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Abstract 
Phishing web pages are a very dangerous threat, which means that successful and reliable 
detection of these pages is essential. I detect these threats by utilizing a machine learning 
based approach. This approach is effective and can detect even threats it has never en­
countered. As credible sources of URLs , I used sources like OpenPhish and PhishTank. I 
gathered the H T M L and JavaScript code of web pages from the trusted URLs by utilizing a 
data-gathering program that I created. Using the feature vector composed of 82 numerical 
features, I created four classifiers. Then, I tuned and experimentally tested the performance 
of these classifiers. The best-performing model is the XGBoost classifier, which achieved 
a balanced accuracy score of 97.03% and a false positive rate of 2.22% while making pre­
dictions on previously unseen data. Results show that this detection approach can identify 
phishing web pages even in a non-training environment, which I verified by implementing 
a phishing-detecting web extension for the Chrome browser. Implementing this extension 
is beyond the scope of the assignment of this thesis. 

Abstrakt 
Phishingové stránky sú veľmi nebezpečnou hrozbou, čo znamená, že úspešná a spoľahlivá 
detekcia týchto stránok je veľmi dôležitá. Tieto hrozby detekujem s využitím prístupu stro­
jového učenia. Tento prístup je efektívny a dokáže odhaliť aj hrozby, s ktorými sa nikdy 
predtým nestretol. Ako dôveryhodné zdroje dát U R L som využil OpenPhish a PhishTank. 
Z dôveryhodných U R L som nazbieral H T M L a JavaScript kód webových stránok. Zber dát 
som vykonal pomocou programu, ktorý som pre tento účel vytvoril. S využitím vektoru 
príznakov, ktorý sa skladá z 82 numerických príznakov, som vytvoril štyri klasifikátory. 
Následne som ich vyladil a experimentálne overil presnosť ich predikcií. Najpresnejší model 
je XGBoost klasifikátor, ktorý dosiahol vyváženú presnosť až 97.03% a F P R 2.22%, počas 
predikovania dát, ktoré nikdy predtým nevidel. Výsledky ukazujú, že tento prístup detekcie 
je schopný identifikovať phishingovú stránku aj v praxi. Toto som overil aj implemento­
váním webového rozšírenia pre prehliadač Chromé, ktoré detekuje phishigové stránky. Toto 
rozšírenie je vytvorené nad rámec zadania. 
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Rozšířený abstrakt 
Jr ľctCct Sel zaoberá detekciou phishingových webových stránok pomocou využitia metód stro­
jového učenia. V práci sa phishingové webové stránky odhaľujú pomocou analýzy ich H T M L 
a JavaScript kódu a následným vyhodnotením vlastností analyzovanej stránky pomocou 
vytrénovaného klasifikátoru. Pred samotným tréningom klasifikátoru je nutné získať dáta 
nutné pre tréning klasifikátoru. Pre účel zberu tréningových dát je v práci implementovaná 
serapingová aplikácia, ktorá funguje na princípe vysielania asynchrónnych požiadaviek na 
webové stránky, ktorých H T M L a JavaScript kód chce získať. Využitie asynchrónnych poži­
adaviek má výhodu v tom, že kým jeden pracovník čaká na odpoveď odoslanej požiadavky, 
program dovoľuje ostatným pracovníkom pracovať ďalej. Samotný zber prebieha v troch 
fázach. 

V prvej fáze aplikácia na zber dát dostáva ako vstup csv súbor, ktorý obsahuje zoznam 
U R L , ktorých kód bude získavať. Ďalej obsahuje informáciu o tom či je daná U R L phishin-
gová alebo nie. Tieto informácie aplikácia spracuje a pokračuje druhou fázou. V tejto 
fáze aplikácia posiela spomínané asynchrónne požiadavky na obdržané U R L . Ako odpoveď 
obdrží H T M L kód stránky, ktorý sa uloží do databázy. Zo získaného H T M L sa následne 
vytiahnu všetky odkazy na využívané externé JavaScript kódy. V tretej fáze sa následne 
pomocou týchto odkazov získa JavaScript kód využitý v H T M L a uloží sa do databázy. 

zaoberá aj analýzou nazbieraných dát, ktorá odhaľuje potencionálne rozdiely 
medzi kódom phishingových a legitímnych stránok ako je napríklad priemerný počet znakov 
v H T M L kóde. Po analýze dát sa zo získaného kódu následne extrahuje 82 numerických 
príznakov, ktoré popisujú rôzne vlastnosti nazbieraného kódu. Extrakciou príznakov vzniká 
dátová sada o veľkosti 31481 nazbieraných stránok, ktorá obsahuje extrahované príznaky. 
Táto dátová sada predstavuje tréningové dáta. V práci je tá to sada využitá na tvorbu 
štyroch binárnych klasifikátorov vytvorených pomocou algoritmov XGBoost, L igh tGBM, 
S V M a Neurónových sietí. Každý vytvorený klasifikátor prešiel procesom ladenia hyper-
parametrov, ktorý zaistil čo najlepšiu úspešnosť týchto klasifikátorov. Následne boli tieto 
klasifikátory experimentálne overené na tréningových predtým nikdy nevidených 
dátach. 

Tieto experimenty porovnávali úspešnosť predikcií jednotlivých klasifikátorov a zis­
t i l i , že najúspešnejšie predikcie na predtým nikdy nevidených dátach, vykonáva klasifiká­
tor vytvorený pomocou algoritmu XGBoost a to s vyváženou presnosťou 97.03%. Avšak 
všetky klasifikátory dokázali pri predikovaní predtým nevidených dát udržať svoju úspešnosť 
nad 90%, čo indikuje, že odhaľovanie phishingových stránok pomocou analýzy H T M L a 
JavaScript kódu je pomerne úspešná taktika boja proti nikdy predtým nevideným phishin-
govým útokom. Ďalej sa v práci experimentálne overujú spôsoby vylepšenia úspešnosti 
klasifikátorov ako je napríklad ladenie prahovej hodnoty, ktorá určuje či je výsledkom 
predikcie phishingová alebo legitímna stránka. Overuje sa aj benefit princípu väčšinového 
hlasovania, ktorý kombinuje viacero klasifikátorov, ktoré hlasujú o výsledku predikcie. 

Po experimentálnom overení klasifikátorov sa v práci predstavuje praktické využitie 
týchto modelov. V práci je nad rámec zadania implementované aj webové rozšírenie, ktoré 
dokáže odhaliť, či sa užívateľ nachádza na stránke, ktorá je podozrivá z phishingu a upozorní 
ho na túto skutočnosť. Toto webové rozšírenie po obdržaní príkazu na začatie činnosti získa 
U R L stránky, na ktorej sa užívateľ nachádza, získa H T M L a JavaScript kód tejto stránky 
a extrahuje z neho príznaky, ktoré zadá klasifikátoru a ten následne rozhodne, či sa jedná 
o phishingovú stránku alebo nie. Webové rozšírenie o tom informuje užívateľa pomocou 
notifikácie. Toto rozšírenie dokáže pracovať aj v režime väčšinového hlasovania, ak si ho 
užívateľ zvolí. 
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Chapter 1 

Introduction 

In our time, the Internet has become man's second nature. People communicate, do their 
shopping, and even pay their bills via the Internet. However, while the Internet brings 
many favorable aspects to our lives, it also brings many problems, such as malicious web­
sites. Many techniques, such as user education, were developed to prevent the damage these 
sites cause on the Internet. Despite these efforts, malicious content, specifically phishing, 
continues to expand on the web. To crack this problem, it is essential to be able to determine 
phishing web pages and benign web pages successfully. However, phishing detection tech­
niques based on blocklists or heuristics are not able to provide protection against brand-new 
threats, which makes them insufficient. 

On the contrary, approaches based on machine learning are capable of detecting even 
unfamiliar attacks. I aim to detect phishing web pages by utilizing machine learning. 
To successfully detect these web pages, it is required to gather data of both benign and 
phishing web pages. The data used to differentiate between these pages includes H T M L and 
JavaScript code that assembles these pages. To gather such data, I will start by creating 
a web scraping application. The obtained data will be then analyzed. After the analysis, I 
will propose a feature vector formed by features that will examine multiple factors of the 
gathered H T M L and JavaScript code. Following the establishment of the feature vector, 
I will extract features from the scraped data and store these features in the database. 
The extracted features will form a dataset that will allow me to utilize machine learning 
algorithms and create classification models capable of detecting a phishing web page. After 
assembling these classifiers, I will fine-tune these models and experimentally verify their 
performance on both training and unseen data, which will allow me to determine what 
classifiers are most accurate and reliable. The best-performing classifier, which achieved a 
balanced accuracy score of 97.03% while making predictions on previously unseen data, will 
be utilized in the proof-of-concept web extension capable of detecting phishing web pages. 
Implementation of this web extension is beyond the scope of the assignment of this thesis, 
and it will demonstrate that detection based on the machine learning approach also works 
in practice. 

This bachelor's thesis begins with Chapter 2, where I introduce several approaches to 
phishing detection with their applicable use, compare their resemblances, and talk about 
their individual and shared shortcomings. Chapter 3 then introduces and explains various 
machine learning algorithms that are being used for classification purposes. Chapter 4 then 
presents the significance of trustworthy sources for data collecting. It describes in detail 
how the program that carries out data gathering works and what techniques are used to 
solve the problems with scraping. This chapter discusses technologies utilized for storing 

G 



data and filtering the scraped data. Chapter 5 then provides an analysis of the scraped 
data. Chapter 6 introduces a feature vector and describes how feature extraction is carried 
out in the program. It also explains why certain features were included and how they should 
benefit the classifiers. The following Chapter 7 explains the nature of the created dataset 
and analyzes features included in the dataset. Chapter 8 introduces evaluation metrics 
and data preprocessing techniques utilized during the training of various classifiers. This 
chapter also explains how model training and fine-tuning are carried out in the program 
and compares the results of tuned and untuned models. Chapter 9 provides the details 
of experiments that aim to potentially improve the tuned classifiers by employing various 
strategies or evaluate the performance of tuned classifiers on both training and unseen 
data. Final ly Chapter 10 explains the implementation of the web extension that utilizes 
the best-performing classifiers to detect phishing web pages. This chapter also verifies the 
ability of classifiers to make predictions in practice by utilizing them to make predictions 
in real-time in the real environment. 
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Chapter 2 

Approaches to phishing detection 

There are diverse techniques available for purposes related to the detection of phishing. 
The earliest techniques relied on non-machine learning approaches such as sandboxing [25]. 
This chapter discusses several of these phishing detection methods, their advantages and 
disadvantages, and it mentions studies that employ these strategies. It also provides a 
comparison between these approaches. 

2.1 User awareness 

Khonji [19] states that phishing attacks are often aimed at individuals who lack experience 
identifying them. Enlightening these users is crucial for reducing their vulnerability to these 
attacks. Various user-enlightening strategies have been suggested over the years to make 
people aware of various social engineering techniques. One such strategy is to educate users 
through regular messages like emails. For example, e-services employ this strategy, these 
service providers often send messages to their clients to alert them about potential phishing 
scams. 

A different strategy utilizes user interfaces to display safety warnings when a user at­
tempts to access a phishing website. These warnings are especially adequate when they 
block the displayed data [13]. Another applied approach is incorporating educational no­
tices into the end-user's daily activities [20]. These methods can help reduce the probability 
of users falling victim to a phishing attack. However, it is necessary to note that educating 
end-users alone may not be enough to alter their behavior [19]. 

2.2 Blacklists 

Blacklists utilized for phishing detection are regularly updated lists of URLs that have 
already been detected as phishing attempts. Google Safe Browsing A P I is an example of 
such blacklist. However, blacklists are not effective against zero-hour attacks. Zero-hour 
attacks are attacks that were not seen before, blacklists are not effective against them 
because the web page needs to be already identified as a phishing attempt to be added to 
the blacklist. [19] 

According to Sheng [42], blacklists were only able to detect 20% of zero-hour phishing 
attacks. Sheng also found that up to 83% of phishing URLs were added to blacklists after 
12 hours, which is a problem since 63% of phishing campaigns end in the first 2 hours. 

8 



2.3 Heuristics 

Phishing heuristics are characteristics that are present in phishing attacks. These mecha­
nisms can be based on finding the source IP address of the attacker or analyzing the content 
of emails or web pages. However, it is essential to mention that these characteristics may 
not always be present in phishing attacks. Nevertheless, recognizing a set of general heuris­
tic tests makes it possible to detect zero-hour attacks. But, using generalized heuristics 
carries a risk of incorrectly classifying legitimate content. [19] 

2.4 Visual similarity 

These phishing detection methods rely on identifying phishing attacks through visual ap­
pearance instead of analyzing the source code or network-level data [19]. Visual similarity 
detection includes methods that need the web browser to take a picture of every suspected 
site they try to investigate. The picture is matched against a whitelist composed of legiti­
mate websites commonly targeted by phishers [9]. On the other hand, some visual methods 
do not need the whitelist of legitimate websites. These methods are based on the fact that 
most phishing websites aim to match their target website visually [15]. 

2.5 Machine learning 

Janiesch [18] states that machine learning automatically tries to learn patterns and rela­
tionships from given data. It aims to automate the creation of an analytical model capable 
of executing cognitive objectives, such as natural language translation. This is accom­
plished by utilizing algorithms that learn from training data, allowing these algorithms to 
uncover hidden understandings and challenging patterns presented in the given data. Ma­
chine learning is a technique that can be applied to tasks that involve high-dimensional 
data. Examples of these tasks are clustering, regression, or classification. 

Machine learning technologies are very valuable, particularly when processing enormous 
amounts of data. These technologies offer significant value by saving time and maximizing 
computing resources [49]. Many machine learning algorithms are available in the field, each 
with numerous variations depending on the learning task. Machine learning algorithms are 
now commonly used in different industries, including fraud detection [18]. 

For example, McGahagan's work described in [31] used the examination of JavaScript 
and H T M L code to create a model for detecting phishing websites. He carefully picked the 
26 most powerful features that determine if a site is malicious. These features are shown 
in the Figure 2.1. This work also included creating a dataset. The dataset was formed by 
extracting features from 34778 benign and 5931 malicious websites. McGahagan used the 
package PySelenium 1 to scrape these web pages. However, this technique of scraping can 
be very time-consuming. Another problem is that the benign part of the dataset utilized 
in this research was taken from top-rated websites in Alexa ranking 2, but this alone does 
not guarantee that these websites are benign. It only means they are frequently visited. 
Overall, this research achieved slightly better results than previous researchers, using only 
half the features. 

1https://selenium-python.readthedocs.io/ 
2https://www.digitaltrends.com/business/what-is-alexa-rank-everything-you-need-to-know/ 
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Hou [17] presented a similar idea, suggesting using additional document level features 
from H T M L and JavaScript, as they are easy to extract and preprocess. Malicious code 
is often camouflaged within the H T M L by encryption, making features such as document 
length and average word length highly effective. The encrypted or obfuscated code in 
H T M L is also connected to JavaScript features such as functions eval or unescape, as they 
may indicate the execution of encrypted code inside the H T M L . 

Identified Features Ranked 

Feature .\'o Over Under 
Total tag count 1; 0.3206 1: 0.2705 1: 0.2239 
Total href attributes 2: 0.1025 2: 0.1190 2: 0.1723 
<link href> OoD 3: 0.0644 3: 0.0943 3: 0.1018 
<p> count 4: 0.0567 5: 0.0601 4: 0.0642 
<a href="https*"> 5: 0.0554 8: 0.0403 6: 0.0581 
<meta> count 6: 0.0515 6: 0.0471 8: 0.0340 
<script async=true> 7: 0.0462 7: 0.045 5: 0.0634 
<link 
type="text/css"> 

S: 0.0298 9: 0.0327 11 0.0257 
<script src> OoD 9: 0.0289 14: 0.0141 7: 0.0535 
<link href="http*"> 10:0.0271 11: 0.0224 10: 0.0283 
push() 11:0.0258 4: 0.0627 9: 0.0325 
<link href="*,css"> 12:0.0258 12: 0.0205 13 0.0125 
indexOf() 13:0.0175 25: 0.0071 16 0.0119 
<form action="http*"> 14: 0.0168 19: 0.012 12 0.0136 
<strong> count 15: 0.0151 15: 0.0132 18 0.0114 
<iframe src="https*"> 16:0.015 10: 0.0271 24 0.0078 
<center> count 17: 0.0141 16: 0.0131 19 0.0093 
setTimeout(} 18:0.0136 26: 0.0066 15 0.0121 
<a href="*.com"> 19:0.0133 13: 0.0186 20 0.0090 
document.write() 20:0.0112 17: 0.0129 22 0.0084 
addEventListener () 21: 0.0096 20: 0.011 14 0.0124 
get 0 22: 0.0093 21: 0.0107 26 0.0023 
<link type= 
"application/rsd+xml" 
> 

23: 0.0079 22; 0.0103 21 0.0088 

find!) 24: 0.0077 24; 0.0078 25 0.0035 
<link 
rel="shortlink"> 25:0.0073 23: 0.0085 23 0.0080 
replace{) 26: 0.0069 18: 0.0123 17 0.0114 

Figure 2.1: McGahagan's list of 26 features [31] 

2.5.1 Supervised machine learning 

As described in [51], supervised learning is a technique for learning a function from a set 
of given training data. This data includes input objects and their expected outputs. The 
function can either output a continuous value, known as regression, or predict a class label 
for the input, known as classification. A supervised learner is supposed to predict the 
output for any valid input object. 
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2.5.2 Unsupervised machine learning 

Unsupervised machine learning is a type of learning where the algorithm does not use any 
manual labels of inputs. It uses no human examples to learn [51]. 

2.6 Deep learning 

Guo [14] defines deep learning as a subfield of machine learning that aims to comprehend 
high-level abstractions in data. Deep learning can also be explained as an advanced form 
of artificial neural network known as a deep neural network [49]. There are two typical 
network structures in deep learning: C N N s 3 and RNNs' 1 . Nowadays, Convolutional Neural 
Networks are widely used in many fields of machine learning, particularly in computer 
vision. On the other hand, Recurrent Neural Networks are primarily utilized in processing 
time series data, such as natural language processing or speech recognition [49]. 

Deep learning is also used to detect phishing attacks, as it can handle visual and text 
data. As described in [34], Nairn focused in his work on visual and non-visual elements 
that a web page includes. He observed H T M L code and hierarchies, JavaScript, CSS, 
color tables, styles, font types, and objects. In addition, Nairn also observed the actual 
appearance of the website once its content was loaded and generated. Thanks to this, 
he created a hybrid technique that enhances the static analysis technique with aspects of 
dynamic examination. His dataset contained 35,707 website records. However, only 697 of 
these were malicious, as he wanted his dataset to reflect the actual probability of a web page 
being malicious. His approach was able to effectively detect more than 83% of malicious 
websites while maintaining a low false positives ratio of 2%. It is essential to mention that 
although the feature vector of the model being used in this research takes into account 
various properties, it fails to consider the document level properties of the H T M L files. 
Additionally, the dataset used in Nairn's research is highly imbalanced, which means that 
the created model may need more data to detect malicious websites more consistently. 

3https: / / www.analyticsvidhya.com/blog/2021/05/convolutional- neural- networks-cnn/ 
4littps: / / www.simplilearn.com/tutorials/deep-learning-tutorial/rnn 
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Chapter 3 

Machine learning algorithms 

This chapter introduces and explains the principles of popular machine learning algorithms. 
Although machine learning is a broad field that includes many disciplines, in this thesis, I fo­
cus only on differentiating between two classes, which is carried out by binary classification. 
Thus, algorithms introduced in this chapter are popular choices in this field. 

3.1 Decision trees 

A decision tree is a type of supervised machine learning algorithm that can be used for 
classification or regression tasks based on how previously raised questions were answered 
while using a tree-like pattern of decisions [41, 46]. The foundation of a decision tree is 
called the root node, which symbolizes the whole dataset. As shown in Figure 3.1, the root 
node has a series of decision nodes growing out, representing the dataset's features [46]. 
Each decision node represents a raised question, and these decision nodes either sprout leaf 
nodes that embody possible answers to the questions raised by the decision nodes or they 
sprout another decision node, which raises another question [41, 46]. On the other hand, 
leaf nodes do not contain any further branches, as each leaf node represents one of the 
classes being classified [46]. 

Decision node 

Decision node Decision node 

Class A Class B 

Class A 

Figure 3.1: Example of a decision tree 
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3.2 Support vector machine 

The support vector machine is a supervised machine learning algorithm utilized to solve 
regression and classification assignments. This algorithm is particularly effective in binary 
classification, in which data are split into two classes. The goal of a support vector machine 
algorithm is to find the best possible decision boundary, also known as a hyperplane, which 
splits the data points of the different classes. Support vector machines operate by converting 
the given data into a higher-dimensional space. This transformation is accomplished by 
using a kernel function, a mathematical function utilized to calculate the product between 
two data points in the transformed feature space. In the training phase, support vector 
machines identify the best hyperplane in a higher-dimensional feature space by utilizing 
a mathematical formula. Identifying the best hyperplane is crucial as it helps maximize 
the margin between data points of different classes while also minimizing misclassification. 
Figure 3.2 shows that margin is the gap between the decision boundary and the support 
vectors. [44] 

Hyperplane 

Support vectors Support vectors 

• 

• 
• 
• 
• 
• <-

A 

• • 

Margin 

Figure 3.2: S V M algorithm. 
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3.3 Random forest 

A random forest is a supervised machine learning algorithm utilized for both regression and 
classification tasks. It employs an ensemble learning approach that uses multiple classifiers 
to provide solutions [30]. The algorithm employs bagging to construct full decision trees 
parallelly from random bootstrap samples of the input data [35]. The output of a random 
forest algorithm is obtained by taking the average of the predictions made by the generated 
trees [30]. Figure 3.3 displays how random forest works in detail. 

Dataset 

i I I 
Result Result Result 

Majority vot ing/ Averaging Majority vot ing/ Averaging 

< 

Result 

Figure 3.3: Random forest algorithm. 

3.4 XGBoos t 

Algorithm XGBoost is an implementation of gradient-boosted decision trees [5]. Unlike 
bagging methods such as random forest, it uses trees with fewer splits instead of growing 
them to their full extent [48]. 

A gradient boosting ensemble method involves these steps. First, a model is defined to 
predict the desired variable. The first model will then be associated with a residual. This 
model is displayed in Figure 3.4 as M. Second, a newly created model fits the residuals 
from the previously trained model in the first step, in Figure 3.4 represented by K. Lastly, 
models from the first and second steps are combined to create a new model, shown in Figure 
3.4 as B. This new model is a boosted version of the model from the first step. The mean 
squared error from the boosted model will be lower than that from the original model. This 
process can be repeated for multiple iterations until residuals have been minimized as much 
as possible. [48] 

14 



B(variable) = M(variable) + K(variable) 

Figure 3.4: Representation of gradient boosting 

3.5 AdaBoost 

The Adaptive Boosting algorithm is an ensemble boosting technique. In the beginning, 
this algorithm builds a model and assigns equal weights to the data points. AdaBoost then 
identifies the data points that are wrongly classified and assigns higher weights to these 
data points. In the next model, the algorithm gives more importance to the data points 
with higher weights. This process is repeated multiple times until the algorithm achieves a 
lower error. The process of weight assigning is displayed in Figure 3.5. [39] 

Weight 1 

Weight 2 

Weight 3 

Model 1 

Model 2 

Model 3 

Model N 

Figure 3.5: AdaBoost weight assigning. 

3.6 L i g h t G B M 

L i g h t G B M is a machine learning algorithm that implements gradient-boosted decision trees. 
Similarly to the algorithm, XGboost mentioned in Section 3.4, decision trees are combined 
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in a manner that every new model fits the residuals from the previous one, resulting in 
an improved model. The final model is created by aggregating the results from each step. 
The L i g h t G B M algorithm searches for the best split of data instances that maximizes the 
information gained from each split. Information gain is the difference between entropy 
before and after the split, where entropy is a measure of randomness. The splits are 
performed in a manner that minimizes the randomness. [50] 

On top of that, Light G B M produces the decision trees leaf-wise while other algorithms, 
for example, XGBoost, grow these trees level-wise. The L i g h t G B M algorithm will choose 
the leaf with the max delta loss to grow. The comparison of these growing techniques is 
displayed in Figure 3.6. [29] 

Leaf -w ise g r o w t h 

Leve l -w ise g r o w t h 

Figure 3.6: Leaf-wise growth and level-wise growth. 

3.7 Neural Networks 

A neural network is a machine learning algorithm that mimics the function of the human 
brain. The network consists of interconnected nodes that are known as artificial neurons. 
The neurons are arranged in layers. Every neuron receives input, performs calculations, and 
passes the output to the next layer. Connections between nodes in a network get stronger or 
weaker based on patterns in data, which enables the network to learn and make decisions. 
The first layer of a neural network is called the input layer. This layer converts received 
data into a format that the rest of the network is capable of processing. On the other hand, 
the last layer of the neural network is referred to as the output layer, and the number of 
outputs is determined by the creator of the network and its intended purpose. Hidden layers 
between input and output layers perform non-linear transformations to extract higher-level 
features from recieved data. As shown in Figure 3.7, every single neuron in the hidden layer 
gets input data from neurons located in the previous layer. Then, the hidden layer neuron 
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assigns weights and biases to these inputs and hands the result to a non-linear activation 
function. This is repeated until the output layer is reached. [40] 

Input layer Hidden layers Output layer 

I npu t 1 

I npu t n 

Figure 3.7: Example of an architecture of Neural Network. 
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Chapter 4 

Collecting and storing data 

This chapter introduces the challenges of collecting data and establishes their solutions. 
Moreover, it also explains the gathering of data in code and mentions the importance of 
reliable sources. It presents technologies chosen for storing data. Additionally, it provides 
information about filtering the stored data. 

4.1 Data sources 

Data gathering is a crucial aspect of this program, as the results of machine learning are only 
as reliable as the dataset used for training. Therefore, it is essential to use only trustworthy 
sources of data. The trusted data sources, in this OpenPhish 1, PhishTank 2, and 
a benign training dataset from [11]. These sources can be considered trustworthy due to 
their licensing or reputation. Organizations OpenPhish and PhishTank provide phishing 
URLs that they verify, and thanks to this, the dataset constructed by data collected from 
these URLs should be of great quality. However, it is essential to filter the data collected 
from these sources. For example, OpenPhish feeds contain URLs that are unique, but it is 
common for more URLs to refer to the same phishing page. Getting rid of these duplicates 
ensures a good variety of training data rather than just a large quantity of data. Also, 
among the URLs from the benign dataset, many URLs are dead and return error messages 
that need to be removed as well. 

4.2 Collecting data as a part of this program 

As shown in Figure 4.1, the whole program consists of four Python modules and a database. 
The schema shows all of the modules and their interactions. However, the parts necessary 
for data gathering are modules downloader.py, parse.py, and database. The program takes 
two inputs to initiate data gathering. These inputs are a csv file that contains URLs and the 
name of a MongoDB collection, where data will be saved. The module parse.py extracts the 
information needed from the received csv file, and the module downloader.py then scrapes 
and saves the obtained data in the database. 

1 https: / / openphish. com / index, html 
2https://phishtank.org/ 
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Input 
MongoDB collection 

[ Csv file with URLs ] 

C list of URLs 
parse.py 

A 

Scraped webpages 
l \ 

downloader.py 

V> 
External JavaScript URLs 

MongoDB downloader.py N 1 

Scraped external JS | \ 
MongoDB downloader.py 

V> 
MongoDB 

Extracted features for given URL 

HTML and external JS code for given URL 

main.py 

Dataset 

4 
Model Dataset 

train, py 

Training and tuning model 

Figure 4.1: Program schema. 

4.3 Command line arguments 

The program supports three groups of arguments. First of all, the arguments that control 
the scraping process. These arguments include scrape and collection. The argument scrape 
has to be followed by the name of a csv file, which contains URLs to be scraped. This 
argument initiates the process of gathering and storing data. The argument scrape has to 
be paired with argument collection that specifies in what collection in the database the 
scraped data will be saved. Second of all, the arguments that train and save classifiers such 
as trainLGB, trainXGB, trainNN, and trainSVM these arguments need to be followed by 
the name of a file in which the trained classifier will be saved. Third of all, the arguments 
that start the process of tuning classifiers tuneLGB, tuneXGB, tuneNN, and tuneSVM. 
Using these arguments does raise a flag that begins the process of tuning the models. 

4.4 Parsing input file 

The parsed csv file has to contain two columns. The first column has to contain a U R L 
that will be scraped. The second column must contain information on whether the U R L 
is benign or malicious. These pieces of information are then extracted with the help of 
Python's package csvA and its method reader. Thanks to this method, it is possible to 
iterate through the csv file like through rows in a table. After the data has been extracted, 

3https: / / docs.python.org/3/library/csv.html 
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the URLs and class labels are inserted into a list. If the first column contains a domain 
instead of a full U R L , the domain will be modified by adding h t tp : //www. at its beginning, 
and then the domain is inserted into the list. This process is carried out in module parse.py 
by method parse. Figure 4.1 shows how parsing of the input file interacts with the rest of 
the program. 

4.5 Scraping 

It is necessary to create a web scraper to collect the actual data, like the H T M L and 
JavaScript codes of a web page. One of the fastest scraping methods is to send a request 
to a U R L , and the response will include the H T M L of the web page hosted on that U R L . 
However, as straightforward as it sounds, there are some things that could be improved with 
this method. Many websites have implemented defensive measures against web scraping, so 
not all of the responses contain data that are useable for machine learning. Naturally, these 
responses must be removed from the dataset. Another problem is that scraping can be time-
consuming, particularly when scraping thousands of web pages to create a dataset. It is 
crucial to minimize the time by utilizing a concurrent approach. The concurrent approach 
enables the program to carry out multiple requests at once, thus making it significantly 
more time-efficient. 

4.5.1 Asyncio 

Asyncio is a package that enables writing a concurrent code. Asyncio's coroutines can be 
scheduled concurrently but do not always have to work concurrently. Therefore, Asyncio 
is not parallelism. Asyncio is more similar to threading than multiprocessing [43]. It 
provides many tools for controlling the program flow or concurrent workers. One of the 
most significant aspects of Asyncio is that it runs asynchronously. Individual coroutines can 
halt while waiting for results and allow other routines to run [43]. Thanks to this unique 
ability, Asyncio is commonly used for web scraping. 

4.5.2 Scraping the H T M L 

To address the challenges introduced in Section 4.5, creating a concurrent scraper with 
controlled request sending is important to avoid triggering the defense against web scraping. 
To accomplish that, I used Python's Asyncio. Scraping of H T M L is handled by the method 
run in module downloader.py. To scrape the H T M L , it is essential to pass the list of URLs 
mentioned in Section 4.4 and a MongoDB collection where data will be stored as parameters 
to method run. This method also employs Asyncio's semaphore, which monitors the flow of 
requests during scraping. This semaphore will permit only 30 workers to send out requests 
simultaneously to prevent any overload. Despite these precautions, if any web page is 
unavailable, recognizes the request is from a scraping bot, or returns a code that is bigger 
or equal to 400, this response will not be stored in the database, as responses like these do 
not contain any H T M L code but only error messages and error codes so they would only 
cause disturbance while model training. It is crucial to mention that at this stage of the 
program, I not only scrape the H T M L code of the web page, but I also isolate and store all 
sources of the external JavaScript used in the H T M L code. The external JavaScript sources 

4https://docs, python.org/3/library/asyncio. html 
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are later scraped as well, ensuring that all of the sources of features will be included in the 
dataset. Scraping of H T M L is visualized in Figure 4.2. 

downloader.py 
run 

Semaphore 
[30 workers] 

Sent requests 

Response 

Scraped HTML and external JavaScript sources 

\ 7 

Database 

Figure 4.2: Scraping H T M L schema. 

4.5.3 Scraping external JavaScript 

External JavaScript is scraped by the method GetExternal in module downloader.py. This 
method accepts two parameters, a list of URLs that will be scraped and a MongoDB 
collection used as a storage of scraped data. Similarly to Subsection 4.5.2, requests are sent 
out concurrently with Python's Asyncio and its semaphore. This semaphore only permits 
20 workers at once. However, before any requests are sent out, it is necessary to extract 
external JavaScript sources from the database for every U R L given as input. Usually, there 
are several sources of external JavaScript for a particular H T M L file. Naturally, having 
multiple sources for one web page makes sending out more requests necessary, making this 
process even more time-consuming than scraping the H T M L . The obtained JavaScript code 
is saved in the database. 

4.6 Database 

I combined three technologies to store data: Docker', Python, and MongoDB . The docker 
container was built by file docker-compose.yml, obtained from [28]. 

MongoDB is a document-oriented database that stores data utilizing BSON, which is 
short for binary JSON. Thanks to using B S O N instead of J S O N ' , MongoDb is faster and 
has more features, including several extended types for numeric data like int32 and int64 
[37]. This works well with Python's type dictionary, which I will use as a placeholder for 
extracted features and for scraped H T M L and JavaScript code. As shown in Figure 4.3, 

5https://www.docker.com/  
6https://www. mongodb.com/  
7https://www .json.org/json-en.html 
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Docker serves as a hosting service for MongoDB, which the Python application uses as a 
storage and data source. 

P y t h o n 
A p p l i c a t i o n 

Figure 4.3: Relations between Docker, MongoDB and Python 

4.7 Data structure 

The saved data have a prescribed form, which is always followed. This form is shown in 
Figure 4.4. The item domain is always unique because it prevents data from duplicating, 
which could cause difficulties while training the model. When storing the data, the only 
item that may be missing is scraped external JavaScript. If a web page has no external 
JavaScript, the item external javascript urls will be an empty list. A record will not be 
saved to the database if the item html is an empty string or missing, as this record would 
not be usable for model training because there would be no features to extract from it. 

Record in M o n g o B D Data t ype o f a reco rd 

domain 

html 

external javascript urls 

string 

string 

-> 

] 

] 
list of strings 

external Java string ] 

Figure 4.4: Example of how data is stored in database. 

4.8 Data filtering 

The first round of data filtering is carried out during scraping. Undesired data, such as 
empty or error responses, are not stored in a database. Automated responses to web scrapers 
are also included in filtering. These data could confuse the model during training because 
similar data could be marked as phishing and benign. This filtering is fully automated and 
does not require any human supervision. The second round of data filtering occurs after the 
features are extracted from scraped data. Some database entries have all feature values the 
same despite being scraped from different URLs , and it is vital to remove these duplicates 
and keep only one such entry to ensure the variety of the data being taught to the model. 
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Chapter 5 

Data analysis 

This chapter provides an analysis of scraped H T M L and JavaScript data. It includes 
examining the size of scraped data, analyzing the percentage of encrypted or obfuscated 
phishing data or exploring the top-level domains found in the scraped data. 

5.1 Size of H T M L and JavaScript data 

As shown in Figure 5.1, the total size of H T M L codes scraped from 31481 URLs is 9876 M B . 
Meanwhile, the size of external JavaScript codes utilized in these URLs is 41956 M B . The 
sizes were measured using Python's method sys.getsizeof, which is capable of determining 
the size of a Python object. These findings indicate that the external scripts are crucial to 
analyze as they constitute almost 81% of the code used by all scraped web pages. 

Figure 5.1: Size of scraped data. 
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5.2 Average number of characters in H T M L 

The graph in Figure 5.2 illustrates the number of characters detected in scraped H T M L . The 
white circles represent the mean, revealing that benign web pages have, on average, 169847 
characters in their code. In contrast, the mean of scraped phishing web pages is slightly 
lower, with an average of 163543 characters. However, the median, represented by the black 
lines, reveals that the outliers heavily impact the mean of phishing pages. These outliers 
are likely encrypted or obfuscated web pages, meaning that the H T M L is composed of long 
strings that significantly increase the number of characters. These findings indicate that 
benign web pages among scraped data usually contain more characters. This conclusion is 
supported by a study [17], which identifies document length as one of the possible features 
capable of differentiating benign from phishing web pages. 

400000 

300000 

200000 

100000 

Benign Phishing 
Type o f p a g e 

Figure 5.2: Number of characters in H T M L code. 

5.3 Encrypted and obfuscated data 

One of the traits that can be found in malicious H T M L code is the encryption of strings [17]. 
As stated in [31], the code is also being obfuscated. Obfuscation can also be used in benign 
pages to prevent copying of their code. However, attackers commonly use this method to 
make the code difficult to analyze, meaning that both encryption and obfuscation fulfill the 
same purpose of making it impossible to analyze the code that assembles the web page. I 
found that around 14% of the scraped phishing web pages contained encrypted or obfuscated 
components in their H T M L code, as shown in Figure 5.3. I used the average length of 
words in an H T M L code to detect such strings. If an H T M L code had an average word 
length of more than 70 characters, it was considered to contain these elements. Although 
70 characters may seem like a high limit, it is intentionally set up this way because these 
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pages contain numerous hyperlinks that refer to URLs , significantly increasing their average 
word length. 

Figure 5.3: Number of phishing sites that contain encrypted or obfuscated elements. 

5.4 Top-level domains of scraped U R L s 

The following findings are based on analyzing the six most common top-level domains, 
short TLDs, of scraped URLs, shown in Figures 5.4 and 5.5. The most commonly used 
T L D in both phishing and benign URLs is the com T L D , which is utilized by 46% of all 
websites according to statistics from [47]. Additionally, this statistic informs that TLDs like 
org, net, edu, ru are reasonably popular as well. The second most common T L D utilized 
in phishing URLs that were used to collect data is the dev T L D , which is operated by 
Google and is being abused by phishers on domains such as pages, dev and workers, dev, as 
mentioned in [2]. Many phishing emails containing URLs using these domains have been 
observed. Additionally, [7] provides a statistic that lists com and net among the 20 most 
utilized phishing TLDs . Finally, [36] mentions that attackers abuse free code repositories 
on GitHub, which enables them to host phishing websites on the github.io domain. A l l of 
these popular phishing domains are present in the collected data. 
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Figure 5.4: Six most common benign TLDs from scraped URLs. 

c o m lo app 
Domain 

Figure 5.5: Six most common phishing TLDs from scraped URLs. 

5.5 Targeted brands 

Statistics from [38] and [33] contain information about brands that were most commonly 
targeted by phishing attacks in the years 2022 and 2023. I searched through the collected 
phishing data and inspected the titles of scraped phishing web pages to determine the most 
frequently targeted brands using a list of 37 possible targets. The information I found 
aligns with the statistics. Of the 37 possible targets, 31 were among the scraped phishing 
web pages. As shown in Figure 5.6, Netflix is the most targeted brand among the scraped 
phishing data, followed by ING and Facebook. 
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Figure 5.6: Brands targeted by attackers from scraped phishing web pages. 
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Chapter 6 

Feature engineering 

This chapter introduces the extraction of features and explains how it is carried out in the 
program. It clarifies why certain types of features are used and mentions all features that 
form the feature vector. 

6.1 Feature extraction 

Janiesch [18] states that the process of feature extraction involves extracting features from 
the input data, which can be used for building models. A feature is a property that is derived 
from the input data and provides a proper representation. Shallow machine learning heavily 
depends on well-defined features, and the performance of these algorithms depends on a 
successful extraction, which makes this process crucial. On the other hand, deep neural 
networks use a sophisticated architecture that allows them to automate feature learning. 
Therefore, deep learning works better with unstructured and enormous data. The feature 
learning generally moves hierarchically, with high-level features being constructed by the 
simpler ones. However, different mechanisms of feature learning are employed depending 
on the type of data and the deep learning architecture selected for the construction of the 
model. 

6.2 Extracting features 

To create a list of features, I combined approaches from multiple pieces of research. To 
be precise, the utilized feature vector is assembled from these studies [25], [31], [34], [10], 
and [17]. The extraction of features involves three approaches: one for H T M L extraction, 
one for JavaScript extraction, and one for the extraction of the document level features. 
After successful extraction, the features are stored in a database. This process is illustrated 
in Figure 6.1. To achieve optimal program performance, the feature extraction process is 
executed concurrently, similarly to the method described in Section 4.5. 
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Figure 6.1: Extraction of features in program. 

6.3 H T M L features 

H T M L features play a significant role in determining whether a website is benign or mali­
cious. The feature vector includes the H T M L features obtained from previous research. To 
be precise, these researches are: [31], [10], [34], [25]. This thesis combines approaches used 
in these studies to determine how the combined features will perform. 

The H T M L features are very powerful. For example, the H T M L tags can determine 
if the page is mainly assembled by parts obtained from external sources by analyzing the 
hyperlinks [10]. The tags in H T M L code can also determine if the webpages are assembled 
by the code in the H T M L document or by JavaScript methods by analyzing the number of 
utilized tags in the H T M L code [31]. Table 6.1 shows all the H T M L features that are used 
for model training. 

6.3.1 Hyperlinks 

Phishing websites often try to impersonate legitimate web pages to deceive people into 
sharing their personal information. To keep track of these targeted web pages, phishing 
attackers often use external hyperlinks to reference foreign domains in order to obtain CSS 
or icons from the sites they are attempting to copy [10]. Legitimate web pages may also 
use external hyperlinks, but they typically use internal hyperlinks that point to their local 
domain. H T M L tags related to external information provide beneficial insight into issues 
related to the usage of external and internal hyperlinks. Listings 6.1 and 6.2 show both 
legitimate and suspicious methods of loading icons. 

<link rel= "shortcut icon" href="assets/images/favicon.ico"/> 

Listing 6.1: Benign icon example 

<link rel="shortcut icon" href="https://cdn—jm—tools.web.app/d..p/others/favicon.ico"> 

Listing 6.2: Suspicious icon example 

More than merely the presence of these hyperlinks is required to determine whether the 
suspected site is actually a phishing web page. According to [10], calculating the ratio of 
external and internal hyperlinks is a reliable feature that can help identify phishing websites. 
The computation of these ratios is shown in Figures 6.2 and 6.3. After the computation, 
the features are assigned binary values: 0 for benign and 1 for malicious. 
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Ratio of internal link 
0, total hyperlink = 0 

Internal href ratio feature 
0, if Ratio of internal link > 0.5 
1, otherwise 

Figure 6.2: Internal hyperlinks ratio [10] 

Ratio of external link 
if total hyperlink > 0 
total hyperlink = 0 

External href ratio feature 
1, if Ratio of external link > 0.5 
0, otherwise 

Figure 6.3: External hyperlinks ratio [10] 

6.3.2 Malicious form 

Detecting phishing attacks can be tricky, especially when distinguishing between a legiti­
mate and malicious login form. To help with this issue, I used the malicious form feature. 

Generally, the action tag in login or sign-up forms contains an internal hyperlink, in­
dicating that the website is safe to use [10]. However, if the action field of a login form 
contains external links, a P H P file, or the character # or javascript:void(), then such action 
tags are considered malicious. 

6.3.3 Most common anchor link 

To mimic targeted web pages perfectly, attackers need to populate the phishing web pages 
with links and buttons pointing to other pages. However, it is common practice to populate 
all of the buttons and links with the same anchor links [10]. This feature helps to track such 
behavior by finding the most common anchor link, calculating its frequency, and comparing 
it to the number of anchor links used in the H T M L code. 

Ratio = 
frequency of most common anchor l ink 

tota l anchores if total anchores > 0 
Ratio = 0 0 

Figure 6.4: Ratio of most common anchor link [10] 
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Name Feature description 
titles Title of the H T M L document 

scripts < script > tag without set source 
objects Container for an external resource 
inputs Data entrance for user input 
strong Displays text in bold 
met a Metadata in the H T M L code 

embeds Container for an external resource 
divs Division or a section in the H T M L code 

center Center aligns the text 
paragraph Paragraph in H T M L code 

imgs Inserts an image to an H T M L code 
frame Inserts another document to the H T M L 

anchors Hyperlink or is a placeholder for one 
iframe Inline frame 
links Relation of the H T M L and external source 

allTags A l l tags in the H T M L code 
mForm <form> tag refers to an external link, file or placeholder 
intHrefs Attribute refers to an internal source 

aToHttps <a> tag refers to U R L starting with https 
iframeSrc <iframe> tag with set location of the external source 
formAct <form> tag with set location where it sends data 
aToCom <a> tag refers to U R L ending with .com 
extHrefs Attribute refers to an external source 
linkHCss <link> tag refers to .ess source 

anchTo#Cont <a> tag refers to #content 
mostCom Frequency of most utilized hyperlink in <a> divided by all anchors 
anchRat <a> tags that serve as a placeholder divided by all anchors 

cssExternal <link> tag with stylesheets located in an external source 
icon <link> tag refers to shortcut icon 

formHttp <form> tag refers to an external source 
allHrefs Hyperlinks utilized in the H T M L 
imgsSrc <img> tag with set source 

linksHref <link> tag with set hyperlink 
formPhp <form> tag refers to a .php file 

externalJS < script > tag with set source 
anchorsToHash <a> tag refering to character # 

formJS <form> tag refers to an empty JavaScript code 
formHash <form> tag refers to character # 
iconHttp <link> tag refers to external shortcut icon 

csslnternal <link> tag with stylesheets located in an internal source 
aToVoid <a> tag refers to an empty JavaScript code 

inputPass <input> tag with type password 
scriptAsync < script > tag with set async 
links Type <link> tag with type set to text/ess 

Table 6.1: H T M L features. 
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Name Feature description 
linkTypeApp <link> tag with type set to application/rss+xml 
scriptsType <script> tag with type set to text/javascript 

hiddenEl H T M L element has set the hidden attribute 
inpHidden < input > tag has type set to hidden 

Table 6.1: H T M L features. 

6.4 JavaScript features 

These are mainly JavaScript methods that are known to be associated with some malicious 
activities assembled from studies [31, 17]. For example, if an immense average word length 
is accompanied by string concatenation or methods like escape or unescape, it could indicate 
that attackers hide the code, which is a highly suspicious activity [17]. Another example is 
the combination of the methods unescape and write, which is typically used to decode and 
execute thousands of encrypted characters and generate a website without having a single 
H T M L tag visible in the code of a web page. This is a common trait of malicious websites. 
The JavaScript features are shown in Table 6.2. A l l of the JavaScript features represent a 
number of callings of a specific method. 

Name Feature description 
createElement Modifies the web page 

write Modifies the web page 
charCodeAt Obtains the Unicode of the character 

concat Concatenates string values 
escape Creates string where certain characters have been escaped 

eval Evaluates string and returns its completion value 
exec Searches with regular expression for a match in a string 

fromCharCode Returns a string from a Unicode value 
link Method wraps a string in an <a> tag 

parselnt Returns an integer parsed from the given string 
replace Replaces match in a string by the given value 
search Searches with regular expression for a match in a string 

substring Returns string that includes the set part of the input 
unescape Creates string where escaped characters are unescaped 

addEventListener Sets up an event attachment 
setlnterval Executes code with a delay between calls 
setTimeout Executes code after the timer expires 

push Adds a specified element to the end of an array 
indexOf Returns the index where the element is found in an array 

document, write Modifies the web page 
get Binds an object to a function that will be called 
find Returns the element from an array that matches the test 

document .CreateElement Modifies the web page 
window. setTimeout Executes code after the timer expires 
window.setlnterval Executes a code with a delay between calls 

Table 6.2: JavaScript features. 
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6.5 Document level features 

Analysis of document level features helps determine if a code is written naturally. These 
features can also indicate if the code or a part of the code is encrypted or obfuscated. 
Document level features are very effective as they provide insight into how the H T M L 
code is composed. For example, these features analyze the length of code from different 
perspectives, and as already mentioned in the analysis of scraped data in Section 5.2, the 
length of benign and phishing H T M L code is polarizing, which makes it a great feature. 
These features were included from study [17]. Document level features are displayed in 
Table 6.3. 

Name Feature description 
AllLines Number of lines in an H T M L document 

Average WordLength Average word length in an H T M L document 
UniqueWords Number of unique words in an H T M L document 

AllWords Number of words in an H T M L document 

Table 6.3: Document level features. 

6.6 Extracting H T M L features 

To find and store desired features from code, I created method parseHtml in module 
parse.py. This method takes three parameters: scraped H T M L code in the form of Beau­
tiful Soup constructor, external JavaScript code, and raw H T M L . The method utilizes the 
python package Beautiful Soup 1, which can be used to extract data from H T M L and X M L 
files. Beautiful Soup creates a parse tree based on specific criteria that can be used to 
navigate, extract, and search exact data from H T M L . Wi th the help of this package, the 
parseHtml method can extract all of the features mentioned in Table 6.1 and store them in 
the database. 

6.7 Extracting JavaScript features 

Figure 6.5 displays how the extraction of features is carried out in the program. The figure 
shows that the program identifies two types of JavaScript code: inline and external. To 
avoid additional callings of method parse Js, which is a method used to extract JavaScript 
features, I have combined these two types of JavaScript in the method parseHtml, previously 
discussed in Section 6.6. By using the Beautiful Soup package, I can extract a list of all 
the inline JavaScript code in an H T M L file. Additionally, as mentioned in the previous 
section, method parseHtml has access to the external JavaScript of the page. By combining 
these two lists, I have created a comprehensive list of all the JavaScript code used in the 
H T M L file. This combined list makes it easier for regular expressions to look for JavaScript 
features and keep count of them. These pieces of information are then returned to method 
parseHtml and later stored in the database. 

1https: / / pypi.org/project/beautifulsoup4/ 
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Web page 

HTML and 
JS code 

Extracted HTML and 
JS features 

Extract inline JS 
and unite it with external JS 

X1 /• List of united JS 

parseHtml 

1 1 
parseJs Extract JS features 

Extracted JS features 

Extract HTML and 
document level features 

Figure 6.5: Extraction of features in program. 

6.8 Extracting document level features 

With the usage of basic Python string methods like split or splitlines, method parseHtml 
is able to quickly extract desired information about the H T M L code of the web page and 
later store these data in the database. 
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Chapter 7 

Dataset 

This chapter explains the nature of the created dataset and analyzes the extracted features. 

7.1 Information about the dataset 

This dataset is created by data scraped from 31481 URLs . As shown in Figure 7.1, the 
dataset is imbalanced, consisting of 22624 benign and 8857 malicious web pages. As shown 
in Figure 7.1, the dataset is imbalanced, consisting of 22624 benign and 8857 malicious web 
pages. This dataset comprises features extracted from H T M L and JavaScript code, which 
are all numerical. The dataset is stored in file dataset.csv. 

Figure 7.1: Dataset contents. 
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7.2 Feature correlation 

The correlation matrix is utilized in machine learning during feature selection. It reveals the 
features that provide duplicate information. However, a high correlation does not always 
indicate redundant information. 

coneat -

parselnt 

replace 

setTimeout -

indexOf -

All Lines -

All Words -

unqWords -

AvgWrdLen 

allHrefs • 

mstCmn 

anchors 

AllTags 

divs -

scriptsType • 

intHrefs 

JnpPais&wrd 

linkTApp 

extHrefs • 

inputs 

scripts • 

formPhp 

1.00 0.46 0.57 0.56 0.54 

0.46 0.69 0.64 

0.57 0.69 1.00 

0.56 

0.54 0.64 0.80 L00 

Figure 7.2: Correlation heatmap of 22 features. 

Figure 7.2 displays that the highest correlation is between feature anchors and allHrefs. 
Feature anchors represent the number of all anchor tags and feature allHrefs represent the 
number of all hyperlinks utilized in the H T M L document. The correlation is a result of 
the H T M L tag anchor usually being used with hyperlinks, but hyperlinks can be used with 
other tags as well. So, this correlation does not indicate redundant information. Other 
higher correlations can be found between JavaScript methods used in work with strings, 
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such as replace and indexOf. This correlation does not indicate redundant information, as 
these methods are usually combined but not always. Removing these features only based 
on correlation would cause information loss during model training. The correlation matrix 
of all features can be found in Appendix B. 

7.3 Analyzing document level features 

Table 7.1 displays the average values of document level features extracted from scraped 
H T M L . These values indicate that benign websites, on average, tend to have more lines of 
code, more words, and more unique words in their code, which is in line with expectations 
as phishing web pages tend to use hyperlinks to load content from legitimate web pages. 
Another expected difference was the average word length, which was found to be signifi­
cantly longer in phishing pages. As noted in [17], it is widespread for phishing pages to 
contain long encrypted strings. This statement also applied to scraped phishing data in 
this dataset, as discussed in Section 5.3. Observing the average word length makes it pos­
sible to detect phishing web pages that hide their suspicious parts of code. Some phishing 
pages even encrypt or obfuscate their entire code, making the extraction of other features 
impossible. 

Feature Benign Phishing 
Al l lines 1860 753 
All words 8140 2810 
Unique words 2713 1071 
Average word length 18 4982 

Table 7.1: Average values of document level features. 

7.4 Analyzing H T M L features 

Table 7.2 shows the average values of 15 selected H T M L features from the dataset. Con­
sidering that data from Section 7.3 reveal that benign web pages, on average, contain more 
H T M L code, it is not surprising that they contain more H T M L tags than phishing web 
pages. The statistics about anchors and hyperlinks show an enormous gap between phish­
ing anchors and hyperlinks and benign anchors and hyperlinks. Study [10] presents that 
legitimate websites have many other web pages connected via links so you can browse them. 
On the other hand, phishing websites have a limited number of web pages. This explains 
why this gap is so huge. However, what might come up as a surprise is that, on average, 
phishing web pages from this dataset use more internal than external hyperlinks. This con­
tradicts the information about phishing pages duplicating most of their code from benign 
web pages mentioned in Subsection 6.3.1. Nevertheless, the data shown in Figure 7.3 can 
explain this. Approximately 20% of the internal hyperlinks found in phishing web pages 
from this dataset do not refer to any file, image, or script. They either refer to the top 
of the page itself by character #, to an empty string or trigger empty JavaScript code. 
These hyperlinks are usually used as fillers for buttons that trigger action on legitimate 
pages. This is connected to the previously mentioned statement that legitimate websites 
have many other web pages connected via links, but phishing websites have a limited num­
ber of web pages. However, using these internal hyperlinks as fillers means that most of 
the loaded content comes from external sources, which was originally expected. Despite 
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phishing pages utilizing fewer input tags, these pages ask for more passwords on average. 
Another essential difference between benign and phishing H T M L code is reusing the same 
link in anchor tags. On average, 40% of all hyperlinks in anchor tags from phishing web 
pages refer to the same link, which serves as another page populating tacting similar to the 
usage of characters like #. 

Internal hyperlinks 
#, "", javascript:; 

Figure 7.3: Percantage of internal hyperlinks that do not point to any content. 
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Feature Benign Phishing 
Al l hyperlinks 205 24 
Ratio of most commonly referred U R L 0.1 0.4 
Anchors 193 17 
All tags 990 180 
Divs 186 53 
Scripts with type „text / javascr ipt" 14 3 
Internal hyperlinks 87 13 
Inputs with type „password" 0.1 0.3 
Links with type „ a p p l i c a t i o n / r s s + x m l " 0.6 0.1 
External hyperlinks 118 11 
Inputs 8 4 
Inline JavaScripts 17 5 
Forms with action to .php file 0.2 0.2 
Anchors to .com 24 2 
Links that reffer to H T T P s 11 3 

Table 7.2: Average values of 15 H T M L features. 

Figure 7.4 compares the values of features allHrefs, inputPassword, and anchors in 
phishing and benign H T M L documents. The analysis shows that the combination of heavy 
usage of anchors and hyperlinks indicates that the web pages are benign. On the other hand, 
using fewer hyperlinks and having multiple inputs marked as passwords is more typical for 
phishing web pages. A similar relation is between the input password and a number of 
anchor tags. Using fewer anchors and asking for more passwords signifies a phishing web 
page. These relations are very polarizing, as apparent differences between phishing and 
benign web pages can be found in the plots. These features seem to be very consistent, 
making them reliable to utilize for classifying web pages. 
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Figure 7.4: Relation between H T M L features. 

7.5 Analyzing JavaScript features 

Table 7.3 displays the average values of 15 selected JavaScript features from the dataset. 
These values suggest that benign web pages, on average, utilize slightly more JavaScript 
methods. This is interesting because according to data in Table 7.1, benign web pages 
have two times more lines of code in them, which suggests that phishing web pages are 
assembled mainly by JavaScript methods, which generate pages and methods used for code 
obfuscation or encryption and decryption. However, the presence of these methods alone 
does not indicate that the site is benign or malicious. These features provide more valuable 
information when incorporated with the other features. For example, [17] states that the 
combination of immense average word length and usage of function eval indicates malicious 
activity. 
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Feature Benign Phishing 
exec 19 21 
escape 2 1 
push 198 153 
substring 22 12 
document.CreateElement 19 9 
search 2 1 
find 59 24 
createElement 89 64 
get 94 62 
window. SetTimeout 2 2 
concat 101 102 
parselnt 36 20 
replace 88 66 
setTimeout 35 22 
indexOf 95 58 

Table 7.3: Average values of 15 JavaScript features. 

Figure 7.5 also supports the statement from [17]. The figure displays relations between 
JavaScript methods escape, concat, and a document level feature average word length in 
phishing and benign web pages. The relation of average word length and method escape 
shows that higher average word length and few uses of method escape, often used in code 
obfuscation, indicate a phishing web page. However, a lower average word length indicates 
that the code is not obfuscated or encrypted. Even when combined with higher usage of 
method escape, this information still indicates a benign web page. 

Similarly, method concat is associated with obfuscation, and the plot displays the same 
pattern. The relation of the two JavaScript methods indicates that the heavy usage of 
these methods is not problematic as the benign pages utilize these methods more, but 
benign pages do not have such an enormous average word length. These plots confirm that 
the JavaScript features provide more helpful insight when accompanied by other features. 
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Figure 7.5: Relation between JavaScript features and Average word length. 
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Chapter 8 

Training and tuning of models 

This chapter provides information on creating and fine-tuning various phishing detection 
models trained by using different machine learning algorithms. It also introduces utilized 
evaluation metrics and tuning of hyperparameters and compares the performance of each 
untuned and tuned classifier. 

8.1 Evaluation metrics 

These are metrics used to evaluate created models. In my program, I utilize accuracy 
score, balanced accuracy score, precision, recall, R O C - A U C curve, false positive rate, false 
negative rate, and F l score. 

As stated in [21], accuracy score is a measure that informs how many of all the made 
predictions were correct. Figure 8.1 shows how the accuracy of the model is calculated. A l l 
accurate predictions of class one called true positives, and true negatives, which are correct 
predictions of class two, are summed up. These accurate predictions are then divided 
by a summary of all predictions. The summary comprises true positives, true negatives, 
false negatives, predictions that inaccurately labeled class one, and false positives, which 
inaccurately marked class two. 

This metric can be misleading when the evaluated data contains more samples of one 
class. When evaluating such data, the accuracy score fails to punish the misclassification 
of underrepresented data, which is why I only utilize the accuracy score in the controlling 
mechanism described in Subsection 8.5.2. 

. true positives + true negatives 
Accuracy = — : — : — — 

true positives + true negatives + false negatives + false positives 

Figure 8.1: Calculating accuracy 

On the other hand, a balanced accuracy score is a measure that is utilized to evaluate the 
performance of classification models on imbalanced data, according to [12]. The balanced 
accuracy is calculated using true positive and negative rates. The true positive rate, also 
known as recall, is a metric that evaluates if the model correctly identifies true positives. 
On the other hand, the true negative rate is the number of negative samples correctly 
predicted by the model. Figure 8.2 displays how these metrics are calculated. The balanced 
accuracy considers both minority and majority classes. It provides a fair description of the 

43 



performance that the evaluated model achieved, making it more trustworthy when working 
with imbalanced data. 

T P R + T N R 
Balanced accuracy = — 

T P R 

T N R 

2 
true positives 

true positives + false negatives 
true negatives 

true negatives + false positives 

Figure 8.2: Balanced accuracy 

Figure 8.3 displays how precision is calculated. Precision defines how many predicted 
positives were labeled correctly. 

true positives 
Precision true positives + false positives 

Figure 8.3: Precision 

As shown in Figure 8.4, thanks to combining precision and recall, the F l score is better 
at evaluating models trained on imbalanced datasets than accuracy. If the trained model 
has low precision and high recall, the F l score will punish this. For example, if the precision 
value was 40% and recall was 80%, the F l score of this model would be only 53%. 

precision • recall 
F l = 2 • precision + recall 

Figure 8.4: Calculating F l 

Figure 8.5 displays how false positive and negative rates are calculated. The false 
positive rate is the probability that a true negative will be misclassified. Similarly, the false 
negative rate is the probability that a true positive will be misclassified. It is beneficial to 
evaluate these properties of classifiers as they can indicate how reliable the classifier is. 

false positives 
F P R = — - — :  false positives + true negatives 

m T „ false negatives 
F N R = — :  false negatives + true positives 

Figure 8.5: False positive rate and false negative rate 

The last utilized evaluation metric is the R O C - A U C curve. This metric provides in­
formation about how much the classifier can distinguish between classes. The higher the 
values of the A U C score, the better the model is at distinguishing. The R O C curve is cre­
ated by comparing the true positive rate and false positive rate of a classifier to a random 
assignment. The A U C value is a representation of the area under the R O C . The total area 
is equal to 1, which means a very good classifier should have a value of A U C close to 1. 
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8.2 Data preparation 

The dataset used for training the model must be extracted and preprocessed before the 
training. The module train.py and method getTrainData were created to achieve this. 
This method takes two optional arguments collection, which contains MongoDB collection 
where the training dataset is stored, and csvFile, if collection with data is not specified, the 
dataset will be loaded from the given csv file. The dataset is then extracted and stored in 
pandas1 data frame. The data frame is then split into two. One contains features, and one 
contains class labels. These data frames are then split into training and testing parts. 80% 
of these data frames is stored in variables dX_train, which contains features of web pages 
and y_train, which contains a label of these pages. These variables are used to train the 
model. The other 20% is stored in variables X_test and y_test. These variables are used 
to test the created model as the model previously never saw these data. 

However, some machine learning algorithms, such as S V M , perform better when the 
training data are normalized [23]. For this case, the module train.py contains method 
getNormalizedTrainData, which normalizes the data before splitting them into training and 
testing samples. This normalization is carried out using the MinMaxScaler from package 
sklearn 2, which utilizes a Min-max method. As shown in Figure 8.6, this method scales each 
feature based on maximal and minimal values to a range from 0 to 1. After normalizing data 
frames, they are split into a training and testing set. The method getNormalizedTrainData 
takes four optional arguments collection and csvFile, which operate the same way as in 
method getTrainData and arguments saveScaler and filename. These arguments enable 
the saving of the scaler utilized to normalize training data, which makes it possible to 
apply the same scaler later while making predictions in a non-training environment, as the 
data will have to be normalized by the same scaler as the model that makes the prediction. 
The scaler that I utilized during training is saved in file scaler .joblib, which is later 
utilized during experiments to scale the input data to the format used during the training 
of the classifier. The scaler clips the data to a range of 0 and 1, meaning if in production 
some feature had a higher value than Xmax, such feature will not be scaled to a value bigger 
than 1. 

-y- A A m j n 

~ Y l y 
max mm 

Figure 8.6: Min-max normalization 

8.3 Model training in program 

The goal of creating the models is to achieve the most reliable and accurate predictions 
possible in a short time period so that predictions can be made in real-time. For these 
reasons, four machine learning algorithms are utilized in the program. These are L igh tGBM, 
XGBoost, Support vector machine, and Neural Networks. Models of these algorithms are 
tuned and trained by methods from module train.py. 

Methods GetLightGBMmodel and getXGBoostModel function in a very similar way, and 
both take one argument trainData, which is a list of variables that is obtained by method 
getTrainData mentioned in Section 8.2. These methods create and return an instance of 

1https://pandas.pydata.org/  
2 https: / / scikit-learn. org / stable / 
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L i g h t G B M or XGBoost classifier, which both have set tuned hyperparameters obtained by 
tuning methods described in Section 8.5 and Section 8.8. 

Method getSVMmodel operates similarly but takes argument normalizedTrainData, 
which can be obtained by utilizing method getNormalizedTrainData. It is crucial to use the 
normalized data because the algorithm Support vector machine performs best with such 
data. The created classifier is again trained with tuned hyperparameters obtained from the 
tuning method described in Section 8.11. 

Finally, the neural network training is performed by method getNNModel. This method 
accepts one parameter trainData. The architecture of the neural network in my program 
is composed of several layers. The first layer is the normalization layer. This layer is 
responsible for the normalization of the input data. Thanks to this layer, it is possible 
to take the unnormalized data as input, making it more convenient to make predictions 
on data in a non-training environment. Because this scaler is already built into a model, 
there is no need to save it to normalize the previously unseen data. The normalization 
layer is followed by the input layer, dropout layer, hidden layer, another dropout layer, 
and finally, the output layer. To avoid overfitting, I employed a method that consists of 
inserting a dropout layer between the input and hidden layers and another dropout layer 
between the hidden and output layers. [16] states that this technique randomly disconnects 
some neurons in a neural network during training. These disconnects can be beneficial and 
prevent overfitting because they force the neural network to learn more robust features, as 
it can not rely on any particular neuron. These layers utilize hyperparameters, activational 
functions, and an optimizer determined during tuning described in Section 8.14. 

8.4 L i g h t G B M model training 

The initial model trained before any tuning achieved promising results according to the 
evaluation metric F l score. During training, this model was tested on data previously 
unseen by the model and achieved an F l score of 92%. While this score is great for an 
untuned model, it is essential to analyze the behavior of this model further because a 
great score during training does not mean the model will perform well in a non-training 
environment. 

The confusion matrix in Figure 8.7 visualizes the performance of the trained model 
during testing. The confusion matrix shows that the model successfully identified 4369 
benign web pages and 1646 phishing web pages. However, it identified 204 benign web 
pages as phishing pages and 78 phishing pages as benign web pages. Table 8.1 displays a 
more detailed analysis of the performance of the untuned model. The false positive and 
false negative rates are relatively similar, which means that the untuned model struggles 
with the misclassification of both classes similarly. The achieved precision also confirms 
that the untuned model struggles with predicting benign labels, as the achieved precision 
score is the worst of all metrics. Even though the achieved balanced accuracy is great, 
with a score over 95%, the model can still be improved by proper tuning, decreasing false 
positive and false negative rates, thus making the classifier more reliable. 

F l score Recall Precision Balanced accuracy F P R F N R 
92.11% 95.48% 88.97% 95.51% 4.46% 4.52% 

Table 8.1: Results of untuned L i g h t G B M model. 
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Figure 8.7: Confusion matrix of untuned L i g h t G B M model. 

8.5 L i g h t G B M hyperparameter tuning 

The tuning of hyper parameters is an automated process carried out by method optimize-
LightGBM in module train.py. This method takes three arguments trial, dataTrain and 
dataControl. Trial is part of a greater study provided by package optuna and its class 
Study. This trial can suggest multiple possible values to different hyperparameters of a 
classifier and test predictions of these classifiers. It compares the results of each and tries 
to maximize the values of evaluation metrics in every trial. In the end, it picks the trial 
with the best results and returns its hyperparameters. 

8.5.1 L i g h t G B M hyperparameters 

To efficiently and correctly use optuna and its studies, it is crucial to understand what 
parameters need to be tuned and approximately what values should be suggested to the 
classifier. Many parameters can cause overfitting if they are set incorrectly, and many other 
can help fight the overfitting of the model. 

[24] states that to fight the problems with overfitting, it is needed to use smaller 
num_leaves, which is a value that sets the maximal number of leaves in one tree, then 
smaller max_bin, which is a parameter that is setting a maximal number of bins that fea­
ture values will be bucketed in and smaller min_child_samples, which is a value that is 
setting a minimal number of data in one leaf. Another suggested method to fight overfitting 
is utilizing bagging by setting bagging_fraction and bagging_freq, and also employing 
feature subsampling by setting colsample_bytree. Using regularization by trying pa­
rameters like lambda_ll, lambda_12 and min_split_gain can also lower the chances of 
overfitting. Avoiding deeper trees by setting lower max_depth can also be beneficial. 
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[24] also provides information on achieving higher prediction accuracy. It is advised to 
use large max_bin, small learning_rate with large n_estimators, which is a parameter 
setting a number of boosting iterations, or use large num_leaves. 

8.5.2 Avoiding overfitting 

The dangerous part of optimizing hyperparameters with optuna studies is that the trials 
suggest values of hyperparameters at random with the intent to achieve the best score 
possible. This intent can easily cause an overfitting issue when the model performs very 
well on the training and testing data, but in the real environment, the model will fail. In 
other words, the information gain of the model will no longer bring any benefit to it. 

To prevent this issue, I implemented a controlling mechanism. I created a small dataset 
that includes contents of scraped benign web pages that phishing attackers very commonly 
impersonate. Among these pages are Facebook, Instagram, PayPal, Netflix and Microsoft. 
The dataset also contains phishing web pages that target these benign pages. Every created 
model in a study will then be tested by making predictions on the testing part of the dataset 
and also on predicting values of pages from this small control dataset. This testing ensures 
that the trained model is capable of spotting a difference between a benign login page 
and a phishing web page. This method works as a kind of cross-validation, but instead 
of randomly choosing a part of the training dataset, I collected these pages that may be 
difficult to classify. This control dataset is represented in method optimizeLightGBM by 
argument dataControl and is stored in file controlData. csv. After the optuna study ends, 
it returns a trial that achieved the best F l score on testing data and the best accuracy on 
the control dataset. 

Listing 8.1 shows how this process is implemented in code. The method uses a trial 
to suggest possible parameter values for the L i g h t G B M classifier. After the suggestion of 
values, the model is trained and makes predictions on testing samples. Then, the model 
makes predictions on the control dataset. These predictions are evaluated by metrics F l 
score and accuracy score. The accuracy score is used only to evaluate the predictions made 
on the control dataset because I only care about models that achieve 100% accuracy on 
this dataset, as tuned models must be able to differentiate phishing web pages from benign 
login pages. These evaluations are returned and used later to find the best-performing 
tuned model. 
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def optimizeLightGBM( 
self, 
trial: optuna.Trial, 
dataTrain: list[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, float], 
dataControl: list[numpy.ndarray, list], 

) - > list: 
lightGBM = lightgbm.LGBMClassifier( 

max_depth=trial.suggest_int("max_depth", 1, 15), 
num_leaves=trial.suggest_int("num_leaves", 2, 1024), 
n_estimators=trial.suggest_int("n_estimators", 10, 4000), 
lambda_ll=trial.suggest_float("lambda_ll", 0.00001, 0.1), 
lambda_12=trial.suggest_float("lambda_12", 0.00001, 0.1), 
bagging_fraction=trial.suggest_float("bagging_fraction", 0.05, 1.0), 
bagging_freq=trial.suggest_categorical("bagging_freq", [0, 1]), 
max_bin=trial.suggest_int("max_bin", 256, 1024), 
learning rate=trial.suggest_float("learning rate", 0.01, 0.3), 
min_child_samples=trial.suggest int ("min child samples", 2, 100), 
min_split_gain=trial.suggest_float("min split_gain", 0.00001, 2), 
colsample_bytree=trial.suggest_float("colsample_bytree", 0.05, 1.0), 

) ^ example of parameter tuning 
model = lightGBM. fit (dataTrain [0], dataTrain[2]) # fitting X_train and y_train 
predictions = model.predict(dataTrain[l]) # predictions on testing part of dataset 
predictionsC= model.predict (dataControl [0]) # predictions on control dataset 
return [fl_score (dataTrain [3], predictions),accuracy_score(dataControl[l], predictionsC)] 

Listing 8.1: Tuning of hyperparameters in code 

8.6 Results of L i g h t G B M tuning 

The tuning of hyperparameters caused an increase in the F l score of the model. The score 
of the tuned model is 94.7%. As shown in Figure 8.8, the number of benign pages classified 
as phishing pages is drastically lower than on the untuned model. This improvement implies 
that the tuned model can more reliably discover differences between legitimate login and 
phishing pages. The tuning caused a slight increase in the number of phishing pages clas­
sified as benign. These results are also confirmed by Table 8.2. The tuned model managed 
to achieve a very good false positive ratio of 2%. The precision of the model also drastically 
increased, resulting in an improved F l score. A balanced accuracy score also indicates that 
the model is more reliable than the untuned model. The false negative rate increased, but 
overall, the tuning positively impacted the model. 

F l score Recall Precision Balanced accuracy F P R F N R 
94.7% 94.78% 94.61% 96.37% 2.03% 5.22% 

Table 8.2: Results of tuned L i g h t G B M model. 
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Figure 8.8: Confusion matrix of tuned L i g h t G B M model. 

8.7 X G B o o s t model training 

The untuned model, which included only default values of hyperparameters, performed 
with a very good F l score of 93.6%. Figure 8.9 presents a confusion matrix of the untuned 
XGBoost model. This confusion matrix presents a balanced number of false positives and 
false negatives. However, it is vital to keep the class imbalance in mind, as the false 
negative rate in Table 8.3 displays that the model struggles with classifying phishing web 
pages significantly more than benign pages. This imbalance could be caused by a slight 
overfitting of the classifier during training, which might cause this bias. Both precision and 
recall scores indicate that the untuned classifier is good at predicting benign pages. The 
achieved balanced accuracy score is also good. The main goal of tuning the XGBoost model 
is to decrease the false negative rate value by solving the slight overfitting problem, thus 
achieving a more reliable classifier. 

F l score Recall Precision Balanced accuracy F P R F N R 
93.62% 94.08% 93.16% 95.74% 2.60% 5.92% 

Table 8.3: Results of untuned XGBoost model. 
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Figure 8.9: Confusion matrix of untuned XGBoost model. 

8.8 X G B o o s t hyperparameter tuning 

Method optimizeXGBoost is responsible for tuning the XGBoost model. This method takes 
three arguments. The first one is trial followed by dataTrain and dataControl. The argu­
ments are the same as those described in Section 8.5, as both optimizing methods are based 
on the package optuna and its study. Similarly, the mechanism that prevents the overfitting 
of the trained module is the same as described in Subsection 8.5.2. The hyperparameters of 
the XGBoost classifier are similar to the L i g h t G B M as these machine learning algorithms 
both utilize gradient-boosted decision trees. This means that parameters like max_depth, 
learning_rate, max_bin, n_estimators are all present and helpful both with overfitting 
issues and increasing the knowledge of the model. However, XGBoost handles imbalanced 
data differently. The algorithm takes parameter scale_pos_weight to handle imbalanced 
data properly. This parameter is a ratio of the number of negative instances and the number 
of positive instances. This ratio is included in the argument dataTrain. 

8.9 Results of X G B o o s t tuning 

The tuned XGBoost model finished with an F l score of 94.49%, which is a slight increase 
compared to the untuned version. As shown in Figure 8.10, the tuned model has improved in 
classifying phishing and benign web pages and is now more consistent in making predictions. 
These results of tuning are also indicated by evaluation metrics displayed in Table 8.4. The 
achieved values of evaluation metrics have improved by model tuning, resulting in a more 
reliable and accurate classifier. The XGBoost model is on par with the tuned L i g t h G B M 
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model. However, the XGBoost model is slightly worse at classifying benign web pages but 
has a lower false negative rate than the tuned L i g h t G B M classifier. 

F l score Recall Precision Balanced accuracy F P R F N R 
94.49% 95.01% 93.98% 96.36% 2.30% 4.99% 

Table 8.4: Results of tuned XGBoost model. 
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Figure 8.10: Confusion matrix of tuned XGBoost model. 

8.10 Support vector machine model training 

The untuned S V M classifier performed much worse than the previous ones, with an F l 
score of 76%. The confusion matrix shown in Figure 8.11 confirms this. The number of 
false positives and false negatives is much higher than in previous algorithms. Table 8.5 
also displays much worse results than the results achieved by previous untuned classifiers. 
The model fails to classify both classes reliably, but the false negative rate is higher than 
the false positive rate, which indicates that the classification of phishing pages is more 
problematic than the classification of benign pages. The achieved precision score shows 
that only 71% positive predictions were correct, confirming that the classification of benign 
pages is also troublesome. The hyperparameter tuning should be helpful, as the untuned 
model seems to have issues with underfitting. 

F l score Recall Precision Balanced accuracy F P R F N R 
76.06% 81.90% 70.99% 84.64% 12.61% 18.10% 

Table 8.5: Results of untuned S V M model. 
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Figure 8.11: Confusion matrix of untuned Support vector machine model. 

8.11 S V M hyperparameter tuning 

The tuning of the Support vector machine model is carried out by method optimizeSVM. 
The tuning is performed by utilizing class GridSearchCV from package sklearn. This class 
performs the model training with previously given parameters, which should be tried. When 
it finishes training all models, it chooses the one that achieved the best score on specified 
evaluation metrics. Support vector machine offers much less variety of hyperparameters 
than L i g h t G B M or XGBoost. However, some crucial parameters must be tuned to achieve 
optimal results. 

One such is parameter C. As stated in [1], it is a regularization parameter that influ­
ences the trade-off between maximizing the margin and minimizing the classification error, 
which means that a smaller value of C allows for a broader margin and, therefore, more 
misclassifications. In comparison, a more significant value of C punishes misclassifications 
more heavily, leading to a narrower margin. In other words, a higher value of C allows for 
more flexibility in the decision boundary, potentially leading to overfitting. Because the 
algorithm penalizes the errors while classifying more heavily. On the other hand, a lower 
value of C imposes a smoother decision boundary and may lead to underfitting. A lower C 
value also leads to a better generalization of unseen data. 

The following significant parameter is gamma. According to [1] gamma is used to determine 
how powerful will be the influence of the respective data points on the decision boundary. In 
other words, the higher the value, the fewer data points will impact the decision boundary, 
which can lead to overfitting. On the other hand, smaller values allow more data points to 
influence the decision boundary, which makes the decision boundary more generic. 
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The last parameter is kernel. This parameter allows one to choose from several kernels, 
such as linear, R B F , or sigmoid. Choosing an appropriate kernel is very important to get 
great results. In my program, I chose between kernels R B F , poly, and sigmoid as they 
are non-linear kernels, and the training data are non-linear. I determined the linearity of 
data by the method described in [26]. Determining whether the dataset is linear is possible 
by utilizing Linear regression and evaluation metric R-squared. If the evaluation metric R 
squared shows a value close to 1, it implies that the dataset is linear. The training dataset 
had an R-squared value of 0.43, which implies that the dataset is non-linear. 

8.12 Results of S V M tuning 

After tuning the hyperparameters, the F l score of the S V M model is 87.43%. This im­
provement is also displayed in Figure 8.12. The number of false positives and negatives 
has significantly dropped. However, the confusion matrix also reveals that the issue with 
labeling benign web pages as phishing pages prevails even after tuning, suggesting that 
the model might not be as reliable in spotting differences between benign login pages and 
phishing pages. Table 8.6 displays a detailed analysis of the performance of the tuned 
S V M classifier. Thanks to tuning, the model got better in every displayed metric. The 
model is more reliable than the untuned counterpart, as the false positive and false nega­
tive rates dropped significantly. However, these rates are relatively high, and the model is 
less reliable and accurate than the previous models. Even though the tuning was successful, 
the classifier performs much worse than the untuned versions of L i g h t G B M and XGBoost 
models. 

F l score Recall Precision Balanced accuracy F P R F N R 
87.43% 93.97% 81.74% 93.03% 7.92% 6.03% 

Table 8.6: Results of tuned S V M model. 
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Figure 8.12: Confusion matrix of tuned Support vector machine model. 

8.13 Neural network model training 

The F l score of an untuned neural network model is almost 80%. Moreover, the untuned 
classifier performs slightly better than the untuned S V M model. However, Figure 8.13 
displays a much different problem than any previous classifier struggled with. The untuned 
model heavily struggles with marking benign pages as phishing web pages. The precision 
score in Table 8.7 also confirms this. The achieved precision is only 69%. However, the 
untuned classifier lacks activation functions and an optimizer. The classifier should perform 
significantly better after fine-tuning these significant parts of the neural network. 

F l score Recall Precision Balanced accuracy F P R F N R 
79.74% 93.74% 69.39% 89.07% 15.59% 6.26% 

Table 8.7: Results of untuned Neural network model. 
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Figure 8.13: Confusion matrix of untuned Neural network model. 

8.14 Neural network hyperparameter tuning 

The hyperparameters are tuned by method optimizeNn, which takes two parameters tuner 
and dataTrain. The tuner parameter suggests values for the training of models. The 
dataTrain parameter contains the training part of a dataset and will be normalized by the 
normalization layer before tuning. The training of the model is carried out by Hyperband 
from package keras_tuner. This tuner uses a sports championship-style bracket. The 
algorithm trains many models for a few epochs and carries only the best-performing half of 
the models to the next round until it finds the best-performing classifier. This style saves 
a lot of time and resources. It evaluates the performance of models by given evaluation 
metrics, in this case, precision and recall. 

As mentioned in Section 8.3, the neural network has an architecture that consists of 
layers. The input and hidden layers have certain parameters which need to be tuned. One 
such is activation. This parameter chooses an activation function for a layer. [6] suggest 
three activation functions to try out during model tuning. These are relu, sigmoid and 
tanh. While using these activation functions, it is advised to use normalized input data. 
The next parameter to tune in layers is called units. This parameter specifies how many 
neurons will be employed in a particular layer. The last parameter for layers is rate. 
This parameter is used in dropout layers to determine what fraction of neurons will be 
disconnected during training. The only layer with a set activation function and a number 
of units is the output layer because the model needs to perform a binary classification, 
which is achieved by utilizing a sigmoid activation function and one unit. 

While compiling a neural network model, the algorithm uses an optimizer. This op­
timizer is employed to change the parameters of the neural network, such as weights or 
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learning rate, to reduce the losses during training [8]. While tuning, the program chooses 
from three optimizers adam, sgd, and rmsprop. A l l of these optimizers require a learning 
rate, which is also suggested by the tuner. 

8.15 Results of Neural network tuning 

After tuning, the neural network model achieved a 91.41% F l score, which is a significant 
improvement. The confusion matrix in Figure 8.14 shows that the tuned model can classify 
web pages much better than the untuned classifier. The number of web pages inaccurately 
classified as phishing pages has dropped from 713 to 203. This improvement suggests that 
the initial problem with classifying benign web pages as phishing pages that the untuned 
model had has been solved by tuning. The other metrics have all significantly improved, 
as shown in Table 8.8. The false positive rate and the precision score achieved significant 
improvements, resulting in a more reliable classifier. The performance of the tuned neural 
network model is much better than that of the tuned Support vector machine model. The 
tuned neural network model outperforms it in every metric. However, the tuned model still 
does not achieve the performance of L i g h t G B M or XGBoost. 

F l score Recall Precision Balanced accuracy F P R F N R 
91.41% 94.08% 88.88% 94.82% 4.44% 5.92% 

Table 8.8: Results of tuned Neural network model. 
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Figure 8.14: Confusion matrix of tuned Neural network model. 

57 



8.16 R O C - A U C analysis of tuned classifiers 

The ability of classifiers to differentiate between benign and phishing pages is crucial for 
successfully detecting phishing web pages. That is why this analysis, which verifies the 
ability to distinguish between the two classes, is essential to determine if the classifiers are 
of great quality. 

Figure 8.15 displays the R O C - A U C analysis of tuned classifiers. The x-axis displays 
values of false positive rate, which is the probability that a true negative will be misclassified. 
The y-axis consists of the true positive rate, a metric that evaluates if the model correctly 
classifies true positives. As stated in [45], the R O C curve, displayed as the orange line 
on the plots, represents the trade-off between the T P R and F P R while trying to increase 
T P R . The R O C curve compares the T P R and F P R of the classifier, while values of the true 
and false positives change as the threshold value changes. The threshold represents the 
value that determines how to convert the predicted values into class labels. As described 
in [32], a test with perfect discrimination has a R O C curve that passes through the upper 
left corner. That is why the closer the R O C curve is to the top left corner of the plot, the 
better the tested classifier is. The displayed plots show that the curves are close to the 
top left corner, indicating good quality. The A U C score in the R O C - A U C curve represents 
the ability to differentiate between the classes. The closer this value is to 1, the better the 
model differentiates. The achieved A U C score of all tuned classifiers is close to 1, meaning 
that all classifiers can spot differences between two classes well. 
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Figure 8.15: R O C - A U C of all tuned classifiers. 

8.17 Feature importance 

Another way to understand the classifier and relations between features and target variable 
is to analyze the feature importance of each classifier. To analyze the feature importance 
of the L i g h t G B M and XGBoost classifiers, I utilized Python's package shap 3. The shap 
values indicate the impact of each feature on the final prediction or the importance of every 
feature. These values are based on game theory, and each feature is assigned an importance 
value in the model. 

3https: / / shap.readthedocs.io / en/latest / 
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8.17.1 L i g h t G B M feature importance 

Figure 8.16 shows the five most important features utilized in the L i g h t G B M classifier 
according to shap. 

The most important feature utilized by the L i g h t G B M classifier is allHrefs, which 
is the number of all hyperlinks used in an H T M L file. Study [10] states that legitimate 
websites have many other web pages connected via links, and in H T M L , the destinations 
of these links are specified by hyperlinks, which means that the number of hyperlinks in a 
benign page should be higher on average. This statement was already confirmed to apply to 
the training dataset while analyzing H T M L features in Section 7.4. This parameter proved 
very polarizing as the average number of hyperlinks used in a benign web page from the 
dataset is significantly higher than in a phishing web page. This significant difference might 
be why the L i g h t G B M classifier relies on this feature the most. 

The second most important feature is mostCommon, which is the frequency of the most 
common anchor link divided by the number of all anchors. This feature is based on the 
fact that phishing web pages usually feed their pages with the same link in several anchors. 
The detailed reasoning behind this feature was already discussed in Subsection 6.3.3. While 
analyzing the average values of H T M L features in Section 7.4, it was discovered that, on 
average, 40% of anchors contain the same link in phishing web pages while only 10% of links 
are the same in benign pages. This significant difference might explain why the feature is 
so important. 

The third most important feature is anchors, a number of all anchor tags utilized in the 
H T M L . This feature is related to the usage of hyperlinks, as the anchor tag is usually paired 
with a hyperlink. The analysis of average values of H T M L features in Section 7.4 shows 
massive differences in anchor usage in phishing and benign pages. Similar to hyperlinks, 
benign pages use anchor tags much more than phishing pages, which might be the reason 
why this feature is so beneficial. 

The features AllTags and divs are similar. These features are very polarizing, as shown 
when analyzing the H T M L features. On average, benign pages utilize many more div tags 
and H T M L tags. It is tied to the fact stated in [10] that the phishing pages usually utilize 
hyperlinks to mimic other pages. This means that phishing pages utilize fewer H T M L tags 
to assemble the page and contain fewer lines of code. The massive difference in the usage 
of divs and H T M L tags might be the reason for the high importance of these two features. 
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Figure 8.16: Five most important L i g h t G B M features according to SHAP. 
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8.17.2 X G B o o s t feature importance 

Very similar features are dominant in the XGBoost classifier, as shown in Figure 8.17. The 
only different feature is called internalHref s, which keeps count of internal hyperlinks used 
in H T M L . As mentioned in Subsection 6.3.1, this feature is included in the feature vector 
because phishing pages usually obtain their content from external sources, while benign 
pages utilize their internal sources. While analyzing the values of H T M L features in Section 
7.4, it was found that benign pages utilize much more internal hyperlinks than phishing 
pages. This vast difference may be why this feature is among the five most important. 
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Figure 8.17: Five most important XGBoost features according to SHAP. 

8.17.3 S V M feature importance 

Because the S V M classifier does not use a linear kernel, the data are transformed to another 
space unrelated to the input space, so getting the feature importance is more complicated. 
Using the permutation feature importance technique makes it possible to obtain the feature 
importance. According to [22], this method is especially beneficial for non-linear classifiers. 
It randomly rearranges the values of a single feature and observes the degradation of the 
score achieved by the classifier. Breaking the relationship between the feature and the 
target variable makes it possible to determine how much the model relies on the particular 
feature. The results of the permutation importance of the S V M classifier are shown in 
Figure 8.18. 
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Figure 8.18: Five most important S V M features according to permutation importance. 

The most important feature in the S V M classifier is called maliciousForm, which is an 
H T M L form that refers to an external link, a P H P file, character or javascript:void(). As 
mentioned in Subsection 6.3.2, phishing attackers commonly utilize these forms to obtain 
data from their victims. This feature is used to differentiate benign and phishing login 
forms, which might be why the S V M classifier considers it the most important feature. 

The S V M classifier also relies on the feature noHrefs. This binary feature is 1 when 
the H T M L document contains no hyperlinks. Other times, it is 0. This feature is based 
on the information that benign web pages have many other links connecting them, and 
phishing web pages have only a limited number. Moreover, the phishing pages might hide 
or encrypt their H T M L code, making the analysis of hyperlinks impossible, which makes 
this feature very useful in such cases. As mentioned in Section 5.3, almost 14% of scraped 
phishing pages contain encrypted or obfuscated elements, which might be why this feature 
is so important. 

The feature scriptAsync represents a number of inline scripts with attribute async. 
The async scripts only work with external scripts. These scripts are usually used as scripts 
that run counters or display ads on web pages as these scripts run independently on other 
scripts and do not wait for D O M . The reason S V M considers this feature important might 
be the heavier usage by benign pages, as these web pages usually display ads. 

The last of the most important features for the S V M classifier is feature externalHref, 
which represents the number of external hyperlinks in an H T M L document. This feature is 
included in the feature vector because the phishing pages try to mimic other web pages and 
usually use external hyperlinks to achieve this. Another reason is the previously mentioned 
statement that benign pages have many other pages connected via links, which are usually 
external. This means that the external hyperlinks are heavily used by benign web pages, 
as shown in the analysis of H T M L features in Section 7.4, which might be the reason why 
the feature is this important. 
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8.17.4 Neural network feature importance 

I employed a gradient-based method to determine the importance of features in a neural 
network classifier. This method involves calculating the gradients of the network output 
concerning the input features to estimate their importance. A bigger absolute value of 
gradient indicates a more substantial impact on the output. Figure 8.19 shows the obtained 
feature importance. 

The features f ormHttp and f ormHash are similar to the feature maliciousForm. These 
features represent the number of H T M L forms that send the data from the form to an 
external link or character This action is considered malicious and might be important 
in determining if the login form is malicious or benign. 

The following feature is called escape. This feature represents the number of callings 
of the JavaScript method escape. This method is considered suspicious as it can be used to 
either encrypt or obfuscate the source code of a web page. This tactic is supposed to hide 
the code and make the analysis of the code impossible. This feature might be important 
as using this method in combination with a large average word length can uncover such 
tactics. 

The feature csslnternal represents the number of link tags with attribute rel set to 
stylesheet used to obtain style sheets from an internal source. This feature is included 
because benign pages tend to use their own style imported from the internal files. This 
might be the reason why this feature is so important. 
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Figure 8.19: Five most important Neural network features according to gradient-based 
method. 
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Chapter 9 

Experiments 

This chapter introduces experiments that were carried out to find out more information 
about behavior and possible improvements of tuned classifiers. It also provides an analysis 
and comparison of the performance of each classifier. 

In experiments, the classifiers were tested on 2174 previously unseen web pages. Figure 
9.1 shows the content of this dataset. Some experiments also utilize the testing data from 
the training dataset. This testing sample is composed of 6297 pages and is imbalanced. 

Figure 9.1: Dataset with unseen data. 
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9.1 Performance on unseen data 

This experiment aimed to evaluate the performance of tuned models in a non-training 
environment to see if these classifiers are usable in a realistic environment. These metrics 
carry out the evaluation: balanced accuracy score, false positive rate, false negative rate, and 
R O C - A U C curve. This experiment also verifies if the goal of creating reliable and accurate 
classifiers was accomplished. In the experiment, the tuned classifiers made predictions on 
pages from the unseen dataset displayed in Figure 9.1. Table 9.1 shows the results of the 
experiment. 

Algorithm Balanced accuracy False positive rate False negative rate 
XGBoost 97.03% 2.22% 3.73% 

L i g h t G B M 96.55% 2.30% 4.59% 
S V M 90.74% 7.54% 10.99% 
N N 95.40% 4.52% 4.68% 

Table 9.1: Results of the experiment. 

Although L i g h t G B M was the best-performing classifier during training, it did not per­
form the best on the unseen data. In fact, the Neural Networks model managed to catch up 
to the L i g h t G B M model despite having much worse performance during training. However, 
the XGBoost classifier outperformed all other classifiers, achieving a balanced accuracy 
score of 97.03%. On the other hand, the results of the S V M model were dissatisfactory. 
The classifier performed worse than during training and proved less reliable than other 
classifiers. The S V M classifier achieved a balanced accuracy score of only 90.74%. The 
false negative and false positive rates of this classifier were also much higher than during 
training. Except for the S V M classifier, all classifiers achieved a greater balanced accuracy 
score and lower false positive and false negative rates than during training. 

Figure 9.2 displays the R O C curve of all classifiers calculated on unseen data. The 
A U C is yet again a value close to 1 in all classifiers. However, the S V M classifier achieved 
lower A U C than during training, which makes it less reliable. Nevertheless, the three 
best-performing classifiers can differentiate between the two classes very well, even while 
predicting previously unseen data. 
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Figure 9.2: R O C - A U C curves on unseen data. 

The results of L igh tGBM, XGBoost, and Neural network classifiers were even better 
than during training. Based on this experiment, it can be stated that these three classifiers 
are all capable of making reliable and consistent predictions in a non-training environment. 
On the contrary, the S V M classifier performed worse than during training and did not 
prove that it can make reliable and correct predictions in the non-training environment. 
This experiment established that the XGBoost, L igh tGBM, and Neural network models 
achieved the goal of making reliable and accurate predictions. 

9.2 Performance with tuned threshold 

In binary classification, the threshold is utilized to convert the model scoring into a predic­
tion. [27] declares that using the default threshold value 0.5 for predicting outcomes might 
be problematic for some models, and it needs to be tuned as any other variable during 
model building. 
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This experiment aims to possibly improve the classifiers by uncovering the impact of 
such tuning on created classifiers while making predictions on training and unseen data 
introduced at the beginning of this chapter. [4] introduces a method that I will apply in 
this experiment. This method looks for an optimal threshold for the precision-recall curve. 
The method calculates class labels from probability predictions using different thresholds 
and calculates precision and recall based on these predictions. Knowing the precision and 
recall makes acquiring the threshold that produces the best F l score possible. Figure 9.3 
shows the calculated F l values and thresholds used to calculate the class labels for different 
machine learning algorithms. The dots on the F l values mark the spot where the F l score 
is the highest, which also marks the threshold this method seeks. 
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Figure 9.3: Threshold tuning. 

Tables 9.2 and 9.3 display the effect that threshold tuning had on the testing sample 
of training data. Thanks to this tuning, every classifier managed to increase its F l score 
while making predictions on the testing sample of training data. And in most cases, even 
the balanced accuracy score. 

Algorithm Threshold F l score Balanced accuracy Precision Recall 
XGBoost 0.5 94.49% 96.36% 93.98% 95.01% 

L i g h t G B M 0.5 94.70% 96.37% 94.61% 94.78% 
S V M 0.5 87.43% 93.03% 81.74% 93.97% 
N N 0.5 91.41% 94.82% 88.88% 94.08% 

Table 9.2: Values for training data with default threshold. 
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Algorithm Threshold F l score Balanced accuracy Precision Recall 
XGBoost 0.539037 94.50% 96.28% 94.28% 94.72% 

L i g h t G B M 0.557782 94.79% 96.33% 95.10% 94.49% 
S V M 0.566930 88.97% 93.13% 86.39% 91.71% 
N N 0.5839758 92.05% 94.90% 90.76% 93.39% 

Table 9.3: Values for training data with tuned threshold. 

However, this change had the opposite impact on predictions made on previously unseen 
data, as displayed in Tables 9.4 and 9.5. The balanced accuracy score of models with tuned 
threshold got worse, and so did the F l score, the only exception being the L i g h t G B M 
classifier, which got slightly better. 

Algorithm Threshold F l score Balanced accuracy Precision Recall 
XGBoost 0.5 96.92% 97.03% 97.58% 96.27% 

L i g h t G B M 0.5 96.43% 96.55% 97.46% 95.41% 
S V M 0.5 90.30% 90.74% 91.63% 89.01% 
N N 0.5 95.22% 95.40% 95.13% 95.32% 

Table 9.4: Values for unseen data with default threshold. 

Algorithm Threshold F l score Balanced accuracy Precision Recall 
XGBoost 0.539037 96.82% 96.93% 97.57% 96.08% 

L i g h t G B M 0.557782 96.47% 96.60% 97.56% 95.41% 
S V M 0.566930 89.63% 90.27% 93.65 % 85.95% 
N N 0.5839758 94.71% 94.91% 95.35% 94.07% 

Table 9.5: Values for unseen data with tuned threshold. 

This experiment shows that, while the threshold tuning proved to be beneficial during 
the training phase in the non-training environment, this change did not bring any benefit 
to most of the classifiers. Based on the results of this experiment, the classifiers will keep 
their default threshold values. 

9.3 Majori ty voting 

[3] introduces voting as the fundamental ensemble learning method. The voting technique 
is a powerful tool that harnesses the strengths of multiple classifiers to achieve superior 
performance and improve overall quality. This experiment aims to possibly improve the 
predictions by combining the three best-performing classifiers: XGBoost, L igh tGBM, and 
Neural networks. The experiment tries to achieve this by utilizing the hard voting method 
on training and unseen data. Hard voting or majority voting involves collecting the predic­
tions made by each tuned model and selecting the class label that receives the most votes as 
the prediction [3]. Figure 9.4 compares the F l scores of tuned classifiers and majority vot­
ing classifier applied to training data. The majority voting technique managed to improve 
the predictions of classifiers and overall increased the F l score. 

68 



94,49 94.7 94,82 

XGBoost LightGBM Neural Network Majori ty vot ing 
Model 

Figure 9.4: Majority voting results on training data. 

Figure 9.5 displays the comparison of balanced accuracy scores of classifiers that made 
predictions on unseen data. The majority voting results are still great, but the XGBoost 
classifier outperformed this method. However, overall, the voting technique performed very 
well on both training and unseen data, and this method is an intriguing alternative to 
ordinary classifiers. 

XGBoost LightGBM Neural Network Majority vot ing 
Model 

Figure 9.5: Majority voting results on unseen data. 
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9.4 Soft voting 

Soft voting is a technique that takes into account the probabilities of predictions instead 
of class labels. Therefore, this technique should be more sensitive than hard voting. This 
experiment aims to apply soft voting to the training and unseen data and compare the 
results of this technique to the previously achieved scores of hard voting. The experiment 
tries to determine if there is a significant benefit to using probability predictions instead 
of class labeling predictions. The three best-performing classifiers once more carry out the 
voting in this experiment. Figure 9.6 displays the comparison of F l scores achieved by 
the soft voting and hard voting techniques carried out on training data. In this case, the 
majority voting outperformed the soft voting. 

94.32 94.45 

Majority vot ing Soft vot ing 
Voting type 

Figure 9.6: Voting types on training data. 

However, Figure 9.7 presents the experiment on the unseen dataset. This time, taking 
the confidence of each classifier into account benefited the classification and improved the 
balanced accuracy score. However, both methods had very similar performance, and the 
results of experiments indicate that there is not any significant benefit in using probability 
predictions. 
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Figure 9.7: Voting types on unseen data. 

9.5 Summary of achieved results 

The first experiment tries to uncover any possible faults caused during the training and tun­
ing of models by making predictions on previously unseen data, simulating a non-training 
environment. The results revealed that the XGBoost classifier performed best while pre­
dicting the previously unseen data, achieving a balanced accuracy score of 97.03% and a 
low false positive rate of 2.22%. L i g h t G B M and Neural network classifiers also performed 
even better than during the training phase. This experiment concluded that these classifiers 
proved reliable and accurate. On the other hand, the S V M classifier performed worse than 
during training and failed this test, making it unreliable. This test established which tuned 
classifiers will be utilized in the web extension to detect phishing web pages. 

The second experiment introduced the concept of threshold tuning and analyzed the 
impact this tuning has on models. This experiment tries to improve the classifiers. How­
ever, the results proved drastically different. While the threshold tuning was beneficial for 
predictions made on training data in the non-training environment, it had the opposite 
effect. The experiment concluded that this tuning was not beneficial for the classifiers. I 
found this surprising as I expected some classifiers to benefit from this tuning significantly. 

The final two experiments explore the concept of voting in binary classification. These 
experiments aim to improve the quality of predictions by combining the strength of the 
best-performing classifiers. Both approaches to voting proved to be beneficial. However, 
I expected soft voting to outperform the majority voting approach completely. This was 
not the CctS6, ctS both approaches had very similar results. These experiments improved 
the quality of predictions, and the majority voting technique performed well enough to be 
included in the web extension that detects phishing web pages. 
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Chapter 10 

Web extension 

This chapter introduces a web extension for the Chrome browser and experimentally verifies 
the performance of classifiers in practice. This web extension is a proof-of-concept imple­
mentation that detects phishing web pages by utilizing the XGBoost model, established as 
the best-performing model in the non-training environment, or the majority voting tech­
nique, which employs the three best-performing classifiers. The assignment of this thesis 
did not require the creation of this extension, but I decided to implement it to demonstrate 
the usability of the created classifiers in practice. 

10.1 Functionality 

Figure 10.1 exhibits the functionality of the web extension. The extension is composed of 
two parts front end and back end. The front end interacts with the user and waits for a 
prompt that starts the process of analyzing the web page. After the prompt is given, the 
front end extracts the U R L where the user is currently located. This U R L is passed to the 
back end, which scrapes the given U R L . After acquiring the H T M L and JavaScript code 
of the given U R L , the acquired code is then parsed, and discovered features are assembled 
and fed to the classifier. After obtaining the necessary feature vector, the classifier makes a 
prediction, and the back end sends it back to the front end. After receiving the information, 
the front end displays the prediction to the user. 

Fron t -end 

Obtain prediction 

Click Ik 
User 

Prediction 

Message 

popup . j s 

URL of4 X 

Show prediction 

4 = 

web 
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content , 

Back -end 

Exctract and 
feed features to 
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Figure 10.1: Schema of web extension. 
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10.2 Front end implementation 

The front end consists of three files popup.js, popup.html, and content.js. File popup.html 
creates a user interface. The user interface is managed by file popup.js, which is responsible 
for catching the click of a user and sending a message that will be caught by the listener 
implemented in file content.js. Content.js can catch one of two messages either getUrl 
or getUrlMulti. These messages specify if the user chose the single classifier or majority 
voting option to make predictions. After getting the message, the listener will acquire the 
U R L of the current web page. After this, it will send the U R L and flag multi back to the 
listener in file popup.js. The flag multi is utilized to inform the back end about the type 
of classification to perform. The listener in file popup.js will then send the acquired U R L 
and flag multi to the back end on the endpoint '/req/?URL=&multi=', which will trigger 
the scraping process. After all processes in the back end finish, the back end will return a 
prediction to the listener in popup.js. This listener will then return the prediction to the 
listener in content.js that will display this prediction to the user. 

10.3 Back end implementation 

After receiving the U R L on the endpoint, the function getUrl in module views.py starts 
scraping the web page. H T M L and JavaScript code is scraped similarly to methods de­
scribed in Subsections 4.5.2 and 4.5.3. The concurrent approach that Asyncio provides 
makes the scraping very fast, even for web pages with lots of external JavaScript pages that 
need to be scraped as well. After obtaining the code of a web page, the back end parses 
the acquired data. The extraction of features is precisely the same as described in Chapter 
6. When extraction is finished, the features are used by one of two classification meth­
ods depending on which method the user selected. If the user selects the single classifier 
prediction, the prediction is carried out by the XGBoost model. On the other hand, the 
multi-classifier prediction is made by L igh tGBM, XGBoost, and Neural network models. 
The models vote, and the most popular answer is returned to the front end. 

10.4 Experiment 

This small-scale experiment aims to show the practical use of created classifiers. By uti­
lizing the web extension, I employed the XGBoost and majority voting classifiers to make 
predictions in a real environment. Table 10.1 shows that the predictions were made on 
benign login and phishing web pages. The predictions were made on popular phishing 
targets such as Facebook or Instagram, as well as on pages known only locally, such as 
Tatrabanka. The results demonstrate reliable and accurate predictions by both classifiers. 
The experiment concludes that the classifiers can function even in a real environment. 
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U R L XGBoost Voting Label 
https://www.facebook.com/ 0 0 0 

https://www. instagram.com/ 0 0 0 
https://moja.tatrabanka.sk/html-tb/ 0 0 0 

https://github.com/login 0 0 0 
https://important39. weebly.com/ 1 1 1 

https://ib. raiffeisen.sk/rn/ 0 0 0 
https://web.telegram.org/a/ 0 0 0 

https://discord.com/login 0 0 0 
https://vhanne-ranjeet.git hub. io/ Net flix-P r o j ect / 1 1 1 

https://www.netflix.com/sk/ 0 0 0 
https: / / sign-in-att-109479.weeblysite.com/ 1 1 1 

https://web.telegrenn.com/ 1 1 1 
https://im-token.ltd/ 1 1 1 

https://sp.tlskins.com/ 1 1 1 
https://www.dropbox.com/login 0 0 0 
https://www.linkedin.com/login 0 0 0 

https://mail.gOOggle.workers.dev/ 1 1 1 
https: //service.qoll.workers.dev/ 1 1 1 
https://www. vut.cz/login/studis 0 0 0 

https://yhgh.pages.dev/ 1 1 1 
https:/ / online.mbank.sk/sk/Login 0 0 0 

https://vcfs.pages.dev/ 1 1 1 
https: / / mail-104105.weeblysite.com/ 1 1 1 

ht t p: / /www. drgebfish .com / M3mail@b. c 1 1 1 
https://new.tollsk.info/ 1 1 1 

Table 10.1: Results of experiment. 
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Chapter 11 

Conclusion 

The purpose of this bachelor's thesis was to create a classifier capable of detecting phishing 
web pages based on the analysis of their H T M L and JavaScript code to help fight phishing 
attacks and possibly decrease the damage that these attacks cause. 

Within this work, I studied related research, different machine learning algorithms, 
and trustworthy data sources. Moreover, I have implemented a data gathering program, 
which collected H T M L and JavaScript code of phishing and benign web pages. Later, I 
introduced a feature vector and extracted features from scraped H T M L and JavaScript 
code. After this, I filtered the scraped data. This led to the creation of a dataset composed 
of features from 31481 web pages, ready to be utilized for model training. Then, I used this 
dataset to create four tuned classifiers, each one created by a different machine learning 
algorithm. Moreover, I experimentally measured and compared the performance of each 
tuned classifier by employing suitable evaluation metrics. The satisfactory performance 
of the tuned classifiers, where the best-performing classifier achieved a balanced accuracy 
score of 97.03% while making predictions on previously unseen data, indicates that the 
detection of phishing web pages by utilizing machine learning and analysis of H T M L and 
JavaScript code is a successful strategy to fight phishing web pages. By experimenting, I 
also verified the benefits of methods utilized to improve the performance of classifiers, such 
as tuning the threshold or utilizing the majority and soft voting techniques. The majority 
and soft voting of classifiers proved to be beneficial methods, which successfully combined 
the strength of multiple classifiers to increase the quality of predictions. 

Finally, I implemented a web extension capable of warning users about suspected phish­
ing web pages, which employs the majority voting method and utilizes the best-performing 
models for practical use. This web extension also supports a standard classification car­
ried out by the XGBoost model. The classifiers were also tested in a real environment by 
utilizing this web extension, proving that the classifiers can reliably differentiate between 
benign and phishing pages even in practice. 

In the future, the work could be improved by utilizing the URL-based features obtained 
by analyzing the U R L of a web page. Another possible improvement is the analysis of 
visual elements, such as screenshots of a web page, which could help classify the web page 
by trying to find a logo of brands frequently targeted by phishing attackers. 
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Appendix A 

Content of attached SD 

The attached SD card contains the following items: 

1. /scrapingapp - web scraping application with jupyter notebook files and training 
and control datasets 

2. /webextension - web extension source code and utilized classifiers 

3. /tex - latex source code 

4. manual.pdf - manual for scraping application and web extension 

5. xpolon03.pdf - the thesis in pdf format 
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Appendix B 

Correlation matrix of all features 

Figure B . l : Correlation matrix of all features. 
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