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ABSTRACT 
The availability of digital music content and various interpretations of musical pieces is 
increasing rapidly. Simultaneously, even though the computational methods of Music 
Information Retrieval (MIR) are evolving at a quick pace, they are not always reflected 
in related fields such as Music Performance Analysis (MPA) . The main topic of this 
dissertation is the utilization of computational methods and digital music processing for 
the goals of MPA. It aims to combine MIR principles to analyze and compare differences 
in musical performances and their parameters. The thesis examines the limitations of 
conventional and machine learning-based onset and beat detectors to correctly estimate 
the ground-truth data under the effect of input audio degradations, sampling rate reduc­
tions, or in complex musical structures. Furthermore, this work shows the possibilities of 
music synchronization, parameter extraction, and feature selection application on novel 
string quartet data to provide a semi-automated strategy for binary classification of per­
formers' origin. Finally, it demonstrates a software tool for comparative music analysis 
by combining a comfortable user environment for playback, navigation, and visualization 
of music performance data with the computation methods of MIR. 

KEYWORDS 
music information retrieval; music performance analysis; music processing; onset detec­
tion; beat detection; synchronization; comparative analysis; string quartets; software 

ABSTRAKT 
Zvyšující se dostupnost digitálního hudebního obsahu a různých interpretací hudebních 
děl zároveň podněcuje vývoj výpočetních metod oboru získávání hudebních informací 
(MIR). Tento rozvoj ale nemusí být vždy reflektován v souvisejících oblastech - napří­
klad v analýze interpretačního výkonu (MPA). Hlavním tématem této disertační práce je 
využití výpočetních metod a digitálního zpracování hudby pro cíle MPA. Tato práce se za­
bývá principy MIR pro analýzu a porovnání rozdílů hudebních výkonů a jejich parametrů. 
Práce analyzuje limitace detektorů nástupů tónů a dob založených na konvenčních přístu­
pech a na strojovém učení, při degradaci vstupního signálu, snížení vzorkovací frekvence, 
nebo v komplexnějších hudebních strukturách. Dále ukazuje možnosti použití hudební 
synchronizace, extrakce parametrů a výběru příznaků na originálních datech smyčcových 
kvartetů pro binární klasifikaci původu interpretů. Na závěr demonstruje vyvíjený soft­
ware pro komparativní analýzu hudby, který kombinuje přívětivé uživatelské prostředí pro 
přehrávání, navigaci a vizualizaci dat hudebního výkonu s výpočetními metodami MIR. 

KLÍČOVÁ SLOVA 
získávání hudebních informací; analýza interpretačního výkonu; zpracování hudby; de­
tekce nástupů; detekce dob; synchronizace; srovnávací analýza; smyčcové kvartety; soft­
ware 
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Preface 
Music is a universal language across all parts of the world. Its purpose, features, 
and underlying properties can be understood differently based on tradition and 
cultural variance. The ability to perceive harmonic, melodic, and rhythmic patterns, 
including their relationships within a given musical piece, begins to develop already 
in the earliest stage of one's life. It may be gradually refined into musical knowledge 
and experience, allowing individual music analysis at different levels. Each educated 
musician analyzes the music, even unconsciously, when listening or performing. The 
perception of music is a complex mechanism, from changes in local air pressure and 
transfer of vibrations to the cochlea, a spiral-shaped cavity in the bony labyrinth 
of our ears, up to evaluation in the brain. Our ears process the sound waves—from 
amplification and transformation into the frequency representation—and send them 
via electrical signals into our control unit. But what happens next? Are musical 
education, knowledge, and experience correlated with how we listen and perform 
music? Is it possible to distinguish musicians or a group of musicians with the same 
cultural or musical background objectively based on their performance? Can we 
measure and compare differences in music expressivity? 

Transferring the music analysis capabilities of a human into the computing do­
main contains many obstacles that we have not yet overcome. When describing 
music subjectively, one may start with expressions of our emotional state or feel­
ings. However, in today's digitized world, there is a strong need for an objective 
description, although even the technical descriptions of sound parameters, such as 
dynamics or timbre, are related to our subjective perception. This results in many 
studies focused on music information retrieval, extraction of relevant music fea­
tures, or digital music analysis. As technology and computational methods evolve, 
we find new ways of dealing with music data, including analysis, sorting, processing, 
recommending, and changing and transforming their properties. By extracting the 
underlying features of music, we may be able to understand the context of music and 
its differences across various cultural backgrounds or music schools. Furthermore, 
we could build on previous analytic approaches and provide new forms of compara­
tive music analysis, focusing on distinguishable traits of individual performances in 
large-scale datasets. 

In this work, I contribute to some of the questions raised; however, due to the 
state of current knowledge in the related fields, all chapters and discussed topics are 
far from exhausted and resolved. I aim to provide some insight into performance 
data and comparative performance analysis topics by utilizing methods of the music 
information retrieval field, focusing on a more technical view of music processing 
and leaving out the processing of the human brain. Due to the nature of music 
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performance data and the limitations of automated extraction systems in the past 
(and even today), most performance studies use a very limited number of record­
ings. Researchers rely on manual annotations of data, hand-crafted features, or very 
specific scenarios. In this thesis, I address some tasks of music information retrieval 
and performance analysis from an application point of view. I briefly describe the 
history and principles of both interdisciplinary fields and present the motivation, 
ideas, and some of the methods I used during experiments. The rest is covered in 
a given literature or articles I authored or co-authored (Chapters 2-9). The main 
topic, present throughout the thesis, is the utilization of retrieval methods for com­
paring music performances and decreasing the time of the annotation process for 
music analysis scenarios. 

Structure of the Thesis 

This thesis is divided into nine chapters and two parts. The first part summarizes 
my contributions to low-level and mid-level detection systems and their evaluation 
based on the principles of music performance analysis. The second part analyzes and 
compares music performance differences using information retrieval methods. Note 
that the chapters are not always chronological (compared to the year in which the 
corresponding articles were published) but are arranged to follow a more consistent 
thesis structure. 

Chapter 1 presents the two related fields, Music Information Retrieval and Music 
Performance Analysis, and the related fundamentals of music processing, including 
audio signals, time-frequency transformations, music synchronization based on dy­
namic time warping, and its modified variants. 

Chapter 2 starts the part I of the thesis. It is based on the article "The Effect 
of Audio Degradation on Onset Detection Systems" [1] and introduces the notion of 
various degradations in the pre-processing phase of onset detectors. 

Chapter 3 follows Chapter 2 by focusing on MPA-oriented global tempo com­
putation and introduces the article "Enhancement of Conventional Beat Tracking 
System Using Teager-Kaiser Energy Operator" [2]. This article is an updated ver­
sion (nominated for further publishing in a journal) of two previous consecutive 
conference articles [3] and [4]. 

Chapter 4 introduces the article "Beat Tracking: Is 44.1 kHz Really Needed?" [5] 
that won first place in the Audio, Speech, and Language Processing category at 
the EEICT 2023 student conference1. It experiments with and evaluates different 
input sampling rates of beat tracking models. I later used one of the models with 

x

www.eeict.cz/eeict_download/archiv/vysledky/EEICT_2023_vysledky_v2.pdf, p. 18 
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slight modifications in the follow-up studies [6, 7] and the Memo Vision software (see 
Chapter 9 and Appendix D) for a combined synchronization approach inspired by 
the collaboration (and my internship topic) and the research in Audio Labs institute 
in Germany. 

Chapter 5 is based on the article "The Application of Tempo Calculation for 
Musicological Purposes" [8], which also won first place in the Signal, Image, and 
Data Processing category at the E E I C T 2021 student conference2. It evaluates 
conventional and machine learning-based beat tracking systems on two challenging 
string quartet motifs. I tried to explain the problems of applying beat detectors 
in music analysis scenarios and the standard beat tracking and tempo evaluation 
metrics. 

Chapter 6 presents the article "Exploring the Possibilities of Automated Anno­
tation of Classical Music with Abrupt Tempo Changes" [9] that won second place 
in the Analog and Digital Signal Processing category at the EEICT 2022 student 
conference3. It follows the ideas of the previous chapter by jointly evaluating a syn­
chronization method, beat detector, and downbeat detector utilizing user-driven 
metrics. 

Chapter 7 starts part II of the thesis and introduces the article "Towards Au­
tomatic Measure-Wise Feature Extraction Pipeline for Music Performance Analy­
sis" [10]. I deployed synchronization strategy and parameter extraction based on 
previous studies to create representative matrices for analyzing interpretation dif­
ferences. 

Chapter 8 presents the article "Classification of Interpretation Differences in 
String Quartets Based on the Origin of Performers" [11] that uses the ideas of [10] 
and trains the machine learning classifier to distinguish between two separate groups 
of recordings based on performance parameters. In the study, we predicted the Czech 
and non-Czech origin of interpretations with relatively high accuracy within large 
corpora of Czech string quartet music. 

Chapter 9 follows with the article "Application of Computational Methods for 
Comparative Music Analysis" [6], introducing the Memo Vision software, its func­
tions, and contributions to MIR and M P A communities. 

Additional experiments with the application of the Memo Vision software on 
a piano composition from Bedřich Smetana are demonstrated in Appendix D. 

2

www.eeict.cz/eeict_download/archiv/vysledky/EEICT_2021_vysledky_new.pdf, p. 22 
3

www.eeict.cz/eeict_download/archiv/vysledky/EEICT_2022_vysledky.pdf, p. 20 
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1 Basics of Music Processing and Analysis 
This chapter explains the basics of music processing related to the thesis. This cov­
ers a quick overview of music performance analysis and music information retrieval 
fields (Sections 1.1 and 1.2), audio representations (Section 1.3), and music syn­
chronization (Section 1.4). The last two sections are substantially inspired by [22] 
and [23]. 

1.1 Music Performance Analysis 

Music Performance Analysis (MPA) is an interdisciplinary field that focuses on 
extracting information, evaluating, and analyzing musical performances. It pro­
vides a connection between the subjective experience of music and objective data 
analysis [24]. The performance or interpretation1 plays a critical role in how lis­
teners perceive a given composition. Variations of musical parameters shape the 
expressivity of the resulting interpretation. The blueprint, usually in the form of 
a musical score or sheet music, is not the performed music itself, as it first requires 
acoustic realization [25, 26]. Different performers may interpret the same blueprint 
uniquely, creating variations of performance data. Furthermore, the availability of 
music increased radically in previous years thanks to the internet, lossy audio data 
compressions, and streaming portals, leading to more options for inspiration. The 
performers are usually musicians, but in recent years, the advances in computa­
tional models such as neural networks have allowed us to consider new systems as 
possible performers with human-like deviations. Music as a performing art requires 
a performer or multiple performers to render the musical ideas into a signal domain, 
usually in the form of physical sound that is then perceived by the listener's ears. 
However rich, for all purposes of this thesis, we assume and use Western musical 
concepts, tuning, and notation. 

There are multiple forms of relevant music data such as sheet music, midi tran­
scription, audio signal, or derived representations like spectrograms and chroma vec­
tors. However, some aspects of music performance can also be described by visual 
information, e.g., by gestures and facial expressions of musicians [27, 28, 29]. Such 
data are usually unavailable for further processing or do not convey performance 
cues. The focus of M P A research is mostly on symbolic data and audio recordings. 
The preprocessing adjustments (recording equipment, position of microphones), pro­
cessing workflow (digital effects, mixing, mastering), and postprocessing choices (ef­
fects, audio carriers, and formats) of music recordings affect the performance data 

x

For the purpose of this thesis, I use both terms interchangeably. 
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and the objectivity of the analysis. If we use audio recordings, we cannot simply 
separate the performer's intentions from all other aspects of the data. However, 
the parameter variations are sometimes subtle, and in the case of M P A , they are 
usually evaluated in reference to the same performer, different interpretations, or 
symbolic score representation [24]. The research drive to generalize performance 
principles naturally leads to the analysis of classical music, where a large number 
of interpretations of the same piece may be available compared to other genres of 
music. This work focuses mostly on the string quartet and piano music. The M P A 
research covers but is not limited to: 

• expressivity: the term itself is vague and may cover multiple research topics, 
• timing: time-related features such as onsets, offsets, beats, downbeats, 
• intonation: intentional and unintentional changes in pitch, vibrato, 
• timbre: a spectrum of instruments, the relation between timbre, dynamics, 

and expressivity, 
• dynamics: loudness and tempo, structure-related dynamic choices, 
• musical structure: traits of compositions, relation of the structure and perfor­

mance, 
• psychological aspects: communication between performers, the influence of 

music, 
• computational analysis: retrieving of music-related information from audio 

signals, 
• pedagogy and education: aiding the pedagogical process by understanding 

underlying music material, 
• historical styles: how music evolved in time. 

1.2 Music Information Retrieval 

Thanks to the digital revolution in distributing and storing audio data, music has be­
come easily available and popular multimedia content [30]. Music processing is one 
of the fields that thrives from advances in digital signal processing (DSP), computer 
science, and machine learning (ML). It extends our capabilities of understanding, ac­
cessing, analyzing, and manipulating music. The music industry is pushing towards 
the continuous production of new musical pieces, especially in the pop genre, so the 
number of listeners increases along with cloud services and streaming portals. The 
need for sorting, retrieval, and recommendation algorithms is unavoidable. The first 
sign of Music Information Retrieval (MIR) emerged in the paper [31] in 1966 as "Mu­
sical Information Retrieval". The growth of the MIR community was not rapid; it 
slowly increased with the availability of data, computing power, and new communi-
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cation options. The ISMIR (International Society for Music Information Retrieval) 
conference2 has been held annually since 2000 and is currently the leading forum for 
processing, retrieving, sorting, and accessing music data. It supports and follows the 
open-access guidelines and includes topics from musicology, cognitive science, psy-
choacoustics, computer science, computational intelligence, machine learning, and 
electrical engineering. Furthermore, the open-access journal Transactions of the 
International Society for Music Information Retrieval (TISMIR) 3 complements the 
conference and publishes substantial scientific research in the field of MIR. There 
used to be the Music Information Retrieval Evaluation eXchange (MIREX) initia­
tive 4 with a focus on comparing and evaluating detection systems of MIR-related 
challenges, but the last official meeting of this community was at ISMIR 2021. The 
MIR topics cover but are not limited to: 

• feature extraction and modeling: low-, mid-, and high-level features (for ex­
ample, onset, beat, and downbeat detections), 

• music classification: music identification, pattern matching, music structure 
analysis, 

• music recommendation: recommendation systems, database handling, 
• source separation: sound source identification and separation (for example, 

voice or instrument separation), instrument recognition, 
• music generation: automatic generation, autoencoders, generative adversarial 

networks, 
• automatic music transcription: creating symbolic music notation from audio 

recordings, 
• differentiable signal processing: modeling of audio effects and systems, 
• retrieval: fingerprinting (Shazam-like applications), query-related tasks (query 

by humming or singing). 

2

https://www.ismir.net 
3

https://transactions.ismir.net 
4

https://www.music-ir.org/mirex/wiki/MIREX_HOME 
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1.3 Audio Representations 

1.3.1 Digital Signals 

In the audio processing sense, sound is a deviation of the air pressure from the 
average atmospheric air pressure in time. The vibration of a physical object with 
a frequency between circa 20 Hz to 20 kHz or 16 Hz to 16 kHz (limitation of human 
capabilities) causes oscillations of air molecules, resulting in regions of compression 
and rarefaction. The oscillation propagation through the transmission environment 
is called a sound wave, which can be converted via a microphone into electrical 
voltage levels. The function of continuous-time analog signal / : M. —>• R assigns 
a value fit) G K. to each point in time t G M [32] and is often represented as 
a waveform (Figure 1.1). Note that all discrete values are interpolated, resulting in 
a smooth and seemingly continuous curve. In this thesis, to follow the vocabulary 
of DSP, we use the term "amplitude" only as a maximum value of a harmonic signal 
(yielding one value for a given function), which is not the case when displaying 
a time-varying waveform. Note that the thesis does not differentiate between round 
and square brackets for continuous or discrete signals to follow the standards and 
notions of the MIR community. 

0 50 100 150 200 250 300 350 400 

samples 

Fig. 1.1: Waveform visualization (400 samples) of a piano recording. 

A signal is the carrier of information and can be transformed into a digital 
signal by analog-digital (A/D) conversion with two standard processes—sampling 
and quantization. First, a sampling process transforms the analog signal into, e.g., 
an equidistant discrete set of values x(n) with a sample index n G Z with sampling 
period T G M.>0: 

x(n) = f(n-T). (1.1) 

The sampling rate / s (or sr in some literature), which is one of the key parameters 
of discrete and digital signals, is defined as / s = 1/T. The signal is defined on 
a discrete set of points, but the value can be any real number and may be of infinite 
length. This sampling procedure can be considered downsampling as we no longer 
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have information about values between discrete points in time, inevitably losing 
some information. However, the Nyquist-Shannon theorem states that the analog 
signal can be perfectly reconstructed from its discrete version if it does not contain 
any frequencies above the Nyquist frequency u G M>o defined as u = / s / 2 . Common 
sampling rates for music recordings are 44.1, 48, and 96 kHz. Theoretically, we need 
at least 40 kHz to sample the audio material (about twice the highest frequencies 
one can hear, although they do not usually convey any useful information, and the 
overall ability to hear higher frequencies is also individual and depends, e.g., on 
one's age). In music analysis and for music-related feature extraction, the common 
sampling rate is 22.05 kHz or 16 kHz because most of the relevant information is 
contained in the lower frequency band. For example, a sampling rate of 8 kHz may 
be sufficient for some speech processing and telecommunications applications. 

The last step to obtain a digital signal from a time-discrete variant is to discretize 
the values of x(n) in a process called quantization. As a simple example with uniform 
quantization, we can map the values a of x{n) to the quantized values Q(a) as follows: 

where sqn(a) is the signum function that yields the sign of the value a, S is the 
quantization stepsize, and S G M>o- Furthermore, a 6 1 and 8 = l/2d, where d 
is a bit depth, a property of an A / D converter that describes how many bits are 
available to store the values. For example, an 8-bit converter has a resolution of 
2 8 = 256 quantization levels. The common bit depths for digital audio recordings 
are 16 and 32 bits. We end up with a digital signal that a computer can process, 
analyze, and modify. 

1.3.2 Fourier Transform 

The Fourier transform (FT) was named after the French mathematician Jean-
Baptiste Joseph Fourier (1768-1830) [33], and it is one of the most used algorithms 
in the world. The name Fourier transform occurred for the first time in an article 
by Edward Charles Titchmarsh [34] in 1923, although it was used earlier in 1915 in 
an article by Michel Plancherel [35] but not in the same sense as we use it today. It 
was first described probably by Carl Friedrich Gauss (1777-1855) and discovered/re­
discovered independently by many people. Johann Peter Gustav Lejeune-Dirichlet 
(1805-1854) published a famous article showing for which conditions the convergence 
of the Fourier series (Fourier series deals only with periodic signals) holds [36]. There 
are more definitions of Fourier transform but in this thesis, we use the complex def­
inition for its elegant explanation of magnitude and phase components. 

(1.2) 
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The main concept of F T is a harmonic analysis—decomposition of a signal into 
its frequency components (spectrum). In our analysis scenarios, we use a discrete 
variant of the Fourier transform called Discrete Fourier Transform (DFT). We can 
define the complex D F T X{k) of a signal x(n) as: 

N-l 

X(k) = J2 s ( f « ) e " ^ , (1.3) 
n=0 

where k 6 [0 : 7V — 1] is a frequency index and i V e N . We can also define the 
inverse D F T to obtain the original signal x(n) from its transformation X{k): 

1 N-l 

<") = ± Z m****, (1-4) 
J V fc=0 

with the same range of k. Note that the sign in the exponent has to be inverse to 
the forward D F T , and the resulting spectrum X{k) is non-periodic (as if it was only 
one period of a periodic DFT) and symmetric. The Fourier coefficients X{k) are 
complex values that yield magnitude and phase information of physical frequencies 
k • fs/N, but one usually considers the frequency range between 0 and fs/2 Hz. 
Computing D F T is computationally expensive, and the complexity is 0(N2) com­
pared to the elegant and efficient Fast Fourier Transform (FFT) algorithm from 
1965 by Coolie and Tukey [37] with C( iVlog 2 N) complexity that is used in most of 
the applications. In such a case, the length of the sequence N has to be a power of 
2. It was first published as a method of effectively computing Fourier series coeffi­
cients and later used for the fast DFT . Figure 1.2 shows a single side spectrum of 
a short audio excerpt. Negative frequencies are omitted as they carry no additional 
information for real signals. We can observe dominant peaks in the spectrum, dis­
tinguishing frequencies that correspond to tones or their overtones. However, we 
have no information about the timing of the onset or offset of individual tones. We 
need a transformation that captures the timing of musical events while providing 
sufficient frequency resolution. 

0.0015 

2000 

frequency [Hz] 

Fig. 1.2: A single side spectrum of a short audio excerpt with several tones and their 
overtones. 
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1.3.3 Short-Time Fourier Transform 

Fourier transform describes frequencies within a given audio signal. However, we 
have no information about when these frequencies occur. For instance, two notes 
played in succession or the same notes played simultaneously would have a very 
similar spectrum using DFT. The only parameter is the length of the signal in 
samples. However, we can use only one segment defined by its length in samples, 
compute the Fourier transform, and then proceed to the next segment and repeat. 
To retrieve time and frequency information from the signal, we divide it into frames 
of length TV G N using a window function w G [0 : N — 1] and calculate D F T 
on each frame, resulting in discrete Short-Time Fourier Transform (STFT). The 
discrete time-frequency representation X(m, k) can be defined as: 

N - l _27Ijfc„ 
X(m,k) — x(n + mH)w(n)e N , (1.5) 

n=0 

where m G Z is the frame index, k G [0 : N/2] is the frequency index, and 
n G [0 : TV — 1]. H G N represents the hop size, hop factor, or window over­
lap. It defines the number of samples between consecutive frames. Here, we shift 
the signal in time by the hop factor, but in other definitions, the window is shifted 
instead (for instance, in [23]). There are more definitions that should be equiva­
lent but vary in the practical implementation. Instead of frequency indexes X{k) 
as in DFT , we end up with a matrix X(m, k), where all m time positions contain 
L-/V/2J frequency indexes. The time coefficients T(m) represent the physical time in 
seconds, and frequency coefficients F{k) represent the physical frequency in Hertz: 

T(m) = — — , (1.6) 
Is 

F(k) = (1.7) 

We can use many different window functions (rectangle, triangle, Hamming, Hann, 
Bartlett, etc.), each with different frequency properties (abrupt changes lead to 
specific artifacts that propagate in the spectrum) that slightly change the spectral 
estimate of the STFT. We can consider the window as a Finite Impulse Response 
(FIR) filter with the corresponding frequency response. The most common window 
for music processing applications is Hann window w(x) defined as [22]: 

w{x) = 1 + C ^ S ( 7 I X ) if - 0.5 < x < 0.5, else 0. (1.8) 

It has a smoother shape and no discontinuities compared to, e.g., rectangular win­
dow, leading to attenuation of ripple artifacts. However, it also blurs or smears 
the frequencies in the windowed signal. Note that the window length denotes the 
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time and frequency resolution of STFT. Frequency resolution increases with a longer 
window while time resolution decreases and vice versa. The notion is called the un­
certainty principle of signal analysis, based on Heisenberg's uncertainty principle, 
and is referred to as a time-frequency trade-off. The length always depends on the 
application. Denis Gabor combined the Fourier transform with the Gaussian win­
dow function and computed the first STFT in 1946 [38]. The Gabor transformation 
is a special case of Short-Time Fourier Transform with a Gaussian window and laid 
the foundation for another time-frequency representation that addresses the problem 
of a static window length through the analysis—wavelet transform. The spectrum 
of the SFTF is usually described by complex numbers, including magnitude and 
phase information. The magnitude information corresponds to the absolute value 
of X(m, k) and the phase information from the argument of j X ( m , k) as follows: 

The visual representation of \X(m,k)\ is called a magnitude spectrogram. Most 
music-related information is usually contained in the lower bands of the spectrum, 
so in many applications, a logarithmic compression is applied. Furthermore, the 
human perception of intensity and frequency is almost logarithmic. It makes sense 
to use the log-frequency spectrogram if the goals of our application support that. In 
most experiments in this thesis, we use only logarithmic magnitude spectrograms, 
discarding the phase information. 

1.3.4 Chroma features 

We need a different time-frequency representation to analyze the harmony and 
melodic parts of music representations. We leverage the fact that two pitches are 
perceived as similar in their color (containing similar higher frequencies or over­
tones) when they differ in an integer multiple of their frequencies. For instance, 
a pitch of 440 Hz (A4) is perceived as similar to 880 Hz (A5), which is one octave 
higher, doubling the frequency. We can separate the pitch into two components: 
tone height and chroma. Tone height represents the octave number (such as 4 in 
A4) and chroma describes the tone class as in international Western music notation 
based on equal temperament, leaving out enharmonic equivalents and creating a vec­
tor of 12 values [C, Q , D, D#, E, F, Ffl, G, G(j, A , A#, B]. The main idea of chroma 
features is to combine all spectral information related to a given tone or pitch class 
into a single chroma coefficient [22]. It is possible to derive chroma features from 
a pitch-based log-frequency spectrogram, which has specifically crafted bandwidths 
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B W (p) for standard MIDI pitches p e [0 : 127]: 

B W (p) = Fpitch(p + 0.5) - Fpitch(p - 0.5), 

where F p i t ch(p) corresponds to the center frequency of a pitch p: 

; i . io) 

Fpitch(p) = 2 ^ r • 440. 

The chroma features C(m,c) can be defined as: 

'1.111 

C(m,c)= £ X L F (m, fc) , (1.12) 
p mod 12 = c 

where X L F stands for the log-frequency spectrogram. There are, however, many 
ways how to compute the chroma representation, including filter banks, Constant-Q 
Transform (CQT), or a deep neural network-based approach called DeepChroma [39]. 
The CQT approach usually gives better resolution in lower frequency bands than 
STFT but is more computationally expensive. DeepChroma is trained on a spe­
cific set of recordings and musical genres. For most experiments in this thesis, we 
used the Chroma Energy Normalized Statistics (CENS) feature, a normalized and 
smoothed variant of STFT chroma features [40]. To understand the similarity of 
chroma features and a MIDI transcription (visualized as a piano roll) from a real au­
dio recording, we show the comparison in Figure 1.3. Furthermore, Figure 1.4 shows 
the comparison of three chroma representations of a piano recording (20 s excerpt): 
STFT chroma, CENS, and DeepChroma. We can observe the downsampling and 
smoothing of the features in the CENS and DeepChroma approaches. This usually 
leads to better synchronization robustness while providing sufficient temporal reso­
lution. The darker the area, the more that tone or its corresponding frequencies are 
present in the signal. 
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Fig. 1.3: The CQT chroma features and a piano roll visualization of a piano record­
ing. From top to bottom: CQT chroma and corresponding piano roll. 
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Fig. 1.4: Three chroma time-frequency representations of a piano recording excerpt. 
From top to bottom: STFT chroma, CENS, and DeepChroma. 

1.4 Synchronization 

As mentioned before, we can represent digital audio material as a waveform, spec­
trum based on DFT, or a time-frequency representation such as spectrograms based 
on STFT, CQT, wavelets, or chroma vectors. However, music is multimodal, mean­
ing we have many ways to represent the musical information—either a symbolic 
score or an actual physical rendering. For example, we can represent a piece of 
sheet music or a score as an image (a single matrix consisting of rows and columns, 
values 0-255 represent the greyscale color of pixels) or transform the audio recording 
to a magnitude spectrogram and again to the image. Furthermore, we can modify 
the note timings of a piece's score to correspond to the recorded performance and 
render it symbolic MIDI file. 

In the experiments reported in this thesis, we often use datasets containing mul­
tiple performances (interpretations) of the same musical piece. We usually assume 
that the performers play the piece using the same score material. The harmonic and 
melodic structure should be the same for all performances. Ideally, performances 
should vary only in performance parameters such as local and global tempo (posi-
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tion of tones, beats, and measures in time), interpretation style (expressivity, legato, 
staccato, vibrato, tremolo, etc.), dynamics, and timbre. However, the underlying 
harmonic and melodic progressions and changes should not differ. Even though this 
assumption may often be wrong, as performers can make mistakes (often during live 
versions), use different scores, or play/skip repetitions, we can leverage the music 
synchronization technique to determine the corresponding time positions of two mu­
sic representations. Figure 1.5 shows the synchronization idea using sheet music, 
chroma vectors, and corresponding audio recording. If we compute chroma features 
from the digital audio, we can compare them with the binary chroma of sheet mu­
sic to obtain corresponding time positions of both representations (score-to-audio 
synchronization). 

80-

70 

60 

50-

40 

Fig. 1.5: The example of the synchronization idea with corresponding time stamps 
(red arrows): sheet music, MIDI piano roll, and waveform representations of the 
same audio excerpt. 

1.4.1 Dynamic Time Warping 

The main idea of music synchronization is to find time positions in one representation 
(reference) and the corresponding time positions in the second representation (tar­
get). First, one has to compute suitable features for each music representation, such 
as chroma features, and then deploy a synchronization technique. The most common 
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synchronization method in MIR is called Dynamic Time Warping (DTW). We can 
use chroma vectors from the reference recording and synchronize them with chroma 
vectors from the target audio recording (audio-to-audio synchronization) [41, 42]. 
Similarly, the reference could be MIDI (symbolic score-to-audio) [43] or sheet music 
(sheet music-to-audio) [44]. 

The D T W compares two sequences X — (xi,..., XN) and Y = (yi,..., JJM) with 
N G N and M G N . In our scenario, X and Y feature sequences correspond to 
the chroma vectors of reference and target recordings, respectively. Both sequences 
usually vary in length TV and M (tempo), but their chroma vectors should be similar. 
First, we assume that xn, ym G T for n G [1 : N] and m G [1 : M], where 
J 7 is a feature space. Then we define compute local cost measure function c as 
c : 7 x 7 ->• R. 

If c(x,y) is small (small cost), both input features are similar; otherwise, they 
are different. Computing local cost measure on all pairs of X and Y, we obtain cost 
matrix C G RNxM: 

C(n,m) = c(xn,my), (1.13) 

where n G [1 : N] and m G [1 : M]. Then, we compute distance using cosine 
distance for nonzero values of x and y: 

c(x,y) = l-.. ffigj ... (1.14) 
IfII • \\y\\ 

If x or y is zero, c(x,y) = 0. If x and y are orthogonal, c(x,y) = 1. The cosine 
distance does not depend on the length of input sequences—only the energy distri­
bution across all twelve chroma pitch classes is considered, potentially leaving out 
the dynamics or timbre elements of input recordings. Next, we need to obtain an 
optimal alignment path called the warping path. In a standard D T W , the warping 
path P = ( p i , . . . ,pr) follows three conditions: boundary conditions (the path starts 
at the (1, 1) position and ends in (N,M) position; monotonicity condition (the n 
and m are always the same or increasing, never decreasing), and step size (no x or 
y can be omitted and there are no duplicates in the alignment path). Next, we can 
define path cost cp(X, Y) of a warping path P: 

cP(X,Y) = J2C(nt,mt). (1.15) 
t=i 

The goal is to minimize the cost D T W ( X , Y) of the optimal warping path PQ: 

D T W ( X , F ) = m i n ( c P o ( X , F ) ) , (1.16) 
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which is usually done using dynamic programming. The idea is to segment a given 
problem into smaller subproblems and, by solving and concatenating small sub-
problems, solve the original problem. In the D T W case, we can derive a global 
warping path by solving smaller subsegments of feature sequences X and Y. First, 
the accumulated cost matrix D is computed [45]: 

D(n, m) = C(n, m) + min D(n — i,m — j) (1.17) 

with D(n, 1) = E L i c ( M ) for n e [1 : N] and D ( l ,m) = E £ l i C(l,Jfe) for 
m G [1 : M] using backtracking. The complexity of the algorithm is O(NM). We 
refer to [22, 46] or a recent Ph.D. thesis [47] for an extensive description of the D T W 
algorithm. Figure 1.6 shows the example of standard D T W synchronization on two 
sets of chroma vectors. There are, however, other approaches to compute the time 
alignment, such as Hidden Markov Models (HMMs) and particle filters [43, 44]. 

time of target [s] 

Fig. 1.6: The example of synchronization of two audio recordings using chroma 
vectors and D T W . 

The D T W can be further modified to decrease the computational cost or mem­
ory consumption. For example, one can change the step size conditions, adjust local 
weights, and deploy global constraints or multiscale methods. One way to decrease 
the memory requirements of D T W is to use the Sakoe-Chiba band or Itakura paral­
lelogram, the constant global constraint regions that were introduced in [48] and [49], 
respectively. Their comparison is given, e.g., in [50]. Instead of constant constraints, 
one can use adaptive global constraints such as multiscale D T W (MsDTW) [41] and 
a variant called FastDTW [51]. Multiscale means that the potentially non-optimal 
alignment is computed first on the coarse resolution, projected onto a finer feature 
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resolution level and refined using a tubular constraint region [45]. The alignment 
computation can be divided into two problems: online and offline alignments. In 
the online variant, we do not know the data in advance, and the alignment is usually 
computed by greedy forward path estimation [42] or by block-by-block processing 
methods [52]. Offline approaches can use backtracking as all data is known prior. 
In recent years, Cuturi et al. introduced the SoftDTW [53], which makes the D T W 
method differentiable. It was further used in [54] to stabilize pitch class estima­
tion training with weakly aligned targets. Furthermore, Bükey et al. presented 
FlexDTW [55] with flexible boundary conditions to the alignment, dealing with 
some limitations of standard D T W approaches, where the warping path starts and 
ends in diagonal points of the similarity matrix. 

In our experiments, we used memory-restricted multiscale dynamic time warp­
ing (MrMsDTW) [45] for its efficiency and availability via synctoolbox [56]. This 
method builds the global warping path by concatenating smaller local alignments, 
thus restricting memory usage. It utilizes local rectangular constraint regions in the 
refinement step with a defined size using anchor points, which makes the required 
memory dependent only on a restriction parameter r. The memory requirement is 
constant instead of linear in M s D T W or quadratic in the case of standard D T W . 
The example of M r M s D T W from synctoolbox [56] applied to two interpretations of 
the same piano piece is shown in Figure 1.7. Note that the cost matrix values differ 
substantially from a standard D T W , in comparison with the colorbar of Figure 1.6, 
due to the path's boundary conditions that reduce the area of computation and the 
overall length of the example (30 s in both cases). 

I attended an internship in Audio Labs, Erlangen, Germany, under the super­
vision of Prof. Meinard Müller, resulting in the collaboration and the paper at the 
ISMIR conference called "Using activation functions for improving measure-level au­
dio synchronization" [14]. The International Audio Laboratories Erlangen is a joint 
institution of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and 
Fraunhofer Institut für Integrierte Schaltungen IIS. We combined multiple activa­
tion functions from neural networks (beat detector, downbeat detector, and several 
onset detectors) with chroma features and evaluated them based on measure transfer 
accuracy. We utilized combined cost matrix CCH+ACT consisting of weighted chroma 
cost matrix CCH with cosine distance and the beat, downbeat, and onset cost matrix 
C A C T with Euclidean distance as follows: 

CCH+ACT = aCcH + (1 - a)CACT, (1.18) 

where a G [0,1] is a weighting parameter. The sum CCH+ACT accounts for both 
harmonic or melodic information of the CCHROMA and additional temporal cues via 
CACT- We evaluated the synchronization accuracy of multiple neural networks and 
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Fig. 1.7: The example of synchronization of two audio recordings using chroma 
vectors and MrMsDTW. The temporal resolution of chroma features is 50 fps. 

M r M s D T W using several window settings (see Figure 1.8). The accuracy denotes 
the proportion of correctly transferred measure positions having an error below 
a given tolerance r . Furthermore, in Chapters 9 and D (based on articles [6], [7] and 
the Memo Vision software), we used a combined synchronization approach using our 
beat tracking model trained specifically for the synchronization pipeline. 

CHROMA DLNC0 SF H SF~ DL-0 DL-B DL-D DL-0BD 

30 50 70 100 500 
Threshold t (ms) 

Fig. 1.8: Comparison of the average accuracy values for different synchronization 
approaches and different threshold parameters r . The figure is taken from [14]. 
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2 Audio Degradation for Onset Detection 
This chapter is based on the journal article "The Effect of Audio Degradation on 
Onset Detection" [1] and introduces experiments with the degradation of input audio 
for the onset detection task in MIR. 

Although many articles in the field of Music Information Retrieval have been 
introduced to improve onset detection systems, only the bare minimum focus on the 
degradation of input audio to increase detection accuracy. This article evaluates the 
accuracy of five onset detectors, including state-of-the-art machine and non-machine 
learning-based systems, and compares the influence of various types of audio signal 
degradation on musical onset detection. We used three different degradations based 
on impulse responses, a Teager-Kaiser energy operator, and two MP3 compression 
settings. The results suggest that if MP3 compression of any settings is applied, the 
accuracy of detection systems is very similar. Using the energy operator as degrada­
tion has not improved overall detection but may offer the potential of pre-processing 
the neural network input signal for easier identification of onsets in a training phase. 
Furthermore, radio broadcast degradation increases the number of all predicted on­
sets in general, both true and false positives, resulting in better recall but worse 
precision. This information could be used to modify the pre-processing phase of 
neural network-based detectors and to optimize the sensitivity trade-off. 

2.1 Introduction 

In the Music Information Retrieval (MIR), onsets are common low-level parameters. 
A n onset is the beginning of any musical tone—it refers to the starting time point 
of the produced sound or note. A n onset detection function (ODF) is the output of 
onset detectors and represents the probability of onset occurrence in a given time. 
Its peaks (local maxima) should correspond to the onset time positions and, thus, 
ideally, all tones in an audio recording. A n onset detection system is usually divided 
into a few parts: pre-processing of the input signal, ODF, and peak-picking—finding 
onset positions from the onset curve [57]. Concerning the non-machine learning 
systems, there have been many works on developing and optimizing better ODFs [58, 
59, 60], but very few on reducing the raw audio information. The exception is The 
Audio Degradation Toolbox [61], where the authors used audio degradations for 
different MIR tasks, such as beat tracking or score-to-audio alignment. Another 
musical data augmentation and degradation tool is the M U D A package [62]. Both 
studies present options for degradation to reduce or change information in an audio 
file to improve a particular MIR task. Other articles [63, 64] focus on audio or 
music identification. Furthermore, different degradations were used to study the 
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robustness of cover song recognition [65]. Generally, a common approach is using 
the 16-bit (PCM) audio files in a .wav format with a 44.1 kHz or 22.05 kHz sample 
rate. However, this does not mean that audio degradation cannot positively affect 
the onset detection or the final accuracy. 

Methods of audio onset detection are used in beat tracking, rhythm, and metric 
detection, Automatic Music Transcription (AMT), and many other high-level feature 
extraction tasks. As a basic low-level feature, onsets are the key parameter for 
performance analysis in musicology research. Therefore, achieving high accuracy 
and consistency in these systems is important. Common detectors are based on 
spectral, phase, or complex domain and supervised machine learning algorithms such 
as artificial neural networks. There are other options (such as pitch detection [66] 
or non-negative matrix factorization [67]), but they are not widely used for this 
task. To this date, the state-of-the-art detectors are using Convolutional Neural 
Networks (CNN) [68, 69, 70] or Long Short-Term Memory (LSTM) networks [71, 
72], but some robust spectral methods such as SuperFlux [73] are still providing 
quite comparable results in the onset detection task (e.g., onset detection in Music 
Information Retrieval Evaluation eXchange (MIREX) 2018 evaluation [74]). In this 
study, we test six different degradations (and the original dataset with .wav files) and 
five different well-known offline detectors on the large onsets_ISMIR_2012 dataset, 
introduced in [75], with a total of 321 recordings. 

There is a distinction between audio degradation and pre-processing of an in­
put signal in the detection systems. Audio degradation is a process of specific 
manipulation of input audio. Then, the system reacts to it (different spectral el­
ements, activation function, final detection accuracy, etc.). On the other hand, 
pre-processing is one of the first parts of detection systems, e.g., separation to mul­
tiple frequency bands to modify the time-frequency representation [57], reducing 
information, dimension, or methods like filtering, adaptive whitening [75, 76], and 
noise suppression [77]. The degradation becomes the pre-processing step when it 
is implemented into the system. However, degradation is generally considered to 
be signal deterioration with negative effects on the detector's accuracy. This study 
suggests that it may not be the case for all music categories and onset detectors. 

In this article, we test and evaluate different types of degradation of an input 
audio signal to achieve better onset detection results of both state-of-the-art machine 
and non-machine learning detectors. We test impulse response degradations and 
lossy compressions and propose the Teager-Kaiser Energy Operator (TKEO) as one 
of the degradations that, to our knowledge, has not been used for this MIR task 
yet. The rest of the article is organized as follows: Section 2.2 describes a method of 
onset annotation, audio degradations, and onset detectors. Section 2.3 introduces 
the dataset, segmentation of categories, and evaluation technique. The results are 
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presented in Section 2.4. Section 2.5 discusses the analysis and evaluation results. 
Finally, the conclusion and plans for future work are given in Section 2.6. 

2.2 Methods 

First, we introduce the onset annotation problem and all the degradation methods 
we use. Then, a brief description of selected detection systems, chosen datasets, and 
evaluation techniques are given. Python 3.7.6 was used for all tests and types of 
degradations except the Audio Degradation Toolbox ( M A T L A B 2015a). 

2.2.1 Onset Annotation 

Onset is usually defined as the starting point when a note is being played or a tone 
is created. However, perceptual onset (when a listener hears the onset) can differ 
from the very beginning of a physical tone. Problems tend to occur in polyphonic 
structures due to difficult estimation of the correct onset positions caused by inac­
curacies. The definition we use may differ from human perception, yet this method 
of labeling onsets is the most commonly used. Hence, there is no "clear" method of 
dealing with annotations, although recommendations do exist [78]. In this article, 
we use a dataset with merged onsets as in [69] to compensate for this phenomenon. 

2.2.2 Impulse Response Degradation 

For the impulse response degradation, Audio Degradation Toolbox (ADT) [61] was 
used. This M A T L A B toolbox consists of a code for creating and handling the degra­
dation of audio signals, including ground-truth annotation of the degraded audio. 
There are plenty of available degradations—we used radioBroadcast, smartPhone-
Playback, and smartPhoneRecording options to simulate real-world scenarios [61]: 

• Radio Broadcast: two degradation units: 
— dynamic range compression at a medium level to emulate the high loud­

ness characteristic of many radio stations, 
— speed-up by 2% to shorten the music and create more advertisement time. 

• Smartphone Playback: two degradation units simulating a user playing 
back audio on a phone: 

— impulse response of a smartphone speaker (Google Nexus One); highpass 
characteristic and a cutoff at 500 Hz, 

— additional light pink noise. 
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• Smartphone Recording: four degradation units, simulating a user holding 
a smartphone in front of a speaker: 

— impulse response of a smartphone microphone (Google Nexus One), 
— dynamic range compression to simulate the smartphone's auto-gain, 
— clipping, 3% of all given samples, 
— additional medium pink noise. 

For a more detailed description, see [61]. Reference onsets were shifted according 
to the methods used. These degradations and MP3 compression could also show 
how well the proposed detection systems can deal with the different real-world input 
audio conditions. 

2.2.3 MP3 

MP3 (from M P E G , Audio Layer III) is a coding format for digital audio. It uses 
psychoacoustic principles to remove redundant data—mp3 files take up just 10% 
of the storage space of the uncompressed lossless original file, depending on the 
settings [79]. The input audio signal is mapped into 32 subbands with the same 
bandwidth through a polyphase filterbank (simulation of critical bands in the human 
auditory system). Then, Modified Discrete Cosine Transform (MDCT) is used on 
each subband using the long and short windows for different frequency and time 
resolutions. Other algorithms and principles are applied to decrease the size of a file 
(e.g., Huffman coding). The MP3 format utilizes lossy compression, and depending 
on the settings used, it can create noise and specific degradation in the recording. 
For our evaluation, we tested the constant bit rate (CBR) settings of 64 kbps and 
320 kbps using FFmpeg (libavcodec1), which simulates the audio quality of common 
online streaming portals and internet content. A l l files were then converted back to 
.wav format (while keeping the audio degradation). 

2.2.4 Teager-Kaiser Energy Operator 

The T K E O as the degradation unit is inspired by our previous work [2], where we 
studied the effect of T K E O on a conventional non-machine learning beat tracking 
method. In that method, the final beat positions depend on the occurrence of 
onsets—their reduction and the emphasis on onsets that achieve higher energy might 
be beneficial for the beat detector. 

The T K E O is a non-linear time-invariant operator that includes both amplitude 
and frequency of an input signal [80]. Furthermore, T K E O for the lower frequency 

x
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has a smaller value than for the higher with the same amplitude [81]. In the discrete 
version, the T K E O \J/(x[n]) of a discrete-time signal x(n) is defined as: 

ty(x(n)) = x2{n) — x(n — 1) • x(n + 1) (2.1) 

Figure 2.1a shows the magnitude and phase spectrum of a tone composed of four 
pure frequencies (cosine waves) that start at 440 Hz, and each additional one is the 
next overtone. The amplitude of each frequency is 1. Then, T K E O was applied to 
the same four frequencies. The result is shown in Figure 2.1b: 
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(a) Original synthetic tone consisting of four frequencies. 

Magnitude spectrum, TKEO Phase spectrum, TKEO 
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(b) The synthetic tone after T K E O degradation. 

Fig. 2.1: A tone made of 440, 880, 1320, and 1760 Hz. Each frequency has an 
amplitude of 1. a) Before and b) after applying T K E O degradation. 

We can see seven harmonics and a DC component after the modulation. A similar 
change is observed when applying T K E O on the actual music track. New overtones 
are created, and the energy of spectra is shifted towards higher frequencies, as shown 
in Figures 2.2a and 2.2b. These figures represent the difference between a spectro­
gram and the ODF of an original .wav file using librosa package and the same excerpt 
degraded by T K E O . Note that we also used normalization to compensate for low 
signal values when T K E O was applied. 
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(a) Original audio file: log-spectrogram, (b) Original file after TKEO degradation: 
ODF, and detected onsets. log-spectrogram, ODF, and detected onsets. 

Fig. 2.2: Log-spectrogram and the ODF with estimated onsets of an audio excerpt 
(solo trumpet), a) Before and b) after T K E O degradation. 

The T K E O separated onsets, and the ODF is cleaner. Onsets gain clarity, and 
they are more easily distinguishable. Although this seems to be a big improvement 
in the detection function, it is not true for many other audio excerpts. The T K E O 
tracks the energy evolution, but when a peak of energy does not correspond to 
the onset time position, problems can arise (see Figure 2.3). A standard 50 ms 
evaluation window should cover the delay (see Section 2.3.2). The A D T calculates 
new onset times (from the reference onsets) for each degradation to fit the degraded 
audio excerpt. 

The original audio signal in the time domain and the same excerpt using T K E O 
are shown in Figure 2.3. The green line indicates the onset position. We can 
see that T K E O suppressed the low-energy end of the previous tone (before the 
new onset occurs) and changed the structure of the audio signal. Furthermore, 
Figure 2.4 shows the difference in spectral components between all selected types of 
degradation (excluding the MP3 320 kbps version and the original wav file, which 
are very similar to the MP3 64 kbps). 
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44,100 Hz 

Fig. 2.3: A n audio segment with an annotated ground-truth onset: before and after 
T K E O degradation. The green vertical line shows the onset time position. 

radioBroadcast 

MP3, 64 kbps 

Time [s] 

Fig. 2.4: Spectrograms of an audio excerpt, different degradations - radioBroadcast, 
smartPhonePlayback, smartPhoneRecording, T K E O , and MP3 (64 kbps). 
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2.2.5 Detectors 

We selected five detectors for the evaluation. A l l systems use 44.1 kHz sample 
rate audio signal as their input. They are available via librosa2 and madmom3 

modules [82]. We chose the state-of-the-art [74] machine and non-machine learning 
detectors: 

• Lib - Librosa. 
• SF - SuperFlux, 
• C F - ComplexFlux, 
• C N N - Convolutional Neural Network, 
• R N N - Recurrent Neural Network. 

Lib: This system utilizes spectral flux computation (detection of positive changes 
in the overall energy of a spectrum over time). We used parameters inspired by [73]. 
Instead of 22.05 kHz (librosa default), we use the 44.1 kHz sampling rate. Next, 
we chose the length of F F T = 2048, hop size 512 samples, and conversion to Mel 
spectrogram with 138 bands and frequency range of 27.5 Hz to 16 kHz. 

SF: SuperFlux is a special extension of the standard spectral flux algorithm. The 
detector uses logarithmic frequency scale representation with quarter-tone spacing 
(again 138 bands), a frame rate of 200 fps for better temporal resolution, and con­
trary to the spectral flux, it includes a special-trajectory tracking stage for vibrato 
suppression [73, 83]. 

CF: This detector uses the core of the SF system [73] but introduces Local Group 
Delay (LGD) based difference weighting. The L G D gives information as to where 
the "gravitational" center of the magnitude in a spectrum is located. Combining the 
magnitude and phase information (complex domain) helps to avoid problems with 
loudness variations of steady tones, thus increasing the potential detection accuracy 
when tremolo is present [83]. 

C N N : This system is based on a C N N . First, the input audio stream is converted 
into 3 magnitude spectrograms with a hop size of 10 ms and windows of 23, 46, and 
93 ms. Then, a logarithmic Mel filtering (80 bands, frequency range: 27.5 Hz to 
16 kHz) is used and each frequency band is normalized to zero mean and unit 
variance. From the 3-channel spectrogram (15 frames by 80 bands), a convolution 
layer with filters of 7 frames by 3 bands (tanh unit) computes 10 feature maps. 
The next layer performs max-pooling, reducing the maps to 26 bands, and another 
convolutional layer of 3x3 filters (tanh unit) is used, followed by a max-pooling 

2librosa python module, version 0.8.0 - DOI: 10.5281/zenodo.3955228, https://github.com 
/librosa/librosa/tree/0.8.0 

3madmom python module, version 0.17.dev0, https://madmom.readthedocs.io/en/latest/ 
modules/features/onsets.html 
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layer and a fully-connected layer (logistic sigmoid) of 256 units. The single output 
neuron also uses logistic sigmoid and predicts onsets [68, 69]. 

R N N : This system utilizes a bidirectional L S T M network (BLSTM) to incor­
porate a broader time context. However, it is referred to simply as R N N in the 
madmom documentation, so we keep the abbreviation. The input audio stream is 
transformed to the time-frequency domain via two parallel STFTs with different 
window sizes (1024 and 2048 samples). Then, conversion to the Mel spectrogram 
with 40 triangular filters is done, and spectral flux is calculated. The neural network 
has 3 hidden layers with 20 L S T M cells for each direction [72]. Contrary to the cited 
source, madmom implementation uses simple tanh units in the output neuron3. 

Finally, Table 2.1 shows the F-score for the first five state-of-the-art onset de­
tectors in M I R E X evaluation [70]. Note that the table keeps the acronyms that 
M I R E X originally used. Our chosen detectors are partially from this list but may 
differ slightly in implementation (included in Section 2.2.5 and their documentation). 

Tab. 2.1: Results for the first five state-of-the-art detectors evaluated by M I R E X 
competition on a MIREX05 dataset. Bold numbers indicate the highest value for 
a given metric. 

avg. F-score avg. Precision avg. Recall 

SB4 0.873 0.861 0.898 
AR3 0.860 0.889 0.846 
AR4 0.857 0.881 0.849 
SB5 0.853 0.834 0.893 
SB7 0.840 0.854 0.857 

SB4 [68], AR3 [70], AR4 [70], SB5 [72], SB7 [75] 

2.3 Dataset and Evaluation 

2.3.1 Onsets_ISMIR_2012 Dataset 

We used the onsets_ISMIR_2012 dataset, also referred to as the Böck dataset4 and 
introduced in [69], to evaluate the audio degradation effect. The dataset contains 
321 audio excerpts taken from [57, 72, 84] and further enhanced by [69]. A l l onsets 
within 30 ms were combined, resulting in 25 966 onsets in total, as stated by the 

4
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authors. Contrary to the original article, some onsets were corrected by the authors. 
A l l files were manually divided into six main categories: 

• bowed string (BS) - bowed string instruments (e.g., violin, viola, kemenche), 
• complex mixtures (CM) - group of instruments together, complex mixtures 

and musical genres (e.g., classical, rock, pop, jazz), 
• non-pitched percussive (NPP) - percussion without a pitch (e.g., snare and 

bass drum, cymbals), 
• pitched percussive (PP) - instruments that create a sound of a specific pitch 

using a percussion mechanism (e.g., guitar, tanbur, piano), 
• vocal - vocal music, 
• wind instruments (WI) - brass and woodwind instruments (e.g., clarinet, sax, 

trumpet). 

Table 2.2 shows the number of files for each category. It presents segmenta­
tion by the authors of the dataset and our segmentation. It differs slightly, e.g., 
we considered choir song (ffl23_duel.wav) as a vocal (non-monophonic) category. 
We also classified the song in which the violas and cellos play as bowed string, al­
though it was originally in the complex mixtures category because it is not a mono-
phonic song (SoundCheck2_80_Instrumental_Cellos_and_violas.wav). We under­
stand that this segmentation might be questionable because it does not follow strict 
rules but rather builds on the type of sound (sound texture). However, a few record­
ings (apart from the very poorly represented vocal category) should not significantly 
affect the final evaluation. 

Tab. 2.2: The number of audio excerpts for the original and proposed segmentation 
of the onsets ISMIR 2012 dataset. 

category orig. seg. our seg. 

bowed strings 23 25 
complex mixtures 193 185 
non-pitched percussive 17 18 
pitched percussive 60 64 
vocal 3 4 
wind instruments 25 25 

321 321 

The dataset was selected considering the number of tracks, open-source policy, 
and availability of the reference annotation. At the same time, it contains various 
musical instruments, textures, and different audio quality; it is not specialized in 
only one type of music or instrument. 
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2.3.2 Evaluation 

First, we evaluated all systems (CF, Lib, C N N , R N N , and SF) on the dataset without 
any degradation or segmentation. Next, we used degradation methods, thus creating 
six separate datasets plus the original one (wav files): rBcast (radioBroadcast), 
SPPb (smartphonePlayback), SPRec (smartphoneRecording), 64kb (64 kbps MP3), 
320kb (320 kbps MP3), and T K E O (with normalization). In total, there are 2 247 
separate files. We labeled all categories in the dataset (Table 2.2) and tested each 
one separately. Using this method, we can evaluate the effect of each degradation 
on each system and category. We try to follow the recommendations of open-source 
practices [85]. The detailed results, including outputs of each system and ground-
truth annotation for each degradation, are available on the GitHub repository [17]. 

When evaluating onset detection accuracy, it is first determined which estimated 
onsets are correct. The correctness of the estimated onset is defined as being within 
a small window of a reference onset [78]. The evaluation window indicates the 
length by which the detected onset is sought out according to the ground-truth 
onset position. The default parameter for the evaluation window is 50 ms [75]. 
Each estimated onset is first evaluated: 

• T P - True Positives: correctly predicted positive values, 
• T N - True Negatives: correctly predicted negative values, 
• F P - False Positives: incorrectly predicted positive values, 
• F N - False Negatives: incorrectly predicted negative values. 

To find out, which degradation statistically provided the best results, we calculated 
precision, recall, and F-score (F-measure) as follows: 

T P . . 
precision = T p + F p , (2.2) 

T P 
recall = — — — , (2.3) 

T P + F N v ; 

^ „ recall • precision , n F-score = 2 — . 2.4 
recall + precision 

Precision is defined as the number of all correctly predicted onsets divided by 
all retrieved onsets. Higher precision means more TPs. Recall is the number of 
all correctly predicted onsets divided by all ground-truth onsets that should have 
been predicted. Finally, the F-score is the harmonic mean of recall and precision. 
A high F-score means a low number of false positives and a low number of false 
negatives. If the detector detected many onsets, including incorrect ones, and often 
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hit the correct time positions, it could achieve a high recall but, at the same time, 
a small precision. If both recall and precision are equal to 1, then the F-score is 
also equal to 1 (100%), and the detector determined all onsets correctly. In practice, 
it is usually about the precision-recall trade-off (optimizing the recall and precision 
ratio). Although this is the most widely used metric for evaluating the accuracy of 
onset detection, the F-score ignores TNs and gives equal importance to both recall 
and precision. 

The evaluation depends on the dataset and method used; however, the default 
window for the F-score evaluation is used in most cases. As described in Section 2.2, 
the onset is not a perfectly defined parameter. We decided to test an additional win­
dow setting (100 ms) to see whether there is a significant difference in the detection 
accuracy of each degradation and system for different window settings. Note that we 
have not multiplied the results by 100, as is often done—this notation can sometimes 
be clearer with a large amount of numerical data in the tables. 

2.4 Results 

First, Tables 2.3 and 2.4 show the results of onset detection on the original dataset 
without any degradation or category segmentation for the 50 ms and 100 ms win­
dow, respectively. A l l metrics are average values of the corresponding data. The 
C N N provided the best results (F-score 0.889, recall 0.837, and precision 0.969) as 
expected (MIREX evaluation). The SF had the highest recall for all degradation 
cases, including the original dataset. A larger evaluation window increased the val­
ues of all metrics. However, for neural network-based detectors, this increase was 
much less pronounced. For instance, differences between both windows for C N N 
and R N N are from 0.889 to 0.891 and 0.764 to 0.767, respectively. 

Tab. 2.3: Overall results for the original dataset; 50 ms window. 

metrics C F Lib C N N R N N SF 

F-score 
recall 
precision 

0.808 
0.774 
0.878 

0.772 
0.800 
0.822 

0.889 
0.837 
0.969 

0.764 
0.667 
0.950 

0.827 
0.841 
0.845 

Then, we evaluated all systems on each category. The resulting F-score for each 
category of the dataset without any degradation is shown in Tables 2.5 and 2.6. The 
C N N again outperformed all other detection systems in every category. 

Figures A . l and A.2 in the Appendix show the corresponding box plots, i.e., 
range of values (boxes cover the 25-75 percentiles and whiskers the 5-95 percentiles), 
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Tab. 2.4: Overall results for the original dataset, 100 ms window. 

metrics C F Lib C N N R N N SF 

F-score 
recall 
precision 

0.820 
0.786 
0.893 

0.782 
0.812 
0.831 

0.891 
0.839 
0.971 

0.767 
0.670 
0.954 

0.837 
0.850 
0.857 

Tab. 2.5: The F-score for all categories of the original dataset; 50 ms window. 

det. BS C M N P P PP vocal WI 

C F 0.689 0.802 0.954 0.859 0.570 0.768 
Lib 0.648 0.777 0.960 0.845 0.416 0.601 
C N N 0.807 0.879 0.990 0.937 0.740 0.870 
R N N 0.573 0.756 0.963 0.874 0.331 0.653 
SF 0.695 0.846 0.942 0.873 0.583 0.657 

median, and the average for individual degradations of all detectors together. Note 
that these plots were created from data of individual categories (Table 2.2) and not 
from testing on the whole dataset. Using a longer evaluation window results in 
less variance of the final F-score values, primarily for non-machine learning systems. 
A larger window means a higher recall and precision, which may not always indicate 
a better result; at the same time, it can reflect inaccuracies of data annotation. 

Next, Table 2.7 shows the F-score, recall, and precision for each degradation— 
this is the average of all recordings in the database regardless of the category. This 
way, we wanted to test how degradation can affect the output of detection systems. 
Differences between F-score on .wav files and MP3 compression are again very low, 
and the final accuracy is similar (except for the 64 kbps MP3 with C N N detector). 
Considering the R N N detector, radio broadcast degradation improved the overall 
F-score. Radio degradation also increased recall except for the Lib detector. 

Finally, Tables A . l and A.2 in the Appendix present the F-score for all categories, 
degradations, and detectors. There is almost no difference between 320 kbps MP3 
degradation and the original wav dataset. The T K E O degradation achieved the 
best results for the N P P category using the Lib system and also for the PP category 
using both C F and Lib systems. In all other cases, T K E O decreased the detectors' 
performance. Besides, the T K E O generally reported the worst values in the BS, 
vocal, and WI categories, where an energetic nature of onsets is less pronounced. 
The 64 kbps MP3 increased the F-score for the PP category in all non-machine 
learning detectors. Radio broadcast degradation seems to improve the detection 
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Tab. 2.6: The F-score for all categories of the original dataset; 100 ms window. 

det. BS C M N P P PP vocal WI 

C F 0.704 0.816 0.956 0.864 0.590 0.792 
Lib 0.664 0.787 0.961 0.847 0.443 0.619 
C N N 0.808 0.881 0.990 0.938 0.740 0.877 
R N N 0.576 0.759 0.963 0.876 0.334 0.664 
SF 0.705 0.856 0.944 0.877 0.603 0.684 

in some cases, especially for the R N N system. However, the detection accuracy of 
the WI category for this detector decreased when a 50 ms window was used but 
increased significantly with a 100 ms evaluation window (from 0.533 to 0.716). The 
F-score of the C F system increases for the BS category when radio broadcast or 
smartphone playback degradation is present. 

2.5 Discussion 

In this study, we tested and evaluated different types of degradation of an input 
audio signal on state-of-the-art onset detectors. It was confirmed that the difference 
between the input signal in the form of a .wav file (16-bit, 44.1 kHz) and the 320 kbps 
C B R MP3 codec with the same sampling rate is essentially negligible for any onset 
detector. When 64 kbps MP3 was used, the statistical accuracy of detection for the 
pitched percussive category even slightly increased in some cases. A n exception is 
the C N N system, which showed a worse F-score in all cases when the audio signal 
was degraded. As mentioned in Section 2.2.4, both neural network-based systems 
were trained on .wav files. If we degrade a recording and test a given system, we 
are actually testing the behavior of the system for that degradation, but there is 
no way to include this degradation in the pre-processing phase of the detector. We 
would have to re-train the network, this time on a degraded audio signal. Only then 
could a valid conclusion be reached as to whether degradation increases or decreases 
the accuracy of these systems and whether degradation could serve as part of the 
pre-processing phase of the detector. 

This behavior is opposed by the results of the R N N system, where the introduc­
tion of radio broadcast degradation led to an increased F-score in three categories 
(bowed string, complex mixtures, and vocal) but also the whole dataset. The in­
crease in the vocal category was most pronounced (from 0.331 to 0.521 for 50 ms 
window). However, it should be noted that the resulting number is still too small 
to be considered a real improvement. 
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Tab. 2.7: The F-score, recall, and precision for all degradations and detectors -
50 ms window. 

F-score 

detector rBcast SPPb SPRec 64kb 320kb T K E O wav 

C F 0.799 0.794 0.732 0.805 0.807 0.759 0.808 
Lib 0.635 0.760 0.715 0.770 0.773 0.748 0.772 
C N N 0.874 0.805 0.804 0.873 0.889 0.765 0.889 
R N N 0.777 0.563 0.712 0.757 0.764 0.661 0.764 
SF 0.820 0.814 0.744 0.827 0.827 0.750 0.827 

recall 

C F 0.796 0.754 0.763 0.769 0.774 0.755 0.774 
Lib 0.589 0.789 0.725 0.796 0.799 0.771 0.800 
C N N 0.840 0.735 0.769 0.815 0.837 0.712 0.837 
R N N 0.696 0.455 0.622 0.658 0.667 0.575 0.667 
SF 0.871 0.829 0.848 0.837 0.840 0.839 0.841 

precision 

C F 0.831 0.871 0.742 0.878 0.877 0.815 0.878 
Lib 0.857 0.807 0.783 0.823 0.822 0.807 0.822 
C N N 0.926 0.935 0.863 0.964 0.968 0.874 0.969 
R N N 0.920 0.915 0.881 0.953 0.950 0.847 0.950 
SF 0.796 0.829 0.693 0.848 0.845 0.727 0.845 

The T K E O showed the worst results from all degradation types except for the Lib 
system with a 100 ms evaluation window. The energy operator changes the signal 
significantly, resulting in a bad final detection. On the other hand, visualizations 
show (Figure 2.2 and 2.4) that onsets in modified spectrograms may sometimes 
be more visible or clearer—new network-based detectors might be trained on such 
degraded data to identify proper onset time positions successfully. 

Radio degradation increased recall on all systems except for the Lib detector. 
Evaluation using two windows of different sizes also showed that machine learning-
based systems are generally more robust in the correct time detection of onsets—with 
a larger window, F-score, recall, and precision increase very little. A l l results, includ­
ing both evaluation windows, detected onsets from all systems, and the ground truth 
annotation for all categories, are given in the mentioned GitHub repository [17]. 

The data indicate that some systems respond better to the degradation of the 
input signal than others. Experiments show that if radio broadcast degradation is 
included in the pre-processing phase of the R N N detector, the detection success is, on 
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average, increased. Radio broadcast degradation generally decreased the detectors' 
precision but increased recall. This means that the detector detected more possible 
onsets (TP but also FP) and thus achieved higher recall and lower precision. In the 
case of R N N , this trade-off was good enough to increase the final F-score. Raising 
the evaluation window can cause an undesirable effect—the evaluation can capture 
a detected onset within a window that belongs to another correct onset position, 
creating an error. The vast majority of annotated onsets are more than 100 ms 
apart; however, many FPs can cause statistical bias. We are aware that 100 ms is 
the limit value for the evaluation of onset detectors. 

If the MP3 codec is set to at least 64 kbps CBR, it shows similar results as 
the .wav file for all tested detectors. Therefore, these systems are also suitable 
for the onset detection of recordings on streaming portals. However, the quality 
of audio recordings in the test database varies despite a unified .wav format. The 
44.1 kHz with 16-bit resolution does not necessarily indicate the same audio quality, 
as the source material might have already been degraded somehow. This cannot be 
effectively compensated, especially if a large, freely available database containing 
various quality audio materials is used. Neural network-based detectors are very 
often partially trained on degraded audio material. A better understanding of audio 
degradation could help to find new pre-processing options. Furthermore, unless 
we create our dataset and ground-truth annotations, we cannot be sure that these 
systems will be tested on data the detectors have never seen before. 

2.6 Conclusion and Future Work 

This study presents an evaluation of the audio signal degradation on onset detec­
tors. Five detectors, including machine and non-machine learning state-of-the-art 
systems, were selected for experiments. The chosen dataset contains 321 different 
recordings of various musical genres and instruments and was divided into several 
categories. Six different degradations were applied to create separate test subsets. 
Next, all systems were tested and evaluated using standard metrics (F-score, recall, 
and precision) and two evaluation windows. The results show that the difference 
between MP3 compression used in streaming portals and the most common lossless 
format is minimal regarding onset detection. The T K E O shows some potential in 
audio signal degradation with subsequent conversion to time-frequency representa­
tion for neural network training. However, networks would have to be trained on 
such modified data to confirm or refute this effect. A general improvement of onset 
detection by adding T K E O has not been confirmed. The F-score and recall with 
both evaluation windows were even increased for the R N N system when radio broad­
cast simulation was applied. Experiments suggest that radio broadcast degradation 
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generally increases the number of detected onsets, both T P and FP, resulting in 
worse precision but better recall. 

This phenomenon could be used to enhance the time-frequency representation 
input of neural network-based detectors. In future research, we would like to explore 
the use of degradations and specially modified spectrograms as a new type of pre­
processing. Then, we may optimize the delicate recall-precision trade-off by changing 
the input for neural network training. 

2.7 Further Notes 

In the original study, we theorized that new network-based detectors might be 
trained on such degraded data to identify proper onset time positions more success­
fully. This idea was derived from the behavior of T K E O degradation and consecutive 
ODF on some recordings of woodwind instruments. In [86], the beat detector based 
on the state-of-the-art M L architecture was trained on audio recordings degraded 
by T K E O , but no improvement in overall beat detection accuracy was reported. 
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3 MPA-oriented Global Tempo Computation 
This chapter is based on the journal article "Enhancement of Conventional Beat 
Tracking System Using Teager-Kaiser Energy Operator" [2], which is a continuation 
of our previous studies on the global tempo estimation using a modified beat tracking 
method [3, 4]. 

Beat detection systems are widely used in the music information retrieval (MIR) 
research field for the computation of tempo and beat time positions in audio sig­
nals. One of the most important parts of these systems is usually onset detection. 
There is an understandable tendency to employ the most accurate onset detector. 
However, there are options to increase the global tempo (GT) accuracy and also the 
detection accuracy of beat positions at the expense of less accurate onset detection. 
The aim of this study is to introduce an enhancement of a conventional beat de­
tector. The enhancement is based on the Teager-Kaiser energy operator (TKEO), 
which pre-processes the input audio signal before the spectral flux calculation. The 
proposed approach is first evaluated in terms of the ability to estimate the GT and 
beat positions compared to the same conventional system without the proposed en­
hancement. The accuracy of the G T and average beat differences (ABD) estimation 
is tested on the manually labeled reference database. Finally, this system is used for 
the analysis of a string quartet music database. Results suggest that the presence of 
the T K E O lowers onset detection accuracy but also increases the GT and A B D es­
timation. The average deviation from the reference G T in the reference database is 
9.99 B P M (11.28%), which improves the conventional methodology, where the aver­
age deviation is 18.19 B P M (17.74%). This study has a pilot character and provides 
some suggestions for improving the beat tracking system for music analysis. 

3.1 Introduction 

Onset time in audio signal analysis represents the time position of a relevant sound 
event, usually when a musical tone is created. Onset detection functions are al­
gorithms that capture onsets (onset time positions), and thus ideally all tones in 
audio recordings. They can create a representation or an evolution of onset struc­
ture at a given time of a particular audio recording. There are also offsets of tones 
(indicating the end time position of a tone in a signal), e.g., see [77, 87], but beat 
tracking systems do not need such information to work properly. The conventional 
beat tracking system is usually based on the calculation of repetitiveness of the 
dominant components in an onset function (onset curve), and its output represents 
a temporal framework, i.e., time instances, where a person would tap when listening 
to the corresponding piece of music. That is why it is important to have a robust 
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and computationally effective onset detector. Calculating the beat positions and 
global tempo (GT) is important for musicologists and music analysts. With such 
automated systems, tempo and agogic changes can be measured much faster than 
only with a manual approach alone. Musicologists would have to spend less time 
correcting calculated beat positions. Therefore, we set a new parameter—the av­
erage deviation of reference beat positions to the calculated beat positions as the 
average beat deviation (ABD). 

Most of the onset detectors are based on energy changes in spectra, the variant 
of spectral flux. For bowed string instruments, there is a method called SuperFlux 
that can suppress vibrato in an expressive performance and reduce the amount of 
false-positive detections [73]. Some methods use logarithmic spectral compression 
to enhance the spectral flux onset detection and then compute the cyclic tempogram 
for a tempo analysis [88]. There is also a method that calculates tempograms using 
Predominant Local Pulse [89]. Besides, the onset detection and beat detection could 
be performed in several toolboxes and libraries such as Tempogram Toolbox [90], 
LibROSA [91], MIR Toolbox [92], etc. [93]. The state-of-the-art onset detectors 
are usually based on deep neural networks [68, 72], using spectral components and 
parameters as their inputs. Beat detection systems contribute from the solid onset 
detectors, where periodicity is identified [90, 92, 94, 95, 96, 89]. 

While onset detection in percussive music is considered to be highly accurate (al­
ready at M I R E X 2012 conference [74], algorithms achieved F-measure values greater 
than 0.95 for percussive sounds), detection of soft onsets produced by bowed string 
or woodwind instruments is still challenging. Many improvements in onset detection 
have been made, but no system is truly universal for all musical instruments and all 
types of music. 

This work aims to enhance the conventional beat tracking system while follow­
ing the tempo analysis methodology published in [97, 98] using a more sophisti­
cated approach of tempo estimation based on the automated beat tracking system 
with the Teager-Kaiser energy operator (TKEO) included. This nonlinear energy 
operator is used, e.g., for the improvement of onset detection in E M G signals (elec­
tromyography) [99], to decompose audio into amplitude and frequency modulation 
components [100], for the detection of Voice Onset Time [101], or the highly efficient 
technique for LOS estimation in W C D M A mobile positioning [102]. So far, there is 
no extensive study on using T K E O to analyze musical instruments. 
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3.2 Dataset and Methods 

3.2.1 Onset Detection 

Usually, onset detection algorithms use pre-processing steps to reduce redundant 
information and improve detection accuracy. In this study, we propose a new method 
of pre-processing based on the T K E O . The T K E O (\l/{s(£)}) is a nonlinear energy 
operator that can be calculated using the following formula: 

i.e., we compute the square of the first derivative (which denotes the square of 
the rate of signal change) and then subtract the signal multiplied by the second 
derivative (which determines the acceleration at that point). We speed up the 
temporal changes of the signal module by removing the slow changes because we 
consider the rate of change. It is known that the faster the time changes, the higher 
the frequency components appear in the spectrum. By taking the first derivative 
into account, we increase the magnitude of higher frequencies of the spectrum [103]. 

In our discrete approach, we first downsample the input signal x(n) to 22 050 Hz. 
Next, we apply the T K E O , i.e., we calculate the corresponding discrete non-causal 
form: 

which creates an energy profile of the given audio sample. In comparison to the 
conventional squared energy operator, the T K E O takes into account the signal's 
frequency [104], and it can yield negative values, e.g., see Figure 3.1. Differences in 
spectra for the same audio track (clarinet recording) are shown in Figure 3.2. The 
dominant spectral components have changed—the clarinet has naturally strong odd 
harmonics, but the T K E O has changed their magnitude. 

We calculate the onset envelope using the perceptual model in the following 
step. We use Short-Time Fourier Transform (STFT) with Hann window (hop fac­
tor: 512 samples) and then the conversion to the perceptual model with log-power 
mel-frequency representation: 120 mel bands, max frequency at 10 kHz and min 
frequency at 27.5 Hz. We get the matrix \X(m, k)\, where m denotes the index of 
the frame and k is the frequency bin or index of the mel band. These settings were 
inspired by SuperFlux calculation [73]. 

(3.1) 

ty{x(n)} = x2{n) — x(n — 1) • x(n + 1) (3.2) 
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Fig. 3.1: Waveform of the clarinet recording before and after the application of 

T K E O . 

In the next step, we calculated the spectral flux. The basic version of spectral 
flux is defined as the Zx-norm of consecutive frames [32]: 

SF(m) = ±J^H(\X(m + l,k)\ - \X(m,k)\), (3.3) 
A fc=0 

for m — 0,1, 2 , . . . , M — 2, where H(x) — (x + \x\)/2 is the half-wave rectifier, M 
is the number of frames, and K is half of STFT frequency bins, or number of mel 
bands. A half-wave rectifier sets negative values to zero, and positive differences 
are summed across all frequency bands. Spectral flux gives us information, on how 
energy in spectra changes in time. Finally, a peak-picking function is applied [75] 
to identify time positions of onsets and, therefore, new tones in the audio signal. 

A n example of this system based on the mel-frequency representation, but with­
out the use of T K E O , is shown in Figure 3.3. It represents a solo clarinet part. 
The onset function detected many false peaks and marked positions where tones 
were not played. For comparison, Figure 3.4 shows the same signal, but in this 
case, pre-processed by the T K E O . The peak-picking function now marked all real 
onsets with better accuracy and without any false positive detection. The colorbar 
in dBFS (decibels relative to full scale) (Figure 3.5) is presented separately because 
of the proper alignment of a spectrogram and onset function but is the same for all 
spectrograms in this paper. 
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Fig. 3.2: Spectrograms of the same clarinet recording—the bottom one is using a 
T K E O step. 

Fig. 3.3: Spectrogram and onset detection function for a solo clarinet recording 
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Fig. 3.4: Spectrogram and onset detection function for a solo clarinet recording with 
the T K E O applied. 
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Fig. 3.5: Colorbar in dBFS units. 

As we can see on the second spectrogram (Figure 3.4), the energy in spectra 
changed, frequencies do not correspond properly to the original signal and new tones 
are sharpened and much clearer. We give this example for a reason. Recording of 
a solo clarinet was the only audio track in which the accuracy of the onset detection 
function was improved. Adding T K E O into this conventional detection method 
lowered the general detection accuracy. It decreased the number of detected false 
positives and the true positives. The cause of this phenomenon is explained in the 
following Section 3.2.2. 

3.2.2 TKEO Influence 

We applied the proposed method with the T K E O included on more recordings and 
observed that in cases where the tones are fast (e.g., violin playing thirty-second 
notes) or the energy difference is very low, this method does not detect every onset 
properly. Adding the T K E O increased the detection tolerance of fast changes in 
the signal. This means that the operator added additional "latency" to the signal 
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values. It also decreased this system's ability to capture low-energy spectral compo­
nents. In general, fewer onsets were detected—only strong and more rhythmically 
important onsets remained. This is the advantage of the T K E O in the system. 
It suppresses less dominant spectral components and very fast tones, even though 
onset detectors are usually set to do the opposite. 

Figures 3.6 and 3.7 show another analyzed track—a violin solo in a very fast 
tempo. There is a clear difference in spectrograms for the described detector and 
the same detection with the T K E O included. Most of the tones are quite visible 
in the spectrogram of the first figure. However, the system with the T K E O has its 
changes in the spectrum vaguer and blurry, which means that the onset function 
detected a lower number of onsets (especially between the 1st and the 4th second of 
this track). In this case, the conventional system detected more onsets correctly, but 
that still does not indicate that the estimation of GT would also be more accurate. 

8192 

4096 

0 2 4 6 8 10 
time [s] 

Fig. 3.6: Spectrogram and onset detection function for a solo violin recording. 
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Fig. 3.7: Spectrogram and onset detection function for a solo violin recording us­
ing T K E O . 

3.3 Tempo Representation 

To create a tempo structure of given recordings, we need a representation of a tempo; 
in this case, how the density of onsets, or more precisely, the repetitiveness of sig­
nificant onsets, is distributed. This can be done by several techniques; in our ex­
periments, we focused on the method of dynamic beat tracking system proposed 
in [94]. This system first estimates onset positions in the ODF and picks the best 
beat candidates that follow specific rules (such as being within the minimal and 
maximal inter-beat-interval) within a pre-defined time interval—a parameter called 
default tempo. The default tempo is calculated automatically based on an autocor­
relation function with respect to the standard 120 beats per minute (BPM) or set 
up manually based on prior information. The calculated beat positions can deviate 
from the default tempo in adjustable boundaries (depends on settings, e.g., Ellis 
reports approximately 10% [94]) utilizing the "tightness" parameter, which corre­
sponds to the detection tolerance from the default tempo. It was set to 50 in all 
our experiments. Figure 3.8 shows how this system picks onset candidates from the 
onset curve and creates the beat positions by using periodicity information. Even 
though the selected beat tracking method may not produce robust beat estimates 
compared to today's M L beat detectors, we aim only to estimate the overall global 
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tempo. Beat detectors are based on a calculation of beats in an audio signal and. 
therefore the metric structure from an elementary point of view. Usually, there 
is not enough information to divide beats into measures or bars without manual 
correction (or automatic downbeat detectors), but with proper segmentation, MIDI 
reference, and dynamic time warping (DTW) techniques, this is possible [105]. With 
automated systems, tempo and agogic changes can be retrieved faster; however, no 
detectors achieve consistent detections for all kinds of music. Musicologists could 
spend less time correcting calculated beat positions or creating manual annotations 
if they use tools to speed up the annotation process significantly. Therefore, we also 
consider the A B D parameter in the evaluation—the average deviation of reference 
beat positions to the calculated beat positions. 
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Fig. 3.8: Comparison of the onset and beat positions. 

Figure 3.9 shows the estimated time positions of beats at the beginning of a string 
quartet segment. The system utilizes periodicity information to calculate beat po­
sitions even at places where no onsets are detected—in this specific part, a second 
violin and viola are playing very quietly (and no onsets are detected), and then 
a violin solo begins. There are strong onsets in the ODF between the sixth and 
tenth seconds of this track. Their periodicity information is then used to fill the gap 
in the silent part of this recording, which is one of the advantages of the dynamic 
programming beat tracker. In the postprocessing of beat activation functions from 
ML-based approaches, a Dynamic Bayesian Network (DBN) [106] is usually used to 
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retrieve the final beat estimates and fill the silent parts. The limitation here is the 
default tempo—the algorithm searches for beat positions within a given interval, 
but there is no guarantee that true beat positions exist within specified limits (also 
concerning the tolerance parameter). The default tempo can be misleading if the 
recording is rhythmically unstable or the local tempo changes significantly. 
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Fig. 3.9: Estimated beat positions by the beat detector based on the onset period­
icity. 

3.4 Dataset 

First of all, we tested if the T K E O improves the estimation of the GT in general. 
We used the SMC_MIREX dataset [107], which consists of various recordings, from 
classical pieces to guitar solos. The recordings are sampled by 44.1 kHz. Their 
annotations contain manually corrected beat time positions, which will be used as 
a reference. 

Music by string quartets is very specific because the tempo can be more or 
less stable, but the musical ornaments, intended gaps, fermatas, or other expressive 
musical attributes can be present. Every musician has her/his unique style of agogic 
performance. If we define meaningful musical parts by choosing important musical 
motifs, we can create segments that could be processed separately. 

The second dataset consists of 33 different interpretations of String Quartet No. 1 
e minor "From My Life", composed by the Czech composer Bedřich Smetana. We 
also included two interpretations played by an orchestra. We divided the first move­
ment into six segments of musical motifs in the view of the musical meaning. The 
first movement consists of an introduction (Beg), exposition (A), coda (B), devel­
opment (C), recapitulation (D), and the last coda (E). We calculated the estimated 
average tempo (EAT) for every segment without any expressive elements and in­
formation about beat positions, using the physical length of the tracks and metric 
information in the corresponding music sheet. The E A T will be used as a reference 
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tempo for setting up the default tempo parameter in the beat tracking system. The 
first page of the sheet music is provided as an example in Appendix B . l . 

3.4.1 Application 

Beat tracking systems are used in music analysis software for tempo, timbre, dynam­
ics estimation, or other music analysis goals. A n example of such freeware software is 
Sonic Visualiser [108]. Figure 3.10 shows an example of tempo analysis of the string 
quartet music from the second tested database. The first pane is the visualization 
of the audio wave, the second one is the spectrogram, and the last one is a layer of 
manually corrected beat positions. Beat positions were calculated automatically by 
the beat tracking system called BeatRoot [109] (Vamp plugin) and then corrected 
by trained ears. The green line shows how tempo evolves in time—if the audio track 
is locally slowing down or the tempo increases. The method which is proposed in 
this paper has not been developed as a Vamp plugin for Sonic Visualiser. 

Fig. 3.10: Possible application of the beat tracking system. 

Musicologists can then conclude from the measurement results. A n automated 
beat tracking system can reduce the time of analysis significantly. For example, 
if we measure the E A T of the first motif of the second database for each recording, 
we get interesting results. One of the general assumptions is that presently, we 
usually play the same piece of classical music faster than we did before. Figure 3.11 
shows that this assumption may not be correct. There is a trend (see the slope 
of the linear regression line based on the sum of squares)—older recordings are, on 
average, at a faster pace. We do not have enough audio recordings to declare it as 
a fact, but the tendency is there. However, when we plot the E A T of the entire 
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first movement (Figure 3.12), the tempo decrease is not so evident. Each black dot 
represents one interpretation, and the blue line is a trend line. The sample from 
1928 was an outlier; therefore, we did not consider it in the regression analysis. 
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Fig. 3.11: Results of the E A T calculation for the first motif of the string quartet 
database. 
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Fig. 3.12: Results of the E A T calculation for the entire first movement of the string 
quartet database. 

3.5 System Evaluation 

During the analysis, we first used the reference dataset to determine the G T and 
A B D estimation accuracy. We computed the G T of each track by the proposed 
beat tracking method using both the proposed onset detection function (DS, default 
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system), and the same onset detection function with the T K E O (TS, system with the 
T K E O included). Then we compared the reference values (annotation of the dataset) 
of each tested track with values estimated by the DS and the TS. The reference 
tempo was obtained as the number 60 ( B P M definition) divided by the median of 
time differences between consecutive beat time positions. Then we calculated the 
median (Me) and the mean value (x) of time differences of consecutive beats in all 
recordings and also in which the average was less than 1 s. This represents the 
A B D of tracks that were close to the reference tempo (some recordings achieved 
more than —20 B P M difference in the GT when tested; they were excluded for the 
extended A B D testing). 

Next, we analysed the string quartet database. First, all 33 recordings were 
divided into six segments with a relatively steady tempo, and then all motifs were 
tested by the TS and the DS to estimate the GT. We computed the reference E A T of 
all segments of each interpretation (Table 3.1) by calculating the number of quarter 
notes (Table 3.2) and dividing them by the time length of each recording. The com­
plete table is in Appendix B . l . Finally, the E A T and the computed GT were com­
pared. 

Tab. 3.1: The E A T of all motifs of the string quartet dataset. 

track Beg A B C D E 

CD01 80.61 69.37 34.41 88.56 55.60 74.50 

CD02 77.80 69.03 44.14 81.84 59.52 72.43 

CD03 77.93 73.19 41.60 87.09 62.36 79.14 

CD33 76.92 63.24 42.05 74.62 56.26 68.31 

All values are in BPM. 

Tab. 3.2: Calculation of quarter notes in all motifs. 

motif Beg A B C D E 

measures 1-70 71-110 111-118 119-164 165-225 226-262 
quarter notes 280 160 32 184 244 148 

68 



3.6 Results 

Table 3.3 shows the GT estimation for the first 30 tracks of the first dataset. The 
complete table is shown in Appendix B.2. The average deviation from the reference 
tempo was 18.19 B P M (17.74%) for DS and 9.99 B P M (11.28%) for TS. We also 
applied the t-test (Paired Two Sample for Means) for each system. The P-value for 
the TS is 0.038 and 0.024 for the DS {a = 0.05). Next, Table 3.4 presents the overall 
results of the G T estimation: median, mean, standard deviation, relative standard 
deviation, variance for each tested system, and the deviations from the reference 
values for all metrics. The mean value of the reference GT was 76.78 B P M , the 
average computed GT 88.97 B P M for DS and 83.75 B P M for TS. 

Table 3.5 shows the mean value and the median of the A B D testing for all 
analyzed tracks. The average difference between consecutive beat time positions of 
the reference and the DS was 2.84 s and 2.30 s for TS. Table 3.6 shows the average 
of mean and median of time difference values of the recordings in which the A B D 
were less than 1 s. This means 9 recordings for the DS (30%) and 11 recordings for 
the TS (37% of the second dataset). The TS detected the right rhythmic pulse in 
more recordings than the DS. Average deviations from the reference beat positions 
were 0.39 s and 0.29 s for the TS and 0.95 s and 0.36 s for the DS, respectively. 

Table 3.1 shows results based on the E A T of all motifs of our second database—33 
different interpretations of String Quartet No. 1 e minor "From My Life". Finally, 
Table 3.7 shows the difference between the estimated GT and the E A T for both 
proposed systems. The complete table is shown in Appendix B.3. The average 
deviation for the TS is 6.42 B P M and 6.59 B P M for the DS. Due to the nature of 
the results of the second dataset, no further statistical processing was used. 

Tab. 3.3: Reference G T and computed GT of the SMC_MIREX dataset. 

track no. reference TS DS TS (dev.) DS (dev.) 
1 48.15 47.85 47.85 0.30 0.30 
2 66.99 73.83 73.83 6.84 6.84 

3 68.00 95.70 95.70 27.70 27.70 

30 63.36 63.02 63.02 0.34 0.34 
mean 76.78 83.75 88.97 9.99 18.19 

P-value 0.038 0.024 
TS—beat detection with the T K E O degradation; DS—default beat detection; 
dev.—deviation from the reference global tempo; a = 0.05. 
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Tab. 3.4: Results of G T testing—the SMC_MIREX dataset. 

type Me X sd rsd var 

reference 77.11 76.78 33.01 0.43 1089.50 
TS 82.05 83.75 37.30 0.45 1391.05 
DS 76.07 88.97 41.05 0.46 1685.16 
TS dev. 5.31 9.99 15.75 1.58 247.93 
DS dev. 7.26 18.19 24.08 1.32 579.71 

Me—median; x—mean value; sd—standard deviation; rsd—relative standard devi­
ation; var—variance. 

Tab. 3.5: Results of the A B D testing for all recordings. 

metrics TS (s) DS (s) 

X 2.30 2.84 
Me 1.81 2.57 

sd of the x 1.90 2.17 
sd of the Me 2.14 2.31 

Tab. 3.6: Results of the A B D testing for recordings with the average A B D < 1 s. 

dev. < 1 s in the mean of TS <1 s in the mean of DS 

TS DS TS DS 

x Me x Me x Me x Me 

mean 0.39 0.38 0.95 0.70 0.29 0.12 0.36 0.22 

Figure 3.13 shows differences between the reference GT and calculated GT of the 
TS and DS of the first database. The TS generally follows the reference tempo more 
accurately, mainly because it often determines the correct metric pulse. The DS 
shows greater local deviations of the GT from the tested tracks. 

70 



250 

i 
/ \ 

| / 
1 I 1 1 

\ / V, i — ^ 

• • 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Track 

Fig. 3.13: Visualisation of the GT computation—Ref, TS and DS estimation. 

Tab. 3.7: Differences between the estimated GT and the E A T for both systems. 

TS DS 

Track Beg A B C D E Beg A B C D E 

CD01 15.09 13.98 6.61 3.73 5.92 3.80 8.49 22.92 6.61 3.73 1.82 3.80 

CD02 14.49 0.81 6.53 1.51 6.74 3.57 14.49 9.27 2.84 1.51 3.50 1.40 

CD03 14.36 1.41 7.15 5.20 4.94 6.99 11.17 10.16 11.13 5.20 13.64 6.99 

CD33 3.83 6.60 9.63 0.79 5.26 3.47 3.83 6.60 9.63 0.79 11.74 5.52 

mean 7.56 6.57 8.13 1.78 9.01 5.49 6.92 7.17 8.71 1.78 9.58 5.38 

result 6.42 6.59 

3.7 Discussion 

The proposed method with the T K E O degradation provided some improvements 
to the reference SMC_MIREX dataset. The results suggest (Table 3.4) that the 
T K E O can help the proposed beat tracking system pick better onset candidates for 
the beat positions and slightly improve the GT estimation. The difference was about 
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8 B P M on average for all tested recordings of the reference dataset. However, many 
recordings reported the same estimated G T for both methods. We used the first 
dataset with manually corrected beat positions to determine the accuracy of both 
systems. We did not use F-measure, one of the standard metrics in a beat tracking 
task, but rather average differences between consecutive beats. This gives us an idea 
of how close the beat tracking was to the reference positions, which may provide 
more insight into the possibilities of automated annotations for music analysis. The 
system with the T K E O reported lower A B D for all settings used overall. The results 
suggest that the T K E O pre-processing improved the accuracy of the beat tracking 
system while reducing the onset detection accuracy. The only exception was the 
recording of the clarinet from the reference dataset. 

Experimenting with the string quartet dataset, the results were again slightly in 
favor of the system with T K E O included. A l l 33 recordings of the second database 
were tested. The difference between the average deviation from the E A T of TS 
and DS was only 0.17 B P M . Both systems had very similar detection accuracy. We 
chose such string quartet music to see how the enhancement would deal with the 
difficult task of detecting tempo in music with weak onsets and complex metric and 
rhythmic structures. 

The T K E O was used in the pre-processing stage to help the onset detection 
function find more relevant onsets and enhance the beat tracking system to choose 
better candidates for beat positions. It reduced the number of insignificant onsets 
detected. Onset detection accuracy has usually been reduced, but the final beat 
detection output may be more stable; the algorithm chooses from less and more 
important onsets. This is useful for analyzing tracks where we suspect a stable and 
non-agogic rhythm. 

The limitation of this study is that the E A T in the string quartet dataset may 
serve as a reference value for the beat tracking system, but it is not the actual 
GT of a particular track since we cannot include any expressive elements in it. It 
does not provide any information about beat positions or local tempo changes. The 
same thing applies to the reference global tempo. In music performance analysis, 
we need to track all beat positions in the segment and compare them to the real 
beat positions. However, in this case, we analyzed relatively stable tracks with no 
abrupt tempo changes. 

3.8 Conclusions 

This study introduces an enhancement of the conventional beat tracking system by 
adding the T K E O into the pre-processing stage. It briefly describes the onset detec­
tion function and the beat tracking method with its possible application. The onset 
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detection accuracy decreased in most analyzed tracks, but the accuracy of the G T 
and A B D detection increased. 

The influence of the T K E O was tested on different recordings, and it was found 
that in the case of woodwind instruments, the T K E O increased the onset detection 
accuracy. In the future, we would like to focus on the possible applications of 
the T K E O on music recordings as it generally changes the magnitude of frequency 
components in a signal and acts as a filter. 

The estimation of the GT was improved in the reference database. The average 
deviation from the reference GT in the reference database is 9.99 B P M (11.28%), 
which improves the conventional methodology (18.19 B P M , 17.74%). The P-values 
indicate that there is a clear difference between the proposed systems. Both systems 
were also tested on the string quartet database. In this case, however, the results 
are not convincing. The proposed TS will be further used in the subsequent music 
analysis of the string quartet database. The aim is to create an automated system 
for capturing beat positions that are as close as possible to the actual beat positions 
in the recordings, even for complex music such as string quartet. In this way, 
minimizing the time required for manual processing and labeling is possible. This 
study has a pilot character and provides some suggestions for improving the beat 
tracking system for music analysis. 
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4 T C N Beat Tracking 
In this chapter, we introduce the conference article "Beat Tracking: Is 44.1 kHz 
Really Needed?" [5] that focuses on training multiple beat tracking detectors with 
various input sampling frequencies. 

Beat tracking is essential in music information retrieval, with applications rang­
ing from music analysis and automatic playlist generation to beat-synchronized ef­
fects. In recent years, deep learning methods, usually inspired by well-known archi­
tectures, outperformed other beat tracking algorithms. The current state-of-the-art 
offline beat tracking systems utilize temporal convolutional and recurrent networks. 
Most systems use an input sampling rate of 44.1 kHz. In this paper, we retrain 
multiple versions of state-of-the-art temporal convolutional networks with different 
input sampling rates while keeping the time resolution by changing the frame size 
parameter. Furthermore, we evaluate all models using standard metrics. As the 
main contribution, we show that decreasing the input audio recording sampling fre­
quency up to 5 kHz preserves most of the accuracy and, in some cases, even slightly 
outperforms the standard approach. 

4.1 Introduction 

In MIR, one of the core tasks is beat tracking or beat detection. It aims at de­
tecting "tactus" positions in an audio signal—described as "the most comfortable 
foot-tapping rate when unconsciously tapping to a piece of music" [110]. Early con­
ventional approaches to beat tracking usually utilized a two-stage strategy. First, an 
onset detection function was computed from time-frequency representations, such as 
spectrograms or mel-spectrograms. Then, a post-processing phase with prior musical 
knowledge was implemented to determine which onsets might correspond to beats. 
Well-known examples of non-machine learning approaches are BeatRoot [109], dy­
namic programming-based method [94], and Predominant Local Pulse [89, 90]. 

Over the years, numerous beat tracking methods have been proposed, rang­
ing from rule-based systems and probability methods to machine learning models. 
With the rise of deep learning techniques, beat tracking has significantly shifted 
toward data-driven deep neural networks. The increasing availability of data and 
their annotation1 helped to outperform every conventional non-machine learning 
beat tracker (see M I R E X results2). However, expressive music and genres with 

xBeat annotation consists of discrete time points of beat occurrence. 
2

https://www.music-ir.org/mirex/wiki/2019:Audio_Beat_Tracking (accessed on 27 
March 2023) 
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more complex metric and rhythmic structures are still considered highly challeng­
ing. The Recurrent Neural Networks (RNN) proved that data-driven approaches 
provide better results than conventional systems [111, 112]. Furthermore, the multi-
model approach [95] was implemented to reflect different rhythms depending on the 
music style and genre. Selecting the best-performing model as the state-of-the-art 
is challenging due to the absence of a beat tracking competition (the last M I R E X 
beat tracking competition ended in 2019, and further evaluation is based on the 
beat tracking community). However, many studies use n-fold cross-validation and 
similar datasets, achieving more than 90% F-score (explained in Section 4.3.3) for 
non-classical and less expressive music. 

The Temporal Convolutional Networks (TCNs), based on the original implemen­
tation of WaveNet [113], are one of the newest methods for beat tracking and usually 
achieve the highest F-score. The well-known examples are [114] and [110]. A l l men­
tioned models use time-frequency representation (modified spectrograms). Authors 
in [115] show an end-to-end approach using time-domain representation, feeding 
raw audio samples into the T C N , achieving similar results as state-of-the-art sys­
tems. It is also possible to train beat, downbeat, and tempo activation functions 
jointly [116, 110], solving more tasks with just one model. For more details about 
deep learning beat and downbeat tracking T C N models, we refer to [117]. 

In this paper, we implement multiple T C N beat tracking systems and evaluate 
their abilities to detect beats on standard datasets. We add skip connections to 
the networks as one of the possible network modifications and treat them as sepa­
rate models. As the main contribution, we train five models on 44.1, 22.05, 11.025, 
and 5.5 kHz input sampling rates to demonstrate how much higher-frequency in­
formation is needed for the beat tracking task. We show that lower sampling rates 
slightly outperform the standard approach with 44.1 kHz input signal in most mod­
els. This may be useful for applying beat tracking systems in other MIR-related 
tasks, such as improving the synchronization accuracy when used jointly with Dy­
namic Time Warping methods [14] without the need for resampling. The results 
indicate that even a system trained on the 5.5 kHz input audio signal is comparable 
to the standard 44.1 kHz model. The higher frequency content seems redundant for 
the universal beat tracking task. 

The rest of the paper is organized as follows. Section 4.2 describes the architec­
ture, pre-processing, and models of T C N beat tracking systems. Section 4.3 explains 
the training and evaluation process. Finally, Section 4.4 shows the results followed 
by discussion and conclusions in Section 4.5. 
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4.2 Methods 

4.2.1 Architecture 

Temporal convolutional networks are a class of deep neural networks that have 
gained popularity in various time-series applications. TCNs consist of multiple layers 
of temporal convolutions and non-linear activations, allowing them to capture long-
term dependencies in sequential data. The ability to model long-term dependencies 
makes TCNs an attractive option for beat tracking, as the tempo of a musical piece 
is inherently a temporal pattern, with the exception of expressive performances. For 
beat tracking, the input to the T C N is a sequence of audio features, usually modified 
spectrograms. The output of the T C N is a sequence of beat activations, representing 
the likelihood of a beat occurring at each time step. The beat activations are then 
post-processed to estimate the exact time positions of beats. We apply a post­
processing method called Dynamic Bayesian Network (DBN) [106] as a standard 
approach to obtain a sequence of beats. 

To adapt TCNs to beat tracking, researchers have proposed various modifica­
tions to the standard T C N architecture. One of the modifications is to use skip 
connections, allowing the network to bypass certain layers and directly propagate 
information from earlier to later ones. Skip connections have been shown to improve 
the training stability and convergence of TCNs. In our paper, we experiment with 
three slightly different versions of the T C N beat tracker and modify two of them 
with additional skip connections. 
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Fig. 4.1: High-level overview of different approaches to T C N beat tracking. 

Figure 4.1 shows different variants of beat tracking neural networks. The first 
approach is to use a two-dimensional Convolutional Neural Network (CNN) to ex­
tract musically motivated features from the spectrograms and then use a sequence 
of T C N blocks to capture temporal information. In this work, we experiment with 
discarding the C N N and using only the T C N blocks to reduce the number of train­
able parameters. We also utilize skip connections and combine the intermediate 
outputs of the T C N blocks using a 1 x 1 convolutional layer instead of taking only 
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the output from the last T C N block. We evaluate all models using 44.1, 22.05, 
11.025, and 5.5 kHz as input sampling rates. 

4.2.2 Pre-processing 

We use frame sizes 2048, 1024, 512, and 256 samples to maintain the same temporal 
context for 44.1, 22.05, 11.025, and 5.5 kHz sampling rates, respectively. However, 
the 5.5 kHz sampling rate is a rounded number (the correct rate would be 5 512.5, 
which is impractical). Therefore, this model does not exactly follow the sampling 
rate/frame size compromise. We apply the Short-Time Fourier Transform to the 
audio frames, followed by a filter bank to obtain magnitude spectrograms with 
logarithmically spaced frequency bins. We refer to [117] for a detailed description 
of the pre-processing step. We ensured that the fps = 100 stayed the same for each 
scenario. The time resolution corresponds to the output beat activation function. 

4.2.3 Models 

We use the model bock 2020 from [110] as a baseline for our experiments. This 
model includes a C N N to extract relevant spectral features from the spectrograms, 
which are then fed as input to the first T C N block. The inner structure of the 
T C N block is shown in Figure 4.2a. The input gets first processed by two parallel 
dilated convolutional layers with different dilation rates. The output of the layers 
is then concatenated by the channel dimension, followed by an Exponential Linear 
Unit (ELU) activation function. The next block is a spatial dropout layer used only 
during training to prevent overfitting. We set the value of spatial dropout to 0.1 
in all experiments. Then, a 1 x 1 convolutional layer is used to reduce the number 
of convolution channels in half. The T C N block also contains a residual connection 
with an additional l x l convolutional layer, which helps to retain information from 
previous T C N blocks. We also use a simplified T C N block described in [86] and 
implemented in simple ten and ten dp. The structure is depicted in Figure 4.2b. 
The models are listed below; each row represents a different architecture: 

• bock_2020_:r , 
• simple ten a;, 
• simple ten sk ip a;, 
• ten dp a; , 
• ten dp skip a; . 

To differentiate between various inputs of each model, we added a postfix: x 
stands for 44, 22, 11, or 5, which is equal to 44.1, 22.05, 11.025, and 5.5 kHz 
sampling rates, respectively. 
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Fig. 4.2: Different proposed T C N blocks for a beat tracking task. 

4.3 Experiments 

4.3.1 Dataset 

In our experiments, we use well-known datasets that have been used for beat tracking 
tasks for many years. We used the corrected annotations from S. Bock 3 with the 
exception of the Beatles dataset, in which all annotations were manually corrected to 
the corresponding ground-truth beat positions based on [86]. A l l datasets combined 
consist of 2 263 recordings with a total duration of around 26 hours and 175127 
ground-truth beat annotations. The list of datasets is described below: 

• Ballroom [118] - excerpts around 30 s in length, dance music genres such as 
cha-cha, jive, quickstep, rumba, waltz, or tango, 

• Hainsworth [119] - excerpts around 60 s in length, organized into six categories: 
rock/pop, dance, jazz, folk, classical, and choral music, 

• G T Z A N [120] - a large dataset containing 30 s excerpts and 10 different genres, 
3

https://github.com/superbock/ISMIR2020 (accessed on 27 March 2023) 
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• SMC [121] - excerpts around 40 s in length, specifically selected to be chal­
lenging for the state-of-the-art beat tracking systems (for example, expressive 
performances, local tempo deviations, or complex music compositions), 

• Beatles [122] - a collection of songs from Beatles with corrected annotations 
based on [110] and [86]. 

4.3.2 Training 

First, we merge all datasets from Section 4.3.1 into one dataset and split it to 
train, test, and validation sets using the 80/10/10 strategy, respectively. Train and 
validation sets are shuffled for training, but the test set always contains the same 
recordings and annotation data. 

We train each model on the training data while monitoring the performance on 
the validation set. We use the following settings: Adam optimizer, binary cross-
entropy loss, and reduction of learning rate by a factor of 0.2 if the training does 
not improve for 10 epochs with the lower bound of learning rate set to 1 x 10~7. 
Furthermore, early stopping is called if the change of validation loss is less than 
1 x 10~4 for more than 20 epochs. The best checkpoint is then saved as the final 
model. Contrary to the original implementations, we use an augmentation inspired 
by [115]. During training, we shift the beat positions forward or back by a random 
amount between ± 7 0 ms. Table 4.1 shows the number of trainable parameters 
and training time for all models. The average training time of all proposed models 
combined was 50 minutes. The trainable parameters of the networks ranged from 
48481 to 71 521. 

The model bock 2020 derived from [110] was trained only on 44.1 and 22.05 kHz 
sampling rates, and without skipping modifications. Changing the network's input 
size was impossible without changing the inner structure—for example, convolution 
channels or the dilation factor. However, we decided to keep it in our experiments 
and show the difference between the original 44.1 and 22.05 kHz models. 

The training and validation losses are shown in Figures 4.3 and 4.4, respec­
tively. We only display one of the models (ten dp skip) with all sampling rates 
for brevity. 

4.3.3 Evaluation 

We use standard F-score metrics on the test set to evaluate proposed models in 
terms of prediction accuracy. The F-score is a harmonic mean of precision and 
recall, based on true positives, false positives, and false negatives [123]. To decide if 
the target beat is within the range of ground-truth beat position, we use a window 
of length 70 ms, which is a standard value in the beat tracking community [78]. We 
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Tab. 4.1: The number of parameters, train time in seconds for each model, and the 
mean train time for each architecture. 

model params train time mean 
bock 2020 22 
bock_2020_44 

65 941 
65 941 

3 286 
2911 3 099 

simple ten_5 64 701 3 308 
simple ten 11 
s imple_t cn 22 

67341 
69 981 

2 782 
3 635 3 249 

s imple t cn_44 71 521 3 272 
s imple t cn skip 5 64483 3 355 
s imple t cn skip 
s imple t cn skip 

11 
22 

67123 
69 763 

3 422 
3474 3 340 

s imple t cn skip 44 71 303 3110 
t cn dp 5 48 481 2 374 
ten dp 11 
tcn_dp_22 

49 921 
51361 

2180 
2 570 2443 

tcn_dp_44 52 201 2 648 
t cn dp skip_5 48 683 2 777 
t cn dp skip_11 
t cn dp skip 22 

50123 
51563 

2 951 
3117 2 918 

t cn dp skip 44 52 403 2 826 

compute additional metrics (Cemgil, P-score, Goto, and C M L c metrics) and refer 
to [122] for more details about their implementation. 

4.4 Results 

We evaluated all models on the test set described in Section 4.3.1 and 4.3.2. Table 4.2 
shows the F-score, Cemgil, P-score, Goto, and C M L c metrics for each architecture 
and sampling rate. Bold numbers indicate the best result for given metrics and 
architecture. The bock 2020 22 model achieves the highest scores overall (F-score 
= 0.928, Cemgil = 0.829, P-score = 0.912, Goto = 0.828, and C M L c = 0.840), 
surpassing the 44.1 kHz version. Lower sampling rates slightly increase the models' 
accuracy. A n exception is the ten dp 44 model with F-score = 0.912 compared 
to the ten dp 22 model with F-score = 0.900. The differences, however, are not 
significant. Furthermore, ten dp skip 22 is comparable to the state-of-the-art 
beat tracking model bock 2020 44 with worse Cemgil and slightly better P-score 
and C M L c metrics. The difference between the training and validation process of the 
same architecture but varied input sampling rates is shown in Figures 4.3 and 4.4. 
There is no connection between training time and the input sampling frequency due 
to the early stopping mechanism. 
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Fig. 4.3: Loss of the ten dp skip model on the training data for each epoch. 
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Fig. 4.4: Loss of the tcn_dp_skip model on the validation data for each epoch. 

Tab. 4.2: Beat tracking evaluation of all models on the test set using standard 
metrics. Bold numbers indicate the best result for given metrics and architecture. 

model F-score Cemgil P-score Goto C M L c 
bock 2020 22 0.928 0.829 0.912 0.828 0.840 
bock_2020_44 0.925 0.815 0.904 0.806 0.821 
simple_ t en _5 0.907 0.799 0.889 0.771 0.799 
simple_ _tcn_ll 0.900 0.773 0.878 0.744 0.778 
simple_ _tcn_22 0.917 0.799 0.903 0.789 0.823 
simple_ ten 44 0.907 0.765 0.887 0.767 0.798 
simple_ ten skip 5 0.907 0.772 0.890 0.784 0.810 
simple_ ten skip 11 0.915 0.778 0.894 0.771 0.801 
simple_ ten skip 22 0.907 0.767 0.890 0.775 0.807 
simple_ ten skip 44 0.909 0.773 0.893 0.784 0.811 
ten dp 5 0.899 0.790 0.879 0.767 0.783 
ten dp 11 0.885 0.804 0.863 0.740 0.763 
ten dp 22 0.900 0.805 0.884 0.758 0.796 
ten dp _44 0.912 0.805 0.896 0.806 0.813 
ten dp skip 5 0.905 0.751 0.890 0.771 0.799 
ten dp _skip_ll 0.918 0.770 0.900 0.784 0.809 
ten dp _skip_22 0.925 0.776 0.912 0.806 0.838 
ten dp skip 44 0.909 0.764 0.895 0.775 0.806 
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4.5 Discussion and Conclusions 

In this paper, we trained multiple beat tracking systems with slightly modified ar­
chitectures on standard datasets and evaluated their performance. Using additional 
skip connections increased the metrics in most cases, except for ten dp 44 and 
simple tcn_22 models. The well-known bock 2020 system achieved the highest 
detection accuracy when trained on a 22.05 kHz audio input sampling rate, although 
its authors used 44.1 kHz. A l l networks except tcn_dp provided better results when 
trained on lower sampling rates. This may be thanks to, for example, redundant in­
formation in higher frequencies. In most music genres, the beat structure is defined 
by lower frequencies and specific pulsations. Even 5.5 kHz models show compara­
ble performance, considering many instruments contain overtones and timbre above 
2.5 kHz. It seems that 44.1 kHz might not be needed for the beat tracking task. 
For some applications, the lower input sampling rates may be beneficial, as most of 
the common music processing pipelines and extraction tools work with 22.05 kHz 
audio signals. In the future, we want to build on these experiments and release 
open-source models with different input sampling rates to provide more options for 
subsequent applications. 
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5 M PA-motivated Beat Tracking Evaluation 
In this chapter, we present the conference article "The Application of Tempo Calcu­
lation for Musicological Purposes" [8] that focuses on comparing conventional and 
M L beat tracking systems for MPA-oriented tempo computation. 

Beat tracking systems capture time positions of beats within digital recordings. 
They are used, for example, in streaming portals, but applications in musicological 
analysis are often neglected. In this article, two different methods of beat track­
ing systems are tested—conventional and state-of-the-art—on the specific motif of 
a string quartet music, which is one of the most complex tasks for beat detectors in 
general. The aim here is to determine which system is better for musicology pur­
poses. This often involves determining not only the position of individual beats and 
estimating the tempo but also the accuracy of determining their number. Evalua­
tion analysis may be suitable for comparing the accuracy of detectors, but may not 
necessarily reflect the requirements of musicological analysis. The results of selected 
detectors show that a system based on a recurrent neural network seems to be the 
most suitable. 

5.1 Introduction 

Beat tracking and rhythmic analysis are one of the key and most developed prob­
lems in the field of Music Information Retrieval (MIR). Algorithms determine the 
rhythmic or metric structure of a digital recording by specifically manipulating the 
audio signal and extracting valid information from it. Previously, the problem was 
grasped in various ways—the most successful algorithms were based mainly on the 
calculation of periodicity and the distribution of onsets over time. With the de­
velopment and availability of artificial neural networks, virtually all MIR topics 
have been transformed and state-of-the-art algorithms have been replaced. Musi­
cological analysis can deal, among other things, with the comparison of different 
interpretations or performances of the same composition. Here is the advantage of 
the MIR field, which provides the possibility of extracting the required information 
by machine, i.e. in much larger quantities, unified, faster, and perhaps even more 
objectively. The well-known cases of cooperation between MIR researchers and mu­
sicologists include [124] and [125]. In addition to the U K , Austria and Germany, 
for example, also participate in a cooperation [126]. Although these are two the­
oretically very different fields, they have many challenges in common. Estimation 
of rhythmic structure and tempo by automatic methods provides the possibility of 
complex musical analysis. But are conventional detection systems really suitable for 
musicological analysis? 
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5.2 Methods 

The analysis consists of comparing and possibly modifying several beat tracking 
methods in an application for musicological analysis. This is specific for the type 
of music on which detection systems are usually not trained and tested and also 
for their focus on the same recordings, but different interpretations. As part of the 
development of new methods and the improvement of existing systems, for example 
at the M I R E X competition [127], it is very rare to see testing exclusively on classical 
music or the same composition using different interpretations. The most commonly 
used datasets contain a large number of recordings of various genres and musical 
instruments. The system may then be able to generalize better, but its specialized 
application may fall behind. 

5.2.1 Beat Tracking 

Earlier detection systems used periodicity in the onset strength envelope by mod­
ifying the spectral difference or spectral flux. A n example of an advanced system 
is the beat tracking included in the fibrosa module [91] for the Python language. 
Figure 5.1 describes the signal flow in a conventional system and a neural network 
system. The left part of the image corresponds to fibrosa processing. The system 
is hereinafter referred to as l ib . The problem with the detector is generally the in­
ability to adapt to a rapidly changing tempo. Abrupt changes in tempo and meter 
are not expected. In the basic setting, an average tempo of 120 beats per minute 
(BPM) is assumed, from which the adjustable tolerance is determined. Therefore, 
it is a question of to what extent systems with a similar architecture can adapt to 
the agogic and complex rhythmic structure of string quartets. 

The second tested system is from the madmom module [82]. It uses a bidirec­
tional recurrent neural network with Long Short-Term Memory (LSTM) cells, which 
are based on the determination of beat times according to a modified spectral enve­
lope. The type of architecture is chosen deliberately here. By adding L S T M cells to 
the network, it is possible to store the time information that is theoretically neces­
sary to determine the longer-term rhythmic structure, and thus the correct detection 
of musical beats. Finally, a Dynamic Bayesian Network (DBN) approximated by 
a Hidden Markov Model (HMM) to compute the probability of a beat within given 
frames (the neural network is trained on 100 frames per second resolution) is used. 
However, the question is how well the system can handle string quartets, as the 
network has not been trained for this style of music. 
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Fig. 5.1: Signal flow of two beat tracking systems. 

5.2.2 Global Tempo 

How can we compute the average tempo of recordings? Is it necessary to have 
a beat tracking system? For many applications of these algorithms (music recom­
mendations, classification, genre recognition) within streaming portals, this is more 
or less the only available option. This procedure may not be necessary for mu-
sicological analysis. In a musicological analysis, we often work with one selected 
composition—then, the acquisition of recordings from different performers (i.e. dif­
ferent interpretations) takes place and the analysis is conducted. The advantage 
of comparing the same composition, but different musical performances, lies in the 
possibility of using music notation. Obtaining a notation of a given composition in 
the .pdf and .xml formats is typically not a problem (musicologists are usually famil­
iar with notation software such as Sibelius or the open-source variant, MuseScore). 
Information about the number and absolute positions of the beat times (concerning 
the melodic and harmonic sequence) can be obtained from the notation. Thus, the 
global (average) tempo (GT) of a musical motif can simply be calculated as follows: 
GT = 60 • N/d, where TV = the number of beats and d = the time duration of the 
motif. In this way, however, we do not obtain information about the time position 
of individual beats, but only about the average tempo of the analyzed section. 
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5.2.3 Dataset 

For the analysis, a first motif (bars 4-10) of the String Quartet No. 1 e minor "From 
My Life " by Bedřich Smetana was used. Together with Prof. Spurny from Masaryk 
University, we have collected 33 different interpretations. This motif contains a total 
of 12 beats, which were manually annotated using Sonic Visualiser software to obtain 
ground truth data. In addition to GT, G T T (Ground Truth Tempo) is introduced. 
Manual ground truth annotations can be used to obtain G T T . First, the time differ­
ence d between successive beats was calculated, which was then averaged (ad) and 
the relationship G T T = 60/ad was used. This value should theoretically be equal 
to GT, but it will be slightly different, as manual annotation and segmentation of 
digital recordings are not completely accurate. Accuracy can be determined by the 
difference between G T and G T T . 

5.2.4 Approach 

First, the motif was segmented from all available recordings of the database. GT, 
G T T , and their difference were calculated. Then, all recordings were analyzed by 
detection systems Lib and madmom. The parameters were first left in the default 
settings (lib), then other parameterizations were tested: 

• lib t (t stands for tuned): the original sampling frequency fs = 44100 Hz 
was not changed and a different Mel spectrogram setting (138 mels), length of 
F F T (2048 samples), and hop factor (512 samples) was used. 

• lib avgGT (average Global Tempo): a specific parameter was selected that 
affects the expected start tempo (start_bpm). Thus, the system does not cal­
culate the predominant tempo from the most frequently used value of 120 B P M 
but automatically calculates the position of the beats according to the most 
suitable candidate based on the selected tempo, including the adjustable tol­
erance (tightness). 

The advantage of lib avgGT is mainly the elimination of so-called octave tem­
pos (120 B P M is the octave tempo of 60 B P M and so on). However, this parameter 
cannot be set separately in many cases, as we do not know the expected tempo. In 
a musicological analysis, however, we can know GT in advance, as we have record­
ings and sheet music available. Therefore, lib avgGT uses the average GT of the 
entire tested database, 88 B P M . The last system is a detector using the previously 
mentioned bidirectional recurrent neural network. 
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5.3 Results 

The results are attached in Table 5.1. A l l mentioned detectors were used for the 
musical motif, G T was calculated from the notation, and G T T from the ground truth 
annotation. The mean, median, and standard deviation were computed for all items. 
The absolute difference between GT and G T T is on average 0.318 B P M , which shows 
the high accuracy of manual segmentation and annotation of beat positions. The 
standard deviation, in this case, is 0.261. The lib and lib t system show very 
inaccurate tempo detection, the average tempo value according to lib avgGT is 
closest to G T T (the difference is 4.783 B P M , which can be considered a promising 
result). Madmom differs by 8.977 B P M . 

Tab. 5.1: Tempo estimation of the string quartet motif. 

track GT G T T A lib lib t lib_avgGT madmom 

CD01 100.000 100.660 0.660 117.454 123.047 95.703 99.548 
CD02 93.506 93.576 0.070 78.303 143.555 86.133 72.398 
CD03 88.615 88.877 0.261 234.908 90.666 89.103 88.829 

CD33 98.630 100.660 2.030 56.174 139.675 99.384 100.457 

mean 88.129 88.447 0.778 130.943 119.298 93.230 79.470 
median 87.681 88.539 0.487 93.994 120.185 92.285 80.932 

std 7.592 7.853 0.751 79.510 13.101 7.717 15.721 

Table 5.2 shows the mean and median number of beats determined for all tracks 
and systems. Here we can see the advantage of the madmom system. Even though 
the average tempo determined by lib avgGT is closest to the reference, the median 
number of detected beats is 12 (11 for lib avgGT). Besides, the number of tracks in 
which exactly 12 beats were detected is 25 for madmom and only 3 for lib_avgGT 
(out of a total of 33 recordings). 

5.4 Discussion 

Although lib avgGT is the best system chosen according to the results of average 
tempo detection, the most suitable system for musicological analysis of the rhythmic 
structure and tempo estimation is madmom (RNN based). The accuracy of detec­
tors is usually compared by F-score (F-measure) metrics, however, this is not the 
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Tab. 5.2: Number of beats detected for each track from the dataset. 

track lib lib t lib_avgGT madmom 

CD01 13 14 11 12 
CD02 7 18 10 9 
CD03 28 12 11 12 

CD33 5 18 11 12 

mean 15.788 16.212 11.636 11.152 
median 11 16 11 12 

12 beats 1 2 3 25 

most important factor for application in music analysis. Until the systems reach an 
F-score of about 0.95 and higher, a manual correction will always be needed for the 
analysis to be truly meaningful. The key factor here is the minimization of the re­
searcher's time in correcting the actual time positions of the beats in the individual 
recordings. Of course, this article is limited to comparing only a few detectors, but 
librosa is considered a conventional system and madmom a state-of-the-art [127]. It 
is also a question of whether neural network-based systems should not be considered 
conventional today. Sonic Visualiser uses the BeatRoot system, which is similar to 
librosa but older and less accurate. Detectors based on neural networks are not 
accessible in this software, as they remain as testing tools in the development envi­
ronment (Sonic Visualiser uses Vamp plugins), although they offer high potential for 
musicological analysis. Until they are implemented in a user-friendly environment, 
musicologists will not use them and their application will depend on the cooperation 
of musicologists and researchers in the field of MIR. 

5.5 Conclusion 

This article deals with the application of beat tracking systems for musicological 
analysis. It tests selected systems on recordings of string quartets, which are gener­
ally very challenging for detectors. The test dataset of recordings is well segmented 
and annotated, which is also confirmed by the additional calculation of the difference 
between G T and G T T . Madmom seems to be the most suitable system (of the se­
lected detection systems), as it provides relatively high accuracy in determining the 
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average tempo and also estimated the correct number of beats in 25 cases out of 33. 
The detector from the librosa module, despite the preset start tempo, was able to 
identify precisely 12 beats in only 3 cases. It should be noted that the system missed 
only once (i.e. detected 11 or 13 beats) in 21 cases. From a technical point of view, 
musicological analysis requires minimizing the time spent on manually editing the 
annotation and ground truth. Accurate determination of tempo, and time positions 
of beats, but also their number, is an important factor for testing the validity of 
detection systems for musicology analysis and their future use in analysis software. 
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6 Possibilities of Automated Annotation 
This chapter is based on the conference article "Exploring the Possibilities of Auto­
mated Annotation of Classical Music with Abrupt Tempo Changes" [9]. 

In this paper, we introduce options for automatic measure detection based on 
synchronization, beat detection, and downbeat detection strategy. We evaluate 
the proposed methods on two motifs from the dataset of Leoš Janáček's string 
quartet music. We use specific user-driven metrics to capture annotation efficiency 
simulating a scenario where a musicologist has to use the output of an automated 
system to create ground-truth annotations on given recordings. In the case of the 
first motif, synchronization outperformed other methods by detecting most of the 
measure positions correctly. This procedure was also the most suitable for the 
second motif—it achieved a low number of correct detections, but the vast majority 
of transferred time positions belonged within the outer tolerance window. Therefore, 
in most cases, only shifting operations were needed resulting in higher annotation 
efficiency. Results suggest that state-of-the-art downbeat tracking is not yet efficient 
for expressive music. 

6.1 Introduction 

Music Information Retrieval (MIR) is a well-established interdisciplinary area that 
combines technical approaches and methods with musical analysis. The MIR re­
searchers deal with many music-driven tasks, such as automatic detection of musical 
features and high-level parameters, user-centric semantic retrieval, recommendation 
systems, or transcription of audio recordings into symbolic representations [128]. In 
this paper, we focus on the automatic identification or detection of measure (bar) 
positions in string quartet recordings, which is closely related to the challenges of 
Musical Performance Analysis (MPA). 

Measures are musically meaningful segments with defined metric patterns. Re­
garding Western music notation, information about their exact position in a given 
musical hierarchy is automatically encoded in the corresponding score (sheet mu­
sic). To obtain measure positions in structurally complex music such as string 
quartets, one needs to have a score available. Manual labeling and annotation is 
a time-consuming procedure but it is a common approach to obtaining ground-truth 
data. However, recent developments in machine learning methods may change this 
workflow. 
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One of the most established topics in MIR is beat tracking or beat detection1. 
A standard beat tracking system outputs a vector of time positions that correspond 
to individual beats in a given music recording. In our case, we want to obtain only 
the first beat of each measure—such detectors do not usually distinguish the beat 
index within measures. Therefore, downbeat tracking systems have been developed 
which, together with the time position of beats2, also estimate their position in 
a musical structure. The second option is a strategy based on a synchronization 
procedure. The general goal of music synchronization is to establish an alignment 
between musically corresponding time positions (measures, in this case) of the same 
piece (e.g., audio-to-score or audio-to-audio alignment) [129]. 

In this paper, we focus on computer-generated annotations and test the state-of-
the-art offline beat and downbeat tracking for measure detection on chamber music. 
We compare the detectors with the music synchronization technique and evaluate 
all methods by a user-driven metric. 

6.2 Methods 

6.2.1 Dataset 

First, we introduce our dataset, which consists of two separate motifs from Janáček's 
String Quartet No. 1 "Kreutzer Sonata", JW 7No. 8 and String Quartet No. 2 "In­
timate Letters", JW 7 No. 13, respectively. Figure 6.1 shows a score for the first 
motif. This motif contains 11 measures of the first movement. At the beginning, all 
strings except violoncello play con sordino3 and the second violin uses finger tremolo4" 
technique which may blur the starting point of the second bar. Furthermore, the 
overall dynamics is higher for the upbeat than for the downbeat. After subito forte 
(suddenly loud), the tempo changes rapidly with possible local deviations based 
on individual interpretation. The second motif contains 10 measures of the second 
movement. It is even more complex within the metric structure with many accents 
in the middle of measures. We selected these excerpts for their various tempo, chal­
lenging structure, and expressive nature. We gathered 17 different interpretations 
for each motif and carefully annotated all ground-truth measure positions. In our 
experiments, the first recording from both motifs by the Belcea Quartet (year of 
recording 2018) was selected as a reference. The remaining recordings were used for 
testing purposes. 

1In the context of this paper, we use the terms beat tracking and beat detection interchangeably. 
2 The system outputs the probability of beats and downbeats separately. 
3 A technique that uses a "mute pad" to soften the produced sound. 
4The player uses fingers to alternate rapidly between two notes. 
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Fig. 6.1: The score for the first motif of our dataset. 

6.2.2 Beat and Downbeat Detection 

Beat tracking systems provide time positions of computed beats for any given music 
recording. In the case of neural network-based approaches, their output is usually 
an activation function—its value within a specified feature rate is related to the 
novelty function or confidence of beat occurrence. Then, peak-picking methods or 
probabilistic and statistical methods, such as conditional random fields or Dynamic 
Bayesian Networks (DBN), are often used. 

In this paper, we use a beat detector based on the variant of Recurrent Neural 
Network (RNN) [111] in combination with D B N [106] and a downbeat detector also 
based on R N N [116] and D B N but with different settings and functionality. We kept 
the default settings for the D B N with a range of possible tempo detection between 
55 and 215 B P M (beats per minute). This system will demonstrate the problematic 
part of beat tracking when applied to expressive chamber music. 

The D B N estimator of downbeats outputs two vectors of data. The first one 
contains time positions of beats and the second their index within a measure—e.g., 
output vector B = [2.5, 3] shows the third beat of a measure in the time of 2.5 s. 
Thus, we have selected only those beats that correspond to the first position of each 
measure creating a downbeat sequence. Ideally, the output of this modified detector 
should produce only the beginning of each measure and follow the ground-truth 
data structure. We also added the prior knowledge (2 or 3 beats per bar) about the 
metric structure of selected motifs into the detector. 

6.2.3 Synchronization Method 

The second option to obtain time positions of measures is a synchronization pro­
cedure. This is a common approach in M P A due to its advantages. In our experi­
ment, we use an alignment method based on a variant of Dynamic Time Warping 
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(DTW), called Memory-restricted Multiscale D T W (MrMsDTW) that is faster and 
may provide a better synchronization accuracy [45]. First, we compute chroma en­
ergy normalized statistic (CENS) features [130] of reference and target recording 
with a resolution of 50 features per second. The M r M s D T W is applied to compute 
a cost-minimizing alignment between both CENS matrices and the resulting warp­
ing path is limited to be strictly monotonie by postprocessing. The ground-truth 
annotations are then transferred from the reference to the target recording by the 
resulting warping path. 

This strategy has an advantage over the automated detectors—there will be 
always the right number of measures detected. The question is whether chroma 
features contain enough information for alignment to work accurately e.g. in music 
structures, where there is almost no new information present, but measure number 
increases. 

6.2.4 User-driven Metric 

Each machine annotation of musical content usually ends with a certain number 
of mislabeled time positions. Either the desired time point may not appear in the 
machine annotation at all, or it is misplaced. In [131], the authors introduced the 
annotation efficiency (ae) metric, which is based on how much effort a user has to 
exert to manually correct detections by shifting, deleting, or inserting time positions. 
The insert and delete operations correspond to the counts of false negatives and false 
positives, respectively. The shifting should theoretically be counted twice, once as 
a false positive and the second time as a false negative. In practice, however, it is 
more sensible to count this operation separately and prioritize it over deletion and 
insertion, since it is the most common correction performed by the user. 

The process of calculating the ae metric is as follows. First, an inner tolerance 
window of ±70 ms is created around each ground truth annotation. Then, the 
true positives (unique detections), t+, are counted. Detections that match ground 
truth annotations are removed from further calculations and incorrect detections 
are marked as candidates to be shifted or removed. For each remaining annotation, 
an outer tolerance window of ± 1 s is then created to search for the closest detection 
that does not match the ground truth. If there is a detection in this window, it 
is marked as a shift. After the analysis of unaccounted detections, the number of 
shifts s is calculated. The remaining annotations correspond to false negatives, / ~ , 
with leftover detections marked for deletion and counted as false positives, / + . The 
ae metric is defined by the following equation: 
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6.3 Results 

First, we transferred the ground-truth annotations based on the D T W alignment 
method, then calculated beats and downbeats as described in section 6.2. Figure 6.2 
shows the user-driven metric computation and the pipeline with all possible oper­
ations for one of the recordings. Operations are marked with different colors to 
increase readability. We kept the same inner and outer tolerance window as the 
original beat tracking evaluation in [131]. 
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Fig. 6.2: The user-driven metric for synchronization, beat tracking, and downbeat 
tracking strategies; evaluation of the Tokyo Quartet recording, first motif. 

In this case, the synchronization procedure outperforms all other methods. The 
final synchronized positions are not in the exact time positions, however, they mostly 
fit into the inner tolerance window. The value of beat confidence for the downbeat 
tracker was in the first motif too low—measures that have an ambiguous nature were 
not detected at all and measures of a faster-paced segment with an abrupt change 
of rhythmic structure were partially omitted. On the other hand, the R N N beat 
tracker detected many false positives. The D B N method fills the positions between 
confident output beats based on their past and future occurrence—this method can 
work well with small deviations of tempo but fails when the rhythmic and metric 
structure is unpredictable and highly changing. 

Table 6.1 shows the sum of all operations and annotation efficiency, recall, and 
precision for both motifs and each method. Synchronization outperformed other 
methods for the first motif with 142 correct detections and only 36 additional op­
erations. In the second scenario, however, the beat tracking captured the highest 
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number of correct measure positions. Although the synchronization method achieved 
the lowest number of all corrections and the best annotation accuracy, recall and 
precision remained low. Recall and precision scores may give the impression that 
beat and downbeat detection are more suitable tools for the automatic detection of 
measure positions in a complex structure, but the number of deletion operations re­
veals that they are, in fact, counterproductive in this scenario. None of the proposed 
methods was successful considering only the second motif. 

motif 1 (176 measures in total) 

method E det E ins Edel E shf E ops ae R P 

beat t. 70 42 167 64 273 0.208 0.375 0.225 
downbeat t. 33 116 35 27 178 0.155 0.176 0.329 
sync 142 2 2 32 36 0.799 0.727 0.727 

motif 2 (160 measures in total) 

method E det E his Edel E shf E ops ae R P 

beat t. 67 0 516 93 609 0.101 0.356 0.087 
downbeat t. 38 61 54 61 176 0.196 0.194 0.219 
sync 38 11 11 111 133 0.224 0.156 0.156 

Tab. 6.1: The number of detect ions, insertions. deletions. shifts. and total correc-
tions, annotation efficiency, recall, and precision for each motif and method. 

6.4 Discussion 

The synchronization procedure, even if it always detects the correct number of mea­
sures, relies only on chroma features, their resolution, and D T W accuracy. The 
ground-truth annotations may not be always precise—the resulting warping path 
can transfer reference time positions with some deviations. It depends, e.g., on the 
harmonic structure, occurrence of onsets, or the A D S R envelope of given instru­
ments. If we tolerate larger deviance (such as 100 ms), almost all annotations will 
be transferred correctly. 

The beat detector has shown an experimental role in illustrating the function 
of predicting the rhythmic structure and beat occurrence. In the second motif, 
it achieved the best recall and number of correct measure positions. However, it 
also detected too many false positives; that would be true even if ground-truth 
annotations were based on beat positions. The method of filling in beats, even in 
places where there is no underlying information, can work well in simpler musical 
structures without significant changes in rhythm and meter. Furthermore, detectors 
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are usually trained on specific audio datasets, for which there are manual ground-
truth annotations available—string quartet music is not among them. 

The downbeat detector was not sensitive enough or predicted false beat indexes, 
although it contained prior knowledge about the musical structure (see section 6.2.2). 
Table 6.1 shows that so far, the only valid option for expressive string quartet music 
with many abrupt tempo changes, local tempo deviations, and weak onset and beat 
positions, is the synchronization strategy. Its accuracy can be improved by the 
choice of additional features for the alignment procedure. In this case, however, the 
ground-truth annotations are always needed. 

6.5 Conclusion 

In this contribution, we proposed and evaluated different methods of obtaining mea­
sure positions in string quartet music. We first created reference ground-truth data 
and then compared the synchronization method, beat tracking, and downbeat track­
ing based on a specific user-driven metric. This metric allows us to calculate the 
number of operations that one needs to make to obtain the ground-truth annotation 
of measure positions. We tested different strategies on two carefully selected string 
quartet motifs from Leoš Janáček's compositions. Both proposed segments are mu­
sically challenging, they contain many weak onset positions, ambiguous beats, and 
abrupt tempo and rhythm changes. Results suggest that the synchronization method 
is superior to all other possible options. Beat and downbeat tracking approaches 
are not yet efficient on very expressive pieces of classical music. 
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Part II: Analysis of Performance 
Differences 
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7 Feature Extraction Pipeline for MPA 
This chapter is based on the conference article "Towards Automatic Measure-Wise 
Feature Extraction Pipeline for Music Performance Analysis" [10]. 

The task of obtaining ground-truth annotations is of fundamental importance for 
Music Performance Analysis. Measure positions could be used to navigate through­
out the piece, indicate the tempo changes, or help with structure segmentation. 
In this paper, we introduce an automatic measure-wise feature extraction pipeline. 
We first annotate one interpretation of the string quartet music and use an audio 
synchronization strategy to transfer measure positions to all other recordings. We 
extract features related to tempo, dynamics, and timbre. We compute average val­
ues in each measure and propose measure-wise feature matrices. This procedure 
could be used for any number of recordings as long as at least one reference anno­
tation is available. Finally, we create a binary label for each interpretation based 
on the Czech origin of performers as an experiment and evaluate the measure-wise 
tempo distribution. 

7.1 Introduction 

In Music Information Retrieval (MIR), there are still many challenging tasks. Meth­
ods of MIR have a significant impact on the interdisciplinary field of Music Perfor­
mance Analysis (MPA) [24]. M P A research focuses, e.g., on the characteristics of 
interpretations and their differences. The goal of analysis always depends on the 
context. For example, beat detection is a well-known MIR challenge that arose 
originally from musicology. In the context of both MIR and M P A fields, one wants 
to obtain the time positions of beats within given music recordings. However, in 
MIR, beat detectors are usually evaluated by many metrics [78] to capture different 
aspects of the output system's accuracy. On the other hand, for M P A researchers, 
the goal is to obtain all correct beat positions with 100% accuracy. Music experts 
and musicologists can use automated systems to create "candidates" that may or 
may not be beats. They need to edit these candidates manually in specialized soft­
ware such as Sonic Visualiser [108]. Even a small error may impact the analysis. 
Higher F-score or metrical level-based metrics do not necessarily indicate a more 
suitable detector for performance analysis. There are, however, some exceptions, 
e.g., user-driven metric proposed in [131]. 

In this paper, we combine MIR techniques to obtain meaningful data for M P A 
purposes. We focus on the automatic extraction of features for further music perfor­
mance analysis. Our goal is to automatically obtain specific temporal information 
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and extract features in a measure-wise fashion. This is possible even for string quar­
tets, thanks to the relatively high synchronization accuracy. We follow a specific 
pipeline for segment separation based on the annotation of a reference recording, 
audio-to-audio synchronization, and specific feature extraction. In the future, ma­
chine learning methods could be used in combination with proposed feature matrices 
for classification tasks (such as the origin of performers). However, measure positions 
would be needed in advance. In our experiments, we use the String Quartet No. 12 
in F major, Op. 96, by Antonin Dvorak, to demonstrate the pipeline and possible 
evaluation for further music analysis. The rest of the paper is organized as follows: 
Section 7.2 describes the experiments and methods of annotation, audio-to-audio 
synchronization, and feature extraction. The results are presented in Section 7.3, 
followed by a conclusion in Section 7.4. 

7.2 Experiments and Methods 

7.2.1 Dataset 

To demonstrate the proposed feature extraction pipeline and evaluation, we gathered 
76 different recordings (interpretations) of the String Quartet No. 12 in F major, 
Op. 96, 3rd movement, composed by Antonin Dvorak. The sum of the duration of 
all interpretations for the 3rd movement is given in Table 7.1. The total duration 
of all recordings combined is roughly 5 hours. We also denote the Czech performers 
as label 1 and the rest as label 0 for further evaluation. 

Tab. 7.1: Recording identifier, duration of each recording, and a label for Czech 
performers (label 1) and all others (label 0). 

rec ID duration [s] label 1 label 0 

001 225.57 False True 
002 216.93 False True 
003 248.34 True False 

076 249.12 False True 

total 17746.10 18 58 
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7.2.2 Annotation 

In our experiments, we wanted to extract reliable features from all interpretations to 
evaluate all interpretations or compare their differences. We first used beat tracking 
and downbeat tracking approaches to find the measure (downbeat) positions, but 
the results were not sufficient. We manually annotated measure positions of one 
interpretation (chosen as a reference recording) to obtain ground-truth (GT) data. 
Time positions of measures may provide sufficient resolution and useful information 
for further evaluation [129]. They are also used in many MIR tasks, music analysis, 
or music navigation. If the goal of evaluation or required time resolution changes, 
one can annotate, e.g., beats instead. 

One of the problems of M P A is the small number of recordings in datasets 
and thus the lack of generalizability [24]. Sometimes, only a few recordings are 
analyzed—manual labeling on a larger scale is very time-consuming and tedious. In 
our case, we annotate only one recording and automatically acquire annotations for 
all other recordings based on the audio-to-audio synchronization strategy. This way, 
we can use a large number of recordings. However, the chosen method for obtaining 
relevant data should always depend on the goal and context of the performance 
analysis. 

7.2.3 Synchronization 

To obtain measure positions for each interpretation, we resample all recordings to 
22 050 Hz and compute the time alignment of the reference and all target record­
ings following the sync-toolbox pipeline1 [56]. First, a variant of chroma vectors, also 
known as Chroma Energy Normalized Statistics (CENS) features [130], is computed. 
The tuning is estimated to shift features accordingly, and the Memory-restricted 
Multiscale D T W algorithm (MrMsDTW) [45] is applied to find the optimal align­
ment between both recordings. If the synchronization procedure is surpassed in the 
future, it will be possible to change or adjust the method and obtain more precise 
results. Measure positions are then transferred from the reference to the target 
recording based on the warping path. 

A common problem when dealing with performance differences and analysis is 
the music structure ambiguity. In this step, we can automatically detect structure 
differences. If the reference and target recording have the same music structure and 
harmonic progression, the warping path would be more or less diagonal. Figure 7.1 
shows the warping path of M r M s D T W for an exemplary case when the music struc­
ture differs. We can see the horizontal path indicating a repetition in the target 

1 Available: https://github.com/meinardmueller/synctoolbox (accessed on 21 April 2022) 
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recording. We can automatically discard such cases by calculating a difference be­
tween all synchronized measure positions (or the slope of a warping path). If the 
difference is larger or smaller than a certain threshold, we remove this recording 
from the feature extraction. In our experiments, we used two thresholds: T\ > 12 s 
checks if there is an extra repetition at the beginning or inside the recording and 
T2 < 0.1 s if there is a part missing. Considering the 3rd movement, however, all 
obtained recordings followed the same structure. 

400 600 800 
target recording [frames] 

Fig. 7.1: A n example of the cost matrix and alignment path of the reference and 
target recording. The horizontal path marked with blue dashed lines indicates rep­
etition within the target recording. 

The alignment method cannot, so far, replace the manual annotation process 
when dealing with time-precise annotations. The methods to obtain relevant data 
always depend on the goal of analysis, and they should be chosen accordingly. To 
demonstrate the synchronization accuracy, we manually annotated the second ref­
erence recording and computed the mean d m e a n and median <imed difference between 
GT positions of the second reference and the transferred measure positions from 
the first reference recording (see Table 7.2). We found out that dmean = 40 ms and 
dmed = 19 ms. The chosen alignment strategy provides relatively accurate results 
if our goal is a measure-wise resolution (the median duration of measures in the 
reference recordings equals 754 and 791 ms, respectively). 

In the proposed pipeline, we do not extract features based on the warping path 
itself, e.g., as in [132]. We use the synchronized measure positions to divide au-
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dio recordings into small parts (that correspond to the duration of measures) and 
compute the features of each part separately. 

Tab. 7.2: Two reference recordings used in the synchronization pipeline; mean and 
median duration of all GT measures; mean and median differences between GT and 
synchronized measures for both reference scenarios. 

rec mean dur med dur mean & med diff mean & med diff 

ref 1 832 ms 754 ms reference 28 ms; 18 ms 
ref 2 908 ms 791 ms 40 ms; 19 ms reference 

7.2.4 Features 

Synchronized measure positions give us an overall time grid for feature extraction. 
They also segment recordings into logical musical structures that could be later 
selected and used for the evaluation. The music performance parameters can be 
divided into a few basic categories [24]: 

• dynamics - how the loudness varies based on phrasing, accents, tension, or 
musical structure; 

• timing (tempo) - rhythmic structure, micro-timing (onsets or beats), global 
tempo, or local tempo deviations; 

• timbre - choice of instrumentation, instruments, playing techniques, and acous­
tic conditions; 

• pitch - intonation, deviations from the score, and choice of playing techniques 
such as vibrato. 

Most of the parameters cannot be unconditionally connected to the direct seman­
tic level. For example, timbre is a very ambiguous parameter if the context, acoustic 
conditions, recording and encoding choices, or post-processing options are not taken 
into consideration. We first normalized all recordings to —26 LUFS (Loudness Unit 
Full Scale)2 so that the overall dynamics could provide useful information when com­
paring extracted features of each measure. We selected three parameters to cover 
tempo, loudness, and timbre to some degree. We computed signal length (dura­
tion), Root Mean Square (RMS) value, and log mel spectrogram in a measure-wise 
fashion. 

2The LUFS are described in E B U R 128 recommendation. Available: https://tech.ebu.ch/ 
docs/r/r!28.pdf (accessed on 21 April 2022) 
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To obtain tempo information, the source audio signal (each measure) is first 
converted to a sampling rate of 22 050 Hz. We derive tempo T simply as: 

T 
60 -B 

(7.1) 

where d is the duration of a given measure and B = 3. The whole 3rd movement 
is in \ time signature. Next, segmentation into frames of 2048 samples with a hop 
size of 512 samples is performed. We calculate the RMS value for each frame x 
according to the equation: 

£rms 
N-l 

\ N £ x ^ 
\ J V n=0 

(7.2) 

where N is the length of the audio frame in samples and n is the sample index. In 
the case of the log mel spectrogram, each signal frame (with the same parameters 
as for RMS) is first multiplied by a Hann window, and the real part of the complex 
spectrum is obtained using the Short-Time Fourier Transform. We chose to limit 
the frequencies: 65 Hz - 8 kHz (65 Hz roughly corresponds to the lowest tone C2 
produced by a violoncello). Then, the power spectrum is calculated as a squared 
magnitude of the complex coefficients. The power spectrum is further converted 
into a mel-scaled power spectrum using a mel-filterbank of 64 filters. The number 
of bands is inspired by audio pattern recognition evaluation [133]. The final step is 
to convert the magnitudes to decibels by: 

S d B = 101og10(S), (7.3) 

where S is the mel-scaled power spectrum. A l l values were averaged within each 
measure. The final feature matrix structure for the reference recording is shown in 
Table 7.3. 

Tab. 7.3: The feature matrix of the reference recording: measure index, duration in 
seconds, mean values of RMS, and mean magnitude of 64 mel bands in decibels. 

measure 1 2 3 244 

duration 0.830 0.647 0.824 3.784 
rms 0.026 0.023 0.035 0.011 
melbinl -28.792 -23.068 -27.275 .. . -16.921 
melbin2 -25.918 -25.502 -23.861 .. . -5.682 
melbin3 -21.770 -24.522 -20.031 .. . -5.270 

melbin64 -52.002 -48.377 -47.645 .. . -60.313 
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The matrix can be easily enhanced by a different choice of features; however, the 
number of measures always corresponds to the reference. In the last step, we created 
a binary label for each interpretation based on the available information about the 
origin of performers to demonstrate the evaluation (see Table 7.1). Although the 
labels are not distributed equally in the dataset (18 vs. 58), the motivation here 
is that Czech string quartets may play the music of a Czech composer slightly 
differently based on musical traditions and cultural predispositions. We do, however, 
understand that this categorization may be questionable. 

7.3 Results 

Figure 7.2 shows the mean tempo and RMS values for each measure. A l l 76 feature 
matrices are averaged into one representation. The red dotted lines in Figure 7.2a 
specify the negative peaks of the curve. 

Am. h N V WW 
25 50 75 100 125 150 

measure index 
175 200 225 244 

Fig. 7.2: Mean tempo curve and mean values of RMS for all recordings. The red 
dots indicate troughs or negative peaks of the tempo curve. 

The overall tempo progression depends on the underlying musical structure. 
When there is a key or motif change, it is indicated by a ritardando (slowing down). 
These regions correspond to the red dotted lines (measures 48, 72, 96, 144, 148, 
172, and 196). The RMS curve seems to follow this pattern with additional peaks 
throughout the piece. Figure 7.3 shows the final log filtered mel spectrogram for 
mean values of all feature matrices. This way, we can visualize average spectrum 
values for each measure within the whole dataset. This spectrogram could be further 
used as a tool for statistical timbre evaluation as it contains information from all 
available interpretations combined. 
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Fig. 7.3: The log filtered mel spectrogram: the a;-axis indicates measures; the magni­
tude of each mel bin is converted to dB and averaged throughout the whole dataset. 

Furthermore, the absolute tempo difference for each measure between Czech and 
other performances is given in Figure 7.4a. Values seem to be shifted toward positive 
numbers—positive difference means that Czech performers play the same segment 
at a higher tempo. On the other hand, the most prominent peaks of this curve 
correspond to negative values (measures 72, 146, 172, and 195). These positions 
also align with regions of the key or motif changes. Figure 7.4b shows the same 
scenario, but the labels were chosen randomly. Here, the range of deviations on the 
y-axis is much smaller, and the values seem to follow the normal distribution. 

1 25 50 75 100 125 150 175 200 225 244 0 20 40 60 
measure index no. of measures 

Fig. 7.4: From top to bottom: The absolute tempo difference between the Czech 
and non-Czech labels for each measure and a corresponding histogram; the same 
scenario but both labels were chosen randomly. 
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7.4 Conclusion 

In this work, we have presented a specific pipeline of feature extraction for M P A 
purposes. The synchronized time positions based on reference measure annotations 
are first used to physically segment recordings. Then, the mean value of features is 
calculated measure-wise. We can use this method for a dataset of arbitrary length 
as long as the synchronization procedure is accurate relative to the nature of G T 
annotations. We gathered 76 interpretations of the 3rd movement of the String 
Quartet No. 12 by Antonin Dvorak, extracted proposed feature matrices, and eval­
uated them based on the origin of performers. Results of experiments suggest that, 
in this case, there may be a difference between Czech and other interpretations. It 
seems that they tend to play faster but slow down more when there is a change of 
key or musical structure. In the future, we plan to use the proposed feature matri­
ces for a specific M P A task—binary classification of the origin of performers using 
machine learning methods. 
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8 Classification of Interpretation Differences 
This chapter is based on the journal article "Classification of Interpretation Differ­
ences in String Quartets Based on the Origin of Performers" [11]. 

Music Information Retrieval aims at extracting relevant features from music 
material, while Music Performance Analysis uses these features to perform semi-
automated music analysis. Examples of interdisciplinary cooperation are, e.g., vari­
ous classification tasks—from recognizing specific performances, musical structures, 
and composers to identifying music genres. However, some classification problems 
have not been addressed yet. In this paper, we focus on classifying string quar­
tet music interpretations based on the origin of performers. Our dataset consists 
of string quartets from composers A . Dvořák, L. Janáček, and B. Smetana. After 
transferring timing information from reference recordings to all target recordings, 
we apply feature selection methods to rank the significance of features. As the main 
contribution, we show that there are indeed origin-based tempo differences, distin­
guishable by measure durations, by which performances may be identified. Fur­
thermore, we train a machine learning classifier to predict the performers' origin. 
We evaluate three different experimental scenarios and achieve higher classification 
accuracy compared to the baseline using synchronized measure positions. 

8.1 Introduction 

Music Information Retrieval (MIR) deals with extracting, processing, and organizing 
meaningful features from music material [128]. From the analysis of audio signals to 
symbolic representations and musical blueprints (score), MIR focuses on many chal­
lenging tasks such as content-based search, music tagging, automatic transcription, 
feature detection, music recommendation, and much more [30]. MIR methods sig­
nificantly impact the Music Performance Analysis (MPA) field [24], providing more 
accurate detectors and possibilities for automated music analysis. In the case of 
classical music, a performance affects how listeners perceive a piece of music. Each 
interpretation may be special thanks to, e.g., modifying information from the score 
and converting various musical ideas into musical renditions [128]. The communi­
cation between members of ensembles also shapes a performance [134, 135, 136]. 
Classification tasks, such as the classification of music genres [137, 138], mood [139], 
music structures [140], or composers [141, 142], are examples of interdisciplinary 
approaches—a combination of MIR techniques with M P A , musicology, and music 
analysis. 

Music-related classification problems are common [143, 138], but only the mini­
mum deals with the classification of origin-based or music school-related differences 
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of interpretations. In this paper, we combine MIR techniques with M P A goals. 
We focus on identifying the differences between interpretations of the same musical 
composition. In other words, we aim to create a classifier that could differenti­
ate music performances based on the origin of a given composer. If it is possible 
to train a classifier, we can conclude that there are noticeable differences. To our 
best knowledge, there is only one study [144] with a similar goal using machine 
learning besides studies with a phylogenetic approach [140] or comparative music 
analysis [98, 145, 146]. However, there are many studies combining MIR and M P A 
disciplines and focusing on expressive performance [147, 148]. Machine learning 
models have been researched in the M P A community for, e.g., modeling nuances of 
dynamics and timing of expressive performances using inter-onset-intervals with Hid­
den Markov Models [149] and linear regression [150], or score following tasks [151]. 
Many other approaches to computational modeling of expressive performance also 
include neural networks [150, 152, 153]. 

We focus on string quartet music from Czech composers Antonín Dvořák, Leoš 
Janáček, and Bedřich Smetana. First, we collect a large dataset (compared to the 
average size of M P A datasets, see [24]) and label each recording to create two classes: 
Czech and non-Czech interpretations. The underlying hypothesis is that the Czech 
performers may play the piece differently, e.g., considering the same cultural back­
ground and tradition shared with the composers of the analyzed music. We can 
address this problem quantitatively thanks to the increasing number of available 
recordings and the accuracy of synchronization methods [56, 154]. We extract rel­
evant timing-related features from all interpretations that may cover information 
about the expressiveness of a given performance and construct feature matrices to 
train and test a machine learning classifier. Figure 8.1 shows the overview of our 
classification approach. 

synchronization, 
annotation transfer 

durations 
extraction 

annotated reference 

ö 

c 

labels 

feature matrix 

movement / section / measure 
durations 

binary classification 
of origin 

feature 
selection 

Czech 
non-Czech 

Fig. 8.1: Overview of the proposed classification strategy. 
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As this paper's main contribution, we show a general trend in the rhythmic 
conception (duratas) of given string quartets based on the proposed binary classes. 
Although various music schools, cultures, and traditions influence musicians, we can 
train a classifier to identify Czech and non-Czech interpretations of given string quar­
tets with relatively high accuracy in most cases. To better understand the features 
and classification results (and why it is possible to train such a classifier), we split 
our experiments into three scenarios, each applying a different time resolution of 
features. Unlike the approach in [144], we use various string quartets, more record­
ings, and extract features based on a semi-automated approach instead of relying 
on automated systems with a possibility of significant misdetection. Furthermore, 
we support our feature selection with M P A principles (see Section 8.3.1) to focus 
only on timing parameters that may show the expressiveness of music performances 
(third scenario). We can achieve high classification accuracy if the selected features, 
derived from ground-truth (GT) data and a synchronization strategy, capture local 
tempo deviations. We understand the controversial nature of defining the "origin" 
of musicians and splitting our dataset into two binary classes; however, we want to 
show that the interpretation differences may be significant when using a machine 
learning method, even though they wouldn't be qualitatively noticeable by music 
experts. We do not claim that a difference in interpretation has any quality to 
it—we only show that there is a difference. To provide additional data, we share 
a GitHub repository1. 

The rest of the paper is organized as follows. Section 8.2 introduces the string 
quartet dataset, annotation, labeling process, and audio-to-audio synchronization 
and compares automated and semi-automated approaches for measure detection. 
Section 8.3 describes a feature selection, visualization method, dimensionality re­
duction, and design of experiments. The results are reported in Section 8.4, fol­
lowed by a discussion in Section 8.5 and conclusions with prospects for future work 
in Section 8.6. 

8.2 Methods 

This section introduces our string quartet dataset, annotation process, and audio-
to-audio synchronization strategy to obtain transferred measure positions. We show 
the validity of synchronization accuracy by comparing the automated downbeat 
tracking systems with the semi-automated synchronization procedure. 

1github.com/xistva02/Classification-ofrinterpretation-dincerences (accessed on 10 March 2023) 
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8.2.1 Dataset 

We collected string quartets of Antonín Dvořák, Leoš Janáček, and Bedřich Smetana 
from various sources, such as the Naxos Music Library, the Czech Museum of Music, 
and Masaryk University. Each composition is divided into four movements—in the 
following text, each movement is regarded as a separate recording. The composers, 
compositions, and movements (Roman numerals) are divided as follows. 

• Antonín Dvořák: 
— String Quartet No. 12 in F major, Op. 96 

I. Allegro ma non troppo 
II. Lento 

III. Molto vivace 
IV. Vivace ma non troppo 

— String Quartet No. 13 in G major, Op. 106 
I. Allegro moderato 

II. Adagio ma non troppo 
III. Molto vivace 
IV. Andante sostenuto 

— String Quartet No. 14 in Ab major, Op. 105 
I. Adagio ma non troppo 

II. Molto vivace 
III. Lento e molto cantabile 
IV. Allegro non tanto 

• Leoš Janáček: 
— String Quartet No. 1, "Kreutzer Sonata", J W 7/8 

I. Adagio con moto 
II. Con moto 

III. Con moto - Vivace - Andante - Tempo I 
IV. Con moto 

— String Quartet No. 2, "Intimate Letters", J W 7/13 
I. Andante 

II. Adagio 
III. Moderato 
IV. Allegro 

• Bedřich Smetana: 
— String Quartet No. 1 in E minor, "From My Life", JB 1:105 

I. Allegro vivo appassionato 
II. Allegro moderato á la Polka 

III. Largo sostenuto 
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IV. Vivace 
— String Quartet No. 2 in D minor, JB 1:124 

I. Allegro 
II. Allegro moderato 

III. Allegro non piu moderato, ma agitato e con fuoco 
IV. Presto 

For more details about compositions, we refer to International Music Score L i ­
brary Project ( IMSLP) 2 . Most versions are studio recordings, but we also keep the 
live versions. Table 8.1 shows the composers, musical compositions, the number of 
recordings, binary labels (classes) of the performer's origin (1 refers to the Czech 
class and 0 to the non-Czech class), and the total duration of all interpretations of 
the given composition combined. Our dataset consists of 1315 string quartet record­
ings with a total duration of roughly six days. We focused on the well-known string 
quartets of Czech composers, increasing the probability of gathering enough data 
for the proposed analysis. 

Tab. 8.1: The original dataset of string quartets from Czech composers; composer 
(csr), composition (com), the number of different interpretations (recs), class 1 
(Czech interpretation), class 0 (non-Czech interpretation), and total duration (dur) 
of all recordings in hh:mm:ss or dd:hh:mm:ss format. 

csr Dvořák Janáček Smet ana 

com No. 12 No. 13 No. 14 No. 1* No .2 No. 1 No. 2 

recs 304 100 92 264 280 171 104 1315 
class 1 72 40 40 88 80 75 84 479 
class 0 232 60 52 176 200 96 20 836 
dur 32:34:28 15:58:55 12:22:27 19:52:32 30:08:06 20:36:51 8:01:24 05:19:34:43 

* In this case, the number of recordings varies within movements. 

We understand this labeling is problematic (performers may study abroad and 
be inspired by many composers, teachers, musicians, and interpretations). However, 
Czech musicians may play the string quartets of Czech composers differently, inher­
iting a specific style or carrying on the music tradition that led to the compositions 
in the first place. Such labeling could be later changed (such as Europe/rest of the 
world or Central Europe/Western Europe) with different aims of the analysis. As 
we show in this study, specific details in the tempo of measures may differentiate 
performers, perhaps even without their prior intention. 

2https://imslp.org/ (accessed on 10 March 2023) 
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Based on the open-source policy, we would like to contribute with string quartet 
data to the performance datasets (see [155] and [24]). However, the vast majority 
of recordings are not under a C C license. Therefore, we share at least measure 
information (annotations) of each interpretation and composition in the GitHub 
repository. 

8.2.2 Annotation 

To characterize or evaluate differences in interpretations, we want to obtain or ex­
tract reliable timing information from each recording (see Section 8.3.1). First, 
we used automated methods with little success (see Section 8.2.4). We manually 
annotated one interpretation (chosen as a reference recording) per composition to 
obtain G T data and acquire annotations for all other interpretations based on the 
audio-to-audio synchronization strategy [56]. 

We considered the sequence of beats or measures as our timing parameter. Both 
can describe a given piece's local and global tempo and can be connected to the 
underlying score material. However, we chose measures to easily segment sections 
based on the score and reduce the time needed to annotate each reference recording. 
Time positions of measures may provide sufficient resolution and valuable informa­
tion for further evaluation [129]. If the goal of analysis or required time resolution 
changes, one can annotate and synchronize, e.g., beats instead (see Section 8.2.3). 

We annotated GT measure positions (obtaining reference measure positions) for 
each reference recording based on a corresponding score. Furthermore, we annotated 
sections—meaningful segments of each movement usually marked by numbers or 
letters. Table 8.2 shows the number of sections and measures for all compositions 
and movements. We did not annotate sections of Smetana's String Quartet No. 2 
as they were not included in the score. 

8.2.3 Synchronization 

To obtain measure positions for each interpretation, we resample all recordings to 
22 050 Hz and compute the time alignment of the reference and all target recordings 
following the sync-toolbox pipeline in [56]. First, a variant of chroma vectors, also 
known as Chroma Energy Normalized Statistics (CENS) features [130], is computed. 
The tuning is estimated to shift CENS accordingly, and the Memory-restricted Mul-
tiscale D T W algorithm (MrMsDTW) [45] is applied to find the optimal alignment 
between both chroma representations. Measure positions are then transferred from 
the reference to each target recording based on the warping path and final interpo­
lation. Following this strategy, one can obtain any time-related annotation (onsets, 
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Tab. 8.2: The number of sections and annotated measures for all recordings of 
our dataset; composers, compositions, and movements; x means that data are not 
available—either we did not obtain this information from a score or the chosen 
reference recording was different from the available score, so we excluded given 
recordings from the analysis. 

composer composition mov no of sections no of measures 

Dvořák 

movl 19 
t v t 1 0 mov2 9 INo. IZ m Q v 3 1 3 

mov4 16 
movl 14 
mov2 10 
mov3 13 
mov4 12 

No. 13 

No. 14 
movl 
mov2 
mov3 
mov4 

11 
x 
7 
15 

239 
97 
244 
382 
393 
202 
510 
563 
204 
x 

102 
534 

Janáček 

No. 1 
movl 
mov2 
mov3 
mov4 

No. 2 
movl 
mov2 
mov3 
mov4 

14 
9 
16 
17 
17 
15 
24 

164 
236 
103 
189 
314 
218 
216 
356 

Smetana 

No. 1 
movl 
mov2 
mov3 
mov4 

No. 2 
movl 
mov2 
mov3 
mov4 

12 
12 
10 
18 

x 
X 
X 
X 

262 
250 
97 
285 
140 
187 
76 

beats, measures, regions) if both reference and target recording follow the same 
harmonic and melodic structure and at least one set of GT data is available. 

In the case of string quartets, there may be problems with repetitions and, 
e.g., codas. As a pre-processing step, we check the structure differences first. We 
compute anchor points (the first 10% and the last 90% of the duration of a given 
recording), test points projected on the warping path (approximately one point every 
two seconds), and connect the anchor points to form a line (see Figure 8.2). We 
consider only 10-90% of the warping path to avoid possible applause at the beginning 
or end of a recording. Furthermore, we compute the relative slope r r (the difference 
between the slope of the projected line and consecutive points on the warping path) 
and absolute slope r a b s (the projected line is not taken into consideration). If r r > 3 
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or rabs < 0.13, we suspect a structural change in the musical content (see Figure 8.2). 
In other words, if the slope of the projected consecutive points is too steep or too 
flat, the target recording is not valid for further processing. For example, r r = 3 
corresponds to the situation when the given time segment of the target recording is 
played three times faster than the reference recording. Based on our observations 
and dataset, it is unlikely for longer time segments even with expressive music 
such as string quartets. Following this strategy, we should automatically select all 
interpretations that follow the same score. The threshold values r r and r a b s were 
set empirically. If both reference and target recordings are duplicates, the slope of 
all consecutive points on the warping path is ideally 1. We discarded all duplicates 
and proceeded only with recordings that followed the same structure as a reference 
recording. The final number of all interpretations for the classification is given in 
Appendix, Tables C . l , C.2, and C.3, depending on the composer. 

6000 

5000 

4000 

o o 
£ 3000 
CD 
i _ 

CO 2000 

1000 

consistent structure discrepancy 

1000 2000 3000 4000 

reference recording 

5000 6000 

Fig. 8.2: A n example of a warping path between a reference and a target record­
ing; interpretations differ in the underlying musical structure (the target recording 
contains measures that are not included in the reference recording); blue dots cor­
respond to the anchor points; the blue line shows the diagonal path between anchor 
points; green points (crosses) are projected on the warping path and are equally 
distributed; red points (crosses) indicate the region of dissimilarity as their r r > 3. 
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Interestingly, we encountered a situation where two recordings were duplicates 
even though they had different duration and audio qualities. One was the original 
copy from the phonograph recording; the second was a newer CD release. They 
differed in the source (database), metadata, duration, and thus global tempo, audio 
quality, and the presence of noise. Audio fingerprinting and image hashing methods 
would probably struggle with this case (their goal is slightly different), but the pro­
posed synchronization technique detected the duplicates correctly. The limitation of 
this approach, and the reason why it is not commonly used on big datasets, is in its 
computational time, which grows with the number of input recordings (synchroniza­
tion pairs) even with optimized D T W methods. The number of all combinations C 
is C — n • (n — l ) /2 , where n is the number of recordings. Adding one track to the 
dataset requires running all possible combinations with a given recording again. 

8.2.4 Validity of Synchronization Accuracy 

In M P A , many timing parameters (onsets, beats, measures, and tempo) may be 
derived from GT annotations. In the case of classical music or string quartets, 
the automated systems (onset, beat, and downbeat trackers/detectors) still need to 
be improved for fully automated analysis. To demonstrate this, we apply a well-
known RNN-based downbeat detector [116] and WaveBeat downbeat detector [115] 
to one of the reference recordings with GT data available and compare the results 
with the semi-automated synchronization approach. For this purpose, we manually 
annotated the second reference recording in the same way described in Section 8.2.2. 
We did not use the latest downbeat detector based on Temporal Convolutional 
Networks (TCN), introduced in [110], because the pre-trained neural network models 
are not publicly available. 

Table 8.3 shows the results for both downbeat detectors and a synchronization 
strategy. In addition to classical scores for comparing the accuracy of detectors 
(F-measure, continuity-based evaluation scores CMLc , C M L t , A M L c , A M L t , and 
Information Gain (D) that represents the entropy of measure error histogram), we 
computed absolute mean ( A m e a n ) and median ( A m e d ) difference in seconds between 
GT positions of the first reference and the transferred measure positions from the 
second reference recording. To compute the F-measure, we used a window size of 
TW = 0.1 (instead of default rw = 0.07 for beat tracking tasks) to compensate for the 
nature of soft onsets produced by string instruments and a coarser time resolution 
of measures. For further details and information about metrics, we refer to [78, 122]. 
Amean and A m e d are computed only for the synchronization method as the number 
of references and estimated measures are always the same—condition, which cannot 
be satisfied using automated methods. 
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Tab. 8.3: The F-measure, continuity-based metrics, and information gain (D) of au­
tomated downbeat tracking methods (madmom and wavebeat) and semi-automated 
audio-to-audio synchronization strategy (sync) evaluated on the reference recordings 
of Dvorak's String Quartet No. 12, movement 3. A m e a n and A m e d (in seconds) are 
computed only for the synchronization method. 

F-measure C M L c C M L t A M L c A M L t D A m e an A m e ( j 

madmom 0.337 0.000 0.000 0.154 0.285 0.158 
wavebeat 0.338 0.037 0.143 0.037 0.143 0.082 
sync 0.927 0.290 0.963 0.290 0.963 0.426 0.040 0.025 

Results suggest that the synchronization approach is, as expected, more robust 
and reliable (F-measure = 0.927 and A m e a n = 25 ms) and, in contrast to the auto­
mated detectors, always outputs the correct number of measures. Unlike downbeat 
detectors, the evident and problematic limitation is the necessity of at least one man­
ual reference annotation. The downbeat trackers are not trained on string quartets 
and expressive music in general. This problem is partly addressed in, e.g., [156] 
or [9], where the evaluation is based on user-driven metrics [131]. 

8.3 Feature Selection and Design 

8.3.1 Features 

There are many parameters that can characterize music performances. We can 
divide them into a few basic categories [24]: 

• dynamics: how the loudness varies based on phrasing, accents, or structure, 
• timing: rhythmic structure, micro-timing (onsets or beats), global tempo, or 

local tempo deviations, 
• timbre: choice of instrumentation, instruments, playing techniques, and acous­

tic conditions, 
• pitch: intonation, deviations from the score, unintentional intonation choices, 

and playing techniques such as vibrato. 

Most parameters cannot be unconditionally connected to the direct semantic level. 
For example, timbre is a very ambiguous parameter if the context, acoustic condi­
tions, recording and encoding choices, or post-processing options are not considered. 
Computing the dynamics can also be inaccurate as the original music carrier, qual­
ity, and post-processing choices (although this is not usually the case for classical 
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music) may change even the relative proportions. Therefore, we focused solely on 
the timing parameter, which should not be affected by the abovementioned situa­
tions. However, an exception may be the inability to fit the interpretation into the 
older music medium (such as the maximum duration of 3.5 minutes on a 10-inch 
78 R P M phonograph record). The oldest phonograph recordings from our dataset 
are from 1928 and 1929 (Ševčík-Lhotský and Czech Quartet, respectively), yet we 
do not consider this possibility in the analysis. 

We construct a feature vector where each value represents the duration of consec­
utive movements, sections, or measures. By stacking these vectors vertically (each 
row represents features of a given recording), we obtain a feature matrix. In contrast 
to the approach in [10], where the feature matrices consisted of spectral parame­
ters, dynamics, and timing properties for each synchronized measure of the piece, 
we focus only on differences in the duration of measures, musical sections, or entire 
movements to reduce the number of features. The examples of proposed feature 
matrices are shown in Section 8.3.4. 

8.3.2 mRMR 

To further preprocess our data, we use a technique called minimum-Redundancy 
Maximum-Relevance (mRMR), first introduced in [157] and later used in numerous 
studies [158, 159, 160]. This algorithm performs an efficient selection of the n most 
relevant features, decreasing the feature redundancy [161]. The first step of m R M R 
is to search for features satisfying the Maximal-Relevance criterion (8.1), which ap­
proximates Max-Dependency D(S, c) with the mean value of all mutual information 
/ values between individual feature Xi and class c: 

1 
maxD(5,c), D = —- Hxi,c), (8-1) 

where S denotes the feature set to be selected. The second step is to deploy the 
minimum-Redundancy condition [157] as the features selected by the Maximum-
Relevance could have a significant amount of redundancy. This condition is defined 
by: 

minižíS 1), R=yL E I^Xj). (8.2) 

The m R M R criterion is the combination of the constraints mentioned above, and 
it is defined by the operator <&(D, R), which integrates D and R. The simplest form 
to optimize D and R simultaneously is given by: 

max (D, R), $ = D — R. (8.3) 
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In some cases (the second and third scenario, explained in Section 8.3.4), each 
recording consists of a different number of features, thus the variable length of the 
feature matrix. The utilization of m R M R allows us to uniform all feature matrices 
in length and to select the most significant features in terms of the difference be­
tween Czech and non-Czech classes. We use the implementation from the m R M R 
Python library in our experiments3 and refer to [161] for more details about m R M R 
algorithm. 

8.3.3 SVM 

We build on a machine learning method called Support Vector Machines (SVM) 
to perform binary classification on our dataset. We use the L I B S V M implementa­
tion [162] of //-Support Vector Classification (z/-SVC) [163] available via scikit-learn 
package4. The user-specified regularization parameter v, similar to the standard C 
parameter used in C-SVC [164], represents an upper bound on the fraction of train­
ing errors and a lower bound of the fraction of support vectors. Therefore, a user 
specifies the v, where v G (0,1]. In our case, we used v = 0.5. As described in [162], 
in a binary classification scenario, given training vectors Xi G Mn, i = and 
a vector t / G K 1 such that yi G {1, -1} , the primal optimization problem is: 

1 1 
min -wTw — up H— 5^ & 
wM,P 2 l~i 

subject to yi(wT4>(xi) + b) > p - (8.4) 

& > 0,i = l , . . . , Z , p > 0 . 

The dual problem is: 

min -aTQa 
2 

subject to 0 < q;j < 1//, % — 1,..., Z, (8.5) 

e a > v, y a = 0, 

where Qij = yiyjK{xi,Xj). The decision function of Z / - S V C is defined by: 

f(x) = sgn Vi^iK{xi, x) + bj . (8.6) 

We also utilized the linear SVC during our experiments, but we found that the 
classification accuracy was slightly better when using Z / - S V C . We used the Radial 

3github.com/smazzanti/mrmr (accessed on 10 March 2023) 
Scikit-learn.org/stable/modules/generated/sklearn. svm.NuSVC.html 
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Basis Function (RBF) as a kernel for all machine learning scenarios described in 
Section 8.3.4. A more detailed description of various S V M algorithms can be found 
in [163]. 

8.3.4 Design of Experiments 

Bowen [98] points out the complex relationship between the choice of tempo and the 
composition duration. Generally, a slower chosen tempo at the beginning implies 
a longer duration of the entire piece and vice versa: a faster tempo shortens the com­
position. However, very often, this is not the case. We can look for more differences 
in the ratio between tempo and duration in a fragmented form. This allows a "re­
laxed" interpretation full of agogic changes and expressive caesuras. Demonstrable 
results are shown by the procedure in which the pace of shorter, meaningful sections, 
related to the whole duration, is calculated. The opposite method, which is based 
on measuring large parts or whole movements and calculating the average tempo of 
the composition, has no significant meaning because such a procedure "neutralizes" 
the particular characteristic of the interpretation. Considering the nature of our 
data and to address this problem, we decided to split the experiments into three 
scenarios. 

Each scenario deploys a different feature matrix—they all contain timing infor­
mation (see Section 8.3.1) but differ in resolution. We standardize all features to 
a mean of zero and a standard deviation of one (removing the mean and scale to 
unit variance). Then, the S V M classifier is deployed (see Section 8.3.3) to all ma­
trices. Precision, recall, and F-measure (also called F-score) metrics are computed. 
Whole movements give the coarsest resolution, then sections, and finally, measures 
of a given piece. The description of scenarios with examples of feature matrices 
(corresponding tables) is as follows: 

• First scenario: classification based on the duration of all 4 movements (Ta­
ble 8.4). 

• Second scenario: classification based on the duration of all sections (Table 8.5). 
• Third scenario: classification based on the duration of the ten most relevant 

measures, selected by the m R M R method from all measures (Table 8.6). 
Using m R M R in the first and second scenarios only ranks the relevance of given 

features but does not change the input for z/-SVC. The third scenario utilizes m R M R 
to select the first ten most important measures, which are further used as the input 
of Z / - S V C . To compensate for an imbalanced dataset, we always randomly under-
sample the class with more recordings. Furthermore, we stratify the training and 
test subset so there is always the same number of recordings in both Czech and non-
Czech classes. Training and testing data are split into 75/25 subsets and shuffled 
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randomly. The S V M classifier (see Section 8.3.3) is used; precision, recall, and F-
measure are computed on the testing subset. This procedure is repeated 1000x and 
a mean and a standard deviation (op for F-measure, op for precision, and <7p for 
recall) are computed. 

Tab. 8.4: Exemplary feature matrix of the first scenario; each row represents a set 
of features for a given recording; ID - identification of a performance/recording, 
movl-mov4 - the duration of each movement in seconds; binary label based on the 
origin of a performer. 

ID movl mov2 mov3 mov4 label 

002 559.52 428.62 213.51 306.37 0 
003 620.81 420.10 240.55 325.27 1 
004 559.21 470.88 205.29 335.96 1 

Tab. 8.5: Exemplary feature matrix of the second scenario; each row represents a set 
of features for a given recording; ID - identification of a performance/recording, 
sectionl-section8 - the duration of each section in seconds; binary label based on 
the origin of a performer. 

ID sect ion 1 section2 section3 section4 • • • • section8 label 

001 22.64 22.63 37.23 34.65 27.48 0 
002 23.87 21.46 38.07 31.05 22.58 0 
003 24.09 22.30 40.13 32.21 24.46 0 

Tab. 8.6: Exemplary feature matrix of the third scenario; each row represents a set 
of features for a given recording; ID - identification of a performance/recording, 
measure l-measure239 - the duration of each measure in seconds; binary label based 
on the origin of a performer. 

ID measure 1 measure2 measure3 • • • measure239 label 

001 4.12 1.91 2.54 3.09 0 
002 1.87 2.01 2.02 2.81 0 
003 2.24 1.97 2.26 3.51 1 
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The following example of the third scenario shows the workflow of processing. 

• Feature matrix of size 27x10 (27 recordings, 10 most significant measures 
selected by mRMR), 15 recordings of class 1 (Czech), 12 of class 0 (non-Czech). 

• A l l features are standardized by removing the mean and scaling to unit vari­
ance. 

• To balance the dataset, 12 recordings of class 1 are randomly chosen, and the 
rest of class 1 is discarded in this run. 

• Data is split into the training subset (75% of 24, hence 18 recordings) and the 
testing subset (25% of 20, hence 6 recordings). 

• It is also ensured that the ratio of class 1 and 0 stays the same, if possible, for 
both training and testing subsets. 

• The final training subset: 9 recordings of class 1 and 9 recordings of class 0. 
• The final testing subset: 3 recordings of class 1 and 3 recordings of class 0. 
• zz-SVC is used and evaluated in terms of F-measure, precision, and recall on 

the test subset. 
• The whole run is repeated 1000 x 
• A mean and a standard deviation of all F-measure, precision, and recall values 

are computed. 

Contrary to this example, the m R M R method shows the relevance of given features 
even in the first and second scenarios. However, we only use it to show the im­
portance of given features for the upcoming classification. The computation of the 
F-measure differs from the one used in a synchronization (see Section 8.2.4); here, 
no window is used. 

8.4 Results 

This section reports the results of m R M R and classifications. We focus on identifying 
differences between Czech and non-Czech interpretations using string quartets of 
Czech composers and implementing a classifier that can successfully predict the 
binary classes on previously unseen data represented by test subsets. We did not 
use validation subsets as the number of items for both classes is usually low. 

8.4.1 First Scenario 

In this experiment, we use feature matrices based on the duration of all movements 
(Table 8.4). We used only those interpretations in which all four movements were 
well-synchronized with a reference recording (e.g. if movement 2 of one of the 
interpretations was discarded in a pre-processing step (see Section 8.2.3); we did 
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not use any of the performance's movements). This decreased the number of items 
within both classes. Table 8.7 shows the result of the m R M R method. It ranks the 
significance of features; e.g., in the case of Dvorak's String Quartet No. 12, a feature 
containing the most relevant information (rank 1), given proposed classes, is the 
duration of movement 2. 

Tab. 8.7: The relevance ranking of the movements as features used in the first 
scenario; each number represents a movement of given importance compared to 
other movements of the composition. 

composer Dvořák Janáček Smetana 
composition No.12 No.13 No. l No.2 No. l 
rank 1 2 4 4 3 1 
rank 2 4 2 3 4 2 
rank 3 1 3 2 1 3 
rank 4 3 1 1 2 4 

Table 8.8 shows the binary classification results. We report F-measure, precision, 
recall, and standard deviations of all metrics. In other scenarios, we show only the 
F-measure and its standard deviation. The prediction accuracy for Dvorak's string 
quartets is very low. With F-measures close to 0.50 and high deviations, it is very 
similar to random predictions. On the other hand, Janáček's String Quartet No. 2 
seems to be the opposite—the F-measure = 0.87 with a-p = 0.10. In this case, we 
can distinguish Czech and non-Czech interpretations with relatively high accuracy 
solely based on the duration of whole movements and their relationship. In the case 
of Smetana's String Quartet No. 1, F-measure = 0.70 with CTF = 0.15. 

Tab. 8.8: The F-measure, precision, recall, and corresponding standard deviations 
for the first scenario. 

composer composition F-measure precision recall 0~F dp O-R 

Dvořák No. 12 
No .13 

0.47 
0.48 

0.50 
0.48 

0.50 
0.52 

0.23 
0.25 

0.28 
0.30 

0.21 
0.24 

Janáček No. 1 
No. 2 

0.64 
0.87 

0.68 
0.89 

0.65 
0.87 

0.13 
0.10 

0.14 
0.09 

0.12 
0.10 

Smetana No. 1 0.70 0.75 0.72 0.15 0.16 0.14 

Figure 8.3 shows the statistics of the Czech and non-Czech classes for Janáček's 
String Quartet No. 2. To display the data distribution and statistical properties, 
we use boxplots—a box marks the second and third quartile; the whiskers are the 
first and the fourth quartile; a vertical line implies the median, and outliers are 
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presented as circles. The first movement of class 1 varies from 345 to roughly 360 s 
in contrast to class 0 with 320 to almost 340 s. The median of class 1 is, in this case, 
significantly higher, which is opposite to all other movements. The difference in the 
duration of the first movement is probably the main reason why the F-measure is 
high. 

m o v l mov2 mov3 mov4 m o v l mov2 mov3 mov4 

(a) The boxplot of class 1 (CZ). (b) The boxplot of class 0 (non-CZ). 

Fig. 8.3: The boxplots of the first scenario for Janáček's String Quartet No. 2 show 
both proposed classes' statistics and data distribution. 

8.4.2 Second Scenario 

In the second scenario, we construct feature matrices based on the duration of all 
sections (Table 4b) instead of movements, increasing the time resolution of features. 
Table 8.9 shows the application of the m R M R method, where the five most relevant 
sections are identified. The actual number of sections is shown in Table 8.2. For 
the sake of simplicity, we display only two compositions that achieved the highest 
accuracy in the classification task. 

Tab. 8.9: The relevance ranking of the sections as features used in the second sce­
nario; each number represents a section of given importance compared to other 
sections of the movement. 

composer Janáček Smet ana 
composition No.2 No. l 
movement movl mov2 mov3 mov4 movl mov2 mov3 mov4 
rank 1 9 3 5 14 9 3 9 4 
rank 2 12 14 11 9 1 12 4 16 
rank 3 14 1 14 15 11 9 6 3 
rank 4 7 4 4 19 4 4 1 18 
rank 5 17 8 15 17 6 7 7 1 
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Table 8.10 presents the classification results. Here, we report the F-measure 
and its standard deviation. The trend is similar to the first scenario but with 
higher accuracy in most cases. Dvorak's String Quartet No. 14 shows the worst 
results (F-measure = 0.31 to 0.59) but consists of the least number of interpretations 
available. The standard deviation <jp is high, overall. Janáček's String Quartet 
No. 2 (F-measure = 0.88 and ap = 0.09 for the second movement) and Smetana's 
String Quartet No. 1 (F-measure = 0.77 and ap = 0.11 for the first movement) 
provide interesting results. We now have information about the classification of 
each movement, which may show relationships within movements, e.g., overall, the 
second movement seems to provide a more accurate classification than the third 
movement. 

Tab. 8.10: The F-measure and its standard deviation for the second scenario; x 
represents data that were not available (see Table 8.2). 

F-measure op 
composer composition movl mov2 mov3 mov4 movl mov2 mov3 mov4 

Dvořák 
No. 12 
No. 13 
No. 14 

0.57 
0.61 
0.54 

0.69 
0.72 

X 

0.57 
0.70 
0.59 

0.69 
0.47 
0.31 

0.21 
0.20 
0.20 

0.15 
0.20 

X 

0.16 
0.24 
0.23 

0.16 
0.24 
0.21 

Janáček No. 1 
No. 2 

0.56 
0.84 

0.62 
0.88 

0.53 
0.77 

0.66 
0.85 

0.15 
0.12 

0.14 
0.09 

0.14 
0.12 

0.13 
0.12 

Smetana No. 1 0.77 0.74 0.69 0.69 0.11 0.15 0.16 0.15 

Figure 8.4 shows the statistics of the Czech and non-Czech classes for Janáček's 
String Quartet No. 2, movement 2. The rc-axis shows the first five sections chosen 
by the m R M R method. Here, we can notice more differences—the second and third 
quartiles of class 1 is below 20 s, while all data from class 0 are above 19.5 s. Section 
3 corresponds to measures 34-44 marked in the score as dolcissimo espressivo, i.e., 
as sweet as possible and expressive. Czech performers seem to play this section 
statistically at a faster pace. Section 14 also shows a similar trend. 

8.4.3 Third Scenario 

In the third scenario, we use feature matrices based on synchronized measure posi­
tions. First, we apply m R M R to select the ten most relevant measures that are then 
used as input for the Z / - S V C (see Table 8.12). With this information, we can iden­
tify measures according to which the Czech and non-Czech interpretations can be 
best distinguished. Increasing the time resolution of features (from movements and 
sections to measures) improved the recognition of interpretation differences between 
the proposed classes. 
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sec3 s e c l 4 

(a) The boxplot of class 1 (CZ). (b) The boxplot of class 0 (non-CZ). 

Fig. 8.4: The boxplots of the second scenario for Janáček's String Quartet No. 2, 
movement 2, show both proposed classes' statistics and data distribution. 

First, to create a baseline for the classifier, we select the binary labels randomly 
and use the proposed pipeline. Table 8.11 presents the results of the classification. 
Dvorak's String Quartet No. 13, movements 2, 3, and 4, show F-measure = 0.84, 
0.86, 0.83 with dp = 0.13, 0.15, and 0.15, respectively. Some compositions seem to be 
played differently enough that even two random classes are somewhat separable—all 
ensembles are, to some extent, distinct. We tried multiple randomly selected labels 
(different seeds) with similar results. We also tested the non-mRMR approach, 
where all measures are always used, but the classifier does not train, and the outputs 
are similar to random guesses. 

Tab. 8.11: The F-measure and its standard deviation for the third scenario using 
random binary labels; x represents data that were not available (see Table 8.2). 

F-measure OF 
composer composition movl mov2 mov3 mov4 movl mov2 mov3 mov4 

Dvořák 
No. 12 
No. 13 
No. 14 

0.71 
0.76 
0.36 

0.60 
0.84 

X 

0.66 
0.86 
0.83 

0.62 
0.83 
0.74 

0.12 
0.15 
0.20 

0.10 
0.13 

X 

0.09 
0.15 
0.16 

0.10 
0.15 
0.19 

Janáček No. 1 
No. 2 

0.76 
0.69 

0.68 
0.60 

0.68 
0.71 

0.67 
0.73 

0.09 
0.09 

0.10 
0.10 

0.10 
0.11 

0.11 
0.09 

Smetana No. 1 
No. 2 

0.70 
0.59 

0.68 
0.80 

0.39 
0.49 

0.66 
X 

0.10 
0.18 

0.36 
0.16 

0.31 
0.17 

0.34 
X 

Table 8.13 provides the results of classification. Each combination of composer, 
composition, and movement shows high accuracy (except Dvorak's String Quartet 
No. 14 and Smetana's String Quartet No. 2, where the standard deviation is up 
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Tab. 8.12: The relevance ranking of the measures as features used in the third 
scenario; each number represents the measure of given importance compared to 
other measures of the movement. 

csr Dvořák Janáček Smetana 

comp No. 13 No. 2 No. 1 

mov movl mov2 mov3 mov4 movl mov2 mov3 mov4 movl mov2 mov3 mov4 

rank 1 132 71 508 207 52 42 76 235 224 52 51 30 
rank 2 359 19 356 460 140 209 196 214 126 107 64 280 
rank 3 388 70 120 468 166 41 77 30 76 220 62 62 
rank 4 134 133 93 109 199 44 168 234 116 40 81 257 
rank 5 342 140 431 355 233 39 52 119 25 166 45 276 
rank 6 387 72 137 346 252 191 53 89 182 51 53 197 
rank 7 139 1 95 37 97 43 144 194 118 65 41 281 
rank 8 392 10 378 467 295 37 212 231 181 162 80 127 
rank 9 128 61 228 167 86 171 127 148 26 57 52 34 
rank 10 339 134 132 484 107 121 89 87 204 84 40 51 

to 0.30). The F-measure of Dvorak's String Quartet No. 13, movements three and 
four, is 0.99 with <jp = 0.05. Furthermore, in the case of Janáček's String Quartet 
No. 2, the F-measure = 0.96 with <jp = 0.06 and F-measure = 0.94 with <jp = 0.08 
for the first and third movement, respectively. 

Tab. 8.13: The F-measure and its standard deviation for the third scenario; x rep­
resents data that were not available (see Table 8.2). 

F-measure OF 
composer composition movl mov2 mov3 mov4 movl mov2 mov3 mov4 

Dvořák 
No. 12 
No. 13 
No. 14 

0.76 
0.87 
0.76 

0.78 
0.88 

X 

0.76 
0.99 
0.74 

0.81 
0.99 
0.77 

0.16 
0.14 
0.18 

0.14 
0.13 

x 

0.14 
0.05 
0.18 

0.12 
0.05 
0.21 

Janáček No. 1 
No. 2 

0.82 
0.96 

0.76 
0.91 

0.75 
0.94 

0.86 
0.88 

0.11 
0.06 

0.13 
0.09 

0.12 
0.08 

0.10 
0.10 

Smetana No. 1 
No. 2 

0.84 
0.70 

0.90 
0.88 

0.82 
0.86 

0.89 
X 

0.09 
0.30 

0.10 
0.18 

0.13 
0.21 

0.10 
X 

When we increase the time resolution of features to individual measures, the 
difference between classes also increases. Figure 8.5 shows the statistics of the 
last scenario, Dvorak's String Quartet No. 13, movement 3. Results indicate that, 
on average, Czech performers play these measures at a lower tempo. Measures 
are around one second long, yet there are differences up to one second between 
interpretations. Interestingly, if we calculate the duration of measure 508, we can 
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guess (e.g., more than 0.8 s) the Czech performers with relatively high accuracy. 
When all five proposed measures are combined, we can achieve up to 99% accuracy 
with a machine learning classifier (Table 8.13). 
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(a) The boxplot of class 1 (CZ). 

> 

o 
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0 
meas508 meas356 meas!20 meas93 meas431 

(b) The boxplot of class 0 (non-CZ). 

Fig. 8.5: The boxplots of the third scenario for Dvorak's String Quartet No. 13, 
movement 3, show both proposed classes' statistics and data distribution. 

8.5 Discussion 

This study aims to train a machine learning classifier that predicts the performer's 
origin (Czech and non-Czech classes) of any interpretation given well-known string 
quartets of Czech composers. We propose feature matrices based on duration in­
formation, ignoring dynamics or timbre parameters as the acoustics, recording en­
vironment and equipment, instruments, and post-processing may make the input 
features of classification unreliable. Contrary to [144], we use only suitable timing 
information. 

A l l features might describe specific qualities of a given performance, but in this 
paper, we choose only robust timing information for the origin classification. The 
duration of small time segments (such as measures) provides information about 
musical expressiveness and interpretive differences. If we choose larger segments, 
such as the duration of whole movements or sections composed of many measures, 
the significant differences and the accuracy of the potential classification decrease 
(compare Table 8.13 with Table 8.8 or 8.10). The exception is Janáček's String 
Quartet No. 2, where we achieved F-measure = 0.87. Converting the duration to 
tempo values does not affect the classifier; it might only serve as a more intuitive 
visualization. We chose measures for a few reasons: firstly, measures are well-defined 
by the corresponding score; secondly, they are easier to annotate manually than, e.g., 
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beats; and thirdly, they can be used to segment recordings to sections or other logical 
structures (while ignoring the metrical structure of a given composition). 

In Section 8.2.4, we show that automated downbeat tracking systems are not 
yet efficient for expressive string quartet music. Thus, the synchronization strategy 
(with available manual annotation) remains preferable. Feature selection explained 
in Section 8.3.2 helped the chosen classifier achieve higher accuracy while ranking 
the importance of features for a given task. This information can be further used 
for music analysis and a detailed comparison of differences. Using general structures 
such as measures has one more advantage—it allows us to generalize the classification 
pipeline to arbitrary music compositions, instruments, and genres. 

The limitation of this study is the number of interpretations for given compo­
sitions. We have collected a large dataset of string quartet recordings, but only 
a portion of them was used (see Section 8.2.3) due to the different music structures. 
To balance the data, we stratify the training and test subsets in each classification 
run so there is always the same number of items in both classes. Considering compo­
sitions such as Janáček's String Quartet No. 2, Dvorak's String Quartet No. 13, or 
Smetana's String Quartet No. 1, the classifier provides promising results, confirming 
the original idea that proposed classes (Czech and non-Czech interpretations) are 
distinguishable (see Table 8.13). However, if we use random labels, binary classifi­
cation based on the duration of specific measures (given by the composition and all 
available interpretations) already provides relatively high accuracy in some cases. 
This is expected, as the m R M R method chooses ten relevant features that distin­
guish these classes the most. If we do not implement a feature selection method, 
the classifier cannot be trained using the proposed strategy. When we use the CZ 
and non-CZ labels, the classification accuracy increases overall. 

This study shows that origin-based differences in interpretations exist and are 
measurable. However, the proposed machine learning pipeline cannot be universally 
used—the reference measure positions are always needed for at least one recording 
of a given composition, and we train and test the classifier for each composition 
separately. So far, we cannot classify the origin of arbitrary recording without prior 
knowledge of the piece and other interpretations. In the future, we would like to test 
the strategy on string quartets from, e.g., Joseph Hayden or Ludwig van Beethoven 
with Austrian/German labels and provide a more detailed analysis of interpretation 
differences. 
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8.6 Conclusions 

In this paper, we investigated the possibilities of string quartet interpretation clas­
sification based on performers' origin. We collected a large dataset of string quar­
tets from Czech composers Dvořák, Janáček, and Smetana. We manually annotated 
ground-truth measure positions of reference recordings and applied a method of time 
alignment to transfer measure positions to all target recordings. Furthermore, we 
used measures to segment recordings into separate sections and split our experiments 
into three scenarios, each specified by different features. We trained and tested a ma­
chine learning classifier to distinguish Czech and non-Czech interpretations of string 
quartet pieces. We showed that it is possible to train such a classifier. The classifier 
achieved poor results when feature matrices contained the duration of whole move­
ments, except for Janáček's String Quartet No. 2 with F-measure = 0.87. Increasing 
the time resolution of features, from movements to sections and measures, improved 
the prediction accuracy. For the third scenario, where measure positions were used, 
we achieved F-measure = 0.99 for Dvorak's String Quartet No. 13, movements 3 
and 4, and up to 0.96 in the case of Janáček's String Quartet No. 2. Using pro­
posed labels, the accuracy increased compared to the baseline with random labels, 
which already provided relatively high accuracy. It seems that interpretation-based 
differences are already distinguishable, in some cases, even in random subsets. In 
the future, we will experiment with other string quartet composers, use more labels, 
and further describe and explain the interpretation differences. We plan to experi­
ment even with finer time resolution, such as beats, to train classifiers and identify 
differences in various interpretations. 
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9 Application of MIR Methods for Compar­
ative MPA 

This chapter is based on the conference article "Application of Computational Meth­
ods for Comparative Music Analysis" [6]. 

Music Performance Analysis can thrive from computational methods of Music 
Information Retrieval. Besides extracting and analyzing symbolic music data, per­
formance analysis also focuses on retrieving performance parameters from digital 
audio recordings. On the other hand, the aim of the comparative performance anal­
ysis is often qualitative and stands on our perception and musical principles. In this 
paper, we utilize feature extraction strategies and comparative analysis, leveraging 
computational methods while focusing on the goals of musicology. We aim to pro­
vide insight into music performance data for subsequent case studies. As the main 
contribution of this paper, we present a specific combination of extraction methods 
for performance music analysis on the application level. Furthermore, we demon­
strate an early version of open-source software that deploys the proposed strategy 
in a user-friendly web-based environment. 

9.1 Introduction 

In Music Information Retrieval (MIR), the researchers deal with many music-oriented 
challenges using methods from signal processing to machine learning and statis­
tics [165, 128]. They focus on tasks such as low- and high-level feature detection, 
symbolic data representations, music recommendation, content-based search, auto­
matic tagging, transcription, instrument separation, and many more [32, 30]. On the 
other hand, Music Performance Analysis (MPA) has traditionally been a peripheral 
topic for the MIR community [24]. Furthermore, the comparative part of M P A aims 
at multiple music interpretations, performances, or versions (in this paper, we use 
all three terms interchangeably) and compare their differences [146]. The research 
in computational musicology, which combines both fields, is usually performed on 
symbolic music representations such as music notation or midi data [166, 167]. How­
ever, we focus on audio data without symbolic transcriptions as this format is the 
most common (including studio and live versions). 

The performance is essential in how listeners perceive a piece of music. One can 
analyze dynamics, tempo, and expressive performances on a macro scale (whole com­
positions) or a micro level (segments, motifs, or measures) using manual annotation 
or some form of feature extraction [146]. However, a combination on the application 
level, where the MIR-oriented feature extraction supplements the qualitative case 
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studies, is relatively rare. The well-known examples are Mazurka project [124] or 
Sonic Visualiser software [108]. 

input of the analysis 

audio/composition selection selection of the reference 
recording 

audio recordings 
(different versions) 

output of the analysis 

sections of interest 

GT measures of the 
reference recording 

audio-to-audio 
synchronization 

measure transfer; 
data matrices 

visualization 

parameter extraction 

overall structure 

binary labels 

> 

f \ 

Maximum Relevance 
method 

c \ 

measures sorted based on 
relevance 

I 

A 

Fig. 9.1: Pipeline of the proposed approach to obtain hints for the M P A studies 
based on the quantitative music analysis. Green boxes indicate input data (audio 
files, e.g., .wav and text files, e.g., .csv), blue boxes input choices, yellow boxes data 
processing, and the red box the desired output. 

In this paper, we utilize MIR audio feature extraction and time-alignment meth­
ods to provide information for subsequent comparative M P A research. As the main 
contribution, we utilize a strategy to obtain meaningful cues to statistical differences 
between interpretations of the same musical piece. We first extract performance pa­
rameters, deploy a feature selection method used in machine learning, and apply it 
in a music analysis scenario. The proposed strategy produces specific cues about in­
terpretations and provides insights for subsequent case studies. Finally, we present 
an early version of open-source software1 that utilizes the proposed strategy and 
allows users to analyze multiple versions of the same piece, including MPA-related 
playback, ranking of feature relevance, and visualization. Similar synchronization 
features (score-to-audio), but with no MPA-driven functions, can be found in the 
Interpretation switcher [126] or Sync Player [168]. However, both are not publicly 
available. Furthermore, we refer to [169] for more information about similar inter­
faces. 

The rest of the paper is organized as follows. Section 9.2 introduces audio-to-
audio chroma synchronization, combined synchronization approach, and measure 

lrThe software will be available at https://github.com/stepaLnmk/memovision (accessed on 
7 July 2023) 
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transfer to obtain measure durations and detect different music structures. Sec­
tion 9.3 describes the feature selection method and relevance rating. Section 9.4 
shows the first snippets from our future software and a possible way of future de­
velopment, followed by a discussion in Section 9.5 and conclusions in Section 9.6. 

9.2 Extraction Pipeline 

In a music performance analysis scenario, one could, for example, focus on the 
analysis of interpretation differences between Chopin Nocturnes given specific labels, 
such as the year of recording. The goal of the research may be: In which parts of 
the piece and how do the performers differ the most before and after 1970? 

Typically, a musicologist would listen to the recordings, retrieve meaningful infor­
mation (dynamics, timing, tempo, pitch deviations, etc.) from the selected sections 
(e.g., motifs or logical segments) and visualize the parameters of recordings based 
on the proposed labels. However, finding the areas with the highest parameter 
variance in a large-scale dataset by comparing the parameters of whole recordings 
may be tedious. Moreover, one needs to have information about segments, such as 
measures, to split the parameters accordingly because each interpretation usually 
varies in a local tempo and, therefore, in the timing of musical events. In this paper, 
we utilize a strategy to overcome the time-consuming and mostly manual approach 
and provide cues or highlight the sections of interest for the possible qualitative 
case studies. The strategy is shown in Figure 9.1 and is described in the following 
sections. 

9.2.1 Chroma Synchronization 

We deal with multiple versions of the same composition and, therefore, leverage 
a synchronization method, a well-known approach in MIR [129, 170]. Compared 
to other studies with score-to-audio synchronization, we do not use symbolic MIDI 
data—we utilize an audio-to-audio strategy. This design choice was inspired by our 
previous experiments with a combined synchronization approach (see Section 9.2.2). 

First, we focus on obtaining measure positions for all composition recordings. 
Measures are essential segments of each piece. They are used in MIR and M P A for 
many tasks, such as cross-version analysis [171] or segmentation [172]. Instead of 
annotating each recording manually or automatically via a downbeat detector, we 
use the time alignment of one reference and all target recordings following the Sync 
toolbox pipeline [56]. It consists of modified chroma vectors [130], the estimation 
of tuning to shift the chroma features so that they match the same pitch classes, 
and the memory-restricted multiscale D T W algorithm (MrMsDTW) [45] to find the 
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optimal time alignment between a reference chroma X = (x\,..., XN) and a target 
chroma Y = (yi,... , T/M)- Tuning estimation compensates for pitch deviation of 
older recordings or different tuning of instruments and increases the synchronization 
accuracy. The M r M s D T W method is faster compared to the standard D T W and 
produces an optimal warping path from cost matrix CCH(n,m) = c(xn,ym) of size 
N x M, where c defines a local cost measure, n G { 1 , . . . , TV}, and m 6 { 1 , . . . , M}. 
The warping path is then saved as in a binary .npy file for further processing. 

Unlike the basic approach where annotations are created manually (as in Sonic 
Visualiser), we can use the underlying music structure (which should always be the 
same in our scenario) to obtain measure positions semi-automatically. If we use 
a score-to-audio strategy, we would need transcribed MIDI files instead of measure 
annotations, which may be a more time-consuming task for non-piano music. 

Any time-related annotations (beats, measures, motifs, regions) can be obtained 
if reference and target recordings follow the same harmonic structure. However, the 
chroma synchronization method may struggle in sections where the harmonic infor­
mation of an audio segment is homogeneous (see [154] or [14] for more details). For 
example, let us have sustained piano tones with no harmonic and melodic changes 
over two measures. There are no temporal or harmonic cues to detect the start 
position of the second measure because the cost matrix values in this section are 
similar. To overcome this problem and to make the method more robust, we use 
a combined synchronization approach. 

9.2.2 Combined Approach 

Authors in [154] proposed decaying locally adaptive normalized chroma-based onset 
features (DLNCO) and combined them with a chroma cost matrix C C H to increase 
the synchronization accuracy. This method works well with piano music containing 
strong transients at the attack phase of individual tones. However, we exploit the 
beat activation function from a neural network model to provide temporal clues. In 
recent work [14], the beat activation function combined with chroma features in­
creased the accuracy of measure transfer in the case of more complex string quartet 
music. We build on this idea and use a simplified version of the state-of-the-art beat 
detection system based on a temporal convolutional network (TCN) [110, 114]. We 
trained a new model with nonstandard parameters—temporal resolution of 50 fps in­
stead of 100 fps; time-frequency transformation is performed on 22 050 Hz recordings 
instead of 44 100 Hz unlike in, e.g., madmom module [82]—to match the synchroniza­
tion pipeline without any further resampling of input audio recordings or chroma 
features. We use the combined cost matrix CCH+B consisting of equally weighted 
chroma cost matrix C C H with cosine distance and the beat cost matrix C B computed 

133 



using the beat activation function (a function corresponding to the probability of 
beat events that yields values between 0 and 1) with Euclidean distance: 

We refer to our previous study [5] for more information on the T C N model descrip­
tion, to [117] for information about deep learning-based beat tracking, and to [154] 
and [14] for combined synchronization approach. 

9.2.3 Structural Differences 

Finally, we check the slope of the resulting warping path and compare it to the 
threshold. The value of the threshold is set experimentally. If the slope is too steep 
or flat, we can exclude the recording or its part from the analysis. This happens when 
there is an additional repetition or a missing section in the recording. Some studies 
deal with similar problems introducing matching technique [173], jump D T W [174], 
or Hierarchical D T W [175]. We build on a more straightforward approach without 
directly modifying core functions or a warping path of the M r M s D T W algorithm. 
As the last step, we transfer manually annotated measures of a reference recording 
to all other interpretations using linear interpolation. We end up with measure 
positions for all recordings and can segment each performance accordingly. 

We can use any number of target recordings and rely only on one set of annota­
tions, thanks to the synchronization procedure. Theoretically, we could skip the 
synchronization part by utilizing a downbeat tracking system, but it generally does 
not achieve satisfactory results yet [110]. Following the strategy in [11], we compute 
a data matrix that contains measure durations expressed in seconds. The rows cor­
respond to versions of a given composition, and the columns correspond to measure 
indices. We can label each recording to create binary classes based on the goal of 
analysis—for example, a label based on the year of recording (before 2000 vs after 
2000), the origin of performers (or from different musical backgrounds and cultures), 
or simply the interpretation of one performer vs the others. The selection of a binary 
label is essential for the next phase of this pipeline. 

Our final goal is to estimate the relevance of each measure regarding the proposed 
labels. To rank the relevance of measures and differentiate between labels, we use 
the Max-Relevance (MR) method. This algorithm efficiently ranks the relevance 
of features. It searches for features satisfying the maximal relevance criterion (9.2), 

C CH+B — 0 . 5 - C C H + 0 .5-C 

9.3 Feature Selection 
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which approximates maximum dependency D(S, c) with the mean value of all mutual 
information I values between individual feature Xi and class c [157]: 

max.D(S,c), D = —- J2 Hxi, c)-
1̂1 Xi€S 

(9.2) 

We use implementation of the Min-Redundancy Max-Relevance (mRMR) method2 

with a focus on the relevance only. The minimum redundancy criterion is essential 
when the features are further used, e.g., for a machine learning classifier [158]. How­
ever, unlike in our previous study with a binary classification of string quartets [11], 
we use only the relevance criterion and discard the redundancy computation. In the 
case of obtaining the most significant features to distinguish between two classes, re­
dundancy would be counterproductive as it may remove measures that are correlated 
with previously selected ones but are still highly relevant. Following this approach, 
we compute the relevance of each measure regarding the difference between given 
labels and sort them in descending order. 

Interpretation player 
Measure: 100 Relevance: 1.00 

i l í I i ill I ill ifli I ill I M I M l I iliff î ^Wili ifli^MiT^^rffi! 
) |100 1120 |140 

I 02:4 & aj:4̂  ^50 '02:|2*" 02:S'| *" 0| 

NMTňCR00025. 

NMTACR00O27. 

Fig. 9.2: Interpretation player - navigation, playback, measure visualization, and 
relevance of measures. The blue lines indicate measures. The red lines show the 
current position within a given recording. 

9.4 Software 

We work on software (web-based interface; JavaScript frontend with Python back-
end) for music analysis that utilizes the proposed strategy in a user-friendly and 
easy-to-use environment. We plan to make the software open-source and available 
online at the beginning of January 2024. Thanks to the Python language, it is easier 

2see https://github.com/smazzanti/mrmr (accessed on 7 July 2023) 
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to follow state-of-the-art methods and add new features in the future. For compar­
ison, Sonic Visualiser uses outdated Vamp plugins that are, to our knowledge, no 
longer actively developed. 

Region selection 

SelQctQd referencQ: NMTACR00C22-09-UC 

Fig. 9.3: Region selector - playback, sonification, and region selection based on 
reference measures. 

9.4.1 Demonstration 

In this section, we would like to demonstrate the first outputs of the software. Users 
can upload recordings and measure annotations, select the reference recording, and 
start the extraction process. By default, the reference recording belongs to one class 
(label) and the rest to the second. A user can listen to the reference recording, 
sonify measure positions with a click, and create a region of interest based on the 
time or measures (see Figure 9.3). Then, it is possible to switch to the interpretation 
player tab (Figure 9.2). One can see the current time position of other recordings 
(vertical red lines) while listening to one selected recording, display the regions and 
individual measures and play them in the loop, switch between recordings, and 
display the results of the M R method. Finally, at the top, there is a color map 
indicating the relative relevance of each measure throughout the composition to 
spot the more relevant (and potentially interesting) sections. However, this applies 
only to the differences between selected binary labels (e.g., one interpretation vs. 
the rest). 

9.4.2 Future Development 

We can use the transferred measure positions to interpolate parameters and trans­
form the time axis into the measure axis, which is more convenient for performance 
analysis. Instead of physical time, we use a relative axis and directly compare any 
sections of interpretations. The example of relative dynamics is shown in Figure 9.4. 
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In this case, the loudness is based on pyloudnorm module [176] and resampled to 
20 values per measure. It is computed on normalized recordings via FFmpeg and 
E B U R128 recommendation. A parameter derived directly from the synchroniza­
tion process is the duration or tempo of each measure (Figure 9.5). We plan to 
make such visualizations in the software possible with any measure range of a given 
composition. The user can limit the :r-axis, analyze and compare the parameters of 
selected sections, or play the interpretations while following parameter progression. 

1 2 3 4 5 6 7 8 9 10 
measures 

Fig. 9.4: Resampled loudness for the first nine measures of three example versions 
of the piano piece 'Little Onion' from Bedřich Smetana. 

9.5 Discussion 

If we follow the proposed strategy, we can obtain relatively precise measure positions 
for all interpretations. However, we need ground-truth measures for at least one 
performance. Transferring measures using conventional D T W alignment is known 
to the M P A community, but we incorporate temporal cues based on the T C N beat 
tracker to improve the measure-level synchronization. Furthermore, we address 
the problem of finding the most different measures or sections of compositions by 
applying a feature selection method on the duration of individual measures with 
given binary labels. 

As the development of downbeat tracking systems continues, in the future, we 
may be able to skip the synchronization part altogether and obtain robust downbeat 
estimates automatically. In the performance analysis scenario, the number of all 
interpretations in the dataset increases the computational time of analysis. However, 
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1 2 3 4 5 6 7 8 9 10 
measures 

Fig. 9.5: Tempo of the first nine measures (three beats per measure) of three example 
versions of the piano piece 'Little Onion' from Bedřich Smetana. Lines between 
values are indicative—they connect the consecutive points directly and do not reflect 
the tempo deviations inside measures. 

the dataset size is easily scalable and theoretically unlimited compared to a time-
consuming and tedious manual approach to annotation. 

One could use the output and hints from this strategy to perform case studies 
on specific recordings with any labels. For example, the proposed functions of the 
software could first indicate the relevant sections of the composition based on the 
predefined label. The user could then analyze the chosen sections by ear, compare 
extracted parameters, or use multiple visualization options. Furthermore, the soft­
ware could output the data for each recording in IEEE 1599 format if required by 
musicologists. We followed a similar pipeline (without the web-based implemen­
tation and combined approach to synchronization) already in our pilot study on 
string quartets [11] from A . Dvořák, B. Smetana, and L. Janáček, where we trained 
a //-support vector machine classifier on the output of the m R M R method. 

The main limitation is the selected feature—duration of measures. Although 
measures are useful in many tasks, the only 'difference' between performances we 
compare using the M R method is the timing of measures. Other parameters utilize 
measure durations for their segmentation and visual comparison but not for rele­
vance ranking. This may be impractical in many scenarios, as the interpretation 
has many more qualities and possible deviations, such as inter-beat and inter-onset 
timing, local tuning estimation, dynamics, or other parameters of expressivity that 
we do not include in a proposed data matrix. However, we plan to build on this 
pipeline and incorporate different time-related parameters, dynamics, or spectral 
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properties into the data matrix and feature selection method to have more options 
for comparing interpretations and ranking the feature relevance. 

9.6 Conclusion 

In this paper, we proposed the extraction pipeline for quantitative music analysis. 
We utilized semi-automated synchronization, beat tracking, and a feature selection 
method to provide meaningful information about the differences between interpreta­
tions of the same musical piece. We build on the performance analysis scenario and 
speed up the tedious manual annotation or listening process of finding the interpreta­
tion deviations. However, the strategy still relies on one set of ground-truth measure 
positions. It is possible to sort measures or sections with the highest discriminatory 
power concerning the selected binary labels. For example, one can discover where 
a specific performance differs the most or where one group of performances (e.g., 
more interpretations of the same performer) differs from the second group. The 
strategy is highly variable, and the settings, such as the labels of the recordings, 
depend on the goal of the analysis. We hope the proposed pipeline will provide 
insight into comparative music performance analysis. We are working on software 
that utilizes this strategy in an easy-to-use and user-friendly environment to sim­
plify extracting time-related parameters and to provide hints or cues for subsequent 
qualitative case studies. 

9.7 Further Notes 

The software is also described in the published methodology [16], including a case 
study on piano recordings from Bedřich Smetana and string quartets from Antonín 
Dvořák. To show more functions of this tool, we provide a brief demonstration in 
Appendix D. 
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Summary and Future Prospects 
In this thesis, I helped to develop and present tools and computational resources for 
comparative music performance analysis. I utilized information retrieval methods 
to reflect the goals of musically-driven performance analysis and experimented with 
various string quartet and piano music datasets. 

In Part I, I used several audio degradations to evaluate the robustness of onset 
detectors (Chapter 2) and reported differences between conventional and ML-based 
approaches when applying impulse response degradations, lossy compressions, or 
T K E O . I further extended the idea behind intentional audio degradation by analyz­
ing the energy operator's influence in the beat tracking system pipeline (Chapter 3). 
I showed that reducing onset candidates may increase the tempo estimation accu­
racy, which is useful for MPA-related automated systems. Next, I trained multiple 
T C N beat tracking models (Chapter 4) on various sampling rates to provide insight 
into the training process and discussed the advantages and limitations of input rate 
reduction for further applications. I reported the results and shared all models on­
line [18]. One of the models was later used in the synchronization pipeline of our soft­
ware Memo Vision [6, 7, 21], providing a computational improvement over standard 
models thanks to its modified sampling rate and temporal resolution. I also tackled 
the problems of annotation-related beat tracking evaluation (Chapter 5). Further­
more, I evaluated user-driven metrics for automated beat and downbeat detectors 
and semi-automated synchronization strategy in the case of complex string quartet 
music (Chapter 6). These studies have set the foundation and provided an evaluation 
of available methods for the analysis of performance differences [10, 11, 6, 7]. 

In Part II, I addressed the extraction of performance data from a dataset of 
string quartet recordings (Chapter 7). Based on the modified feature matrices that 
represent individual performance data while providing data unification, I trained 
a machine learning classifier to differentiate between Czech and non-Czech perfor­
mances in the large corpora of string quartets from Anotnín Dvořák, Leoš Janáček, 
and Bedřich Smetana (Chapter 8). I used an extraction pipeline and feature selec­
tion methods to retrieve significant performance parameters for any selected groups 
of interpretations. We designed three scenarios with different settings and demon­
strated the importance of higher temporal resolution when analyzing the expressivity 
of performances. Furthermore, I helped to develop the Memo Vision software, which 
utilizes parameter extraction, modified synchronization, feature selection, and visu­
alization in a user-friendly and easy-to-use web environment (Chapter 9). I report 
additional M P A experiments and present the user interface of Memo Vision software 
in Appendix D. 
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The main goal of this thesis was to utilize computational methods of music 
processing and MIR to analyze and compare differences between various interpre­
tations of the same musical piece. This was achieved by first evaluating various 
automatic MIR tasks, such as onset, beat, and downbeat detection under specific 
conditions, such as degradations, that may be present in M P A datasets. Some 
degradations may lead to higher detection accuracy while extending other limita­
tions of automated methods. The results of experiments and evaluations support 
a semi-automated approach in the case of M P A case studies instead of fully auto­
mated detectors. Based on these conclusions, I derived a modified synchronization 
approach and combined it with parameter extraction and feature selection methods. 
Furthermore, I presented two large and unique datasets of string quartet and piano 
music by Czech composers. I built on MIR methods, utilized them in comparative 
music analysis scenarios, and helped implement a software that provides our findings 
to musicologists and researchers in an easy-to-use environment. 

In the future, automatic detectors may fully cover the needs of computational 
musicology and music performance analysis fields. They have not yet achieved the 
desired accuracy; the semi-automated approach based on music synchronization 
is still preferable. However, despite its advantages, it is not often used in M P A 
studies. Most of the recording annotation for M P A has been derived manually, 
even though less time-consuming and tedious options may exist. The final goal of 
this research was to bring the gap between MIR and M P A a little closer by openly 
sharing and demonstrating the advantages of computational methods in the field of 
music analysis. 
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A Audio Degradation for Onset Detection 
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Fig. A . l : Box plot with F-score values (50 ms window) for all degradations; all 
detectors averaged. 
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Fig. A.2: Box plot showing the F-score values (100 ms window) for all degradations; 
all detectors averaged. 
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Tab. A . l : The F-score for all categories, degradations, and systems; 50 ms window. 

detector cat rBcast SPPb SPRec 64kb 320kb T K E O wav 

BS 0.727 0.731 0.583 0.686 0.689 0.607 0.689 
C M 0.799 0.780 0.730 0.799 0.802 0.752 0.802 

C F 
N P P 0.915 0.952 0.877 0.952 0.954 0.937 0.954 

C F P P 0.843 0.854 0.809 0.861 0.859 0.859 0.859 
vocal 0.568 0.560 0.427 0.568 0.570 0.399 0.570 
WI 0.710 0.727 0.642 0.757 0.766 0.638 0.768 

BS 0.597 0.626 0.564 0.646 0.648 0.573 0.648 
C M 0.551 0.764 0.710 0.773 0.777 0.746 0.777 

Lib 
N P P 0.884 0.964 0.915 0.962 0.960 0.970 0.960 

Lib P P 0.841 0.830 0.820 0.846 0.845 0.845 0.845 
vocal 0.525 0.414 0.358 0.433 0.417 0.356 0.416 
WI 0.612 0.595 0.543 0.595 0.602 0.597 0.601 

BS 0.803 0.743 0.677 0.765 0.806 0.643 0.807 
C M 0.869 0.781 0.793 0.866 0.879 0.736 0.879 

C N N 
N P P 0.970 0.976 0.952 0.987 0.990 0.920 0.990 

C N N P P 0.911 0.894 0.891 0.929 0.937 0.886 0.937 
vocal 0.714 0.566 0.468 0.638 0.739 0.399 0.740 
WI 0.841 0.738 0.742 0.841 0.871 0.745 0.870 

BS 0.641 0.377 0.514 0.554 0.573 0.481 0.573 
C M 0.763 0.492 0.690 0.751 0.756 0.631 0.756 

R N N 
N P P 0.943 0.895 0.920 0.962 0.963 0.895 0.963 

R N N P P 0.869 0.812 0.843 0.872 0.874 0.815 0.874 
vocal 0.521 0.211 0.380 0.330 0.331 0.168 0.331 
WI 0.533 0.450 0.643 0.630 0.653 0.586 0.653 

BS 0.708 0.704 0.553 0.695 0.696 0.517 0.695 
C M 0.845 0.830 0.753 0.844 0.846 0.767 0.846 

SF 
N P P 0.910 0.942 0.946 0.944 0.942 0.931 0.942 

SF P P 0.845 0.852 0.819 0.876 0.873 0.832 0.873 
vocal 0.568 0.605 0.389 0.584 0.583 0.389 0.583 
WI 0.662 0.657 0.585 0.660 0.657 0.577 0.657 
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Tab. A.2: The F-score for all categories, degradations, and systems; 100 ms window. 

sys cat rBcast SPPb SPRec 64kb 320kb T K E O wav 

BS 0.757 0.761 0.637 0.698 0.703 0.647 0.704 
C M 0.817 0.794 0.771 0.812 0.816 0.773 0.816 

C F 
N P P 0.918 0.953 0.880 0.953 0.956 0.937 0.956 

C F P P 0.849 0.860 0.818 0.865 0.864 0.867 0.864 
vocal 0.585 0.580 0.471 0.593 0.590 0.447 0.590 
WI 0.735 0.753 0.687 0.786 0.790 0.669 0.792 

BS 0.608 0.641 0.595 0.673 0.665 0.621 0.664 
C M 0.556 0.778 0.734 0.783 0.787 0.763 0.787 

Lib 
N P P 0.884 0.964 0.917 0.963 0.961 0.971 0.961 

Lib P P 0.844 0.834 0.824 0.848 0.847 0.852 0.847 
vocal 0.556 0.434 0.384 0.458 0.444 0.399 0.443 
WI 0.636 0.618 0.578 0.608 0.620 0.622 0.619 

BS 0.812 0.745 0.704 0.765 0.806 0.680 0.808 
C M 0.874 0.785 0.810 0.869 0.882 0.751 0.881 

C N N 
N P P 0.970 0.976 0.954 0.987 0.990 0.920 0.990 

C N N P P 0.913 0.895 0.895 0.931 0.938 0.893 0.938 
vocal 0.717 0.566 0.518 0.638 0.739 0.459 0.740 
WI 0.852 0.741 0.783 0.848 0.878 0.764 0.877 

BS 0.658 0.383 0.535 0.558 0.577 0.538 0.576 
C M 0.769 0.496 0.703 0.754 0.759 0.654 0.759 

R N N 
N P P 0.945 0.895 0.920 0.962 0.963 0.896 0.963 R N N P P 0.874 0.817 0.848 0.873 0.875 0.822 0.876 
vocal 0.533 0.218 0.425 0.330 0.334 0.253 0.334 
WI 0.716 0.466 0.680 0.644 0.664 0.619 0.664 

BS 0.732 0.724 0.596 0.703 0.706 0.548 0.705 
C M 0.857 0.844 0.787 0.853 0.856 0.792 0.856 

SF 
N P P 0.910 0.944 0.947 0.944 0.944 0.931 0.944 

SF P P 0.852 0.856 0.828 0.880 0.877 0.840 0.877 
vocal 0.587 0.635 0.426 0.591 0.603 0.416 0.603 
WI 0.687 0.691 0.633 0.689 0.684 0.595 0.684 
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MPA-oriented GT Computation 

Quartett "From my life" 
I. 

Allegro vivo appassionato 

Violino I 

Violino II 

Bedřich Smetana 
(1824-1884) 

i t » 

- i i >• 

r 

J JJ 
-> 3 

y S = 

i 7 j 1 J J 7 J l ^ J *' 

. B . l : The beginning of the first movement of Smetana's String Quartet No. 1. 
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Tab. B . l : The E A T of all motifs of the second database. 

Track Beg A B C D E 

CD01 
CD02 
CD03 
CD04 
CD05 
CD06 
CD07 
CD08 
CD09 
CD10 
CD11 
CD12 
CD13 
CD14 
CD15 
CD16 
CD17 
CD18 
CD19 
CD20 
CD21 
CD22 
CD23 
CD24 
CD25 
CD26 
CD27 
CD28 
CD29 
CD30 
CD31 
CD32 
CD33 

80.61 
77.80 
77.93 
80.48 
69.54 
72.74 
75.94 
69.69 
83.43 
82.92 
70.92 
82.35 
69.27 
81.28 
74.60 
79.06 
71.01 
72.79 
74.14 
77.35 
77.16 
73.36 
73.04 
78.50 
75.61 
83.75 
82.60 
72.92 
70.25 
68.26 
73.78 
83.58 
76.92 

69.37 
69.03 
73.19 
75.08 
66.78 
72.14 
65.71 
66.42 
72.48 
72.18 
63.49 
70.91 
61.71 
69.06 
68.23 
68.87 
58.38 
71.59 
73.17 
74.48 
71.72 
62.91 
65.89 
78.14 
72.73 
77.92 
76.43 
65.80 
63.09 
65.35 
71.06 
72.07 
63.24 

34.41 
44.14 
41.60 
48.98 
32.83 
42.29 
39.33 
34.47 
40.13 
40.70 
43.34 
48.36 
45.28 
46.33 
30.19 
39.59 
37.35 
51.06 
56.74 
51.75 
47.76 
42.74 
34.78 
58.36 
44.04 
46.27 
49.74 
48.48 
37.87 
38.17 
43.15 
40.00 
42.05 

88.56 
81.84 
87.09 
80.37 
80.31 
74.41 
83.06 
79.98 
83.70 
88.56 
73.65 
83.76 
79.08 
88.24 
85.12 
87.81 
75.82 
75.13 
80.47 
82.27 
82.49 
81.54 
80.50 
79.81 
80.70 
93.48 
83.26 
80.62 
74.09 
70.01 
79.71 
82.14 
74.62 

55.60 
59.52 
62.36 
69.14 
54.60 
61.98 
58.04 
53.66 
60.57 
61.31 
56.77 
63.02 
54.63 
61.20 
54.28 
59.46 
51.37 
64.15 
69.02 
68.16 
64.75 
55.77 
53.31 
70.06 
62.30 
66.58 
68.00 
62.24 
55.33 
56.31 
59.63 
60.55 
56.26 

74.50 
72.43 
79.14 
80.29 
71.15 
76.16 
78.17 
75.13 
72.67 
74.12 
67.07 
77.76 
70.93 
77.35 
69.92 
76.42 
68.52 
70.81 
73.39 
80.73 
73.03 
74.87 
77.35 
80.80 
73.63 
84.73 
76.29 
71.73 
58.12 
67.07 
75.56 
71.04 
68.31 

All values are in BPM. 
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Tab. B.2: Reference G T and computed GT of the reference database. 

Track No. Reference TS DS TS Dev. DS Dev. 
1 48.15 47.85 47.85 0.30 0.30 
2 66.99 73.83 73.83 6.84 6.84 
3 68.00 95.70 95.70 27.70 27.70 
4 60.41 48.75 68.00 11.66 7.59 
5 39.71 42.36 42.36 2.65 2.65 
6 62.76 47.85 47.85 14.91 14.91 
7 53.67 54.98 54.98 1.31 1.31 
8 136.05 136.00 143.55 0.05 7.50 
9 55.15 56.17 56.17 1.02 1.02 
10 75.86 80.75 78.30 4.89 2.44 
11 91.63 95.70 95.70 4.07 4.07 
12 87.27 86.13 184.57 1.14 97.30 
13 93.75 99.38 95.70 5.63 1.95 
14 75.38 86.13 89.10 10.75 13.72 
15 35.34 42.36 42.36 7.02 7.02 
16 70.01 66.26 66.26 3.75 3.75 
17 72.20 73.83 73.83 1.63 1.63 
18 82.87 89.10 117.45 6.23 34.58 
19 41.99 46.98 42.36 4.99 0.37 
20 80.65 99.38 123.05 18.73 42.40 
21 72.73 83.35 78.30 10.62 5.57 
22 35.09 44.55 63.02 9.46 27.93 
23 89.71 172.27 172.27 82.56 82.56 
24 51.81 51.68 51.68 0.13 0.13 
25 63.56 99.38 103.36 35.82 39.80 
26 117.46 129.20 129.20 11.74 11.74 
27 200.00 198.77 184.57 1.23 15.43 
28 116.73 117.45 61.52 0.72 55.21 
29 95.09 83.35 123.05 11.74 27.96 
30 63.36 63.02 63.02 0.34 0.34 

Average 76.78 83.75 88.97 9.99 18.19 

P-value 0.038 0.024 
TS—System with the TKEO; DS—Default system without the TKEO; Dev.— 
deviation from the reference global tempo; P—p-value for the i-Test (Paired Two 
Sample for Means), a = 0.05. Al l values are in B P M . 
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Tab. B.3: Differences between the estimated GT and the E A T for both systems. 

TS DS 

Track Beg A B C D E Beg A B C D E 

CD01 15.09 13.98 6.61 3.73 5.92 3.80 8.49 22.92 6.61 3.73 1.82 3.80 
CD02 14.49 0.81 6.53 1.51 6.74 3.57 14.49 9.27 2.84 1.51 3.50 1.40 
CD03 14.36 1.41 7.15 5.20 4.94 6.99 11.17 10.16 11.13 5.20 13.64 6.99 
CD04 0.27 0.92 34.37 0.38 17.16 3.06 0.27 3.22 31.77 0.38 9.16 3.06 
CD05 4.29 3.06 4.62 0.44 10.00 7.15 8.76 11.52 10.24 3.04 21.40 4.89 
CD06 3.26 6.16 8.38 1.59 4.28 4.59 3.26 6.16 5.56 1.59 14.02 4.59 
CD07 7.41 8.12 8.42 3.07 9.96 2.58 7.41 6.07 14.50 3.07 15.79 7.96 
CD08 11.06 9.58 7.21 3.37 10.94 5.62 11.06 9.58 6.55 0.77 10.94 5.62 
CD09 8.86 5.82 3.67 2.43 15.43 3.33 8.86 5.82 3.22 2.43 15.43 5.63 
CD10 12.78 6.12 15.47 0.54 12.52 4.18 9.37 3.82 10.98 0.54 3.89 6.63 
C D U 7.38 4.51 16.75 2.35 7.83 2.77 5.08 0.47 16.75 2.35 0.65 0.93 
CD12 1.00 6.31 7.81 3.01 3.24 2.99 1.00 7.39 5.47 0.41 1.58 5.59 
CD13 9.03 14.29 10.89 1.67 5.46 2.90 6.73 19.04 8.55 1.67 15.21 2.90 
CD14 11.01 11.69 8.65 0.86 8.64 3.40 11.01 6.94 8.65 4.05 0.32 8.78 
CD15 11.53 12.52 8.38 1.01 5.81 10.83 8.75 12.52 7.81 1.01 19.55 19.18 
CD16 13.23 7.13 12.09 1.29 10.38 2.59 13.23 9.43 5.74 1.29 8.54 1.88 
CD17 7.29 13.40 5.72 2.48 4.80 5.31 9.74 0.96 9.63 0.18 2.46 9.78 
CD18 5.51 6.71 10.46 0.87 1.13 21.48 3.21 6.71 0.62 0.87 4.06 0.97 
CD19 1.86 10.18 4.01 0.28 11.73 4.91 1.86 7.58 13.10 0.28 9.28 4.91 
CD20 3.40 8.87 0.98 1.08 3.56 0.02 3.40 6.27 0.98 1.08 0.16 11.56 
CD21 6.19 4.28 2.91 0.86 11.25 7.72 8.97 6.58 10.97 0.86 0.15 7.72 
CD22 7.39 3.35 11.09 1.81 14.07 11.26 12.77 1.69 9.99 1.81 5.75 3.43 
CD23 16.06 3.95 10.55 2.85 2.86 3.40 16.06 10.11 5.59 2.85 24.99 3.40 
CD24 0.20 5.21 1.73 0.94 10.69 8.30 2.25 2.61 0.37 0.94 10.69 2.55 
CD25 2.69 8.02 0.51 2.65 16.00 2.37 2.69 10.62 4.71 2.65 9.57 2.37 
CD26 8.54 6.14 11.15 2.22 16.77 7.56 5.35 6.14 11.15 2.22 14.17 4.37 
CD27 3.53 6.92 5.24 0.09 15.35 0.29 3.53 6.92 4.09 0.09 12.75 4.46 
CD28 5.38 10.20 2.19 2.73 7.60 9.02 0.91 1.20 3.20 2.73 7.60 11.62 
CD29 8.05 1.51 8.27 4.21 10.93 0.61 8.05 1.57 19.55 4.21 7.69 0.70 
CD30 7.74 2.33 7.16 0.17 2.48 22.03 0.26 5.26 6.38 2.01 9.95 6.76 
CD31 4.52 2.77 6.54 1.04 10.21 0.44 4.52 2.77 14.27 1.04 14.20 0.44 
CD32 12.12 3.93 3.07 1.21 13.28 2.79 12.12 8.68 6.98 1.21 15.45 7.26 
CD33 3.83 6.60 9.63 0.79 5.26 3.47 3.83 6.60 9.63 0.79 11.74 5.52 

Average 7.56 6.57 8.13 1.78 9.01 5.49 6.92 7.17 8.71 1.78 9.58 5.38 

Result 6.42 6.59 
All values are in BPM—Beats Per Minute. 
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Classification of Interpretation Differences 

Tab. C . l : Dvorak's subset. 

composer composition movement no of recs class 1 class 0 
movl 51 11 40 
mov2 73 18 55 

No. 12 mov3 72 17 55 
mov4 75 17 58 

£ 271 63 208 
movl 25 10 15 
mov2 25 10 15 

No. 13 mov3 22 8 14 
mov4 22 8 14 

£ 94 36 58 
movl 22 10 12 
mov2 7 2 5 

No. 14 mov3 23 10 13 
mov4 21 8 13 

£ 73 30 43 

Dvořák 

Tab. C.2: Janáček's subset. 

composer composition movement no of recs class 1 class 0 
movl 65 22 43 
mov2 66 22 44 

No. 1 mov3 66 22 44 
mov4 66 22 44 

£ 263 88 175 
movl 67 18 49 
mov2 66 19 47 

No. 2 mov3 60 20 40 
mov4 69 19 50 

£ 262 76 186 

Janáček 

Tab. C.3: Smetana's subset. 

composer composition movement no of recs class 1 class 0 
movl 60 27 33 
mov2 36 16 20 

No. 1 mov3 35 15 20 
mov4 33 16 17 

Smetana £ 164 74 90 Smetana 
movl 26 21 5 
mov2 26 21 5 

No. 2 mov3 26 21 5 
mov4 23 19 4 

£ 101 82 19 
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D Additional Experiments 
In this chapter, I summarize the previous work by presenting the utilization of 
proposed methods within the Memo Vision software we created in the project TA CR 
TL05000527, Memories of Sound. The software was presented at the International 
Symposium on the Internet of Sounds [6] and ISMIR conferences [7], respectively. 
Furthermore, we created a certified methodology called "The Methodology of Music 
Performance Analysis Using The Memo Vision Software" [16]. It aims to provide 
related M P A studies, explain the software's core functions, and demonstrate them 
on piano and string quartet recordings. In the following sections, I outline the 
connection of MIR methods with the goals of M P A using the software, which is also 
one of the main contributions to the MIR and M P A communities. I use the user 
interface and visualization features to present a small case study and the possibilities 
of data-driven semi-automated performance analysis. 

D.l Software 

This chapter provides a brief user-case study on piano recordings from the Czech 
composer Bedřich Smetana, Neighbor's Dance to demonstrate its functionalities. 
The software interface in [6] and [7] is slightly outdated compared to its current 
state (January 7, 2024). The following sections present options and possibilities for 
comparative performance analysis using Memo Vision software. Note that all figures 
come from the software as screenshots and lack vector graphics quality. 

D.2 Data Preparation 

The recordings and metadata for the TL05000527 project and this case study were 
obtained from a variety of sources [16]: 

• home funds of National Museum (NM), Prague, 
• digital archive of Supraphon a.s., 
• acquisition of original audio carriers (gramophone records, CDs), 
• private archives of collectors, 
• recordings in open-access music databases, 
• recordings available on streaming platforms. 

Then, a unique identifier was attached to a given audio carrier or digital recording. It 
combines an alphabetical and numerical description and provides information about 
the digitization carrier, digitization institution (or under which project the digitiza­
tion is taking place), what is the unique position of the given medium in a specific 
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record series, and what is the order of the recording within the medium/carriers. 
More information is provided in the corresponding methodology article [16] or in 
our previous methodology on digitizing the phonographic recordings that follows 
a similar strategy [12]. A total of 308 recordings of Smetana's "Czech Dances II" 
were obtained, with interpretations by Czech pianists predominating in the total 
corpus of data (218 in total). In this chapter, we use 17 recordings of the Neighbor's 
Dance composition. 

D.3 Data Upload and Cleaning 

After logging in and creating a session, one can first upload all files, select the ref­
erence recording (NMTACR00026-07-UC, Firkušný Rudolf, 1957) for the synchro­
nization process, and upload measure annotation (Figure D. l ) . Furthermore, one 
can assign a label to each recording to create various binary classes for further anal­
ysis. Here, I chose non-Czech - Czech (noncz_cz), male - female (male female), 
less than 1960 - more than 1960, year of recording ( i t 1960_mt 1960), and less than 
2000 - more than 2000 (lt2000_mt2000) groups or classes (Figure D.2). The binary 
label for a given class is shown in Figure D.3. 

Fig. D . l : The first module of the software; upload of recordings, metadata, and 
labels. 
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Label assignment 

ltl96Q_mtl960 

It2000_mt2000 

malejemale 

noncz_cz Jt[ 

Label A name Label B name Add new labels 

Fig. D.2: List of provided binary labels. 

Label assignment 

NMTACR00020 13 uc 

NMTACR00021- ia uc 

NMTACR00022 3 uc 

NMTACR00Ö25 ia uc 

NMTACR00Ö26 07 uc 

NMTACR00Ö27 ia uc 

NMTACR00Ö2B 13 uc 

NMTACR00029 13 uc 

NMTACR00Ö30 13 uc 

NMTACR000S5 ia uc 

NMTACR00056 13 uc 
NMTür:Rnnnfiq-n:vi jn I 

[ U1960 ) [ I111196P 

Fig. D.3: Assigning of binary labels; less or more than 1960 (year of recording). 

After the synchronization process, the software highlighted several recordings in 
which the synchronization might not have worked properly. After a manual check, 
I found out that one of the recordings (NMTACR00061-02-UC, Kindt Allen, 2001) 
does not follow the same structure, and discarded this recording from further visu­
alizations and analysis. Furthermore, to compute the measure-wise tempo, I added 
the time signature information for the whole composition—in this case \ on its whole 
duration (Figure D.4). 
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Fig. D.4: The reference recording in the second module of the software; adding time 
signatures. 

D.4 Relevance 

In the next module, Interpretation player, one can playback recordings or their 
sections, navigate using arbitrary measure ranges thanks to the time-aligned perfor­
mances, and compare differences. I can visualize regions in which the synchroniza­
tion might have been incorrect (Figure D.5), but in this case, the recordings followed 
the same harmonic and melodic structure and substantially varied in timing. 

ai^jjj.i'iinmn 1 
ifij ^^^^^^ 1 

= |! 
1 1 1 1 1 1 

ai^jjj.i'iinmn 1 
ifij ^^^^^^ 1 

= |! i i i i i i i 1 i 1 1 1 

— \i 
— \ * m „ 1 » „ . 11 ' i i ' f ; r ^ « f p = ; . . . . 

7=\\ 
i i i 

7=\\ .307 . 3 « . 3 » .3,0 .3 , , 

Fig. D.5: Highlighting of possibly different harmonic structures. 

By clicking on the Relevance button of each recording, I can compare the rel­
evance in duration of measures of individual performance against the rest of the 
dataset. Figure D.6 shows the most different measure (comparing the duration of 
measures) for the first recording of the dataset. The blue highlights measure 103. 
Note that all other presented performances play the same measure faster. The list 
of most relevant measures for this combination is shown in Figure D.7. 

; — | 

d 1 

; — | 
; — | 

r = | 

; — | 

r = | 02..1 02... ' ' 02..5 

Fig. D.6: Duration of measure 103 for 5 different performances. 
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Relevant measures 
Measure 103 | Relevance: 0.41 Absolute relevance: 10.45 

Measure 109 | Relevance: 0.35 Absolute relevarkce; 3,57 

Measure 19 | Relevance: 0.33 Absolute relevance: B,0B 

Measure 127 | Relevance: 0.32 Absolute relevance: 7,73 

Measure 108 | Relevance: 0.26 Absolute relevance: 6,16 

Measure 3 | Relevance: 0.26 Absolute relevance: 6,15 

Measure 119 | Relevance: 0,25 Absolute relevance: 5,74 

Measure 40 | Relevance: 0,25 Absolute relevance: 5.66 

Measure 44 | Relevance: 0,19 Absolute relevance: 4,30 

Measure 58 1 Relevance: 0,19 Absolute relevance: 4,29 

Fig. D.7: The descending list of the most relevant measures when comparing 
a recording from Jitka Cechová with the rest of the dataset. 

Figure D.8 shows the highest relevance measures when noncz cz labels were 
selected. The maximum relevance is around 0.35, indicating a difference. When I 
select l t l 9 6 0 mtl960 labels, I can see higher differences based on the brighter color 
of measures 138 and 139 (Figure D.9). 

Measure 151 , Rel. 0.35 
l'4C 

Fig. D.8: The relevance around measure 151 for noncz cz labels. 

Fig. D.9: The relevance around measures 138 and 139 for I t 1960_mt 1960 labels. 

Figure D.10 presents waveform visualizations from Interpretation player of mea­
sures 138-140 (blue highlight); recordings marked as red belong to the I t 1960 class 
and blue to the mtl960 class. 

2 Reekova.ver.. 1 

4$ Relevance 1 

r r : | 
04:11 04:12 04:13 4$ Relevance 1 

r r : | fff .", ' 1 • * " „ . f " " 1 1 , » P ' ~ — ' " „ ' , . , * * . , . 4 , — . J P - »3:40 

:~\ 1 1 1 1 :~\ 
ř " ' "T M T ' T T T 03:43 03:44 03:45 

^HOOT 1 : 3 ;; • •» m* — — • — - g y — — - — 1 — — 

Fig. D.10: The duration of measures 138 and 140 for It l960_mtl960 labels. 
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D.5 Visualization 

In the last module, one can visualize performance parameters and compare them. 
Figure D . l l shows waveforms, RMS, loudness, and beat tracking activation functions 
for the whole duration of two recordings from the dataset. 

i ' gjr ' g m JJltlW^'—— !r

 1 M'liK i i M i m m i l i < r^^m? ~- |JW— 
0 0.5 R M S 

Fig. D . l l : Waveforms, RMS, loudness, and beat tracking activation functions for 
two piano recordings. 

I can see the variations in dynamics, differences between RMS and loudness 
curves, and overall quality (its sharpness or bluntness) of beat activation functions. 
I can change the limits of the time axis, zoom into measures 138-140, and compare 
parameters, such as dynamics values, for individual performances (Figure D.12). 

One can visualize onset, beat, and downbeat activation functions from neural 
networks and compare them while playing back the audio. For instance, one may 
find relationships between acoustic parameters and the robustness of activation func­
tions (Figure D.13). Next, I can compare and analyze the loudness and tempo of 
individual performances, but instead of using the time axis, resampling all parame­
ters to the same measure axis. Figure D . l shows a comparison of three performances 
and Figure D.15 all available interpretations. 
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In the current version of the software, one can use a pre-trained chord recogni­
tion model to segment recordings based on the harmonic structure (Figure D.16). 
However, this feature is experimental, as the detection accuracy varies. 

Fig. D.12: Loudness curves for three performances. 

o 0.5 

04:28 04:30 04:32 04:34 04:36 04:38 04:40 04:42 04:44 04:46 04:48 04:50 ' l f f l ! * T r04pr 

0 0,5 Beattrackingact.fun. 

,'j»»»U» iter ».:;,'» k 

n—=—=—Z—=—-v — = — = — s f r ' » n ^ — ^ -
0 0.5 

Fig. D.13: Beat activation functions for three performances. 
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-80 0 Loudness (measure) 

V 
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Hi V 

SO 1 
20 20 

2 1 3 1 155 1 6 57 1 
Tern 
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>o (measure) 

0 1 1 It i4 1 5 

154 
• Cecriova,Jitka;200e 
• Rep kova, Vera; 1959 

41.93 BPM 
S3.09BPM 

• Leichner,Emll; 1994 40.60 BPM -
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Fig. D.14: Loudness and tempo for three performances. 

D 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 
2 0 200 Tempo (measure) 

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 

Fig. D.15: Loudness and tempo for all performances. 
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Fig. D.16: The RMS, beat tracking activation function, and chord detection. 

175 



Furthermore, I can compute the mean values of all parameters based on the 
labels/classes. Figure D.17 shows the mean of noncz cz labels and Figure D.18 
male female labels. Figure D.19 displays the whole recordings based on the mean 
of I t 1960 nit 1960 classes. 

Fig. D.19: Mean loudness and tempo for the whole recordings; l t l 9 6 0 mtl960 
labels. 
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Finally, Figures D.20 and D.21 show a scatter plot with noncz cz labels for 
the whole composition and male female labels for measures 150-166, respectively. 
This visualization is available only if a user provides years of recording as metadata 
in the first module. Each class is separated by color (blue or red), including their 
respective regression lines. Again, one can select any range of measures and labels 
or remove outliers. 

Fig. D.20: Scatter plot for noncz cz labels; whole composition. 

Fig. D.21: Scatter plot for male_f emale labels; ending of the composition. 
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