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ABSTRACT
The availability of digital music content and various interpretations of musical pieces is
increasing rapidly. Simultaneously, even though the computational methods of Music
Information Retrieval (MIR) are evolving at a quick pace, they are not always reflected
in related fields such as Music Performance Analysis (MPA). The main topic of this
dissertation is the utilization of computational methods and digital music processing for
the goals of MPA. It aims to combine MIR principles to analyze and compare differences
in musical performances and their parameters. The thesis examines the limitations of
conventional and machine learning-based onset and beat detectors to correctly estimate
the ground-truth data under the effect of input audio degradations, sampling rate reduc-
tions, or in complex musical structures. Furthermore, this work shows the possibilities of
music synchronization, parameter extraction, and feature selection application on novel
string quartet data to provide a semi-automated strategy for binary classification of per-
formers’ origin. Finally, it demonstrates a software tool for comparative music analysis
by combining a comfortable user environment for playback, navigation, and visualization
of music performance data with the computation methods of MIR.

KEYWORDS
music information retrieval; music performance analysis; music processing; onset detec-
tion; beat detection; synchronization; comparative analysis; string quartets; software

ABSTRAKT
Zvyšující se dostupnost digitálního hudebního obsahu a různých interpretací hudebních
děl zároveň podněcuje vývoj výpočetních metod oboru získávání hudebních informací
(MIR). Tento rozvoj ale nemusí být vždy reflektován v souvisejících oblastech – napří-
klad v analýze interpretačního výkonu (MPA). Hlavním tématem této disertační práce je
využití výpočetních metod a digitálního zpracování hudby pro cíle MPA. Tato práce se za-
bývá principy MIR pro analýzu a porovnání rozdílů hudebních výkonů a jejich parametrů.
Práce analyzuje limitace detektorů nástupů tónů a dob založených na konvenčních přístu-
pech a na strojovém učení, při degradaci vstupního signálu, snížení vzorkovací frekvence,
nebo v komplexnějších hudebních strukturách. Dále ukazuje možnosti použití hudební
synchronizace, extrakce parametrů a výběru příznaků na originálních datech smyčcových
kvartetů pro binární klasifikaci původu interpretů. Na závěr demonstruje vyvíjený soft-
ware pro komparativní analýzu hudby, který kombinuje přívětivé uživatelské prostředí pro
přehrávání, navigaci a vizualizaci dat hudebního výkonu s výpočetními metodami MIR.
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ware
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Preface
Music is a universal language across all parts of the world. Its purpose, features,
and underlying properties can be understood differently based on tradition and
cultural variance. The ability to perceive harmonic, melodic, and rhythmic patterns,
including their relationships within a given musical piece, begins to develop already
in the earliest stage of one’s life. It may be gradually refined into musical knowledge
and experience, allowing individual music analysis at different levels. Each educated
musician analyzes the music, even unconsciously, when listening or performing. The
perception of music is a complex mechanism, from changes in local air pressure and
transfer of vibrations to the cochlea, a spiral-shaped cavity in the bony labyrinth
of our ears, up to evaluation in the brain. Our ears process the sound waves—from
amplification and transformation into the frequency representation—and send them
via electrical signals into our control unit. But what happens next? Are musical
education, knowledge, and experience correlated with how we listen and perform
music? Is it possible to distinguish musicians or a group of musicians with the same
cultural or musical background objectively based on their performance? Can we
measure and compare differences in music expressivity?

Transferring the music analysis capabilities of a human into the computing do-
main contains many obstacles that we have not yet overcome. When describing
music subjectively, one may start with expressions of our emotional state or feel-
ings. However, in today’s digitized world, there is a strong need for an objective
description, although even the technical descriptions of sound parameters, such as
dynamics or timbre, are related to our subjective perception. This results in many
studies focused on music information retrieval, extraction of relevant music fea-
tures, or digital music analysis. As technology and computational methods evolve,
we find new ways of dealing with music data, including analysis, sorting, processing,
recommending, and changing and transforming their properties. By extracting the
underlying features of music, we may be able to understand the context of music and
its differences across various cultural backgrounds or music schools. Furthermore,
we could build on previous analytic approaches and provide new forms of compara-
tive music analysis, focusing on distinguishable traits of individual performances in
large-scale datasets.

In this work, I contribute to some of the questions raised; however, due to the
state of current knowledge in the related fields, all chapters and discussed topics are
far from exhausted and resolved. I aim to provide some insight into performance
data and comparative performance analysis topics by utilizing methods of the music
information retrieval field, focusing on a more technical view of music processing
and leaving out the processing of the human brain. Due to the nature of music
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performance data and the limitations of automated extraction systems in the past
(and even today), most performance studies use a very limited number of record-
ings. Researchers rely on manual annotations of data, hand-crafted features, or very
specific scenarios. In this thesis, I address some tasks of music information retrieval
and performance analysis from an application point of view. I briefly describe the
history and principles of both interdisciplinary fields and present the motivation,
ideas, and some of the methods I used during experiments. The rest is covered in
a given literature or articles I authored or co-authored (Chapters 2–9). The main
topic, present throughout the thesis, is the utilization of retrieval methods for com-
paring music performances and decreasing the time of the annotation process for
music analysis scenarios.

Structure of the Thesis
This thesis is divided into nine chapters and two parts. The first part summarizes
my contributions to low-level and mid-level detection systems and their evaluation
based on the principles of music performance analysis. The second part analyzes and
compares music performance differences using information retrieval methods. Note
that the chapters are not always chronological (compared to the year in which the
corresponding articles were published) but are arranged to follow a more consistent
thesis structure.

Chapter 1 presents the two related fields, Music Information Retrieval and Music
Performance Analysis, and the related fundamentals of music processing, including
audio signals, time-frequency transformations, music synchronization based on dy-
namic time warping, and its modified variants.

Chapter 2 starts the part I of the thesis. It is based on the article “The Effect
of Audio Degradation on Onset Detection Systems” [1] and introduces the notion of
various degradations in the pre-processing phase of onset detectors.

Chapter 3 follows Chapter 2 by focusing on MPA-oriented global tempo com-
putation and introduces the article “Enhancement of Conventional Beat Tracking
System Using Teager–Kaiser Energy Operator” [2]. This article is an updated ver-
sion (nominated for further publishing in a journal) of two previous consecutive
conference articles [3] and [4].

Chapter 4 introduces the article “Beat Tracking: Is 44.1 kHz Really Needed?” [5]
that won first place in the Audio, Speech, and Language Processing category at
the EEICT 2023 student conference1. It experiments with and evaluates different
input sampling rates of beat tracking models. I later used one of the models with

1www.eeict.cz/eeict_download/archiv/vysledky/EEICT_2023_vysledky_v2.pdf, p. 18
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slight modifications in the follow-up studies [6, 7] and the MemoVision software (see
Chapter 9 and Appendix D) for a combined synchronization approach inspired by
the collaboration (and my internship topic) and the research in Audio Labs institute
in Germany.

Chapter 5 is based on the article “The Application of Tempo Calculation for
Musicological Purposes” [8], which also won first place in the Signal, Image, and
Data Processing category at the EEICT 2021 student conference2. It evaluates
conventional and machine learning-based beat tracking systems on two challenging
string quartet motifs. I tried to explain the problems of applying beat detectors
in music analysis scenarios and the standard beat tracking and tempo evaluation
metrics.

Chapter 6 presents the article “Exploring the Possibilities of Automated Anno-
tation of Classical Music with Abrupt Tempo Changes” [9] that won second place
in the Analog and Digital Signal Processing category at the EEICT 2022 student
conference3. It follows the ideas of the previous chapter by jointly evaluating a syn-
chronization method, beat detector, and downbeat detector utilizing user-driven
metrics.

Chapter 7 starts part II of the thesis and introduces the article “Towards Au-
tomatic Measure-Wise Feature Extraction Pipeline for Music Performance Analy-
sis” [10]. I deployed synchronization strategy and parameter extraction based on
previous studies to create representative matrices for analyzing interpretation dif-
ferences.

Chapter 8 presents the article “Classification of Interpretation Differences in
String Quartets Based on the Origin of Performers” [11] that uses the ideas of [10]
and trains the machine learning classifier to distinguish between two separate groups
of recordings based on performance parameters. In the study, we predicted the Czech
and non-Czech origin of interpretations with relatively high accuracy within large
corpora of Czech string quartet music.

Chapter 9 follows with the article “Application of Computational Methods for
Comparative Music Analysis” [6], introducing the MemoVision software, its func-
tions, and contributions to MIR and MPA communities.

Additional experiments with the application of the MemoVision software on
a piano composition from Bedřich Smetana are demonstrated in Appendix D.

2www.eeict.cz/eeict_download/archiv/vysledky/EEICT_2021_vysledky_new.pdf, p. 22
3www.eeict.cz/eeict_download/archiv/vysledky/EEICT_2022_vysledky.pdf, p. 20
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1 Basics of Music Processing and Analysis
This chapter explains the basics of music processing related to the thesis. This cov-
ers a quick overview of music performance analysis and music information retrieval
fields (Sections 1.1 and 1.2), audio representations (Section 1.3), and music syn-
chronization (Section 1.4). The last two sections are substantially inspired by [22]
and [23].

1.1 Music Performance Analysis
Music Performance Analysis (MPA) is an interdisciplinary field that focuses on
extracting information, evaluating, and analyzing musical performances. It pro-
vides a connection between the subjective experience of music and objective data
analysis [24]. The performance or interpretation1 plays a critical role in how lis-
teners perceive a given composition. Variations of musical parameters shape the
expressivity of the resulting interpretation. The blueprint, usually in the form of
a musical score or sheet music, is not the performed music itself, as it first requires
acoustic realization [25, 26]. Different performers may interpret the same blueprint
uniquely, creating variations of performance data. Furthermore, the availability of
music increased radically in previous years thanks to the internet, lossy audio data
compressions, and streaming portals, leading to more options for inspiration. The
performers are usually musicians, but in recent years, the advances in computa-
tional models such as neural networks have allowed us to consider new systems as
possible performers with human-like deviations. Music as a performing art requires
a performer or multiple performers to render the musical ideas into a signal domain,
usually in the form of physical sound that is then perceived by the listener’s ears.
However rich, for all purposes of this thesis, we assume and use Western musical
concepts, tuning, and notation.

There are multiple forms of relevant music data such as sheet music, midi tran-
scription, audio signal, or derived representations like spectrograms and chroma vec-
tors. However, some aspects of music performance can also be described by visual
information, e.g., by gestures and facial expressions of musicians [27, 28, 29]. Such
data are usually unavailable for further processing or do not convey performance
cues. The focus of MPA research is mostly on symbolic data and audio recordings.
The preprocessing adjustments (recording equipment, position of microphones), pro-
cessing workflow (digital effects, mixing, mastering), and postprocessing choices (ef-
fects, audio carriers, and formats) of music recordings affect the performance data

1For the purpose of this thesis, I use both terms interchangeably.
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and the objectivity of the analysis. If we use audio recordings, we cannot simply
separate the performer’s intentions from all other aspects of the data. However,
the parameter variations are sometimes subtle, and in the case of MPA, they are
usually evaluated in reference to the same performer, different interpretations, or
symbolic score representation [24]. The research drive to generalize performance
principles naturally leads to the analysis of classical music, where a large number
of interpretations of the same piece may be available compared to other genres of
music. This work focuses mostly on the string quartet and piano music. The MPA
research covers but is not limited to:

• expressivity: the term itself is vague and may cover multiple research topics,
• timing: time-related features such as onsets, offsets, beats, downbeats,
• intonation: intentional and unintentional changes in pitch, vibrato,
• timbre: a spectrum of instruments, the relation between timbre, dynamics,

and expressivity,
• dynamics: loudness and tempo, structure-related dynamic choices,
• musical structure: traits of compositions, relation of the structure and perfor-

mance,
• psychological aspects: communication between performers, the influence of

music,
• computational analysis: retrieving of music-related information from audio

signals,
• pedagogy and education: aiding the pedagogical process by understanding

underlying music material,
• historical styles: how music evolved in time.

1.2 Music Information Retrieval
Thanks to the digital revolution in distributing and storing audio data, music has be-
come easily available and popular multimedia content [30]. Music processing is one
of the fields that thrives from advances in digital signal processing (DSP), computer
science, and machine learning (ML). It extends our capabilities of understanding, ac-
cessing, analyzing, and manipulating music. The music industry is pushing towards
the continuous production of new musical pieces, especially in the pop genre, so the
number of listeners increases along with cloud services and streaming portals. The
need for sorting, retrieval, and recommendation algorithms is unavoidable. The first
sign of Music Information Retrieval (MIR) emerged in the paper [31] in 1966 as “Mu-
sical Information Retrieval”. The growth of the MIR community was not rapid; it
slowly increased with the availability of data, computing power, and new communi-
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cation options. The ISMIR (International Society for Music Information Retrieval)
conference2 has been held annually since 2000 and is currently the leading forum for
processing, retrieving, sorting, and accessing music data. It supports and follows the
open-access guidelines and includes topics from musicology, cognitive science, psy-
choacoustics, computer science, computational intelligence, machine learning, and
electrical engineering. Furthermore, the open-access journal Transactions of the
International Society for Music Information Retrieval (TISMIR)3 complements the
conference and publishes substantial scientific research in the field of MIR. There
used to be the Music Information Retrieval Evaluation eXchange (MIREX) initia-
tive4 with a focus on comparing and evaluating detection systems of MIR-related
challenges, but the last official meeting of this community was at ISMIR 2021. The
MIR topics cover but are not limited to:

• feature extraction and modeling: low-, mid-, and high-level features (for ex-
ample, onset, beat, and downbeat detections),

• music classification: music identification, pattern matching, music structure
analysis,

• music recommendation: recommendation systems, database handling,
• source separation: sound source identification and separation (for example,

voice or instrument separation), instrument recognition,
• music generation: automatic generation, autoencoders, generative adversarial

networks,
• automatic music transcription: creating symbolic music notation from audio

recordings,
• differentiable signal processing: modeling of audio effects and systems,
• retrieval: fingerprinting (Shazam-like applications), query-related tasks (query

by humming or singing).

2https://www.ismir.net
3https://transactions.ismir.net
4https://www.music-ir.org/mirex/wiki/MIREX_HOME
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1.3 Audio Representations

1.3.1 Digital Signals

In the audio processing sense, sound is a deviation of the air pressure from the
average atmospheric air pressure in time. The vibration of a physical object with
a frequency between circa 20 Hz to 20 kHz or 16 Hz to 16 kHz (limitation of human
capabilities) causes oscillations of air molecules, resulting in regions of compression
and rarefaction. The oscillation propagation through the transmission environment
is called a sound wave, which can be converted via a microphone into electrical
voltage levels. The function of continuous-time analog signal 𝑓 : R → R assigns
a value 𝑓(𝑡) ∈ R to each point in time 𝑡 ∈ R [32] and is often represented as
a waveform (Figure 1.1). Note that all discrete values are interpolated, resulting in
a smooth and seemingly continuous curve. In this thesis, to follow the vocabulary
of DSP, we use the term “amplitude” only as a maximum value of a harmonic signal
(yielding one value for a given function), which is not the case when displaying
a time-varying waveform. Note that the thesis does not differentiate between round
and square brackets for continuous or discrete signals to follow the standards and
notions of the MIR community.

Fig. 1.1: Waveform visualization (400 samples) of a piano recording.

A signal is the carrier of information and can be transformed into a digital
signal by analog-digital (A/D) conversion with two standard processes—sampling
and quantization. First, a sampling process transforms the analog signal into, e.g.,
an equidistant discrete set of values 𝑥(𝑛) with a sample index 𝑛 ∈ Z with sampling
period 𝑇 ∈ R>0:

𝑥(𝑛) = 𝑓(𝑛 · 𝑇 ). (1.1)

The sampling rate 𝑓s (or 𝑠𝑟 in some literature), which is one of the key parameters
of discrete and digital signals, is defined as 𝑓s = 1/𝑇 . The signal is defined on
a discrete set of points, but the value can be any real number and may be of infinite
length. This sampling procedure can be considered downsampling as we no longer
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have information about values between discrete points in time, inevitably losing
some information. However, the Nyquist–Shannon theorem states that the analog
signal can be perfectly reconstructed from its discrete version if it does not contain
any frequencies above the Nyquist frequency 𝜔 ∈ R>0 defined as 𝜔 = 𝑓s/2. Common
sampling rates for music recordings are 44.1, 48, and 96 kHz. Theoretically, we need
at least 40 kHz to sample the audio material (about twice the highest frequencies
one can hear, although they do not usually convey any useful information, and the
overall ability to hear higher frequencies is also individual and depends, e.g., on
one’s age). In music analysis and for music-related feature extraction, the common
sampling rate is 22.05 kHz or 16 kHz because most of the relevant information is
contained in the lower frequency band. For example, a sampling rate of 8 kHz may
be sufficient for some speech processing and telecommunications applications.

The last step to obtain a digital signal from a time-discrete variant is to discretize
the values of 𝑥(𝑛) in a process called quantization. As a simple example with uniform
quantization, we can map the values 𝑎 of 𝑥(𝑛) to the quantized values 𝑄(𝑎) as follows:

𝑄(𝑎) = sqn(𝑎) · 𝛿 ·
⌊︃

|𝑎|
𝛿

+ 1
2

⌋︃
, (1.2)

where sqn(𝑎) is the signum function that yields the sign of the value 𝑎, 𝛿 is the
quantization stepsize, and 𝛿 ∈ R>0. Furthermore, 𝑎 ∈ R and 𝛿 = 1/2𝑑, where 𝑑

is a bit depth, a property of an A/D converter that describes how many bits are
available to store the values. For example, an 8-bit converter has a resolution of
28 = 256 quantization levels. The common bit depths for digital audio recordings
are 16 and 32 bits. We end up with a digital signal that a computer can process,
analyze, and modify.

1.3.2 Fourier Transform

The Fourier transform (FT) was named after the French mathematician Jean-
Baptiste Joseph Fourier (1768–1830) [33], and it is one of the most used algorithms
in the world. The name Fourier transform occurred for the first time in an article
by Edward Charles Titchmarsh [34] in 1923, although it was used earlier in 1915 in
an article by Michel Plancherel [35] but not in the same sense as we use it today. It
was first described probably by Carl Friedrich Gauss (1777–1855) and discovered/re-
discovered independently by many people. Johann Peter Gustav Lejeune-Dirichlet
(1805–1854) published a famous article showing for which conditions the convergence
of the Fourier series (Fourier series deals only with periodic signals) holds [36]. There
are more definitions of Fourier transform but in this thesis, we use the complex def-
inition for its elegant explanation of magnitude and phase components.
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The main concept of FT is a harmonic analysis—decomposition of a signal into
its frequency components (spectrum). In our analysis scenarios, we use a discrete
variant of the Fourier transform called Discrete Fourier Transform (DFT). We can
define the complex DFT 𝑋(𝑘) of a signal 𝑥(𝑛) as:

𝑋(𝑘) =
𝑁−1∑︁
𝑛=0

𝑥(𝑛)e− 2πj𝑘𝑛
𝑁 , (1.3)

where 𝑘 ∈ [0 : 𝑁 − 1] is a frequency index and 𝑁 ∈ N. We can also define the
inverse DFT to obtain the original signal 𝑥(𝑛) from its transformation 𝑋(𝑘):

𝑥(𝑛) = 1
𝑁

𝑁−1∑︁
𝑘=0

𝑋(𝑘)e
2πj𝑘𝑛

𝑁 , (1.4)

with the same range of 𝑘. Note that the sign in the exponent has to be inverse to
the forward DFT, and the resulting spectrum 𝑋(𝑘) is non-periodic (as if it was only
one period of a periodic DFT) and symmetric. The Fourier coefficients 𝑋(𝑘) are
complex values that yield magnitude and phase information of physical frequencies
𝑘 · 𝑓s/𝑁 , but one usually considers the frequency range between 0 and 𝑓s/2 Hz.
Computing DFT is computationally expensive, and the complexity is 𝒪(𝑁2) com-
pared to the elegant and efficient Fast Fourier Transform (FFT) algorithm from
1965 by Coolie and Tukey [37] with 𝒪(𝑁 log2 𝑁) complexity that is used in most of
the applications. In such a case, the length of the sequence 𝑁 has to be a power of
2. It was first published as a method of effectively computing Fourier series coeffi-
cients and later used for the fast DFT. Figure 1.2 shows a single side spectrum of
a short audio excerpt. Negative frequencies are omitted as they carry no additional
information for real signals. We can observe dominant peaks in the spectrum, dis-
tinguishing frequencies that correspond to tones or their overtones. However, we
have no information about the timing of the onset or offset of individual tones. We
need a transformation that captures the timing of musical events while providing
sufficient frequency resolution.

Fig. 1.2: A single side spectrum of a short audio excerpt with several tones and their
overtones.
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1.3.3 Short-Time Fourier Transform

Fourier transform describes frequencies within a given audio signal. However, we
have no information about when these frequencies occur. For instance, two notes
played in succession or the same notes played simultaneously would have a very
similar spectrum using DFT. The only parameter is the length of the signal in
samples. However, we can use only one segment defined by its length in samples,
compute the Fourier transform, and then proceed to the next segment and repeat.
To retrieve time and frequency information from the signal, we divide it into frames
of length 𝑁 ∈ N using a window function 𝑤 ∈ [0 : 𝑁 − 1] and calculate DFT
on each frame, resulting in discrete Short-Time Fourier Transform (STFT). The
discrete time-frequency representation 𝑋(𝑚, 𝑘) can be defined as:

𝑋(𝑚, 𝑘) =
𝑁−1∑︁
𝑛=0

𝑥(𝑛 + 𝑚𝐻)𝑤(𝑛)e
−2πj𝑘𝑛

𝑁 , (1.5)

where 𝑚 ∈ Z is the frame index, 𝑘 ∈ [0 : 𝑁/2] is the frequency index, and
𝑛 ∈ [0 : 𝑁 − 1]. 𝐻 ∈ N represents the hop size, hop factor, or window over-
lap. It defines the number of samples between consecutive frames. Here, we shift
the signal in time by the hop factor, but in other definitions, the window is shifted
instead (for instance, in [23]). There are more definitions that should be equiva-
lent but vary in the practical implementation. Instead of frequency indexes 𝑋(𝑘)
as in DFT, we end up with a matrix 𝑋(𝑚, 𝑘), where all 𝑚 time positions contain
⌊𝑁/2⌋ frequency indexes. The time coefficients 𝑇 (𝑚) represent the physical time in
seconds, and frequency coefficients 𝐹 (𝑘) represent the physical frequency in Hertz:

𝑇 (𝑚) = 𝑚 · 𝐻

𝑓s
, (1.6)

𝐹 (𝑘) = 𝑘 · 𝑓s

𝑁
. (1.7)

We can use many different window functions (rectangle, triangle, Hamming, Hann,
Bartlett, etc.), each with different frequency properties (abrupt changes lead to
specific artifacts that propagate in the spectrum) that slightly change the spectral
estimate of the STFT. We can consider the window as a Finite Impulse Response
(FIR) filter with the corresponding frequency response. The most common window
for music processing applications is Hann window 𝑤(𝑥) defined as [22]:

𝑤(𝑥) = 1 + cos(π𝑥)
2 if − 0.5 ≤ 𝑥 ≤ 0.5, else 0. (1.8)

It has a smoother shape and no discontinuities compared to, e.g., rectangular win-
dow, leading to attenuation of ripple artifacts. However, it also blurs or smears
the frequencies in the windowed signal. Note that the window length denotes the
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time and frequency resolution of STFT. Frequency resolution increases with a longer
window while time resolution decreases and vice versa. The notion is called the un-
certainty principle of signal analysis, based on Heisenberg’s uncertainty principle,
and is referred to as a time-frequency trade-off. The length always depends on the
application. Denis Gabor combined the Fourier transform with the Gaussian win-
dow function and computed the first STFT in 1946 [38]. The Gabor transformation
is a special case of Short-Time Fourier Transform with a Gaussian window and laid
the foundation for another time-frequency representation that addresses the problem
of a static window length through the analysis—wavelet transform. The spectrum
of the SFTF is usually described by complex numbers, including magnitude and
phase information. The magnitude information corresponds to the absolute value
of 𝑋(𝑚, 𝑘) and the phase information from the argument of j𝑋(𝑚, 𝑘) as follows:

𝑋(𝑚, 𝑘) = |𝑋(𝑚, 𝑘)|ej𝑋(𝑚,𝑘). (1.9)

The visual representation of |𝑋(𝑚, 𝑘)| is called a magnitude spectrogram. Most
music-related information is usually contained in the lower bands of the spectrum,
so in many applications, a logarithmic compression is applied. Furthermore, the
human perception of intensity and frequency is almost logarithmic. It makes sense
to use the log-frequency spectrogram if the goals of our application support that. In
most experiments in this thesis, we use only logarithmic magnitude spectrograms,
discarding the phase information.

1.3.4 Chroma features

We need a different time-frequency representation to analyze the harmony and
melodic parts of music representations. We leverage the fact that two pitches are
perceived as similar in their color (containing similar higher frequencies or over-
tones) when they differ in an integer multiple of their frequencies. For instance,
a pitch of 440 Hz (A4) is perceived as similar to 880 Hz (A5), which is one octave
higher, doubling the frequency. We can separate the pitch into two components:
tone height and chroma. Tone height represents the octave number (such as 4 in
A4) and chroma describes the tone class as in international Western music notation
based on equal temperament, leaving out enharmonic equivalents and creating a vec-
tor of 12 values [C, C\, D, D\, E, F, F\, G, G\, A, A\, B]. The main idea of chroma
features is to combine all spectral information related to a given tone or pitch class
into a single chroma coefficient [22]. It is possible to derive chroma features from
a pitch-based log-frequency spectrogram, which has specifically crafted bandwidths
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BW(𝑝) for standard MIDI pitches 𝑝 ∈ [0 : 127]:

BW(𝑝) = 𝐹pitch(𝑝 + 0.5) − 𝐹pitch(𝑝 − 0.5), (1.10)

where 𝐹pitch(𝑝) corresponds to the center frequency of a pitch 𝑝:

𝐹pitch(𝑝) = 2
𝑝−69

12 · 440. (1.11)

The chroma features 𝐶(𝑚, 𝑐) can be defined as:

𝐶(𝑚, 𝑐) =
∑︁

𝑝 mod 12 = 𝑐

𝑋LF(𝑚, 𝑘), (1.12)

where 𝑋LF stands for the log-frequency spectrogram. There are, however, many
ways how to compute the chroma representation, including filter banks, Constant-Q
Transform (CQT), or a deep neural network-based approach called DeepChroma [39].
The CQT approach usually gives better resolution in lower frequency bands than
STFT but is more computationally expensive. DeepChroma is trained on a spe-
cific set of recordings and musical genres. For most experiments in this thesis, we
used the Chroma Energy Normalized Statistics (CENS) feature, a normalized and
smoothed variant of STFT chroma features [40]. To understand the similarity of
chroma features and a MIDI transcription (visualized as a piano roll) from a real au-
dio recording, we show the comparison in Figure 1.3. Furthermore, Figure 1.4 shows
the comparison of three chroma representations of a piano recording (20 s excerpt):
STFT chroma, CENS, and DeepChroma. We can observe the downsampling and
smoothing of the features in the CENS and DeepChroma approaches. This usually
leads to better synchronization robustness while providing sufficient temporal reso-
lution. The darker the area, the more that tone or its corresponding frequencies are
present in the signal.

Fig. 1.3: The CQT chroma features and a piano roll visualization of a piano record-
ing. From top to bottom: CQT chroma and corresponding piano roll.
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Fig. 1.4: Three chroma time-frequency representations of a piano recording excerpt.
From top to bottom: STFT chroma, CENS, and DeepChroma.

1.4 Synchronization
As mentioned before, we can represent digital audio material as a waveform, spec-
trum based on DFT, or a time-frequency representation such as spectrograms based
on STFT, CQT, wavelets, or chroma vectors. However, music is multimodal, mean-
ing we have many ways to represent the musical information—either a symbolic
score or an actual physical rendering. For example, we can represent a piece of
sheet music or a score as an image (a single matrix consisting of rows and columns,
values 0–255 represent the greyscale color of pixels) or transform the audio recording
to a magnitude spectrogram and again to the image. Furthermore, we can modify
the note timings of a piece’s score to correspond to the recorded performance and
render it as a symbolic MIDI file.

In the experiments reported in this thesis, we often use datasets containing mul-
tiple performances (interpretations) of the same musical piece. We usually assume
that the performers play the piece using the same score material. The harmonic and
melodic structure should be the same for all performances. Ideally, performances
should vary only in performance parameters such as local and global tempo (posi-
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tion of tones, beats, and measures in time), interpretation style (expressivity, legato,
staccato, vibrato, tremolo, etc.), dynamics, and timbre. However, the underlying
harmonic and melodic progressions and changes should not differ. Even though this
assumption may often be wrong, as performers can make mistakes (often during live
versions), use different scores, or play/skip repetitions, we can leverage the music
synchronization technique to determine the corresponding time positions of two mu-
sic representations. Figure 1.5 shows the synchronization idea using sheet music,
chroma vectors, and corresponding audio recording. If we compute chroma features
from the digital audio, we can compare them with the binary chroma of sheet mu-
sic to obtain corresponding time positions of both representations (score-to-audio
synchronization).

Fig. 1.5: The example of the synchronization idea with corresponding time stamps
(red arrows): sheet music, MIDI piano roll, and waveform representations of the
same audio excerpt.

1.4.1 Dynamic Time Warping

The main idea of music synchronization is to find time positions in one representation
(reference) and the corresponding time positions in the second representation (tar-
get). First, one has to compute suitable features for each music representation, such
as chroma features, and then deploy a synchronization technique. The most common
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synchronization method in MIR is called Dynamic Time Warping (DTW). We can
use chroma vectors from the reference recording and synchronize them with chroma
vectors from the target audio recording (audio-to-audio synchronization) [41, 42].
Similarly, the reference could be MIDI (symbolic score-to-audio) [43] or sheet music
(sheet music-to-audio) [44].

The DTW compares two sequences 𝑋 = (𝑥1, . . . , 𝑥𝑁) and 𝑌 = (𝑦1, . . . , 𝑦𝑀) with
𝑁 ∈ N and 𝑀 ∈ N. In our scenario, 𝑋 and 𝑌 feature sequences correspond to
the chroma vectors of reference and target recordings, respectively. Both sequences
usually vary in length 𝑁 and 𝑀 (tempo), but their chroma vectors should be similar.
First, we assume that 𝑥𝑛, 𝑦𝑚 ∈ ℱ for 𝑛 ∈ [1 : 𝑁 ] and 𝑚 ∈ [1 : 𝑀 ], where
ℱ is a feature space. Then we define compute local cost measure function 𝑐 as
𝑐 : ℱ × ℱ → R.

If 𝑐(𝑥, 𝑦) is small (small cost), both input features are similar; otherwise, they
are different. Computing local cost measure on all pairs of 𝑋 and 𝑌 , we obtain cost
matrix C ∈ R𝑁×𝑀 :

C(𝑛, 𝑚) = 𝑐(𝑥𝑛, 𝑚𝑦), (1.13)

where 𝑛 ∈ [1 : 𝑁 ] and 𝑚 ∈ [1 : 𝑀 ]. Then, we compute distance using cosine
distance for nonzero values of 𝑥 and 𝑦:

𝑐(𝑥, 𝑦) = 1 − ⟨𝑥|𝑦⟩
||𝑥|| · ||𝑦||

. (1.14)

If 𝑥 or 𝑦 is zero, 𝑐(𝑥, 𝑦) = 0. If 𝑥 and 𝑦 are orthogonal, 𝑐(𝑥, 𝑦) = 1. The cosine
distance does not depend on the length of input sequences—only the energy distri-
bution across all twelve chroma pitch classes is considered, potentially leaving out
the dynamics or timbre elements of input recordings. Next, we need to obtain an
optimal alignment path called the warping path. In a standard DTW, the warping
path 𝑃 = (𝑝1, . . . , 𝑝𝑇 ) follows three conditions: boundary conditions (the path starts
at the (1, 1) position and ends in (𝑁, 𝑀) position; monotonicity condition (the 𝑛

and 𝑚 are always the same or increasing, never decreasing), and step size (no 𝑥 or
𝑦 can be omitted and there are no duplicates in the alignment path). Next, we can
define path cost 𝑐𝑃 (𝑋, 𝑌 ) of a warping path 𝑃 :

𝑐𝑃 (𝑋, 𝑌 ) =
𝑇∑︁

𝑡=1
C(𝑛𝑡, 𝑚𝑡). (1.15)

The goal is to minimize the cost DTW(𝑋, 𝑌 ) of the optimal warping path 𝑃𝑜:

DTW(𝑋, 𝑌 ) = min (𝑐𝑃𝑜(𝑋, 𝑌 )) , (1.16)
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which is usually done using dynamic programming. The idea is to segment a given
problem into smaller subproblems and, by solving and concatenating small sub-
problems, solve the original problem. In the DTW case, we can derive a global
warping path by solving smaller subsegments of feature sequences 𝑋 and 𝑌 . First,
the accumulated cost matrix D is computed [45]:

D(𝑛, 𝑚) = C(𝑛, 𝑚) + min D(𝑛 − 𝑖, 𝑚 − 𝑗) (1.17)

with D(𝑛, 1) = ∑︀𝑛
𝑘=1 C(𝑘, 1) for 𝑛 ∈ [1 : 𝑁 ] and D(1, 𝑚) = ∑︀𝑚

𝑘=1 C(1, 𝑘) for
𝑚 ∈ [1 : 𝑀 ] using backtracking. The complexity of the algorithm is 𝒪(𝑁𝑀). We
refer to [22, 46] or a recent Ph.D. thesis [47] for an extensive description of the DTW
algorithm. Figure 1.6 shows the example of standard DTW synchronization on two
sets of chroma vectors. There are, however, other approaches to compute the time
alignment, such as Hidden Markov Models (HMMs) and particle filters [43, 44].

Fig. 1.6: The example of synchronization of two audio recordings using chroma
vectors and DTW.

The DTW can be further modified to decrease the computational cost or mem-
ory consumption. For example, one can change the step size conditions, adjust local
weights, and deploy global constraints or multiscale methods. One way to decrease
the memory requirements of DTW is to use the Sakoe-Chiba band or Itakura paral-
lelogram, the constant global constraint regions that were introduced in [48] and [49],
respectively. Their comparison is given, e.g., in [50]. Instead of constant constraints,
one can use adaptive global constraints such as multiscale DTW (MsDTW) [41] and
a variant called FastDTW [51]. Multiscale means that the potentially non-optimal
alignment is computed first on the coarse resolution, projected onto a finer feature

34



resolution level and refined using a tubular constraint region [45]. The alignment
computation can be divided into two problems: online and offline alignments. In
the online variant, we do not know the data in advance, and the alignment is usually
computed by greedy forward path estimation [42] or by block-by-block processing
methods [52]. Offline approaches can use backtracking as all data is known prior.
In recent years, Cuturi et al. introduced the SoftDTW [53], which makes the DTW
method differentiable. It was further used in [54] to stabilize pitch class estima-
tion training with weakly aligned targets. Furthermore, Bükey et al. presented
FlexDTW [55] with flexible boundary conditions to the alignment, dealing with
some limitations of standard DTW approaches, where the warping path starts and
ends in diagonal points of the similarity matrix.

In our experiments, we used memory-restricted multiscale dynamic time warp-
ing (MrMsDTW) [45] for its efficiency and availability via synctoolbox [56]. This
method builds the global warping path by concatenating smaller local alignments,
thus restricting memory usage. It utilizes local rectangular constraint regions in the
refinement step with a defined size using anchor points, which makes the required
memory dependent only on a restriction parameter 𝜏 . The memory requirement is
constant instead of linear in MsDTW or quadratic in the case of standard DTW.
The example of MrMsDTW from synctoolbox [56] applied to two interpretations of
the same piano piece is shown in Figure 1.7. Note that the cost matrix values differ
substantially from a standard DTW, in comparison with the colorbar of Figure 1.6,
due to the path’s boundary conditions that reduce the area of computation and the
overall length of the example (30 s in both cases).

I attended an internship in Audio Labs, Erlangen, Germany, under the super-
vision of Prof. Meinard Müller, resulting in the collaboration and the paper at the
ISMIR conference called “Using activation functions for improving measure-level au-
dio synchronization” [14]. The International Audio Laboratories Erlangen is a joint
institution of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and
Fraunhofer Institut für Integrierte Schaltungen IIS. We combined multiple activa-
tion functions from neural networks (beat detector, downbeat detector, and several
onset detectors) with chroma features and evaluated them based on measure transfer
accuracy. We utilized combined cost matrix CCH+ACT consisting of weighted chroma
cost matrix CCH with cosine distance and the beat, downbeat, and onset cost matrix
CACT with Euclidean distance as follows:

CCH+ACT = 𝛼CCH + (1 − 𝛼)CACT, (1.18)

where 𝛼 ∈ [0, 1] is a weighting parameter. The sum CCH+ACT accounts for both
harmonic or melodic information of the CCHROMA and additional temporal cues via
CACT. We evaluated the synchronization accuracy of multiple neural networks and
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Fig. 1.7: The example of synchronization of two audio recordings using chroma
vectors and MrMsDTW. The temporal resolution of chroma features is 50 fps.

MrMsDTW using several window settings (see Figure 1.8). The accuracy denotes
the proportion of correctly transferred measure positions having an error below
a given tolerance 𝜏 . Furthermore, in Chapters 9 and D (based on articles [6], [7] and
the MemoVision software), we used a combined synchronization approach using our
beat tracking model trained specifically for the synchronization pipeline.

Fig. 1.8: Comparison of the average accuracy values for different synchronization
approaches and different threshold parameters 𝜏 . The figure is taken from [14].
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Part I: MPA-based Evaluation of
Low-level and Mid-level Detectors
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2 Audio Degradation for Onset Detection
This chapter is based on the journal article “The Effect of Audio Degradation on
Onset Detection” [1] and introduces experiments with the degradation of input audio
for the onset detection task in MIR.

Although many articles in the field of Music Information Retrieval have been
introduced to improve onset detection systems, only the bare minimum focus on the
degradation of input audio to increase detection accuracy. This article evaluates the
accuracy of five onset detectors, including state-of-the-art machine and non-machine
learning-based systems, and compares the influence of various types of audio signal
degradation on musical onset detection. We used three different degradations based
on impulse responses, a Teager–Kaiser energy operator, and two MP3 compression
settings. The results suggest that if MP3 compression of any settings is applied, the
accuracy of detection systems is very similar. Using the energy operator as degrada-
tion has not improved overall detection but may offer the potential of pre-processing
the neural network input signal for easier identification of onsets in a training phase.
Furthermore, radio broadcast degradation increases the number of all predicted on-
sets in general, both true and false positives, resulting in better recall but worse
precision. This information could be used to modify the pre-processing phase of
neural network-based detectors and to optimize the sensitivity trade-off.

2.1 Introduction
In the Music Information Retrieval (MIR), onsets are common low-level parameters.
An onset is the beginning of any musical tone—it refers to the starting time point
of the produced sound or note. An onset detection function (ODF) is the output of
onset detectors and represents the probability of onset occurrence in a given time.
Its peaks (local maxima) should correspond to the onset time positions and, thus,
ideally, all tones in an audio recording. An onset detection system is usually divided
into a few parts: pre-processing of the input signal, ODF, and peak-picking—finding
onset positions from the onset curve [57]. Concerning the non-machine learning
systems, there have been many works on developing and optimizing better ODFs [58,
59, 60], but very few on reducing the raw audio information. The exception is The
Audio Degradation Toolbox [61], where the authors used audio degradations for
different MIR tasks, such as beat tracking or score-to-audio alignment. Another
musical data augmentation and degradation tool is the MUDA package [62]. Both
studies present options for degradation to reduce or change information in an audio
file to improve a particular MIR task. Other articles [63, 64] focus on audio or
music identification. Furthermore, different degradations were used to study the
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robustness of cover song recognition [65]. Generally, a common approach is using
the 16-bit (PCM) audio files in a .wav format with a 44.1 kHz or 22.05 kHz sample
rate. However, this does not mean that audio degradation cannot positively affect
the onset detection or the final accuracy.

Methods of audio onset detection are used in beat tracking, rhythm, and metric
detection, Automatic Music Transcription (AMT), and many other high-level feature
extraction tasks. As a basic low-level feature, onsets are the key parameter for
performance analysis in musicology research. Therefore, achieving high accuracy
and consistency in these systems is important. Common detectors are based on
spectral, phase, or complex domain and supervised machine learning algorithms such
as artificial neural networks. There are other options (such as pitch detection [66]
or non-negative matrix factorization [67]), but they are not widely used for this
task. To this date, the state-of-the-art detectors are using Convolutional Neural
Networks (CNN) [68, 69, 70] or Long Short-Term Memory (LSTM) networks [71,
72], but some robust spectral methods such as SuperFlux [73] are still providing
quite comparable results in the onset detection task (e.g., onset detection in Music
Information Retrieval Evaluation eXchange (MIREX) 2018 evaluation [74]). In this
study, we test six different degradations (and the original dataset with .wav files) and
five different well-known offline detectors on the large onsets_ISMIR_2012 dataset,
introduced in [75], with a total of 321 recordings.

There is a distinction between audio degradation and pre-processing of an in-
put signal in the detection systems. Audio degradation is a process of specific
manipulation of input audio. Then, the system reacts to it (different spectral el-
ements, activation function, final detection accuracy, etc.). On the other hand,
pre-processing is one of the first parts of detection systems, e.g., separation to mul-
tiple frequency bands to modify the time-frequency representation [57], reducing
information, dimension, or methods like filtering, adaptive whitening [75, 76], and
noise suppression [77]. The degradation becomes the pre-processing step when it
is implemented into the system. However, degradation is generally considered to
be signal deterioration with negative effects on the detector’s accuracy. This study
suggests that it may not be the case for all music categories and onset detectors.

In this article, we test and evaluate different types of degradation of an input
audio signal to achieve better onset detection results of both state-of-the-art machine
and non-machine learning detectors. We test impulse response degradations and
lossy compressions and propose the Teager–Kaiser Energy Operator (TKEO) as one
of the degradations that, to our knowledge, has not been used for this MIR task
yet. The rest of the article is organized as follows: Section 2.2 describes a method of
onset annotation, audio degradations, and onset detectors. Section 2.3 introduces
the dataset, segmentation of categories, and evaluation technique. The results are

40



presented in Section 2.4. Section 2.5 discusses the analysis and evaluation results.
Finally, the conclusion and plans for future work are given in Section 2.6.

2.2 Methods
First, we introduce the onset annotation problem and all the degradation methods
we use. Then, a brief description of selected detection systems, chosen datasets, and
evaluation techniques are given. Python 3.7.6 was used for all tests and types of
degradations except the Audio Degradation Toolbox (MATLAB 2015a).

2.2.1 Onset Annotation

Onset is usually defined as the starting point when a note is being played or a tone
is created. However, perceptual onset (when a listener hears the onset) can differ
from the very beginning of a physical tone. Problems tend to occur in polyphonic
structures due to difficult estimation of the correct onset positions caused by inac-
curacies. The definition we use may differ from human perception, yet this method
of labeling onsets is the most commonly used. Hence, there is no “clear” method of
dealing with annotations, although recommendations do exist [78]. In this article,
we use a dataset with merged onsets as in [69] to compensate for this phenomenon.

2.2.2 Impulse Response Degradation

For the impulse response degradation, Audio Degradation Toolbox (ADT) [61] was
used. This MATLAB toolbox consists of a code for creating and handling the degra-
dation of audio signals, including ground-truth annotation of the degraded audio.
There are plenty of available degradations—we used radioBroadcast, smartPhone-
Playback, and smartPhoneRecording options to simulate real-world scenarios [61]:

• Radio Broadcast: two degradation units:
– dynamic range compression at a medium level to emulate the high loud-

ness characteristic of many radio stations,
– speed-up by 2% to shorten the music and create more advertisement time.

• Smartphone Playback: two degradation units simulating a user playing
back audio on a phone:

– impulse response of a smartphone speaker (Google Nexus One); highpass
characteristic and a cutoff at 500 Hz,

– additional light pink noise.

41



• Smartphone Recording: four degradation units, simulating a user holding
a smartphone in front of a speaker:

– impulse response of a smartphone microphone (Google Nexus One),
– dynamic range compression to simulate the smartphone’s auto-gain,
– clipping, 3% of all given samples,
– additional medium pink noise.

For a more detailed description, see [61]. Reference onsets were shifted according
to the methods used. These degradations and MP3 compression could also show
how well the proposed detection systems can deal with the different real-world input
audio conditions.

2.2.3 MP3

MP3 (from MPEG, Audio Layer III) is a coding format for digital audio. It uses
psychoacoustic principles to remove redundant data—mp3 files take up just 10%
of the storage space of the uncompressed lossless original file, depending on the
settings [79]. The input audio signal is mapped into 32 subbands with the same
bandwidth through a polyphase filterbank (simulation of critical bands in the human
auditory system). Then, Modified Discrete Cosine Transform (MDCT) is used on
each subband using the long and short windows for different frequency and time
resolutions. Other algorithms and principles are applied to decrease the size of a file
(e.g., Huffman coding). The MP3 format utilizes lossy compression, and depending
on the settings used, it can create noise and specific degradation in the recording.
For our evaluation, we tested the constant bit rate (CBR) settings of 64 kbps and
320 kbps using FFmpeg (libavcodec1), which simulates the audio quality of common
online streaming portals and internet content. All files were then converted back to
.wav format (while keeping the audio degradation).

2.2.4 Teager–Kaiser Energy Operator

The TKEO as the degradation unit is inspired by our previous work [2], where we
studied the effect of TKEO on a conventional non-machine learning beat tracking
method. In that method, the final beat positions depend on the occurrence of
onsets—their reduction and the emphasis on onsets that achieve higher energy might
be beneficial for the beat detector.

The TKEO is a non-linear time-invariant operator that includes both amplitude
and frequency of an input signal [80]. Furthermore, TKEO for the lower frequency

1https://ffmpeg.org/libavcodec.html
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has a smaller value than for the higher with the same amplitude [81]. In the discrete
version, the TKEO Ψ(𝑥[𝑛]) of a discrete-time signal 𝑥(𝑛) is defined as:

Ψ(𝑥(𝑛)) = 𝑥2(𝑛) − 𝑥(𝑛 − 1) · 𝑥(𝑛 + 1). (2.1)

Figure 2.1a shows the magnitude and phase spectrum of a tone composed of four
pure frequencies (cosine waves) that start at 440 Hz, and each additional one is the
next overtone. The amplitude of each frequency is 1. Then, TKEO was applied to
the same four frequencies. The result is shown in Figure 2.1b:
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(a) Original synthetic tone consisting of four frequencies.
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(b) The synthetic tone after TKEO degradation.

Fig. 2.1: A tone made of 440, 880, 1320, and 1760 Hz. Each frequency has an
amplitude of 1. a) Before and b) after applying TKEO degradation.

We can see seven harmonics and a DC component after the modulation. A similar
change is observed when applying TKEO on the actual music track. New overtones
are created, and the energy of spectra is shifted towards higher frequencies, as shown
in Figures 2.2a and 2.2b. These figures represent the difference between a spectro-
gram and the ODF of an original .wav file using librosa package and the same excerpt
degraded by TKEO. Note that we also used normalization to compensate for low
signal values when TKEO was applied.
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(a) Original audio file: log-spectrogram,
ODF, and detected onsets.
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(b) Original file after TKEO degradation:
log-spectrogram, ODF, and detected onsets.

Fig. 2.2: Log-spectrogram and the ODF with estimated onsets of an audio excerpt
(solo trumpet). a) Before and b) after TKEO degradation.

The TKEO separated onsets, and the ODF is cleaner. Onsets gain clarity, and
they are more easily distinguishable. Although this seems to be a big improvement
in the detection function, it is not true for many other audio excerpts. The TKEO
tracks the energy evolution, but when a peak of energy does not correspond to
the onset time position, problems can arise (see Figure 2.3). A standard 50 ms
evaluation window should cover the delay (see Section 2.3.2). The ADT calculates
new onset times (from the reference onsets) for each degradation to fit the degraded
audio excerpt.

The original audio signal in the time domain and the same excerpt using TKEO
are shown in Figure 2.3. The green line indicates the onset position. We can
see that TKEO suppressed the low-energy end of the previous tone (before the
new onset occurs) and changed the structure of the audio signal. Furthermore,
Figure 2.4 shows the difference in spectral components between all selected types of
degradation (excluding the MP3 320 kbps version and the original wav file, which
are very similar to the MP3 64 kbps).
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Fig. 2.3: An audio segment with an annotated ground-truth onset: before and after
TKEO degradation. The green vertical line shows the onset time position.

Fig. 2.4: Spectrograms of an audio excerpt, different degradations – radioBroadcast,
smartPhonePlayback, smartPhoneRecording, TKEO, and MP3 (64 kbps).
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2.2.5 Detectors

We selected five detectors for the evaluation. All systems use 44.1 kHz sample
rate audio signal as their input. They are available via librosa2 and madmom3

modules [82]. We chose the state-of-the-art [74] machine and non-machine learning
detectors:

• Lib – Librosa,
• SF – SuperFlux,
• CF – ComplexFlux,
• CNN – Convolutional Neural Network,
• RNN – Recurrent Neural Network.

Lib: This system utilizes spectral flux computation (detection of positive changes
in the overall energy of a spectrum over time). We used parameters inspired by [73].
Instead of 22.05 kHz (librosa default), we use the 44.1 kHz sampling rate. Next,
we chose the length of FFT = 2048, hop size 512 samples, and conversion to Mel
spectrogram with 138 bands and frequency range of 27.5 Hz to 16 kHz.

SF: SuperFlux is a special extension of the standard spectral flux algorithm. The
detector uses logarithmic frequency scale representation with quarter-tone spacing
(again 138 bands), a frame rate of 200 fps for better temporal resolution, and con-
trary to the spectral flux, it includes a special-trajectory tracking stage for vibrato
suppression [73, 83].

CF: This detector uses the core of the SF system [73] but introduces Local Group
Delay (LGD) based difference weighting. The LGD gives information as to where
the “gravitational” center of the magnitude in a spectrum is located. Combining the
magnitude and phase information (complex domain) helps to avoid problems with
loudness variations of steady tones, thus increasing the potential detection accuracy
when tremolo is present [83].

CNN: This system is based on a CNN. First, the input audio stream is converted
into 3 magnitude spectrograms with a hop size of 10 ms and windows of 23, 46, and
93 ms. Then, a logarithmic Mel filtering (80 bands, frequency range: 27.5 Hz to
16 kHz) is used and each frequency band is normalized to zero mean and unit
variance. From the 3-channel spectrogram (15 frames by 80 bands), a convolution
layer with filters of 7 frames by 3 bands (tanh unit) computes 10 feature maps.
The next layer performs max-pooling, reducing the maps to 26 bands, and another
convolutional layer of 3×3 filters (tanh unit) is used, followed by a max-pooling

2librosa python module, version 0.8.0 – DOI: 10.5281/zenodo.3955228, https://github.com
/librosa/librosa/tree/0.8.0

3madmom python module, version 0.17.dev0, https://madmom.readthedocs.io/en/latest/
modules/features/onsets.html
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layer and a fully-connected layer (logistic sigmoid) of 256 units. The single output
neuron also uses logistic sigmoid and predicts onsets [68, 69].

RNN: This system utilizes a bidirectional LSTM network (BLSTM) to incor-
porate a broader time context. However, it is referred to simply as RNN in the
madmom documentation, so we keep the abbreviation. The input audio stream is
transformed to the time-frequency domain via two parallel STFTs with different
window sizes (1024 and 2048 samples). Then, conversion to the Mel spectrogram
with 40 triangular filters is done, and spectral flux is calculated. The neural network
has 3 hidden layers with 20 LSTM cells for each direction [72]. Contrary to the cited
source, madmom implementation uses simple tanh units in the output neuron3.

Finally, Table 2.1 shows the F-score for the first five state-of-the-art onset de-
tectors in MIREX evaluation [70]. Note that the table keeps the acronyms that
MIREX originally used. Our chosen detectors are partially from this list but may
differ slightly in implementation (included in Section 2.2.5 and their documentation).

Tab. 2.1: Results for the first five state-of-the-art detectors evaluated by MIREX
competition on a MIREX05 dataset. Bold numbers indicate the highest value for
a given metric.

avg. F-score avg. Precision avg. Recall

SB4 0.873 0.861 0.898
AR3 0.860 0.889 0.846
AR4 0.857 0.881 0.849
SB5 0.853 0.834 0.893
SB7 0.840 0.854 0.857

SB4 [68], AR3 [70], AR4 [70], SB5 [72], SB7 [75]

2.3 Dataset and Evaluation

2.3.1 Onsets_ISMIR_2012 Dataset

We used the onsets_ISMIR_2012 dataset, also referred to as the Böck dataset4 and
introduced in [69], to evaluate the audio degradation effect. The dataset contains
321 audio excerpts taken from [57, 72, 84] and further enhanced by [69]. All onsets
within 30 ms were combined, resulting in 25 966 onsets in total, as stated by the

4https://gitlab.cp.jku.at/sebastian/onsets/-/tree/master
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authors. Contrary to the original article, some onsets were corrected by the authors.
All files were manually divided into six main categories:

• bowed string (BS) – bowed string instruments (e.g., violin, viola, kemenche),
• complex mixtures (CM) – group of instruments together, complex mixtures

and musical genres (e.g., classical, rock, pop, jazz),
• non-pitched percussive (NPP) – percussion without a pitch (e.g., snare and

bass drum, cymbals),
• pitched percussive (PP) – instruments that create a sound of a specific pitch

using a percussion mechanism (e.g., guitar, tanbur, piano),
• vocal – vocal music,
• wind instruments (WI) – brass and woodwind instruments (e.g., clarinet, sax,

trumpet).

Table 2.2 shows the number of files for each category. It presents segmenta-
tion by the authors of the dataset and our segmentation. It differs slightly, e.g.,
we considered choir song (ff123_duel.wav) as a vocal (non-monophonic) category.
We also classified the song in which the violas and cellos play as bowed string, al-
though it was originally in the complex mixtures category because it is not a mono-
phonic song (SoundCheck2_80_Instrumental_Cellos_and_violas.wav). We under-
stand that this segmentation might be questionable because it does not follow strict
rules but rather builds on the type of sound (sound texture). However, a few record-
ings (apart from the very poorly represented vocal category) should not significantly
affect the final evaluation.

Tab. 2.2: The number of audio excerpts for the original and proposed segmentation
of the onsets_ISMIR_2012 dataset.

category orig. seg. our seg.
bowed strings 23 25
complex mixtures 193 185
non-pitched percussive 17 18
pitched percussive 60 64
vocal 3 4
wind instruments 25 25
Σ 321 321

The dataset was selected considering the number of tracks, open-source policy,
and availability of the reference annotation. At the same time, it contains various
musical instruments, textures, and different audio quality; it is not specialized in
only one type of music or instrument.
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2.3.2 Evaluation

First, we evaluated all systems (CF, Lib, CNN, RNN, and SF) on the dataset without
any degradation or segmentation. Next, we used degradation methods, thus creating
six separate datasets plus the original one (wav files): rBcast (radioBroadcast),
SPPb (smartphonePlayback), SPRec (smartphoneRecording), 64kb (64 kbps MP3),
320kb (320 kbps MP3), and TKEO (with normalization). In total, there are 2 247
separate files. We labeled all categories in the dataset (Table 2.2) and tested each
one separately. Using this method, we can evaluate the effect of each degradation
on each system and category. We try to follow the recommendations of open-source
practices [85]. The detailed results, including outputs of each system and ground-
truth annotation for each degradation, are available on the GitHub repository [17].

When evaluating onset detection accuracy, it is first determined which estimated
onsets are correct. The correctness of the estimated onset is defined as being within
a small window of a reference onset [78]. The evaluation window indicates the
length by which the detected onset is sought out according to the ground-truth
onset position. The default parameter for the evaluation window is 50 ms [75].
Each estimated onset is first evaluated:

• TP – True Positives: correctly predicted positive values,
• TN – True Negatives: correctly predicted negative values,
• FP – False Positives: incorrectly predicted positive values,
• FN – False Negatives: incorrectly predicted negative values.

To find out, which degradation statistically provided the best results, we calculated
precision, recall, and F-score (F-measure) as follows:

precision = TP
TP + FP , (2.2)

recall = TP
TP + FN , (2.3)

F-score = 2 · recall · precision
recall + precision . (2.4)

Precision is defined as the number of all correctly predicted onsets divided by
all retrieved onsets. Higher precision means more TPs. Recall is the number of
all correctly predicted onsets divided by all ground-truth onsets that should have
been predicted. Finally, the F-score is the harmonic mean of recall and precision.
A high F-score means a low number of false positives and a low number of false
negatives. If the detector detected many onsets, including incorrect ones, and often
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hit the correct time positions, it could achieve a high recall but, at the same time,
a small precision. If both recall and precision are equal to 1, then the F-score is
also equal to 1 (100%), and the detector determined all onsets correctly. In practice,
it is usually about the precision-recall trade-off (optimizing the recall and precision
ratio). Although this is the most widely used metric for evaluating the accuracy of
onset detection, the F-score ignores TNs and gives equal importance to both recall
and precision.

The evaluation depends on the dataset and method used; however, the default
window for the F-score evaluation is used in most cases. As described in Section 2.2,
the onset is not a perfectly defined parameter. We decided to test an additional win-
dow setting (100 ms) to see whether there is a significant difference in the detection
accuracy of each degradation and system for different window settings. Note that we
have not multiplied the results by 100, as is often done—this notation can sometimes
be clearer with a large amount of numerical data in the tables.

2.4 Results
First, Tables 2.3 and 2.4 show the results of onset detection on the original dataset
without any degradation or category segmentation for the 50 ms and 100 ms win-
dow, respectively. All metrics are average values of the corresponding data. The
CNN provided the best results (F-score 0.889, recall 0.837, and precision 0.969) as
expected (MIREX evaluation). The SF had the highest recall for all degradation
cases, including the original dataset. A larger evaluation window increased the val-
ues of all metrics. However, for neural network-based detectors, this increase was
much less pronounced. For instance, differences between both windows for CNN
and RNN are from 0.889 to 0.891 and 0.764 to 0.767, respectively.

Tab. 2.3: Overall results for the original dataset; 50 ms window.

metrics CF Lib CNN RNN SF
F-score 0.808 0.772 0.889 0.764 0.827
recall 0.774 0.800 0.837 0.667 0.841
precision 0.878 0.822 0.969 0.950 0.845

Then, we evaluated all systems on each category. The resulting F-score for each
category of the dataset without any degradation is shown in Tables 2.5 and 2.6. The
CNN again outperformed all other detection systems in every category.

Figures A.1 and A.2 in the Appendix show the corresponding box plots, i.e.,
range of values (boxes cover the 25–75 percentiles and whiskers the 5–95 percentiles),
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Tab. 2.4: Overall results for the original dataset, 100 ms window.

metrics CF Lib CNN RNN SF
F-score 0.820 0.782 0.891 0.767 0.837
recall 0.786 0.812 0.839 0.670 0.850
precision 0.893 0.831 0.971 0.954 0.857

Tab. 2.5: The F-score for all categories of the original dataset; 50 ms window.

det. BS CM NPP PP vocal WI
CF 0.689 0.802 0.954 0.859 0.570 0.768
Lib 0.648 0.777 0.960 0.845 0.416 0.601
CNN 0.807 0.879 0.990 0.937 0.740 0.870
RNN 0.573 0.756 0.963 0.874 0.331 0.653
SF 0.695 0.846 0.942 0.873 0.583 0.657

median, and the average for individual degradations of all detectors together. Note
that these plots were created from data of individual categories (Table 2.2) and not
from testing on the whole dataset. Using a longer evaluation window results in
less variance of the final F-score values, primarily for non-machine learning systems.
A larger window means a higher recall and precision, which may not always indicate
a better result; at the same time, it can reflect inaccuracies of data annotation.

Next, Table 2.7 shows the F-score, recall, and precision for each degradation—
this is the average of all recordings in the database regardless of the category. This
way, we wanted to test how degradation can affect the output of detection systems.
Differences between F-score on .wav files and MP3 compression are again very low,
and the final accuracy is similar (except for the 64 kbps MP3 with CNN detector).
Considering the RNN detector, radio broadcast degradation improved the overall
F-score. Radio degradation also increased recall except for the Lib detector.

Finally, Tables A.1 and A.2 in the Appendix present the F-score for all categories,
degradations, and detectors. There is almost no difference between 320 kbps MP3
degradation and the original wav dataset. The TKEO degradation achieved the
best results for the NPP category using the Lib system and also for the PP category
using both CF and Lib systems. In all other cases, TKEO decreased the detectors’
performance. Besides, the TKEO generally reported the worst values in the BS,
vocal, and WI categories, where an energetic nature of onsets is less pronounced.
The 64 kbps MP3 increased the F-score for the PP category in all non-machine
learning detectors. Radio broadcast degradation seems to improve the detection
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Tab. 2.6: The F-score for all categories of the original dataset; 100 ms window.

det. BS CM NPP PP vocal WI
CF 0.704 0.816 0.956 0.864 0.590 0.792
Lib 0.664 0.787 0.961 0.847 0.443 0.619
CNN 0.808 0.881 0.990 0.938 0.740 0.877
RNN 0.576 0.759 0.963 0.876 0.334 0.664
SF 0.705 0.856 0.944 0.877 0.603 0.684

in some cases, especially for the RNN system. However, the detection accuracy of
the WI category for this detector decreased when a 50 ms window was used but
increased significantly with a 100 ms evaluation window (from 0.533 to 0.716). The
F-score of the CF system increases for the BS category when radio broadcast or
smartphone playback degradation is present.

2.5 Discussion
In this study, we tested and evaluated different types of degradation of an input
audio signal on state-of-the-art onset detectors. It was confirmed that the difference
between the input signal in the form of a .wav file (16-bit, 44.1 kHz) and the 320 kbps
CBR MP3 codec with the same sampling rate is essentially negligible for any onset
detector. When 64 kbps MP3 was used, the statistical accuracy of detection for the
pitched percussive category even slightly increased in some cases. An exception is
the CNN system, which showed a worse F-score in all cases when the audio signal
was degraded. As mentioned in Section 2.2.4, both neural network-based systems
were trained on .wav files. If we degrade a recording and test a given system, we
are actually testing the behavior of the system for that degradation, but there is
no way to include this degradation in the pre-processing phase of the detector. We
would have to re-train the network, this time on a degraded audio signal. Only then
could a valid conclusion be reached as to whether degradation increases or decreases
the accuracy of these systems and whether degradation could serve as part of the
pre-processing phase of the detector.

This behavior is opposed by the results of the RNN system, where the introduc-
tion of radio broadcast degradation led to an increased F-score in three categories
(bowed string, complex mixtures, and vocal) but also the whole dataset. The in-
crease in the vocal category was most pronounced (from 0.331 to 0.521 for 50 ms
window). However, it should be noted that the resulting number is still too small
to be considered a real improvement.
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Tab. 2.7: The F-score, recall, and precision for all degradations and detectors –
50 ms window.

F-score
detector rBcast SPPb SPRec 64kb 320kb TKEO wav

CF 0.799 0.794 0.732 0.805 0.807 0.759 0.808
Lib 0.635 0.760 0.715 0.770 0.773 0.748 0.772
CNN 0.874 0.805 0.804 0.873 0.889 0.765 0.889
RNN 0.777 0.563 0.712 0.757 0.764 0.661 0.764
SF 0.820 0.814 0.744 0.827 0.827 0.750 0.827

recall
CF 0.796 0.754 0.763 0.769 0.774 0.755 0.774
Lib 0.589 0.789 0.725 0.796 0.799 0.771 0.800
CNN 0.840 0.735 0.769 0.815 0.837 0.712 0.837
RNN 0.696 0.455 0.622 0.658 0.667 0.575 0.667
SF 0.871 0.829 0.848 0.837 0.840 0.839 0.841

precision
CF 0.831 0.871 0.742 0.878 0.877 0.815 0.878
Lib 0.857 0.807 0.783 0.823 0.822 0.807 0.822
CNN 0.926 0.935 0.863 0.964 0.968 0.874 0.969
RNN 0.920 0.915 0.881 0.953 0.950 0.847 0.950
SF 0.796 0.829 0.693 0.848 0.845 0.727 0.845

The TKEO showed the worst results from all degradation types except for the Lib
system with a 100 ms evaluation window. The energy operator changes the signal
significantly, resulting in a bad final detection. On the other hand, visualizations
show (Figure 2.2 and 2.4) that onsets in modified spectrograms may sometimes
be more visible or clearer—new network-based detectors might be trained on such
degraded data to identify proper onset time positions successfully.

Radio degradation increased recall on all systems except for the Lib detector.
Evaluation using two windows of different sizes also showed that machine learning-
based systems are generally more robust in the correct time detection of onsets—with
a larger window, F-score, recall, and precision increase very little. All results, includ-
ing both evaluation windows, detected onsets from all systems, and the ground truth
annotation for all categories, are given in the mentioned GitHub repository [17].

The data indicate that some systems respond better to the degradation of the
input signal than others. Experiments show that if radio broadcast degradation is
included in the pre-processing phase of the RNN detector, the detection success is, on
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average, increased. Radio broadcast degradation generally decreased the detectors’
precision but increased recall. This means that the detector detected more possible
onsets (TP but also FP) and thus achieved higher recall and lower precision. In the
case of RNN, this trade-off was good enough to increase the final F-score. Raising
the evaluation window can cause an undesirable effect—the evaluation can capture
a detected onset within a window that belongs to another correct onset position,
creating an error. The vast majority of annotated onsets are more than 100 ms
apart; however, many FPs can cause statistical bias. We are aware that 100 ms is
the limit value for the evaluation of onset detectors.

If the MP3 codec is set to at least 64 kbps CBR, it shows similar results as
the .wav file for all tested detectors. Therefore, these systems are also suitable
for the onset detection of recordings on streaming portals. However, the quality
of audio recordings in the test database varies despite a unified .wav format. The
44.1 kHz with 16-bit resolution does not necessarily indicate the same audio quality,
as the source material might have already been degraded somehow. This cannot be
effectively compensated, especially if a large, freely available database containing
various quality audio materials is used. Neural network-based detectors are very
often partially trained on degraded audio material. A better understanding of audio
degradation could help to find new pre-processing options. Furthermore, unless
we create our dataset and ground-truth annotations, we cannot be sure that these
systems will be tested on data the detectors have never seen before.

2.6 Conclusion and Future Work
This study presents an evaluation of the audio signal degradation on onset detec-
tors. Five detectors, including machine and non-machine learning state-of-the-art
systems, were selected for experiments. The chosen dataset contains 321 different
recordings of various musical genres and instruments and was divided into several
categories. Six different degradations were applied to create separate test subsets.
Next, all systems were tested and evaluated using standard metrics (F-score, recall,
and precision) and two evaluation windows. The results show that the difference
between MP3 compression used in streaming portals and the most common lossless
format is minimal regarding onset detection. The TKEO shows some potential in
audio signal degradation with subsequent conversion to time-frequency representa-
tion for neural network training. However, networks would have to be trained on
such modified data to confirm or refute this effect. A general improvement of onset
detection by adding TKEO has not been confirmed. The F-score and recall with
both evaluation windows were even increased for the RNN system when radio broad-
cast simulation was applied. Experiments suggest that radio broadcast degradation
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generally increases the number of detected onsets, both TP and FP, resulting in
worse precision but better recall.

This phenomenon could be used to enhance the time-frequency representation
input of neural network-based detectors. In future research, we would like to explore
the use of degradations and specially modified spectrograms as a new type of pre-
processing. Then, we may optimize the delicate recall-precision trade-off by changing
the input for neural network training.

2.7 Further Notes
In the original study, we theorized that new network-based detectors might be
trained on such degraded data to identify proper onset time positions more success-
fully. This idea was derived from the behavior of TKEO degradation and consecutive
ODF on some recordings of woodwind instruments. In [86], the beat detector based
on the state-of-the-art ML architecture was trained on audio recordings degraded
by TKEO, but no improvement in overall beat detection accuracy was reported.
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3 MPA-oriented Global Tempo Computation
This chapter is based on the journal article “Enhancement of Conventional Beat
Tracking System Using Teager–Kaiser Energy Operator” [2], which is a continuation
of our previous studies on the global tempo estimation using a modified beat tracking
method [3, 4].

Beat detection systems are widely used in the music information retrieval (MIR)
research field for the computation of tempo and beat time positions in audio sig-
nals. One of the most important parts of these systems is usually onset detection.
There is an understandable tendency to employ the most accurate onset detector.
However, there are options to increase the global tempo (GT) accuracy and also the
detection accuracy of beat positions at the expense of less accurate onset detection.
The aim of this study is to introduce an enhancement of a conventional beat de-
tector. The enhancement is based on the Teager–Kaiser energy operator (TKEO),
which pre-processes the input audio signal before the spectral flux calculation. The
proposed approach is first evaluated in terms of the ability to estimate the GT and
beat positions compared to the same conventional system without the proposed en-
hancement. The accuracy of the GT and average beat differences (ABD) estimation
is tested on the manually labeled reference database. Finally, this system is used for
the analysis of a string quartet music database. Results suggest that the presence of
the TKEO lowers onset detection accuracy but also increases the GT and ABD es-
timation. The average deviation from the reference GT in the reference database is
9.99 BPM (11.28%), which improves the conventional methodology, where the aver-
age deviation is 18.19 BPM (17.74%). This study has a pilot character and provides
some suggestions for improving the beat tracking system for music analysis.

3.1 Introduction
Onset time in audio signal analysis represents the time position of a relevant sound
event, usually when a musical tone is created. Onset detection functions are al-
gorithms that capture onsets (onset time positions), and thus ideally all tones in
audio recordings. They can create a representation or an evolution of onset struc-
ture at a given time of a particular audio recording. There are also offsets of tones
(indicating the end time position of a tone in a signal), e.g., see [77, 87], but beat
tracking systems do not need such information to work properly. The conventional
beat tracking system is usually based on the calculation of repetitiveness of the
dominant components in an onset function (onset curve), and its output represents
a temporal framework, i.e., time instances, where a person would tap when listening
to the corresponding piece of music. That is why it is important to have a robust
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and computationally effective onset detector. Calculating the beat positions and
global tempo (GT) is important for musicologists and music analysts. With such
automated systems, tempo and agogic changes can be measured much faster than
only with a manual approach alone. Musicologists would have to spend less time
correcting calculated beat positions. Therefore, we set a new parameter—the av-
erage deviation of reference beat positions to the calculated beat positions as the
average beat deviation (ABD).

Most of the onset detectors are based on energy changes in spectra, the variant
of spectral flux. For bowed string instruments, there is a method called SuperFlux
that can suppress vibrato in an expressive performance and reduce the amount of
false-positive detections [73]. Some methods use logarithmic spectral compression
to enhance the spectral flux onset detection and then compute the cyclic tempogram
for a tempo analysis [88]. There is also a method that calculates tempograms using
Predominant Local Pulse [89]. Besides, the onset detection and beat detection could
be performed in several toolboxes and libraries such as Tempogram Toolbox [90],
LibROSA [91], MIR Toolbox [92], etc. [93]. The state-of-the-art onset detectors
are usually based on deep neural networks [68, 72], using spectral components and
parameters as their inputs. Beat detection systems contribute from the solid onset
detectors, where periodicity is identified [90, 92, 94, 95, 96, 89].

While onset detection in percussive music is considered to be highly accurate (al-
ready at MIREX 2012 conference [74], algorithms achieved F-measure values greater
than 0.95 for percussive sounds), detection of soft onsets produced by bowed string
or woodwind instruments is still challenging. Many improvements in onset detection
have been made, but no system is truly universal for all musical instruments and all
types of music.

This work aims to enhance the conventional beat tracking system while follow-
ing the tempo analysis methodology published in [97, 98] using a more sophisti-
cated approach of tempo estimation based on the automated beat tracking system
with the Teager–Kaiser energy operator (TKEO) included. This nonlinear energy
operator is used, e.g., for the improvement of onset detection in EMG signals (elec-
tromyography) [99], to decompose audio into amplitude and frequency modulation
components [100], for the detection of Voice Onset Time [101], or the highly efficient
technique for LOS estimation in WCDMA mobile positioning [102]. So far, there is
no extensive study on using TKEO to analyze musical instruments.
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3.2 Dataset and Methods

3.2.1 Onset Detection

Usually, onset detection algorithms use pre-processing steps to reduce redundant
information and improve detection accuracy. In this study, we propose a new method
of pre-processing based on the TKEO. The TKEO (Ψ{𝑠(𝑡)}) is a nonlinear energy
operator that can be calculated using the following formula:

Ψ{𝑠(𝑡)} =
(︃

d𝑠(𝑡)
d𝑡

)︃2

− 𝑠(𝑡) · d2𝑠(𝑡)
d𝑡2 , (3.1)

i.e., we compute the square of the first derivative (which denotes the square of
the rate of signal change) and then subtract the signal multiplied by the second
derivative (which determines the acceleration at that point). We speed up the
temporal changes of the signal module by removing the slow changes because we
consider the rate of change. It is known that the faster the time changes, the higher
the frequency components appear in the spectrum. By taking the first derivative
into account, we increase the magnitude of higher frequencies of the spectrum [103].

In our discrete approach, we first downsample the input signal 𝑥(𝑛) to 22 050 Hz.
Next, we apply the TKEO, i.e., we calculate the corresponding discrete non-causal
form:

Ψ{𝑥(𝑛)} = 𝑥2(𝑛) − 𝑥(𝑛 − 1) · 𝑥(𝑛 + 1), (3.2)

which creates an energy profile of the given audio sample. In comparison to the
conventional squared energy operator, the TKEO takes into account the signal’s
frequency [104], and it can yield negative values, e.g., see Figure 3.1. Differences in
spectra for the same audio track (clarinet recording) are shown in Figure 3.2. The
dominant spectral components have changed—the clarinet has naturally strong odd
harmonics, but the TKEO has changed their magnitude.

We calculate the onset envelope using the perceptual model in the following
step. We use Short-Time Fourier Transform (STFT) with Hann window (hop fac-
tor: 512 samples) and then the conversion to the perceptual model with log-power
mel-frequency representation: 120 mel bands, max frequency at 10 kHz and min
frequency at 27.5 Hz. We get the matrix |𝑋(𝑚, 𝑘)|, where 𝑚 denotes the index of
the frame and 𝑘 is the frequency bin or index of the mel band. These settings were
inspired by SuperFlux calculation [73].
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Fig. 3.1: Waveform of the clarinet recording before and after the application of
TKEO.

In the next step, we calculated the spectral flux. The basic version of spectral
flux is defined as the 𝑙1-norm of consecutive frames [32]:

𝑆𝐹 (𝑚) = 1
𝐾

𝐾−1∑︁
𝑘=0

𝐻(|𝑋(𝑚 + 1, 𝑘)| − |𝑋(𝑚, 𝑘)|), (3.3)

for 𝑚 = 0, 1, 2, . . . , 𝑀 − 2, where 𝐻(𝑥) = (𝑥 + |𝑥|)/2 is the half-wave rectifier, 𝑀

is the number of frames, and 𝐾 is half of STFT frequency bins, or number of mel
bands. A half-wave rectifier sets negative values to zero, and positive differences
are summed across all frequency bands. Spectral flux gives us information, on how
energy in spectra changes in time. Finally, a peak-picking function is applied [75]
to identify time positions of onsets and, therefore, new tones in the audio signal.

An example of this system based on the mel-frequency representation, but with-
out the use of TKEO, is shown in Figure 3.3. It represents a solo clarinet part.
The onset function detected many false peaks and marked positions where tones
were not played. For comparison, Figure 3.4 shows the same signal, but in this
case, pre-processed by the TKEO. The peak-picking function now marked all real
onsets with better accuracy and without any false positive detection. The colorbar
in dBFS (decibels relative to full scale) (Figure 3.5) is presented separately because
of the proper alignment of a spectrogram and onset function but is the same for all
spectrograms in this paper.
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Fig. 3.2: Spectrograms of the same clarinet recording—the bottom one is using a
TKEO step.
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Fig. 3.3: Spectrogram and onset detection function for a solo clarinet recording.
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Fig. 3.4: Spectrogram and onset detection function for a solo clarinet recording with
the TKEO applied.

Fig. 3.5: Colorbar in dBFS units.

As we can see on the second spectrogram (Figure 3.4), the energy in spectra
changed, frequencies do not correspond properly to the original signal and new tones
are sharpened and much clearer. We give this example for a reason. Recording of
a solo clarinet was the only audio track in which the accuracy of the onset detection
function was improved. Adding TKEO into this conventional detection method
lowered the general detection accuracy. It decreased the number of detected false
positives and the true positives. The cause of this phenomenon is explained in the
following Section 3.2.2.

3.2.2 TKEO Influence

We applied the proposed method with the TKEO included on more recordings and
observed that in cases where the tones are fast (e.g., violin playing thirty-second
notes) or the energy difference is very low, this method does not detect every onset
properly. Adding the TKEO increased the detection tolerance of fast changes in
the signal. This means that the operator added additional “latency” to the signal
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values. It also decreased this system’s ability to capture low-energy spectral compo-
nents. In general, fewer onsets were detected—only strong and more rhythmically
important onsets remained. This is the advantage of the TKEO in the system.
It suppresses less dominant spectral components and very fast tones, even though
onset detectors are usually set to do the opposite.

Figures 3.6 and 3.7 show another analyzed track—a violin solo in a very fast
tempo. There is a clear difference in spectrograms for the described detector and
the same detection with the TKEO included. Most of the tones are quite visible
in the spectrogram of the first figure. However, the system with the TKEO has its
changes in the spectrum vaguer and blurry, which means that the onset function
detected a lower number of onsets (especially between the 1st and the 4th second of
this track). In this case, the conventional system detected more onsets correctly, but
that still does not indicate that the estimation of GT would also be more accurate.
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Fig. 3.6: Spectrogram and onset detection function for a solo violin recording.
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Fig. 3.7: Spectrogram and onset detection function for a solo violin recording us-
ing TKEO.

3.3 Tempo Representation
To create a tempo structure of given recordings, we need a representation of a tempo;
in this case, how the density of onsets, or more precisely, the repetitiveness of sig-
nificant onsets, is distributed. This can be done by several techniques; in our ex-
periments, we focused on the method of dynamic beat tracking system proposed
in [94]. This system first estimates onset positions in the ODF and picks the best
beat candidates that follow specific rules (such as being within the minimal and
maximal inter-beat-interval) within a pre-defined time interval—a parameter called
default tempo. The default tempo is calculated automatically based on an autocor-
relation function with respect to the standard 120 beats per minute (BPM) or set
up manually based on prior information. The calculated beat positions can deviate
from the default tempo in adjustable boundaries (depends on settings, e.g., Ellis
reports approximately 10% [94]) utilizing the “tightness” parameter, which corre-
sponds to the detection tolerance from the default tempo. It was set to 50 in all
our experiments. Figure 3.8 shows how this system picks onset candidates from the
onset curve and creates the beat positions by using periodicity information. Even
though the selected beat tracking method may not produce robust beat estimates
compared to today’s ML beat detectors, we aim only to estimate the overall global
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tempo. Beat detectors are based on a calculation of beats in an audio signal and,
therefore the metric structure from an elementary point of view. Usually, there
is not enough information to divide beats into measures or bars without manual
correction (or automatic downbeat detectors), but with proper segmentation, MIDI
reference, and dynamic time warping (DTW) techniques, this is possible [105]. With
automated systems, tempo and agogic changes can be retrieved faster; however, no
detectors achieve consistent detections for all kinds of music. Musicologists could
spend less time correcting calculated beat positions or creating manual annotations
if they use tools to speed up the annotation process significantly. Therefore, we also
consider the ABD parameter in the evaluation—the average deviation of reference
beat positions to the calculated beat positions.
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Fig. 3.8: Comparison of the onset and beat positions.

Figure 3.9 shows the estimated time positions of beats at the beginning of a string
quartet segment. The system utilizes periodicity information to calculate beat po-
sitions even at places where no onsets are detected—in this specific part, a second
violin and viola are playing very quietly (and no onsets are detected), and then
a violin solo begins. There are strong onsets in the ODF between the sixth and
tenth seconds of this track. Their periodicity information is then used to fill the gap
in the silent part of this recording, which is one of the advantages of the dynamic
programming beat tracker. In the postprocessing of beat activation functions from
ML-based approaches, a Dynamic Bayesian Network (DBN) [106] is usually used to
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retrieve the final beat estimates and fill the silent parts. The limitation here is the
default tempo—the algorithm searches for beat positions within a given interval,
but there is no guarantee that true beat positions exist within specified limits (also
concerning the tolerance parameter). The default tempo can be misleading if the
recording is rhythmically unstable or the local tempo changes significantly.

Fig. 3.9: Estimated beat positions by the beat detector based on the onset period-
icity.

3.4 Dataset
First of all, we tested if the TKEO improves the estimation of the GT in general.
We used the SMC_MIREX dataset [107], which consists of various recordings, from
classical pieces to guitar solos. The recordings are sampled by 44.1 kHz. Their
annotations contain manually corrected beat time positions, which will be used as
a reference.

Music by string quartets is very specific because the tempo can be more or
less stable, but the musical ornaments, intended gaps, fermatas, or other expressive
musical attributes can be present. Every musician has her/his unique style of agogic
performance. If we define meaningful musical parts by choosing important musical
motifs, we can create segments that could be processed separately.

The second dataset consists of 33 different interpretations of String Quartet No. 1
e minor “From My Life”, composed by the Czech composer Bedřich Smetana. We
also included two interpretations played by an orchestra. We divided the first move-
ment into six segments of musical motifs in the view of the musical meaning. The
first movement consists of an introduction (Beg), exposition (A), coda (B), devel-
opment (C), recapitulation (D), and the last coda (E). We calculated the estimated
average tempo (EAT) for every segment without any expressive elements and in-
formation about beat positions, using the physical length of the tracks and metric
information in the corresponding music sheet. The EAT will be used as a reference
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tempo for setting up the default tempo parameter in the beat tracking system. The
first page of the sheet music is provided as an example in Appendix B.1.

3.4.1 Application

Beat tracking systems are used in music analysis software for tempo, timbre, dynam-
ics estimation, or other music analysis goals. An example of such freeware software is
Sonic Visualiser [108]. Figure 3.10 shows an example of tempo analysis of the string
quartet music from the second tested database. The first pane is the visualization
of the audio wave, the second one is the spectrogram, and the last one is a layer of
manually corrected beat positions. Beat positions were calculated automatically by
the beat tracking system called BeatRoot [109] (Vamp plugin) and then corrected
by trained ears. The green line shows how tempo evolves in time—if the audio track
is locally slowing down or the tempo increases. The method which is proposed in
this paper has not been developed as a Vamp plugin for Sonic Visualiser.

Fig. 3.10: Possible application of the beat tracking system.

Musicologists can then conclude from the measurement results. An automated
beat tracking system can reduce the time of analysis significantly. For example,
if we measure the EAT of the first motif of the second database for each recording,
we get interesting results. One of the general assumptions is that presently, we
usually play the same piece of classical music faster than we did before. Figure 3.11
shows that this assumption may not be correct. There is a trend (see the slope
of the linear regression line based on the sum of squares)—older recordings are, on
average, at a faster pace. We do not have enough audio recordings to declare it as
a fact, but the tendency is there. However, when we plot the EAT of the entire
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first movement (Figure 3.12), the tempo decrease is not so evident. Each black dot
represents one interpretation, and the blue line is a trend line. The sample from
1928 was an outlier; therefore, we did not consider it in the regression analysis.

Fig. 3.11: Results of the EAT calculation for the first motif of the string quartet
database.

Fig. 3.12: Results of the EAT calculation for the entire first movement of the string
quartet database.

3.5 System Evaluation
During the analysis, we first used the reference dataset to determine the GT and
ABD estimation accuracy. We computed the GT of each track by the proposed
beat tracking method using both the proposed onset detection function (DS, default
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system), and the same onset detection function with the TKEO (TS, system with the
TKEO included). Then we compared the reference values (annotation of the dataset)
of each tested track with values estimated by the DS and the TS. The reference
tempo was obtained as the number 60 (BPM definition) divided by the median of
time differences between consecutive beat time positions. Then we calculated the
median (Me) and the mean value (�̄�) of time differences of consecutive beats in all
recordings and also in which the average was less than 1 s. This represents the
ABD of tracks that were close to the reference tempo (some recordings achieved
more than ~20 BPM difference in the GT when tested; they were excluded for the
extended ABD testing).

Next, we analysed the string quartet database. First, all 33 recordings were
divided into six segments with a relatively steady tempo, and then all motifs were
tested by the TS and the DS to estimate the GT. We computed the reference EAT of
all segments of each interpretation (Table 3.1) by calculating the number of quarter
notes (Table 3.2) and dividing them by the time length of each recording. The com-
plete table is in Appendix B.1. Finally, the EAT and the computed GT were com-
pared.

Tab. 3.1: The EAT of all motifs of the string quartet dataset.

track Beg A B C D E
CD01 80.61 69.37 34.41 88.56 55.60 74.50
CD02 77.80 69.03 44.14 81.84 59.52 72.43
CD03 77.93 73.19 41.60 87.09 62.36 79.14

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

CD33 76.92 63.24 42.05 74.62 56.26 68.31
All values are in BPM.

Tab. 3.2: Calculation of quarter notes in all motifs.

motif Beg A B C D E
measures 1–70 71–110 111–118 119–164 165–225 226–262

quarter notes 280 160 32 184 244 148
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3.6 Results
Table 3.3 shows the GT estimation for the first 30 tracks of the first dataset. The
complete table is shown in Appendix B.2. The average deviation from the reference
tempo was 18.19 BPM (17.74%) for DS and 9.99 BPM (11.28%) for TS. We also
applied the t-test (Paired Two Sample for Means) for each system. The P-value for
the TS is 0.038 and 0.024 for the DS (𝛼 = 0.05). Next, Table 3.4 presents the overall
results of the GT estimation: median, mean, standard deviation, relative standard
deviation, variance for each tested system, and the deviations from the reference
values for all metrics. The mean value of the reference GT was 76.78 BPM, the
average computed GT 88.97 BPM for DS and 83.75 BPM for TS.

Table 3.5 shows the mean value and the median of the ABD testing for all
analyzed tracks. The average difference between consecutive beat time positions of
the reference and the DS was 2.84 s and 2.30 s for TS. Table 3.6 shows the average
of mean and median of time difference values of the recordings in which the ABD
were less than 1 s. This means 9 recordings for the DS (30%) and 11 recordings for
the TS (37% of the second dataset). The TS detected the right rhythmic pulse in
more recordings than the DS. Average deviations from the reference beat positions
were 0.39 s and 0.29 s for the TS and 0.95 s and 0.36 s for the DS, respectively.

Table 3.1 shows results based on the EAT of all motifs of our second database—33
different interpretations of String Quartet No. 1 e minor “From My Life”. Finally,
Table 3.7 shows the difference between the estimated GT and the EAT for both
proposed systems. The complete table is shown in Appendix B.3. The average
deviation for the TS is 6.42 BPM and 6.59 BPM for the DS. Due to the nature of
the results of the second dataset, no further statistical processing was used.

Tab. 3.3: Reference GT and computed GT of the SMC_MIREX dataset.

track no. reference TS DS TS (dev.) DS (dev.)
1 48.15 47.85 47.85 0.30 0.30
2 66.99 73.83 73.83 6.84 6.84
3 68.00 95.70 95.70 27.70 27.70
·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

30 63.36 63.02 63.02 0.34 0.34
mean 76.78 83.75 88.97 9.99 18.19

P-value 0.038 0.024
TS—beat detection with the TKEO degradation; DS—default beat detection;
dev.—deviation from the reference global tempo; 𝛼 = 0.05.

69



Tab. 3.4: Results of GT testing—the SMC_MIREX dataset.

type Me �̄� sd rsd var
reference 77.11 76.78 33.01 0.43 1089.50
TS 82.05 83.75 37.30 0.45 1391.05
DS 76.07 88.97 41.05 0.46 1685.16
TS dev. 5.31 9.99 15.75 1.58 247.93
DS dev. 7.26 18.19 24.08 1.32 579.71

Me—median; �̄�—mean value; sd—standard deviation; rsd—relative standard devi-
ation; var—variance.

Tab. 3.5: Results of the ABD testing for all recordings.

metrics TS (s) DS (s)
�̄� 2.30 2.84

Me 1.81 2.57
sd of the �̄� 1.90 2.17

sd of the Me 2.14 2.31

Tab. 3.6: Results of the ABD testing for recordings with the average ABD < 1 s.

dev. < 1 s in the mean of TS <1 s in the mean of DS

TS DS TS DS

�̄� Me �̄� Me �̄� Me �̄� Me

mean 0.39 0.38 0.95 0.70 0.29 0.12 0.36 0.22

Figure 3.13 shows differences between the reference GT and calculated GT of the
TS and DS of the first database. The TS generally follows the reference tempo more
accurately, mainly because it often determines the correct metric pulse. The DS
shows greater local deviations of the GT from the tested tracks.
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Fig. 3.13: Visualisation of the GT computation—Ref, TS and DS estimation.

Tab. 3.7: Differences between the estimated GT and the EAT for both systems.

TS DS

Track Beg A B C D E Beg A B C D E

CD01 15.09 13.98 6.61 3.73 5.92 3.80 8.49 22.92 6.61 3.73 1.82 3.80

CD02 14.49 0.81 6.53 1.51 6.74 3.57 14.49 9.27 2.84 1.51 3.50 1.40

CD03 14.36 1.41 7.15 5.20 4.94 6.99 11.17 10.16 11.13 5.20 13.64 6.99

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

CD33 3.83 6.60 9.63 0.79 5.26 3.47 3.83 6.60 9.63 0.79 11.74 5.52

mean 7.56 6.57 8.13 1.78 9.01 5.49 6.92 7.17 8.71 1.78 9.58 5.38

result 6.42 6.59

3.7 Discussion
The proposed method with the TKEO degradation provided some improvements
to the reference SMC_MIREX dataset. The results suggest (Table 3.4) that the
TKEO can help the proposed beat tracking system pick better onset candidates for
the beat positions and slightly improve the GT estimation. The difference was about
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8 BPM on average for all tested recordings of the reference dataset. However, many
recordings reported the same estimated GT for both methods. We used the first
dataset with manually corrected beat positions to determine the accuracy of both
systems. We did not use F-measure, one of the standard metrics in a beat tracking
task, but rather average differences between consecutive beats. This gives us an idea
of how close the beat tracking was to the reference positions, which may provide
more insight into the possibilities of automated annotations for music analysis. The
system with the TKEO reported lower ABD for all settings used overall. The results
suggest that the TKEO pre-processing improved the accuracy of the beat tracking
system while reducing the onset detection accuracy. The only exception was the
recording of the clarinet from the reference dataset.

Experimenting with the string quartet dataset, the results were again slightly in
favor of the system with TKEO included. All 33 recordings of the second database
were tested. The difference between the average deviation from the EAT of TS
and DS was only 0.17 BPM. Both systems had very similar detection accuracy. We
chose such string quartet music to see how the enhancement would deal with the
difficult task of detecting tempo in music with weak onsets and complex metric and
rhythmic structures.

The TKEO was used in the pre-processing stage to help the onset detection
function find more relevant onsets and enhance the beat tracking system to choose
better candidates for beat positions. It reduced the number of insignificant onsets
detected. Onset detection accuracy has usually been reduced, but the final beat
detection output may be more stable; the algorithm chooses from less and more
important onsets. This is useful for analyzing tracks where we suspect a stable and
non-agogic rhythm.

The limitation of this study is that the EAT in the string quartet dataset may
serve as a reference value for the beat tracking system, but it is not the actual
GT of a particular track since we cannot include any expressive elements in it. It
does not provide any information about beat positions or local tempo changes. The
same thing applies to the reference global tempo. In music performance analysis,
we need to track all beat positions in the segment and compare them to the real
beat positions. However, in this case, we analyzed relatively stable tracks with no
abrupt tempo changes.

3.8 Conclusions
This study introduces an enhancement of the conventional beat tracking system by
adding the TKEO into the pre-processing stage. It briefly describes the onset detec-
tion function and the beat tracking method with its possible application. The onset
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detection accuracy decreased in most analyzed tracks, but the accuracy of the GT
and ABD detection increased.

The influence of the TKEO was tested on different recordings, and it was found
that in the case of woodwind instruments, the TKEO increased the onset detection
accuracy. In the future, we would like to focus on the possible applications of
the TKEO on music recordings as it generally changes the magnitude of frequency
components in a signal and acts as a filter.

The estimation of the GT was improved in the reference database. The average
deviation from the reference GT in the reference database is 9.99 BPM (11.28%),
which improves the conventional methodology (18.19 BPM, 17.74%). The P-values
indicate that there is a clear difference between the proposed systems. Both systems
were also tested on the string quartet database. In this case, however, the results
are not convincing. The proposed TS will be further used in the subsequent music
analysis of the string quartet database. The aim is to create an automated system
for capturing beat positions that are as close as possible to the actual beat positions
in the recordings, even for complex music such as string quartet. In this way,
minimizing the time required for manual processing and labeling is possible. This
study has a pilot character and provides some suggestions for improving the beat
tracking system for music analysis.
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4 TCN Beat Tracking
In this chapter, we introduce the conference article “Beat Tracking: Is 44.1 kHz
Really Needed?” [5] that focuses on training multiple beat tracking detectors with
various input sampling frequencies.

Beat tracking is essential in music information retrieval, with applications rang-
ing from music analysis and automatic playlist generation to beat-synchronized ef-
fects. In recent years, deep learning methods, usually inspired by well-known archi-
tectures, outperformed other beat tracking algorithms. The current state-of-the-art
offline beat tracking systems utilize temporal convolutional and recurrent networks.
Most systems use an input sampling rate of 44.1 kHz. In this paper, we retrain
multiple versions of state-of-the-art temporal convolutional networks with different
input sampling rates while keeping the time resolution by changing the frame size
parameter. Furthermore, we evaluate all models using standard metrics. As the
main contribution, we show that decreasing the input audio recording sampling fre-
quency up to 5 kHz preserves most of the accuracy and, in some cases, even slightly
outperforms the standard approach.

4.1 Introduction
In MIR, one of the core tasks is beat tracking or beat detection. It aims at de-
tecting “tactus” positions in an audio signal—described as “the most comfortable
foot-tapping rate when unconsciously tapping to a piece of music” [110]. Early con-
ventional approaches to beat tracking usually utilized a two-stage strategy. First, an
onset detection function was computed from time-frequency representations, such as
spectrograms or mel-spectrograms. Then, a post-processing phase with prior musical
knowledge was implemented to determine which onsets might correspond to beats.
Well-known examples of non-machine learning approaches are BeatRoot [109], dy-
namic programming-based method [94], and Predominant Local Pulse [89, 90].

Over the years, numerous beat tracking methods have been proposed, rang-
ing from rule-based systems and probability methods to machine learning models.
With the rise of deep learning techniques, beat tracking has significantly shifted
toward data-driven deep neural networks. The increasing availability of data and
their annotation1 helped to outperform every conventional non-machine learning
beat tracker (see MIREX results2). However, expressive music and genres with

1Beat annotation consists of discrete time points of beat occurrence.
2https://www.music-ir.org/mirex/wiki/2019:Audio_Beat_Tracking (accessed on 27

March 2023)
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more complex metric and rhythmic structures are still considered highly challeng-
ing. The Recurrent Neural Networks (RNN) proved that data-driven approaches
provide better results than conventional systems [111, 112]. Furthermore, the multi-
model approach [95] was implemented to reflect different rhythms depending on the
music style and genre. Selecting the best-performing model as the state-of-the-art
is challenging due to the absence of a beat tracking competition (the last MIREX
beat tracking competition ended in 2019, and further evaluation is based on the
beat tracking community). However, many studies use n-fold cross-validation and
similar datasets, achieving more than 90 % F-score (explained in Section 4.3.3) for
non-classical and less expressive music.

The Temporal Convolutional Networks (TCNs), based on the original implemen-
tation of WaveNet [113], are one of the newest methods for beat tracking and usually
achieve the highest F-score. The well-known examples are [114] and [110]. All men-
tioned models use time-frequency representation (modified spectrograms). Authors
in [115] show an end-to-end approach using time-domain representation, feeding
raw audio samples into the TCN, achieving similar results as state-of-the-art sys-
tems. It is also possible to train beat, downbeat, and tempo activation functions
jointly [116, 110], solving more tasks with just one model. For more details about
deep learning beat and downbeat tracking TCN models, we refer to [117].

In this paper, we implement multiple TCN beat tracking systems and evaluate
their abilities to detect beats on standard datasets. We add skip connections to
the networks as one of the possible network modifications and treat them as sepa-
rate models. As the main contribution, we train five models on 44.1, 22.05, 11.025,
and 5.5 kHz input sampling rates to demonstrate how much higher-frequency in-
formation is needed for the beat tracking task. We show that lower sampling rates
slightly outperform the standard approach with 44.1 kHz input signal in most mod-
els. This may be useful for applying beat tracking systems in other MIR-related
tasks, such as improving the synchronization accuracy when used jointly with Dy-
namic Time Warping methods [14] without the need for resampling. The results
indicate that even a system trained on the 5.5 kHz input audio signal is comparable
to the standard 44.1 kHz model. The higher frequency content seems redundant for
the universal beat tracking task.

The rest of the paper is organized as follows. Section 4.2 describes the architec-
ture, pre-processing, and models of TCN beat tracking systems. Section 4.3 explains
the training and evaluation process. Finally, Section 4.4 shows the results followed
by discussion and conclusions in Section 4.5.
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4.2 Methods

4.2.1 Architecture

Temporal convolutional networks are a class of deep neural networks that have
gained popularity in various time-series applications. TCNs consist of multiple layers
of temporal convolutions and non-linear activations, allowing them to capture long-
term dependencies in sequential data. The ability to model long-term dependencies
makes TCNs an attractive option for beat tracking, as the tempo of a musical piece
is inherently a temporal pattern, with the exception of expressive performances. For
beat tracking, the input to the TCN is a sequence of audio features, usually modified
spectrograms. The output of the TCN is a sequence of beat activations, representing
the likelihood of a beat occurring at each time step. The beat activations are then
post-processed to estimate the exact time positions of beats. We apply a post-
processing method called Dynamic Bayesian Network (DBN) [106] as a standard
approach to obtain a sequence of beats.

To adapt TCNs to beat tracking, researchers have proposed various modifica-
tions to the standard TCN architecture. One of the modifications is to use skip
connections, allowing the network to bypass certain layers and directly propagate
information from earlier to later ones. Skip connections have been shown to improve
the training stability and convergence of TCNs. In our paper, we experiment with
three slightly different versions of the TCN beat tracker and modify two of them
with additional skip connections.

spectrogram

TCN

predicted beat
positions

Dropout Dense

CNN

σ DBN

1x1 Conv

waveform

resample TCN

Fig. 4.1: High-level overview of different approaches to TCN beat tracking.

Figure 4.1 shows different variants of beat tracking neural networks. The first
approach is to use a two-dimensional Convolutional Neural Network (CNN) to ex-
tract musically motivated features from the spectrograms and then use a sequence
of TCN blocks to capture temporal information. In this work, we experiment with
discarding the CNN and using only the TCN blocks to reduce the number of train-
able parameters. We also utilize skip connections and combine the intermediate
outputs of the TCN blocks using a 1 × 1 convolutional layer instead of taking only
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the output from the last TCN block. We evaluate all models using 44.1, 22.05,
11.025, and 5.5 kHz as input sampling rates.

4.2.2 Pre-processing

We use frame sizes 2048, 1024, 512, and 256 samples to maintain the same temporal
context for 44.1, 22.05, 11.025, and 5.5 kHz sampling rates, respectively. However,
the 5.5 kHz sampling rate is a rounded number (the correct rate would be 5 512.5,
which is impractical). Therefore, this model does not exactly follow the sampling
rate/frame size compromise. We apply the Short-Time Fourier Transform to the
audio frames, followed by a filter bank to obtain magnitude spectrograms with
logarithmically spaced frequency bins. We refer to [117] for a detailed description
of the pre-processing step. We ensured that the fps = 100 stayed the same for each
scenario. The time resolution corresponds to the output beat activation function.

4.2.3 Models

We use the model bock_2020 from [110] as a baseline for our experiments. This
model includes a CNN to extract relevant spectral features from the spectrograms,
which are then fed as input to the first TCN block. The inner structure of the
TCN block is shown in Figure 4.2a. The input gets first processed by two parallel
dilated convolutional layers with different dilation rates. The output of the layers
is then concatenated by the channel dimension, followed by an Exponential Linear
Unit (ELU) activation function. The next block is a spatial dropout layer used only
during training to prevent overfitting. We set the value of spatial dropout to 0.1
in all experiments. Then, a 1 × 1 convolutional layer is used to reduce the number
of convolution channels in half. The TCN block also contains a residual connection
with an additional 1 × 1 convolutional layer, which helps to retain information from
previous TCN blocks. We also use a simplified TCN block described in [86] and
implemented in simple_tcn and tcn_dp. The structure is depicted in Figure 4.2b.
The models are listed below; each row represents a different architecture:

• bock_2020_x ,
• simple_tcn_x ,
• simple_tcn_skip_x,
• tcn_dp_x ,
• tcn_dp_skip_x .

To differentiate between various inputs of each model, we added a postfix: x
stands for 44, 22, 11, or 5, which is equal to 44.1, 22.05, 11.025, and 5.5 kHz
sampling rates, respectively.
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(a) Diagram of a TCN block used
in [110].
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(b) Diagram of a TCN block pre-
sented in [86].

Fig. 4.2: Different proposed TCN blocks for a beat tracking task.

4.3 Experiments

4.3.1 Dataset

In our experiments, we use well-known datasets that have been used for beat tracking
tasks for many years. We used the corrected annotations from S. Böck3 with the
exception of the Beatles dataset, in which all annotations were manually corrected to
the corresponding ground-truth beat positions based on [86]. All datasets combined
consist of 2 263 recordings with a total duration of around 26 hours and 175 127
ground-truth beat annotations. The list of datasets is described below:

• Ballroom [118] – excerpts around 30 s in length, dance music genres such as
cha-cha, jive, quickstep, rumba, waltz, or tango,

• Hainsworth [119] – excerpts around 60 s in length, organized into six categories:
rock/pop, dance, jazz, folk, classical, and choral music,

• GTZAN [120] – a large dataset containing 30 s excerpts and 10 different genres,
3https://github.com/superbock/ISMIR2020 (accessed on 27 March 2023)
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• SMC [121] – excerpts around 40 s in length, specifically selected to be chal-
lenging for the state-of-the-art beat tracking systems (for example, expressive
performances, local tempo deviations, or complex music compositions),

• Beatles [122] – a collection of songs from Beatles with corrected annotations
based on [110] and [86].

4.3.2 Training

First, we merge all datasets from Section 4.3.1 into one dataset and split it to
train, test, and validation sets using the 80/10/10 strategy, respectively. Train and
validation sets are shuffled for training, but the test set always contains the same
recordings and annotation data.

We train each model on the training data while monitoring the performance on
the validation set. We use the following settings: Adam optimizer, binary cross-
entropy loss, and reduction of learning rate by a factor of 0.2 if the training does
not improve for 10 epochs with the lower bound of learning rate set to 1 × 10−7.
Furthermore, early stopping is called if the change of validation loss is less than
1 × 10−4 for more than 20 epochs. The best checkpoint is then saved as the final
model. Contrary to the original implementations, we use an augmentation inspired
by [115]. During training, we shift the beat positions forward or back by a random
amount between ± 70 ms. Table 4.1 shows the number of trainable parameters
and training time for all models. The average training time of all proposed models
combined was 50 minutes. The trainable parameters of the networks ranged from
48 481 to 71 521.

The model bock_2020 derived from [110] was trained only on 44.1 and 22.05 kHz
sampling rates, and without skipping modifications. Changing the network’s input
size was impossible without changing the inner structure—for example, convolution
channels or the dilation factor. However, we decided to keep it in our experiments
and show the difference between the original 44.1 and 22.05 kHz models.

The training and validation losses are shown in Figures 4.3 and 4.4, respec-
tively. We only display one of the models (tcn_dp_skip) with all sampling rates
for brevity.

4.3.3 Evaluation

We use standard F-score metrics on the test set to evaluate proposed models in
terms of prediction accuracy. The F-score is a harmonic mean of precision and
recall, based on true positives, false positives, and false negatives [123]. To decide if
the target beat is within the range of ground-truth beat position, we use a window
of length 70 ms, which is a standard value in the beat tracking community [78]. We
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Tab. 4.1: The number of parameters, train time in seconds for each model, and the
mean train time for each architecture.

model params train time [s] mean [s]
bock_2020_22 65 941 3 286 3 099bock_2020_44 65 941 2 911
simple_tcn_5 64 701 3 308

3 249simple_tcn_11 67 341 2 782
simple_tcn_22 69 981 3 635
simple_tcn_44 71 521 3 272
simple_tcn_skip_5 64 483 3 355

3 340simple_tcn_skip_11 67 123 3 422
simple_tcn_skip_22 69 763 3 474
simple_tcn_skip_44 71 303 3 110
tcn_dp_5 48 481 2 374

2443tcn_dp_11 49 921 2 180
tcn_dp_22 51 361 2 570
tcn_dp_44 52 201 2 648
tcn_dp_skip_5 48 683 2 777

2 918tcn_dp_skip_11 50 123 2 951
tcn_dp_skip_22 51 563 3 117
tcn_dp_skip_44 52 403 2 826

compute additional metrics (Cemgil, P-score, Goto, and CMLc metrics) and refer
to [122] for more details about their implementation.

4.4 Results
We evaluated all models on the test set described in Section 4.3.1 and 4.3.2. Table 4.2
shows the F-score, Cemgil, P-score, Goto, and CMLc metrics for each architecture
and sampling rate. Bold numbers indicate the best result for given metrics and
architecture. The bock_2020_22 model achieves the highest scores overall (F-score
= 0.928, Cemgil = 0.829, P-score = 0.912, Goto = 0.828, and CMLc = 0.840),
surpassing the 44.1 kHz version. Lower sampling rates slightly increase the models’
accuracy. An exception is the tcn_dp_44 model with F-score = 0.912 compared
to the tcn_dp_22 model with F-score = 0.900. The differences, however, are not
significant. Furthermore, tcn_dp_skip_22 is comparable to the state-of-the-art
beat tracking model bock_2020_44 with worse Cemgil and slightly better P-score
and CMLc metrics. The difference between the training and validation process of the
same architecture but varied input sampling rates is shown in Figures 4.3 and 4.4.
There is no connection between training time and the input sampling frequency due
to the early stopping mechanism.
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Fig. 4.3: Loss of the tcn_dp_skip model on the training data for each epoch.

Fig. 4.4: Loss of the tcn_dp_skip model on the validation data for each epoch.

Tab. 4.2: Beat tracking evaluation of all models on the test set using standard
metrics. Bold numbers indicate the best result for given metrics and architecture.

model F-score Cemgil P-score Goto CMLc
bock_2020_22 0.928 0.829 0.912 0.828 0.840
bock_2020_44 0.925 0.815 0.904 0.806 0.821
simple_tcn_5 0.907 0.799 0.889 0.771 0.799
simple_tcn_11 0.900 0.773 0.878 0.744 0.778
simple_tcn_22 0.917 0.799 0.903 0.789 0.823
simple_tcn_44 0.907 0.765 0.887 0.767 0.798
simple_tcn_skip_5 0.907 0.772 0.890 0.784 0.810
simple_tcn_skip_11 0.915 0.778 0.894 0.771 0.801
simple_tcn_skip_22 0.907 0.767 0.890 0.775 0.807
simple_tcn_skip_44 0.909 0.773 0.893 0.784 0.811
tcn_dp_5 0.899 0.790 0.879 0.767 0.783
tcn_dp_11 0.885 0.804 0.863 0.740 0.763
tcn_dp_22 0.900 0.805 0.884 0.758 0.796
tcn_dp_44 0.912 0.805 0.896 0.806 0.813
tcn_dp_skip_5 0.905 0.751 0.890 0.771 0.799
tcn_dp_skip_11 0.918 0.770 0.900 0.784 0.809
tcn_dp_skip_22 0.925 0.776 0.912 0.806 0.838
tcn_dp_skip_44 0.909 0.764 0.895 0.775 0.806
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4.5 Discussion and Conclusions
In this paper, we trained multiple beat tracking systems with slightly modified ar-
chitectures on standard datasets and evaluated their performance. Using additional
skip connections increased the metrics in most cases, except for tcn_dp_44 and
simple_tcn_22 models. The well-known bock_2020 system achieved the highest
detection accuracy when trained on a 22.05 kHz audio input sampling rate, although
its authors used 44.1 kHz. All networks except tcn_dp provided better results when
trained on lower sampling rates. This may be thanks to, for example, redundant in-
formation in higher frequencies. In most music genres, the beat structure is defined
by lower frequencies and specific pulsations. Even 5.5 kHz models show compara-
ble performance, considering many instruments contain overtones and timbre above
2.5 kHz. It seems that 44.1 kHz might not be needed for the beat tracking task.
For some applications, the lower input sampling rates may be beneficial, as most of
the common music processing pipelines and extraction tools work with 22.05 kHz
audio signals. In the future, we want to build on these experiments and release
open-source models with different input sampling rates to provide more options for
subsequent applications.
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5 MPA-motivated Beat Tracking Evaluation
In this chapter, we present the conference article “The Application of Tempo Calcu-
lation for Musicological Purposes” [8] that focuses on comparing conventional and
ML beat tracking systems for MPA-oriented tempo computation.

Beat tracking systems capture time positions of beats within digital recordings.
They are used, for example, in streaming portals, but applications in musicological
analysis are often neglected. In this article, two different methods of beat track-
ing systems are tested—conventional and state-of-the-art—on the specific motif of
a string quartet music, which is one of the most complex tasks for beat detectors in
general. The aim here is to determine which system is better for musicology pur-
poses. This often involves determining not only the position of individual beats and
estimating the tempo but also the accuracy of determining their number. Evalua-
tion analysis may be suitable for comparing the accuracy of detectors, but may not
necessarily reflect the requirements of musicological analysis. The results of selected
detectors show that a system based on a recurrent neural network seems to be the
most suitable.

5.1 Introduction
Beat tracking and rhythmic analysis are one of the key and most developed prob-
lems in the field of Music Information Retrieval (MIR). Algorithms determine the
rhythmic or metric structure of a digital recording by specifically manipulating the
audio signal and extracting valid information from it. Previously, the problem was
grasped in various ways—the most successful algorithms were based mainly on the
calculation of periodicity and the distribution of onsets over time. With the de-
velopment and availability of artificial neural networks, virtually all MIR topics
have been transformed and state-of-the-art algorithms have been replaced. Musi-
cological analysis can deal, among other things, with the comparison of different
interpretations or performances of the same composition. Here is the advantage of
the MIR field, which provides the possibility of extracting the required information
by machine, i.e. in much larger quantities, unified, faster, and perhaps even more
objectively. The well-known cases of cooperation between MIR researchers and mu-
sicologists include [124] and [125]. In addition to the UK, Austria and Germany,
for example, also participate in a cooperation [126]. Although these are two the-
oretically very different fields, they have many challenges in common. Estimation
of rhythmic structure and tempo by automatic methods provides the possibility of
complex musical analysis. But are conventional detection systems really suitable for
musicological analysis?
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5.2 Methods
The analysis consists of comparing and possibly modifying several beat tracking
methods in an application for musicological analysis. This is specific for the type
of music on which detection systems are usually not trained and tested and also
for their focus on the same recordings, but different interpretations. As part of the
development of new methods and the improvement of existing systems, for example
at the MIREX competition [127], it is very rare to see testing exclusively on classical
music or the same composition using different interpretations. The most commonly
used datasets contain a large number of recordings of various genres and musical
instruments. The system may then be able to generalize better, but its specialized
application may fall behind.

5.2.1 Beat Tracking

Earlier detection systems used periodicity in the onset strength envelope by mod-
ifying the spectral difference or spectral flux. An example of an advanced system
is the beat tracking included in the librosa module [91] for the Python language.
Figure 5.1 describes the signal flow in a conventional system and a neural network
system. The left part of the image corresponds to librosa processing. The system
is hereinafter referred to as lib. The problem with the detector is generally the in-
ability to adapt to a rapidly changing tempo. Abrupt changes in tempo and meter
are not expected. In the basic setting, an average tempo of 120 beats per minute
(BPM) is assumed, from which the adjustable tolerance is determined. Therefore,
it is a question of to what extent systems with a similar architecture can adapt to
the agogic and complex rhythmic structure of string quartets.

The second tested system is from the madmom module [82]. It uses a bidirec-
tional recurrent neural network with Long Short-Term Memory (LSTM) cells, which
are based on the determination of beat times according to a modified spectral enve-
lope. The type of architecture is chosen deliberately here. By adding LSTM cells to
the network, it is possible to store the time information that is theoretically neces-
sary to determine the longer-term rhythmic structure, and thus the correct detection
of musical beats. Finally, a Dynamic Bayesian Network (DBN) approximated by
a Hidden Markov Model (HMM) to compute the probability of a beat within given
frames (the neural network is trained on 100 frames per second resolution) is used.
However, the question is how well the system can handle string quartets, as the
network has not been trained for this style of music.
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Fig. 5.1: Signal flow of two beat tracking systems.

5.2.2 Global Tempo

How can we compute the average tempo of recordings? Is it necessary to have
a beat tracking system? For many applications of these algorithms (music recom-
mendations, classification, genre recognition) within streaming portals, this is more
or less the only available option. This procedure may not be necessary for mu-
sicological analysis. In a musicological analysis, we often work with one selected
composition—then, the acquisition of recordings from different performers (i.e. dif-
ferent interpretations) takes place and the analysis is conducted. The advantage
of comparing the same composition, but different musical performances, lies in the
possibility of using music notation. Obtaining a notation of a given composition in
the .pdf and .xml formats is typically not a problem (musicologists are usually famil-
iar with notation software such as Sibelius or the open-source variant, MuseScore).
Information about the number and absolute positions of the beat times (concerning
the melodic and harmonic sequence) can be obtained from the notation. Thus, the
global (average) tempo (GT) of a musical motif can simply be calculated as follows:
GT = 60 · 𝑁/𝑑, where 𝑁 = the number of beats and 𝑑 = the time duration of the
motif. In this way, however, we do not obtain information about the time position
of individual beats, but only about the average tempo of the analyzed section.
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5.2.3 Dataset

For the analysis, a first motif (bars 4–10) of the String Quartet No. 1 e minor “From
My Life” by Bedřich Smetana was used. Together with Prof. Spurny from Masaryk
University, we have collected 33 different interpretations. This motif contains a total
of 12 beats, which were manually annotated using Sonic Visualiser software to obtain
ground truth data. In addition to GT, GTT (Ground Truth Tempo) is introduced.
Manual ground truth annotations can be used to obtain GTT. First, the time differ-
ence 𝑑 between successive beats was calculated, which was then averaged (ad) and
the relationship GTT = 60/ad was used. This value should theoretically be equal
to GT, but it will be slightly different, as manual annotation and segmentation of
digital recordings are not completely accurate. Accuracy can be determined by the
difference between GT and GTT.

5.2.4 Approach

First, the motif was segmented from all available recordings of the database. GT,
GTT, and their difference were calculated. Then, all recordings were analyzed by
detection systems Lib and madmom. The parameters were first left in the default
settings (lib), then other parameterizations were tested:

• lib_t (t stands for tuned): the original sampling frequency 𝑓𝑠 = 44100 Hz
was not changed and a different Mel spectrogram setting (138 mels), length of
FFT (2048 samples), and hop factor (512 samples) was used.

• lib_avgGT (average Global Tempo): a specific parameter was selected that
affects the expected start tempo (start_bpm). Thus, the system does not cal-
culate the predominant tempo from the most frequently used value of 120 BPM
but automatically calculates the position of the beats according to the most
suitable candidate based on the selected tempo, including the adjustable tol-
erance (tightness).

The advantage of lib_avgGT is mainly the elimination of so-called octave tem-
pos (120 BPM is the octave tempo of 60 BPM and so on). However, this parameter
cannot be set separately in many cases, as we do not know the expected tempo. In
a musicological analysis, however, we can know GT in advance, as we have record-
ings and sheet music available. Therefore, lib_avgGT uses the average GT of the
entire tested database, 88 BPM. The last system is a detector using the previously
mentioned bidirectional recurrent neural network.
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5.3 Results
The results are attached in Table 5.1. All mentioned detectors were used for the
musical motif, GT was calculated from the notation, and GTT from the ground truth
annotation. The mean, median, and standard deviation were computed for all items.
The absolute difference between GT and GTT is on average 0.318 BPM, which shows
the high accuracy of manual segmentation and annotation of beat positions. The
standard deviation, in this case, is 0.261. The lib and lib_t system show very
inaccurate tempo detection, the average tempo value according to lib_avgGT is
closest to GTT (the difference is 4.783 BPM, which can be considered a promising
result). Madmom differs by 8.977 BPM.

Tab. 5.1: Tempo estimation of the string quartet motif.

track GT GTT Δ lib lib_t lib_avgGT madmom

CD01 100.000 100.660 0.660 117.454 123.047 95.703 99.548
CD02 93.506 93.576 0.070 78.303 143.555 86.133 72.398
CD03 88.615 88.877 0.261 234.908 90.666 89.103 88.829

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

CD33 98.630 100.660 2.030 56.174 139.675 99.384 100.457

mean 88.129 88.447 0.778 130.943 119.298 93.230 79.470
median 87.681 88.539 0.487 93.994 120.185 92.285 80.932

std 7.592 7.853 0.751 79.510 13.101 7.717 15.721

Table 5.2 shows the mean and median number of beats determined for all tracks
and systems. Here we can see the advantage of the madmom system. Even though
the average tempo determined by lib_avgGT is closest to the reference, the median
number of detected beats is 12 (11 for lib_avgGT). Besides, the number of tracks in
which exactly 12 beats were detected is 25 for madmom and only 3 for lib_avgGT
(out of a total of 33 recordings).

5.4 Discussion
Although lib_avgGT is the best system chosen according to the results of average
tempo detection, the most suitable system for musicological analysis of the rhythmic
structure and tempo estimation is madmom (RNN based). The accuracy of detec-
tors is usually compared by F-score (F-measure) metrics, however, this is not the
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Tab. 5.2: Number of beats detected for each track from the dataset.

track lib lib_t lib_avgGT madmom

CD01 13 14 11 12
CD02 7 18 10 9
CD03 28 12 11 12

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

CD33 5 18 11 12

mean 15.788 16.212 11.636 11.152
median 11 16 11 12

12 beats 1 2 3 25

most important factor for application in music analysis. Until the systems reach an
F-score of about 0.95 and higher, a manual correction will always be needed for the
analysis to be truly meaningful. The key factor here is the minimization of the re-
searcher’s time in correcting the actual time positions of the beats in the individual
recordings. Of course, this article is limited to comparing only a few detectors, but
librosa is considered a conventional system and madmom a state-of-the-art [127]. It
is also a question of whether neural network-based systems should not be considered
conventional today. Sonic Visualiser uses the BeatRoot system, which is similar to
librosa but older and less accurate. Detectors based on neural networks are not
accessible in this software, as they remain as testing tools in the development envi-
ronment (Sonic Visualiser uses Vamp plugins), although they offer high potential for
musicological analysis. Until they are implemented in a user-friendly environment,
musicologists will not use them and their application will depend on the cooperation
of musicologists and researchers in the field of MIR.

5.5 Conclusion
This article deals with the application of beat tracking systems for musicological
analysis. It tests selected systems on recordings of string quartets, which are gener-
ally very challenging for detectors. The test dataset of recordings is well segmented
and annotated, which is also confirmed by the additional calculation of the difference
between GT and GTT. Madmom seems to be the most suitable system (of the se-
lected detection systems), as it provides relatively high accuracy in determining the
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average tempo and also estimated the correct number of beats in 25 cases out of 33.
The detector from the librosa module, despite the preset start tempo, was able to
identify precisely 12 beats in only 3 cases. It should be noted that the system missed
only once (i.e. detected 11 or 13 beats) in 21 cases. From a technical point of view,
musicological analysis requires minimizing the time spent on manually editing the
annotation and ground truth. Accurate determination of tempo, and time positions
of beats, but also their number, is an important factor for testing the validity of
detection systems for musicology analysis and their future use in analysis software.
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6 Possibilities of Automated Annotation
This chapter is based on the conference article “Exploring the Possibilities of Auto-
mated Annotation of Classical Music with Abrupt Tempo Changes” [9].

In this paper, we introduce options for automatic measure detection based on
synchronization, beat detection, and downbeat detection strategy. We evaluate
the proposed methods on two motifs from the dataset of Leoš Janáček’s string
quartet music. We use specific user-driven metrics to capture annotation efficiency
simulating a scenario where a musicologist has to use the output of an automated
system to create ground-truth annotations on given recordings. In the case of the
first motif, synchronization outperformed other methods by detecting most of the
measure positions correctly. This procedure was also the most suitable for the
second motif—it achieved a low number of correct detections, but the vast majority
of transferred time positions belonged within the outer tolerance window. Therefore,
in most cases, only shifting operations were needed resulting in higher annotation
efficiency. Results suggest that state-of-the-art downbeat tracking is not yet efficient
for expressive music.

6.1 Introduction
Music Information Retrieval (MIR) is a well-established interdisciplinary area that
combines technical approaches and methods with musical analysis. The MIR re-
searchers deal with many music-driven tasks, such as automatic detection of musical
features and high-level parameters, user-centric semantic retrieval, recommendation
systems, or transcription of audio recordings into symbolic representations [128]. In
this paper, we focus on the automatic identification or detection of measure (bar)
positions in string quartet recordings, which is closely related to the challenges of
Musical Performance Analysis (MPA).

Measures are musically meaningful segments with defined metric patterns. Re-
garding Western music notation, information about their exact position in a given
musical hierarchy is automatically encoded in the corresponding score (sheet mu-
sic). To obtain measure positions in structurally complex music such as string
quartets, one needs to have a score available. Manual labeling and annotation is
a time-consuming procedure but it is a common approach to obtaining ground-truth
data. However, recent developments in machine learning methods may change this
workflow.
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One of the most established topics in MIR is beat tracking or beat detection1.
A standard beat tracking system outputs a vector of time positions that correspond
to individual beats in a given music recording. In our case, we want to obtain only
the first beat of each measure—such detectors do not usually distinguish the beat
index within measures. Therefore, downbeat tracking systems have been developed
which, together with the time position of beats2, also estimate their position in
a musical structure. The second option is a strategy based on a synchronization
procedure. The general goal of music synchronization is to establish an alignment
between musically corresponding time positions (measures, in this case) of the same
piece (e.g., audio-to-score or audio-to-audio alignment) [129].

In this paper, we focus on computer-generated annotations and test the state-of-
the-art offline beat and downbeat tracking for measure detection on chamber music.
We compare the detectors with the music synchronization technique and evaluate
all methods by a user-driven metric.

6.2 Methods

6.2.1 Dataset

First, we introduce our dataset, which consists of two separate motifs from Janáček’s
String Quartet No. 1 “Kreutzer Sonata”, JW 7 No. 8 and String Quartet No. 2 “In-
timate Letters”, JW 7 No. 13, respectively. Figure 6.1 shows a score for the first
motif. This motif contains 11 measures of the first movement. At the beginning, all
strings except violoncello play con sordino3 and the second violin uses finger tremolo4

technique which may blur the starting point of the second bar. Furthermore, the
overall dynamics is higher for the upbeat than for the downbeat. After subito forte
(suddenly loud), the tempo changes rapidly with possible local deviations based
on individual interpretation. The second motif contains 10 measures of the second
movement. It is even more complex within the metric structure with many accents
in the middle of measures. We selected these excerpts for their various tempo, chal-
lenging structure, and expressive nature. We gathered 17 different interpretations
for each motif and carefully annotated all ground-truth measure positions. In our
experiments, the first recording from both motifs by the Belcea Quartet (year of
recording 2018) was selected as a reference. The remaining recordings were used for
testing purposes.

1In the context of this paper, we use the terms beat tracking and beat detection interchangeably.
2The system outputs the probability of beats and downbeats separately.
3A technique that uses a “mute pad” to soften the produced sound.
4The player uses fingers to alternate rapidly between two notes.
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Fig. 6.1: The score for the first motif of our dataset.

6.2.2 Beat and Downbeat Detection

Beat tracking systems provide time positions of computed beats for any given music
recording. In the case of neural network-based approaches, their output is usually
an activation function—its value within a specified feature rate is related to the
novelty function or confidence of beat occurrence. Then, peak-picking methods or
probabilistic and statistical methods, such as conditional random fields or Dynamic
Bayesian Networks (DBN), are often used.

In this paper, we use a beat detector based on the variant of Recurrent Neural
Network (RNN) [111] in combination with DBN [106] and a downbeat detector also
based on RNN [116] and DBN but with different settings and functionality. We kept
the default settings for the DBN with a range of possible tempo detection between
55 and 215 BPM (beats per minute). This system will demonstrate the problematic
part of beat tracking when applied to expressive chamber music.

The DBN estimator of downbeats outputs two vectors of data. The first one
contains time positions of beats and the second their index within a measure—e.g.,
output vector 𝐵 = [2.5, 3] shows the third beat of a measure in the time of 2.5 s.
Thus, we have selected only those beats that correspond to the first position of each
measure creating a downbeat sequence. Ideally, the output of this modified detector
should produce only the beginning of each measure and follow the ground-truth
data structure. We also added the prior knowledge (2 or 3 beats per bar) about the
metric structure of selected motifs into the detector.

6.2.3 Synchronization Method

The second option to obtain time positions of measures is a synchronization pro-
cedure. This is a common approach in MPA due to its advantages. In our experi-
ment, we use an alignment method based on a variant of Dynamic Time Warping
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(DTW), called Memory-restricted Multiscale DTW (MrMsDTW) that is faster and
may provide a better synchronization accuracy [45]. First, we compute chroma en-
ergy normalized statistic (CENS) features [130] of reference and target recording
with a resolution of 50 features per second. The MrMsDTW is applied to compute
a cost-minimizing alignment between both CENS matrices and the resulting warp-
ing path is limited to be strictly monotonic by postprocessing. The ground-truth
annotations are then transferred from the reference to the target recording by the
resulting warping path.

This strategy has an advantage over the automated detectors—there will be
always the right number of measures detected. The question is whether chroma
features contain enough information for alignment to work accurately e.g. in music
structures, where there is almost no new information present, but measure number
increases.

6.2.4 User-driven Metric

Each machine annotation of musical content usually ends with a certain number
of mislabeled time positions. Either the desired time point may not appear in the
machine annotation at all, or it is misplaced. In [131], the authors introduced the
annotation efficiency (𝑎𝑒) metric, which is based on how much effort a user has to
exert to manually correct detections by shifting, deleting, or inserting time positions.
The insert and delete operations correspond to the counts of false negatives and false
positives, respectively. The shifting should theoretically be counted twice, once as
a false positive and the second time as a false negative. In practice, however, it is
more sensible to count this operation separately and prioritize it over deletion and
insertion, since it is the most common correction performed by the user.

The process of calculating the 𝑎𝑒 metric is as follows. First, an inner tolerance
window of ±70 ms is created around each ground truth annotation. Then, the
true positives (unique detections), 𝑡+, are counted. Detections that match ground
truth annotations are removed from further calculations and incorrect detections
are marked as candidates to be shifted or removed. For each remaining annotation,
an outer tolerance window of ±1 s is then created to search for the closest detection
that does not match the ground truth. If there is a detection in this window, it
is marked as a shift. After the analysis of unaccounted detections, the number of
shifts 𝑠 is calculated. The remaining annotations correspond to false negatives, 𝑓−,
with leftover detections marked for deletion and counted as false positives, 𝑓+. The
𝑎𝑒 metric is defined by the following equation:

𝑎𝑒 = 𝑡+/(𝑡+ + 𝑠 + 𝑓+ + 𝑓−). (6.1)
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6.3 Results
First, we transferred the ground-truth annotations based on the DTW alignment
method, then calculated beats and downbeats as described in section 6.2. Figure 6.2
shows the user-driven metric computation and the pipeline with all possible oper-
ations for one of the recordings. Operations are marked with different colors to
increase readability. We kept the same inner and outer tolerance window as the
original beat tracking evaluation in [131].
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Fig. 6.2: The user-driven metric for synchronization, beat tracking, and downbeat
tracking strategies; evaluation of the Tokyo Quartet recording, first motif.

In this case, the synchronization procedure outperforms all other methods. The
final synchronized positions are not in the exact time positions, however, they mostly
fit into the inner tolerance window. The value of beat confidence for the downbeat
tracker was in the first motif too low—measures that have an ambiguous nature were
not detected at all and measures of a faster-paced segment with an abrupt change
of rhythmic structure were partially omitted. On the other hand, the RNN beat
tracker detected many false positives. The DBN method fills the positions between
confident output beats based on their past and future occurrence—this method can
work well with small deviations of tempo but fails when the rhythmic and metric
structure is unpredictable and highly changing.

Table 6.1 shows the sum of all operations and annotation efficiency, recall, and
precision for both motifs and each method. Synchronization outperformed other
methods for the first motif with 142 correct detections and only 36 additional op-
erations. In the second scenario, however, the beat tracking captured the highest
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number of correct measure positions. Although the synchronization method achieved
the lowest number of all corrections and the best annotation accuracy, recall and
precision remained low. Recall and precision scores may give the impression that
beat and downbeat detection are more suitable tools for the automatic detection of
measure positions in a complex structure, but the number of deletion operations re-
veals that they are, in fact, counterproductive in this scenario. None of the proposed
methods was successful considering only the second motif.

motif 1 (176 measures in total)
method ∑︀ det ∑︀ ins ∑︀del ∑︀ shf ∑︀ ops 𝑎𝑒 𝑅 𝑃

beat t. 70 42 167 64 273 0.208 0.375 0.225
downbeat t. 33 116 35 27 178 0.155 0.176 0.329
sync 142 2 2 32 36 0.799 0.727 0.727

motif 2 (160 measures in total)
method ∑︀ det ∑︀ ins ∑︀del ∑︀ shf ∑︀ ops 𝑎𝑒 𝑅 𝑃

beat t. 67 0 516 93 609 0.101 0.356 0.087
downbeat t. 38 61 54 61 176 0.196 0.194 0.219
sync 38 11 11 111 133 0.224 0.156 0.156

Tab. 6.1: The number of detections, insertions, deletions, shifts, and total correc-
tions, annotation efficiency, recall, and precision for each motif and method.

6.4 Discussion
The synchronization procedure, even if it always detects the correct number of mea-
sures, relies only on chroma features, their resolution, and DTW accuracy. The
ground-truth annotations may not be always precise—the resulting warping path
can transfer reference time positions with some deviations. It depends, e.g., on the
harmonic structure, occurrence of onsets, or the ADSR envelope of given instru-
ments. If we tolerate larger deviance (such as 100 ms), almost all annotations will
be transferred correctly.

The beat detector has shown an experimental role in illustrating the function
of predicting the rhythmic structure and beat occurrence. In the second motif,
it achieved the best recall and number of correct measure positions. However, it
also detected too many false positives; that would be true even if ground-truth
annotations were based on beat positions. The method of filling in beats, even in
places where there is no underlying information, can work well in simpler musical
structures without significant changes in rhythm and meter. Furthermore, detectors
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are usually trained on specific audio datasets, for which there are manual ground-
truth annotations available—string quartet music is not among them.

The downbeat detector was not sensitive enough or predicted false beat indexes,
although it contained prior knowledge about the musical structure (see section 6.2.2).
Table 6.1 shows that so far, the only valid option for expressive string quartet music
with many abrupt tempo changes, local tempo deviations, and weak onset and beat
positions, is the synchronization strategy. Its accuracy can be improved by the
choice of additional features for the alignment procedure. In this case, however, the
ground-truth annotations are always needed.

6.5 Conclusion
In this contribution, we proposed and evaluated different methods of obtaining mea-
sure positions in string quartet music. We first created reference ground-truth data
and then compared the synchronization method, beat tracking, and downbeat track-
ing based on a specific user-driven metric. This metric allows us to calculate the
number of operations that one needs to make to obtain the ground-truth annotation
of measure positions. We tested different strategies on two carefully selected string
quartet motifs from Leoš Janáček’s compositions. Both proposed segments are mu-
sically challenging, they contain many weak onset positions, ambiguous beats, and
abrupt tempo and rhythm changes. Results suggest that the synchronization method
is superior to all other possible options. Beat and downbeat tracking approaches
are not yet efficient on very expressive pieces of classical music.
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Part II: Analysis of Performance
Differences
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7 Feature Extraction Pipeline for MPA
This chapter is based on the conference article “Towards Automatic Measure-Wise
Feature Extraction Pipeline for Music Performance Analysis” [10].

The task of obtaining ground-truth annotations is of fundamental importance for
Music Performance Analysis. Measure positions could be used to navigate through-
out the piece, indicate the tempo changes, or help with structure segmentation.
In this paper, we introduce an automatic measure-wise feature extraction pipeline.
We first annotate one interpretation of the string quartet music and use an audio
synchronization strategy to transfer measure positions to all other recordings. We
extract features related to tempo, dynamics, and timbre. We compute average val-
ues in each measure and propose measure-wise feature matrices. This procedure
could be used for any number of recordings as long as at least one reference anno-
tation is available. Finally, we create a binary label for each interpretation based
on the Czech origin of performers as an experiment and evaluate the measure-wise
tempo distribution.

7.1 Introduction
In Music Information Retrieval (MIR), there are still many challenging tasks. Meth-
ods of MIR have a significant impact on the interdisciplinary field of Music Perfor-
mance Analysis (MPA) [24]. MPA research focuses, e.g., on the characteristics of
interpretations and their differences. The goal of analysis always depends on the
context. For example, beat detection is a well-known MIR challenge that arose
originally from musicology. In the context of both MIR and MPA fields, one wants
to obtain the time positions of beats within given music recordings. However, in
MIR, beat detectors are usually evaluated by many metrics [78] to capture different
aspects of the output system’s accuracy. On the other hand, for MPA researchers,
the goal is to obtain all correct beat positions with 100% accuracy. Music experts
and musicologists can use automated systems to create “candidates” that may or
may not be beats. They need to edit these candidates manually in specialized soft-
ware such as Sonic Visualiser [108]. Even a small error may impact the analysis.
Higher F-score or metrical level-based metrics do not necessarily indicate a more
suitable detector for performance analysis. There are, however, some exceptions,
e.g., user-driven metric proposed in [131].

In this paper, we combine MIR techniques to obtain meaningful data for MPA
purposes. We focus on the automatic extraction of features for further music perfor-
mance analysis. Our goal is to automatically obtain specific temporal information
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and extract features in a measure-wise fashion. This is possible even for string quar-
tets, thanks to the relatively high synchronization accuracy. We follow a specific
pipeline for segment separation based on the annotation of a reference recording,
audio-to-audio synchronization, and specific feature extraction. In the future, ma-
chine learning methods could be used in combination with proposed feature matrices
for classification tasks (such as the origin of performers). However, measure positions
would be needed in advance. In our experiments, we use the String Quartet No. 12
in F major, Op. 96, by Antonín Dvořák, to demonstrate the pipeline and possible
evaluation for further music analysis. The rest of the paper is organized as follows:
Section 7.2 describes the experiments and methods of annotation, audio-to-audio
synchronization, and feature extraction. The results are presented in Section 7.3,
followed by a conclusion in Section 7.4.

7.2 Experiments and Methods

7.2.1 Dataset

To demonstrate the proposed feature extraction pipeline and evaluation, we gathered
76 different recordings (interpretations) of the String Quartet No. 12 in F major,
Op. 96, 3rd movement, composed by Antonín Dvořák. The sum of the duration of
all interpretations for the 3rd movement is given in Table 7.1. The total duration
of all recordings combined is roughly 5 hours. We also denote the Czech performers
as label 1 and the rest as label 0 for further evaluation.

Tab. 7.1: Recording identifier, duration of each recording, and a label for Czech
performers (label 1) and all others (label 0).

rec ID duration [s] label 1 label 0

001 225.57 False True
002 216.93 False True
003 248.34 True False
· · · · · · · · · · · ·
076 249.12 False True

total 17746.10 18 58
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7.2.2 Annotation

In our experiments, we wanted to extract reliable features from all interpretations to
evaluate all interpretations or compare their differences. We first used beat tracking
and downbeat tracking approaches to find the measure (downbeat) positions, but
the results were not sufficient. We manually annotated measure positions of one
interpretation (chosen as a reference recording) to obtain ground-truth (GT) data.
Time positions of measures may provide sufficient resolution and useful information
for further evaluation [129]. They are also used in many MIR tasks, music analysis,
or music navigation. If the goal of evaluation or required time resolution changes,
one can annotate, e.g., beats instead.

One of the problems of MPA is the small number of recordings in datasets
and thus the lack of generalizability [24]. Sometimes, only a few recordings are
analyzed—manual labeling on a larger scale is very time-consuming and tedious. In
our case, we annotate only one recording and automatically acquire annotations for
all other recordings based on the audio-to-audio synchronization strategy. This way,
we can use a large number of recordings. However, the chosen method for obtaining
relevant data should always depend on the goal and context of the performance
analysis.

7.2.3 Synchronization

To obtain measure positions for each interpretation, we resample all recordings to
22 050 Hz and compute the time alignment of the reference and all target record-
ings following the sync-toolbox pipeline1 [56]. First, a variant of chroma vectors, also
known as Chroma Energy Normalized Statistics (CENS) features [130], is computed.
The tuning is estimated to shift features accordingly, and the Memory-restricted
Multiscale DTW algorithm (MrMsDTW) [45] is applied to find the optimal align-
ment between both recordings. If the synchronization procedure is surpassed in the
future, it will be possible to change or adjust the method and obtain more precise
results. Measure positions are then transferred from the reference to the target
recording based on the warping path.

A common problem when dealing with performance differences and analysis is
the music structure ambiguity. In this step, we can automatically detect structure
differences. If the reference and target recording have the same music structure and
harmonic progression, the warping path would be more or less diagonal. Figure 7.1
shows the warping path of MrMsDTW for an exemplary case when the music struc-
ture differs. We can see the horizontal path indicating a repetition in the target

1Available: https://github.com/meinardmueller/synctoolbox (accessed on 21 April 2022)

100

https://github.com/meinardmueller/synctoolbox


recording. We can automatically discard such cases by calculating a difference be-
tween all synchronized measure positions (or the slope of a warping path). If the
difference is larger or smaller than a certain threshold, we remove this recording
from the feature extraction. In our experiments, we used two thresholds: 𝜏1 > 12 s
checks if there is an extra repetition at the beginning or inside the recording and
𝜏2 < 0.1 s if there is a part missing. Considering the 3rd movement, however, all
obtained recordings followed the same structure.

Fig. 7.1: An example of the cost matrix and alignment path of the reference and
target recording. The horizontal path marked with blue dashed lines indicates rep-
etition within the target recording.

The alignment method cannot, so far, replace the manual annotation process
when dealing with time-precise annotations. The methods to obtain relevant data
always depend on the goal of analysis, and they should be chosen accordingly. To
demonstrate the synchronization accuracy, we manually annotated the second ref-
erence recording and computed the mean 𝑑mean and median 𝑑med difference between
GT positions of the second reference and the transferred measure positions from
the first reference recording (see Table 7.2). We found out that 𝑑mean = 40 ms and
𝑑med = 19 ms. The chosen alignment strategy provides relatively accurate results
if our goal is a measure-wise resolution (the median duration of measures in the
reference recordings equals 754 and 791 ms, respectively).

In the proposed pipeline, we do not extract features based on the warping path
itself, e.g., as in [132]. We use the synchronized measure positions to divide au-
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dio recordings into small parts (that correspond to the duration of measures) and
compute the features of each part separately.

Tab. 7.2: Two reference recordings used in the synchronization pipeline; mean and
median duration of all GT measures; mean and median differences between GT and
synchronized measures for both reference scenarios.

rec mean dur med dur mean & med diff mean & med diff

ref 1 832 ms 754 ms reference 28 ms; 18 ms
ref 2 908 ms 791 ms 40 ms; 19 ms reference

7.2.4 Features

Synchronized measure positions give us an overall time grid for feature extraction.
They also segment recordings into logical musical structures that could be later
selected and used for the evaluation. The music performance parameters can be
divided into a few basic categories [24]:

• dynamics – how the loudness varies based on phrasing, accents, tension, or
musical structure;

• timing (tempo) – rhythmic structure, micro-timing (onsets or beats), global
tempo, or local tempo deviations;

• timbre – choice of instrumentation, instruments, playing techniques, and acous-
tic conditions;

• pitch – intonation, deviations from the score, and choice of playing techniques
such as vibrato.

Most of the parameters cannot be unconditionally connected to the direct seman-
tic level. For example, timbre is a very ambiguous parameter if the context, acoustic
conditions, recording and encoding choices, or post-processing options are not taken
into consideration. We first normalized all recordings to −26 LUFS (Loudness Unit
Full Scale)2 so that the overall dynamics could provide useful information when com-
paring extracted features of each measure. We selected three parameters to cover
tempo, loudness, and timbre to some degree. We computed signal length (dura-
tion), Root Mean Square (RMS) value, and log mel spectrogram in a measure-wise
fashion.

2The LUFS are described in EBU R 128 recommendation. Available: https://tech.ebu.ch/
docs/r/r128.pdf (accessed on 21 April 2022)
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To obtain tempo information, the source audio signal (each measure) is first
converted to a sampling rate of 22 050 Hz. We derive tempo 𝑇 simply as:

𝑇 = 60 · 𝐵

𝑑
, (7.1)

where 𝑑 is the duration of a given measure and 𝐵 = 3. The whole 3rd movement
is in 3

4 time signature. Next, segmentation into frames of 2048 samples with a hop
size of 512 samples is performed. We calculate the RMS value for each frame 𝑥

according to the equation:

𝑥RMS =

⎯⎸⎸⎷ 1
𝑁

𝑁−1∑︁
𝑛=0

𝑥(𝑛)2, (7.2)

where 𝑁 is the length of the audio frame in samples and 𝑛 is the sample index. In
the case of the log mel spectrogram, each signal frame (with the same parameters
as for RMS) is first multiplied by a Hann window, and the real part of the complex
spectrum is obtained using the Short-Time Fourier Transform. We chose to limit
the frequencies: 65 Hz – 8 kHz (65 Hz roughly corresponds to the lowest tone C2
produced by a violoncello). Then, the power spectrum is calculated as a squared
magnitude of the complex coefficients. The power spectrum is further converted
into a mel-scaled power spectrum using a mel-filterbank of 64 filters. The number
of bands is inspired by audio pattern recognition evaluation [133]. The final step is
to convert the magnitudes to decibels by:

𝑆dB = 10 log10(𝑆), (7.3)

where 𝑆 is the mel-scaled power spectrum. All values were averaged within each
measure. The final feature matrix structure for the reference recording is shown in
Table 7.3.

Tab. 7.3: The feature matrix of the reference recording: measure index, duration in
seconds, mean values of RMS, and mean magnitude of 64 mel bands in decibels.

measure 1 2 3 ... 244
duration 0.830 0.647 0.824 ... 3.784
rms 0.026 0.023 0.035 ... 0.011
melbin1 −28.792 −23.068 −27.275 ... −16.921
melbin2 −25.918 −25.502 −23.861 ... −5.682
melbin3 −21.770 −24.522 −20.031 ... −5.270
... ... ... ... ... ...

melbin64 −52.002 −48.377 −47.645 ... −60.313
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The matrix can be easily enhanced by a different choice of features; however, the
number of measures always corresponds to the reference. In the last step, we created
a binary label for each interpretation based on the available information about the
origin of performers to demonstrate the evaluation (see Table 7.1). Although the
labels are not distributed equally in the dataset (18 vs. 58), the motivation here
is that Czech string quartets may play the music of a Czech composer slightly
differently based on musical traditions and cultural predispositions. We do, however,
understand that this categorization may be questionable.

7.3 Results
Figure 7.2 shows the mean tempo and RMS values for each measure. All 76 feature
matrices are averaged into one representation. The red dotted lines in Figure 7.2a
specify the negative peaks of the curve.
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Fig. 7.2: Mean tempo curve and mean values of RMS for all recordings. The red
dots indicate troughs or negative peaks of the tempo curve.

The overall tempo progression depends on the underlying musical structure.
When there is a key or motif change, it is indicated by a ritardando (slowing down).
These regions correspond to the red dotted lines (measures 48, 72, 96, 144, 148,
172, and 196). The RMS curve seems to follow this pattern with additional peaks
throughout the piece. Figure 7.3 shows the final log filtered mel spectrogram for
mean values of all feature matrices. This way, we can visualize average spectrum
values for each measure within the whole dataset. This spectrogram could be further
used as a tool for statistical timbre evaluation as it contains information from all
available interpretations combined.
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Fig. 7.3: The log filtered mel spectrogram: the x-axis indicates measures; the magni-
tude of each mel bin is converted to dB and averaged throughout the whole dataset.

Furthermore, the absolute tempo difference for each measure between Czech and
other performances is given in Figure 7.4a. Values seem to be shifted toward positive
numbers—positive difference means that Czech performers play the same segment
at a higher tempo. On the other hand, the most prominent peaks of this curve
correspond to negative values (measures 72, 146, 172, and 195). These positions
also align with regions of the key or motif changes. Figure 7.4b shows the same
scenario, but the labels were chosen randomly. Here, the range of deviations on the
𝑦-axis is much smaller, and the values seem to follow the normal distribution.
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Fig. 7.4: From top to bottom: The absolute tempo difference between the Czech
and non-Czech labels for each measure and a corresponding histogram; the same
scenario but both labels were chosen randomly.
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7.4 Conclusion
In this work, we have presented a specific pipeline of feature extraction for MPA
purposes. The synchronized time positions based on reference measure annotations
are first used to physically segment recordings. Then, the mean value of features is
calculated measure-wise. We can use this method for a dataset of arbitrary length
as long as the synchronization procedure is accurate relative to the nature of GT
annotations. We gathered 76 interpretations of the 3rd movement of the String
Quartet No. 12 by Antonín Dvořák, extracted proposed feature matrices, and eval-
uated them based on the origin of performers. Results of experiments suggest that,
in this case, there may be a difference between Czech and other interpretations. It
seems that they tend to play faster but slow down more when there is a change of
key or musical structure. In the future, we plan to use the proposed feature matri-
ces for a specific MPA task—binary classification of the origin of performers using
machine learning methods.
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8 Classification of Interpretation Differences
This chapter is based on the journal article “Classification of Interpretation Differ-
ences in String Quartets Based on the Origin of Performers” [11].

Music Information Retrieval aims at extracting relevant features from music
material, while Music Performance Analysis uses these features to perform semi-
automated music analysis. Examples of interdisciplinary cooperation are, e.g., vari-
ous classification tasks—from recognizing specific performances, musical structures,
and composers to identifying music genres. However, some classification problems
have not been addressed yet. In this paper, we focus on classifying string quar-
tet music interpretations based on the origin of performers. Our dataset consists
of string quartets from composers A. Dvořák, L. Janáček, and B. Smetana. After
transferring timing information from reference recordings to all target recordings,
we apply feature selection methods to rank the significance of features. As the main
contribution, we show that there are indeed origin-based tempo differences, distin-
guishable by measure durations, by which performances may be identified. Fur-
thermore, we train a machine learning classifier to predict the performers’ origin.
We evaluate three different experimental scenarios and achieve higher classification
accuracy compared to the baseline using synchronized measure positions.

8.1 Introduction
Music Information Retrieval (MIR) deals with extracting, processing, and organizing
meaningful features from music material [128]. From the analysis of audio signals to
symbolic representations and musical blueprints (score), MIR focuses on many chal-
lenging tasks such as content-based search, music tagging, automatic transcription,
feature detection, music recommendation, and much more [30]. MIR methods sig-
nificantly impact the Music Performance Analysis (MPA) field [24], providing more
accurate detectors and possibilities for automated music analysis. In the case of
classical music, a performance affects how listeners perceive a piece of music. Each
interpretation may be special thanks to, e.g., modifying information from the score
and converting various musical ideas into musical renditions [128]. The communi-
cation between members of ensembles also shapes a performance [134, 135, 136].
Classification tasks, such as the classification of music genres [137, 138], mood [139],
music structures [140], or composers [141, 142], are examples of interdisciplinary
approaches—a combination of MIR techniques with MPA, musicology, and music
analysis.

Music-related classification problems are common [143, 138], but only the mini-
mum deals with the classification of origin-based or music school-related differences
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of interpretations. In this paper, we combine MIR techniques with MPA goals.
We focus on identifying the differences between interpretations of the same musical
composition. In other words, we aim to create a classifier that could differenti-
ate music performances based on the origin of a given composer. If it is possible
to train a classifier, we can conclude that there are noticeable differences. To our
best knowledge, there is only one study [144] with a similar goal using machine
learning besides studies with a phylogenetic approach [140] or comparative music
analysis [98, 145, 146]. However, there are many studies combining MIR and MPA
disciplines and focusing on expressive performance [147, 148]. Machine learning
models have been researched in the MPA community for, e.g., modeling nuances of
dynamics and timing of expressive performances using inter-onset-intervals with Hid-
den Markov Models [149] and linear regression [150], or score following tasks [151].
Many other approaches to computational modeling of expressive performance also
include neural networks [150, 152, 153].

We focus on string quartet music from Czech composers Antonín Dvořák, Leoš
Janáček, and Bedřich Smetana. First, we collect a large dataset (compared to the
average size of MPA datasets, see [24]) and label each recording to create two classes:
Czech and non-Czech interpretations. The underlying hypothesis is that the Czech
performers may play the piece differently, e.g., considering the same cultural back-
ground and tradition shared with the composers of the analyzed music. We can
address this problem quantitatively thanks to the increasing number of available
recordings and the accuracy of synchronization methods [56, 154]. We extract rel-
evant timing-related features from all interpretations that may cover information
about the expressiveness of a given performance and construct feature matrices to
train and test a machine learning classifier. Figure 8.1 shows the overview of our
classification approach.
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Fig. 8.1: Overview of the proposed classification strategy.
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As this paper’s main contribution, we show a general trend in the rhythmic
conception (duratas) of given string quartets based on the proposed binary classes.
Although various music schools, cultures, and traditions influence musicians, we can
train a classifier to identify Czech and non-Czech interpretations of given string quar-
tets with relatively high accuracy in most cases. To better understand the features
and classification results (and why it is possible to train such a classifier), we split
our experiments into three scenarios, each applying a different time resolution of
features. Unlike the approach in [144], we use various string quartets, more record-
ings, and extract features based on a semi-automated approach instead of relying
on automated systems with a possibility of significant misdetection. Furthermore,
we support our feature selection with MPA principles (see Section 8.3.1) to focus
only on timing parameters that may show the expressiveness of music performances
(third scenario). We can achieve high classification accuracy if the selected features,
derived from ground-truth (GT) data and a synchronization strategy, capture local
tempo deviations. We understand the controversial nature of defining the “origin”
of musicians and splitting our dataset into two binary classes; however, we want to
show that the interpretation differences may be significant when using a machine
learning method, even though they wouldn’t be qualitatively noticeable by music
experts. We do not claim that a difference in interpretation has any quality to
it—we only show that there is a difference. To provide additional data, we share
a GitHub repository1.

The rest of the paper is organized as follows. Section 8.2 introduces the string
quartet dataset, annotation, labeling process, and audio-to-audio synchronization
and compares automated and semi-automated approaches for measure detection.
Section 8.3 describes a feature selection, visualization method, dimensionality re-
duction, and design of experiments. The results are reported in Section 8.4, fol-
lowed by a discussion in Section 8.5 and conclusions with prospects for future work
in Section 8.6.

8.2 Methods
This section introduces our string quartet dataset, annotation process, and audio-
to-audio synchronization strategy to obtain transferred measure positions. We show
the validity of synchronization accuracy by comparing the automated downbeat
tracking systems with the semi-automated synchronization procedure.

1github.com/xistva02/Classification-of-interpretation-differences (accessed on 10 March 2023)
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8.2.1 Dataset

We collected string quartets of Antonín Dvořák, Leoš Janáček, and Bedřich Smetana
from various sources, such as the Naxos Music Library, the Czech Museum of Music,
and Masaryk University. Each composition is divided into four movements—in the
following text, each movement is regarded as a separate recording. The composers,
compositions, and movements (Roman numerals) are divided as follows.

• Antonín Dvořák:
– String Quartet No. 12 in F major, Op. 96

I. Allegro ma non troppo
II. Lento

III. Molto vivace
IV. Vivace ma non troppo

– String Quartet No. 13 in G major, Op. 106
I. Allegro moderato

II. Adagio ma non troppo
III. Molto vivace
IV. Andante sostenuto

– String Quartet No. 14 in A♭ major, Op. 105
I. Adagio ma non troppo

II. Molto vivace
III. Lento e molto cantabile
IV. Allegro non tanto

• Leoš Janáček:
– String Quartet No. 1, “Kreutzer Sonata”, JW 7/8

I. Adagio con moto
II. Con moto

III. Con moto – Vivace – Andante – Tempo I
IV. Con moto

– String Quartet No. 2, “Intimate Letters”, JW 7/13
I. Andante

II. Adagio
III. Moderato
IV. Allegro

• Bedřich Smetana:
– String Quartet No. 1 in E minor, “From My Life”, JB 1:105

I. Allegro vivo appassionato
II. Allegro moderato à la Polka

III. Largo sostenuto
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IV. Vivace
– String Quartet No. 2 in D minor, JB 1:124

I. Allegro
II. Allegro moderato

III. Allegro non più moderato, ma agitato e con fuoco
IV. Presto

For more details about compositions, we refer to International Music Score Li-
brary Project (IMSLP)2. Most versions are studio recordings, but we also keep the
live versions. Table 8.1 shows the composers, musical compositions, the number of
recordings, binary labels (classes) of the performer’s origin (1 refers to the Czech
class and 0 to the non-Czech class), and the total duration of all interpretations of
the given composition combined. Our dataset consists of 1315 string quartet record-
ings with a total duration of roughly six days. We focused on the well-known string
quartets of Czech composers, increasing the probability of gathering enough data
for the proposed analysis.

Tab. 8.1: The original dataset of string quartets from Czech composers; composer
(csr), composition (com), the number of different interpretations (recs), class 1
(Czech interpretation), class 0 (non-Czech interpretation), and total duration (dur)
of all recordings in hh:mm:ss or dd:hh:mm:ss format.

csr Dvořák Janáček Smetana
com No. 12 No. 13 No. 14 No. 1* No .2 No. 1 No. 2 Σ
recs 304 100 92 264 280 171 104 1315
class 1 72 40 40 88 80 75 84 479
class 0 232 60 52 176 200 96 20 836
dur 32:34:28 15:58:55 12:22:27 19:52:32 30:08:06 20:36:51 8:01:24 05:19:34:43

* In this case, the number of recordings varies within movements.

We understand this labeling is problematic (performers may study abroad and
be inspired by many composers, teachers, musicians, and interpretations). However,
Czech musicians may play the string quartets of Czech composers differently, inher-
iting a specific style or carrying on the music tradition that led to the compositions
in the first place. Such labeling could be later changed (such as Europe/rest of the
world or Central Europe/Western Europe) with different aims of the analysis. As
we show in this study, specific details in the tempo of measures may differentiate
performers, perhaps even without their prior intention.

2https://imslp.org/ (accessed on 10 March 2023)
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Based on the open-source policy, we would like to contribute with string quartet
data to the performance datasets (see [155] and [24]). However, the vast majority
of recordings are not under a CC license. Therefore, we share at least measure
information (annotations) of each interpretation and composition in the GitHub
repository.

8.2.2 Annotation

To characterize or evaluate differences in interpretations, we want to obtain or ex-
tract reliable timing information from each recording (see Section 8.3.1). First,
we used automated methods with little success (see Section 8.2.4). We manually
annotated one interpretation (chosen as a reference recording) per composition to
obtain GT data and acquire annotations for all other interpretations based on the
audio-to-audio synchronization strategy [56].

We considered the sequence of beats or measures as our timing parameter. Both
can describe a given piece’s local and global tempo and can be connected to the
underlying score material. However, we chose measures to easily segment sections
based on the score and reduce the time needed to annotate each reference recording.
Time positions of measures may provide sufficient resolution and valuable informa-
tion for further evaluation [129]. If the goal of analysis or required time resolution
changes, one can annotate and synchronize, e.g., beats instead (see Section 8.2.3).

We annotated GT measure positions (obtaining reference measure positions) for
each reference recording based on a corresponding score. Furthermore, we annotated
sections—meaningful segments of each movement usually marked by numbers or
letters. Table 8.2 shows the number of sections and measures for all compositions
and movements. We did not annotate sections of Smetana’s String Quartet No. 2
as they were not included in the score.

8.2.3 Synchronization

To obtain measure positions for each interpretation, we resample all recordings to
22 050 Hz and compute the time alignment of the reference and all target recordings
following the sync-toolbox pipeline in [56]. First, a variant of chroma vectors, also
known as Chroma Energy Normalized Statistics (CENS) features [130], is computed.
The tuning is estimated to shift CENS accordingly, and the Memory-restricted Mul-
tiscale DTW algorithm (MrMsDTW) [45] is applied to find the optimal alignment
between both chroma representations. Measure positions are then transferred from
the reference to each target recording based on the warping path and final interpo-
lation. Following this strategy, one can obtain any time-related annotation (onsets,
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Tab. 8.2: The number of sections and annotated measures for all recordings of
our dataset; composers, compositions, and movements; x means that data are not
available—either we did not obtain this information from a score or the chosen
reference recording was different from the available score, so we excluded given
recordings from the analysis.

composer composition mov no of sections no of measures

Dvořák

No. 12
mov1 19 239
mov2 9 97
mov3 13 244
mov4 16 382

No. 13
mov1 14 393
mov2 10 202
mov3 13 510
mov4 12 563

No. 14
mov1 11 204
mov2 x x
mov3 7 102
mov4 15 534

Janáček
No. 1

mov1 8 164
mov2 14 236
mov3 9 103
mov4 16 189

No. 2
mov1 17 314
mov2 17 218
mov3 15 216
mov4 24 356

Smetana
No. 1

mov1 12 262
mov2 12 250
mov3 10 97
mov4 18 285

No. 2
mov1 x 140
mov2 x 187
mov3 x 76
mov4 x x

beats, measures, regions) if both reference and target recording follow the same
harmonic and melodic structure and at least one set of GT data is available.

In the case of string quartets, there may be problems with repetitions and,
e.g., codas. As a pre-processing step, we check the structure differences first. We
compute anchor points (the first 10% and the last 90% of the duration of a given
recording), test points projected on the warping path (approximately one point every
two seconds), and connect the anchor points to form a line (see Figure 8.2). We
consider only 10–90% of the warping path to avoid possible applause at the beginning
or end of a recording. Furthermore, we compute the relative slope 𝜏r (the difference
between the slope of the projected line and consecutive points on the warping path)
and absolute slope 𝜏abs (the projected line is not taken into consideration). If 𝜏r > 3
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or 𝜏abs < 0.13, we suspect a structural change in the musical content (see Figure 8.2).
In other words, if the slope of the projected consecutive points is too steep or too
flat, the target recording is not valid for further processing. For example, 𝜏r = 3
corresponds to the situation when the given time segment of the target recording is
played three times faster than the reference recording. Based on our observations
and dataset, it is unlikely for longer time segments even with expressive music
such as string quartets. Following this strategy, we should automatically select all
interpretations that follow the same score. The threshold values 𝜏r and 𝜏abs were
set empirically. If both reference and target recordings are duplicates, the slope of
all consecutive points on the warping path is ideally 1. We discarded all duplicates
and proceeded only with recordings that followed the same structure as a reference
recording. The final number of all interpretations for the classification is given in
Appendix, Tables C.1, C.2, and C.3, depending on the composer.

Fig. 8.2: An example of a warping path between a reference and a target record-
ing; interpretations differ in the underlying musical structure (the target recording
contains measures that are not included in the reference recording); blue dots cor-
respond to the anchor points; the blue line shows the diagonal path between anchor
points; green points (crosses) are projected on the warping path and are equally
distributed; red points (crosses) indicate the region of dissimilarity as their 𝜏r > 3.
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Interestingly, we encountered a situation where two recordings were duplicates
even though they had different duration and audio qualities. One was the original
copy from the phonograph recording; the second was a newer CD release. They
differed in the source (database), metadata, duration, and thus global tempo, audio
quality, and the presence of noise. Audio fingerprinting and image hashing methods
would probably struggle with this case (their goal is slightly different), but the pro-
posed synchronization technique detected the duplicates correctly. The limitation of
this approach, and the reason why it is not commonly used on big datasets, is in its
computational time, which grows with the number of input recordings (synchroniza-
tion pairs) even with optimized DTW methods. The number of all combinations 𝐶

is 𝐶 = 𝑛 · (𝑛 − 1)/2, where 𝑛 is the number of recordings. Adding one track to the
dataset requires running all possible combinations with a given recording again.

8.2.4 Validity of Synchronization Accuracy

In MPA, many timing parameters (onsets, beats, measures, and tempo) may be
derived from GT annotations. In the case of classical music or string quartets,
the automated systems (onset, beat, and downbeat trackers/detectors) still need to
be improved for fully automated analysis. To demonstrate this, we apply a well-
known RNN-based downbeat detector [116] and WaveBeat downbeat detector [115]
to one of the reference recordings with GT data available and compare the results
with the semi-automated synchronization approach. For this purpose, we manually
annotated the second reference recording in the same way described in Section 8.2.2.
We did not use the latest downbeat detector based on Temporal Convolutional
Networks (TCN), introduced in [110], because the pre-trained neural network models
are not publicly available.

Table 8.3 shows the results for both downbeat detectors and a synchronization
strategy. In addition to classical scores for comparing the accuracy of detectors
(F-measure, continuity-based evaluation scores CMLc, CMLt, AMLc, AMLt, and
Information Gain (D) that represents the entropy of measure error histogram), we
computed absolute mean (Δmean) and median (Δmed) difference in seconds between
GT positions of the first reference and the transferred measure positions from the
second reference recording. To compute the F-measure, we used a window size of
𝜏𝑤 = 0.1 (instead of default 𝜏𝑤 = 0.07 for beat tracking tasks) to compensate for the
nature of soft onsets produced by string instruments and a coarser time resolution
of measures. For further details and information about metrics, we refer to [78, 122].
Δmean and Δmed are computed only for the synchronization method as the number
of references and estimated measures are always the same—condition, which cannot
be satisfied using automated methods.
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Tab. 8.3: The F-measure, continuity-based metrics, and information gain (D) of au-
tomated downbeat tracking methods (madmom and wavebeat) and semi-automated
audio-to-audio synchronization strategy (sync) evaluated on the reference recordings
of Dvořák’s String Quartet No. 12, movement 3. Δmean and Δmed (in seconds) are
computed only for the synchronization method.

F-measure CMLc CMLt AMLc AMLt D Δmean Δmed

madmom 0.337 0.000 0.000 0.154 0.285 0.158
wavebeat 0.338 0.037 0.143 0.037 0.143 0.082
sync 0.927 0.290 0.963 0.290 0.963 0.426 0.040 0.025

Results suggest that the synchronization approach is, as expected, more robust
and reliable (F-measure = 0.927 and Δmean = 25 ms) and, in contrast to the auto-
mated detectors, always outputs the correct number of measures. Unlike downbeat
detectors, the evident and problematic limitation is the necessity of at least one man-
ual reference annotation. The downbeat trackers are not trained on string quartets
and expressive music in general. This problem is partly addressed in, e.g., [156]
or [9], where the evaluation is based on user-driven metrics [131].

8.3 Feature Selection and Design

8.3.1 Features

There are many parameters that can characterize music performances. We can
divide them into a few basic categories [24]:

• dynamics: how the loudness varies based on phrasing, accents, or structure,
• timing: rhythmic structure, micro-timing (onsets or beats), global tempo, or

local tempo deviations,
• timbre: choice of instrumentation, instruments, playing techniques, and acous-

tic conditions,
• pitch: intonation, deviations from the score, unintentional intonation choices,

and playing techniques such as vibrato.

Most parameters cannot be unconditionally connected to the direct semantic level.
For example, timbre is a very ambiguous parameter if the context, acoustic condi-
tions, recording and encoding choices, or post-processing options are not considered.
Computing the dynamics can also be inaccurate as the original music carrier, qual-
ity, and post-processing choices (although this is not usually the case for classical
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music) may change even the relative proportions. Therefore, we focused solely on
the timing parameter, which should not be affected by the abovementioned situa-
tions. However, an exception may be the inability to fit the interpretation into the
older music medium (such as the maximum duration of 3.5 minutes on a 10-inch
78 RPM phonograph record). The oldest phonograph recordings from our dataset
are from 1928 and 1929 (Ševčík-Lhotský and Czech Quartet, respectively), yet we
do not consider this possibility in the analysis.

We construct a feature vector where each value represents the duration of consec-
utive movements, sections, or measures. By stacking these vectors vertically (each
row represents features of a given recording), we obtain a feature matrix. In contrast
to the approach in [10], where the feature matrices consisted of spectral parame-
ters, dynamics, and timing properties for each synchronized measure of the piece,
we focus only on differences in the duration of measures, musical sections, or entire
movements to reduce the number of features. The examples of proposed feature
matrices are shown in Section 8.3.4.

8.3.2 mRMR

To further preprocess our data, we use a technique called minimum-Redundancy
Maximum-Relevance (mRMR), first introduced in [157] and later used in numerous
studies [158, 159, 160]. This algorithm performs an efficient selection of the 𝑛 most
relevant features, decreasing the feature redundancy [161]. The first step of mRMR
is to search for features satisfying the Maximal-Relevance criterion (8.1), which ap-
proximates Max-Dependency 𝐷(𝑆, 𝑐) with the mean value of all mutual information
𝐼 values between individual feature 𝑥𝑖 and class 𝑐:

max 𝐷(𝑆, 𝑐), 𝐷 = 1
|𝑆|

∑︁
𝑥𝑖∈𝑆

𝐼(𝑥𝑖; 𝑐), (8.1)

where 𝑆 denotes the feature set to be selected. The second step is to deploy the
minimum-Redundancy condition [157] as the features selected by the Maximum-
Relevance could have a significant amount of redundancy. This condition is defined
by:

min 𝑅(𝑆), 𝑅 = 1
|𝑆|2

∑︁
𝑥𝑖,𝑥𝑗∈𝑆

𝐼(𝑥𝑖; 𝑥𝑗). (8.2)

The mRMR criterion is the combination of the constraints mentioned above, and
it is defined by the operator Φ(𝐷, 𝑅), which integrates 𝐷 and 𝑅. The simplest form
to optimize 𝐷 and 𝑅 simultaneously is given by:

max (𝐷, 𝑅), Φ = 𝐷 − 𝑅. (8.3)

117



In some cases (the second and third scenario, explained in Section 8.3.4), each
recording consists of a different number of features, thus the variable length of the
feature matrix. The utilization of mRMR allows us to uniform all feature matrices
in length and to select the most significant features in terms of the difference be-
tween Czech and non-Czech classes. We use the implementation from the mRMR
Python library in our experiments3 and refer to [161] for more details about mRMR
algorithm.

8.3.3 SVM

We build on a machine learning method called Support Vector Machines (SVM)
to perform binary classification on our dataset. We use the LIBSVM implementa-
tion [162] of 𝜈-Support Vector Classification (𝜈-SVC) [163] available via scikit-learn
package4. The user-specified regularization parameter 𝜈, similar to the standard 𝐶

parameter used in 𝐶-SVC [164], represents an upper bound on the fraction of train-
ing errors and a lower bound of the fraction of support vectors. Therefore, a user
specifies the 𝜈, where 𝜈 ∈ (0, 1]. In our case, we used 𝜈 = 0.5. As described in [162],
in a binary classification scenario, given training vectors 𝑥𝑖 ∈ R𝑛, 𝑖 = 1, ..., 𝑙 and
a vector 𝑦 ∈ R𝑙 such that 𝑦𝑖 ∈ {1, −1}, the primal optimization problem is:

min
𝑤,𝑏,𝜉,𝜌

1
2𝑤𝑇 𝑤 − 𝜈𝜌 + 1

𝑙

𝑙∑︁
𝑖=1

𝜉𝑖

subject to 𝑦𝑖(𝑤𝑇 𝜑(𝑥𝑖) + 𝑏) ≥ 𝜌 − 𝜉𝑖, (8.4)
𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑙, 𝜌 ≥ 0.

The dual problem is:

min
𝛼

1
2𝛼𝑇 𝑄𝛼

subject to 0 ≤ 𝛼𝑖 ≤ 1/𝑙, 𝑖 = 1, . . . , 𝑙, (8.5)
𝑒𝑇 𝛼 ≥ 𝜈, 𝑦𝑇 𝛼 = 0,

where 𝑄𝑖𝑗 = 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗). The decision function of 𝜈-SVC is defined by:

𝑓(𝑥) = sgn
(︃

𝑙∑︁
𝑖=1

𝑦𝑖𝛼𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏

)︃
. (8.6)

We also utilized the linear SVC during our experiments, but we found that the
classification accuracy was slightly better when using 𝜈-SVC. We used the Radial

3github.com/smazzanti/mrmr (accessed on 10 March 2023)
4scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html
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Basis Function (RBF) as a kernel for all machine learning scenarios described in
Section 8.3.4. A more detailed description of various SVM algorithms can be found
in [163].

8.3.4 Design of Experiments

Bowen [98] points out the complex relationship between the choice of tempo and the
composition duration. Generally, a slower chosen tempo at the beginning implies
a longer duration of the entire piece and vice versa: a faster tempo shortens the com-
position. However, very often, this is not the case. We can look for more differences
in the ratio between tempo and duration in a fragmented form. This allows a “re-
laxed” interpretation full of agogic changes and expressive caesuras. Demonstrable
results are shown by the procedure in which the pace of shorter, meaningful sections,
related to the whole duration, is calculated. The opposite method, which is based
on measuring large parts or whole movements and calculating the average tempo of
the composition, has no significant meaning because such a procedure “neutralizes”
the particular characteristic of the interpretation. Considering the nature of our
data and to address this problem, we decided to split the experiments into three
scenarios.

Each scenario deploys a different feature matrix—they all contain timing infor-
mation (see Section 8.3.1) but differ in resolution. We standardize all features to
a mean of zero and a standard deviation of one (removing the mean and scale to
unit variance). Then, the SVM classifier is deployed (see Section 8.3.3) to all ma-
trices. Precision, recall, and F-measure (also called F-score) metrics are computed.
Whole movements give the coarsest resolution, then sections, and finally, measures
of a given piece. The description of scenarios with examples of feature matrices
(corresponding tables) is as follows:

• First scenario: classification based on the duration of all 4 movements (Ta-
ble 8.4).

• Second scenario: classification based on the duration of all sections (Table 8.5).
• Third scenario: classification based on the duration of the ten most relevant

measures, selected by the mRMR method from all measures (Table 8.6).
Using mRMR in the first and second scenarios only ranks the relevance of given

features but does not change the input for 𝜈-SVC. The third scenario utilizes mRMR
to select the first ten most important measures, which are further used as the input
of 𝜈-SVC. To compensate for an imbalanced dataset, we always randomly under-
sample the class with more recordings. Furthermore, we stratify the training and
test subset so there is always the same number of recordings in both Czech and non-
Czech classes. Training and testing data are split into 75/25 subsets and shuffled
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randomly. The SVM classifier (see Section 8.3.3) is used; precision, recall, and F-
measure are computed on the testing subset. This procedure is repeated 1000× and
a mean and a standard deviation (𝜎F for F-measure, 𝜎P for precision, and 𝜎R for
recall) are computed.

Tab. 8.4: Exemplary feature matrix of the first scenario; each row represents a set
of features for a given recording; ID – identification of a performance/recording,
mov1–mov4 – the duration of each movement in seconds; binary label based on the
origin of a performer.

ID mov1 mov2 mov3 mov4 label

002 559.52 428.62 213.51 306.37 0
003 620.81 420.10 240.55 325.27 1
004 559.21 470.88 205.29 335.96 1

Tab. 8.5: Exemplary feature matrix of the second scenario; each row represents a set
of features for a given recording; ID – identification of a performance/recording,
section1–section8 – the duration of each section in seconds; binary label based on
the origin of a performer.

ID section1 section2 section3 section4 · · · section8 label

001 22.64 22.63 37.23 34.65 · · · 27.48 0
002 23.87 21.46 38.07 31.05 · · · 22.58 0
003 24.09 22.30 40.13 32.21 · · · 24.46 0

Tab. 8.6: Exemplary feature matrix of the third scenario; each row represents a set
of features for a given recording; ID – identification of a performance/recording,
measure1–measure239 – the duration of each measure in seconds; binary label based
on the origin of a performer.

ID measure1 measure2 measure3 · · · measure239 label

001 4.12 1.91 2.54 · · · 3.09 0
002 1.87 2.01 2.02 · · · 2.81 0
003 2.24 1.97 2.26 · · · 3.51 1
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The following example of the third scenario shows the workflow of processing.

• Feature matrix of size 27×10 (27 recordings, 10 most significant measures
selected by mRMR), 15 recordings of class 1 (Czech), 12 of class 0 (non-Czech).

• All features are standardized by removing the mean and scaling to unit vari-
ance.

• To balance the dataset, 12 recordings of class 1 are randomly chosen, and the
rest of class 1 is discarded in this run.

• Data is split into the training subset (75% of 24, hence 18 recordings) and the
testing subset (25% of 20, hence 6 recordings).

• It is also ensured that the ratio of class 1 and 0 stays the same, if possible, for
both training and testing subsets.

• The final training subset: 9 recordings of class 1 and 9 recordings of class 0.
• The final testing subset: 3 recordings of class 1 and 3 recordings of class 0.
• 𝜈-SVC is used and evaluated in terms of F-measure, precision, and recall on

the test subset.
• The whole run is repeated 1000×
• A mean and a standard deviation of all F-measure, precision, and recall values

are computed.

Contrary to this example, the mRMR method shows the relevance of given features
even in the first and second scenarios. However, we only use it to show the im-
portance of given features for the upcoming classification. The computation of the
F-measure differs from the one used in a synchronization (see Section 8.2.4); here,
no window is used.

8.4 Results
This section reports the results of mRMR and classifications. We focus on identifying
differences between Czech and non-Czech interpretations using string quartets of
Czech composers and implementing a classifier that can successfully predict the
binary classes on previously unseen data represented by test subsets. We did not
use validation subsets as the number of items for both classes is usually low.

8.4.1 First Scenario

In this experiment, we use feature matrices based on the duration of all movements
(Table 8.4). We used only those interpretations in which all four movements were
well-synchronized with a reference recording (e.g. if movement 2 of one of the
interpretations was discarded in a pre-processing step (see Section 8.2.3); we did
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not use any of the performance’s movements). This decreased the number of items
within both classes. Table 8.7 shows the result of the mRMR method. It ranks the
significance of features; e.g., in the case of Dvořák’s String Quartet No. 12, a feature
containing the most relevant information (rank 1), given proposed classes, is the
duration of movement 2.

Tab. 8.7: The relevance ranking of the movements as features used in the first
scenario; each number represents a movement of given importance compared to
other movements of the composition.

composer Dvořák Janáček Smetana
composition No.12 No.13 No.1 No.2 No.1
rank 1 2 4 4 3 1
rank 2 4 2 3 4 2
rank 3 1 3 2 1 3
rank 4 3 1 1 2 4

Table 8.8 shows the binary classification results. We report F-measure, precision,
recall, and standard deviations of all metrics. In other scenarios, we show only the
F-measure and its standard deviation. The prediction accuracy for Dvořák’s string
quartets is very low. With F-measures close to 0.50 and high deviations, it is very
similar to random predictions. On the other hand, Janáček’s String Quartet No. 2
seems to be the opposite—the F-measure = 0.87 with 𝜎F = 0.10. In this case, we
can distinguish Czech and non-Czech interpretations with relatively high accuracy
solely based on the duration of whole movements and their relationship. In the case
of Smetana’s String Quartet No. 1, F-measure = 0.70 with 𝜎F = 0.15.

Tab. 8.8: The F-measure, precision, recall, and corresponding standard deviations
for the first scenario.

composer composition F-measure precision recall 𝜎F 𝜎P 𝜎R

Dvořák No. 12 0.47 0.50 0.50 0.23 0.28 0.21
No .13 0.48 0.48 0.52 0.25 0.30 0.24

Janáček No. 1 0.64 0.68 0.65 0.13 0.14 0.12
No. 2 0.87 0.89 0.87 0.10 0.09 0.10

Smetana No. 1 0.70 0.75 0.72 0.15 0.16 0.14

Figure 8.3 shows the statistics of the Czech and non-Czech classes for Janáček’s
String Quartet No. 2. To display the data distribution and statistical properties,
we use boxplots—a box marks the second and third quartile; the whiskers are the
first and the fourth quartile; a vertical line implies the median, and outliers are
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presented as circles. The first movement of class 1 varies from 345 to roughly 360 s
in contrast to class 0 with 320 to almost 340 s. The median of class 1 is, in this case,
significantly higher, which is opposite to all other movements. The difference in the
duration of the first movement is probably the main reason why the F-measure is
high.

(a) The boxplot of class 1 (CZ). (b) The boxplot of class 0 (non-CZ).

Fig. 8.3: The boxplots of the first scenario for Janáček’s String Quartet No. 2 show
both proposed classes’ statistics and data distribution.

8.4.2 Second Scenario

In the second scenario, we construct feature matrices based on the duration of all
sections (Table 4b) instead of movements, increasing the time resolution of features.
Table 8.9 shows the application of the mRMR method, where the five most relevant
sections are identified. The actual number of sections is shown in Table 8.2. For
the sake of simplicity, we display only two compositions that achieved the highest
accuracy in the classification task.

Tab. 8.9: The relevance ranking of the sections as features used in the second sce-
nario; each number represents a section of given importance compared to other
sections of the movement.

composer Janáček Smetana
composition No.2 No.1
movement mov1 mov2 mov3 mov4 mov1 mov2 mov3 mov4
rank 1 9 3 5 14 9 3 9 4
rank 2 12 14 11 9 1 12 4 16
rank 3 14 1 14 15 11 9 6 3
rank 4 7 4 4 19 4 4 1 18
rank 5 17 8 15 17 6 7 7 1
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Table 8.10 presents the classification results. Here, we report the F-measure
and its standard deviation. The trend is similar to the first scenario but with
higher accuracy in most cases. Dvořák’s String Quartet No. 14 shows the worst
results (F-measure = 0.31 to 0.59) but consists of the least number of interpretations
available. The standard deviation 𝜎P is high, overall. Janáček’s String Quartet
No. 2 (F-measure = 0.88 and 𝜎P = 0.09 for the second movement) and Smetana’s
String Quartet No. 1 (F-measure = 0.77 and 𝜎P = 0.11 for the first movement)
provide interesting results. We now have information about the classification of
each movement, which may show relationships within movements, e.g., overall, the
second movement seems to provide a more accurate classification than the third
movement.

Tab. 8.10: The F-measure and its standard deviation for the second scenario; x
represents data that were not available (see Table 8.2).

F-measure 𝜎F

composer composition mov1 mov2 mov3 mov4 mov1 mov2 mov3 mov4

Dvořák
No. 12 0.57 0.69 0.57 0.69 0.21 0.15 0.16 0.16
No. 13 0.61 0.72 0.70 0.47 0.20 0.20 0.24 0.24
No. 14 0.54 x 0.59 0.31 0.20 x 0.23 0.21

Janáček No. 1 0.56 0.62 0.53 0.66 0.15 0.14 0.14 0.13
No. 2 0.84 0.88 0.77 0.85 0.12 0.09 0.12 0.12

Smetana No. 1 0.77 0.74 0.69 0.69 0.11 0.15 0.16 0.15

Figure 8.4 shows the statistics of the Czech and non-Czech classes for Janáček’s
String Quartet No. 2, movement 2. The x-axis shows the first five sections chosen
by the mRMR method. Here, we can notice more differences—the second and third
quartiles of class 1 is below 20 s, while all data from class 0 are above 19.5 s. Section
3 corresponds to measures 34–44 marked in the score as dolcissimo espressivo, i.e.,
as sweet as possible and expressive. Czech performers seem to play this section
statistically at a faster pace. Section 14 also shows a similar trend.

8.4.3 Third Scenario

In the third scenario, we use feature matrices based on synchronized measure posi-
tions. First, we apply mRMR to select the ten most relevant measures that are then
used as input for the 𝜈-SVC (see Table 8.12). With this information, we can iden-
tify measures according to which the Czech and non-Czech interpretations can be
best distinguished. Increasing the time resolution of features (from movements and
sections to measures) improved the recognition of interpretation differences between
the proposed classes.
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(a) The boxplot of class 1 (CZ). (b) The boxplot of class 0 (non-CZ).

Fig. 8.4: The boxplots of the second scenario for Janáček’s String Quartet No. 2,
movement 2, show both proposed classes’ statistics and data distribution.

First, to create a baseline for the classifier, we select the binary labels randomly
and use the proposed pipeline. Table 8.11 presents the results of the classification.
Dvořák’s String Quartet No. 13, movements 2, 3, and 4, show F-measure = 0.84,
0.86, 0.83 with 𝜎P = 0.13, 0.15, and 0.15, respectively. Some compositions seem to be
played differently enough that even two random classes are somewhat separable—all
ensembles are, to some extent, distinct. We tried multiple randomly selected labels
(different seeds) with similar results. We also tested the non-mRMR approach,
where all measures are always used, but the classifier does not train, and the outputs
are similar to random guesses.

Tab. 8.11: The F-measure and its standard deviation for the third scenario using
random binary labels; x represents data that were not available (see Table 8.2).

F-measure 𝜎F

composer composition mov1 mov2 mov3 mov4 mov1 mov2 mov3 mov4

Dvořák
No. 12 0.71 0.60 0.66 0.62 0.12 0.10 0.09 0.10
No. 13 0.76 0.84 0.86 0.83 0.15 0.13 0.15 0.15
No. 14 0.36 x 0.83 0.74 0.20 x 0.16 0.19

Janáček No. 1 0.76 0.68 0.68 0.67 0.09 0.10 0.10 0.11
No. 2 0.69 0.60 0.71 0.73 0.09 0.10 0.11 0.09

Smetana No. 1 0.70 0.68 0.39 0.66 0.10 0.36 0.31 0.34
No. 2 0.59 0.80 0.49 x 0.18 0.16 0.17 x

Table 8.13 provides the results of classification. Each combination of composer,
composition, and movement shows high accuracy (except Dvořák’s String Quartet
No. 14 and Smetana’s String Quartet No. 2, where the standard deviation is up
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Tab. 8.12: The relevance ranking of the measures as features used in the third
scenario; each number represents the measure of given importance compared to
other measures of the movement.

csr Dvořák Janáček Smetana
comp No. 13 No. 2 No. 1
mov mov1 mov2 mov3 mov4 mov1 mov2 mov3 mov4 mov1 mov2 mov3 mov4
rank 1 132 71 508 207 52 42 76 235 224 52 51 30
rank 2 359 19 356 460 140 209 196 214 126 107 64 280
rank 3 388 70 120 468 166 41 77 30 76 220 62 62
rank 4 134 133 93 109 199 44 168 234 116 40 81 257
rank 5 342 140 431 355 233 39 52 119 25 166 45 276
rank 6 387 72 137 346 252 191 53 89 182 51 53 197
rank 7 139 1 95 37 97 43 144 194 118 65 41 281
rank 8 392 10 378 467 295 37 212 231 181 162 80 127
rank 9 128 61 228 167 86 171 127 148 26 57 52 34
rank 10 339 134 132 484 107 121 89 87 204 84 40 51

to 0.30). The F-measure of Dvořák’s String Quartet No. 13, movements three and
four, is 0.99 with 𝜎P = 0.05. Furthermore, in the case of Janáček’s String Quartet
No. 2, the F-measure = 0.96 with 𝜎P = 0.06 and F-measure = 0.94 with 𝜎P = 0.08
for the first and third movement, respectively.

Tab. 8.13: The F-measure and its standard deviation for the third scenario; x rep-
resents data that were not available (see Table 8.2).

F-measure 𝜎F

composer composition mov1 mov2 mov3 mov4 mov1 mov2 mov3 mov4

Dvořák
No. 12 0.76 0.78 0.76 0.81 0.16 0.14 0.14 0.12
No. 13 0.87 0.88 0.99 0.99 0.14 0.13 0.05 0.05
No. 14 0.76 x 0.74 0.77 0.18 x 0.18 0.21

Janáček No. 1 0.82 0.76 0.75 0.86 0.11 0.13 0.12 0.10
No. 2 0.96 0.91 0.94 0.88 0.06 0.09 0.08 0.10

Smetana No. 1 0.84 0.90 0.82 0.89 0.09 0.10 0.13 0.10
No. 2 0.70 0.88 0.86 x 0.30 0.18 0.21 x

When we increase the time resolution of features to individual measures, the
difference between classes also increases. Figure 8.5 shows the statistics of the
last scenario, Dvořák’s String Quartet No. 13, movement 3. Results indicate that,
on average, Czech performers play these measures at a lower tempo. Measures
are around one second long, yet there are differences up to one second between
interpretations. Interestingly, if we calculate the duration of measure 508, we can
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guess (e.g., more than 0.8 s) the Czech performers with relatively high accuracy.
When all five proposed measures are combined, we can achieve up to 99% accuracy
with a machine learning classifier (Table 8.13).

(a) The boxplot of class 1 (CZ). (b) The boxplot of class 0 (non-CZ).

Fig. 8.5: The boxplots of the third scenario for Dvořák’s String Quartet No. 13,
movement 3, show both proposed classes’ statistics and data distribution.

8.5 Discussion
This study aims to train a machine learning classifier that predicts the performer’s
origin (Czech and non-Czech classes) of any interpretation given well-known string
quartets of Czech composers. We propose feature matrices based on duration in-
formation, ignoring dynamics or timbre parameters as the acoustics, recording en-
vironment and equipment, instruments, and post-processing may make the input
features of classification unreliable. Contrary to [144], we use only suitable timing
information.

All features might describe specific qualities of a given performance, but in this
paper, we choose only robust timing information for the origin classification. The
duration of small time segments (such as measures) provides information about
musical expressiveness and interpretive differences. If we choose larger segments,
such as the duration of whole movements or sections composed of many measures,
the significant differences and the accuracy of the potential classification decrease
(compare Table 8.13 with Table 8.8 or 8.10). The exception is Janáček’s String
Quartet No. 2, where we achieved F-measure = 0.87. Converting the duration to
tempo values does not affect the classifier; it might only serve as a more intuitive
visualization. We chose measures for a few reasons: firstly, measures are well-defined
by the corresponding score; secondly, they are easier to annotate manually than, e.g.,
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beats; and thirdly, they can be used to segment recordings to sections or other logical
structures (while ignoring the metrical structure of a given composition).

In Section 8.2.4, we show that automated downbeat tracking systems are not
yet efficient for expressive string quartet music. Thus, the synchronization strategy
(with available manual annotation) remains preferable. Feature selection explained
in Section 8.3.2 helped the chosen classifier achieve higher accuracy while ranking
the importance of features for a given task. This information can be further used
for music analysis and a detailed comparison of differences. Using general structures
such as measures has one more advantage—it allows us to generalize the classification
pipeline to arbitrary music compositions, instruments, and genres.

The limitation of this study is the number of interpretations for given compo-
sitions. We have collected a large dataset of string quartet recordings, but only
a portion of them was used (see Section 8.2.3) due to the different music structures.
To balance the data, we stratify the training and test subsets in each classification
run so there is always the same number of items in both classes. Considering compo-
sitions such as Janáček’s String Quartet No. 2, Dvořák’s String Quartet No. 13, or
Smetana’s String Quartet No. 1, the classifier provides promising results, confirming
the original idea that proposed classes (Czech and non-Czech interpretations) are
distinguishable (see Table 8.13). However, if we use random labels, binary classifi-
cation based on the duration of specific measures (given by the composition and all
available interpretations) already provides relatively high accuracy in some cases.
This is expected, as the mRMR method chooses ten relevant features that distin-
guish these classes the most. If we do not implement a feature selection method,
the classifier cannot be trained using the proposed strategy. When we use the CZ
and non-CZ labels, the classification accuracy increases overall.

This study shows that origin-based differences in interpretations exist and are
measurable. However, the proposed machine learning pipeline cannot be universally
used—the reference measure positions are always needed for at least one recording
of a given composition, and we train and test the classifier for each composition
separately. So far, we cannot classify the origin of arbitrary recording without prior
knowledge of the piece and other interpretations. In the future, we would like to test
the strategy on string quartets from, e.g., Joseph Hayden or Ludwig van Beethoven
with Austrian/German labels and provide a more detailed analysis of interpretation
differences.
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8.6 Conclusions
In this paper, we investigated the possibilities of string quartet interpretation clas-
sification based on performers’ origin. We collected a large dataset of string quar-
tets from Czech composers Dvořák, Janáček, and Smetana. We manually annotated
ground-truth measure positions of reference recordings and applied a method of time
alignment to transfer measure positions to all target recordings. Furthermore, we
used measures to segment recordings into separate sections and split our experiments
into three scenarios, each specified by different features. We trained and tested a ma-
chine learning classifier to distinguish Czech and non-Czech interpretations of string
quartet pieces. We showed that it is possible to train such a classifier. The classifier
achieved poor results when feature matrices contained the duration of whole move-
ments, except for Janáček’s String Quartet No. 2 with F-measure = 0.87. Increasing
the time resolution of features, from movements to sections and measures, improved
the prediction accuracy. For the third scenario, where measure positions were used,
we achieved F-measure = 0.99 for Dvořák’s String Quartet No. 13, movements 3
and 4, and up to 0.96 in the case of Janáček’s String Quartet No. 2. Using pro-
posed labels, the accuracy increased compared to the baseline with random labels,
which already provided relatively high accuracy. It seems that interpretation-based
differences are already distinguishable, in some cases, even in random subsets. In
the future, we will experiment with other string quartet composers, use more labels,
and further describe and explain the interpretation differences. We plan to experi-
ment even with finer time resolution, such as beats, to train classifiers and identify
differences in various interpretations.

129



9 Application of MIR Methods for Compar-
ative MPA

This chapter is based on the conference article “Application of Computational Meth-
ods for Comparative Music Analysis” [6].

Music Performance Analysis can thrive from computational methods of Music
Information Retrieval. Besides extracting and analyzing symbolic music data, per-
formance analysis also focuses on retrieving performance parameters from digital
audio recordings. On the other hand, the aim of the comparative performance anal-
ysis is often qualitative and stands on our perception and musical principles. In this
paper, we utilize feature extraction strategies and comparative analysis, leveraging
computational methods while focusing on the goals of musicology. We aim to pro-
vide insight into music performance data for subsequent case studies. As the main
contribution of this paper, we present a specific combination of extraction methods
for performance music analysis on the application level. Furthermore, we demon-
strate an early version of open-source software that deploys the proposed strategy
in a user-friendly web-based environment.

9.1 Introduction
In Music Information Retrieval (MIR), the researchers deal with many music-oriented
challenges using methods from signal processing to machine learning and statis-
tics [165, 128]. They focus on tasks such as low- and high-level feature detection,
symbolic data representations, music recommendation, content-based search, auto-
matic tagging, transcription, instrument separation, and many more [32, 30]. On the
other hand, Music Performance Analysis (MPA) has traditionally been a peripheral
topic for the MIR community [24]. Furthermore, the comparative part of MPA aims
at multiple music interpretations, performances, or versions (in this paper, we use
all three terms interchangeably) and compare their differences [146]. The research
in computational musicology, which combines both fields, is usually performed on
symbolic music representations such as music notation or midi data [166, 167]. How-
ever, we focus on audio data without symbolic transcriptions as this format is the
most common (including studio and live versions).

The performance is essential in how listeners perceive a piece of music. One can
analyze dynamics, tempo, and expressive performances on a macro scale (whole com-
positions) or a micro level (segments, motifs, or measures) using manual annotation
or some form of feature extraction [146]. However, a combination on the application
level, where the MIR-oriented feature extraction supplements the qualitative case
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studies, is relatively rare. The well-known examples are Mazurka project [124] or
Sonic Visualiser software [108].

audio recordings
(different versions)

audio-to-audio
synchronization

GT measures of the
reference recording

Maximum Relevance
method

measure transfer;
data matrices

measures sorted based on
relevance

selection of the reference
recording

visualization

parameter extraction

overall structure

sections of interest

binary labelsaudio/composition selection

input of the analysis

output of the analysis

processing

Fig. 9.1: Pipeline of the proposed approach to obtain hints for the MPA studies
based on the quantitative music analysis. Green boxes indicate input data (audio
files, e.g., .wav and text files, e.g., .csv), blue boxes input choices, yellow boxes data
processing, and the red box the desired output.

In this paper, we utilize MIR audio feature extraction and time-alignment meth-
ods to provide information for subsequent comparative MPA research. As the main
contribution, we utilize a strategy to obtain meaningful cues to statistical differences
between interpretations of the same musical piece. We first extract performance pa-
rameters, deploy a feature selection method used in machine learning, and apply it
in a music analysis scenario. The proposed strategy produces specific cues about in-
terpretations and provides insights for subsequent case studies. Finally, we present
an early version of open-source software1 that utilizes the proposed strategy and
allows users to analyze multiple versions of the same piece, including MPA-related
playback, ranking of feature relevance, and visualization. Similar synchronization
features (score-to-audio), but with no MPA-driven functions, can be found in the
Interpretation switcher [126] or Sync Player [168]. However, both are not publicly
available. Furthermore, we refer to [169] for more information about similar inter-
faces.

The rest of the paper is organized as follows. Section 9.2 introduces audio-to-
audio chroma synchronization, combined synchronization approach, and measure

1The software will be available at https://github.com/stepanmk/memovision (accessed on
7 July 2023)
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transfer to obtain measure durations and detect different music structures. Sec-
tion 9.3 describes the feature selection method and relevance rating. Section 9.4
shows the first snippets from our future software and a possible way of future de-
velopment, followed by a discussion in Section 9.5 and conclusions in Section 9.6.

9.2 Extraction Pipeline
In a music performance analysis scenario, one could, for example, focus on the
analysis of interpretation differences between Chopin Nocturnes given specific labels,
such as the year of recording. The goal of the research may be: In which parts of
the piece and how do the performers differ the most before and after 1970?

Typically, a musicologist would listen to the recordings, retrieve meaningful infor-
mation (dynamics, timing, tempo, pitch deviations, etc.) from the selected sections
(e.g., motifs or logical segments) and visualize the parameters of recordings based
on the proposed labels. However, finding the areas with the highest parameter
variance in a large-scale dataset by comparing the parameters of whole recordings
may be tedious. Moreover, one needs to have information about segments, such as
measures, to split the parameters accordingly because each interpretation usually
varies in a local tempo and, therefore, in the timing of musical events. In this paper,
we utilize a strategy to overcome the time-consuming and mostly manual approach
and provide cues or highlight the sections of interest for the possible qualitative
case studies. The strategy is shown in Figure 9.1 and is described in the following
sections.

9.2.1 Chroma Synchronization

We deal with multiple versions of the same composition and, therefore, leverage
a synchronization method, a well-known approach in MIR [129, 170]. Compared
to other studies with score-to-audio synchronization, we do not use symbolic MIDI
data—we utilize an audio-to-audio strategy. This design choice was inspired by our
previous experiments with a combined synchronization approach (see Section 9.2.2).

First, we focus on obtaining measure positions for all composition recordings.
Measures are essential segments of each piece. They are used in MIR and MPA for
many tasks, such as cross-version analysis [171] or segmentation [172]. Instead of
annotating each recording manually or automatically via a downbeat detector, we
use the time alignment of one reference and all target recordings following the Sync
toolbox pipeline [56]. It consists of modified chroma vectors [130], the estimation
of tuning to shift the chroma features so that they match the same pitch classes,
and the memory-restricted multiscale DTW algorithm (MrMsDTW) [45] to find the
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optimal time alignment between a reference chroma 𝑋 = (𝑥1, . . . , 𝑥𝑁) and a target
chroma 𝑌 = (𝑦1, . . . , 𝑦𝑀). Tuning estimation compensates for pitch deviation of
older recordings or different tuning of instruments and increases the synchronization
accuracy. The MrMsDTW method is faster compared to the standard DTW and
produces an optimal warping path from cost matrix CCH(𝑛, 𝑚) = 𝑐(𝑥𝑛, 𝑦𝑚) of size
𝑁 × 𝑀 , where 𝑐 defines a local cost measure, 𝑛 ∈ {1, . . . , 𝑁}, and 𝑚 ∈ {1, . . . , 𝑀}.
The warping path is then saved as in a binary .npy file for further processing.

Unlike the basic approach where annotations are created manually (as in Sonic
Visualiser), we can use the underlying music structure (which should always be the
same in our scenario) to obtain measure positions semi-automatically. If we use
a score-to-audio strategy, we would need transcribed MIDI files instead of measure
annotations, which may be a more time-consuming task for non-piano music.

Any time-related annotations (beats, measures, motifs, regions) can be obtained
if reference and target recordings follow the same harmonic structure. However, the
chroma synchronization method may struggle in sections where the harmonic infor-
mation of an audio segment is homogeneous (see [154] or [14] for more details). For
example, let us have sustained piano tones with no harmonic and melodic changes
over two measures. There are no temporal or harmonic cues to detect the start
position of the second measure because the cost matrix values in this section are
similar. To overcome this problem and to make the method more robust, we use
a combined synchronization approach.

9.2.2 Combined Approach

Authors in [154] proposed decaying locally adaptive normalized chroma-based onset
features (DLNCO) and combined them with a chroma cost matrix CCH to increase
the synchronization accuracy. This method works well with piano music containing
strong transients at the attack phase of individual tones. However, we exploit the
beat activation function from a neural network model to provide temporal clues. In
recent work [14], the beat activation function combined with chroma features in-
creased the accuracy of measure transfer in the case of more complex string quartet
music. We build on this idea and use a simplified version of the state-of-the-art beat
detection system based on a temporal convolutional network (TCN) [110, 114]. We
trained a new model with nonstandard parameters—temporal resolution of 50 fps in-
stead of 100 fps; time-frequency transformation is performed on 22 050 Hz recordings
instead of 44 100 Hz unlike in, e.g., madmom module [82]—to match the synchroniza-
tion pipeline without any further resampling of input audio recordings or chroma
features. We use the combined cost matrix CCH+B consisting of equally weighted
chroma cost matrix CCH with cosine distance and the beat cost matrix CB computed
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using the beat activation function (a function corresponding to the probability of
beat events that yields values between 0 and 1) with Euclidean distance:

CCH+B = 0.5 · CCH + 0.5 · CB. (9.1)

We refer to our previous study [5] for more information on the TCN model descrip-
tion, to [117] for information about deep learning-based beat tracking, and to [154]
and [14] for combined synchronization approach.

9.2.3 Structural Differences

Finally, we check the slope of the resulting warping path and compare it to the
threshold. The value of the threshold is set experimentally. If the slope is too steep
or flat, we can exclude the recording or its part from the analysis. This happens when
there is an additional repetition or a missing section in the recording. Some studies
deal with similar problems introducing matching technique [173], jump DTW [174],
or Hierarchical DTW [175]. We build on a more straightforward approach without
directly modifying core functions or a warping path of the MrMsDTW algorithm.
As the last step, we transfer manually annotated measures of a reference recording
to all other interpretations using linear interpolation. We end up with measure
positions for all recordings and can segment each performance accordingly.

9.3 Feature Selection
We can use any number of target recordings and rely only on one set of annota-
tions, thanks to the synchronization procedure. Theoretically, we could skip the
synchronization part by utilizing a downbeat tracking system, but it generally does
not achieve satisfactory results yet [110]. Following the strategy in [11], we compute
a data matrix that contains measure durations expressed in seconds. The rows cor-
respond to versions of a given composition, and the columns correspond to measure
indices. We can label each recording to create binary classes based on the goal of
analysis—for example, a label based on the year of recording (before 2000 vs after
2000), the origin of performers (or from different musical backgrounds and cultures),
or simply the interpretation of one performer vs the others. The selection of a binary
label is essential for the next phase of this pipeline.

Our final goal is to estimate the relevance of each measure regarding the proposed
labels. To rank the relevance of measures and differentiate between labels, we use
the Max-Relevance (MR) method. This algorithm efficiently ranks the relevance
of features. It searches for features satisfying the maximal relevance criterion (9.2),
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which approximates maximum dependency 𝐷(𝑆, 𝑐) with the mean value of all mutual
information 𝐼 values between individual feature 𝑥𝑖 and class 𝑐 [157]:

max 𝐷(𝑆, 𝑐), 𝐷 = 1
|𝑆|

∑︁
𝑥𝑖∈𝑆

𝐼(𝑥𝑖; 𝑐). (9.2)

We use implementation of the Min-Redundancy Max-Relevance (mRMR) method2

with a focus on the relevance only. The minimum redundancy criterion is essential
when the features are further used, e.g., for a machine learning classifier [158]. How-
ever, unlike in our previous study with a binary classification of string quartets [11],
we use only the relevance criterion and discard the redundancy computation. In the
case of obtaining the most significant features to distinguish between two classes, re-
dundancy would be counterproductive as it may remove measures that are correlated
with previously selected ones but are still highly relevant. Following this approach,
we compute the relevance of each measure regarding the difference between given
labels and sort them in descending order.

Fig. 9.2: Interpretation player – navigation, playback, measure visualization, and
relevance of measures. The blue lines indicate measures. The red lines show the
current position within a given recording.

9.4 Software
We work on software (web-based interface; JavaScript frontend with Python back-
end) for music analysis that utilizes the proposed strategy in a user-friendly and
easy-to-use environment. We plan to make the software open-source and available
online at the beginning of January 2024. Thanks to the Python language, it is easier

2see https://github.com/smazzanti/mrmr (accessed on 7 July 2023)
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to follow state-of-the-art methods and add new features in the future. For compar-
ison, Sonic Visualiser uses outdated Vamp plugins that are, to our knowledge, no
longer actively developed.

Fig. 9.3: Region selector – playback, sonification, and region selection based on
reference measures.

9.4.1 Demonstration

In this section, we would like to demonstrate the first outputs of the software. Users
can upload recordings and measure annotations, select the reference recording, and
start the extraction process. By default, the reference recording belongs to one class
(label) and the rest to the second. A user can listen to the reference recording,
sonify measure positions with a click, and create a region of interest based on the
time or measures (see Figure 9.3). Then, it is possible to switch to the interpretation
player tab (Figure 9.2). One can see the current time position of other recordings
(vertical red lines) while listening to one selected recording, display the regions and
individual measures and play them in the loop, switch between recordings, and
display the results of the MR method. Finally, at the top, there is a color map
indicating the relative relevance of each measure throughout the composition to
spot the more relevant (and potentially interesting) sections. However, this applies
only to the differences between selected binary labels (e.g., one interpretation vs.
the rest).

9.4.2 Future Development

We can use the transferred measure positions to interpolate parameters and trans-
form the time axis into the measure axis, which is more convenient for performance
analysis. Instead of physical time, we use a relative axis and directly compare any
sections of interpretations. The example of relative dynamics is shown in Figure 9.4.
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In this case, the loudness is based on pyloudnorm module [176] and resampled to
20 values per measure. It is computed on normalized recordings via FFmpeg and
EBU R 128 recommendation. A parameter derived directly from the synchroniza-
tion process is the duration or tempo of each measure (Figure 9.5). We plan to
make such visualizations in the software possible with any measure range of a given
composition. The user can limit the x-axis, analyze and compare the parameters of
selected sections, or play the interpretations while following parameter progression.
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Fig. 9.4: Resampled loudness for the first nine measures of three example versions
of the piano piece ’Little Onion’ from Bedřich Smetana.

9.5 Discussion
If we follow the proposed strategy, we can obtain relatively precise measure positions
for all interpretations. However, we need ground-truth measures for at least one
performance. Transferring measures using conventional DTW alignment is known
to the MPA community, but we incorporate temporal cues based on the TCN beat
tracker to improve the measure-level synchronization. Furthermore, we address
the problem of finding the most different measures or sections of compositions by
applying a feature selection method on the duration of individual measures with
given binary labels.

As the development of downbeat tracking systems continues, in the future, we
may be able to skip the synchronization part altogether and obtain robust downbeat
estimates automatically. In the performance analysis scenario, the number of all
interpretations in the dataset increases the computational time of analysis. However,
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Fig. 9.5: Tempo of the first nine measures (three beats per measure) of three example
versions of the piano piece ’Little Onion’ from Bedřich Smetana. Lines between
values are indicative—they connect the consecutive points directly and do not reflect
the tempo deviations inside measures.

the dataset size is easily scalable and theoretically unlimited compared to a time-
consuming and tedious manual approach to annotation.

One could use the output and hints from this strategy to perform case studies
on specific recordings with any labels. For example, the proposed functions of the
software could first indicate the relevant sections of the composition based on the
predefined label. The user could then analyze the chosen sections by ear, compare
extracted parameters, or use multiple visualization options. Furthermore, the soft-
ware could output the data for each recording in IEEE 1599 format if required by
musicologists. We followed a similar pipeline (without the web-based implemen-
tation and combined approach to synchronization) already in our pilot study on
string quartets [11] from A. Dvořák, B. Smetana, and L. Janáček, where we trained
a 𝜈-support vector machine classifier on the output of the mRMR method.

The main limitation is the selected feature—duration of measures. Although
measures are useful in many tasks, the only ’difference’ between performances we
compare using the MR method is the timing of measures. Other parameters utilize
measure durations for their segmentation and visual comparison but not for rele-
vance ranking. This may be impractical in many scenarios, as the interpretation
has many more qualities and possible deviations, such as inter-beat and inter-onset
timing, local tuning estimation, dynamics, or other parameters of expressivity that
we do not include in a proposed data matrix. However, we plan to build on this
pipeline and incorporate different time-related parameters, dynamics, or spectral
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properties into the data matrix and feature selection method to have more options
for comparing interpretations and ranking the feature relevance.

9.6 Conclusion
In this paper, we proposed the extraction pipeline for quantitative music analysis.
We utilized semi-automated synchronization, beat tracking, and a feature selection
method to provide meaningful information about the differences between interpreta-
tions of the same musical piece. We build on the performance analysis scenario and
speed up the tedious manual annotation or listening process of finding the interpreta-
tion deviations. However, the strategy still relies on one set of ground-truth measure
positions. It is possible to sort measures or sections with the highest discriminatory
power concerning the selected binary labels. For example, one can discover where
a specific performance differs the most or where one group of performances (e.g.,
more interpretations of the same performer) differs from the second group. The
strategy is highly variable, and the settings, such as the labels of the recordings,
depend on the goal of the analysis. We hope the proposed pipeline will provide
insight into comparative music performance analysis. We are working on software
that utilizes this strategy in an easy-to-use and user-friendly environment to sim-
plify extracting time-related parameters and to provide hints or cues for subsequent
qualitative case studies.

9.7 Further Notes
The software is also described in the published methodology [16], including a case
study on piano recordings from Bedřich Smetana and string quartets from Antonín
Dvořák. To show more functions of this tool, we provide a brief demonstration in
Appendix D.
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Summary and Future Prospects
In this thesis, I helped to develop and present tools and computational resources for
comparative music performance analysis. I utilized information retrieval methods
to reflect the goals of musically-driven performance analysis and experimented with
various string quartet and piano music datasets.

In Part I, I used several audio degradations to evaluate the robustness of onset
detectors (Chapter 2) and reported differences between conventional and ML-based
approaches when applying impulse response degradations, lossy compressions, or
TKEO. I further extended the idea behind intentional audio degradation by analyz-
ing the energy operator’s influence in the beat tracking system pipeline (Chapter 3).
I showed that reducing onset candidates may increase the tempo estimation accu-
racy, which is useful for MPA-related automated systems. Next, I trained multiple
TCN beat tracking models (Chapter 4) on various sampling rates to provide insight
into the training process and discussed the advantages and limitations of input rate
reduction for further applications. I reported the results and shared all models on-
line [18]. One of the models was later used in the synchronization pipeline of our soft-
ware MemoVision [6, 7, 21], providing a computational improvement over standard
models thanks to its modified sampling rate and temporal resolution. I also tackled
the problems of annotation-related beat tracking evaluation (Chapter 5). Further-
more, I evaluated user-driven metrics for automated beat and downbeat detectors
and semi-automated synchronization strategy in the case of complex string quartet
music (Chapter 6). These studies have set the foundation and provided an evaluation
of available methods for the analysis of performance differences [10, 11, 6, 7].

In Part II, I addressed the extraction of performance data from a dataset of
string quartet recordings (Chapter 7). Based on the modified feature matrices that
represent individual performance data while providing data unification, I trained
a machine learning classifier to differentiate between Czech and non-Czech perfor-
mances in the large corpora of string quartets from Anotnín Dvořák, Leoš Janáček,
and Bedřich Smetana (Chapter 8). I used an extraction pipeline and feature selec-
tion methods to retrieve significant performance parameters for any selected groups
of interpretations. We designed three scenarios with different settings and demon-
strated the importance of higher temporal resolution when analyzing the expressivity
of performances. Furthermore, I helped to develop the MemoVision software, which
utilizes parameter extraction, modified synchronization, feature selection, and visu-
alization in a user-friendly and easy-to-use web environment (Chapter 9). I report
additional MPA experiments and present the user interface of MemoVision software
in Appendix D.
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The main goal of this thesis was to utilize computational methods of music
processing and MIR to analyze and compare differences between various interpre-
tations of the same musical piece. This was achieved by first evaluating various
automatic MIR tasks, such as onset, beat, and downbeat detection under specific
conditions, such as degradations, that may be present in MPA datasets. Some
degradations may lead to higher detection accuracy while extending other limita-
tions of automated methods. The results of experiments and evaluations support
a semi-automated approach in the case of MPA case studies instead of fully auto-
mated detectors. Based on these conclusions, I derived a modified synchronization
approach and combined it with parameter extraction and feature selection methods.
Furthermore, I presented two large and unique datasets of string quartet and piano
music by Czech composers. I built on MIR methods, utilized them in comparative
music analysis scenarios, and helped implement a software that provides our findings
to musicologists and researchers in an easy-to-use environment.

In the future, automatic detectors may fully cover the needs of computational
musicology and music performance analysis fields. They have not yet achieved the
desired accuracy; the semi-automated approach based on music synchronization
is still preferable. However, despite its advantages, it is not often used in MPA
studies. Most of the recording annotation for MPA has been derived manually,
even though less time-consuming and tedious options may exist. The final goal of
this research was to bring the gap between MIR and MPA a little closer by openly
sharing and demonstrating the advantages of computational methods in the field of
music analysis.
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A Audio Degradation for Onset Detection

Fig. A.1: Box plot with F-score values (50 ms window) for all degradations; all
detectors averaged.

Fig. A.2: Box plot showing the F-score values (100 ms window) for all degradations;
all detectors averaged.
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Tab. A.1: The F-score for all categories, degradations, and systems; 50 ms window.

detector cat rBcast SPPb SPRec 64kb 320kb TKEO wav

CF

BS 0.727 0.731 0.583 0.686 0.689 0.607 0.689
CM 0.799 0.780 0.730 0.799 0.802 0.752 0.802
NPP 0.915 0.952 0.877 0.952 0.954 0.937 0.954
PP 0.843 0.854 0.809 0.861 0.859 0.859 0.859
vocal 0.568 0.560 0.427 0.568 0.570 0.399 0.570
WI 0.710 0.727 0.642 0.757 0.766 0.638 0.768

Lib

BS 0.597 0.626 0.564 0.646 0.648 0.573 0.648
CM 0.551 0.764 0.710 0.773 0.777 0.746 0.777
NPP 0.884 0.964 0.915 0.962 0.960 0.970 0.960
PP 0.841 0.830 0.820 0.846 0.845 0.845 0.845
vocal 0.525 0.414 0.358 0.433 0.417 0.356 0.416
WI 0.612 0.595 0.543 0.595 0.602 0.597 0.601

CNN

BS 0.803 0.743 0.677 0.765 0.806 0.643 0.807
CM 0.869 0.781 0.793 0.866 0.879 0.736 0.879
NPP 0.970 0.976 0.952 0.987 0.990 0.920 0.990
PP 0.911 0.894 0.891 0.929 0.937 0.886 0.937
vocal 0.714 0.566 0.468 0.638 0.739 0.399 0.740
WI 0.841 0.738 0.742 0.841 0.871 0.745 0.870

RNN

BS 0.641 0.377 0.514 0.554 0.573 0.481 0.573
CM 0.763 0.492 0.690 0.751 0.756 0.631 0.756
NPP 0.943 0.895 0.920 0.962 0.963 0.895 0.963
PP 0.869 0.812 0.843 0.872 0.874 0.815 0.874
vocal 0.521 0.211 0.380 0.330 0.331 0.168 0.331
WI 0.533 0.450 0.643 0.630 0.653 0.586 0.653

SF

BS 0.708 0.704 0.553 0.695 0.696 0.517 0.695
CM 0.845 0.830 0.753 0.844 0.846 0.767 0.846
NPP 0.910 0.942 0.946 0.944 0.942 0.931 0.942
PP 0.845 0.852 0.819 0.876 0.873 0.832 0.873
vocal 0.568 0.605 0.389 0.584 0.583 0.389 0.583
WI 0.662 0.657 0.585 0.660 0.657 0.577 0.657
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Tab. A.2: The F-score for all categories, degradations, and systems; 100 ms window.

sys cat rBcast SPPb SPRec 64kb 320kb TKEO wav

CF

BS 0.757 0.761 0.637 0.698 0.703 0.647 0.704
CM 0.817 0.794 0.771 0.812 0.816 0.773 0.816
NPP 0.918 0.953 0.880 0.953 0.956 0.937 0.956
PP 0.849 0.860 0.818 0.865 0.864 0.867 0.864
vocal 0.585 0.580 0.471 0.593 0.590 0.447 0.590
WI 0.735 0.753 0.687 0.786 0.790 0.669 0.792

Lib

BS 0.608 0.641 0.595 0.673 0.665 0.621 0.664
CM 0.556 0.778 0.734 0.783 0.787 0.763 0.787
NPP 0.884 0.964 0.917 0.963 0.961 0.971 0.961
PP 0.844 0.834 0.824 0.848 0.847 0.852 0.847
vocal 0.556 0.434 0.384 0.458 0.444 0.399 0.443
WI 0.636 0.618 0.578 0.608 0.620 0.622 0.619

CNN

BS 0.812 0.745 0.704 0.765 0.806 0.680 0.808
CM 0.874 0.785 0.810 0.869 0.882 0.751 0.881
NPP 0.970 0.976 0.954 0.987 0.990 0.920 0.990
PP 0.913 0.895 0.895 0.931 0.938 0.893 0.938
vocal 0.717 0.566 0.518 0.638 0.739 0.459 0.740
WI 0.852 0.741 0.783 0.848 0.878 0.764 0.877

RNN

BS 0.658 0.383 0.535 0.558 0.577 0.538 0.576
CM 0.769 0.496 0.703 0.754 0.759 0.654 0.759
NPP 0.945 0.895 0.920 0.962 0.963 0.896 0.963
PP 0.874 0.817 0.848 0.873 0.875 0.822 0.876
vocal 0.533 0.218 0.425 0.330 0.334 0.253 0.334
WI 0.716 0.466 0.680 0.644 0.664 0.619 0.664

SF

BS 0.732 0.724 0.596 0.703 0.706 0.548 0.705
CM 0.857 0.844 0.787 0.853 0.856 0.792 0.856
NPP 0.910 0.944 0.947 0.944 0.944 0.931 0.944
PP 0.852 0.856 0.828 0.880 0.877 0.840 0.877
vocal 0.587 0.635 0.426 0.591 0.603 0.416 0.603
WI 0.687 0.691 0.633 0.689 0.684 0.595 0.684
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B MPA-oriented GT Computation

Quartett "From my life"
I. Bedřich Smetana

(1824–1884)

5

10
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Fig. B.1: The beginning of the first movement of Smetana’s String Quartet No. 1.
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Tab. B.1: The EAT of all motifs of the second database.

Track Beg A B C D E
CD01 80.61 69.37 34.41 88.56 55.60 74.50
CD02 77.80 69.03 44.14 81.84 59.52 72.43
CD03 77.93 73.19 41.60 87.09 62.36 79.14
CD04 80.48 75.08 48.98 80.37 69.14 80.29
CD05 69.54 66.78 32.83 80.31 54.60 71.15
CD06 72.74 72.14 42.29 74.41 61.98 76.16
CD07 75.94 65.71 39.33 83.06 58.04 78.17
CD08 69.69 66.42 34.47 79.98 53.66 75.13
CD09 83.43 72.48 40.13 83.70 60.57 72.67
CD10 82.92 72.18 40.70 88.56 61.31 74.12
CD11 70.92 63.49 43.34 73.65 56.77 67.07
CD12 82.35 70.91 48.36 83.76 63.02 77.76
CD13 69.27 61.71 45.28 79.08 54.63 70.93
CD14 81.28 69.06 46.33 88.24 61.20 77.35
CD15 74.60 68.23 30.19 85.12 54.28 69.92
CD16 79.06 68.87 39.59 87.81 59.46 76.42
CD17 71.01 58.38 37.35 75.82 51.37 68.52
CD18 72.79 71.59 51.06 75.13 64.15 70.81
CD19 74.14 73.17 56.74 80.47 69.02 73.39
CD20 77.35 74.48 51.75 82.27 68.16 80.73
CD21 77.16 71.72 47.76 82.49 64.75 73.03
CD22 73.36 62.91 42.74 81.54 55.77 74.87
CD23 73.04 65.89 34.78 80.50 53.31 77.35
CD24 78.50 78.14 58.36 79.81 70.06 80.80
CD25 75.61 72.73 44.04 80.70 62.30 73.63
CD26 83.75 77.92 46.27 93.48 66.58 84.73
CD27 82.60 76.43 49.74 83.26 68.00 76.29
CD28 72.92 65.80 48.48 80.62 62.24 71.73
CD29 70.25 63.09 37.87 74.09 55.33 58.12
CD30 68.26 65.35 38.17 70.01 56.31 67.07
CD31 73.78 71.06 43.15 79.71 59.63 75.56
CD32 83.58 72.07 40.00 82.14 60.55 71.04
CD33 76.92 63.24 42.05 74.62 56.26 68.31

All values are in BPM.
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Tab. B.2: Reference GT and computed GT of the reference database.

Track No. Reference TS DS TS Dev. DS Dev.
1 48.15 47.85 47.85 0.30 0.30
2 66.99 73.83 73.83 6.84 6.84
3 68.00 95.70 95.70 27.70 27.70
4 60.41 48.75 68.00 11.66 7.59
5 39.71 42.36 42.36 2.65 2.65
6 62.76 47.85 47.85 14.91 14.91
7 53.67 54.98 54.98 1.31 1.31
8 136.05 136.00 143.55 0.05 7.50
9 55.15 56.17 56.17 1.02 1.02
10 75.86 80.75 78.30 4.89 2.44
11 91.63 95.70 95.70 4.07 4.07
12 87.27 86.13 184.57 1.14 97.30
13 93.75 99.38 95.70 5.63 1.95
14 75.38 86.13 89.10 10.75 13.72
15 35.34 42.36 42.36 7.02 7.02
16 70.01 66.26 66.26 3.75 3.75
17 72.20 73.83 73.83 1.63 1.63
18 82.87 89.10 117.45 6.23 34.58
19 41.99 46.98 42.36 4.99 0.37
20 80.65 99.38 123.05 18.73 42.40
21 72.73 83.35 78.30 10.62 5.57
22 35.09 44.55 63.02 9.46 27.93
23 89.71 172.27 172.27 82.56 82.56
24 51.81 51.68 51.68 0.13 0.13
25 63.56 99.38 103.36 35.82 39.80
26 117.46 129.20 129.20 11.74 11.74
27 200.00 198.77 184.57 1.23 15.43
28 116.73 117.45 61.52 0.72 55.21
29 95.09 83.35 123.05 11.74 27.96
30 63.36 63.02 63.02 0.34 0.34

Average 76.78 83.75 88.97 9.99 18.19
P-value 0.038 0.024

TS—System with the TKEO; DS—Default system without the TKEO; Dev.—
deviation from the reference global tempo; P—p-value for the t-Test (Paired Two
Sample for Means), 𝛼 = 0.05. All values are in BPM.
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Tab. B.3: Differences between the estimated GT and the EAT for both systems.

TS DS
Track Beg A B C D E Beg A B C D E
CD01 15.09 13.98 6.61 3.73 5.92 3.80 8.49 22.92 6.61 3.73 1.82 3.80
CD02 14.49 0.81 6.53 1.51 6.74 3.57 14.49 9.27 2.84 1.51 3.50 1.40
CD03 14.36 1.41 7.15 5.20 4.94 6.99 11.17 10.16 11.13 5.20 13.64 6.99
CD04 0.27 0.92 34.37 0.38 17.16 3.06 0.27 3.22 31.77 0.38 9.16 3.06
CD05 4.29 3.06 4.62 0.44 10.00 7.15 8.76 11.52 10.24 3.04 21.40 4.89
CD06 3.26 6.16 8.38 1.59 4.28 4.59 3.26 6.16 5.56 1.59 14.02 4.59
CD07 7.41 8.12 8.42 3.07 9.96 2.58 7.41 6.07 14.50 3.07 15.79 7.96
CD08 11.06 9.58 7.21 3.37 10.94 5.62 11.06 9.58 6.55 0.77 10.94 5.62
CD09 8.86 5.82 3.67 2.43 15.43 3.33 8.86 5.82 3.22 2.43 15.43 5.63
CD10 12.78 6.12 15.47 0.54 12.52 4.18 9.37 3.82 10.98 0.54 3.89 6.63
CD11 7.38 4.51 16.75 2.35 7.83 2.77 5.08 0.47 16.75 2.35 0.65 0.93
CD12 1.00 6.31 7.81 3.01 3.24 2.99 1.00 7.39 5.47 0.41 1.58 5.59
CD13 9.03 14.29 10.89 1.67 5.46 2.90 6.73 19.04 8.55 1.67 15.21 2.90
CD14 11.01 11.69 8.65 0.86 8.64 3.40 11.01 6.94 8.65 4.05 0.32 8.78
CD15 11.53 12.52 8.38 1.01 5.81 10.83 8.75 12.52 7.81 1.01 19.55 19.18
CD16 13.23 7.13 12.09 1.29 10.38 2.59 13.23 9.43 5.74 1.29 8.54 1.88
CD17 7.29 13.40 5.72 2.48 4.80 5.31 9.74 0.96 9.63 0.18 2.46 9.78
CD18 5.51 6.71 10.46 0.87 1.13 21.48 3.21 6.71 0.62 0.87 4.06 0.97
CD19 1.86 10.18 4.01 0.28 11.73 4.91 1.86 7.58 13.10 0.28 9.28 4.91
CD20 3.40 8.87 0.98 1.08 3.56 0.02 3.40 6.27 0.98 1.08 0.16 11.56
CD21 6.19 4.28 2.91 0.86 11.25 7.72 8.97 6.58 10.97 0.86 0.15 7.72
CD22 7.39 3.35 11.09 1.81 14.07 11.26 12.77 1.69 9.99 1.81 5.75 3.43
CD23 16.06 3.95 10.55 2.85 2.86 3.40 16.06 10.11 5.59 2.85 24.99 3.40
CD24 0.20 5.21 1.73 0.94 10.69 8.30 2.25 2.61 0.37 0.94 10.69 2.55
CD25 2.69 8.02 0.51 2.65 16.00 2.37 2.69 10.62 4.71 2.65 9.57 2.37
CD26 8.54 6.14 11.15 2.22 16.77 7.56 5.35 6.14 11.15 2.22 14.17 4.37
CD27 3.53 6.92 5.24 0.09 15.35 0.29 3.53 6.92 4.09 0.09 12.75 4.46
CD28 5.38 10.20 2.19 2.73 7.60 9.02 0.91 1.20 3.20 2.73 7.60 11.62
CD29 8.05 1.51 8.27 4.21 10.93 0.61 8.05 1.57 19.55 4.21 7.69 0.70
CD30 7.74 2.33 7.16 0.17 2.48 22.03 0.26 5.26 6.38 2.01 9.95 6.76
CD31 4.52 2.77 6.54 1.04 10.21 0.44 4.52 2.77 14.27 1.04 14.20 0.44
CD32 12.12 3.93 3.07 1.21 13.28 2.79 12.12 8.68 6.98 1.21 15.45 7.26
CD33 3.83 6.60 9.63 0.79 5.26 3.47 3.83 6.60 9.63 0.79 11.74 5.52

Average 7.56 6.57 8.13 1.78 9.01 5.49 6.92 7.17 8.71 1.78 9.58 5.38
Result 6.42 6.59

All values are in BPM—Beats Per Minute.
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C Classification of Interpretation Differences

Tab. C.1: Dvořák’s subset.

composer composition movement no of recs class 1 class 0

Dvořák

No. 12

mov1 51 11 40
mov2 73 18 55
mov3 72 17 55
mov4 75 17 58

Σ 271 63 208

No. 13

mov1 25 10 15
mov2 25 10 15
mov3 22 8 14
mov4 22 8 14

Σ 94 36 58

No. 14

mov1 22 10 12
mov2 7 2 5
mov3 23 10 13
mov4 21 8 13

Σ 73 30 43

Tab. C.2: Janáček’s subset.

composer composition movement no of recs class 1 class 0

Janáček

No. 1

mov1 65 22 43
mov2 66 22 44
mov3 66 22 44
mov4 66 22 44

Σ 263 88 175

No. 2

mov1 67 18 49
mov2 66 19 47
mov3 60 20 40
mov4 69 19 50

Σ 262 76 186

Tab. C.3: Smetana’s subset.

composer composition movement no of recs class 1 class 0

Smetana

No. 1

mov1 60 27 33
mov2 36 16 20
mov3 35 15 20
mov4 33 16 17

Σ 164 74 90

No. 2

mov1 26 21 5
mov2 26 21 5
mov3 26 21 5
mov4 23 19 4

Σ 101 82 19
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D Additional Experiments
In this chapter, I summarize the previous work by presenting the utilization of
proposed methods within the MemoVision software we created in the project TA ČR
TL05000527, Memories of Sound. The software was presented at the International
Symposium on the Internet of Sounds [6] and ISMIR conferences [7], respectively.
Furthermore, we created a certified methodology called “The Methodology of Music
Performance Analysis Using The MemoVision Software” [16]. It aims to provide
related MPA studies, explain the software’s core functions, and demonstrate them
on piano and string quartet recordings. In the following sections, I outline the
connection of MIR methods with the goals of MPA using the software, which is also
one of the main contributions to the MIR and MPA communities. I use the user
interface and visualization features to present a small case study and the possibilities
of data-driven semi-automated performance analysis.

D.1 Software
This chapter provides a brief user-case study on piano recordings from the Czech
composer Bedřich Smetana, Neighbor’s Dance to demonstrate its functionalities.
The software interface in [6] and [7] is slightly outdated compared to its current
state (January 7, 2024). The following sections present options and possibilities for
comparative performance analysis using MemoVision software. Note that all figures
come from the software as screenshots and lack vector graphics quality.

D.2 Data Preparation
The recordings and metadata for the TL05000527 project and this case study were
obtained from a variety of sources [16]:

• home funds of National Museum (NM), Prague,
• digital archive of Supraphon a.s.,
• acquisition of original audio carriers (gramophone records, CDs),
• private archives of collectors,
• recordings in open-access music databases,
• recordings available on streaming platforms.

Then, a unique identifier was attached to a given audio carrier or digital recording. It
combines an alphabetical and numerical description and provides information about
the digitization carrier, digitization institution (or under which project the digitiza-
tion is taking place), what is the unique position of the given medium in a specific
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record series, and what is the order of the recording within the medium/carriers.
More information is provided in the corresponding methodology article [16] or in
our previous methodology on digitizing the phonographic recordings that follows
a similar strategy [12]. A total of 308 recordings of Smetana’s “Czech Dances II”
were obtained, with interpretations by Czech pianists predominating in the total
corpus of data (218 in total). In this chapter, we use 17 recordings of the Neighbor’s
Dance composition.

D.3 Data Upload and Cleaning
After logging in and creating a session, one can first upload all files, select the ref-
erence recording (NMTACR00026-07-UC, Firkušný Rudolf, 1957) for the synchro-
nization process, and upload measure annotation (Figure D.1). Furthermore, one
can assign a label to each recording to create various binary classes for further anal-
ysis. Here, I chose non-Czech – Czech (noncz_cz), male – female (male_female),
less than 1960 – more than 1960, year of recording (lt1960_mt1960), and less than
2000 – more than 2000 (lt2000_mt2000) groups or classes (Figure D.2). The binary
label for a given class is shown in Figure D.3.

Fig. D.1: The first module of the software; upload of recordings, metadata, and
labels.
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Fig. D.2: List of provided binary labels.

Fig. D.3: Assigning of binary labels; less or more than 1960 (year of recording).

After the synchronization process, the software highlighted several recordings in
which the synchronization might not have worked properly. After a manual check,
I found out that one of the recordings (NMTACR00061-02-UC, Kindt Allen, 2001)
does not follow the same structure, and discarded this recording from further visu-
alizations and analysis. Furthermore, to compute the measure-wise tempo, I added
the time signature information for the whole composition—in this case 3

4 on its whole
duration (Figure D.4).
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Fig. D.4: The reference recording in the second module of the software; adding time
signatures.

D.4 Relevance
In the next module, Interpretation player, one can playback recordings or their
sections, navigate using arbitrary measure ranges thanks to the time-aligned perfor-
mances, and compare differences. I can visualize regions in which the synchroniza-
tion might have been incorrect (Figure D.5), but in this case, the recordings followed
the same harmonic and melodic structure and substantially varied in timing.

Fig. D.5: Highlighting of possibly different harmonic structures.

By clicking on the Relevance button of each recording, I can compare the rel-
evance in duration of measures of individual performance against the rest of the
dataset. Figure D.6 shows the most different measure (comparing the duration of
measures) for the first recording of the dataset. The blue highlights measure 103.
Note that all other presented performances play the same measure faster. The list
of most relevant measures for this combination is shown in Figure D.7.

Fig. D.6: Duration of measure 103 for 5 different performances.
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Fig. D.7: The descending list of the most relevant measures when comparing
a recording from Jitka Čechová with the rest of the dataset.

Figure D.8 shows the highest relevance measures when noncz_cz labels were
selected. The maximum relevance is around 0.35, indicating a difference. When I
select lt1960_mt1960 labels, I can see higher differences based on the brighter color
of measures 138 and 139 (Figure D.9).

Fig. D.8: The relevance around measure 151 for noncz_cz labels.

Fig. D.9: The relevance around measures 138 and 139 for lt1960_mt1960 labels.

Figure D.10 presents waveform visualizations from Interpretation player of mea-
sures 138–140 (blue highlight); recordings marked as red belong to the lt1960 class
and blue to the mt1960 class.

Fig. D.10: The duration of measures 138 and 140 for lt1960_mt1960 labels.
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D.5 Visualization
In the last module, one can visualize performance parameters and compare them.
Figure D.11 shows waveforms, RMS, loudness, and beat tracking activation functions
for the whole duration of two recordings from the dataset.

Fig. D.11: Waveforms, RMS, loudness, and beat tracking activation functions for
two piano recordings.

I can see the variations in dynamics, differences between RMS and loudness
curves, and overall quality (its sharpness or bluntness) of beat activation functions.
I can change the limits of the time axis, zoom into measures 138–140, and compare
parameters, such as dynamics values, for individual performances (Figure D.12).

One can visualize onset, beat, and downbeat activation functions from neural
networks and compare them while playing back the audio. For instance, one may
find relationships between acoustic parameters and the robustness of activation func-
tions (Figure D.13). Next, I can compare and analyze the loudness and tempo of
individual performances, but instead of using the time axis, resampling all parame-
ters to the same measure axis. Figure D.1 shows a comparison of three performances
and Figure D.15 all available interpretations.
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In the current version of the software, one can use a pre-trained chord recogni-
tion model to segment recordings based on the harmonic structure (Figure D.16).
However, this feature is experimental, as the detection accuracy varies.

Fig. D.12: Loudness curves for three performances.

Fig. D.13: Beat activation functions for three performances.
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Fig. D.14: Loudness and tempo for three performances.

Fig. D.15: Loudness and tempo for all performances.

Fig. D.16: The RMS, beat tracking activation function, and chord detection.
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Furthermore, I can compute the mean values of all parameters based on the
labels/classes. Figure D.17 shows the mean of noncz_cz labels and Figure D.18
male_female labels. Figure D.19 displays the whole recordings based on the mean
of lt1960_mt1960 classes.

Fig. D.17: Mean loudness and tempo for noncz_cz labels.

Fig. D.18: Mean loudness and tempo for male_female labels.

Fig. D.19: Mean loudness and tempo for the whole recordings; lt1960_mt1960
labels.
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Finally, Figures D.20 and D.21 show a scatter plot with noncz_cz labels for
the whole composition and male_female labels for measures 150–166, respectively.
This visualization is available only if a user provides years of recording as metadata
in the first module. Each class is separated by color (blue or red), including their
respective regression lines. Again, one can select any range of measures and labels
or remove outliers.

Fig. D.20: Scatter plot for noncz_cz labels; whole composition.

Fig. D.21: Scatter plot for male_female labels; ending of the composition.
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