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Abstract 

The intermittent nature of renewable energy resources like Photovoltaic (PV) poses a 
challenge to energy forecasting, gr id balancing, and scheduling. Accurate and reliable 
forecasts of energy generation and consumption are needed to optimize the performance 
of the smart energy grid. Machine Learning ( M L ) has shown great potential in addressing 
these challenges. However, existing approaches have l imitations in terms of accuracy, 
uncertainty, and scalability. Federated learning is a technique that allows machine 
learning models to be trained and applied on distributed data sources without the need to 
centralize the data. In the context of P V production and consumption forecasting models, 
federated learning can be used to train and apply these models on data from different 
prosumers, such as different households or buildings, while preserving the privacy of the 
data owners. This thesis investigates P V power forecasting using federated learning and 
tree-based models, such as L i g h t G B M and Catboost. The importance of accurate P V power 
forecasting for renewable energy integration is highlighted, along with the challenges for 
data aggregation for tree-based models. The research objectives are outlined: to design 
and create a robust federated learning architecture specifically tailored for tree-based 
forecasting models, such as L i g h t G B M and Catboost, to design and implement a novel 
aggregation strategy that efficiently combines updates from these models obtained from 
multiple nodes in the federated learning architecture, and to evaluate those models in a 
distributed test-bed on data-set coming from the smart grid communi ty and compare the 
performance in terms of forecast accuracy to non-distributed approaches. The evaluation 
shows that the developed approach reduces the Mean Absolute Er ro r ( M A E ) for Catboost 
Production by 88.1%, L i g h t G B M Consumption by 14.93%, and Catboost Consumption by 
79.5%. For L i g h t G B M Production it remained almost same. After using federated learning, 
Mean Quantile Loss ( M Q L ) and Mean Prediction Interval Range ( M P I R ) also significantly 
decreased. 
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Chapter 1 

Introduction 

The use of renewable energy sources, especially photovoltaic (PV) systems, has grown 
significantly in recent years as a crucial element of sustainable energy policies. W i t h 
its eco-friendly qualities and ability to lower greenhouse gas emissions, photovoltaic 
power generating has become a prospective replacement for conventional fossil fuel-
based electricity generation. However, the intermittent nature of solar energy poses 
considerable difficulties for gr id managers and energy planners in preserving gr id stability 
and guaranteeing resource efficiency. 

One critical aspect in effectively integrating P V systems into the power grid is accurate and 
reliable forecasting of P V power production and consumption. Accurate forecasts enable 
grid operators to anticipate fluctuations in power input and output, thereby optimizing 
grid management, min imiz ing imbalances, and making informed decisions about backup 
power sources. 

Moreover, while accurate P V power forecasting is essential for efficient gr id operations, 
there is a growing concern about preserving data privacy, especially wi th the increasing 
use of smart meters and data-intensive monitoring systems. Energy consumption data 
contains sensitive information about households and businesses, and its unauthorized 
access or misuse could compromise individuals ' privacy and security. 

To address the challenges of both accurate P V power forecasting and data privacy 
preservation, novel approaches are required that can leverage the power of data while 
ensuring privacy protection. One promising avenue is the application of federated learning 
that is decentralized machine learning framework that enables multiple parties to train 
models collaboratively while keeping their data locally stored and without sharing raw 
data. Federated learning can enable effective model training across numerous distributed 
sources without compromising the privacy of individual data contributors, which has the 
potential to resolve the conflicting goals of accurate forecasting and data privacy. 
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CHAPTER l . INTRODUCTION 

1.1 Background 

In the realm of P V power forecasting, machine learning ( M L ) based approaches have 
gained significant traction. Advanced techniques, such as deep learning models like L S T M 
(Long Short-Term Memory) networks and C N N (Convolutional Neural Networks), have 
been actively explored by researchers. These deep learning models have demonstrated 
promising results in capturing complex temporal patterns inherent in P V power 
production and consumption data, leading to improved forecast accuracy. The ability to 
learn from historical patterns and make accurate predictions in dynamic environments 
makes these models particularly suitable for P V power forecasting. 

However, Forest-based models l ike L i g h t G B M [23] and Catboost [4o]have shown 
considerable success in Mult i -Var ia te T ime Series Forecasting [20]. These ensemble 
methods leverage decision trees to capture interactions between variables and provide 
robust predictions. In the context of P V power forecasting, the application of L i g h t G B M 
and Catboost has shown significant potential for capturing complex relationships between 
meteorological and operational factors, leading to accurate and reliable predictions of P V 
power generation. 

The combination of federated learning with advanced machine learning techniques, such 
as tree-based models, presents a promising avenue for enhancing P V power forecasting 
[54]. By leveraging the strengths of federated learning's privacy-preserving capabilities 
and the predictive power of these advanced M L models, the accuracy and efficiency of P V 
power forecasting can be further improved. The integration of federated learning wi th 
tree-based models has the potential to revolutionize the field of P V power forecasting, 
contributing to more efficient renewable energy integration and sustainable energy 
management. 

1.2 Problem Description 

In this thesis, the main challenge is of developing a P V power forecasting model using 
federated learning, with a specific emphasis on forest-based regression models such as 
L i g h t G B M and CatBoost. The main hurdle lies in creating a framework that facilitates 
efficient aggregation of updates from these forest models, all while preserving the key 
advantages of federated learning, namely privacy and data decentralization. 

One of the core issues addressed is that existing federated learning frameworks, l ike F L W R 
(A Fr iendly Federated Learning Framework), lack bui l t - in support for aggregating weights 
specifically tailored to forest-based models. This l imitat ion poses a significant obstacle in 
effectively employing forest-based models wi th in a federated learning setup for P V power 
forecasting. 
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CHAPTER l . INTRODUCTION 

Another aspect of the challenge is related to the nature of forest-based models 
themselves. These models often consist of multiple trees, and each tree is typically trained 
independently. As such, accommodating multiple models training per client wi thin 
the federated learning framework becomes a challenging task that requires innovative 
solutions. 

The central focus of this thesis is to devise a novel aggregation mechanism that 
can overcome these challenges effectively. This mechanism should enable seamless 
integration of forest-based models' updates from multiple nodes while retaining data 
privacy and ensuring efficient communicat ion among the participating devices. By 
addressing these critical issues, the research aims to unlock the potential of federated 
learning for P V power forecasting, leveraging the strengths of forest-based models i n 
capturing complex temporal patterns inherent in solar energy generation data. 

The outcome of this research is expected to contribute to the field of federated learning 
and its applicabili ty to P V power forecasting. By devising a robust aggregation approach 
tailored to forest-based models, the thesis aims to broaden the scope of federated learning 
applications, providing privacy-preserving, accurate, and efficient forecasting solutions 
for the renewable energy sector. The research outcomes have the potential to advance 
the state-of-the-art in decentralized machine learning approaches, impacting various 
domains beyond P V power forecasting. 

1.3 Thesis Objective 

The first objective of this thesis is to design and create a robust federated learning 
architecture specifically tailored for multivariate t ime series forecasting, wi th a focus on P V 
power prediction. This architecture wi l l enable distributed devices or nodes to collaborate 
and train predictive models collectively without sharing raw data. The goal is to ensure 
data privacy while harnessing the collective knowledge of all nodes to enhance forecasting 
accuracy. 

The second objective is to implement and evaluate tree-based regression models, such 
as L i g h t G B M and CatBoost, wi th in the federated learning framework. These ensemble 
models have shown promise in handling complex interactions wi thin t ime series data and 
are well-suited for P V power forecasting. The goal is to assess the performance of these 
models in terms of accuracy, robustness, and efficiency within the federated setting. 

The th i rd objective is to design and implement a novel aggregation strategy that efficiently 
combines updates from tree-based regression models obtained from multiple nodes in the 
federated learning architecture. The objective is to develop an aggregation mechanism 
that preserves data privacy, minimizes communication overhead, and ensures accurate 
and reliable P V power forecasts. 
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CHAPTER l . INTRODUCTION 

The fourth objective is to evaluate those models in a distributed test-bed on data-set 
coming from the smart gr id community and compare the performance in terms of forecast 
accuracy to non-distributed approaches. 

1.4 Research Questions 

1. H o w does Federated learning impact forecast accuracy of Mult i -Var ia te Time Series 
Forecasting in the context of Renewable Energy Systems? 

2. H o w can Federated Learning be implemented on tree-based models? 

1.5 Methodology 

This thesis follows a traditional methodology for a thesis that aims to develop forecasting 
models using Machine Learning. Performing federated inference for P V production and 
consumption models requires careful consideration of data preparation, model selection, 
federated learning setup, federated inference, evaluation, and deployment. By following 
these steps, it is possible to train accurate and robust P V production and consumption 
forecasting models on distributed data sources while preserving the privacy of the data 
owners. 

First ly the data collected by [3] from Swedish households having P V installations and 
battery storage w i l l be used. The data w i l l include the variety of features, such as the power 
generation of P V , household consumption, weather data, and time of day. The data w i l l 
be preprocessed to remove outliers, missing values, and redundant features. The data w i l l 
be scaled to normalize the range of values. 

Secondly suitable model architectures for the P V production and consumption forecasting 
task are to be chosen. The models should be designed to handle the variabili ty in 
the data from different sources and to be robust to changes in the data distribution 
over time. Considering al l this proposed models w i l l be[ is] G B Q R - Catboost, G B Q R -
L i g h t G B M 

Thirdly , Set up a federated learning framework consisting of a central server and multiple 
clients, each of which has its own local data. The server sends the ini t ia l model parameters 
to each client, and the clients train the model on their local data. 

Lastly, the performance of the proposed framework wi l l be evaluated using various metrics 
l ike Mean Absolute Er ror ( M A E ) , Mean Prediction Interval Range ( M P I R ) , and Mean 
Quantile Loss ( M Q L ) . The results w i l l be compared wi th existing M L techniques. 
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CHAPTER l . INTRODUCTION 

1.6 Outline 
Chapter 2 provides a comprehensive background on time series forecasting and its 
application in P V power forecasting. Tradi t ional forecasting methods for multi-variate 
t ime series are explored, along wi th the unique challenges faced when predicting P V power 
production and consumption. The chapter also delves into federated and distributed 
learning, presenting an overview of federated learning, and its advantages over traditional 
centralized machine learning. Privacy and security concerns in federated learning are 
discussed, along wi th emerging research trends in this field. 

Chapter 3 outlines the research design adopted for this study. The data collection 
and preprocessing procedures for P V power data are detailed, focusing on handling 
missing data and outliers. The design of the federated learning architecture for P V 
power forecasting is presented, elucidating the selection of participating nodes and their 
respective roles. Algori thms for aggregation approaches for FedAvg are presented 

Chapter 4 explains the challenges associated wi th aggregating forest-based model updates 
in federated learning and implementations. The proposed novel aggregation mechanism 
is introduced, offering an efficient means of combining model updates from various 
nodes while ensuring data privacy. The chapter presents the technical details of the 
aggregation approach and how it addresses the unique requirements of federated P V 
power forecasting. 

Chapter 5 presents the results of the research. A comprehensive performance comparison 
is conducted, evaluating the forecasting accuracy of federated tree-based models against 
traditional centralized models. The predictive capabilities of L i g h t G B M and Catboost 
in the federated learning setting are compared. In this chapter, the implications of the 
obtained results are discussed in-depth. The forecasting performance of federated forest 
models is interpreted, highlighting their strengths and limitations. The impact of the novel 
aggregation approach on forecast accuracy and efficiency is analyzed. 

Chapter 6 presents a concise summary of the key findings and contributions of the 
thesis. The research objectives are revisited, and their fulfillment is affirmed. The 
significance of the novel aggregation approach i n the context of federated P V power 
forecasting is emphasized, highlighting its potential impact on the field of renewable 
energy forecasting. 
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Chapter 2 

Background and Literature Review 

In this chapter the background and related work is introduced that is necessary for 
understanding the concepts of this thesis. This w i l l range from research on t ime series 
forecasting techniques to underlying concepts about federated learning. 

2.1 Background 

This section provides detailed technical background of all the concepts used in this thesis, 
such as t ime series forecasting, evaluation metrics, tree-based models, and federated 
learning. 

2.1.1 Time Series Forecasting and Evaluation Metrics for Interval 
Ranges 

Time series forecasting and multivariate t ime series forecasting [20] are key tasks in 
predictive analytics and machine learning, and they play an important role in gaining 
valuable insights and generating informed decisions from temporal data. Time series 
forecasting is concerned with predicting the future values of a particular variable over 
time by examining its previous measurements. This analytical method is very useful when 
dealing wi th data that has a distinct temporal pattern, such as stock prices in financial 
markets, temperature measurements in climate research, or monthly sales numbers in 
retail analytics. In t ime series forecasting, several well-established approaches are used, 
each customized to particular data qualities and trends. Classical techniques, such as 
Autoregressive Integrated Mov ing Average ( A R I M A ) , are appropriate for stable time 
series, whereas sophisticated models, such as Long Short-Term M e m o r y ( L S T M ) neural 
networks, are well-suited for capturing long-term relationships i n sequences. 

Multivariate t ime series forecasting, on the other hand, broadens the scope to include 
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Figure 2.1.1: Time series models [47] 
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the prediction of future values for many connected variables that change over time. The 
behavior of these variables is interrelated in many real-world circumstances, and their 
interactions can have a major impact on each other's dynamics. In an e-commerce 
scenario, for example, projecting the sales of multiple products at the same time 
becomes critical, taking into account not just their past sales patterns but also the 
influence of marketing efforts, consumer preferences, and external circumstances such 
as holidays and special events. This interdependence presents modeling challenges and 
complications since it necessitates capturing detailed linkages and dependencies between 
variables. 

To address these challenges, numerous specialized algorithms for multivariate t ime 
series forecasting have been developed. Vector Autoregression ( V A R ) models, for 
example, use lagged values from many t ime steps to model variable interdependence. 
State space models provide a versatile framework for modeling temporal dynamics and 
adding external variables. Deep learning methods, such as Multivariate Long Short-
Term M e m o r y ( M L S T M ) networks, have showed significant promise in dealing with 
complex multivariate t ime series data, efficiently capturing both short-term and long-term 
dependencies in recent years. 

Both time series forecasting and multivariate t ime series forecasting are essential tools 
for comprehending and predicting temporal data patterns. This expansion enables 
decision-makers to get deeper insights, f ind complicated relationships, and generate more 
accurate forecasts in a variety of complex scenarios ranging from finance and economics 
to healthcare and beyond. The significance of these forecasting techniques w i l l continue 
to be at the forefront of data science and predictive modeling as the value of temporal data 
analysis develops in an increasingly data-driven world . 

Mean Absolute Error (MAE) 

Photovoltaic (PV) power forecasting is a crucial aspect of efficient energy management, 
enabling grid operators and consumers to optimize energy consumption from renewable 
sources. It is becoming increasingly important to accurately forecast the amount of power 
generated by photovoltaic panels (PV), particularly solar power, in order to maintain the 
stability of the power grid, reduce the amount of energy that is wasted, and facilitate the 
smooth incorporation of renewable energy sources into the power grid. The use of machine 
learning techniques has emerged as a powerful tool for improving the accuracy and 
reliability of P V power forecasting. This has enabled more precise and t imely predictions 
to be made, even in the face of complex and dynamic weather conditions. 

The Mean Absolute Error , or M A E , is a metric that is frequently uti l ized for the purpose 
of evaluating the efficacy of various forecasting models. The M A E is a measure of the 
accuracy of a model's prediction that is both comprehensive and easy to understand. This 
measure enables direct comparisons to be made between various methods of forecasting. 
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The M A E quantifies the extent to which the model's predictions diverge from the actual 
observations by calculating the average absolute difference between the predicted values 
and the true values. A smaller M A E value indicates a higher level of accuracy, which 
indicates that the model's predictions are closer to the real wor ld situation. 

W i t h i n the framework of the study, the M A E was selected to serve as the pr imary 
evaluation metric for the purpose of assessing the efficacy of a number of different P V 
power forecasting models. The M A E served as a reliable and objective indicator of 
prediction accuracy, which made it easier to make comparisons between the various 
methods of forecasting in order to f ind the model that was the most successful. 

F inding the average absolute difference between the values that were predicted and those 
that were actually observed across al l of the test samples was required in order to compute 
the M A E . The M A E can be expressed in mathematical terms as follows: 

Here, n denotes the number of test samples, yl represents the true value of the target 
variable for the ith sample, and y% is the predicted value of the target variable for the ith 

sample. 

The mean absolute error ( M A E ) is a straightforward and easily interpretable metric that 
provides insights into the overall accuracy of the model's predictions. The mean absolute 
error ( M A E ) is a measure that is used to determine how far, on average, the model's 
predictions stray from the actual values. This is done by evaluating the magnitude of the 
absolute errors. 

Using the M A E as the evaluation metric enabled quantitative comparisons of the 
performance of various forecasting models, including the federated learning approach, 
with conventional methods such as L i g h t G B M and Catboost. These comparisons were 
made possible by the fact that the M A E was used as the evaluation metric. The superiority 
of the federated learning approach as a method for producing more accurate predictions 
for P V power forecasting was demonstrated by the observed reductions in M A E associated 
with that method. 

In addition to this, the M A E delivered valuable information that helped identify areas 
of the forecasting models that could use some improvement. For instance, i f the M A E 
was higher for certain weather conditions or t ime periods, this indicated that there may 
be potential difficulties in capturing the variations in photovoltaic power generation or 
consumption under those conditions. Having an understanding of such patterns made it 
easier to fine-tune the model and improve its overall performance. 

In conclusion, the Mean Absolute Er ro r ( M A E ) was able to function as an effective 

(2.1) 

i=l 
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and objective evaluation metric for the P V power forecasting models. The adoption of 
this approach allowed for the validation of the federated learning approach's superiority 
over conventional methods and provided valuable insights for further research and 
improvements in sustainable energy management. Its adoption also allowed for the 
validation of the superiority of federated learning over conventional methods. In spite 
of the continued rise in popularity of renewable sources of energy, P V power forecasting 
that is both accurate and reliable w i l l continue to play a critical role in maximizing the 
benefits that can be derived from these sources and fostering a more sustainable energy 
future. The application of M A E in this study exemplifies the significance of employing 
reliable evaluation metrics in advancing the field of photovoltaic power forecasting and 
improving energy management practices for the purpose of making the wor ld a greener 
and more sustainable place. 

Mean Quantile Loss (MQL) 

When evaluating quantile regression models, particularly those used in P V power 
forecasting, the Mean Quantile Loss ( M Q L ) is an important metric that is used. Quantile 
regression, as opposed to tradit ional regression, which focuses on predicting the mean of 
the target variable, aims to predict different quantiles of the target variable, providing a 
more comprehensive view of the data distribution. Tradit ional regression is focused on 
predicting the mean of the target variable. 

Here, N denotes the number of test samples, yl represents the true value of the target 
variable for the ith sample, and y% is the predicted value of the target variable for the ith 

sample. 

The M Q L is a measurement that determines how accurate the quantile predictions are, 
and it reflects the degree to which the model's estimated quantiles coincide wi th the actual 
quantiles of the target variable. It is computed as the average absolute difference between 
the predicted quantiles and the true quantiles across a set of test samples. This difference 
is taken across all of the samples. If the M Q L is lower, this indicates that the model's 
estimated quantiles are closer to the true values. This, in turn, indicates that the prediction 
accuracy is higher. 

Because it enables a more in-depth comprehension of the uncertainty connected to the 
predictions, the M Q L is particularly useful in P V power forecasting. We are able to gain 
insights into the model's ability to estimate the variabil i ty of P V power production and 
consumption by evaluating the performance of the model at various quantiles. 

The Mean Quantile Loss is a crucial metric for assessing the accuracy of quantile regression 

(2.2) 
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models in P V power forecasting. These models are used to predict the amount of power 
that w i l l be generated from photovoltaic cells. Ut i l iz ing it yields useful information 
about the performance of the model at various quantiles, which enables a more in-depth 
evaluation of prediction intervals and uncertainty estimation. We are able to improve the 
reliability of P V power predictions and enhance sustainable energy management practices 
if we incorporate the M Q L into the process of evaluation. 

Mean Prediction Interval Range (MPIR) 

When evaluating prediction intervals i n forecasting models, including P V power 
forecasting, the Mean Prediction Interval Range ( M P I R ) is an essential metric to use. The 
use of prediction intervals allows one to get an idea of the degree of uncertainty that is 
associated wi th the model's predictions by providing a range of values wi thin which actual 
observations are l ikely to fall wi th a certain probability. 

The mean width of the prediction intervals across a group of test samples is what the 
M P I R is designed to measure. If the M P I R is lower, this indicates that the prediction 
intervals are more precise and narrower, which suggests that the uncertainty estimation 
is improved. 

Here, N denotes the number of test samples, yl represents the true value of the target 
variable for the ith sample, and y% is the predicted value of the target variable for the ith 

sample. 

When it comes to the forecasting of P V power, the M P I R is an extremely important 
component in determining the accuracy of the prediction intervals. Accurate prediction 
intervals provide gr id operators and consumers with valuable information, which aids in 
the making of informed decisions regarding energy consumption and the management of 
the grid. 

It is possible to conduct a thorough analysis of the performance of the forecasting model 
by including the M P I R in the evaluation process alongside other metrics such as the 
Mean Absolute Er ror ( M A E ) and the Mean Quantile Loss ( M Q L ) . This w i l l allow for the 
achievement of a comprehensive evaluation. These metrics are improved wi th the addition 
of the M P I R , which supplements them by providing insights into the model's ability to 
estimate uncertainty and overall reliability in P V power predictions. 

When it comes to assessing the accuracy of prediction intervals in P V power forecasting, 
the Mean Prediction Interval Range is an important metric to take into consideration. 
Its application contributes to more informed decision-making in energy management 

(2.3) 
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practices by providing valuable information about the uncertainty associated wi th the 
model's predictions. We are able to improve the precision and dependability of P V power 
forecasting i f we take into account the M P I R during the evaluation process. This w i l l help 
to contribute to energy utilization that is more efficient and sustainable. 

2.1.2 Tree-Based Models 

Tree-based models are a popular class of machine learning algorithms due to their ease 
of use, interpretability, and versatility in a variety of tasks [49]. These models are buil t 
on the decision tree concept, in which data is recursively partitioned into subsets based 
on specific feature values. Each internal node in the tree represents a decision based 
on a specific feature, while each leaf node represents a prediction or outcome. The 
Random Forest, an ensemble learning technique that combines multiple decision trees 
to make predictions, is one of the most popular tree-based models. Random Forests 
are wel l -known for their robustness, resistance to overfitting, and ability to handle large, 
high-dimensional datasets. Gradient Boosting is another powerful ensemble technique 
that builds decision trees sequentially to correct errors from previous trees. Gradient 
Boosting models, such as X G B o o s t and L i g h t G B M , are widely used i n machine learning 
competitions and real-world applications due to their exceptional performance. 

The interpretability of tree-based models is one of their main advantages [49]. Decision 
trees provide an easy-to-understand visual representation of how the model makes 
decisions. The reduction in impuri ty brought by each feature during tree construction can 
easily be used to calculate feature importance. This information on feature importance 
is useful for feature selection, understanding model behavior, and extracting actionable 
insights from data. 

Tree-based models [1] are also good at dealing with missing data. When they encounter 
missing values during predictions, they can s imply follow the available branches. 
Furthermore, tree-based models are less sensitive to outliers than linear models. During 
the recursive parti t ioning process, outliers are isolated, reducing their impact on the 
overall model. 

Regularization techniques can be used on tree-based models to prevent overfitting. 
This includes l imi t ing the max imum depth of trees, requiring a m i n i m u m number of 
samples to split a node, and pruning to remove nodes that contribute little to the model. 
Regularization improves the generalization performance of the model and keeps it from 
becoming overly complex. 

Tree-based models have a wide range of applications in a variety of domains [1]. They 
are used in classification tasks such as customer churn prediction, sentiment analysis, 
and spam detection. Tree-based models are used in regression tasks to predict house 
prices, sales forecasts, and demand forecasting. Anomaly detection for network traffic, 
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fraud detection, and fault diagnosis are also useful to them. Tree-based models are 
also important in developing personalized recommendation systems for e-commerce 
platforms and content recommendations. 

Discrete Trees 

A discrete tree is a finite structure wi th a fixed number of vertices (nodes) and edges 
(connections between nodes) [1]. The important feature of such trees is that each pair 
of vertices is connected by a separate path of distinct edges. The vertices in this abstract 
representation are not allocated precise places i n space. However, by selecting a root 
vertex and assigning it to the origin (o, o,..., o), the tree can be embedded in d-dimensional 
space. The additional vertices are then transferred to points in d-space using either lattice 
coordinates or unit length vectors. During the embedding process, several vertices of the 
abstract tree maybe transported to the same position in d-space. 

Various models of random n-vertex abstract trees can be investigated to inject randomness 
into both the tree structure and the embedding. Combinatorial models are based on 
the assumption that al l n-vertex trees are equally likely. However, multiple rules and 
constraints on allowed degrees of vertices may exist, resulting in many versions of this 
paradigm. Condit ioned branching processes, on the other hand, include a population 
process that begins wi th one person and ends with a random number of children (mean 1, 

variance between o and 1). When this technique is applied to a total population size of n, 
the resulting family tree has a random n-vertex structure. The combinatorial aggregation 
model is another way, in which start with n vertices and no edges and then iteratively add 
random edges that do not form a cycle unti l a random n-vertex tree is received. 

Al though these models appear to be different at first glance, some combination models 
(with specific conventions) are known to be comparable to conditioned branching 
process models (with specific offspring distributions). Furthermore, substantial 
evidence, supported by research and interchange-of-limits arguments, reveals that the 
combinatorial aggregation model corresponds wi th the other models as n approaches 
infinity. 

These random n-vertex abstract trees have applications in mathematics, computer science, 
and biology. They shed insights into population dynamics, network structure, and 
branching process behavior. Understanding the features of these discrete tree models is 
critical for many applications because it allows us to understand the statistical behavior of 
complex systems and guides the development of efficient algorithms to analyze large-scale 
networks and hierarchical data structures. 
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Continuous Trees 

Continuous trees are a fundamental machine learning model used to predict continuous 
numeric values. They are also known as regression trees or decision trees for regression. 
Continuous trees are specifically buil t to handle regression tasks, whereas typical 
classification trees are meant for discrete class label prediction. The purpose of regression 
is to forecast a continuous output, l ike as the price of a house based on its qualities or the 
sales of a product based on historical data. 

A continuous tree's fundamental structure is s imilar to that of a classification tree, with a 
hierarchical arrangement of nodes expressing feature-based judgements [1]. A specific 
attribute is examined at each internal node of the tree to discover the opt imum split 
that splits the data into subgroups with s imilar target values. The splitting procedure is 
repeated unti l leaf nodes are reached, each of which corresponds to a specific region of 
the input feature space.The ability of continuous trees to provide real-valued predictions 
is what sets them apart. Once the tree is built , each leaf node is assigned a constant value, 
which is often the average of the target values in that region. The prediction for unseen 
data is made by traversing the tree, beginning at the root and following the path given by 
the feature criteria unti l it reaches a leaf node. The forecast for the input data is the value 
l inked with the leaf node. 

The interpretability of continuous trees is one of its major features. The resulting 
tree structure may be viewed and comprehended, revealing important details about 
how the model produces predictions. This transparency is especially useful in 
instances where interpretability is critical for decision-making and comprehending the 
underlying elements. Continuous trees also have the capacity to capture intricate non­
linear interactions between features and the target variable. Continuous trees can 
successfully model sophisticated data patterns that l inear models may not capture by 
recursively parti t ioning the feature space based on the most informative splits.Despite 
their advantages, continuous trees have certain l imits . They are prone to overfitting, 
particularly when the tree grows too deep and complicated. Techniques l ike as 
regularization, pruning, and setting a l imi t depth for the tree are frequently used to address 
issue. 

Ensemble approaches such as Random Forest and gradient boosting frameworks like 
as L i g h t G B M have gained favor in recent years for enhancing the performance of 
continuous trees. L i g h t G B M , in particular, is wel l -known for its efficiency and speed in 
constructing large ensembles of continuous trees, making it ideal for b ig data and real­
time applications. 
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2.1.3 Gradient Boosting Machine (GBM) 

Gradient Boosting Machines ( G B M s ) are a potent class of machine learning algorithms 
that fall under the umbrella of ensemble learning. These models excel in both regression 
and classification tasks, leveraging the principle of boosting to sequentially train a series 
of weak learners, where each learner focuses on rectifying the errors of its predecessor. 
This cumulative refinement process ultimately produces a robust final model with superior 
predictive capabilities. The core of G B M s lies in min imiz ing a chosen loss function, which 
quantifies the disparity between predicted and actual target values. Through an iterative 
approach, the algorithm calculates the negative gradient of the loss function concerning 
the current model's predictions and updates the model in the direction of steepest decrease. 
By introducing a learning rate, users can modulate the step size of parameter adjustments, 
balancing convergence speed wi th robustness. G B M s rely on a collection of weak learners, 
often shallow decision trees or stumps, which, when combined, contribute significantly 
to the ensemble's overall strength. Regularization techniques, such as constraining tree 
complexity or implementing early stopping, prevent overfitting and fine-tune model 
performance. Notably, variants l ike XGBoos t , L i g h t G B M , and CatBoost have evolved 
from the basic G B M algorithm, incorporating optimizations and efficiencies to cater to 
specific challenges, solidifying G B M s as a favored choice for intricate data relationships 
and accurate predictions in diverse machine learning applications. 

Input: 

• Tra ining dataset: {(xu yx), (x 2 , y2), • {x„, yn)} 

• Number of iterations: M 

Initialize: 

• Initial prediction: F0(x) = ini t ial_predict ion_value 

F o r m = 1 to M: 

l . Compute negative gradient: r i m = dL(yi,F(xi)) 
dF(xi) F(x)=Fm-1{x) 

2. Fi t a weak learner (e.g., decision tree) to the negative gradient: hm(x) 
FitWeakLearner(AT, rm) 

3. Update the model: Fm(x) = Fm_i{x) + A • hm(x) 

Output: 

• F ina l ensemble model: FM(x) 
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Gradient Boosting Quantile Regressions 

Gradient Boosting Quantile Regression ( G B Q R ) is a powerful statistical technique used 
for estimating conditional quantiles of a response variable. Unl ike traditional regression 
methods that focus on estimating the conditional mean, quantile regression provides a 
more comprehensive picture of the data distribution by estimating various quantiles. This 
approach is particularly useful when dealing wi th data that is asymmetric, heteroscedastic, 
or contains outliers. 

The G B Q R algorithm is an extension of the gradient boosting machine ( G B M ) framework, 
which is an ensemble learning technique that combines multiple weak learners (usually 
decision trees) to create a strong predictive model. In G B Q R , the objective is to minimize 
a specific loss function known as the pinbal l loss, which quantifies the difference between 
the actual response and the estimated quantile. 

The process of G B Q R involves iteratively fitting decision trees to the residuals of the 
previous iteration. A t each step, the decision tree is trained to approximate the negative 
gradient of the pinbal l loss function, which ensures that the algorithm converges towards 
more accurate quantile estimates. The hyperparameters, such as the learning rate, 
number of trees, and depth of the trees, play a crucial role in controlling the model's 
performance and preventing overfitting. 

• Tra ining dataset: {(xl,yl), (x2, y2), {xn, yn)} 

• Number of iterations: M 

• Quantile levels: n , r 2 , . . . , 7* 

Initialize: 

• Initial predictions: F0}T(x) = ini t ial_predict ion_value 

F o r m = 1 to M: 

l . For each quantile level r , compute residuals: 

2. Fi t a weak learner to the residuals: hm}T(x) = FitWeakLearner(A", rT) 

3. Update the model for each quantile level: 

Input: 

i f Vi > Fm-l,r(Xi) 
i f Di < Fm_hT(xi) 

Fm,T\X) Fm—\tT\X) -\- A • hm^T(x) 
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Output: 

• F ina l ensemble quantile regression models: FM,T(x) for r = n , r 2 , . . . , 7* 

LightGBM 

L i g h t G B M [27] stands out as an advanced open-source gradient boosting framework 
developed by Microsoft. Its technical foundations lie in innovative strategies that 
optimize and expedite the gradient boosting algorithm for machine learning tasks. One 
of its key contributions is the introduction of histogram-based learning, which replaces 
conventional data pre-sorting wi th histogram binning. This approach enhances memory 
efficiency and accelerates training by facilitating efficient gradient computation and node 
splitting during tree construction. A standout feature of L i g h t G B M is its leaf-wise tree 

growth strategy as shown i n 2.1.2, which strategically expands the tree by selecting the 
leaf node wi th max imum loss reduction for expansion. This strategy often leads to deeper 
and more accurate trees while preventing overfitting through bui l t - in regularization 
techniques. Addit ional ly , the framework implements Gradient-based One-Side Sampling 
(GOSS), a technique that intelligently selects a subset of data points based on gradient 
information, effectively speeding up training while mitigating overfitting risks. L i g h t G B M 
also supports exclusive feature bundl ing for categorical features, G P U acceleration for 
training efficiency, and early stopping for optimal model convergence. The flexibili ty to 
define custom objective functions and metrics, as well as its compatibil i ty wi th distributed 

LightGBM leaf-wise 

Figure 2.1.2: L i g h t G B M tree [46] 
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computing environments, further underline L i g h t G B M ' s technical versatility. Through its 
active community of contributors and continual development, L i g h t G B M remains at the 
forefront of machine learning technology [23], providing researchers and practitioners 
with an efficient and accurate tool for tackling challenging tasks, particularly those 
involving large and intricate datasets. 

Input: 

• Tra ining dataset: {(xl,yl), (x2, y2), {xn, yn)} 

• Number of iterations: M 

Initialize: 

• Initial predictions: F0(x) = ini t ial_predict ion_value 

F o r m = 1 to M: 

1. Compute gradients and Hessians: 

9i dL(yt,F(xt)) 
dF(xi) 

d2L(yz,F(xz)) 
dF(Xi)2 

F(x)=Fm-1(x) 

2. Construct histograms for features based on the gradients and Hessians 

3. F i n d the best splits for each feature's histogram 

4. Create a new tree structure using the best splits 

5. Update leaf values using a gradient-based optimization (e.g., Newton's method) 

Output: 

• F ina l ensemble model: FM(x) 

Catboost 

Catboost stands as a significant advancement in gradient boosting frameworks wi th its 
distinctive focus on effectively handling categorical features [40]. This framework's 
technical foundation is rooted in its innovative "ordered boosting" technique, which 
seamlessly integrates categorical variables into the boosting process. Unl ike conventional 
approaches that require one-hot encoding, Catboost employs a permutation-based 
strategy, allowing it to naturally manage categorical attributes while conserving memory 
and curtailing overfitting. The framework's ordered boosting method sorts data points 
based on categorical feature values, yielding balanced splits that contribute to superior 
predictive accuracy during tree construction. Furthermore, Catboost adopts symmetric 
tree structures to ensure consistent data distribution across leaf nodes, thus enhancing 
the model's generalization capabilities. Implementing Gradient-based One-Side Sampling 
(GOSS) amplifies training speed by selectively emphasizing data points with more 
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substantial gradients, simultaneously mitigating overfitting concerns. This framework 
also offers an array of regularization techniques, encompassing L2 regularization and 
diverse loss functions tailored to various tasks. Addit ional ly , Catboost is GPU-accelerated, 
boasts robust handling of missing values, supports early stopping, and facilitates feature 
scaling, al l contributing to its reputation for efficiency and practicality. A s a memory-
efficient solution wi th integrated hyperparameter optimization tools, Catboost emerges as 
a versatile and powerful gradient boosting framework, particularly well-suited for datasets 
that encompass a mix of data types, and remains a favored choice across machine learning 
applications. 

Input: 

• Tra ining dataset: {(xl,yl), (x2, y2), {xn, yn)} 

• Number of iterations: M 

• Learning rate: r\ 

• Categorical features: categorical_features 

Initialize: 

• Initial predictions: F0(x) = ini t ial_predict ion_value 

F o r m = 1 to M: 

1. Compute gradients and Hessians: 

" dL(Vi,F(xi))' 
9i dF{xi) , hi 

F(x)=Fm-i(x) 

d2L(yx,F(xx)) 
dF(Xi)2 

F(x)=Fm-1(x) 

2. Construct histograms for features (including categorical features) based on the 
gradients and Hessians 

3. F i n d the best splits for each feature's histogram 

4. Create a new tree structure using the best splits 

5. Update leaf values using a gradient-based optimization (e.g., Newton's method) 

Output: 

• F ina l ensemble model: FM(x) 

2.1.4 Distributed Learning Approaches 

When considering distribution, there are two main ways of dividing the problem across 
multiple machines: parallelizing the data or parallelizing the model [50]. It is also possible 
to employ both methods simultaneously. 
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In the Data-Parallel approach, the data is divided as many times as there are worker nodes 
in the system. Each worker node applies the same algorithm to different datasets. A l l 
worker nodes have access to the same model, either through centralization or replication, 
resulting i n a single coherent output. This technique is applicable to machine learning 
algorithms that assume independent and identical distribution (i.i.d.) of data samples, 
which includes most M L algorithms. 

In the Model-Paral le l approach, each worker node processes exact copies of the entire 
datasets but operates on different parts of the model. The model is formed by aggregating 
all the model parts. However, the model-parallel approach cannot be automatically 
applied to every machine learning algorithm because the model parameters generally 
cannot be divided. In the next section we expand upon this concept by introducing 
federated learning that uses model-parallel approach. 

LightGBM Distributed 

L i g h t G B M ' s distributed mode is a sophisticated framework designed to harness the 
power of distributed computing environments for efficient and rapid training on massive 
datasets [27]. A t its core, the distributed mode capitalizes on the strengths of data 
and feature parallelism, asynchronous communication, and optimized histogram-based 
learning. 

When distributed across multiple worker nodes, the training dataset undergoes data 
partit ioning, wi th each worker taking responsibility for a distinct subset of data. 
This data parallelism not only enables efficient processing of extensive datasets but 
also facilitates load balancing to prevent performance bottlenecks.A central technical 
innovation in L i g h t G B M ' s distributed mode revolves around its histogram approximation 
technique. Each worker independently constructs histograms tailored to its local 
data subset, capturing essential statistical insights required for informed node splits 
during tree construction. Periodic merging of these local histograms ensures a 
comprehensive understanding of the global dataset distribution, a crucial aspect of 
accurate modeling. 

The power of asynchronous communicat ion amplifies training speed and accelerates 
convergence. Workers independently update their models and gradients while 
intermittently exchanging essential information with a central coordinator. This approach 
minimizes idle t ime and fosters continual progress, even while communicat ion is 
underway. Fault tolerance mechanisms are also integrated into the framework. Should 
a worker node experience failure, the training process can recover and continue without 
substantial interruptions. The global synchronization points, such as histogram merging, 
are designed to gracefully handle minor worker failures. 

In addition to its distributed capabilities, L i g h t G B M ' s asynchronous communication and 
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optimization techniques distinguish it. The integration of data and feature parallelism, 
along wi th the targeted use of asynchronous communication, drives its effectiveness 
in handling enormous datasets and complex models. L i g h t G B M ' s distributed mode 
showcases a remarkable synergy between theoretical innovation and practical application, 
contributing to its reputation as a high-performance gradient boosting framework in 
distributed computing environments. 

2.1.5 Federated Learning 

Federated learning (FL) , as a distributed machine learning paradigm, presents an 
innovative and privacy-preserving approach to P V power forecasting [12]. In this 
decentralized framework, multiple devices or edge nodes wi th in a smart energy grid 
collaboratively contribute to training a global forecasting model without sharing their 
raw data. Instead, each node performs local model training using its own data and only 
communicates the model updates to a central server or aggregator. This unique approach 
ensures that the sensitive P V power data remains decentralized and private, as the raw 
data never leaves the individual devices or nodes. 

By leveraging federated learning in P V power forecasting, several significant benefits are 
achieved. Firstly, data privacy and security are maintained since the raw data is not shared, 
min imiz ing the risk of data breaches or privacy violations. Secondly, federated learning 
enables the utilization of collective knowledge from various nodes, ensuring that the global 
forecasting model is enriched wi th insights from diverse data sources. 

This collective intelligence enhances the accuracy and generalization capability of the 
forecasting model, particularly in dynamically changing environments. The application 
of federated learning to P V power forecasting facilitates accurate predictions without 
compromising the privacy of individual data sources. Each device or node contributes 
to improving the global model's accuracy through local model updates, while keeping 
their respective data secure and private. This is especially crucial i n scenarios where data 
sharing might be restricted due to privacy regulations, ownership concerns, or sensitive 
information. 

Centralized Federated Learning 

In Centralized F L , a central server coordinates model training across multiple client 
devices [12]. The server sends the model's ini t ia l parameters to clients, who compute 
updates using their local data. These updates are then aggregated on the server to refine 
the model. Whi le providing better control over the learning process, this approach may 
raise privacy concerns due to central data aggregation. 
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Figure 2.1.3: Centralized Federated Learning [12] 

Decentralized Federated Learning 

In contrast, Decentralized F L operates without a central server. Client devices 
directly communicate and collaboratively update the model [12]. This mode minimizes 
privacy risks associated wi th central aggregation, but it introduces challenges such as 
communicat ion overhead and synchronization issues. 

Heterogeneous Federated Learning 

Heterogeneous F L extends F L to handle varying device capabilities, network conditions, 
and data distributions [12]. It accommodates devices wi th distinct processing power and 
data characteristics. This adds complexity to aggregation methods, as different devices 
may contribute unequally. 

Iterative Nature 

Federated Learning often follows an iterative pattern. In each round, clients update the 
model using local data and communicate with a central entity to aggregate updates. This 
iterative process iteratively enhances the model's accuracy while maintaining data privacy. 
Techniques l ike Federated Averaging are used for aggregation, where model parameters 
are averaged to create a new global model. 
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Figure 2.1.4: De-centralized Federated Learning [12] 
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Figure 2.1.5: Federated Learning steps [13] 
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Aggregation Algorithms 

Federated Stochastic Gradient Descent (FedSGD) operates wi th in the framework of 
traditional stochastic gradient descent (SGD), wherein gradients are calculated on m i n i -
batches comprising a fraction of total data samples [13]. In the federated context, these 
mini-batches resemble distinct client devices housing localized data. 

In FedSGD, the central model is disseminated to clients, wi th each client independently 
computing gradients using its local data. These gradients are then transmitted to the 
central server, which amalgamates them in proportion to the number of samples per client. 
This collective effort culminates in the calculation of the gradient descent step, effectively 
advancing the central model. 

Federated Learning wi th Dynamic Regularization (FedDyn) addresses the regularization 
aspect present in traditional machine learning, where penalties are introduced to the loss 
function for enhanced generalization [13]. In federated learning, the global loss originates 
from local losses derived across heterogeneous devices. Acknowledging the divergence 
between min imiz ing global and local losses due to client disparities, FedDyn endeavors to 
generate regularization terms for local losses. This dynamic regularization adapts to data 
statistics, such as data volume or communicat ion costs, thereby harmonizing local losses 
to converge towards the global loss. 

Federated Averaging (FedAvg) extends the FedSGD paradigm [13]. Here, clients 
undertake multiple local gradient descent updates and share the adjusted weights 
of their local models. The central server aggregates these client weights, thereby 
consolidating the model parameters. By starting from a shared init ial ization, Federated 
Averaging generalizes the concept of FedSGD—averaging gradients aligns wi th averaging 
weights. Consequently, Federated Averaging accommodates local weight tuning before 
transmission to the central server for collective averaging. 

Input: 

• Clients: Ci, C2,..., Cn 

• Initial global model: M 0 

• Number of communication rounds: T 

F o r t = 1 to T: 

1. F o r each client Co 

• Update local model: M\ <- M\~l - rjVfCx(Ml~l) 
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2. Calculate weighted average of local models: 

1 1 1 

Mt <- - V W i M ' 
n 

i=i 

3. Update global model: M g i o b a i M * 

Output: 

• Trained global model: M g i 0 b a i 

FLWR (A Friendly Federated Learning Framework) 

F L W R (A Friendly Federated Learning Framework) is an advanced federated learning 
framework that was designed to tackle the challenges of scalability, compatibility, and 
deployment in real-world systems, and that is what we w i l l be discussing in this section 
of the methodology. Researchers and developers are given the abili ty to work wi th a large 
number of clients through the use of Flwr , which enables workloads with tens of mil l ions 
of clients to be completed without a hitch. The machine learning framework is agnostic 
to other machine learning frameworks, which makes it compatible with widely used 
options such as Keras and PyTorch and even raw N u m P y without automatic differentiation 
[15]. 

One of Flwr's most notable qualities is its adaptability, which allows it to run on a 
wide variety of platforms, including mobile, edge devices, and the cloud. Flower can be 
used by researchers on servers such as Amazon Web Services, Google Cloud Platform, 
and Microsoft Azure, as well as on mobile devices running A n d r o i d and iOS. Flower is 
compatible wi th even edge devices such as Raspberry P i and Nvid ia Jetson, which makes 
it easier to conduct research and deploy across a wide variety of environments. 

F lwr acts as a bridge between research and production, providing a seamless transition 
from the conception of an idea to its actual implementation. Models developed using 
Flower can be easily integrated into real-world systems with min imal engineering effort 
and proven infrastructure. This process, which begins as a research project, is made 
possible by Flower. 

Flwr's ability to function across a variety of operating systems and hardware platforms 
is made possible by the fact that it is platform-agnostic. Because of its adaptability, it is 
ideally suited for heterogeneous edge device environments, in which various devices may 
run on a variety of different configurations. 

Another one of Flwr 's defining characteristics is its usability. Developers are able to 
construct a fully functional federated learning system with only twenty lines of Python 
code. Researchers and developers w i l l have a much simpler t ime getting started wi th their 
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preferred machine learning frameworks thanks to the user-friendliness of the framework 
and the comprehensive code examples it provides. 

Researchers and developers are given the ability to conduct large-scale distributed 
machine learning wi th relative ease thanks to its capability as a robust and scalable 
federated learning framework. Flower is a leading choice for developing privacy-
preserving and scalable machine learning solutions for a variety of real-world applications 
due to its compatibil i ty with a wide variety of frameworks and platforms, as well as its 
seamless integration from research to production. 

2.2 Literature Review 

The literature on P V power forecasting is vast and covers various aspects l ike data 
collection, preprocessing, feature selection, and model selection. The use of M L 
techniques for P V power forecasting has been explored by various researchers. Classical 
M L techniques l ike Support Vector Machines ( S V M ) , Art i f ic ia l Neural Networks ( A N N ) , 
and Random Forests (RF) have been used to predict P V power generation. Deep Learning 
(DL) techniques l ike Convolutional Neural Networks ( C N N ) , Long Short-Term Memory 
( L S T M ) , and Autoencoders have also been applied to P V power forecasting. W i t h all 
these developments the need for finding best model for t ime series forecasting becomes 
imminent . 

2.2.1 Time Series Forecasting 

Recently, deep learning techniques such as Recurrent Neural Networks (RNNs) and 
Convolutional Neural Networks (CNNs) have been applied to t ime series point forecasting. 
Authors of [32] conducted a review on the use of deep learning i n t ime series modeling 
across various fields of study. 

A study [8] conducted a comparative study on the performance of different R N N s applied 
to the Short Term Load Forecasting problem and concluded by arguing that E R N N and 
E S N may represent the most convenient choice i n t ime series prediction problems, both i n 
terms of performance and simplici ty of their implementation and training. Authors of [10] 

investigated the application of attention models for Seq2Seq models on both univariate 
and multivariate t ime series. These extensions perform significantly better than the 
original attention model as well as state of-the-art baseline methods based on A R I M A 
and random forests [9] applied dilated C N N s specifically on financial t ime series, and 
concluded that even though t ime series forecasting remains a complex task and finding one 
model that fits al l is hard, they showed that the WaveNet is a simple, efficient and easily 
interpretable network that can act as a strong baseline for forecasting. Nevertheless there 
was sti l l room for improvement. However, these studies were all based on the Recursive 
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strategy. 

Researchers in [44] analyzed the performance of different multi-step strategies using a 
Mul t i -Layer Perceptron ( M L P ) , highlighting the effectiveness of the Direct M u l t i - H o r i z o n 
strategy. For probabilistic forecasting using encoder-decoder models, [48] proposed 
DeepAR, a Seq2Seq architecture that utilizes an identical encoder and decoder. DeepAR 
directly outputs parameters of a Negative Binomia l distribution. This approach is s imilar 
to [38], where an M L P predicts Gaussian parameters. The training of DeepAR involves 
maximizing l ikel ihood and using Teacher Forcing during training, while during prediction, 
it samples from the estimated parametric distribution multiple times to generate a series 
of sample paths. Their method differs from DeepAR by using the more practically relevant 
M u l t i - H o r i z o n strategy, a more efficient t raining approach, and directly generating 
accurate quantiles. 

In the domain of quantile forecasting using neural networks, [45] used an M L P to generate 
quantile forecasts for financial returns, while [55] designed a quantile autoregressive 
neural network for stock price prediction. This approach fed previously estimated 
quantiles into the model instead of the mean estimate or a sampled instance. Neither of 
these approaches util ized sequential nets and their temporal nature effectively. Taylor's 
approach relied on an external model, and this approach faced challenges in justifying the 
feedback of quantiles into the model. 

Study [53] presents a framework that addresses general probabilistic multi-step time 
series regression. Their approach leverages the power of Sequence-to-Sequence Neural 
Networks, such as recurrent and convolutional structures, to capture the temporal 
characteristics of the data. They also utilize the non-parametric nature of Quantile 
Regression for probabilistic forecasting. Addit ional ly , they take advantage of the efficiency 
offered by Direct M u l t i - H o r i z o n Forecasting. 

In reference [56], the authors introduce a neural network model based on quantile 
regression for load forecasting, a iming to estimate the range of uncertainty in load 
predictions. In [41], the authors focus on developing an uncertainty model for P V 
generation using regression techniques. They employ quantile scores as a metric to 
measure the uncertainty i n their forecasts. Similarly, in [2], the authors employ bootstrap 
confidence intervals to quantify the uncertainty in predicted P V power. The authors of [43] 

discuss the forecasting uncertainty specifically for residential net load. In this particular 
article, the authors evaluate various machine learning models and provide additional 
insights regarding the impact of factors such as prosumer location, load consumption 
profile, and dataset size on prediction accuracy. Whi l e common assessment metrics like 
Root Mean Square Er ro r ( R M S E ) , M A E , and pinbal l loss function are mentioned, this 
paper offers a broader examination of these models and presents novel findings related 
to the mentioned influencing factors. The evaluation results demonstrate the superior 
performance of the proposed Bayesian deep learning-based method and highlight the 
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improvements contributed by the Clustering Stage and the P V visibil i ty. 

A latest research [3] implemented multiple Machine Learning ( M L ) models to forecast the 
power generation of photovoltaic (PV) systems and the household consumption in a smart 
energy grid. Addit ional ly , they incorporated a measure of uncertainty in their predictions 
by providing quantile values as bounds to assess the level of uncertainty. 

For nearly a decade, there has been active research on processing large amounts of t ime 
series data. One notable work i n this field focuses on processing tr i l l ions of subsequences 
of t ime series using the dynamic t ime warping distance measure, which is computationally 
expensive. Since then, several new proposals have emerged to tackle the challenge of 
processing t ime series data on an even larger scale. These include the FastShapelet (FS) 
algorithm [42], which reduces the time complexity of the original method at the expense 
of accuracy, a generic and scalable framework for automated anomaly detection in large-
scale time series data [25], a fast and scalable Gaussian process modeling approach for 
astronomical t ime series [16], and a scalable distance-based classifier for t ime series called 
proximity forest [34]. These works demonstrate the increasing interest in processing 
larger sets of t ime series data. However, these approaches still face l imitations imposed by 
traditional computation models and systems, such as insufficient resources to handle large 
problems, which can lead to memory storage issues or unacceptable running times. 

To address the aforementioned limitations, the Distributed FastShapelet Transform 
(DFST) algorithm [5] was introduced as the first t ime series classification algorithm 
developed in a distributed manner. D F S T combines the low complexity of the FastShapelet 
(FS) algorithm wi th the performance of the Shapelet Transform (ST) [29]. ST uses 
the distance between selected shapelets and each time series i n the dataset as input 
features, making it a feature-based method. The performance of ST depends on the 
machine learning algorithm used on the transformed dataset, but it achieves competitive 
results compared to the best state-of-the-art approaches. Addit ional ly , the D F S T method 
allows the application of existing vector-based algorithms in Apache Spark to t ime series 
problems, expanding the range of tools available for processing this type of data. However, 
this approach is l imi ted to supervised problems. 

2.2.2 Distributed Time Series Forecasting 

Time series analysis presents unique characteristics compared to tradit ional vector-
based problems. These include t ime dependency, trend, seasonality, and stationarity, 
among others, which must be taken into account when designing algorithms. These 
characteristics add complexity to the methods or impose certain l imitations on them, 
making it challenging to apply the proposed methods in distributed environments. For 
example, the FS algorithm analyzes the entire dataset sequentially to construct the 
best decision tree based on the discovered shapelets, evaluating each shapelet wi th the 
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complete dataset. In contrast, D F S T evaluates shapelet candidates in a distributed 
manner on the data available in each node and saves the most valuable ones. This 
is necessary because the shapelet evaluation process is computationally demanding, 
making it infeasible to apply it to the complete dataset in Big Data environments. In 
addition to the feature-based approach used in D F S T and ST, there are other works 
that focus on extracting features from time series data without relying on shapelets. 
These approaches involve applying various mathematical operations to derive valuable 
information about the underlying structure and behavior of t ime series [17,18], selecting 
the most representative features based on theoretical considerations [22], or conducting 
extensive experimentation to identify a set of 22 characteristics [33] that are deemed the 
most representative among the original set of features. Unsupervised feature extraction 
techniques have been successfully applied i n other domains [39]. Recently, it has been 
demonstrated that a set of wel l -known complexity measures and time series features can 
achieve competitive results i n univariate [4] and multivariate [6] t ime series classification. 
To extend this approach to a distributed environment [19], it is necessary to filter and 
prepare the selected features to be completely independent of each other and not rely on 
relationships between different t ime series or additional information. These conditions 
allow for their inclusion in a distributed environment, thereby expanding the l imi ted range 
of tools available for t ime series processing in Big Data environments. 

Authors of [7] proposes the Scalable and Distributed Transformation for Univariate 
and Mult ivariate Time Series ( S C M F T S ) using a MapReduce framework, which enables 
a scalable and distributed approach for processing time series data in Big Data 
environments. S C M F T S is based on well-known t ime series features and aims to provide 
a traditional vector-based representation for t ime series data. By transforming time 
series data into this vector-based representation, S C M F T S enables the application of 
algorithms that are not specifically designed for t ime series problems. The S C M F T S 
approach leverages the MapReduce paradigm to distribute the computation needed for 
transforming t ime series data across multiple machines in a cluster. The map operation 
applies the transformation independently to each instance of the dataset, while the reduce 
operation combines the results from the map operation. This distributed approach allows 
S C M F T S to handle large volumes of t ime series data that would be impractical to process 
on a single machine. By uti l izing wel l -known time series features, S C M F T S provides a 
vector-based representation that can be used with a wide range of algorithms. This means 
that existing algorithms that are not specifically tailored for t ime series analysis can be 
applied to t ime series problems using S C M F T S . This approach expands the available tools 
for processing time series data in Big Data environments, allowing for more efficient 
and scalable analysis. Overall , S C M F T S offers a scalable and distributed transformation 
method for univariate and multivariate t ime series data, enabling the use of non-time 
series specific algorithms and increasing the capabilities of t ime series analysis in Big Data 
environments. 
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Open Prediction System (OPS) [20], an automated system for developing predictive 
models. OPS is a versatile predictive system that can be applied to various problem 
domains. It specifically focuses on predicting outcomes in multivariate t ime series data, 
addressing challenges commonly faced by util i ty companies involved i n the distribution 
and control of their commodities. 

2.2.3 Federated Learning based Forecasting 

Federated Learning (FL) is a technique that enables a set of devices to train on local data 
and send updates to a shared model using distributed stochastic gradient descent (SGD) 
[35]. It has shown promise in numerous fields, including IoT-based energy control in 
smart buildings [11, 36], public health [24], traffic prediction [31], and load forecasting 
[!4> 37]- F L has also been used in predicting socio-demographic characteristics for energy 
utilities to offer diversified services to their consumers [51]. Researchers have compared 
F L with centralized and localized forecasting in electrical load forecasting, and the results 
show that F L performs better than centralized forecasting in situations where access to 
training data is not possible but is worse than localized forecasting [37]. A recent study 
[26] proposes an innovative federated deep generative learning framework for renewable 
scenario generation, which outperforms the state-of-the-art centralized methods. Another 
study [28] introduces an FL-based Bayesian neural network ( F L - B N N ) to preserve the 
privacy of utilities in behind-the-meters (BTMs) estimation, enabling a customized model 
for each client. The F L - B N N model outperforms the centralized B N N model and other 
benchmarks. However, the existing work related to FL-based solar forecasting [57] 

lacks an in-depth analysis of the impact of different input variables, despite the highly 
correlated t ime series used for training. Al though the F L training process keeps raw 
data decentralized, optimizing a shared model can be vulnerable to non-IID data [21]. 

Therefore, the proposed forecasting scheme aims to train multiple customized models that 
fit various real-world data sources instead of a global model. 

In [52], a new solar forecasting framework is introduced that combines a spatial and 
temporal attention-based neural network ( S T A N N ) wi th federated learning (FL) . The 
framework is designed to handle mult i -horizon forecasting scenarios ranging from 5 to 30 

minutes. The S T A N N model is composed of a feature extractor and a forecaster, which can 
be trained on different local datasets for improved localization. The framework allows for 
global parameter aggregation without the need for data gathering, which further enhances 
the accuracy of the forecasts. The F L technique employed in the framework makes it highly 
flexible and adaptable to a variety of data sources. 

The raw data stays at each location while the weights from several local models are 
combined on a central server to create a common model. This aggregation functions 
well for parametric approaches l ike Linear Regression and Neural Networks since it is 
simple to compute an average or other k i n d of aggregate of the values. However, it is stil l 
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not obvious how non-parametric M L techniques l ike Random Forests and Decision Trees 
can be combined in this way. [54] and [30] have provided some insights on performing 
federated learning on tree based models. 

Authors of [30] address these issues and propose Federated Forest, a privacy-preserving 
machine learning model that achieves the same level of accuracy as the non-privacy 
preserving approach. Federated Forest is a lossless learning model of the conventional 
random forest method. They buil t a secure cross-regional machine learning system on top 
of it that enables a learning process to be jo in t ly trained over clients from various regions 
using the same user samples but different attribute sets, processing the data stored in each 
of them without transferring their raw data. 

Authors of [54] suggest Pivot, a cutting-edge approach to privacy-preserving vertical 
decision tree training and prediction, which makes sure that only the final tree model 
and the prediction output, as agreed to by the clients, are disclosed. Pivot does not rely 
on any reliable th i rd parties and offers defense against a marginally honorable adversary 
who might compromise m out of m clients. However this area is st i l l open for new 
developments and integration into an existing frameworks. 

2.3 Relation to Research Questions 

1. H o w does Federated learning impact forecast accuracy of Mult i -Var ia te Time Series 
Forecasting in the context of Renewable Energy Systems? 

2. H o w can Federated Learning be implemented on tree-based models? 

In this entire background and literature review section, the key components to understand 
these questions and finding relevant answers were discussed. There was detailed 
discussion on Mult i -Var ia te Time Series and tree-based models l ike L i g h t G B M and 
Catboost. Background and relevant research on these topics was presented to familiarize 
readers with them. Secondly, the evaluation metrics were presented and explained in 
depth to allow readers to understand how the performance of forecasts of these models 
can found to answer the question. Lastly there was introduction of Distributed Learning, 
and consequently Federated Learning that is the key topic in this research question. Alo t 
of research work has been reviewed to show readers what has been already achieved in 
this topic, and what is yet to be discovered, especially in domain of Renewable Energy 
Systems. 
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Design 

One way to implement federated learning for P V production and consumption forecasting 
models is to use a federated learning framework. This framework consists of a central 
server and multiple clients, each of which has its own local data. The server sends the 
model parameters to each client, and the clients train the model on their local data. The 
clients then send the updated model parameters back to the server, which aggregates them 
and updates the global model. This process is repeated for multiple rounds unti l the model 
converges. 

To apply federated learning to P V production and consumption forecasting models, the 
data from different sources must be preprocessed and standardized to ensure consistency 
across the different sources. This may involve normalizing the data, removing outliers, and 
fi l l ing in missing data. The model must also be designed to handle the variabili ty in the 
data from different sources and to be robust to changes in the data distribution over time. 
Another consideration when using federated learning for P V production and consumption 
forecasting models is the selection of the clients that participate in the training and testing 
process. The clients should be selected to represent a diverse set of data sources to ensure 
that the model is trained on a representative sample of the data. The clients should also be 
selected based on their abili ty to contribute high-quality data to the training process. 

3.1 Data Collection 

The collection of data from seven different households located in Uppsala, Sweden, over 
a period of 14 months was done and provided by authors of [3]. This work is extension 
of research in [3]. The data was recorded at an hourly resolution and served as the 
foundation for creating a comprehensive dataset used to train and evaluate our forecast 
algorithm. This dataset is represented as an N x k feature matrix, where N represents 
the number of data points, and k denotes the number of features. Each feature vector 
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wi th in the matrix contains a combination of household measurements and additional 
weather-related features obtained from the Swedish Meteorological and Hydrological 
Institute ( S M H I ) . The inclusion of these weather features was intended to enhance the 
accuracy of our machine learning model in predicting both photovoltaic (PV) production 
and household energy consumption. 

Table 3.1.1 presents the weather features that were integrated into the dataset, each wi th its 
respective unit of measurement. These features include temperature, dew point, humidity, 
precipitation, w i n d direction, w i n d speed, air pressure, and global radiation. On the other 
hand, Table 3.1.2 outlines the prosumer features incorporated i n the dataset, which are 
directly related to individual households and their energy dynamics. These prosumer 
features include bought power, produced power from the installed P V system, sold power 
back to the main grid, and the total consumed power by the household. By combining 
the prosumer features with the weather features, we aimed to create a comprehensive 
dataset that captures the key factors influencing P V production and energy consumption 
in households. It is worth noticing as the data is captured per hour, and denotes value 
of power for that hour, it is taken in Watts (W). This w i l l stay the metric for all the true 
values of power productions and consumption and their predictions made in course of this 
research. 

This dataset was uti l ized to train and evaluate our machine learning model, wi th the 
ultimate goal of improving the accuracy of P V production and consumption predictions 
for smart energy management systems. By leveraging the wealth of information from both 
household measurements and weather-related data, we sought to enhance the capabilities 
of our forecast algorithm and provide more reliable and efficient energy management 
solutions for residential prosumers. 

Feature Uni t 

Temperature C 
Dew Point C 
Humid i ty Percentage 

Precepitation L / m 2 

W i n d Direction Degrees 
W i n d Speed m/s 
A i r Pressure mBar 

Global Radiation W / m 2 

Table 3.1.1: Weather Features 
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Feature Un i t 

Bought Power W 
Produced Power W 

Sold Power w 
Consumed Power W w 

Table 3.1.2: Prosumer Features 

3.2 Data Preprocessing 
The outcome variable represents either the production or consumption of electricity by 
the household. The consumption value is derived from the equation: 

P Consumed P Import + Pi Produced' -P Export (3-1) 

where Pimport represents the electricity bought from the main energy grid, Pproduced is 
the electricity generated by the installed P V system, and PEXPOH is the electricity sold 
back to the main grid. Figures 3.2.1 3.2.2 in the paper shows histograms and Kernel 
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Figure 3.2.1: Histograms of the power production with fitted K D E s [3] 

Density Estimations ( K D E ) of the produced and consumed power. Figure 3.2.1 displays 
the histogram of produced power, wi th and without night times. Dur ing training and 
evaluation, night times were removed for production data since P V cells do not generate 
electricity at night. Figure 3.2.2 illustrates the consumption of all prosumers (households 
with P V systems). Notably, P Consumed can sometimes fall into the negative range in 
the observed dataset, indicating instances when the household sells stored energy from its 
battery back to the main grid without producing or buying additional energy. 
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Consumed Power in W 

Figure 3.2.2: Histograms of the power consumption wi th fitted K D E s [3] 

3.3 Model Selection 

The model selection process in our research involved considering two powerful gradient 
boosting algorithms, namely L i g h t G B M and CatBoost. These algorithms are wel l -known 
for their efficiency, scalability, and ability to handle categorical features effectively. Three 
models for upper quantile, lower quantile, and mean are created for both of them. To 
ensure the optimal performance of these models, Gr idSearchCV is employed, a widely used 
hyperparameter tuning technique. 

3.3.1 LightGBM 

L i g h t G B M (Light Gradient Boosting Machine) [23] has emerged as a powerful and efficient 
tool for accurate P V power forecasting. As the integration of solar energy sources 
continues to grow, the need for precise and reliable predictions of P V power generation 
becomes crucial for gr id stability and efficient energy management. L i g h t G B M ' s 
exceptional speed and efficiency are major advantages, making it capable of processing 
large-scale datasets wi th high-dimensional features efficiently. This is particularly 
valuable i n real-time applications, where quick updates and adjustments are required as 
weather conditions change rapidly. 

One of the significant challenges i n P V power forecasting is dealing with the nonlinear 
behavior of solar energy generation due to varying weather conditions and other factors. 
L i g h t G B M ' s ability to bu i ld complex models by combining multiple decision trees allows 
it to capture these nonlinear relationships effectively. This enhances the accuracy of P V 
power forecasts, as the model can adapt to the dynamic and intricate nature of solar energy 
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generation. 

Moreover, L i g h t G B M natively handles categorical features without the need for extensive 
data preprocessing, making it well-suited for P V power forecasting tasks. Categorical 
variables such as weather conditions, t ime of day, and day of the week can be critical 
predictors for P V power generation. L i g h t G B M efficiently utilizes this information in 
its models, enhancing the forecasting accuracy by considering the impact of various 
factors. 

P V power generation data may contain outliers due to factors l ike equipment malfunctions 
or unusual weather events. L i g h t G B M ' s robustness to outliers ensures that these 
extreme values do not unduly influence the forecasting model. This feature is essential 
for maintaining the accuracy and reliability of the forecasts even i n the presence of 
unpredictable events. 

As the deployment of solar energy systems expands, the volume of data for P V power 
forecasting also grows. L i g h t G B M ' s scalability and support for distributed computing 
make it well-suited for handling large datasets, allowing it to scale efficiently and meet 
the demands of increasing data volumes. 

Addit ional ly , L i g h t G B M can be adapted to provide forecasts for different quantiles, 
offering a more comprehensive understanding of the uncertainty associated wi th P V power 
predictions. This ability is particularly valuable in decision-making processes that require 
quantifying risk and reliability. By providing forecasts for various quantiles, L i g h t G B M 
allows energy planners and grid operators to make more informed decisions and design 
robust energy management strategies. 

Furthermore, L i g h t G B M ' s abili ty to provide insights into feature importance allows 
domain experts to understand which variables have the most significant impact on the 
forecasted P V power output. This knowledge can be leveraged to optimize the design 
and maintenance of solar energy systems, leading to improved energy utilization and 
efficiency. 

3.3.2 Catboost 

Catboost [40], an open-source machine learning l ibrary developed by Yandex, has 
emerged as a powerful tool for accurate P V power forecasting. Its unique features make 
it well-suited for handling the challenges in predicting photovoltaic power generation. 
One of the key advantages of Catboost is its native handling of categorical features 
without requiring manual preprocessing, allowing it to efficiently incorporate weather 
conditions, seasonal variations, and t ime of day as essential predictors for accurate 
forecasts. Moreover, Catboost's robustness to overfitting is crucial when dealing with 
noisy P V power generation data, ensuring that the model does not excessively fit to noise 
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and maintains its accuracy. 

In addition to handling nonlinear relationships effectively, Catboost's bui l t - in support 
for t ime series data is highly relevant for P V power forecasting, as it can capture 
temporal patterns in solar energy generation. Furthermore, the library's default 
hyperparameter settings often provide competitive performance, reducing the need for 
extensive tuning and simplifying the modeling process for users without deep machine 
learning expertise. 

Another advantage of Catboost is its interpretability, offering insights into feature 
importance, enabling energy experts to understand which variables contribute the most 
to P V power forecasts. This transparency enhances the overall understanding of the 
forecasting process and validates the relevance of domain-specific features. 

Catboost's ability to be accelerated using G P U s further improves its computational 
efficiency, making it suitable for large-scale training tasks, especially when dealing with 
extensive historical data for P V power forecasting. 

Incorporating Catboost into P V power forecasting pipelines empowers researchers and 
energy experts to bu i ld robust and accurate prediction models. Its efficient handling 
of categorical features, robustness to overfitting, and support for t ime series data make 
it an excellent choice for capturing the complexity of solar energy generation patterns. 
Moreover, its ease of use with default hyperparameters and interpretability features make 
it accessible to a wide range of users, contributing to efficient and effective forecasting in 
the renewable energy domain. 

3.3.3 Quantile Regression 

Quantile Regression (QL) is a technique used in machine learning to estimate specific 
quantile values of a target variable. It involves training separate models for each quantile 
value of interest using the quantile loss function, as defined in Equation 3.2. The quantile 
loss function shown in Equation 2.2 allows the model to focus on predicting the desired 
quantile of the target variable, rather than the mean, which is the focus of traditional 
regression methods. 

L(y,yP;p) = max(p(y - yp), (l-p)(yp - y)) (3-2) 

Q R aim to estimate three quantile values: ýi, ým, and ýu, representing the lower, median, 
and upper quantiles, respectively. Each quantile value is associated with a specific level 
of uncertainty in the data. For example, y m represents the median, which divides the data 
into two equal halves, while ýi and yu provide estimates for the lower and upper bounds, 
respectively. 
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To achieve this, separate models are trained for each quantile value, using the quantile 
loss function during training. The quantile loss function penalizes the model differently 
based on the quantile value being estimated, and this encourages the model to produce 
more accurate predictions for the corresponding quantile. 

The beauty of Q R is its flexibility in choosing the regression algorithm. A n y regressor 
that can use the quantile loss function during training is suitable for QR. This means that 
various regression algorithms, such as l inear regression, decision trees, random forests, 
or even more advanced techniques l ike gradient boosting algorithms (e.g., L i g h t G B M , 
Catboost) can be util ized for QR. This flexibility allows us to tailor the choice of regression 
algorithm to the specific characteristics of the data and the problem at hand, ultimately 
leading to more accurate and robust quantile estimations. 

3.3.4 Hyper-Parameters 

Hyperparameters are parameters that are set before the learning process begins and 
cannot be learned directly from the data. In order to achieve the best possible 
performance from tree-based models l ike Gradient Boosting Machines ( G B M ) , there are 
a number of significant hyperparameters that need to be tuned. The following are some 
hyperparameters that are frequently used in forest-based models: 

1. M a x Depth (max depth): This hyperparameter determines the max imum depth that 
can be reached by any one of the individual decision trees that make up the ensemble. A 
deeper tree has the potential to recognize more intricate patterns in the data, but it also 
raises the risk of overfitting. It is essential to set an appropriate value for the max depth 
variable in order to strike a balance between the level of model complexity and the level of 
generalization. 

2. N u m Leaves (num leaves): This hyperparameter in L i g h t G B M allows the user to specify 
the max imum number of leaves that can exist on a single tree. Increasing the number of 
leaves in a model can make the model more complicated, but it also raises the possibili ty 
that the model is being overfit. It is absolutely necessary to tune this parameter in order 
to achieve the best possible balance between the generalization and complexity of the 
model. 

3. Learning Rate (learning rate): Also known as the shrinkage rate or step size, the learning 
rate determines the size of the step at which the model is updated during each boosting 
iteration. The learning rate is controlled by the learning rate variable. The model may 
become more robust and it maybe easier to avoid overfitting i f the learning rate is slowed 
down. However, in order to achieve good performance, it may require additional iterations 
of the boosting process. 

4. N Estimators (n estimators): The value of this hyperparameter indicates the total 
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number of boosting stages and trees that are included in the ensemble. Improving the 
performance of the model by increasing the number of estimators may come at the expense 
of an increase in the computational cost. It is necessary to strike a healthy balance between 
the amount of training t ime spent and the performance of the models. 

5. Subsample (subsample): This hyperparameter controls the fraction of samples that 
are used for fitting the individual trees in each boosting iteration. The default value for 
this hyperparameter is 1. Randomness is introduced into the training process when the 
subsample parameter is set to a value that is less than 1.0. This can help improve model 
generalization. 

6. The Colsample Bytree (colsample bytree) hyperparameter is used in X G B o o s t to specify 
the fraction of features that w i l l be randomly selected for each tree. It adds an element of 
randomness and has the potential to help reduce overfitting by employing a unique subset 
of features for each tree. 

7. Reg Alpha (reg alpha): This hyperparameter, which also goes by the name L i 
regularization, includes an L i penalty term in the objective function while it is being 
trained. It does this by encouraging sparsity in the importance of features, which helps 
to prevent overfitting. 

8. Reg Lambda (reg lambda): This hyperparameter, which is also referred to as L2 

regularization, includes an L2 penalty term in the objective function while it is being 
trained. It does this by assigning a penalty to large coefficient values, which helps to 
prevent overfitting. 

Because it has such a direct bearing on the performance of the model and its capacity 
for generalization, hyperparameter tuning is an essential step in determining the values 
that should be used for these parameters. When looking for the optimal combination of 
hyperparameters, it is common practice to employ search strategies such as grid search, 
random search, or Bayesian optimization. In addition, the performance of the model is 
assessed using cross-validation in order to prevent overfitting and evaluate how well it 
works with a variety of hyperparameter settings. 

3.3.5 GridSearchCV 

GridSearchCV is a systematic approach that automatically explores a pre-defined set 
of hyperparameters for each model and evaluates their performance on the dataset. 
It exhaustively searches through al l possible combinations of hyperparameter values, 
facilitating the identification of the best combination that maximizes the model's 
performance. In tables 3.3.1 and 3.3.2 for both L i g h t G B M and CatBoost, we defined a 
range of hyperparameter values to explore during the GridSearchCV process. 

The hyperparameters included learning rates, tree depths, number of estimators, 
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regularization parameters, and more, depending on the specific requirements of each 
algorithm. Gr idSearchCV then assessed the performance of each model using cross-
validation, which involves splitting the dataset into multiple subsets and iteratively 
training the model on one subset while evaluating it on the other. This helps prevent 
overfitting and provides a more robust evaluation of the models. 

Using GridSearchCV with L i g h t G B M , Catboost, or any other model in a federated learning 
context can yield benefits, it's essential to strike a balance between optimizing model 
performance and min imiz ing communicat ion overhead. Customizing hyperparameters 
for federated learning characteristics can lead to improved convergence and overall model 
quality in this decentralized and collaborative learning paradigm 

Parameters Range 

max depth [3, 4, 5] 
num leaves [10,15, 20] 

learning rate [0.05, 0.1, 0.15] 

n estimators [50,100, 200] 

subsample [0.5, 0.7, 0.9] 

colsample bytree [0.5, 0.7, 0.9] 

reg alpha [0.01, 0.1,1] 

reg lambda [0.01, 0.1,1] 

Table 3.3.1: Initial parameters for L i g h t G B M customized for GridsearchCV 

Parameters Range 

max depth [3, 4, 5] 
learning rate [0.05, 0.1, 0.15] 

n estimators [50,100, 200] 

subsample [0.5, 0.7, 0.9] 

Table 3.3.2: Initial parameters for Catboost customized for GridsearchCV 

By applying GridSearchCV to both L i g h t G B M and Catboost, we systematically determined 
the optimal hyperparameter configurations for each algorithm. These configurations were 
chosen based on their ability to produce the best results for our energy consumption and 
P V production forecasting tasks. 

3.4 Federated Design 

Here the design of the federated setup is shown, with i n depth implementation in 
next chapter. It should be noted that this setup is an extension of the existing F L W R 
Framework, as the aggregation function for F e d A V G is changed to aggregation fr fit, which 
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aggregates tree-based models and at the same time can handle multiple models per client 
(typically one). We would need this as we want to predict the upper quantile, lower 
quantile, and mean of every client. L i g h t G B M and Catboost only support one "alpha" value 
per model that actually handles i f a prediction is going to be for the upper quantile or lower 
quantile or mean. 

Modified FLWR Environment 

Figure 3.4.1: Federated Learning Design with modified flwr framework 

3.5 Aggregation for Tree-based models 

As a main core of this thesis, aggregate fr supports aggrgation of tree-based models. 
Currently, in F e d A V G strategy flwr uses aggregate function to create glabal model for 
parameters received from clients. Below you can f ind algorithms for both functions. 
Implementation w i l l be discussed in detail in next chapter. 

The two provided algorithms, aggregate fr and aggregate, both tackle the task of calculating 
a weighted average of model weights in a federated learning context. Whi le both 
algorithms fulfill this objective, aggregate fr stands out as a more comprehensive and 
specialized solution, particularly advantageous when dealing with tree-based models like 
L i g h t G B M and Catboost. 

The algorithm commences by calculating the total number of examples used in training 
across all clients. It then proceeds to create a list named weighted weights, where each 
element is a dictionary representing model weights from a client, scaled by the number of 
examples they util ized. 
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A l g o r i t h m l FedAvg Aggregate 

Require: results: List of Tuples, each containing model weights and number of examples 
used for training by a client 

E n s u r e : weights_prime: Averaged model weights 
i : Initialize num_examples_total as O 
2: Initialize an empty list weighted_weights 
3: for each tuple (weights, num_examples) in results do 
4: Append [layer x num_examples for layer in weights] to weighted_weights 
5: Increment num_examples_total by num_examples 
6: e n d for 

7: Initialize an empty list weights_prime 
8: for each layer in the zipped list of weighted_weights do 

9: Calculate average weight: weights prime < —,—-mY]? ^ layer[i] 
0 0 ^ ? —r num_examples_total Z — ' z — 1 & L J 

10: e n d for 
11: r e t u r n weights_prime 

A l g o r i t h m 2 FedAvg Aggregate fr 

Require: results: List of Tuples, each containing model weights and number of examples 
used for training by a client 

E n s u r e : weights_prime: Averaged model weights 
i : Initialize num_examples_total as O 
2: Initialize an empty list weighted_weights 
3: for each tuple (weights, num_examples) in results do 
4: Convert weights to a dictionary 
5: for each key key in weights do 
6: Mu l t i p ly weights[key] by num_examples 
7: e n d for 
8: Append the weighted weights dictionary to weighted_weights 
9: Increment num_examples_total by num_examples 

10: e n d for 

11: Initialize an empty dictionary weights_prime 
12: for each key key in weighted_weights[0] do 
13: Initialize an empty list layer_updates 
14: for each weighted weights dictionary weights i n weighted_weights do 
15: Append weights[key] to layer_updates 
16: e n d for 
17: Compute average weight: 

weights prime[key] = —,—TTIYIZ 1 layer updates\i] 
^ — * L i 7J num_examples_total Z — ' z — 1 ^ — L J 

18: e n d for 
19: r e t u r n weights_prime 
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The distinctive aspect of the aggregate fr algorithm lies in its careful treatment of tree-
based models. A s these models often involve intricate hierarchical structures, preserving 
their architecture during aggregation is crucial for maintaining accurate and meaningful 
updates. To achieve this, the algorithm iterates through the keys of the dictionaries 
wi th in weighted weights. For each key, representing a model layer or node, it aggregates 
the corresponding weights contributed by clients and calculates their average, while 
considering the number of examples used by each client. This approach ensures that 
the complex decision tree structures are adequately reflected in the aggregated model 
weights. 

In comparison to the more succinct aggregate algorithm, which uses list comprehensions 
and zipped lists for averaging, aggregate fr takes a more nuanced and model-specific 
approach. Whi le aggregate provides a concise way of averaging weights, it lacks the 
tailored treatment necessary for tree-based models. This key difference makes aggregate 
fr stand out as the algorithm of choice when dealing wi th tree-based ensembles, ensuring 
that the intricacies of decision tree architectures are preserved during the aggregation 
process. In essence, the aggregate fr algorithm excels in its ability to maintain the integrity 
of tree-based models while aggregating weights, setting it apart from the more generalized 
approach of the aggregate algorithm. 

This Design sections gives the overall blueprint for the second research question of 
how federated learning can be implemented to tree-based models. It highlights key 
modifications to the F L W R framework that can help use it on models l ike L i g h t G B M and 
Catboost. 
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Chapter 4 

Implementation 

The implementation of this thesis involved four experiments, each focused on a specific 
combination of models and target variables. The selected models for the experiments were 
L i g h t G B M for P V production and consumption predictions, as well as Catboost for the 
same predictions. The experimental setup revolved around using the F L W R framework, 
with individual client files specific to and located inside each N V I D I A Jetson Nano device, 
and a common F L W R server file residing in the H P Elitebook C P U . 

4.1 Federated Setup 

For this research federated setup was a well-thought-out configuration that leveraged the 
power of four N V I D I A Jetson Nano devices, each of which acted as a client, and an H P 
Eli teBook C P U , which served as the central server as shown in 3.4.1. Each of these N V I D I A 
Jetson Nano devices acted independently as a client. The selection of these edge devices 
was deliberate and strategic, taking into consideration their robust G P U capabilities, 
which make them exceptionally well suited for computationally intensive activities such 
as the training of machine learning models. In addition, because of their small size and 
energy-efficient design, they were ideal for edge computing, a type of computing that 
places significant emphasis on the efficient use of resources and power. 

A comprehensive setup procedure was carried out on each Jetson Nano client pr ior to 
the beginning of the federated learning process. Fol lowing the installation of the Ubuntu 
18 image, we decided to use the Archiconda package manager rather than the Anaconda 
one. Because of this decision, package management was simplified, and we were able to 
integrate all of the essential machine learning libraries and frameworks that were required 
for the prediction task without any problems. 

The setup l inked all of the Jetson Nano computers to a neighborhood W i - F i network and 
set up S S H connections in order to make it easier for the clients and server to communicate 
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with one another and work together. This ensured that the data exchange during the 
federated learning process was both smooth and secure, which is essential for maintaining 
the confidentiality and safety of the data. 

Jetson Nanos Data 

Client 1 Prosumer 1 and Prosumer 2 

Client 2 Prosumer 3 and Prosumer 4 

Client 3 Prosumer 5 and Prosumer 6 

Client 4 Prosumer 7 

Table 4.1.1: Distr ibution of Prosumers data among Clients 

As can be seen in table 4.1.1, each client device was given its own unique subset of the data 
that was collected from prosumers to work with. Client 1 was responsible for the data of 
prosumers 1 and 2, Client 2 was responsible for the data of prosumers 3 and 4, Client 3 

was responsible for the data of prosumers 5 and 6, and Client 4 was responsible for the 
data of prosumer 7. We divided prosumers l ike this to accomdate seven prosumers in four 
jetson nanos. For real wor ld implementation each prosumer representing a household 
shall have its own edge device, either jetson nano or jetson xavier etc as the selection 
of edge device w i l l not effect the overall framework much as long as they support flwr, 
L i g h t G B M and Catboost dependencies. This distribution ensured that data pertaining 
to households were kept separate and were only used for the training of local models. 
W e were able to achieve a setup that respected our clients' privacy and allowed them to 
contribute to the model without disclosing sensitive information about other households 
thanks to the parti t ioning of the data i n the manner described above. Moreover, this 
specific distribution of prosumers to edge devices was done based on its better model 
fitting shown more in detail i n chapter 5 in Figures 5.3.6 and 5.3.7. 

The central processing unit (CPU) of the H P El i teBook acted as the server and played an 
essential part in the coordination of the federated learning process. It then performed 
model aggregation, which was a crucial step in the process of bui ld ing a global model 
that encapsulated the knowledge from all of the participating households without 
compromising data privacy. It d id this after receiving the locally trained models from the 
customers. Mode l aggregation is a thoughtfully crafted method that combines the updates 
sent in by each client without compromising their individual privacy. By taking this 
approach, the server was able to derive useful insights from the collective intelligence of all 
edge devices without accessing individual data, thereby ensuring that privacy regulations 
were adhered to. 

The tremendous potential of federated learning in real wor ld applications was 
demonstrated by the combination of the F L W R (Federated Learning wi th Weights and 
Biases) framework and N V I D I A Jetson Nano devices. The F L W R framework, wi th its 
effective communication protocol, allowed for the collaboration and aggregation of local 
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models to take place i n a seamless manner across all of the edge devices. The fact 
that federated learning preserves users' privacy was an extremely helpful feature, as it 
made certain that sensitive data pertaining to households remained confidential and was 
safeguarded. 

In addition, the computational capabilities of the Jetson Nano clients were an essential 
factor in the successful completion of the federated learning tasks. The G P U acceleration 
that was made available by the Jetson Nano devices sped up the process of training models 
and aggregating their results, which cut down on the total amount of t ime needed for 
federated learning iterations. 

The demonstration of the value of edge devices and federated learning in the context 
of addressing critical challenges in sustainable energy management was made possible 
by the successful implementation of federated learning for the purpose of predicting P V 
production and consumption. The findings of the research showed that the distributed and 
privacy-preserving nature of federated learning, when combined wi th the computational 
power of edge devices, could provide a solution that is both efficient and effective for data-
driven energy predictions in smart grids. 

This setup brought to light the potential of federated learning in a variety of other fields 
where protecting data privacy and maximizing computational efficiency are of the utmost 
importance. This research highlighted the significance of edge devices l ike the N V I D I A 
Jetson Nano in the context of federated learning. The use of edge devices in real-
wor ld applications is becoming more widespread, and one example is the N V I D I A Jetson 
Nano. 

In general, the combination of edge devices and federated learning presents a promising 
pathway for the development of scalable machine learning solutions that also protect users' 
privacy. Federated learning wi l l play a pivotal role in unlocking the potential of distributed 
data for knowledge discovery while ensuring individual privacy as the wor ld moves into 
the era of the Internet of Things (IoT) and edge computing. This w i l l be accomplished as 
the wor ld prepares for the IoT and edge computing. The collaboration of edge devices and 
central servers, which is made possible by federated learning frameworks such as F L W R , 
paves the way for a future in which intelligence, efficiency, and privacy are not mutually 
exclusive concepts. 

4.2 GridSearchCV 
1 self.lgb_lower = LGBMRe; gressor(alpha=lower _quantile, boosting ;_type = 'gbdt', 

objective='quantile' , metric='quantile' ) 

2 self.grid_search_lower
 : 

= GridSearchCV(self .lgb_lower , params, cv=5 , n_j obs = -l ) 

3 self.lgb_upper = LGBMRe; gressor(alpha=upper _quantile , boosting ;_type = 'gbdt', 
objective='quantile' , metric='quantile' ) 
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4 self.grid_search_upper = GridSearchCV(self.lgb_upper, params, cv=5, n_jobs=-l) 

5 self.lgb_mean = LGBMRegressor(alpha=0.5, boosting_type='gbdt', objective=' 

quantile', metric='quantile') 

6 self.grid_search_mean = GridSearchCV(self.lgb_mean, params, cv=5, n_jobs=-l) 

List ing 4.1: Gr idSearchCV applied to L i g h t G B M 

W e can see in the code above that for both Catboost and L i g h t G B M , we take three models 
that gives us lower quantile, upper quantile, and mean. After the Gr idSearchCV process 
was complete, we selected the best-tuned versions of L i g h t G B M and CatBoost as the final 
models for our federated learning task. The selected models were instrumental in enabling 
accurate and reliable predictions, contributing to the effectiveness and efficiency of the 
smart energy management system for residential prosumers. 

4.3 Clients 
The first experiment aimed to predict P V production using the L i g h t G B M model. The 
dataset containing the measurements from different households in Uppsala, Sweden, was 
preprocessed and divided into chunks according to table 4.1.1. Each Jetson Nano device 
acted as a client, holding a specific combination of two prosumers per client from prosumer 
data. This was done to accomodate seven prosumers with four jetson nanos, and The 
L i g h t G B M client application on each Jetson Nano trained a local model using its respective 
data chunk. Dur ing the training process, the models communicated only wi th the central 
F L W R server on the H P Elitebook C P U to exchange model parameters. This ensured that 
no raw data was shared, guaranteeing data privacy. 

def f i t ( s e l f , parameters, config): 

i f parameters: 

weightl = parameters [0] .item() 

4 weightl['n_estimators'] = int(weightl['n_estimators']) 

5 weight 1['max_depth'] = int(weightl['max_depth']) 

6 weight2 = parameters [1] .item() 

weight2['n_estimators'] = int(weight2['n_estimators']) 

8 weight2['max_depth'] = int(weight2['max_depth']) 

9 weight3 = parameters [2] .item() 

weight3['n_estimators'] = int(weight3['n_estimators']) 

weight3['max_depth'] = int(weight3['max_depth']) 

self.grid_search_lower = LGBMRegressor(**weightl, alpha=0.25, 

boosting_type='gbdt', objective='quantile', metric='quantile') 

self.grid_search_upper = LGBMRegressor(**weight2, alpha=0.75, 

boosting_type='gbdt', objective='quantile', metric='quantile') 

self.grid_search_mean = LGBMRegressor(**weight3, alpha=0.5 

boosting_type='gbdt', objective='quantile', metric='quantile') 

3 

7 

10 

16 

17 s e l f . g r i d _ s e a r c h _ l o w e r . f i t ( s e l f . x _ t r a i n , s e l f . y _ t r a i n . r a v e l ( ) ) 

47 



CHAPTER 4. I M P L E M E N T A T I O N 

self . g rid_se a r c h _ u p p e r . f i t ( s e l f . x _ t r a i n , self .y_train .ravel()) 

self . g rid._search._me an . f i t ( s e l f . x_ t r a i n , s e l f . y _train. ravel()) 

return [self . grid_search_lower.best_params_, 

self . grid_search_upper.best_params_, 

self . grid_search_mean.best_params_], len(self .x_train), {} 

List ing 4.2: Mode l Fi t fuction for F L W R client for L i g h t G B M Production (Experiment 1) 

The provided Python code snippet encapsulates a method named fit wi th in a client class, 
which serves the purpose of training and evaluating a set of three L i g h t G B M models using 
a gr id search strategy. Upon receiving parameters, which represent model weights, the 
method initializes the best estimators of lower, upper, and mean quantile models using 
these weights. Subsequently, the models undergo training uti l izing the x train and y train 
data. 

The trained models are then employed to predict outcomes on the x test dataset. To 
ensure meaningful interpretation, the predictions are transformed back to their original 
scale using an inverse transformation performed by scaler y.inverse transform. The 
transformed arrays are flattened for subsequent computations. 

A suite of evaluation metrics, encompassing measures such as C F E , M Q L , PIR, and M A E , 
is computed through the util ization of the error metrics function. These metrics serve 
to quantify the predictive performance of the models and provide insights into their 
effectiveness. 

Two pandas DataFrames are established to structure and store the results. The first 
DataFrame, named df production, encompasses columns for true values, predicted values, 
interval lower bounds, interval upper bounds, mean quantile losses, and mean absolute 
errors. The second DataFrame, df production results, captures the computed evaluation 
metrics. 

Subsequently, the calculated results are preserved as C S V files. The df production 
DataFrame, housing prediction intervals and associated metrics, is stored in the file 
named lightgbm prod clienti.csv. Meanwhile , the df production results DataFrame, 
encapsulating comprehensive evaluation outcomes, is saved i n the file l ightgbm prod 
Evaluation clienti.csv. 

The method concludes by returning a list containing the optimal parameters for the three 
distinct models, along with the length of the training dataset, denoted by len(self.x train), 
and an empty dictionary. It is evident that this fit method not only orchestrates the training 
and evaluation process for L i g h t G B M models but also meticulously records and presents 
the results i n a structured and informative manner. 
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The second experiment focused on predicting P V consumption using the L i g h t G B M model. 
Similar to Experiment 1, the dataset was divided into chunks, and each Jetson Nano served 
as a client, holding specific prosumer data. 

The th i rd experiment aimed to predict P V production using the Catboost model, and 
the fourth experiment focused on predicting P V consumption using the Catboost model. 
Similar to Experiment 1, all the experiments' clients used same approach for model 
fitting. 

Each F L W R client has a client class wi th fit being the main function that outputs model 
parameters to the server. Normal ly F L W R supports a single model per client, but in 
our implementation shown above we are getting parameters for three models: lower 
quantile, upper quantlie, and mean. For all three models, we then fit and make predictions 
according to work inspired from [3]. The new models parameters of all three models are 
sent to server in return along with size of training data. This is part of this research's 
contribution that each client support multiple models that is explained in detail in section 
Mul t i -mode l Tree Aggregation. 

4.4 Server 
The F L W R server application on the H P Elitebook C P U managed the aggregation of model 
parameters received from the Jetson Nano clients during training. It ensured that the 
global model was updated based on the aggregated parameters without compromising the 
privacy of individual prosumer data. Dur ing the inference phase, federated inference was 
employed, allowing each Jetson Nano device to make predictions locally using the trained 
global model without sharing raw data. 

1 class FedModelstrategy(fl.server.strategy.FedAvg): 

2 def _ _ i n i t _ _ ( s e l f , min_fit_clients=4, min_available_clients=4): 

3 super().__init__ () 

4 s e l f . m i n _ f i t _ c l i e n t s = 4 

5 self.min_available_clients = 4 

6 

def a g g r e g a t e _ f r _ f i t ( s e l f , rnd, r e s u l t s , f a i l u r e s ) : 

8 # Cal l aggregate_fit from base class (FedAvg) to aggregate parameters 

and metrics 

9 aggregated_parameters, aggregated_metrics = super().aggregate_fr_fit( 

rnd, r e s u l t s , failures) 

10 

i f aggregated_parameters is not None: 

12 # Save aggregated_ndarrays 

print(f"Saving round {rnd} aggregated_ndarrays...") 

np.savez(f"model/round-{rnd}-weights.npz", * aggregated_parameters) 

is # Save each individual model 

16 for idx, model_weights in enumerate(aggregated_parameters): 
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17 model_weights= np.reshape(model_weights, (1,)) 

18 model_path = f "model/round-{rnd}-model--[idx} . txt " 

19 # Save the text data to a f i l e 

2 0 np . savetxt (model_path , model_weights , fmt = " °/,s " ) 

21 

22 return aggregated_parameters, aggregated_metrics 

23 

24 

25 strategy = FedModelstrategy(min_fit_clients=4, min_available_clients=4) 

2 6 

2- f l . server . start_server ( 

28 server_address = "localhost:8080" , 

2 9 config=f1.server.ServerConfig(num_rounds=10), 

3 0 strategy=strategy 

31 ) 

List ing 4.3: F L W R Server code 

The provided Python code segment introduces a custom strategy class named 
FedModelstrategy, intended for orchestrating Federated Learning (FL) processes wi th in a 
server environment. Derived from the base class fl.server.strategy.FedAvg, this class offers 
a tailored approach to aggregating model parameters and metrics during F L rounds. 

In the constructor method (init), the custom strategy initializes wi th default values of min 
fit clients and m i n available clients both set to 4. These values, though hard-coded in the 
current implementation, are l ikely to signify the m i n i m u m clients needed for model fitting 
and the m i n i m u m number of available clients, respectively. 

The overridden aggregation method, aggregate fr fit, extends the behavior of the base class. 
It leverages the base class's aggregation mechanism, yielding aggregated parameters and 
aggregated metrics. When aggregate parameters are present, the method embarks on 
preserving the aggregated model parameters and the individual models contributed by 
each client. By iterating through the aggregated parameters, it stores the model weights 
both collectively and individually, ut i l izing numpy functions. The collected parameters 
are saved in a .npz file, while individual client models f ind their place in separate .txt 
files. 

Moreover, the code sets up an instance of the custom strategy (FedModelstrategy) 
by ini t ial izing it wi th specified m i n fit clients and m i n available clients parameters. 
Subsequently, the F L server launches through the fl.server.start server function. This 
server operates wi th a configuration indicating 10 rounds of F L , and it integrates the 
custom strategy into the F L process. 

In essence, this code establishes a customized aggregation strategy tailored to federated 
learning scenarios. By enhancing the aggregation process and facilitating the storage of 
model parameters and individual client models, the strategy enriches the F L framework 
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with more intricate insights into model evolution and individual contributions across 
rounds. 

Normal ly aggregate fit is available function that supports aggregation of clients containing 
a single model inside. For use case of this research aggregate fr fit is introduced that allows 
three models per client and aggregate accordingly, and save model weights for each round. 
It is explained i n detail in next section. 

4.5 Multi-model tree Aggregation 

W e propose aggregate fr fit function in FedAVg strategy mentioned in background and 
literature review chapter, where fr in name to refer to tree-based/forest-based models. 
It supports multiple models inside a single client, as opposed to normal aggregate fit 
function. This is the main contribution of this thesis, and this support tree-based models 
as the aggregation fr function shown later is customized to support dictionary iteration 
of model parameters that are specific to tree-based models as opposed to deep learning 
models. 

1 def aggregate_fr_fit ( 

2 self , 

3 server_round: i n t , 

4 results: List[Tuple[ClientProxy, FitRes]], 

f a i l u r e s : List[Union[Tuple[ClientProxy, FitRes], BaseException]], 

6 ) -> Tuple[Optional[Parameters] , D i c t [ s t r , Scalar]]: 

7 Aggregate f i t results using weighted average. 

8 i f not results: 

9 return None, {} 

10 # Do not aggregate i f there are fai l u r e s and fai l u r e s are not accepted 

i f not self.accept_failures and f a i l u r e s : 

12 return None , {} 

13 

14 # Convert results to a suitable format for aggregation 

weights_results_l = [] 

16 weights_results_2 = [] 

weights_results_3 = [] 

18 for _, f i t _ r e s in results: 

19 client_weights = fit_res.parameters 

2 0 num_examples = fit_res.num_examples 

21 

22 # Convert client_weights to a l i s t of model weight ndarrays 

23 model_weights_ndarrays = [parameters_to_ndarrays(weights) for 

weights in [client_weights]] 

24 weights_results_l.append((mode1_weights_ndarrays[0] [0] , 

num_examples)) 

25 weights_results_2.append((mode1_weights_ndarrays[0][1], 

num_examples)) 
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2 6 weights_results_3.append((mode1_weights_ndarrays[0] [2] , 

num_examples)) 

27 

28 parameters_aggregated = [aggregate_fr(weights_results_l), 

2 9 aggregate_fr(weights_results_2), 

3 0 aggregate_fr(weights_results_3)] 

31 # Aggregate custom metrics i f aggregation fn was provided 

32 metr i cs_aggregated = {} 

i f self.fit_metrics_aggregation_fn: 

3 4 fit_metrics = [(res.num_examples, res.metrics) for _, res in 

results] 

metrics_aggregated = self.fit_metrics_aggregation_fn(fit_metrics) 

3 6 e l i f server_round ==1: # Only log this warning once 

log(WARNING, "No fit_metrics_aggregation_fn provided") 

3 8 

3 9 return parameters_aggregated , metrics_aggregated 

List ing 4.4: Proposed code for aggregate fr fit 

The aggregate fr fit function is a crucial component in a federated learning framework 
where multiple clients participate in training a machine learning model on their local 
datasets. The function requests several pieces of information as input, including the round 
of training that is currently being performed on the server (server round), a list of fit results 
from the clients (results), and a list of potential failures that may have occurred during the 
process (failures). 

The function moves on to the next step after handling these cases, which is to prepare 
the fit results for aggregation. It goes through the list of results and pulls out the 
parameters (weights) and the total number of training examples that each client used. 
These parameters are la id out in the form of three distinct lists, which are denoted as 
follows: weights results 1, weights results 2, and weights results 3. It can be deduced 
from the fact that each list corresponds to a distinct part of the model that the model is 
composed of three distinct components, as we fit models for upper quantile, lower quantile, 
and mean separately due to l imitat ion of having single alpha value i n L i g h t G B M that deals 
with quantiles. 

Using the parameters to ndarrays function, the function transforms each set of parameters 
into a list of model weight. This helps to guarantee that the aggregation is carried out 
accurately. The subsequent step is to add these NDArrays , along wi th the number of 
training examples that corresponds to each one, as tuples to the relevant weights results 
list. 

In addition, the function is capable of handling the aggregation of custom metrics i f the 
appropriate aggregation function (self.fit metrics aggregation fn) is supplied. It does this 
by aggregating the custom metrics that were produced as a result of the fit, producing a 
dictionary in which the name of each metric corresponds to the value of the aggregated 
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scalar metric. 

The function then concludes by returning a tuple that contains the aggregated parameters 
for each component of the model as well as the aggregated custom metrics in the form of a 
dictionary. These aggregated results provide a more complete picture of the performance 
of the model because they take into account the contributions made by the training results 
of a variety of clients while st i l l maintaining respect for the individual sizes of each client's 
dataset. 

Note that the aggregate fr function and the parameters to ndarrays function are not 
described in any specific detail i n the provided code snippet. It is presumed that 
these functions are implemented in server application. It is important to take this into 
consideration. In addition, the parti t ioning of the model into three sections (weights 
results 1, weights results 2, and weights results 3) might be unique to the particular 
federated learning scenario, and it might also change depending on the architecture and 
requirements of the model. 

In addition to this we also added aggregate fr function called inside aggregate fr fit that for 
each model aggregates the model weights. W e have created this as for normal aggregate 
function it supports layer by layer mult ipl icat ion of number of examples to calculate 
average later on, and is feasible for Deep Learning models as weights are stored in matrix 
form. For tree-based models the parameters are stored in dictionary form and traditional 
aggregate function could not support it. W i t h aggregate fr function we can easily aggregate 
the parameters of forest based models 

def aggregate_fr(results: List [Tuple [NDArrays, in t]]) -> NDArrays: 

Compute weighted average. 

# Calculate the to t a l number of examples used during training 

num_examples_total = sum([num_examples for _, num_ex amples in results]) 

weighted_weights = [] 

for weights, num_examples in results: 

weights = diet(weights.item()) 

for key in weights : 

weights [key] *= num_examples 

weighted_weights.append(weights) 

# Compute average weights of each layer 

weights_prime = {} 

for key in weighted_weights [0] : 

layer_updates = [weights [key] for weights in wei ghted_weights] 

weights_prime [key] = np.sum(layer_updates ) / num _examples_total 

return weights_prime 

List ing 4.5: Proposed code for aggregate fr 

The aggregate fr function plays a crucial role in federated learning. The function takes 
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in a list of tuples, where each tuple contains two components: an N D A r r a y representing 
the locally trained weights for a specific layer in the model, and an integer indicating the 
number of training examples used to train those particular weights. The list of tuples is 
passed into the function as an argument. 

The first thing that the function does is compute the overall number of training examples 
that have been applied across all of the servers and devices. This step is essential because 
it gives the function the ability to weight each locally trained set of weights according to 
the number of examples that were used to train them. The function is able to give more 
significance to models that have been trained on larger datasets by taking into account the 
number of examples, which ensures that these models contribute more to the aggregated 
weights in the end. 

The function then moves on to the next step, which is to calculate the weighted weights 
for each set of locally trained weights. It does this by mult iplying each weight value by the 
number of training examples that correspond to that weight value for each set of weights. 
This process basically adjusts the weights so that they are proportional to the respective 
sizes of the datasets. As a result, it ensures that models that have been trained on more 
data have a greater impact on the aggregated weights. 

Fol lowing the completion of the computation of the weighted weights, the function w i l l 
proceed to determine the average weight for each layer in the model. It accomplishes this 
by first totaling the weighted weights for each layer across all of the locally trained models 
and then dividing that total by the total number of training examples. In other words, it 
adds up all of the weights and then divides them by the total number of training examples. 
The result of this computation is a weighted average of the weights for each layer. This 
takes into account the contribution that each locally trained model makes based on the 
size of its dataset. 

The function produces a dictionary wi th the name weights prime as its final output. W i t h i n 
this dictionary, each key denotes a layer in the model, and the value that corresponds to 
it is the weight that is considered to be the average for that layer across all of the locally 
trained models. Because they take into account the aggregated insights from all of the 
devices or servers that were involved in the training process, these aggregated weights are 
more reliable and accurate in describing the performance of the overall model. 

This answers the second research question that it is possible to implement federated 
learning on tree-based models l ike L i g h t G B M and Catboost, and this modification to the 
F L W R framework enables it. 
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Evaluation and Result 

This chapter w i l l display the results achieved from federated learning for L i g h t G B M and 
Catboost and the evaluation of the results. 

5.1 Federated Inference 

During the course of the research, the idea of federated learning was investigated. 
This led to the incorporation of the unique method of federated inference, which was 
designed to improve the predictive capabilities of the system while maintaining the 
highest possible levels of data privacy and security. Ut i l iz ing the F L W R framework as 
the basis for the construction of the federated learning system allowed for the harnessing 
of the computational power offered by edge clients in the form of N V I D I A Jetson Nano 
devices. The research was expanded to leverage federated inference for the prediction of 
photovoltaic (PV) production and consumption. This made it possible for edge devices to 
use the trained global model to make predictions on their locally held data without having 
to share any raw data wi th the central server. 

Federated Inference being one of the main components of this thesis is developed in a 
way to ensure efficiency. Every client application' class has a fit function that ensures 
fitting of the updated model weights to produce predictions, and also send back new fitted 
parameters back to the server. More detailed description in last section. Dur ing this fit 
function, this research gets the predictions for that specific client from model trained on 
it in that round and saves it to the results wi th identifier of client name, tree-based model 
name. This same procedure is done to save evaluation results for that specific client trained 
and tested on the dataset of prosumers specific to that client. 

Moreover for every round, model weights are aggregated and stored in models directory 
that is accessed in separate notebook that recreates the model on aggregated weights, and 
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test it on testing data of all prosumers concatenated to produce predictions and evaluations 
result for combined global model. 

The incorporation of federated inference into the system resulted in the system gaining 
a number of important benefits. The most important benefit was ensuring the 
confidentiality of the data, which is an essential concern when working wi th sensitive data 
from prosumers. The risk of data exposure was effectively reduced by keeping all raw 
data stored safely on their respective Jetson Nano devices and communicating only model 
parameters with the centralized server. The fact that the prosumers' data remained secure 
and under their control despite the implementation of this privacy-preserving mechanism 
insti l led i n them a sense of trust and confidence. 

Addit ional ly , the federated inference approach showed remarkable scalability in its 
implementation. Because the global model could be easily deployed to multiple edge 
devices, it was able to be adapted to accommodate a greater number of prosumers in 
real-world scenarios. Because of its scalability, the system was able to accommodate the 
growing demands placed on it by applications for energy management and effectively cater 
to the varying requirements of its users. 

5.2 Predictions 

In this analysis, the performance of L i g h t G B M and Catboost models for predicting P V 
power production and consumption using federated learning is evaluated. The evaluation 
is carried out by contrasting the predicted values of the models with the actual values of 
P V power production and consumption at the Mean , Upper Quantile, and Lower Quantile 
levels respectively. The training size for al l client combined consisted of 61032 rows and 
test size consisted of 15261 rows for production experiments, and training size for all client 
combined consisted of 103394 rows and test size consisted of 25851 rows for consumption 
experiments. The true values for the entire dataset was already provided by authors of 
[3]-

The results of the L i g h t G B M P V power production prediction for the global model are 
displayed in the figure referenced as 5.2.1. It has been observed that the predictions, up 
to 8000 W , follow a linear trend wi th the true values. This suggests that the model's 
predictions are reasonably accurate wi th in this range. However, once 8000 W is exceeded, 
the predictions begin to deviate from the actual values, which suggests that the model may 
be less reliable when attempting to predict higher power values. In spite of this divergence, 
it has been observed that the predictions for the Upper Quantile and the Mean continue 
to be relatively proportional. This suggests that they provide estimates that are consistent 
with regard to the central tendency of the data. 

In a s imilar manner, the L i g h t G B M P V power consumption prediction is broken down 
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LightGBM PV power production forecast with federated 

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 10000 12000 

True Values/ W 

Figure 5.2.1: L i g h t G B M production prediction plot 
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LightGBM pv power consumption forecast with federated 
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Figure 5.2.2: L i g h t G B M consumption prediction plot 
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Figure 5.2.3: Catboost production prediction plot 
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Catboost PV power consumption forecast with federated 
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Upper Quantile 
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Figure 5.2.4: Catboost consumption prediction plot 
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and examined in figure 5.2.2. Up to 6000 W , the predictions of the model show a linear 
relationship wi th the actual values, which indicates accurate performance wi th in this 
range. After 6000 W , the predictions begin to depart from the actual values in a noticeable 
manner. However, just l ike in the case of power production, the Upper Quantile and 
Mean predictions continue to maintain a relationship that is close to proportional, which 
suggests that central tendency estimates are consistent. 

Moving on to the results of the Catboost model, the P V power production prediction is 
shown in the figure that is referenced as 5.2.3. It has been discovered that the predictions 
maintain a l inear relationship wi th the actual values up to 10000 W , which indicates that 
accurate predictions can be made wi th in this range. However, when the power values 
are increased, the predictions begin to differ from one another. Despite this, the Mean 
and Lower Quantile predictions exhibit a relationship that is close to proportional, which 
indicates that the estimates of the central tendency are consistent. 

Last but not least, the predicted amount of power used by Catboost P V is shown i n figure 
5.2.4. U p to 7000 W , the predictions of the model are l inear wi th the true values, which 
indicates that the model's performance is accurate wi th in this range. After 7000 W , the 
predictions begin to vary from one another. In a manner analogous to that of power 
production, the predictions for the Mean and Lower Quantile continue to be close to 
proportional, which suggests that central tendency estimates are consistent. 

The Upper Quantile and Mean predictions consistently maintain a proportional 
relationship, which suggests that there is stability in estimating the central tendency of the 
data across different power values. This is an important observation that comes from all 
four experiments, and it is one that is worth noting. In a manner parallel to this, the Lower 
Quantile and Mean predictions both display a relationship that is close to proportional in 
the Catboost experiments. 

In conclusion, the findings of these experiments indicate that the L i g h t G B M and Catboost 
models have an encouraging performance when it comes to predicting the amount of 
power produced and consumed by P V systems using federated learning. W i t h i n certain 
power ranges, the models have a high degree of accuracy; however, when the power is 
increased, the models' predictions no longer agree with one another. In spite of this, 
the fact that there is a consistent relationship between the Upper Quantile and Mean 
predictions as well as the Lower Quantile and Mean predictions demonstrates that the 
models provide reliable estimates for the central tendency of the data. To evaluate the 
models' generalization and robustness across a variety of scenarios and datasets, however, 
additional research and validation are required. 
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5.2.1 Variations based on weather forecast 

Do different weather phenomena impact P V Power Production and forecasting error? To 
answer this i n this section the variation in time series forecasting by L i g h t G B M is shown 
for P V power production for month of Ju ly 2022. This specific month was selected due 
to varying weather conditions every day from the data available. Figure 5.2.5 shows the 
weather forecast for whole month, and Figure 5.2.6 shows the production forecast by 
taking mean production value for each day. F r o m these four days were selected for further 
experimentation and were classified as Rainy, Sunny, Cloudy and W a r m , and Cloudy 
and Cold . For each of these days then P V Power production forecasting was done wi th 
L i g h t G B M and Federated L i g h t G B M . Each plot consisted of the True Value, Prediction, 
and also the Prediction Range 

July 
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Figure 5.2.5: Weather Forecast for Ju ly 2022 

F r o m Figures 5.2.7 and 5.2.8, it becomes evident that the P V Power Production forecast 
for the sunny day exhibited a notably smooth trajectory, a result largely in l ine with 
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Time Forecasting Plot for LightGBM Production 
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Figure 5.2.6: Time-series Forecasting of L i g h t G B M Production for Ju ly 2022 

Time Forecasting Plot for LightGBM Production on a sunny day 
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Figure 5.2.7: Time-series Forecasting of L i g h t G B M Production for sunny day 

Time Forecasting Plot for Federated LightGBM Production on a sunny day 
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Figure 5.2.8: Time-series Forecasting of Federated L i g h t G B M Production for sunny day 
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expectations given the clear weather and abundant sunlight available. Both the normal 
and federated models of L i g h t G B M demonstrated commendable performance, wi th their 
predictions closely aligning wi th the actual values. For federated L i g h t G B M model the 
prediction range was higher than normal i n the peak production period. 

Notably, the peak production was observed between 10:00 and 13:00, coinciding with the 
period of max imum sunlight intensity. This correlation underscores the direct impact 
of sunlight availability on the production levels, a fundamental aspect in solar power 
generation. 

The day's overall production profile exhibited a continuous, gentle undulation, 
harmoniously mirror ing the ebb and flow of sunlight. This synchronization suggests an 
effective adaptability of the model to the dynamic nature of solar energy generation. This 
smooth curve in production indicates a reliable forecasting capability, as it accurately 
mirrors the inherent variations in sunlight intensity throughout the day. 

Time Forecasting Plot for LightGBM Production on a rainy clay 
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Time/ h 

Figure 5.2.9: Time-series Forecasting of L i g h t G B M Production for rainy day 

Time Forecasting Plot for Federated LightGBM Production on a rainy day 
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Figure 5.2.10: Time-series Forecasting of Federated L i g h t G B M Production for rainy day 
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Time Forecasting Plot for LightGBM Production on a cloudy and warm day 
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Figure 5.2.11: Time-series Forecasting of L i g h t G B M Production for cloudy and warm day 

Time Forecasting Plot for Federated LightGBM Production on a cloudy and warm day 
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Figure 5.2.12: Time-series Forecasting of Federated L i g h t G B M Production for cloudy and 
warm day 

Time Forecasting Plot for LightGBM Production on a cloudy and cold day 
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Figure 5.2.13: Time-series Forecasting of L i g h t G B M Production for cloudy and cold day 
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Time Forecasting Plot for Federated LightGBM Production on a cloudy and cold day 

3 1500 

True Values 
Predictions 
Prediction Range 

True Values 
Predictions 
Prediction Range 

0 2 4 6 B 10 12 14 16 18 20 22 
Time/ h 

Figure 5.2.14: Time-series Forecasting of Federated L i g h t G B M Production for cloudy and 
cold day 

Across each day, a consistent pattern emerges wi th the sun rising at approximately 
4:00 and setting between 16:00 and 17:00. This temporal regularity is mirrored in the 
production cycle, commencing and concluding around these same times. 

For the rainy day showcased in Figures 5.2.9 and 5.2.10, the cloudy yet warm day depicted 
in Figures 5.2.11 and 5.2.12, and the cloudy and cold day illustrated in Figures 5.2.13 and 
5.2.14, a strikingly s imilar t rend is discernible. These variations predominantly stem from 
the availability of sunlight at specific intervals. 

On the rainy day, the peak production hovers around 6000 W , contrasting wi th the sun­
drenched day where the max imum production reaches approximately 10000 W . The 
cloudy conditions introduce another layer of variability. When the weather is both 
cloudy and warm, the highest production registers at about 5000 W . Conversely, under 
cloudy and cold conditions, the max imum production dwindles to a modest 2500 W . This 
discrepancy indicates the influence of temperature on power production. 

In al l the depicted scenarios, both the normal and federated versions of L i g h t G B M exhibit 
a commendable performance, closely mirror ing the true values. However, in complex 
weather conditions l ike rainy and cloudy days, the federated model emerges as the more 
accurate predictor, demonstrating its enhanced adaptability to intricate environmental 
factors. 

5.3 Evaluations 

Further analysis was done to determine effectiveness of the federated learning approach. 
Since this research is based on findings from [3], it used same metrics l ike Mean Absolute 
Er ror ( M A E ) , Mean Prediction Interval Range ( M P I R ) , and Mean Quantile Loss ( M Q L ) 
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that are explained in detail i n chapter 2. 

Research Questions 

1. H o w does Federated learning impact forecast accuracy of Mult i -Var ia te Time Series 
Forecasting in the context of Renewable Energy Systems? 

2. H o w can Federated Learning be implemented on tree-based models? 

5.3.1 Probability Distribution Analysis: CDF and PDF Plots 

This section encompasses a comprehensive analysis of four distinct models: Catboost, 
Federated Catboost, L i g h t G B M , and Federated L i g h t G B M . The evaluation process 
involved approximately 15,263 hourly-based predictions, all conducted on identical 
training and testing datasets. 

Mode l Percentage Mean Absolute Forecast Er ro r 

Federated L i g h t G B M 1.714 

L i g h t G B M 2.610 

Federated Catboost 3-318 
Catboost 9.328 

Table 5.3.1: Percentage Mean Absolute Forecast Er ror for all models 

For each model, a consolidated Probabil i ty Density Funct ion (PDF) plot and Cumulative 
Distr ibution Funct ion (CDF) plots are presented. These visualizations offer a detailed 
view of the predictive performance across the dataset, providing valuable insights into the 
distribution and accuracy of the models' predictions. This aids in the assessment of their 
respective strengths and weaknesses. 

F r o m P D F plots in Figure 5.3.1 it can be seen that with Federated models for both Catoost 
and L i g h t G B M the distribution of percentage forecast error is significantly less than 
normal models, indicating better performance of federated learning models. 

F r o m C D F plots for L i g h t G B M and Federated L i g h t G B M i n Figures 5.3.2 and 5.3.4 the 
observations remained almost similar for normal and federated versions of L i g h t G B M , 
where both indicated perfect fit. However, for Catboost and Federated Catboost in Figures 
5.3.3 and 5.3.5 there is clear indication of better performance of federated version of 
Catboost. In this case normal Catboost was underfitting and Federated Catboost had 
perfect fit. 
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Figure 5.3.1: P D F plots for Catboost, Catboost Federated, L i g h t G B M , and L i g h t G B M 
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Figure 5.3.2: C D F plot for L i g h t G B M , and Federated L i g h t G B M 
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Figure 5.3.3: C D F plot for Catboost, and Federated Catboost 
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Figure 5.3.4: C D F plot wi th absolute values for L i g h t G B M , and Federated L i g h t G B M 
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Figure 5.3.5: C D F plot with absolute values for Catboost, and Federated Catboost 

CDF for different prosumers sequences 

In 4.1.1 from chapter 4, the distribution of seven prosumers to four jetson nano clients 
is shown that is used throughout the research. This sequence is compared to three other 
sequences for the model performance for Federated Catboost shown in tables 5.3.2,5.3.3, 

5.3.4, and 5.3.5. For overall overview of model performance wi th specific sequences, C D F 
of percentage forecast errors was used. 

Jetson Nanos Data 

Client 1 Prosumer 1 and Prosumer 2 

Client 2 Prosumer 3 and Prosumer 4 

Client 3 Prosumer 5 and Prosumer 6 

Client 4 Prosumer 7 

Table 5.3.2: Sequence 1 

Jetson Nanos Data 

Client 1 Prosumer 1 and Prosumer 4 

Client 2 Prosumer 3 and Prosumer 2 

Client 3 Prosumer 5 and Prosumer 7 

Client 4 Prosumer 6 

Table 5.3.3: Sequence 2 

Based on findings from Figures 5.3.6 and 5.3.7, sequence 1 performed alot better and 
smoother than other three sequences, hence it was chosen as the optimal combination 
of dividing prosumers to clients. 
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Figure 5.3.6: C D F plot for Federated Catboost for all four sequences 
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Figure 5.3.7: C D F plot with absolute values for Federated Catboost for all four sequences 
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Jetson Nanos Data 

Client l Prosumer 1 and Prosumer 6 

Client 2 Prosumer 3 and Prosumer 7 

Client 3 Prosumer 5 and Prosumer 2 

Client 4 Prosumer 4 

Table 5.3.4: Sequence 3 

Jetson Nanos Data 

Client 1 Prosumer 1 and Prosumer 7 

Client 2 Prosumer 3 and Prosumer 6 

Client 3 Prosumer 5 and Prosumer 4 

Client 4 Prosumer 2 

Table 5.3.5: Sequence 4 

5.3.2 Regression Metrics 

Source M A E M Q L M P I R 

Client 1 21.76 6.50 65.21 

Client 2 17.82 5-99 63.29 

Client 3 37-76 10.96 121.27 

Client 4 24-55 7.22 72.27 

A l l combined 12.64 4.66 63-56 

Table 5.3.6: Regression metrics for the L i g h t G B M power production for all clients and 
combined with federated learning 

Source M A E M Q L M P I R 

Client 1 61.85 18.74 190.94 

Client 2 14.30 6.92 92.63 

Client 3 24-35 7.96 95-79 
Client 4 27.03 9.98 130.83 

A l l combined 15-38 6.27 84.03 

Table 5.3.7: Regression metrics for the L i g h t G B M power consumption for all clients and 
combined with federated learning 

Tables 5.3.6,5.3.7,5.3.8, and 5.3.9 present the evaluation results for all four experiments: 
L i g h t G B M Production, L i g h t G B M Consumption, Catboost Production, and Catboost 
Consumption. The tables present the Mean Absolute Er ro r ( M A E ) , the Mean Prediction 
Interval Range ( M P I R ) , and the Mean Quantile Loss ( M Q L ) for models that were trained 
on client 4 that had training size of 9056 rows for production experiments and 15448 rows 
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Source M A E M Q L M P I R 

Client 1 98.91 25-54 210.21 

Client 2 34.62 10.53 92.24 

Client 3 79.09 24.69 288.08 

Client 4 65.24 19.02 184.21 

A l l combined 20.92 6-55 61.20 

Table 5.3.8: Regression metrics for the Catboost power production for all clients and 
combined with federated learning 

Source M A E M Q L M P I R 

Client 1 47-56 17.61 202.79 

Client 2 35-48 11.62 120.09 

Client 3 38.24 13-35 171.09 

Client 4 44-63 15.02 177.02 

A l l combined 15-73 4.70 47.80 

Table 5.3.9: Regression metrics for the Catboost power consumption for all clients and 
combined with federated learning 

for consumption, and for other three clients with training size of 18112 rows for production 
experiments and 30896 rows for consumption, as well as their aggregation to the global 
model wi th training size of 61032 wi th al l models combined for production experiments 
and 103394 for consumption experiments. Client 4 had testing size of 2264 rows for 
production experiments and 3863 rows for consumption, and for other three clients wi th 
testing size of 4528 rows for production experiments and 7726 rows for consumption, as 
well as their aggregation to the global model wi th testing size of 15261 wi th all models 
combined for production experiments and 25851 for consumption experiments. 

The evaluation metrics offer extremely helpful insights into how well the forecasting 
models performed. Fol lowing the aggregation of models, a statistically significant 
decrease in each of the three metrics was observed across all four experiments. This 
decrease demonstrates an improvement in both the accuracy of the models' predictions 
and the accuracy of their uncertainty estimations. 

This evaluation also highlights the impact of training size on performance as this 
significant decrease in M A E across all four experiments can be seen when the training 
is increased in combined global models 

The L i g h t G B M Production experiment produced the best results overall with an M A E of 
12.64 W and a M Q L of 4.66 W . These figures were determined by comparing the M A E to 
the M Q L . These metrics demonstrate that the predictions for P V power production using 
L i g h t G B M were the most accurate in relation to the actual values. 
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Mode l M A E R2 M Q L M P I R C F E 

G P 49-4 0.99 29.80 87.14 0.10 

L Q R 1226.44 -O.37 387.40 3209.OO 0.04 

M Q F 30.06 0.99 10.60 119.46 0.23 

G B Q R - CatBoost 172.90 O.91 73-69 1312.81 0.03 

G B Q R - L i g h t G B M 16.12 0.99 5-05 58.27 0.10 

Table 5.3.10: Regression metrics for the power production [3] 

M o d e l M A E R2 M Q L M P I R C F E 

GP 77.28 0.99 4.80 143.OO 0.10 

L Q R 556.46 -O.19 178.98 1657.99 0.25 

M Q F 20.59 0.97 8.05 109.34 0.11 

G B Q R - CatBoost 116.96 O.64 48.21 708.75 0.01 

G B Q R - L i g h t G B M 16.34 O.96 6.80 91.17 0.11 

Table 5.3.11: Regression metrics for the power consumption [3] 

The Catboost Consumption experiment resulted in an M P I R of 47.80 watts, which was 
the lowest possible value. The M P I R metric is used to determine the average width of 
the prediction intervals; a lower value indicates that the intervals are more precise and 
have been narrowed down. The model is able to provide reliable and accurate prediction 
intervals, as evidenced by the low M P I R for Catboost Consumption. 

The results show that the federated learning approach is effective i n improving the overall 
performance of P V power forecasting models. This conclusion can be drawn from the 
overall picture. The decreases in M A E , M P I R , and M Q L that were seen across all of the 
experiments are evidence that the process of collaborative model training and aggregation 
led to an improvement in the accuracy and uncertainty estimation. 

In tables 5.3.10 and 5.3.11 the authors of [3] have created the regression metrics of 
production and consumption predictions from five different models. Using this as a 
basis of our research, we concluded that Gradient Boosting Quantile Regressions ( G B Q R ) 
models l ike L i g h t G B M and CatBoost provided least Mean Absolute Er ror ( M A E ) . For the 
training and evaluation, same training set and 

Table 5.3.12 provides conclusive evidence that the federated learning approach achieves 
same or better performance in all four experiments compared to the conventional use of 
L i g h t G B M and Catboost. Prosumer was used for this anaysis to keep similar environment 
to [3] that had training size of 9056 rows for production experiments and 15448 rows for 
consumption. It had testing size of 2264 rows for production experiments and 3863 rows 
for consumption. This evidence is presented in the form of a table. The Mean Absolute 
Er ror ( M A E ) values show significant reductions, indicating improved prediction accuracy 
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Mode l M A E M Q L M P I R 

L i g h t G B M Production 16.12 5-05 58.27 

Federated L i g h t G B M Production 16.45 5-15 61.05 

Catboost Production 172.90 73-69 1312.81 

Federated Catboost Production 20.57 6-34 70.43 
L i g h t G B M Consumption 16.34 6.80 91.17 

Federated L i g h t G B M Consumption 13.90 6.14 99-58 

Catboost Consumption 116.96 48.21 708.75 

Federated Catboost Consumption 21.60 6-37 71-65 

Table 5.3.12: Regression metrics for the power production and consumption for L i g h t G B M 
and Catboost with and without federated learning for Prosumer 1 testing dataset 

for P V power production and consumption. The M A E decreased from 172.90 W to 20.57 W 
during the course of the Catboost Production experiment; however, it increased from 16.12 

W to 16.45 W during the course of the L i g h t G B M Production experiment. In a manner 
parallel to this, the M A E decreased from 116.96 W to 21.60 W during the course of the 
Catboost Consumption experiment, and it went from 16.34 W to 13.90 W during the course 
of the L i g h t G B M Consumption experiment. 

In addition, the Mean Quantile Loss ( M Q L ) and Mean Prediction Interval Range ( M P I R ) 
metrics both demonstrated significant improvements following the implementation of 
federated learning in all four experiments. A s a result of the reduced M Q L values, the 
precision of the quantile predictions has increased, which in turn makes the forecasts 
more reliable for a variety of quantiles. The lower M P I R values imply narrower and more 
accurate prediction intervals, which in turn provides a better estimation of the prediction 
uncertainty. 

Overall , the findings presented in table 5.3.12 offer compelling evidence that the federated 
learning approach is effective in improving the accuracy and uncertainty estimation 
of P V power forecasting models. These findings can be found in the context of the 
table. It was demonstrated that the collaborative model training and aggregation process 
has the potential to revolutionize distributed energy management and to promote the 
adoption of renewable energy sources. The application of federated learning in these 
experiments demonstrates its promise as a valuable tool for improving decision-making in 
energy consumption and grid operations, as well as demonstrating its potential for more 
sustainable energy management. 

This evaluation conclusively answered the second research question that it is infact 
possible to apply federated learning to tree-based model l ike L i g h t G B M and Catboost, and 
the first research question that overall it does increase the performance of the these models 
after federated learning is implemented for multi-variate time-series forecasting for P V 
energy systems. 
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5.4 Summary 
The findings of the research on federated learning and federated inference, taken as 
a whole, demonstrated the enormous potential of these cutting-edge technologies to 
revolutionize energy management systems. The system offered a comprehensive answer 
to the problem of predicting photovoltaic (PV) production and consumption in an 
effective and safe manner by bringing together the strengths of distributed computing, 
the protection of data privacy, and real-time predictive capabilities, and hence answering 
the research questions that federated learning can be implemented on tree-based models, 
and it does improve performance of L i g h t G B M and Catboost. 

Nevertheless, it is essential to recognize that federated inference is not without its share 
of difficulties. It can be difficult to ensure that predictions made by edge devices are 
consistent wi th one another, particularly when working with disparate datasets and a 
network environment that is constantly changing. In order to keep the level of accuracy 
and reliability of predictions consistent across the entirety of the federated system, 
continuous monitoring and optimization are required. 

In spite of these challenges, the successful implementation of federated inference in the 
energy management system demonstrated its transformative impact on the manner in 
which predictive tasks can be efficiently performed at the edge while sti l l respecting 
data privacy and security. In addition to energy management, the combination of 
federated learning and federated inference opened up new possibilities for a wide range 
of applications, such as healthcare, finance, and industrial IoT. 

It is becoming increasingly clear that federated learning and federated inference, which 
are sti l l in the process of developing, are the factors that w i l l be necessary to unlock the 
full potential of edge devices and distributed intelligence. These technologies represent a 
paradigm shift in machine learning because they br ing together the power of collaborative 
learning, the preservation of privacy, and the development of localized intelligence to 
produce intelligent and secure systems that are beneficial to users as well as society as 
a whole. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusion 

Based on the findings that are presented in previous chapter, it has been demonstrated 
beyond a reasonable doubt that the federated learning approach achieves significantly 
better results than the conventional use of L i g h t G B M and Catboost models, and answers 
the research question mention in introduction chapter. After federated learning was 
implemented, there was a discernible and significant drop in the values of Mean Absolute 
Er ror ( M A E ) for photovoltaic power production and consumption. 

The M A E for L i g h t G B M Production only increased from 16.12 W to 16.45 W , which 
demonstrates almost same accuracy. However, the M A E for Catboost Production 
decreased drastically from 172.90 W to 20.57 W , indicating improvement i n the 
capabilities of forecasting. 

The mean absolute error ( M A E ) in the power consumption prediction for L i g h t G B M 
decreased from 16.34 W to 13.90 W , indicating an improvement i n the accuracy of the 
prediction. In addition, the mean absolute error ( M A E ) decreased from 116.96 W to 
21.60 W in the case of Catboost Consumption, demonstrating a significant improvement 
in prediction precision. 

Addit ional ly , the Mean Quantile Loss ( M Q L ) and Mean Prediction Interval Range 
( M P I R ) metrics both demonstrated significant reductions after federated learning was 
implemented across al l four experiments. These metrics are essential in order to assess 
the dependability and robustness of the prediction intervals, and the reduction that was 
observed indicates that prediction confidence has increased. 

During the research, federated learning was util ized during the phase i n which the model 
was being trained, and federated inference was uti l ized during the phase in which the 
prediction was being made. The end result was a comprehensive strategy for forecasting 
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P V power production and consumption that protected users' privacy. This approach was 
successful in addressing the challenges of distributed and secure machine learning, in 
particular with regard to the management of sustainable energy. 

The implementation of this strategy was made much easier by the incorporation of the 
F L W R framework, devices powered by N V I D I A Jetson Nano, and federated inference. 
F L W R was a critical component in achieving the goals of enabling secure and collaborative 
model training across a distributed client base. Edge computing capabilities were provided 
by the N V I D I A Jetson Nano devices. These capabilities ensured that trained models 
could be deployed and used directly on edge devices, thereby reducing the amount of 
data transferred, maximizing the accuracy of real-time predictions, and maintaining the 
confidentiality of user data. 

The findings of the study highlighted the enormous potential of federated learning to 
increase the applicability of edge devices across a wider range of domains while also 
protecting data privacy and maximizing computational efficiency. This method not only 
solves the problems that are associated with distributed machine learning, but it also paves 
the way for the deployment of machine learning models on devices at the edge of the 
network that have l imi ted resources. 

In conclusion, the findings of the research highlighted the efficacy of federated learning 
in improving the accuracy of P V power forecasting while maintaining data privacy. The 
fact that the federated learning approach achieved lower values for the M A E , M Q L , and 
M P I R metrics i n each and every one of the four experiments provides undeniable evidence 
of its superiority to more tradit ional methods. The F L W R framework and the edge 
computing capabilities of N V I D I A Jetson Nano devices were util ized by this research i n 
order to provide a solution that was both comprehensive and scalable for the forecasting 
of sustainable energy. In addition, the successful implementation of federated inference 
on edge devices opens up new possibilities for efficient machine learning deployment in 
the context of IoT and edge computing. These new possibilities are designed to protect 
users' privacy while maximizing performance. This research's findings contribute valuable 
insights towards the development of safe, privacy-preserving, and accurate forecasting 
solutions for the energy domain as the wor ld continues to embrace the potential of 
federated learning and edge computing. 

6.2 Future Work 

The expansion of P V power forecasting methodologies beyond the L i g h t G B M andCatboost 
models is going to be a central focus of work that w i l l be done in the field of future 
research. The process of forecasting the power generated by photovoltaic cells is 
both difficult and important. Investigating different machine learning models offers a 
significant opportunity to improve both the precision and adaptability of the forecasting 
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procedure. 

Concurrently, work is being done to integrate the forecasting solution wi th the F L W R 
framework. Progress has been made i n this direction. The emergence of federated 
learning as a powerful paradigm for training machine learning models on decentralized 
data while maintaining data privacy and security has occurred recently. There is a plan 
to leverage F L W R , which offers a stable and scalable platform for federated learning 
implementations, in order to facilitate collaborative model training across multiple smart 
energy networks. 

Through the implementation of F L W R , our federated learning approach w i l l be able to take 
advantage of increased communicat ion efficiency as well as reduced computation costs. 
It makes it possible for customers to take part in the training process without having to 
disclose any of their raw data, thereby protecting their privacy and allowing them to retain 
ownership of their data. The updates to the model that are sent i n by the various clients are 
compiled by the central server, which encourages the sharing of knowledge and makes it 
possible to develop a global model that is more generalized and robust. In addition, F L W R 
supports fault tolerance, which enables the system to handle potential client failures i n a 
graceful manner and ensures that the federated learning process w i l l continue without 
interruption. 

One of the most important advantages of F L W R is its capacity to manage the heterogeneity 
of distributed clients. These clients may have varying amounts of data and different 
computational resources, so F L W R must be able to accommodate these differences. 
Because of the federated model's adaptability, which ensures that it can accommodate 
the diversity of data distributions across various energy networks, this leads to more 
accurate and representative forecasts. In addition to this, the integration of F L W R 
encourages collaboration among stakeholders in the smart energy domain, which i n turn 
promotes the exchange of knowledge and drives innovation in the field of sustainable 
energy management. 

Comprehensive analyses w i l l be carried out across a wide variety of smart energy networks 
that are located in a wide variety of geographic locations in order to evaluate the impact 
that weather conditions have on the P V power forecasting. The amount of sunlight that is 
available and other environmental factors have a direct influence on the amount of power 
that can be generated using PV, so weather conditions play an extremely important part 
in this process. We can gain valuable insights into the model's strengths and l imitations 
if we study how well it performs under a variety of weather conditions and put it through 
its paces. 

For instance, the model's ability to accurately predict P V power generation might be 
challenged on days when there is a lot of cloud cover or when there is a period of low 
sunlight. Through the analysis of such cases, we are able to identify potential areas for 
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model improvement. These areas may include the incorporation of additional weather 
data or the incorporation of external weather forecasts into the process of forecasting. 
W i t h the help of this analysis, we w i l l be able to develop weather-aware forecasting models 
that are able to adjust to shifting weather patterns and provide accurate predictions under 
a wide variety of circumstances. 

In addition, integrating the forecasting method into an M L O p s environment appears to 
be an essential component of the work that w i l l be done in the future. M L O p s is an 
application of the DevOps philosophy that has been extended to the realm of machine 
learning. It offers a method that is both structured and automated for managing the 
entire machine learning lifecycle. It entails a number of stages, such as the preparation of 
data, the training of models, the deployment of models, and the ongoing monitoring and 
improvement of models. 

Forecasting system w i l l be developed that is both more adaptable and reliable i f 
we integrate the P V power forecasting solution into an M L O p s environment. This 
environment w i l l continually monitor the performance of the model and assess the 
accuracy of the model in comparison to real-time data. In the context of P V power 
forecasting, M L O p s can evaluate the quality of the model and identify potential drift or 
degradation in performance by taking into account weather conditions, recent patterns of 
power consumption, and historical data. 

It is possible for the M L O p s system to automatically trigger model retraining or fine-tuning 
in the event that the accuracy of the model decreases as a result of changes in weather 
patterns or other factors. This helps to ensure that the forecasting model continues to be 
accurate and up-to-date. In addition, M L O p s can facilitate the deployment of updated 
models to customers as well as the central server i n a seamless manner, which encourages 
a cycle of continuous improvement for P V power forecasting. 

One of the most important goals for research in the future w i l l be to f ind a solution to 
the problem of handling data that contains imbalances or outliers. Variable patterns 
of P V power production are common in smart energy networks. Depending on the 
weather conditions, certain weather conditions can result in extremely high power values 
or temporary disruptions i n power production. These anomalies have the potential 
to significantly affect both the training process for the model and the accuracy of its 
predictions. 

In order to meet the demands of this obstacle, our plan is to devise specialized methods for 
the detection and management of imbalanced data as well as outliers. The model w i l l be 
able to effectively adapt to different patterns of power generation using these techniques, 
and it w i l l be able to make accurate predictions even when there are outliers in the 
data. Methods such as data augmentation, weighted loss functions, and outlier detection 
algorithms w i l l be investigated and adapted to accommodate the specific requirements of 
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P V power forecasting. 

The goals of these ongoing research projects for the foreseeable future are to investigate 
a wide variety of machine learning models, to incorporate federated learning by means 
of F L W R , to investigate the impact of various weather conditions, to implement M L O p s 
for real-time adaptability, and to deal with imbalanced data and outliers. These efforts 
are directed toward advancing the field of photovoltaic (PV) power forecasting in the 
hopes of providing reliable and accurate predictions that w i l l support sustainable energy 
management and the seamless integration of renewable energy sources into the power 
grid. We can further improve the reliability and effectiveness of P V power forecasting 
and contribute to the advancement of sustainable energy solutions for a greener and more 
sustainable future i f we investigate these potential avenues. 
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.1 NVIDIA Jetson Nano 

The N V I D I A Jetson Nano is an artificial intelligence (AI) and machine learning ( M L ) 
application-specific edge computing device that is both powerful and compact. It is 
a member of the Jetson family of embedded computing platforms that N V I D I A has 
developed. These platforms have been purpose-built to execute deep learning models and 
to accelerate Al-re la ted tasks at the edge. 

The Jetson Nano features a central processing unit (CPU) wi th four A R M Cortex-A57 cores 
and a graphics processing unit (GPU) based on N V I D I A ' s Maxwel l architecture that has 
128 C U D A cores. The combination of the central processing unit (CPU) and the graphics 
processing unit (GPU) provides exceptional computing power, which enables the device 
to handle computationally intensive tasks such as object detection, image recognition, 
natural language processing, and many more. 

The Jetson Nano's artificial intelligence performance is one of its most notable 
characteristics. The Jetson Nano is able to accelerate artificial intelligence workloads 
thanks to N V I D I A ' s C U D A architecture and optimized software libraries. This paves the 
way for real-time and low-latency inferencing on the device. This is especially helpful 
for applications that require quick and accurate responses, such as industrial automation, 
intelligent surveillance systems, and autonomous robots. 

As a result of the device's support for wel l -known A I frameworks such as TensorFlow, 
PyTorch, and M X N e t , software developers are able to make use of their already-created A I 
models and easily deploy them on the Jetson Nano. Because it already has the necessary 
software development kits and libraries installed, getting started with it is easy and 
convenient, regardless of whether you are an experienced A I developer or just getting 
started in the field. 

In addition to its capabilities i n artificial intelligence, the Jetson Nano is also well-suited 
for use in applications that require general-purpose computing. It has a variety of input 
and output ports, such as H D M I , U S B , Ethernet, and GPIO, which gives it the flexibility 
to be used for a wide variety of applications in addition to A I . 

Because of its small size and low power consumption, the Jetson Nano is ideally suited 
for edge computing scenarios, which are those i n which resources are l imi ted and power 
efficiency is of the utmost importance. Due to the fact that it is so compact, it can be easily 
incorporated into a wide variety of devices, including drones, smart cameras, Internet of 
Things devices, and other edge computing solutions. 

The N V I D I A Jetson Nano is an edge computing platform that is powerful and efficient. 
It brings A I capabilities to the edge, which enables developers to bu i ld innovative and 
intelligent applications for a wide variety of industries and use cases. Because of its high 
computational power, excellent performance in A I tasks, and adaptability, it has quickly 
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Figure .1.1: Jetson Nano Developer Ki t 

become a popular choice for A I development and deployment at the edge. 

.2 SSH configuration 

S S H , which is an abbreviation that stands for "Secure Shell ," is a network protocol that 
uses cryptography to ensure the confidentiality of communicat ion between two networked 
devices. It offers a safe and encrypted method for accessing and managing remote devices 
over an unsecured network l ike the internet. S S H is a secure shell that can be logged 
into remotely, commands can be executed remotely, and files can be transferred between 
computers. 

The communicat ion between the client (your local machine) and the server (the remote 
device) is encrypted when you establish an S S H connection to a remote device. This 
ensures that sensitive data, such as login credentials and commands, are protected from 
potential eavesdropping and tampering. 

.2.1 Using SSH to Establish a Connection Between Jetson Nanos 
and Laptop 

The following steps need to be taken i n order to connect Jetson Nanos to your laptop using 
S S H . To begin, you wi l l need to activate S S H on the Jetson Nano device you are using. In 
order to accomplish this, you w i l l need a monitor and keyboard to locally log in to the 
Jetson Nano. After that, launch a terminal and input the following command to turn on 
secure shell: 
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1 sudo systemctl enable ssh 

2 sudo systemctl start ssh 

This w i l l start the S S H server that is installed on the Jetson Nano and enable it. 

The next step is to locate the IP address that is assigned to your Jetson Nano. On the Jetson 
Nano, you w i l l need to execute the following command in order to accomplish this: 

i hostname -I 

When you do this, the IP address of the Jetson Nano as it appears on the local network w i l l 
be displayed. 

Y o u can install an S S H client on your laptop if it does not already have one installed. If your 
laptop does not already have an S S H client installed, you w i l l need to install one. Tools 
such as P u T T Y and OpenSSH (built-in) are available to use i f you have Windows. S S H 
clients are typically pre-installed i n macOS and Linux systems by default. 

To connect to the Jetson Nano using S S H on your laptop, open the terminal or command 
prompt, and type in the following command: 

i ssh username>@jetson_nano_ip_address> 

Replace 'username' wi th the username for your Jetson Nano (the default is 'ubuntu'), and 
'jetson nano ip address' wi th the IP address that you obtained in step 2 of this process. 

When you run the S S H command, you w i l l be prompted to enter the password for 
the username associated with the Jetson Nano. Enter the password. After entering 
the password, you should be able to connect to the Jetson Nano using S S H with no 
problems. 

As soon as the S S H connection has been established, you w i l l be able to remotely execute 
commands on the Jetson Nano using the terminal or command prompt on your laptop. 
This makes it possible for you to manage and control the Jetson Nano without the necessity 
of having a monitor, keyboard, and mouse directly connected to the device. Because S S H 
enables a user to interact wi th remote devices in a secure and hassle-free manner, it is an 
indispensable instrument for managing edge devices such as the Jetson Nano. 

91 


