clients = 4
6

7 def aggregate_fr_fit(self, rnd, results, failures):
8 # Call aggregate_fit from base class (FedAvg) to aggregate parameters

and metrics
9 aggregated_parameters , aggregated_metrics = super().aggregate_fr_fit(

rnd, results, failures)
10

11 if aggregated_parameters is not None:
12 # Save aggregated_ndarrays
13 print(f"Saving round {rnd} aggregated_ndarrays...")
14 np.savez(f"model/round -{rnd}-weights.npz", *aggregated_parameters)
15 # Save each individual model
16 for idx, model_weights in enumerate(aggregated_parameters):

49

CHAPTER 4. IMPLEMENTATION

17 model_weights= np.reshape(model_weights , (1,))
18 model_path = f"model/round -{rnd}-model -{idx}.txt"
19 # Save the text data to a file
20 np.savetxt(model_path , model_weights , fmt="%s")
21

22 return aggregated_parameters , aggregated_metrics
23

24

25 strategy = FedModelstrategy(min_fit_clients=4, min_available_clients=4)
26

27 fl.server.start_server(
28 server_address="localhost:8080",
29 config=fl.server.ServerConfig(num_rounds=10),
30 strategy=strategy
31)

Listing 4.3: FLWR Server code

The provided Python code segment introduces a custom strategy class named
FedModelstrategy, intended for orchestrating Federated Learning (FL) processes within a
server environment. Derived from the base class fl.server.strategy.FedAvg, this class offers
a tailored approach to aggregating model parameters and metrics during FL rounds.

In the constructor method (init), the custom strategy initializes with default values of min
fit clients and min available clients both set to 4. These values, though hard-coded in the
current implementation, are likely to signify theminimum clients needed formodel fitting
and the minimum number of available clients, respectively.

The overridden aggregationmethod, aggregate fr fit, extends the behavior of the base class.
It leverages the base class’s aggregation mechanism, yielding aggregated parameters and
aggregated metrics. When aggregate parameters are present, the method embarks on
preserving the aggregated model parameters and the individual models contributed by
each client. By iterating through the aggregated parameters, it stores the model weights
both collectively and individually, utilizing numpy functions. The collected parameters
are saved in a .npz file, while individual client models find their place in separate .txt
files.

Moreover, the code sets up an instance of the custom strategy (FedModelstrategy)
by initializing it with specified min fit clients and min available clients parameters.
Subsequently, the FL server launches through the fl.server.start server function. This
server operates with a configuration indicating 10 rounds of FL, and it integrates the
custom strategy into the FL process.

In essence, this code establishes a customized aggregation strategy tailored to federated
learning scenarios. By enhancing the aggregation process and facilitating the storage of
model parameters and individual client models, the strategy enriches the FL framework

50

CHAPTER 4. IMPLEMENTATION

with more intricate insights into model evolution and individual contributions across
rounds.

Normally aggregate fit is available function that supports aggregation of clients containing
a singlemodel inside. For use case of this research aggregate fr fit is introduced that allows
threemodels per client and aggregate accordingly, and savemodel weights for each round.
It is explained in detail in next section.

4.5 Multi-model tree Aggregation

We propose aggregate fr fit function in FedAVg strategy mentioned in background and
literature review chapter, where fr in name to refer to tree-based/forest-based models.
It supports multiple models inside a single client, as opposed to normal aggregate fit
function. This is the main contribution of this thesis, and this support tree-based models
as the aggregation fr function shown later is customized to support dictionary iteration
of model parameters that are specific to tree-based models as opposed to deep learning
models.

1 def aggregate_fr_fit(
2 self,
3 server_round: int,
4 results: List[Tuple[ClientProxy , FitRes]],
5 failures: List[Union[Tuple[ClientProxy , FitRes], BaseException]],
6) -> Tuple[Optional[Parameters], Dict[str, Scalar]]:
7 """Aggregate fit results using weighted average."""
8 if not results:
9 return None, {}
10 # Do not aggregate if there are failures and failures are not accepted
11 if not self.accept_failures and failures:
12 return None, {}
13

14 # Convert results to a suitable format for aggregation
15 weights_results_1 = []
16 weights_results_2 = []
17 weights_results_3 = []
18 for _, fit_res in results:
19 client_weights = fit_res.parameters
20 num_examples = fit_res.num_examples
21

22 # Convert client_weights to a list of model weight ndarrays
23 model_weights_ndarrays = [parameters_to_ndarrays(weights) for

weights in [client_weights]]
24 weights_results_1.append((model_weights_ndarrays[0][0],

num_examples))
25 weights_results_2.append((model_weights_ndarrays[0][1],

num_examples))

51

CHAPTER 4. IMPLEMENTATION

26 weights_results_3.append((model_weights_ndarrays[0][2],
num_examples))

27

28 parameters_aggregated = [aggregate_fr(weights_results_1),
29 aggregate_fr(weights_results_2),
30 aggregate_fr(weights_results_3)]
31 # Aggregate custom metrics if aggregation fn was provided
32 metrics_aggregated = {}
33 if self.fit_metrics_aggregation_fn:
34 fit_metrics = [(res.num_examples , res.metrics) for _, res in

results]
35 metrics_aggregated = self.fit_metrics_aggregation_fn(fit_metrics)
36 elif server_round == 1: # Only log this warning once
37 log(WARNING, "No fit_metrics_aggregation_fn provided")
38

39 return parameters_aggregated , metrics_aggregated

Listing 4.4: Proposed code for aggregate fr fit

The aggregate fr fit function is a crucial component in a federated learning framework
where multiple clients participate in training a machine learning model on their local
datasets. The function requests several pieces of information as input, including the round
of training that is currently being performed on the server (server round), a list of fit results
from the clients (results), and a list of potential failures that may have occurred during the
process (failures).

The function moves on to the next step after handling these cases, which is to prepare
the fit results for aggregation. It goes through the list of results and pulls out the
parameters (weights) and the total number of training examples that each client used.
These parameters are laid out in the form of three distinct lists, which are denoted as
follows: weights results 1, weights results 2, and weights results 3. It can be deduced
from the fact that each list corresponds to a distinct part of the model that the model is
composedof three distinct components, aswe fitmodels for upper quantile, lower quantile,
andmean separately due to limitation of having single alpha value in LightGBM that deals
with quantiles.

Using the parameters to ndarrays function, the function transforms each set of parameters
into a list of model weight. This helps to guarantee that the aggregation is carried out
accurately. The subsequent step is to add these NDArrays, along with the number of
training examples that corresponds to each one, as tuples to the relevant weights results
list.

In addition, the function is capable of handling the aggregation of custom metrics if the
appropriate aggregation function (self.fit metrics aggregation fn) is supplied. It does this
by aggregating the custom metrics that were produced as a result of the fit, producing a
dictionary in which the name of each metric corresponds to the value of the aggregated

52

CHAPTER 4. IMPLEMENTATION

scalar metric.

The function then concludes by returning a tuple that contains the aggregated parameters
for each component of the model as well as the aggregated custommetrics in the form of a
dictionary. These aggregated results provide a more complete picture of the performance
of themodel because they take into account the contributionsmade by the training results
of a variety of clients while still maintaining respect for the individual sizes of each client’s
dataset.

Note that the aggregate fr function and the parameters to ndarrays function are not
described in any specific detail in the provided code snippet. It is presumed that
these functions are implemented in server application. It is important to take this into
consideration. In addition, the partitioning of the model into three sections (weights
results 1, weights results 2, and weights results 3) might be unique to the particular
federated learning scenario, and it might also change depending on the architecture and
requirements of the model.

In addition to this we also added aggregate fr function called inside aggregate fr fit that for
each model aggregates the model weights. We have created this as for normal aggregate
function it supports layer by layer multiplication of number of examples to calculate
average later on, and is feasible for Deep Learning models as weights are stored in matrix
form. For tree-based models the parameters are stored in dictionary form and traditional
aggregate function could not support it. With aggregate fr functionwe can easily aggregate
the parameters of forest based models

1 def aggregate_fr(results: List[Tuple[NDArrays, int]]) -> NDArrays:
2 """Compute weighted average."""
3 # Calculate the total number of examples used during training
4 num_examples_total = sum([num_examples for _, num_examples in results])
5 weighted_weights = []
6 for weights, num_examples in results:
7 weights = dict(weights.item())
8 for key in weights:
9 weights[key] *= num_examples
10 weighted_weights.append(weights)
11

12 # Compute average weights of each layer
13 weights_prime = {}
14 for key in weighted_weights[0]:
15 layer_updates = [weights[key] for weights in weighted_weights]
16 weights_prime[key] = np.sum(layer_updates) / num_examples_total
17

18 return weights_prime

Listing 4.5: Proposed code for aggregate fr

The aggregate fr function plays a crucial role in federated learning. The function takes

53

CHAPTER 4. IMPLEMENTATION

in a list of tuples, where each tuple contains two components: an NDArray representing
the locally trained weights for a specific layer in the model, and an integer indicating the
number of training examples used to train those particular weights. The list of tuples is
passed into the function as an argument.

The first thing that the function does is compute the overall number of training examples
that have been applied across all of the servers and devices. This step is essential because
it gives the function the ability to weight each locally trained set of weights according to
the number of examples that were used to train them. The function is able to give more
significance to models that have been trained on larger datasets by taking into account the
number of examples, which ensures that these models contribute more to the aggregated
weights in the end.

The function then moves on to the next step, which is to calculate the weighted weights
for each set of locally trained weights. It does this by multiplying each weight value by the
number of training examples that correspond to that weight value for each set of weights.
This process basically adjusts the weights so that they are proportional to the respective
sizes of the datasets. As a result, it ensures that models that have been trained on more
data have a greater impact on the aggregated weights.

Following the completion of the computation of the weighted weights, the function will
proceed to determine the average weight for each layer in the model. It accomplishes this
by first totaling the weighted weights for each layer across all of the locally trained models
and then dividing that total by the total number of training examples. In other words, it
adds up all of the weights and then divides them by the total number of training examples.
The result of this computation is a weighted average of the weights for each layer. This
takes into account the contribution that each locally trained model makes based on the
size of its dataset.

The function produces a dictionarywith the nameweights prime as its final output. Within
this dictionary, each key denotes a layer in the model, and the value that corresponds to
it is the weight that is considered to be the average for that layer across all of the locally
trained models. Because they take into account the aggregated insights from all of the
devices or servers that were involved in the training process, these aggregated weights are
more reliable and accurate in describing the performance of the overall model.

This answers the second research question that it is possible to implement federated
learning on tree-based models like LightGBM and Catboost, and this modification to the
FLWR framework enables it.

54

Chapter 5

Evaluation and Result

This chapter will display the results achieved from federated learning for LightGBM and
Catboost and the evaluation of the results.

5.1 Federated Inference

During the course of the research, the idea of federated learning was investigated.
This led to the incorporation of the unique method of federated inference, which was
designed to improve the predictive capabilities of the system while maintaining the
highest possible levels of data privacy and security. Utilizing the FLWR framework as
the basis for the construction of the federated learning system allowed for the harnessing
of the computational power offered by edge clients in the form of NVIDIA Jetson Nano
devices. The research was expanded to leverage federated inference for the prediction of
photovoltaic (PV) production and consumption. This made it possible for edge devices to
use the trained global model to make predictions on their locally held data without having
to share any raw data with the central server.

Federated Inference being one of the main components of this thesis is developed in a
way to ensure efficiency. Every client application’ class has a fit function that ensures
fitting of the updatedmodel weights to produce predictions, and also send back new fitted
parameters back to the server. More detailed description in last section. During this fit
function, this research gets the predictions for that specific client from model trained on
it in that round and saves it to the results with identifier of client name, tree-based model
name. This sameprocedure is done to save evaluation results for that specific client trained
and tested on the dataset of prosumers specific to that client.

Moreover for every round, model weights are aggregated and stored in models directory
that is accessed in separate notebook that recreates the model on aggregated weights, and

55

CHAPTER 5. EVALUATION AND RESULT

test it on testing data of all prosumers concatenated to produce predictions and evaluations
result for combined global model.

The incorporation of federated inference into the system resulted in the system gaining
a number of important benefits. The most important benefit was ensuring the
confidentiality of the data, which is an essential concern when working with sensitive data
from prosumers. The risk of data exposure was effectively reduced by keeping all raw
data stored safely on their respective Jetson Nano devices and communicating only model
parameters with the centralized server. The fact that the prosumers’ data remained secure
and under their control despite the implementation of this privacy-preservingmechanism
instilled in them a sense of trust and confidence.

Additionally, the federated inference approach showed remarkable scalability in its
implementation. Because the global model could be easily deployed to multiple edge
devices, it was able to be adapted to accommodate a greater number of prosumers in
real-world scenarios. Because of its scalability, the system was able to accommodate the
growing demands placed on it by applications for energymanagement and effectively cater
to the varying requirements of its users.

5.2 Predictions

In this analysis, the performance of LightGBM and Catboost models for predicting PV
power production and consumption using federated learning is evaluated. The evaluation
is carried out by contrasting the predicted values of the models with the actual values of
PV power production and consumption at theMean, Upper Quantile, and Lower Quantile
levels respectively. The training size for all client combined consisted of 61032 rows and
test size consisted of 15261 rows for production experiments, and training size for all client
combined consisted of 103394 rows and test size consisted of 25851 rows for consumption
experiments. The true values for the entire dataset was already provided by authors of
[3].

The results of the LightGBM PV power production prediction for the global model are
displayed in the figure referenced as 5.2.1. It has been observed that the predictions, up
to 8000 W, follow a linear trend with the true values. This suggests that the model’s
predictions are reasonably accurate within this range. However, once 8000W is exceeded,
the predictions begin to deviate from the actual values, which suggests that themodel may
be less reliable when attempting to predict higher power values. In spite of this divergence,
it has been observed that the predictions for the Upper Quantile and the Mean continue
to be relatively proportional. This suggests that they provide estimates that are consistent
with regard to the central tendency of the data.

In a similar manner, the LightGBM PV power consumption prediction is broken down

56

CHAPTER 5. EVALUATION AND RESULT

Figure 5.2.1: LightGBM production prediction plot

57

CHAPTER 5. EVALUATION AND RESULT

Figure 5.2.2: LightGBM consumption prediction plot

58

CHAPTER 5. EVALUATION AND RESULT

Figure 5.2.3: Catboost production prediction plot

59

CHAPTER 5. EVALUATION AND RESULT

Figure 5.2.4: Catboost consumption prediction plot

60

CHAPTER 5. EVALUATION AND RESULT

and examined in figure 5.2.2. Up to 6000 W, the predictions of the model show a linear
relationship with the actual values, which indicates accurate performance within this
range. After 6000W, the predictions begin to depart from the actual values in a noticeable
manner. However, just like in the case of power production, the Upper Quantile and
Mean predictions continue to maintain a relationship that is close to proportional, which
suggests that central tendency estimates are consistent.

Moving on to the results of the Catboost model, the PV power production prediction is
shown in the figure that is referenced as 5.2.3. It has been discovered that the predictions
maintain a linear relationship with the actual values up to 10000 W, which indicates that
accurate predictions can be made within this range. However, when the power values
are increased, the predictions begin to differ from one another. Despite this, the Mean
and Lower Quantile predictions exhibit a relationship that is close to proportional, which
indicates that the estimates of the central tendency are consistent.

Last but not least, the predicted amount of power used by Catboost PV is shown in figure
5.2.4. Up to 7000 W, the predictions of the model are linear with the true values, which
indicates that the model’s performance is accurate within this range. After 7000 W, the
predictions begin to vary from one another. In a manner analogous to that of power
production, the predictions for the Mean and Lower Quantile continue to be close to
proportional, which suggests that central tendency estimates are consistent.

The Upper Quantile and Mean predictions consistently maintain a proportional
relationship, which suggests that there is stability in estimating the central tendency of the
data across different power values. This is an important observation that comes from all
four experiments, and it is one that is worth noting. In amanner parallel to this, the Lower
Quantile and Mean predictions both display a relationship that is close to proportional in
the Catboost experiments.

In conclusion, the findings of these experiments indicate that the LightGBM and Catboost
models have an encouraging performance when it comes to predicting the amount of
power produced and consumed by PV systems using federated learning. Within certain
power ranges, the models have a high degree of accuracy; however, when the power is
increased, the models’ predictions no longer agree with one another. In spite of this,
the fact that there is a consistent relationship between the Upper Quantile and Mean
predictions as well as the Lower Quantile and Mean predictions demonstrates that the
models provide reliable estimates for the central tendency of the data. To evaluate the
models’ generalization and robustness across a variety of scenarios and datasets, however,
additional research and validation are required.

61

CHAPTER 5. EVALUATION AND RESULT

5.2.1 Variations based on weather forecast

Do different weather phenomena impact PV Power Production and forecasting error? To
answer this in this section the variation in time series forecasting by LightGBM is shown
for PV power production for month of July 2022. This specific month was selected due
to varying weather conditions every day from the data available. Figure 5.2.5 shows the
weather forecast for whole month, and Figure 5.2.6 shows the production forecast by
takingmean production value for each day. From these four days were selected for further
experimentation and were classified as Rainy, Sunny, Cloudy and Warm, and Cloudy
and Cold. For each of these days then PV Power production forecasting was done with
LightGBM and Federated LightGBM. Each plot consisted of the True Value, Prediction,
and also the Prediction Range

Figure 5.2.5: Weather Forecast for July 2022

From Figures 5.2.7 and 5.2.8, it becomes evident that the PV Power Production forecast
for the sunny day exhibited a notably smooth trajectory, a result largely in line with

62

CHAPTER 5. EVALUATION AND RESULT

Figure 5.2.6: Time-series Forecasting of LightGBM Production for July 2022

Figure 5.2.7: Time-series Forecasting of LightGBM Production for sunny day

Figure 5.2.8: Time-series Forecasting of Federated LightGBM Production for sunny day

63

CHAPTER 5. EVALUATION AND RESULT

expectations given the clear weather and abundant sunlight available. Both the normal
and federated models of LightGBM demonstrated commendable performance, with their
predictions closely aligning with the actual values. For federated LightGBM model the
prediction range was higher than normal in the peak production period.

Notably, the peak production was observed between 10:00 and 13:00, coinciding with the
period of maximum sunlight intensity. This correlation underscores the direct impact
of sunlight availability on the production levels, a fundamental aspect in solar power
generation.

The day’s overall production profile exhibited a continuous, gentle undulation,
harmoniously mirroring the ebb and flow of sunlight. This synchronization suggests an
effective adaptability of the model to the dynamic nature of solar energy generation. This
smooth curve in production indicates a reliable forecasting capability, as it accurately
mirrors the inherent variations in sunlight intensity throughout the day.

Figure 5.2.9: Time-series Forecasting of LightGBM Production for rainy day

Figure 5.2.10: Time-series Forecasting of Federated LightGBM Production for rainy day

64

CHAPTER 5. EVALUATION AND RESULT

Figure 5.2.11: Time-series Forecasting of LightGBM Production for cloudy and warm day

Figure 5.2.12: Time-series Forecasting of Federated LightGBM Production for cloudy and
warm day

Figure 5.2.13: Time-series Forecasting of LightGBM Production for cloudy and cold day

65

CHAPTER 5. EVALUATION AND RESULT

Figure 5.2.14: Time-series Forecasting of Federated LightGBM Production for cloudy and
cold day

Across each day, a consistent pattern emerges with the sun rising at approximately
4:00 and setting between 16:00 and 17:00. This temporal regularity is mirrored in the
production cycle, commencing and concluding around these same times.

For the rainy day showcased in Figures 5.2.9 and 5.2.10, the cloudy yet warm day depicted
in Figures 5.2.11 and 5.2.12, and the cloudy and cold day illustrated in Figures 5.2.13 and
5.2.14, a strikingly similar trend is discernible. These variations predominantly stem from
the availability of sunlight at specific intervals.

On the rainy day, the peak production hovers around 6000 W, contrasting with the sun-
drenched day where the maximum production reaches approximately 10000 W. The
cloudy conditions introduce another layer of variability. When the weather is both
cloudy and warm, the highest production registers at about 5000 W. Conversely, under
cloudy and cold conditions, the maximum production dwindles to a modest 2500W. This
discrepancy indicates the influence of temperature on power production.

In all the depicted scenarios, both the normal and federated versions of LightGBM exhibit
a commendable performance, closely mirroring the true values. However, in complex
weather conditions like rainy and cloudy days, the federated model emerges as the more
accurate predictor, demonstrating its enhanced adaptability to intricate environmental
factors.

5.3 Evaluations

Further analysis was done to determine effectiveness of the federated learning approach.
Since this research is based on findings from [3], it used samemetrics like Mean Absolute
Error (MAE), Mean Prediction Interval Range (MPIR), and Mean Quantile Loss (MQL)

66

CHAPTER 5. EVALUATION AND RESULT

that are explained in detail in chapter 2.

Research Questions

1. How does Federated learning impact forecast accuracy of Multi-Variate Time Series
Forecasting in the context of Renewable Energy Systems?

2. How can Federated Learning be implemented on tree-based models?

5.3.1 Probability Distribution Analysis: CDF and PDF Plots

This section encompasses a comprehensive analysis of four distinct models: Catboost,
Federated Catboost, LightGBM, and Federated LightGBM. The evaluation process
involved approximately 15,263 hourly-based predictions, all conducted on identical
training and testing datasets.

Model Percentage Mean Absolute Forecast Error

Federated LightGBM 1.714
LightGBM 2.610

Federated Catboost 3.318
Catboost 9.328

Table 5.3.1: Percentage Mean Absolute Forecast Error for all models

For each model, a consolidated Probability Density Function (PDF) plot and Cumulative
Distribution Function (CDF) plots are presented. These visualizations offer a detailed
view of the predictive performance across the dataset, providing valuable insights into the
distribution and accuracy of the models’ predictions. This aids in the assessment of their
respective strengths and weaknesses.

From PDF plots in Figure 5.3.1 it can be seen that with Federated models for both Catoost
and LightGBM the distribution of percentage forecast error is significantly less than
normal models, indicating better performance of federated learning models.

From CDF plots for LightGBM and Federated LightGBM in Figures 5.3.2 and 5.3.4 the
observations remained almost similar for normal and federated versions of LightGBM,
where both indicated perfect fit. However, for Catboost and Federated Catboost in Figures
5.3.3 and 5.3.5 there is clear indication of better performance of federated version of
Catboost. In this case normal Catboost was underfitting and Federated Catboost had
perfect fit.

67

CHAPTER 5. EVALUATION AND RESULT

Figure 5.3.1: PDF plots for Catboost, Catboost Federated, LightGBM, and LightGBM
Federated

Figure 5.3.2: CDF plot for LightGBM, and Federated LightGBM

68

CHAPTER 5. EVALUATION AND RESULT

Figure 5.3.3: CDF plot for Catboost, and Federated Catboost

Figure 5.3.4: CDF plot with absolute values for LightGBM, and Federated LightGBM

69

CHAPTER 5. EVALUATION AND RESULT

Figure 5.3.5: CDF plot with absolute values for Catboost, and Federated Catboost

CDF for different prosumers sequences

In 4.1.1 from chapter 4, the distribution of seven prosumers to four jetson nano clients
is shown that is used throughout the research. This sequence is compared to three other
sequences for the model performance for Federated Catboost shown in tables 5.3.2, 5.3.3,
5.3.4, and 5.3.5. For overall overview of model performance with specific sequences, CDF
of percentage forecast errors was used.

Jetson Nanos Data

Client 1 Prosumer 1 and Prosumer 2
Client 2 Prosumer 3 and Prosumer 4
Client 3 Prosumer 5 and Prosumer 6
Client 4 Prosumer 7

Table 5.3.2: Sequence 1

Jetson Nanos Data

Client 1 Prosumer 1 and Prosumer 4
Client 2 Prosumer 3 and Prosumer 2
Client 3 Prosumer 5 and Prosumer 7
Client 4 Prosumer 6

Table 5.3.3: Sequence 2

Based on findings from Figures 5.3.6 and 5.3.7, sequence 1 performed alot better and
smoother than other three sequences, hence it was chosen as the optimal combination
of dividing prosumers to clients.

70

CHAPTER 5. EVALUATION AND RESULT

Figure 5.3.6: CDF plot for Federated Catboost for all four sequences

Figure 5.3.7: CDF plot with absolute values for Federated Catboost for all four sequences

71

CHAPTER 5. EVALUATION AND RESULT

Jetson Nanos Data

Client 1 Prosumer 1 and Prosumer 6
Client 2 Prosumer 3 and Prosumer 7
Client 3 Prosumer 5 and Prosumer 2
Client 4 Prosumer 4

Table 5.3.4: Sequence 3

Jetson Nanos Data

Client 1 Prosumer 1 and Prosumer 7
Client 2 Prosumer 3 and Prosumer 6
Client 3 Prosumer 5 and Prosumer 4
Client 4 Prosumer 2

Table 5.3.5: Sequence 4

5.3.2 Regression Metrics

Source MAE MQL MPIR

Client 1 21.76 6.50 65.21
Client 2 17.82 5.99 63.29
Client 3 37.76 10.96 121.27
Client 4 24.55 7.22 72.27

All combined 12.64 4.66 63.56

Table 5.3.6: Regression metrics for the LightGBM power production for all clients and
combined with federated learning

Source MAE MQL MPIR

Client 1 61.85 18.74 190.94
Client 2 14.30 6.92 92.63
Client 3 24.35 7.96 95.79
Client 4 27.03 9.98 130.83

All combined 15.38 6.27 84.03

Table 5.3.7: Regression metrics for the LightGBM power consumption for all clients and
combined with federated learning

Tables 5.3.6, 5.3.7, 5.3.8, and 5.3.9 present the evaluation results for all four experiments:
LightGBM Production, LightGBM Consumption, Catboost Production, and Catboost
Consumption. The tables present the Mean Absolute Error (MAE), the Mean Prediction
Interval Range (MPIR), and the Mean Quantile Loss (MQL) for models that were trained
on client 4 that had training size of 9056 rows for production experiments and 15448 rows

72

CHAPTER 5. EVALUATION AND RESULT

Source MAE MQL MPIR

Client 1 98.91 25.54 210.21
Client 2 34.62 10.53 92.24
Client 3 79.09 24.69 288.08
Client 4 65.24 19.02 184.21

All combined 20.92 6.55 61.20

Table 5.3.8: Regression metrics for the Catboost power production for all clients and
combined with federated learning

Source MAE MQL MPIR

Client 1 47.56 17.61 202.79
Client 2 35.48 11.62 120.09
Client 3 38.24 13.35 171.09
Client 4 44.63 15.02 177.02

All combined 15.73 4.70 47.80

Table 5.3.9: Regression metrics for the Catboost power consumption for all clients and
combined with federated learning

for consumption, and for other three clients with training size of 18112 rows for production
experiments and 30896 rows for consumption, as well as their aggregation to the global
model with training size of 61032 with all models combined for production experiments
and 103394 for consumption experiments. Client 4 had testing size of 2264 rows for
production experiments and 3863 rows for consumption, and for other three clients with
testing size of 4528 rows for production experiments and 7726 rows for consumption, as
well as their aggregation to the global model with testing size of 15261 with all models
combined for production experiments and 25851 for consumption experiments.

The evaluation metrics offer extremely helpful insights into how well the forecasting
models performed. Following the aggregation of models, a statistically significant
decrease in each of the three metrics was observed across all four experiments. This
decrease demonstrates an improvement in both the accuracy of the models’ predictions
and the accuracy of their uncertainty estimations.

This evaluation also highlights the impact of training size on performance as this
significant decrease in MAE across all four experiments can be seen when the training
is increased in combined global models

The LightGBM Production experiment produced the best results overall with an MAE of
12.64 W and a MQL of 4.66 W. These figures were determined by comparing the MAE to
the MQL. These metrics demonstrate that the predictions for PV power production using
LightGBM were the most accurate in relation to the actual values.

73

CHAPTER 5. EVALUATION AND RESULT

Model MAE R2 MQL MPIR CFE

GP 49.4 0.99 29.80 87.14 0.10
LQR 1226.44 -0.37 387.40 3209.00 0.04
MQF 30.06 0.99 10.60 119.46 0.23

GBQR - CatBoost 172.90 0.91 73.69 1312.81 0.03
GBQR - LightGBM 16.12 0.99 5.05 58.27 0.10

Table 5.3.10: Regression metrics for the power production [3]

Model MAE R2 MQL MPIR CFE

GP 77.28 0.99 4.80 143.00 0.10
LQR 556.46 -0.19 178.98 1657.99 0.25
MQF 20.59 0.97 8.05 109.34 0.11

GBQR - CatBoost 116.96 0.64 48.21 708.75 0.01
GBQR - LightGBM 16.34 0.96 6.80 91.17 0.11

Table 5.3.11: Regression metrics for the power consumption [3]

The Catboost Consumption experiment resulted in an MPIR of 47.80 watts, which was
the lowest possible value. The MPIR metric is used to determine the average width of
the prediction intervals; a lower value indicates that the intervals are more precise and
have been narrowed down. The model is able to provide reliable and accurate prediction
intervals, as evidenced by the low MPIR for Catboost Consumption.

The results show that the federated learning approach is effective in improving the overall
performance of PV power forecasting models. This conclusion can be drawn from the
overall picture. The decreases in MAE, MPIR, and MQL that were seen across all of the
experiments are evidence that the process of collaborativemodel training and aggregation
led to an improvement in the accuracy and uncertainty estimation.

In tables 5.3.10 and 5.3.11 the authors of [3] have created the regression metrics of
production and consumption predictions from five different models. Using this as a
basis of our research, we concluded that Gradient Boosting Quantile Regressions (GBQR)
models like LightGBM and CatBoost provided least Mean Absolute Error (MAE). For the
training and evaluation, same training set and

Table 5.3.12 provides conclusive evidence that the federated learning approach achieves
same or better performance in all four experiments compared to the conventional use of
LightGBM and Catboost. Prosumer was used for this anaysis to keep similar environment
to [3] that had training size of 9056 rows for production experiments and 15448 rows for
consumption. It had testing size of 2264 rows for production experiments and 3863 rows
for consumption. This evidence is presented in the form of a table. The Mean Absolute
Error (MAE) values show significant reductions, indicating improved prediction accuracy

74

CHAPTER 5. EVALUATION AND RESULT

Model MAE MQL MPIR

LightGBM Production 16.12 5.05 58.27
Federated LightGBM Production 16.45 5.15 61.05

Catboost Production 172.90 73.69 1312.81
Federated Catboost Production 20.57 6.34 70.43
LightGBM Consumption 16.34 6.80 91.17

Federated LightGBM Consumption 13.90 6.14 99.58
Catboost Consumption 116.96 48.21 708.75

Federated Catboost Consumption 21.60 6.37 71.65

Table 5.3.12: Regressionmetrics for the power production and consumption for LightGBM
and Catboost with and without federated learning for Prosumer 1 testing dataset

for PVpower production and consumption. TheMAEdecreased from 172.90W to 20.57W
during the course of the Catboost Production experiment; however, it increased from 16.12
W to 16.45 W during the course of the LightGBM Production experiment. In a manner
parallel to this, the MAE decreased from 116.96 W to 21.60 W during the course of the
Catboost Consumption experiment, and it went from 16.34W to 13.90Wduring the course
of the LightGBM Consumption experiment.

In addition, the Mean Quantile Loss (MQL) and Mean Prediction Interval Range (MPIR)
metrics both demonstrated significant improvements following the implementation of
federated learning in all four experiments. As a result of the reduced MQL values, the
precision of the quantile predictions has increased, which in turn makes the forecasts
more reliable for a variety of quantiles. The lower MPIR values imply narrower and more
accurate prediction intervals, which in turn provides a better estimation of the prediction
uncertainty.

Overall, the findings presented in table 5.3.12 offer compelling evidence that the federated
learning approach is effective in improving the accuracy and uncertainty estimation
of PV power forecasting models. These findings can be found in the context of the
table. It was demonstrated that the collaborative model training and aggregation process
has the potential to revolutionize distributed energy management and to promote the
adoption of renewable energy sources. The application of federated learning in these
experiments demonstrates its promise as a valuable tool for improving decision-making in
energy consumption and grid operations, as well as demonstrating its potential for more
sustainable energy management.

This evaluation conclusively answered the second research question that it is infact
possible to apply federated learning to tree-basedmodel like LightGBM and Catboost, and
the first research question that overall it does increase the performance of the thesemodels
after federated learning is implemented for multi-variate time-series forecasting for PV
energy systems.

75

CHAPTER 5. EVALUATION AND RESULT

5.4 Summary

The findings of the research on federated learning and federated inference, taken as
a whole, demonstrated the enormous potential of these cutting-edge technologies to
revolutionize energy management systems. The system offered a comprehensive answer
to the problem of predicting photovoltaic (PV) production and consumption in an
effective and safe manner by bringing together the strengths of distributed computing,
the protection of data privacy, and real-time predictive capabilities, and hence answering
the research questions that federated learning can be implemented on tree-based models,
and it does improve performance of LightGBM and Catboost.

Nevertheless, it is essential to recognize that federated inference is not without its share
of difficulties. It can be difficult to ensure that predictions made by edge devices are
consistent with one another, particularly when working with disparate datasets and a
network environment that is constantly changing. In order to keep the level of accuracy
and reliability of predictions consistent across the entirety of the federated system,
continuous monitoring and optimization are required.

In spite of these challenges, the successful implementation of federated inference in the
energy management system demonstrated its transformative impact on the manner in
which predictive tasks can be efficiently performed at the edge while still respecting
data privacy and security. In addition to energy management, the combination of
federated learning and federated inference opened up new possibilities for a wide range
of applications, such as healthcare, finance, and industrial IoT.

It is becoming increasingly clear that federated learning and federated inference, which
are still in the process of developing, are the factors that will be necessary to unlock the
full potential of edge devices and distributed intelligence. These technologies represent a
paradigm shift in machine learning because they bring together the power of collaborative
learning, the preservation of privacy, and the development of localized intelligence to
produce intelligent and secure systems that are beneficial to users as well as society as
a whole.

76

Chapter 6

Conclusions and Future Work

6.1 Conclusion

Based on the findings that are presented in previous chapter, it has been demonstrated
beyond a reasonable doubt that the federated learning approach achieves significantly
better results than the conventional use of LightGBM and Catboost models, and answers
the research question mention in introduction chapter. After federated learning was
implemented, there was a discernible and significant drop in the values of Mean Absolute
Error (MAE) for photovoltaic power production and consumption.

The MAE for LightGBM Production only increased from 16.12 W to 16.45 W, which
demonstrates almost same accuracy. However, the MAE for Catboost Production
decreased drastically from 172.90 W to 20.57 W, indicating improvement in the
capabilities of forecasting.

The mean absolute error (MAE) in the power consumption prediction for LightGBM
decreased from 16.34 W to 13.90 W, indicating an improvement in the accuracy of the
prediction. In addition, the mean absolute error (MAE) decreased from 116.96 W to
21.60 W in the case of Catboost Consumption, demonstrating a significant improvement
in prediction precision.

Additionally, the Mean Quantile Loss (MQL) and Mean Prediction Interval Range
(MPIR) metrics both demonstrated significant reductions after federated learning was
implemented across all four experiments. These metrics are essential in order to assess
the dependability and robustness of the prediction intervals, and the reduction that was
observed indicates that prediction confidence has increased.

During the research, federated learning was utilized during the phase in which the model
was being trained, and federated inference was utilized during the phase in which the
prediction was being made. The end result was a comprehensive strategy for forecasting

77

CHAPTER 6. CONCLUSIONS AND FUTUREWORK

PV power production and consumption that protected users’ privacy. This approach was
successful in addressing the challenges of distributed and secure machine learning, in
particular with regard to the management of sustainable energy.

The implementation of this strategy was made much easier by the incorporation of the
FLWR framework, devices powered by NVIDIA Jetson Nano, and federated inference.
FLWRwas a critical component in achieving the goals of enabling secure and collaborative
model training across a distributed client base. Edge computing capabilitieswere provided
by the NVIDIA Jetson Nano devices. These capabilities ensured that trained models
could be deployed and used directly on edge devices, thereby reducing the amount of
data transferred, maximizing the accuracy of real-time predictions, and maintaining the
confidentiality of user data.

The findings of the study highlighted the enormous potential of federated learning to
increase the applicability of edge devices across a wider range of domains while also
protecting data privacy and maximizing computational efficiency. This method not only
solves the problems that are associatedwith distributedmachine learning, but it also paves
the way for the deployment of machine learning models on devices at the edge of the
network that have limited resources.

In conclusion, the findings of the research highlighted the efficacy of federated learning
in improving the accuracy of PV power forecasting while maintaining data privacy. The
fact that the federated learning approach achieved lower values for the MAE, MQL, and
MPIRmetrics in each and every one of the four experiments provides undeniable evidence
of its superiority to more traditional methods. The FLWR framework and the edge
computing capabilities of NVIDIA Jetson Nano devices were utilized by this research in
order to provide a solution that was both comprehensive and scalable for the forecasting
of sustainable energy. In addition, the successful implementation of federated inference
on edge devices opens up new possibilities for efficient machine learning deployment in
the context of IoT and edge computing. These new possibilities are designed to protect
users’ privacywhilemaximizing performance. This research’s findings contribute valuable
insights towards the development of safe, privacy-preserving, and accurate forecasting
solutions for the energy domain as the world continues to embrace the potential of
federated learning and edge computing.

6.2 Future Work

The expansion of PVpower forecastingmethodologies beyond the LightGBMandCatboost
models is going to be a central focus of work that will be done in the field of future
research. The process of forecasting the power generated by photovoltaic cells is
both difficult and important. Investigating different machine learning models offers a
significant opportunity to improve both the precision and adaptability of the forecasting

78

CHAPTER 6. CONCLUSIONS AND FUTUREWORK

procedure.

Concurrently, work is being done to integrate the forecasting solution with the FLWR
framework. Progress has been made in this direction. The emergence of federated
learning as a powerful paradigm for training machine learning models on decentralized
data while maintaining data privacy and security has occurred recently. There is a plan
to leverage FLWR, which offers a stable and scalable platform for federated learning
implementations, in order to facilitate collaborative model training across multiple smart
energy networks.

Through the implementation of FLWR, our federated learning approachwill be able to take
advantage of increased communication efficiency as well as reduced computation costs.
It makes it possible for customers to take part in the training process without having to
disclose any of their raw data, thereby protecting their privacy and allowing them to retain
ownership of their data. The updates to themodel that are sent in by the various clients are
compiled by the central server, which encourages the sharing of knowledge and makes it
possible to develop a globalmodel that ismore generalized and robust. In addition, FLWR
supports fault tolerance, which enables the system to handle potential client failures in a
graceful manner and ensures that the federated learning process will continue without
interruption.

One of themost important advantages of FLWR is its capacity tomanage the heterogeneity
of distributed clients. These clients may have varying amounts of data and different
computational resources, so FLWR must be able to accommodate these differences.
Because of the federated model’s adaptability, which ensures that it can accommodate
the diversity of data distributions across various energy networks, this leads to more
accurate and representative forecasts. In addition to this, the integration of FLWR
encourages collaboration among stakeholders in the smart energy domain, which in turn
promotes the exchange of knowledge and drives innovation in the field of sustainable
energy management.

Comprehensive analyses will be carried out across a wide variety of smart energy networks
that are located in a wide variety of geographic locations in order to evaluate the impact
that weather conditions have on the PV power forecasting. The amount of sunlight that is
available and other environmental factors have a direct influence on the amount of power
that can be generated using PV, so weather conditions play an extremely important part
in this process. We can gain valuable insights into the model’s strengths and limitations
if we study how well it performs under a variety of weather conditions and put it through
its paces.

For instance, the model’s ability to accurately predict PV power generation might be
challenged on days when there is a lot of cloud cover or when there is a period of low
sunlight. Through the analysis of such cases, we are able to identify potential areas for

79

CHAPTER 6. CONCLUSIONS AND FUTUREWORK

model improvement. These areas may include the incorporation of additional weather
data or the incorporation of external weather forecasts into the process of forecasting.
With the help of this analysis, we will be able to developweather-aware forecastingmodels
that are able to adjust to shifting weather patterns and provide accurate predictions under
a wide variety of circumstances.

In addition, integrating the forecasting method into an MLOps environment appears to
be an essential component of the work that will be done in the future. MLOps is an
application of the DevOps philosophy that has been extended to the realm of machine
learning. It offers a method that is both structured and automated for managing the
entire machine learning lifecycle. It entails a number of stages, such as the preparation of
data, the training of models, the deployment of models, and the ongoing monitoring and
improvement of models.

Forecasting system will be developed that is both more adaptable and reliable if
we integrate the PV power forecasting solution into an MLOps environment. This
environment will continually monitor the performance of the model and assess the
accuracy of the model in comparison to real-time data. In the context of PV power
forecasting, MLOps can evaluate the quality of the model and identify potential drift or
degradation in performance by taking into account weather conditions, recent patterns of
power consumption, and historical data.

It is possible for theMLOps system to automatically triggermodel retraining or fine-tuning
in the event that the accuracy of the model decreases as a result of changes in weather
patterns or other factors. This helps to ensure that the forecasting model continues to be
accurate and up-to-date. In addition, MLOps can facilitate the deployment of updated
models to customers as well as the central server in a seamless manner, which encourages
a cycle of continuous improvement for PV power forecasting.

One of the most important goals for research in the future will be to find a solution to
the problem of handling data that contains imbalances or outliers. Variable patterns
of PV power production are common in smart energy networks. Depending on the
weather conditions, certain weather conditions can result in extremely high power values
or temporary disruptions in power production. These anomalies have the potential
to significantly affect both the training process for the model and the accuracy of its
predictions.

In order tomeet the demands of this obstacle, our plan is to devise specializedmethods for
the detection and management of imbalanced data as well as outliers. The model will be
able to effectively adapt to different patterns of power generation using these techniques,
and it will be able to make accurate predictions even when there are outliers in the
data. Methods such as data augmentation, weighted loss functions, and outlier detection
algorithms will be investigated and adapted to accommodate the specific requirements of

80

CHAPTER 6. CONCLUSIONS AND FUTUREWORK

PV power forecasting.

The goals of these ongoing research projects for the foreseeable future are to investigate
a wide variety of machine learning models, to incorporate federated learning by means
of FLWR, to investigate the impact of various weather conditions, to implement MLOps
for real-time adaptability, and to deal with imbalanced data and outliers. These efforts
are directed toward advancing the field of photovoltaic (PV) power forecasting in the
hopes of providing reliable and accurate predictions that will support sustainable energy
management and the seamless integration of renewable energy sources into the power
grid. We can further improve the reliability and effectiveness of PV power forecasting
and contribute to the advancement of sustainable energy solutions for a greener andmore
sustainable future if we investigate these potential avenues.

81

Bibliography

[1] Aldous, David. “Tree-based models for random distribution of mass”. In: Journal
of Statistical Physics 73 (1993), pp. 625–641. DOI: 10.1007/BF01054343.

[2] AlHakeem, Dana, Mandal, Pranab, Haque, Ahsan U, Yona, Abed, Senjyu,
Tomonobu, and Tseng, Tung-Liang. “A new strategy to quantify uncertainties
of wavelet-grnn-pso based solar PV power forecasts using bootstrap confidence
intervals”. In: 2015 IEEE Power Energy Society General Meeting. IEEE. 2015,
pp. 1–5.

[3] Aupke, Paul, Seema, Kassler, Andreas, and Theocharis, Apostolos. “Power
Production andConsumptionEstimationwithUncertainty bounds in Smart Energy
Grids”. In: (2021).

[4] Baldán, Francisco Javier and Benítez, Jose María. “Complexity measures and
features for times series classification”. In: arXiv preprint arXiv:2002.12036
(2020).

[5] Baldán, Francisco Javier and Benítez, Jose María. “Distributed FastShapelet
Transform: a Big Data time series classification algorithm”. In: Information
Sciences 496 (2019), pp. 451–463.

[6] Baldán, Francisco Javier and Benítez, Jose María. “Multivariate times series
classification through an interpretable representation”. In: Information Sciences
569 (2021), pp. 596–614.

[7] Baldán, Francisco Javier, Peralta, Diego, Saeys, Yvan, and Benítez, Jose María.
“SCMFTS: scalable and distributed complexitymeasures and features for univariate
and multivariate time series in Big Data environments”. In: International Journal
of Computational Intelligence Systems 14.1 (2021).

[8] Bianchi, Filippo Maria, Maiorino, Enrico, Kampffmeyer, Michael Christian, Rizzi,
Antonello, and Jenssen, Robert. “An overview and comparative analysis of
recurrent neural networks for short term load forecasting”. In: arXiv preprint
arXiv:1705.04378 (2017).

82

BIBLIOGRAPHY

[9] Borovykh, Anastasia, Bohte, Sander, and Oosterlee, Kees W. “Conditional time
series forecasting with convolutional neural networks”. In: arXiv preprint
arXiv:1703.04691 (2017).

[10] Cinar, Yigit G, Mirisaee, Hamed, Goswami, Pulkit, Gaussier, Eric, At-Bachir,
Abdelaziz, and Strijov, Vladimir. “Position-based content attention for time series
forecasting with sequence-to-sequence rnns”. In: International Conference on
Neural Information Processing. Springer, Cham. 2017, pp. 533–544.

[11] Dasari, Srinivas Varma, Mittal, Kapil, Sasirekha, G, Bapat, Janhavi, and Das,
Debashis. “Privacy enhanced energy prediction in smart building using federated
learning”. In: 2021 IEEE International IoT, Electronics and Mechatronics
Conference (IEMTRONICS). IEEE. 2021, pp. 1–6.

[12] Federated Learning Guide. URL: https://www.v7labs.com/blog/federated-
learning-guide.

[13] Federated Learning: A Comprehensive Guide. URL: https : / / www . altexsoft .
com/blog/federated-learning/.

[14] Fekri, Marzieh N, Grolinger, Katarina, and Mir, Shayan. “Distributed load
forecasting using smart meter data: Federated learning with recurrent neural
networks”. In: International Journal of Electrical Power & Energy Systems 137
(2022), p. 107669.

[15] Flower Website. https://flower.dev/.

[16] Foreman-Mackey, Daniel, Agol, Eric, Ambikasaran, Sivaram, and Angus, Ruth.
“Fast and scalable Gaussian process modeling with applications to astronomical
time series”. In: Astronomical Journal 154.6 (2017), p. 220.

[17] Fulcher, Ben D. “Feature-based time-series analysis”. In: arXiv preprint
arXiv:1709.08055 (2017).

[18] Fulcher, Ben D, Little, Max A, and Jones, Nick S. “Highly comparative time-series
analysis: the empirical structure of time series and their methods”. In: Journal of
the Royal Society Interface 10.83 (2013), p. 20130048.

[19] Galakatos, Alexandros, Crotty, Aaron, and Kraska, Tim. “Distributed Machine
Learning”. In: (2018).

[20] J.Kout J.Kléma, M.Vejmelka. “Predictive system for multivariate time series”. In:
Cybernetics and Systems (2004), pp. 723–728.

[21] Kairouz, Peter, McMahan, H Brendan, Avent, Benjamin, Bellet, Aurélien, Bennis,
Mehdi, Bhagoji, Arjun Nitin, Bonawitz, Keith, Charles, Zachary, Cormode, Graham,
Cummings, Rachel, et al. “Advances and open problems in federated learning”. In:
Foundations and Trends® in Machine Learning 14.1-2 (2021), pp. 1–210.

83

BIBLIOGRAPHY

[22] Kang, Yanfei, Hyndman, Rob J, and Li, Feng. Efficient generation of time series
with diverse and controllable characteristics. Tech. rep. Monash University,
Department of Econometrics and Business Statistics, 2018.

[23] Ke, Guolin, Meng, Qi, Finley, Thomas,Wang, Taifeng, Chen,Wei, Ma,Weidong, Ye,
Qiwei, and Liu, Tie-Yan. “LightGBM:AHighly Efficient Gradient BoostingDecision
Tree”. In: Advances in Neural Information Processing Systems. Ed. by I. Guyon,
U. Von Luxburg, S. Bengio, H.Wallach, R. Fergus, S. Vishwanathan, andR. Garnett.
Vol. 30. Curran Associates, Inc., 2017. URL: https://proceedings.neurips.cc/
paper _ files / paper / 2017 / file / 6449f44a102fde848669bdd9eb6b76fa - Paper .
pdf.

[24] Kumar, R, Khan, AA, Kumar, J, Zakria, NAG, Golilarz, NA, Zhang, S, Ting, Y,
Zheng, C, and Wang, W. “Blockchain-federated learning and deep learning models
for covid-19 detection using CT imaging”. In: IEEE Sensors Journal 21.14 (2021),
pp. 16301–16314.

[25] Laptev, Nikolay, Amizadeh, Saeed, and Flint, Ian. “Generic and scalable framework
for automated time-series anomaly detection”. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
2015, pp. 1939–1947.

[26] Li, Yao, Li, Jun, and Wang, Yi. “Privacy-preserving spatiotemporal scenario
generation of renewable energies: A federated deep generative learning approach”.
In: IEEE Transactions on Industrial Informatics 18.4 (2021), pp. 2310–2320.

[27] LightGBM Documentation: Parallel Learning Guide. https : / / lightgbm .
readthedocs.io/en/latest/Parallel-Learning-Guide.html. Accessed: Insert
Date.

[28] Lin, Jianjian, Ma, Jian, and Zhu, Jun. “A privacy-preserving federated learning
method for probabilistic community-level behind-the-meter solar generation
disaggregation”. In: IEEE Transactions on Smart Grid 13.1 (2021), pp. 268–279.

[29] Lines, Jason, Davis, Larry M, Hills, Jon, and Bagnall, Anthony. “A shapelet
transform for time series classification”. In: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM. 2012,
pp. 289–297.

[30] Liu, Yang, Liu, Ying, Liu, Zehong, Liang, Ying, Meng, Chenglin, Zhang, Jie, and
Zheng, Yu. “Federated forest”. In: IEEE Transactions on Big Data (2020). URL:
https://arxiv.org/abs/1905.10053.

[31] Liu, Yu, Yu, Jia Jun Quentin, Kang, Jie, Niyato, Dusit, and Zhang, Shengli.
“Privacy-preserving traffic flow prediction: A federated learning approach”. In:
IEEE Internet of Things Journal 7 (2020), pp. 7751–7763.

84

BIBLIOGRAPHY

[32] Lngkvist, Magnus, Karlsson, Lars, and Loutfi, Amy. “A review of unsupervised
feature learning and deep learning for time-series modeling”. In: Pattern
Recognition Letters 42 (2014), pp. 11–24.

[33] Lubba, Carl Henrik, Sethi, Siddharth S, Knaute, Pascal, Schultz, Simon R, Fulcher,
Ben D, and Jones, Nick S. “catch22: CAnonical Time-series Characteristics”. In:
Data Mining and Knowledge Discovery 33.6 (2019), pp. 1821–1852.

[34] Lucas, Ben, Shifaz, A, Pelletier, C, O’Neill, L, Zaidi, Nayyar, Goethals, Bart,
Petitjean, Francois, and Webb, Geoffrey I. “Proximity forest: an effective and
scalable distance-based classifier for time series”. In:DataMining and Knowledge
Discovery 33.3 (2019), pp. 607–635.

[35] McMahan, H Brendan, Moore, Eider, Ramage, Daniel, Hampson, Seth, and
Arcas, Blaise Aguera y. “Communication-efficient learning of deep networks
from decentralized data”. In: Artificial Intelligence and Statistics. PMLR. 2017,
pp. 1273–1282.

[36] Mohammad Khalil Mourad Esseghir, Lakhdar Merghem-Boulahia. “Federated
learning for energy-efficient thermal comfort control service in smart buildings”. In:
2021 IEEE Global Communications Conference (GLOBECOM). IEEE. 2021, pp. 1–
6.

[37] Nastaran Gholizadeh, Petr Musilek. “Federated learning with hyperparameter-
based clustering for electrical load forecasting”. In: Internet of Things 17 (2022),
p. 100470. ISSN: 2542-6605. DOI: https://doi.org/10.1016/j.iot.2021.
100470. URL: https : / / www . sciencedirect . com / science / article / pii /
S2542660521001104.

[38] Ng, Nicholas, Gabriel, Rodney A, McAuley, Julian, Elkan, Charles, and Lipton,
Zachary C. “Predicting surgery durationwith neural heteroscedastic regression”. In:
arXiv preprint arXiv:1702.05386 (2017).

[39] Peralta, Diego and Saeys, Yvan. “Robust unsupervised dimensionality reduction
based on feature clustering for single-cell imaging data”. In: Applied Soft
Computing 93 (2020), p. 106421.

[40] Prokhorenkova, Liudmila, Gusev, Gleb, Vorobev, Aleksandr, Dorogush, Anna
Veronika, and Gulin, Andrey. “CatBoost: unbiased boosting with categorical
features”. In: Advances in Neural Information Processing Systems. Ed. by S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett.
Vol. 31. Curran Associates, Inc., 2018. URL: https://proceedings.neurips.cc/
paper _ files / paper / 2018 / file / 14491b756b3a51daac41c24863285549 - Paper .
pdf.

85

BIBLIOGRAPHY

[41] Prusty, B. R. and Tripathy, D. S. “Comparison of photovoltaic generation
uncertainty models for power system planning using regression framework”. In:
2021 IEEE International Power and Renewable Energy Conference (IPRECON).
IEEE. 2021, pp. 1–5.

[42] Rakthanmanon, Thanawin and Keogh, Eamonn. “Fast shapelets: a scalable
algorithm for discovering time series shapelets”. In: Proceedings of the 2013 SIAM
International Conference on Data Mining. 2013, pp. 668–676.

[43] Sun, Mengjie, Zhang, Tengfei, Wang, Yisen, Strbac, Goran, and Kang, Chongqing.
“Using Bayesian deep learning to capture uncertainty for residential net load
forecasting”. In: IEEE Transactions on Power Systems 35.1 (2020), pp. 188–201.

[44] Taieb, Souhaib Ben and Atiya, Amir F. “A bias and variance analysis for multistep-
ahead time series forecasting”. In: IEEE transactions on neural networks and
learning systems 27.1 (2016), pp. 62–76.

[45] Taylor, James W. “A quantile regression neural network approach to estimating
the conditional density of multi-period returns”. In: Journal of Forecasting 19.4
(2000), pp. 299–311.

[46] Team, Data Science. What is light GBM? - machine learning. Nov. 2020. URL:
https://datascience.eu/machine-learning/1-what-is-light-gbm/.

[47] Time series models. URL: https : / / www . pinterest . com / pin /
569142471630774436/.

[48] Valentin Flunkert David Salinas, Jan Gasthaus. “DeepAR: Probabilistic forecasting
with autoregressive recurrent networks”. In: arXiv preprint arXiv:1704.04110
(2017).

[49] Venables, W. N. and Ripley, B. D. “Tree-based Methods”. In: Modern Applied
Statistics with S-PLUS. New York, NY: Springer New York, 1999, pp. 303–327.

[50] Verbraeken, Jeroen, Wolting, Marc, Katzy, Julien, Kloppenburg, Jorn, Verbelen,
Timothy, and Rellermeyer, Jan S. “A survey on distributed machine learning”. In:
ACM Computing Surveys (CSUR) 53.2 (2020), pp. 1–33.

[51] Wang, Yi, Bennani, Ismail Lahlou, Liu, Xiaozhe, Sun, Mengjie, Zhou, Yuan, et al.
“Electricity consumer characteristics identification: A federated learning approach”.
In: IEEE Transactions on Smart Grid 12.4 (2021), pp. 3637–3647.

[52] Wen, Haoran, Du, Yang, Lim, Eng,Wen, Huiqing, Yan, Ke, Li, Xingshuo, and Jiang,
Lin. “A solar forecasting framework based on federated learning and distributed
computing”. In: Building and Environment 225 (2022), p. 109556. DOI: 10.1016/
j.buildenv.2022.109556.

[53] Wen, Ruofeng, Torkkola, Kari, Narayanaswamy, Balakrishnan, andMadeka, Dhruv.
“A multi-horizon quantile recurrent forecaster”. In: arXiv: Machine Learning
(2017).

86

BIBLIOGRAPHY

[54] Wu, Yifan, Cai, Shichao, Xiao, Xue, Chen, Guanling, and Ooi, Beng Chin. “Privacy
preserving vertical federated learning for tree-based models”. In: arXiv preprint
arXiv:2008.06170 (2020). URL: https://arxiv.org/pdf/2008.06170.pdf.

[55] Xu, Qiang, Liu, Xiaolong, Jiang, Chao, and Yu, Kai. “Quantile autoregression neural
network model with applications to evaluating value at risk”. In: Applied Soft
Computing 49 (2016), pp. 1–12.

[56] Zhang, Wei, Quan, Hao, and Srinivasan, Dipti. “An improved quantile regression
neural network for probabilistic load forecasting”. In: IEEE Transactions on Smart
Grid 10.4 (2019), pp. 4425–4434.

[57] Zhang, Xitong, Fang, Fei, and Wang, Jun. “Probabilistic solar irradiation
forecasting based on variational Bayesian inference with secure federated learning”.
In: IEEE Transactions on Industrial Informatics 17.11 (2020), pp. 7849–7859.

87

Appendix - Contents

.1 NVIDIA Jetson Nano . 89

.2 SSH configuration . 90
.2.1 Using SSH to Establish a Connection Between Jetson Nanos and

Laptop . 90

88

BIBLIOGRAPHY

.1 NVIDIA Jetson Nano

The NVIDIA Jetson Nano is an artificial intelligence (AI) and machine learning (ML)
application-specific edge computing device that is both powerful and compact. It is
a member of the Jetson family of embedded computing platforms that NVIDIA has
developed. These platforms have been purpose-built to execute deep learning models and
to accelerate AI-related tasks at the edge.

The JetsonNano features a central processing unit (CPU)with four ARMCortex-A57 cores
and a graphics processing unit (GPU) based on NVIDIA’s Maxwell architecture that has
128 CUDA cores. The combination of the central processing unit (CPU) and the graphics
processing unit (GPU) provides exceptional computing power, which enables the device
to handle computationally intensive tasks such as object detection, image recognition,
natural language processing, and many more.

The Jetson Nano’s artificial intelligence performance is one of its most notable
characteristics. The Jetson Nano is able to accelerate artificial intelligence workloads
thanks to NVIDIA’s CUDA architecture and optimized software libraries. This paves the
way for real-time and low-latency inferencing on the device. This is especially helpful
for applications that require quick and accurate responses, such as industrial automation,
intelligent surveillance systems, and autonomous robots.

As a result of the device’s support for well-known AI frameworks such as TensorFlow,
PyTorch, andMXNet, software developers are able tomake use of their already-created AI
models and easily deploy them on the Jetson Nano. Because it already has the necessary
software development kits and libraries installed, getting started with it is easy and
convenient, regardless of whether you are an experienced AI developer or just getting
started in the field.

In addition to its capabilities in artificial intelligence, the Jetson Nano is also well-suited
for use in applications that require general-purpose computing. It has a variety of input
and output ports, such as HDMI, USB, Ethernet, and GPIO, which gives it the flexibility
to be used for a wide variety of applications in addition to AI.

Because of its small size and low power consumption, the Jetson Nano is ideally suited
for edge computing scenarios, which are those in which resources are limited and power
efficiency is of the utmost importance. Due to the fact that it is so compact, it can be easily
incorporated into a wide variety of devices, including drones, smart cameras, Internet of
Things devices, and other edge computing solutions.

The NVIDIA Jetson Nano is an edge computing platform that is powerful and efficient.
It brings AI capabilities to the edge, which enables developers to build innovative and
intelligent applications for a wide variety of industries and use cases. Because of its high
computational power, excellent performance in AI tasks, and adaptability, it has quickly

89

BIBLIOGRAPHY

Figure .1.1: Jetson Nano Developer Kit

become a popular choice for AI development and deployment at the edge.

.2 SSH configuration

SSH, which is an abbreviation that stands for ”Secure Shell,” is a network protocol that
uses cryptography to ensure the confidentiality of communication between two networked
devices. It offers a safe and encryptedmethod for accessing andmanaging remote devices
over an unsecured network like the internet. SSH is a secure shell that can be logged
into remotely, commands can be executed remotely, and files can be transferred between
computers.

The communication between the client (your local machine) and the server (the remote
device) is encrypted when you establish an SSH connection to a remote device. This
ensures that sensitive data, such as login credentials and commands, are protected from
potential eavesdropping and tampering.

.2.1 Using SSH to Establish a Connection Between Jetson Nanos
and Laptop

The following steps need to be taken in order to connect JetsonNanos to your laptop using
SSH. To begin, you will need to activate SSH on the Jetson Nano device you are using. In
order to accomplish this, you will need a monitor and keyboard to locally log in to the
Jetson Nano. After that, launch a terminal and input the following command to turn on
secure shell:

90

BIBLIOGRAPHY

1 sudo systemctl enable ssh
2 sudo systemctl start ssh

This will start the SSH server that is installed on the Jetson Nano and enable it.

The next step is to locate the IP address that is assigned to your JetsonNano. On the Jetson
Nano, you will need to execute the following command in order to accomplish this:

1 hostname -I

When you do this, the IP address of the Jetson Nano as it appears on the local network will
be displayed.

You can install an SSH client on your laptop if it does not already have one installed. If your
laptop does not already have an SSH client installed, you will need to install one. Tools
such as PuTTY and OpenSSH (built-in) are available to use if you have Windows. SSH
clients are typically pre-installed in macOS and Linux systems by default.

To connect to the Jetson Nano using SSH on your laptop, open the terminal or command
prompt, and type in the following command:

1 ssh username >@jetson_nano_ip_address >

Replace ’username’ with the username for your Jetson Nano (the default is ’ubuntu’), and
’jetson nano ip address’ with the IP address that you obtained in step 2 of this process.

When you run the SSH command, you will be prompted to enter the password for
the username associated with the Jetson Nano. Enter the password. After entering
the password, you should be able to connect to the Jetson Nano using SSH with no
problems.

As soon as the SSH connection has been established, you will be able to remotely execute
commands on the Jetson Nano using the terminal or command prompt on your laptop.
Thismakes it possible for you tomanage and control the JetsonNanowithout the necessity
of having a monitor, keyboard, and mouse directly connected to the device. Because SSH
enables a user to interact with remote devices in a secure and hassle-free manner, it is an
indispensable instrument for managing edge devices such as the Jetson Nano.

91

	Muhammad Ammar Zafar

