
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

MINIMIZATION OF COUNTING AUTOMATA

MINIMALIZACE AUTOMATŮ S JEDNODUCHÝMI ČÍTAČI

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. MATEJ TURCEL

SUPERVISOR
VEDOUCÍ PRÁCE

Mgr. LUKÁŠ HOLÍK, Ph.D.

BRNO 2021

Brno Universi ty of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2020/2021

Master's Thesis Specification |||||||||||||||||||||||||
24461

Student: Turcel Matej, Be.
Programme: Information Technology
Field of Mathematical Methods in Information Technology
study:
Title: Minimization of Counting Automata
Category: Algorithms and Data Structures
Assignment:

1. Familiarise yourself with the counting automata and counting-set automata used in [1] for
pattern matching of regular expressions with bounded repetition, and with algorithms for
simulation based reduction of non-deterministic automata.

2. Propose means of minimization/size reduction for counting and/or counting-set automata,
based on generalizations of the principle of deterministic minimization and simulation based
reduction.

3. Implement your size reduction algorithm.
4. Evaluate the reduction capabilities of your algorithm and its efficiency against automata from

regular expressions appearing in practice.
Recommended literature:

1. Lenka Turoňová, Lukáš Holík, Ondřej Lengál, Olli Saarikivi, Margus Veanes, and Tomáš
Vojnar. 2020. Regex Matching with Counting-Set Automata . Proc. ACM Program. Lang. 4,
OOPSLA, Article 218 (November 2020), 30 pages. https://doi.Org/10.1145/3428286

Requirements for the semestral defence:
• No requirements.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Holík Lukáš, Mgr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: July 30, 2021
Approval date: July 12, 2021

Master's Thesis Specification/24461/2020/xturceOO Page 1/1

https://doi.Org/10.1
https://www.fit.vut.cz/study/theses/

Abstract
This works deals with size reduction of counting automata (CA). Counting automata ex
tend the classical finite automata with bounded counters. This allows efficient handling of
e.g. regular expressions with repetition: a{5,10}. In this thesis we discusses the simulation
relation in C A , which allows us to reduce their size. We rely on classical simulation in finite
automata, which we non-trivially extend to C A . The key difference lies in the necessity to
simulate counters as well as states. To this end, we present the novel concept of param
eterized simulation relation in C A , and propose methods for computing this relation and
using it to reduce the size of a C A . The proposed methods have been implemented and
their efficiency experimentally evaluated.

Abstrakt
Táto práca sa zaoberá redukciou veľkosti tzv. čítačových automatov. Cítačové automaty
rozširujú klasické konečné automaty o čítače s obmedzeným rozsahom hodnôt. Umožňujú
tým efektívne spracovať napr. regulárne výrazy s opakovaním: a{5,10]-. V tejto práci
sa zaoberáme reláciou simulácie v čítačových automatoch, pomocou ktorej sme schopní
zredukovať ich veľkosť. Opierame sa pritom o klasickú simuláciu v konečných automatoch,
ktorú netriviálnym spôsobom rozširujeme na čítačové automaty. Kľúčovým rozdielom je
nutnosť simulovať okrem stavov taktiež čítače. Za týmto účelom zavádzame nový koncept
parametrizované] relácie simulácie, a navrhujeme metódy výpočtu tejto relácie a redukcie
veľkosti čítačových automatov pomocou nej. Navrhnuté metódy sú tiež implementované a
je vyhodnotená ich efektivita.

Keywords
counting automaton, simulation, reduction of automata

Klíčová slova
čítačový automat, simulácia, redukcia automatov

Reference
T U R C E L , Matej. Minimization of Counting Automata. Brno, 2021. Master's thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Mgr. Lukáš
Holík, Ph.D.

Rozšířený abstrakt
V tejto práci študujeme simuláciu v klasických čítačových automatoch za účelom reduk

cie ich velkosti. Cieľom práce je rozšíriť tieto metody na tzv. čítačové automaty, zavedené
v práci [55]. Toto rozšírenie je do značnej miery netriviálne. Pokiaľ je nám známe, doposiaľ
neboli navrhnuté podobné rozšírenia minimalizačných metód na čítačové automaty alebo
iné modely automatov im podobné.

Prvým hlavným prínosom tejto práce je nový koncept •parametrizované] relácie simulá
cie na čítačových automatoch. Tento koncept formálne definujeme a zvolenú definíciu
odôvodňujeme. V analýze jej vlastností ukazujeme, že na rozdiel od klasických konečných
automatov, čítačové automaty môžu mať viacero simulačných preorderov. Ďalej tiež ukazu
jeme, že čítačové automaty nemôžu byť redukované pomocou ľubovoľnej simulácie; tá to
simulácia musí splňovať určité podmienky. Toto nás motivovalo k zavedeniu pojmu konzis
tentnej simulácie - simulácie, ktorá môže byť použitá na redukciu automatu.

Ďalej navrhujeme metódu redukcie čítačových automatov pomocou konzistentnej simulá
cie, a prezentujeme náznak dôkazu korektnosti tejto redukcie. Keďže pôvodný formalizmus
čítačových automatov nám neumožňuje aplikovať tú to redukciu, rozširujeme formalizmus o
operácie premenovania čítačov na prechodoch.

Druhým hlavným prínosom tejto práce je algoritmus na výpočet parametrizovanej relá
cie simulácie na čítačových automatoch. Tento algoritmus pozostáva z dvoch častí, ktoré
spoločne nájdu všetky konzistentné simulácie v automate. Algoritmus sme implementovali
a experimentálne sme vyhodnotili jeho redukčné schopnosti. Použili sme pritom rozsiahlu
databázu regulárnych výrazov, s ktorej sme využili na vyhodnotenie vyše 28000 výrazov
s opakovaním. Vzhľadom k tomu, že použitá metóda prekladu regulárnych výrazov na čí
tačové automaty produkuje automaty blízke optimálnym, boli dosiahnuté redukcie pomerne
skromné. Za daných okolností sú ale výsledky uspokojivé, a súdime, že nami prezentovaná
metóda redukcie má potenciál praktického využitia.

M i n i m i z a t i o n of Counting Automata

Declaration
I hereby declare that this Master's thesis was prepared as an original work by the author
under the supervision of Mgr. Lukas Holik, PhD. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Matej Turcel
July 19, 2021

Acknowledgements
I would like to thank my supervisor Mgr. Lukas Holik, PhD. for his guidance and support
during my work on this thesis. I also appreciate the help of Ing. Lenka Turohova, who
introduced me to the CountingAutomata library.

Contents

1 Introduction 3

2 Preliminaries 7
2.1 Miscellaneous Conventions 7
2.2 Finite Automata (FA) 7
2.3 N F A Reduction Algorithms 9

2.3.1 Simulation Preorder in FA 10
2.3.2 Reducing N F A Using the Simulation Preorder 11
2.3.3 Ilie-Navarro-Yu (INY) Algorithm 13

2.4 Counting Automata 15
2.4.1 Effective Boolean Algebras 15
2.4.2 Words and Regexes over Effective Boolean Algebras 15
2.4.3 Minterms 16
2.4.4 Symbolic Automata 16
2.4.5 Counting Automata (CA) 17

3 Simulation in C A 22
3.1 Counter Liveness 22
3.2 Counter Mapping 23
3.3 Definition of C A Simulation 27
3.4 Correctness of Parameterized Simulation 32
3.5 Hypersimulation and its Properties 33

4 Simulation-Based Reduction of C A 41
4.1 Correctness of Merging 45

5 Proposed Algorithm for Computing Simulations in C A 47
5.1 Algorithm Pseudosim: Computing the Pseudosimulation 48

5.1.1 Initialization Phase 50
5.1.2 Inductive Phase 55

5.2 Algorithm Search: Searching for Consistent Simulations in the Pseudosimu
lation 59
5.2.1 Reduction to SAT 62

6 Experimental Evaluation 65
6.1 Environment 65
6.2 Input Data 66
6.3 Experiments 66

1

6.3.1 Experiment 1: Individual Regexes 67
6.3.2 Experiments 2 and 3: Disjunctions of Regexes 68

6.4 Discussion of Results 71

7 Conclusions and Future Work 72

Bibliography 74

Appendices 80

A Left Simulation in C A 81

B Upper Bounds of Complexity of Algorithm Pseudosim and Algorithm
Search 83
B . l Time and Space Complexity of Algorithm Pseudosim 83
B. 2 Size of SAT Formulation in Algorithm Search 84

C Computing Bisimulations 85
C. l Algorithm Pseudosim 85

C . l . l Initialization Phase 85
C.l .2 Inductive Phase 86

C.2 Algorithm Search 87

D Additional Figures from Experiments 88

2

Chapter 1

Introduction

Our work deals with minimization of nondeterministic counting automata. The primary area
of application for counting automata is regular expression matching, with prospective future
applications in verification and decision procedures of logics. The task of matching regular
expressions (regexes) arises very frequently, in many different areas, and is needed for many
different purposes. Filtering, finding and replacing patterns in text, and data validation are
among the most prominent applications. Based on prior studies, approximately 30-40% of
software written in Java, JavaScript and Python uses regex matching [20].

Regex matching. Textbook algorithms for regex matching rely on using deterministic
finite automata (DFA). When matching using a D F A , a single input character is processed
in constant time with respect to the size of the automaton. Thus, the input string is
processed in time at most linear in the length of the string. However, the finite automata
(FA) obtained from a regex (RE) via classical RE-to-FA construction [41] are generally
nondeterministic (NFA). A determinization of the N F A is necessary in order to use it for
matching, and this determinization can take exponential time in the size of the input regex.

A n exponential blow-up often occurs as a result of use of the counting operator, which
expresses a repeated regex match with a lower and upper bound on the number of repeti
tions. For example, the regex [ab] {2,5} matches the string abab. A n example of a regex
which causes exponential blowup is .*a.{/c>. It matches any string, such that its feth-to
last symbol is a. Using a classical RE- to-NFA construction, we obtain a N F A with @(k)
states, and its determinization yields a D F A with 0(2 f c) states. This exponential blowup is
necessary: to ensure that the fcth-to-last symbol is a, we need to remember for each of the
last k seen symbols whether it is a. This requires a single bit per symbol; k bits in total.
The number of possible values encoded on k bits is 2k. Therefore, at least 2 f e states are
needed to distinguish all possibilities.

Due to the exponential cost of a priori determinization, regex matchers tend to avoid
it. Avoiding determinization, however, comes at the cost of increased matching complexity.
A particularly common algorithm of this kind is Spencer's backtracking algorithm [52],
which operates directly on a N F A . It works by backtracking on the input string, so the
input is possibly read multiple times. Due to this fact, matching can take time exponential
in the length of the input string. This may be much worse than determinization, which is
exponential in the size of the regex.

More sophisticated algorithms avoid exponential a priori cost by utilizing on-the-fly
determinization [53], while maintaining matching time linear in the input length. They are
employed by many state-of-the-art regex matchers, such as G N U grep [27], in combination

3

with caching to avoid re-computing already encountered sets of states. However, on regexes
such as .*a..{ky, these algorithms match a single character in time at worst linear in k, and
due to the size of the state space, may be ineffective even with caching.

Counting automata. To mitigate the possibility of an exponential blow-up due to use of
the counting operator, numerous works (e.g. [25; 51]) have proposed extensions of classical
N F A which address this problem. In [25], classical N F A are extended by bounded counters.
Recently, the work [55] generalized this approach to symbolic finite automata (SFA). Such
extended SFA are called counting automata (CA), and their deterministic counterparts are
called counting-set automata (CsA). Counters encode the number of repetitions seen so far:
for example, a C A corresponding to the regex a{2,5> uses a counter with lower bound
2 and upper bound 5. CsA maintains counting sets instead of counters, which encode
several possible values of a counter. The basic principle of CsA is that of the on-the-fly
determinization of [53] - postponing the most costly part of determinization until runtime.

Due to the use of counters, the aforementioned regex .*a.{fc} no longer yields a nonde-
terministic automaton with @(k) states, but only 0(1) states. Furthermore, the number of
states remains 0(1) after determinization. In general, the determinization does not suffer
from exponential explosion as the textbook algorithm [46] does.

In the deterministic CsA obtained from .*a.{£;]-, the values of past k symbols are en
coded by a counting set: for each value j in the set, the jth-to-last symbol of the so-far
consumed input is a. Naturally, we still need at least k bits to represent whether each of
the past k symbols is a, but now the matching can be performed much more efficiently
Namely, upon reading an input character, every counting set can be updated in constant
time. Therefore, the time complexity of processing a single input character is at most linear
in the number of counters and does not depend on the counter bounds.

The possible uses of counting automata, however, are not limited to regex matching.
Among the most promising are applications in formal verification; in particular model check
ing, where automata are utilized frequently. For example, string solving (model checking on
programs manipulating strings) often requires working with numerical constraints, for ex
ample on string length, which could be represented using counting automata (e.g. [2; 1; 14]).
Recently, the work [50] has presented the construction of (a variation of) C A from formulae
of linear temporal logic with bounded repetition [50]. Another application is in verifica
tion of programs with bounded loops [28], which could be modeled by C A . Lastly, C A
could be utilized in decision procedures of WS1S and WS/cS logics [24] and Presburger
arithmetic [58; 5].

Simulation-based reduction. When working with finite automata, it is often desirable to
reduce their size in order to make operations on them more efficient. Traditional minimiza
tion algorithms such as [32] take a D F A as input and produce minimal equivalent D F A as
output. Their general principle is merging states which are indistinguishable, meaning that
the same set of words is accepted from both states. The requirement for complete a priori
determinization makes such algorithms impractical, due to the aforementioned possibility
of an exponential blowup. This motivates the development of NFA reduction algorithms
[37; 9], which operate directly on nondeterministic automata, and can significantly reduce
their size while having polynomial runtime. N F A reduction algorithms can be seen as
generalizations of classical minimization algorithms, since they also generally operate by
merging "indistinguishable" states. However, as described in further chapters, there are
several notions of indistinguishability in N F A , which open doors for multiple possibilities
of reduction.

4

One example of a simulation-reduction algorithm is the Ilie-Navarro-Yu algorithm [36],
which builds on the earlier work in this area [29; 37; 12]. It works by computing the
simulation preorder on the states of a NFA, which underapproximates language inclusion.
State p is greater or equal to state q if its language is a superset of the language of q; in
other words, if it accepts at least all the words q accepts. When both p is greater or equal
to q and vice versa, then these states have equal language, and thus are indistinguishable
and can be merged.

One may ask why should we not use the precise language inclusion, why do we need
its approximation. Indeed, ideally we would like to merge all language-equivalent states,
not only those which are equivalent according to the simulation preorder. However, the
major drawback of the exact approach is its computational complexity. Computing precise
language inclusion in N F A is PSPACE-complete, while the simulation preorder can be
computed in polynomial time.

Simulation in counting automata. This work extends the classical N F A reduction
algorithms to C A . The C A formalism is in itself considerably more complex than that of FA.
Its intricacy stems from the fact that the state space is not entirely known beforehand, but is
"explored" dynamically during runtime, as the counter values change. The states of C A are
thus "parameterized" by counter values. Therefore, when statically reasoning about C A ,
one must take into consideration the possible runtime configurations, which are determined
by a combination of state and counter values. Because of these intricacies, it is desirable to
make as many simplifications as possible in order to make the reasoning manageable. That
is why the Ilie-Navarro-Yu algorithm was chosen as a candidate, being among the simplest
known N F A reduction algorithms. Among more sophisticated algorithms for computing
the simulation preorder are Ranzato-Tapparo [47], which achieves better performance by
operating on equivalence classes instead of individual states, and the asymptotically best
known algorithms presented in [17] and [15].

Owing to the parametric nature of C A states, the concept of simulation preorder in C A
is not as straightforward as in N F A . Since the language of a state depends on specific counter
values, we must find a certain correspondence between counters to show that two states are
indistinguishable. The states must have counters which are compatible, in the sense that
the same operations can be performed on them in their respective states. The simulation
preorder is therefore parameterized by this correspondence, which we call counter mapping.
In the most general case, there can be several mappings between a single pair of states.
As a consequence, a single counting automaton can have multiple simulation preorders (in
contrast, a N F A has exactly one simulation preorder). Such cases, however, appear to be
very rare in C A arising from regular expressions.

Contributions and outline of this work. In this thesis, we make the following con
tributions. Firstly, we introduce the novel notion of parameterized simulation relation on
counting automata (Chapter 3). Secondly, we propose a means of reducing the size of a
C A based on this relation (Chapter 4). To this end, we extend the C A formalism by in
troducing a new counter rename operation, which is necessary for our merging reduction.
Thirdly, we propose an algorithm to compute the simulation relation (Chapter 5). Lastly,
we experimentally evaluate the reduction capabilities of our algorithm on C A obtained from
various real-world regular expressions with counting (Chapter 6).

5

Related work. Simulation on classical FA and similar formalisms (such as Kripke struc
tures [40]) has been studied extensively; e.g. in [29; 36; 47; 15]. However, to our knowledge,
adoption of these methods to extended models of FA, such as counting automata, has not
been attempted thus far. Neither the work of Turohova et al. [55] which introduces count
ing automata, nor the work of Gelade et al. [25] on which the former is based, discusses
minimalism of the considered automata, methods of their size reduction, or an analogue of
simulation relation on them. The works of Hovland [34; 35] present a model of automata
similar to C A , but again do not discuss minimalism, size reduction, or simulation.

I.i

Chapter 2

Preliminaries

This chapter introduces the theory used in the following chapters. Firstly, we define classical
finite automata and their properties such as determinism, minimality and the left and right
language of a state. We then define the simulation preorder on states of finite automata,
and explain how it can be used to reduce the size of automaton. Lastly, we introduce the
concept of counting automata (CA).

2.1 Miscellaneous Conventions

Domain and image of a function. Given a partial function / : X —Y, we denote by
dom / the domain of / (dom / C X) and by im / the image of / (im / C Y) ,

Constant predicates. In the context of Boolean predicates, we define the following con
stant predicates for any domain: true =f Ax . T (the always-true predicate); false =f Ax . _L
(the always-false predicate). Here, T and _L stand for the truth values true and false, or 0
and 1, the precise meaning of which will be clear in the context.

2.2 Finite Automata (FA)

In this section we introduce the classical theory of finite automata [33]. We define the
concept of intermediate language, which is not presented in literature, but which helps
us in definitions of left and right language [12] and the language of a finite automaton.
Following [18] and [19] and adapting as appropriate, we define properties of automata and
their states.

A n alphabet E is a finite non-empty set of symbols. A finite, possibly empty sequence of
symbols w = a\a,2 • • • an, where a% G E , is referred to as word or string of length n over the
alphabet E; the length of a word w is denoted \w\. The symbol e denotes the empty word
(word of length zero). The set of all words over the alphabet E is denoted E*. A set of
words over E , C C E*, is called a language. For two words a = a\ ... an and b = b\... bm we
denote by a • b the concatenation of a and b: a\... anb\... bm. We define the concatenation
of languages as C\ • Li = {wi • wi \ w\ 6 L\,w<i G £ 2 } -

Definition 2.2.1 (Finite automaton). A finite automaton (FA for short) is a quintuple
M = (Q, E , A, I, F), where

• Q is a finite set of states,

7

• E is a finite alphabet,

• A C Q x E x Q i s a transition relation,

• I Q Q is the set of initial states,

• F C Q is the set of /ma/ states.

A transition (q,a,r) G A is also denoted q-(a}$r. We say that r is an a-successor of g,
and g is a-predecessor of r. The symbol r will be commonly used to refer to a transition:
that is, whenever r is used, it is assumed that r G A. We will sometimes use q-(a}$r as
a formula of predicate logic, with the meaning 3 q-(a}$r G A. Unless explicitly specified
otherwise, we denote by n the number of states and by m the number of transitions of an
automaton; and by £ the size of the alphabet.

We define the reverse transition relation A = {r-(a}>g | q-{a)^r G A}. To avoid
ambiguity, we sometimes use the symbol A as a synonym of A.

The reverse automaton for automaton M = (Q, E , A,7 , F) is MR = (Q, E , A,F,I).

For a G E , we define the a-restricted transition relation A A C Q x Q where r G A a (g) iff
q-{a)^r G A . In an analogous fashion, we define the reverse a-restricted transition relation
A a C Q x Q, where r G A a (g) iff r-(a}^q G A . We lift the restricted transition relations
to sets of states: AA(S) = Uses ^-a(s).

The extended restricted transition relation, denoted the same way as the ordinary re
stricted transition relation, is defined as A A W = A w o A a , where A e is the identity relation. 1

Extended restricted transition relations are also lifted to sets of states.

Let w = a\... an be a word of length n and q, r G Q be states of a F A M. We say that
w transfers M from q to r iff there exists a sequence of transitions (TJ = Pi-iaiY^p^) for
i G [1,n], such that p\ = q, p'n = r, and p\ = pi+\ for each i G [l , n — 1].

A word u> is accepted from state g in M iff to transfers M from q to some f £ F, and
u> leads to g iff w transfers M from some i G / to q.

Definition 2.2.2 (Intermediate language). The intermediate language of states p and q
(or simply language between p and q) is defined as JCB(P,Q) = {u> G E * | q G Aw(p)}.
We further lift the definition to sets of states: CB(S,T) = Uses teT^B(s,t), and similarly
if only one of the arguments is a set. The language between states p and q contains precisely
those words which transfer M from p to q.

Definition 2.2.3 (Left language of a state). The left language of a state q is defined
as £L(Q) = J~-B(I,Q)- We lift the definition to sets of states: CL(S) = CB(I,S). The left
language of a state q contains precisely those words which lead to q.

Definition 2.2.4 (Right language of a state). The right language of a state q (or simply
language of q) is defined as Cn(q) = C(q) = JCB(Q,F). We lift the definition to sets of states:
CR(S) = CB(S,F). The right language of a state q contains precisely those words which
are accepted from q.

Definition 2.2.5 (Language of FA). The language of a FA M, C(M), is the language
between the initial and final states of M: C(M) = CB(I, F). TWO F A are equivalent iff their
languages are equal. For some word w G E * , M accepts or recognizes w iff w G JC(M).

1 In automata with e-transitions (where the alphabet symbol on a transition may be the empty word e),
it would not be the identity relation but the e-closure of the given state (the set of all states reachable from
this state via zero or more e-transitions).

8

Properties of states of FA. A state q of F A is said to be:

• unreachable iff £L(Q) = 0> reachable otherwise,

• rejecting or dead iff JCu(q) = 0, nonrejecting otherwise,

• complete iff Va £ £ : A a (g) 7̂ 0, partial otherwise,

• deterministic iff Va G S : |A a (g) | < 1, nondeterministic otherwise.

Properties of FA. A FA M is said to be:

• clean iff all states of M are reachable,

• trim iff it is clean and has no rejecting states,

• complete iff all states of M are complete, partial otherwise,

• deterministic iff | / | < 1 and all states are deterministic; nondeterministic otherwise.

We use the abbreviations DFA and NFA to refer to a deterministic and nondeterministic
FA respectively.

We note that every F A can be made complete in time 0(in) and every N F A can be
made deterministic in time 0(2") [46; 43].

Definition 2.2.6 (Minimality of DFA) . A partial (or complete) D F A M is minimal iff
no equivalent partial (or complete) D F A with fewer states exists. Equivalently, M is clean
and no two distinct states have equal right language; and if M is partial, then it is trim.
(Adapted after [18].)

Definition 2.2.7 (Minimality of NFA) . A N F A M is Q-minimal or simply minimal
iff there exists no equivalent N F A with fewer states. M is A-minimal iff there exists no
equivalent N F A with fewer transitions. (Adapted after [19].)

We note that while each F A has a unique equivalent minimal D F A (whether complete
or partial), the minimal equivalent N F A is in general not unique (for an example, see [4]).
We further note that while the minimal D F A for a given input D F A can be found in time
0(£n log n) [32], finding a minimal N F A for a given F A is PSPACE-complete and thus
unlikely to be solvable in polynomial time [39]. This problem cannot even be efficiently
approximated [26].

2.3 N F A Reduction Algorithms

In order to devise a reduction algorithm for counting automata, we shall first examine
existing methods of reduction of nondeterministic finite automata. In this section, we
describe the necessary concepts and basic methods of N F A reduction. These methods will
serve as a guideline in the design of our new reduction algorithm for counting automata.

In practice, one frequently deals with nondeterministic F A obtained by some conversion
algorithm, such as converting regexes to NFA. These conversion algorithms often produce
N F A which exhibit certain redundancy, in the sense that several states behave the same.
For example, assume a FA with two reachable states p, q, which are both final and have no

9

outgoing transitions. Clearly, they have equal right language - {e}. We lose no information
by replacing these two states by a single final state r, and redirecting the transitions into p
and q to go into r instead.2 By doing this, the size of the FA (in this case, the number of
states) is reduced, while preserving its original language.

Classical algorithms for reducing the size of FA, such as the well-known algorithm of
Hopcroft [32], operate on deterministic FA. Due to the possibly exponential cost of deter-
minization, it is desirable to avoid it and reduce a N F A directly. That is why polynomial-
time NFA reduction algorithms have been studied, as means to reduce the size of an au
tomaton without resorting to determinization [37; 38; 12]. In many cases, the reduced N F A
would still be determinized eventually. However, its reduced size can make the determiniza
tion significantly more efficient, as the savings in N F A size can project into exponentially
larger savings in the cost of determinization. We will describe one such reduction algorithm,
based on the concept of simulation preorder.

Simulation preorder is an underapproximation of language inclusion on states of NFA.
Unlike true language inclusion, which is PSPACE-complete for N F A [21], the simulation
preorder can be computed in polynomial time [36]. Owing to this fact, N F A simulation
is also frequently exploited in other areas than N F A reduction. In formal verification,
for example, deciding language inclusion, equivalence, or universality plays a key role [3].
Simulation can be used to accelerate all of these decision problems.

2.3.1 Simulation Preorder in F A

This section gives definitions of simulation relation, simulation preorder and related con
cepts, mostly in accordance with [38], [12] and [36].

Definition 2.3.1 (Simulation relation). A right simulation (or simply simulation) on
FA M is a binary relation SR C QXQ, such that for each (q, s) in this relation, the following
conditions hold:

qeF^seF, (2.1)

V g # < / e A 3 s # s ' e A : (q',s')eSR. (2.2)

We usually drop the right specifier and use simply simulation, simulates, etc. to refer
to the right simulation. Observe that while Condition 2.1 is necessary for Cn(q) C £R(S)
to hold, Condition 2.2 is overly strict. For example, if q has a single a-successor q' which
is a dead state, then s does not need to have an a-successor in order for Cn(q) C £R(S) to
hold.

It is easy to see that any state can simulate itself, and thus the reflexive closure of a
simulation is a simulation. The transitive closure of a simulation is also a simulation, and
so is the union of two simulations. From this it follows that there exists a unique maximal
simulation, which is reflexive and transitive; hence a preorder [42].

Definition 2.3.2 (Simulation preorder). Let S be a simulation relation on a F A M. If
there exists no simulation S' on M, s.t. S C S', then S is the (right) simulation preorder
of M, denoted (or 4R).3

2This is true only under the assumption that the specific final state, in which the automaton accepts the
input, bears no significance. We note that this is a standard assumption in related literature, albeit usually
not mentioned explicitly.

3It should be noted that is not necessarily the only simulation preorder on M. We use the term
simulation preorder to refer to the maximal simulation preorder.

10

For (q,s) G ^.R, we write q =4R S and say s (right)-simulates q; s is stronger than q
and q is weaker than s. Simulation implies language inclusion - if state s simulates state
q, then s accepts at least all the words q accepts (see [12] for proof):

Bisimulation and bisimulation equivalence. A simulation that is symmetric is called
bisimulation. It follows that the unique maximal bisimulation is an equivalence, called the
bisimulation equivalence.

Simulation equivalence. Taking the maximal symmetric subset of =̂ gives us an equi
valence, called the simulation equivalence, which is not necessarily a simulation. We refer
to this equivalence as ^.-equivalence; two states belonging to it are said to be ^.-equivalent.
Observe that if p ^ q and q =4 p, then C(p) = C(q). Therefore, ^-equivalence partitions
states into classes in which language equivalence holds. Put another way, it is a refinement
of the language equivalence relation, and it is (in some cases'1) strictly coarser than bisimu
lation equivalence. A n example of a F A where two states are simulation-equivalent but not
bisimulating can be found in [12].

Left simulation SL and left simulation preorder =̂ £, are defined analogously. For each
(q,s) G SL, the following holds:

Left simulation preorder is then the largest left simulation. If s left-simulates q, then every
word leading to q also leads to s: q =4L S =4> Ci{q) C CL(S).

2.3.2 Reducing N F A Using the Simulation Preorder

In this section we describe how the size of a N F A can be reduced using the simulation
preorder.

Merging states. By merging a set of states R of F A M, we understand modifying M by:

1. Creating a new state m in M (viz. m ^ Q before the merging), such that

(a) Vr G R: q-(a}$r (q-(a}$m if q £ R else m-(a}$m),

(b) Vr G R: r-(a}$q => (m-(a}^q if q £ R else m-(a}$m),

(c) R n / ^ 0 = ^ me I,

(d) R n F / 0 = ^ me F,

(e) no other transitions into or from m exist.

2. Removing all states in R from Q, I, and F; and their coincident transitions from A.

As we have noted, two states with the same language can safely be merged, provided we
only discern states by the language they accept. This observation has long been the basis
of standard D F A minimization algorithms.

4Precisely in those cases, when it is not a simulation.

(2.3)

q e I => s e I,

V q -(a)> q e A 3 s' -(a}> s G A : (q',s')eSL.

(2.4)

(2.5)

11

In a DFA, no word leads to two distinct states. As a consequence, the left simulation
preorder is the identity relation and is of no use. In a N F A , however, the same word
may lead to multiple states. As observed in [12], if two states have the same set of words
which lead to them - the same left language - then we can merge them, much like we can
merge states with equal right language. This already gives us two possibilities of reducing
N F A using =<!i and ^.R. We refer to merging a particular set of states based on their
^-equivalence as =4L-merging or left-merging; reducing an automaton based on the
preorder is ^i-reduction or left-reduction; and similarly for ^R.

Maintaining preorder validity during merging. When using both and =4R for
merging states, it is necessary to realize that merging states according to one preorder
might invalidate the other.

One possible solution is suggested in [12] (and erroneously transcribed in [36]). After
^ -merg ing a set of states R into the new state m, we must remove from =4L the set
{(r, s) | r G R A 3r' £ R: r' J^L S}. The merged states are also updated in accordingly:
i.e., all (r, s), where r G R, s ^ R, are replaced by (m, s), and so on. In principle, as Ciim)
is the union of the left languages of all merged states, it can be left-simulated only by such
s which simulates each of the merged states (and thus their "union", which is m).

Another solution to this problem, suggested by [13], is to first reduce an automaton
according to one preorder, and only then compute and use the other preorder. These two
steps may then be repeated as long as the automaton can be reduced.

Eliminating subsumed states. There is one more possibility of reduction given in [12]:
merging two states where one "subsumes" the other. What we mean by "s subsumes q"
is that both £L(Q) Q £<L(S) and Cn(q) C £R(S) holds. There is a caveat, however. Such
merging might seem correct at a glance, but does not work if q is in a cycle labeled by
word w and s is not in a cycle labeled by w.5 The obvious solution - to simply delete the
subsumed state - does not always work either. For examples for both of these cases, refer
to [13]. We point out that in the example given therein for the latter case, q is subsumed
by s, but q =4R S does not hold. In other words, the given example is contrived and does
not arise in simulation-based reduction.

Little brother optimization. A n optimization of simulation-based reduction is suggested
by [9]. They propose, after merging equivalent states, to remove transitions to so-called
little brothers. Assume p-{a}^q, p-(a}$s, q ^ s, and q =4R S. Then q is a "little brother"
of s, both being "children" of p. It follows immediately from Cn(q) C £R(S) that such
transitions p-(a}}q can be removed without altering the language of p. After doing this,
the automaton is cleaned (unreachable states are removed). The same can be applied for
^L-reduction, removing transitions from little brothers per ^ (or rather, "little parents"),
and then removing dead states.

5 A state p being in a cycle c means c is a sequence of n transitions (qi-i-{a,i)^qi) for 0 < i < n, s.t.
qo = <?« = P- The label of c is the word o i . . . a„.

12

2.3.3 I l ie -Navarro-Yu (INY) Algorithm

This section presents an algorithm for computing the simulation preorder, introduced by
Ilie, Navarro and Yu [36], referred to as the INY algorithm. This algorithm is a modification
of a similar, earlier algorithm [29], which operates on Kripke structures [40] instead of NFA.
Compared to alternative algorithms such as that of Ranzato and Tapparo [47] or the more
recent algorithms of [17] and [15], this algorithm is rather simple, yet maintains a favorable
time complexity. We regard the simplicity of this algorithm as a crucial property for its
successful adoption to C A , as it helps to make the already difficult reasoning about C A
manageable.

As observed and proven in [22], the algorithm presented in the original publication [36]
is applicable only to complete automata. We present a modified version of the algorithm
which is applicable also to non-complete automata, as given in [30]. Algorithm 1 shows
a pseudocode of the INY algorithm, computing the simulation preorder ^ of a F A M.
For the sake of completeness, we now give a relatively detailed description of the INY
algorithm. Readers may wish to proceed to the next section, as this description is mostly
of supplementary nature and is not indispensable for understanding our new reduction
algorithm for counting automata.

Algorithm 1: INY
Input: FA M = (Q, E , A, I, F)
Output: The simulation preorder =<! of M

1 for p, q G Q a G E do
2 | Na(p,q) := \2a(p)\;
3 NotSimQueue := F x (Q\F) U

4 {(q,r) G Q x Q | 3 a G E : ~Aa(q) / 0 A X(r) 0}:
5 Sim := Q x Q:
6 while NotSimQueue / do

remove some (i,j) from NotSimQueue and Sim:
for a G E do

for t G A~a(j) do
Na(t,i) := Na(t,i) - 1;
if Na(t,i) = 0 then

for s G A a (i) s.t. (s,t) G Sim do
NotSimQueue := NotSimQueue U (s,t):

7
8
9

10
11
12
13
14 return Sim:

A n obvious approach is to compute ^ inductively, starting with an empty set and
successively adding pairs of states while keeping the set a simulation. The problem with
this naive approach can be seen easily: imagine some q in a cycle, simulated by some s.
To show that s simulates q, its successors must simulate successors of g, and so on, and
eventually we will come back to q and s. In other words, to show q ^ s, we need to
already know that q ^ s. The simulation preorder therefore cannot be directly computed
by induction. That is why the algorithm computes ^ coinductively [48] - it computes the
complement of ^ inductively, and ^ is computed from this complement. Before we describe
the details, let us first explain the algorithm on a higher level.

13

The algorithm maintains an overapproximation of denoted Sim, which is initialized to
QxQ. The complement of ^ is not computed and stored explicitly. Instead, non-simulating
pairs (viz. {q, r) where q ^ r) are removed from Sim as the algorithm proceeds. The queue
NotSimQueue is used to store non-simulating pairs which have not been processed yet.6

Each of these pairs is then removed from both NotSimQueue and Sim (line 7). Eventually,
all pairs (q,r) s.t. q ^ r will go through NotSimQueue,7 and will be removed from Sim. In
the end, Sim will be Q x Q \ {(q,r) \ q ^ r} =

Initial approximation. The queue NotSimQueue is initialized to contain those pairs of
states (q,r), of which we immediately know that q ^ r. These are all those pairs, which
trivially contradict the definition of simulation (Def. 2.3.1). Namely, no non-accepting
state r can simulate an accepting state q, since e G C(q) but e ^ C(r). Also, if q has some
successor via a and r has no successor via a, then r trivially cannot simulate q. If the
automaton is complete, however, it suffices to initialize NotSimQueue to F x (Q \ F) [22].

Counting of successors. The algorithm relies on the technique of counting. This tech
nique is used to efficiently detect violation of Condition 2.2 in Definition 2.3.1. It works
by keeping the number of successors of some state p via symbol a, which simulate q. This
number is denoted Na(p, q) and is initialized to the total number of successors of p via a, for
each p, a. As we discover new non-simulating pairs of states, we decrement the appropriate
Na(p-, q), such that it always corresponds to the number of simulating successors (according
to the current approximation Sim). Whenever Na{p,q) reaches zero, we know from the
definition of simulation that p cannot simulate any a-predecessor of q, say r. Therefore, we
remove all such pairs (r, p) from Sim.

In the algorithm description, this is done on lines 10-13. Line 13 adds the pair to
NotSimQueue, to be later removed from Sim on line 7. The check {s, t) G Sim on line 12
ensures that we do not add the same pair (s, t) to NotSimQueue twice. If it has already
gone through NotSimQueue, then it is not in Sim.

Reusing the algorithm for computing =<!/,. This algorithm, as presented, can be used
without modification to compute =^£. The key is to use the reverse automaton MR of the
original automaton M for which we wish to compute =4L- This reverse automaton accepts
the reversal of £ (M) , viz. C(MR) = {wR | w G C(M)} where sR = s, awR = wRa.
Moreover, for each q G Q, its left language in M equals its right language in MR and
vice versa. In fact, due to initial and final states being swapped between M and MR, and
transitions being reversed, =4R of MR precisely coincides with of M. This gives us a
very straightforward way of computing for some FA M: first compute MR (trivial),
then use the I N Y algorithm to compute =4R of MR, which is =4L of M .

Complexity. The time complexity of the algorithm is 0(mn+£n2). For the bound 0(£n2),
consider lines 1-2 which populate a 3-dimensional matrix of size | E | x | Q | x | Q | . This readily
gives us also the space complexity - Q(£n2). Proof of the bound 0(mn) is more involved
and can be found in appendix A of [31]. We note that in complete automata, m > In, and
thus the time bound simplifies to 0{mn).

6 A n important detail is that NotSimQueue an ordered set, meaning it cannot contain the same element
twice. If this weren't the case, the loop on line 8 could be executed several times for a single non-simulating
pair, yielding incorrect results.

THaving "gone through queue" means having been added to the queue and removed from it.

14

2.4 Counting Automata

In this section we describe the concept of counting automata recently introduced in [55].
Firstly, we define preliminary concepts such as effective Boolean algebras and symbolic finite
automata, and using these, we give the definition of counting automata. The following
definitions largely agree with those provided in [55]. We do not describe counting-set
automata (CsA) here, as our work does not deal with them. For a detailed exposition,
interested readers are referred to [55] or [56].

2.4.1 Effective Boolean Algebras

A n effective Boolean algebra A has components (2), Vl/, [_], _L, T, V , A , where T> is a uni
verse of underlying domain elements. ^ is a set of unary predicates closed under the
Boolean connectives V , A : x —>• and and l , T £ f are the false and true
predicates. Values of the algebra are sets of domain elements, and the denotation function
[_] : * - > 2® satisfies that = 0, [T] = D , and for all (p,i/t€^f, [(p V V] = M U [V>1,
[ip A tpj = {<pj n m , and {-xpj = D \ {<pj. For <p G we write Sat((p) when l<pj / 0,
and we say that ip is satisfiable. We require that Sat as well as V , A , and are computable
as a part of the definition of an effective Boolean algebra. We write x \= <p for x G \<p\
and we use A as a subscript of a component when it is not clear from the context, e.g.
[_] A : * A ^ 2 s A .

2.4.2 Words and Regexes over Effective Boolean Algebras

The basic building blocks of regexes are predicates from an effective Boolean algebra
CharClass of character classes, such as the class of digits, written as \ d . Let T> = T> charClass-
A word over T> is a sequence of symbols a\ • • • an G T>* and a language C over 2) is a subset
of T>*. As with words over ordinary alphabets (defined in Section 2.2), we use e to denote
the empty word; the concatenation of words u and v is denoted u • v (abbreviated to uv)
and is lifted to sets as usual. Furthermore, we write Cn for the n-th power of C C T>* with
£° = {s} and Cn+1 = Cn • C.

The abstract syntax of regexes is the following, with a G ^CharClass a n d n,m being
integers such that 0 < n, 0 < m, and n < m:

e a R\ • i?2 -R1I-R2 R{n,m} R*

The semantics of a regex R is defined as a subset of D* in the following way: C{a) = [a],
C(e) = {e}, C(RiR2) = C(Ri) • C(R2), C(Ri\R2) = C(Ri) U C(R2), C(R{n,m}) d=f

\X=nC(R)\ and C(R*) d^C(R)*.

15

2.4.3 Minterms

Let Preds(R) be the set of all predicates that occur in a regex R, and let Minterms(R) de
note the set of minterms of Preds(R). Intuitively, Minterms(R) is a set of non-overlapping
predicates that can be treated as a concrete finite alphabet. Each minterm is essentially
an indivisible region in the Venn diagram of the predicates in R: it is a satisfiable con
junction AifiePredsiR)^' where ip' G {ip, ->i(}}. For example, if R = [0-z] {4} [0-8] {5>,
then Preds(R) = { [0-8], [0-z] } and Minterms(R) = { [0-8], [9-z] , [~0-z] }. Formally, if
a G Minterms(R), then Sat(a) and Vy> G Preds(R): [a] n H / N [a] C [^].

Although the number of minterms of a general set X of predicates may be exponential
in | A | , it is only linear if A consists of intervals, such as discrete intervals of symbols used in
regexes - e.g. [a-zA-Z] denotes two intervals, and [~a-zA-Z] denotes their complement,
which is equivalent to the union of three intervals. To witness, consider that the total
number of unique border points (beginnings and ends) of n intervals is at most 2n. The
complement of a discrete (integer) interval [a, b] requires 4 border points at most: [—oo, a —
1], [b + 1, oo]. The total number of border points is thus linear in the number of input
intervals. The set of minterms is the union of some of the intervals between two neighboring
border points (meaning there is no other border point between them); namely those intervals
which are covered by at least one input interval. There are O(n) pairs of neighboring points,
and thus 0(n) minterms.

2.4.4 Symbolic Automata

Symbolic finite automata (SFAs) extend classical finite automata by having an alphabet
given by an effective Boolean algebra. Formally, an SFA is a tuple A = (I,Q,qo,F,A)
where I is an effective Boolean algebra called the input algebra, Q is a finite set of states,
qo G Q is the initial state, F C Q is the set of final states, and A C Q x $ i x Q i s a finite
set of transitions. A transition (q,a,r) G A will be also written as q-(a)}r.

A run of A from a state po over a word a\ • • • an is a sequence of transitions (pi-i -((XiftPi)
for 1 < i < n, with G [a j ; the run is accepting if pn G F. The language of A from
a state q, denoted £ ^ (g) , is the set of words over which A has an accepting run from q. The
language of A, denoted C(A), is CA(QO)- A classical finite automaton can be understood as
an SFA where the basic predicates have singleton set semantics, i.e., when for each concrete
letter a there is a predicate aa such that [a a] = {a}.

A is deterministic iff for all p G Q and all transitions p-(a}^q and p-(a')>r, if a A a ' is
satisfiable, then q = r. A is mintermized iff for all transitions p-(a}$q and p'-(a')+q', either
a = a' or [a] n [a'] = 0. That is, different character predicates do not overlap and can be
treated as plain symbols in a classical FA.

16

2.4.5 Counting Automata (C A)

Counting automata (CA) introduced in [55] extend classical N F A by bounded counters.
They chiefly build upon the model of counter NFA introduced in [25] and generalize it to
symbolic automata. C A are a natural automata model for regexes which use the counting
operator. This is the main motivation for their use, since many regexes with counting
induce an exponential blowup in the classical (S)FA model.

Counters count the number of passes through some part of the automaton, correspond
ing to a counted sub-expression of a regex. For example, given the regex a{2,5}, the
corresponding C A uses a counter with lower bound 2 and upper bound 5. Counters are
always bounded - every counter of a C A has a finite maximum value which it can attain
during a run of the C A on any input. This requirement ensures that the state space of C A is
finite, and C A thus have the same expressive power as ordinary FA. The counting operator,
however, allows the maximum number of repetitions to be unbounded, e.g. a{2,*}. For
such cases, the regex is translated into the equivalent form a{2}a*, which results in a C A
with a single counter, having both lower and upper bound equal to 2.

We now formalize the notions of counters, their bounds, and operations performed on
them. To this end, we introduce the concept of counter memory, which assigns values
to counters during a C A run; and counter updates and update guards, which represent
operations on counters and conditions under which these operations can be performed.
Following these definitions, we formally define counting automata and their semantics.
We note that some parts of our definitions differ from those in [55]. Namely, we completely
refrain from using the concept of counter algebra, as the original definitions based on it do
not provide the flexibility needed in further reasoning, presented in later chapters. We assert
(without a proof) that our definitions are semantically equivalent with the original ones.

Counters, counter bounds. We denote by C a finite set of counters. A counter c G C is a
unique object which has certain properties (e.g. its value) associated to it via functions. Two
such functions are the lower bound function min: C —>• N, and the upper bound function
max: C —> N . For a counter c, we denote its lower and upper bounds minc and maxc

respectively. The following natural conditions holds for each counter c G C: minc > 0,
maxc > 0, and minc < maxc- We use the following notations, for any n G N, c,d € C:

n ~ c = minc < n < maxc,

c C d = V n G f f : n ~ c 4 n ~ d

= minc > rnin(j A maxc < max^.

When c C d, we say c is subsumed by d, or that subsumption of c by d holds.

Counter memory. A counter memory stores the current values of counters during a run of
C A . It is a function m: C —>• N which assigns to each counter c a value within its respective
upper bound: 0 < m(c) < maxc for all c G C. Albeit its name may suggest that it records
a history of counter values over time, this is not the case - only the current counter values
are encoded by the memory. The set of all counter memories is denoted STJt. The zero
memory, denoted m 0 , is {c i-> 0 | c G C}.

17

Counter updates and update guards. A counter update or simply update is one of the
four functions { N O O P , I N C R , E X I T , E X I T I } , which have the form N —>• N and are defined as

N O O P = A n . n E X I T =f A n . 0
def » , def . ^

I N C R = A n . n + 1 E X I T I = A n . l
Counter updates occur on the transitions of a counting automaton, as explained later.

They modify the values of counters during a C A run. To ensure that counter values do not
exceed their respective upper bounds, we must employ update guards, which are associated
with updates and which decide whether an update can be performed.

A bound update guard, also called update guard of counter c or simply guard of c, is one of
the three predicates { C A N I N C R C , C A N E X I T C , C A N N O O P c } , which have the form N —> {_L, T } ,

and are bound to a specific counter c in the sense that they depend on the upper and lower
bounds of c. Bound updates are defined as

C A N I N C R c = A n . n < maxc

C A N E X I T c =f A n . n > minc

C A N N O O P c = A n . T

Like counter updates, bound update guards also occur on C A transitions. A bound
guard decides, given the value of its counter c, whether an update can be performed on
c. As the names suggest, each guard is associated with an update. In order to define this
association formally, we first define unbound update guards.

A n unbound update guard is one of the three functions { C A N I N C R , C A N E X I T , C A N N O O P } ,

which have the form C —> (N —>• {_L, T }) , and which given a counter c produce the corre
sponding bound update guard for c, e.g. C A N I N C R (C) = C A N I N C R C .

Each update is associated with an unbound guard (we say the update induces the guard)
via the guard-of-update function Q: [N N] [C (N {_L, T})], defined as

£ (N O O P) = C A N N O O P £ / (E X I T) = C A N E X I T

<5(INCR) = C A N I N C R £ / (E X I T 1) = C A N E X I T

Intuitively, the N O O P update does not modify the value of the counter and is always
enabled. The operation I N C R increments the counter and is enabled if the counter has not
yet reached its upper bound. The operation E X I T resets the counter to 0 on exit from a
counting loop and is enabled when the counter has reached its lower bound. The operation
E X I T ! executes E X I T immediately followed by I N C R .

We denote by U P D the set of all counter updates, and by G R D C the set of all bound
update guards for counters from the set C.

Definition 2.4.1 (Counting automaton). A counting automaton (CA) is a tuple A =
(I, C, Q, q0, F, fin,A), where

• I is an effective Boolean algebra called the input algebra,

• C is a finite set of counters,

• Q is a finite set of states,

• qo € Q is the initial state,

• F C Q is a finite set of final states,

18

• fin: Q —>• (C —> (N —>• { _ L , T })) is the acceptance condition,

• A C Q x $ i x (C ^ U P D) x (C —>• G R D C) X Q is the finite transition relation, where

— an element of the set is the input predicate,

— an element of C —> U P D is a function assigning to each counter its update,

— an element of C —> G R D C is a function assigning to each counter its bound
guard.

We denote fin(q) as finq. The acceptance condition of a particular state q and counter
c is either C A N E X I T c or one of the constant predicates true, false. A state q is not in the
set of final states F iff its acceptance condition is finq = { C H false | c G C}. We postpone
the explanation for having both a set of final states and an acceptance condition until we
have defined the semantics of C A .

A transition (p, a, upd, grd, q) G A is denoted pApt, upd,grd}$q. To avoid ambiguity, we
often use updT and grdT to refer to the upd and grd components of the transition r . For
each transition p-(a, upd, grdy^q G A, the following invariant holds for every counter c G C:
grd(c) = G(upd(c)){c). It is thus not necessary to include grd in the transition, since it can
be obtained from upd. We include grd in the transition for convenience.

Example 2.4.1. Figure 2.1 shows a C A for the regex .*a..{ky. The counter c corresponds
to the repetition .{.k}, thus minc = maxc = k. This C A is mintermized, which is defined
further below and generally means the same as in SFA. On the transition from p to q,
the first element a is the input predicate, the second element {c = 0} is a counter value
assertion. Such assertions can be identified by the surrounding curly braces. When present
on a transition, the assertion expresses that whenever the transition is taken, the counter
invariantly has the specified value. On the transitions in the state q, the second element
C++ is a shorthand for the counter operation I N C R (C) . The state q is final, although this
is not depicted in the usual way (using a double circle). Instead, we write the acceptance
condition fin near a state to indicate that it is final; otherwise it is not final. We also
omit counters with the true condition. In the state s, the acceptance condition Bns is
c i—y C A N E X I T c , symbolically written as canExit(c) in the diagram.

Figure 2.1: A counting automaton for the regex .*a..{ky.

Memory updates, guards, and acceptance conditions. To facilitate our definitions,
we use the functions memory update updT : SOT —̂ 9JI and memory guard QtdT: 9JI —>• {_L, T } ,
which operate on counter memory. These two functions are associated with the transition r ,
and are defined using the counter updates and update guards on this particular transition r
- updT and grdT. We similarly define memory acceptance condition fin^: 9JI —>• { _ L , T } ,

19

which is associated with the state q and defined using fiiiq. They are defined as follows:

upOT(m) = { c 4 updT(c)(m(c)) | c G C},

QtdT(m) = / \ grdT(c)(m(c)),
cec

fin g(m) = / \ finq(c)(m(c)).
c e c

Semantics of C A . The semantics of a C A A is defined through its configuration automa
ton SFA(A); namely, its language C(A) is the language C(SFA(A)). A configuration is a
pair (q, m) G Q x 9J? consisting of a state g and a counter memory m. The configuration
automaton SFA(A) of C A A an SFA whose states are ^4's configurations (there are finitely
many of them), and the initial state of SFA(A) is the initial configuration {qo,m0) of A.
A state (q,m) of SFA(A) is final iff q G F A firig(m) holds. The transition relation A ^ ^ ^)
of SFA(A) is defined as

(p, m) - (a » (g, m') G A S K 4 (A)

iff
3p - (a , updT,grdTy)-q G A : gtc)T(m) A (upOT(m) = m').

We can now justify having both a set of final states and an acceptance condition. The
reason is that we need to express three possibilities: a state of C A can be

1. unconditionally non-final, meaning it never accepts, regardless of counter values,

2. conditionally final, meaning it accepts conditionally, depending on counter values, or

3. unconditionally final, meaning it always accepts, regardless of counter values.

Using only a set of final states, we obviously could not express conditional finality; using
only an acceptance condition, we could not express unconditional non-finality if the C A has
no counters - the conjunction fing(m) is over an empty set of predicates and thus always
holds.

Example 2.4.2. Figure 2.2 schematically depicts the configuration automaton for the C A
in Fig. 2.1. In the diagram, the state labeled (p, c = 0) corresponds to the SFA state (p, m)
where m(c) = 0; and likewise for other states. The state (q, c = k) is final; intermediate
states between (q, c = 1) and (q, c = k) are omitted. As is clear from the diagram, this SFA
has @(k) states, while the C A in Fig. 2.1 has O(l) states with respect to k.

(p, c=0>

vJ [A a]

(q, c=0>
[Aa]

<q,c=1>
[Aa]

<q, c=k)

Figure 2.2: A configuration automaton of C A for the regex .*a.{fc}.

20

Deterministic and simple C A . A counting automaton A is deterministic iff the fol
lowing holds for its every state p and every two transitions T\: p-(oii,grdTl,updTl}$qll

T~2 '• p~ia2, grdT2 , updT2)->-g2: if both a\ A a 2 and 0tc)Tl A 0tc)T2 are satisfiable, then q\ = q2
and updTl = updT2 (hence also grdTl = grdT2). It follows from the definitions that if A is
deterministic, then SFA{A) is deterministic too.

A is simple if all guards are satisfiable, and A is mintermized: for any two transitions
p-(a,grd, upd'yyq and p'~(a''> Srd', upd')±q', either a = a' or [a] Pi [a/]] = 0. We implicitly
assume a C A to be simple unless stated otherwise. C A constructed from regexes by the
algorithm in [55] are simple.

Attainable memory. Given a C A A, its state q G Q, and a counter memory m G SOT, we
say m is attainable in g iff there exists a word w, such that some run of A on to visits the
configuration (q,m). Put another way, m is attainable in q iff £ i ((g , m)) 7̂ 0 in 5^4(^4).
This means that the memory m can actually exist in the state q during some (possibly non-
accepting) run of A. Note that not all memories are attainable, and the sets of attainable
memories differ between states. The set of all attainable memories of a state q is denoted
50T(g) = {m G SOT I 3w G £ * : w G CL((q,m))}

Language of a C A state. Given a C A A and its state q G Q, the right language of q -
£R(Q) Q SOT x S* - contains precisely those pairs of word w and memory m, for which w is
accepted from q with m. Using SFA(A), it is defined as Cn(q) = {(m, w) \ w G £n({q,m))}.
The right language is also denoted C(q). The left language of a CA state is defined analo
gously: CL{q) = {(m,w) I w G CL((q,m))}.

Language via a state. Given a C A A and its state q G Q, the language via q, denoted
Cy(q), is the set of those words in C(A), for which an accepting run of A on w visits
the state q. We define this set formally using the left and right language of q in SFA(A):
Cv{q) = {wL • wR I 3m G SOT: wL G £ L ((g , m)) A to/? G £ R ((g , m)) } .

Counter scope. In many C A encountered in practice, only relatively few of the states
of the C A use counters. For example, it often happens that a counter is used in a single
state, and in all other states, the value of this counter is zero (recall counters are initialized
to zero in the beginning of C A run, and reset to zero on exit from a loop). We can take
advantage of this by not explicitly storing the value of a counter in those states, where its
value is always zero.

For this purpose, we define the scope of counter c, denoted Sc, as the set of those states
in which c can have other value than zero. Sc is the smallest set of states such that

1. p-(ac, upd,grd~y>q A upd(c) G {iNCR, EXITl} =4> q G Sc,

2. p-(oc, upd,grd}$q A p G Sc A upd(c) = NOOP = ^ q G Sc.

In other words, the scope of c begins after it is incremented or reset to 1, and extends as
far as c is not changed. For a state q and counter c, such that q ^ Sc, we say, perhaps
somewhat illogically, that c is out of scope in q. We take this commonly used phrase from
the jargon of programming languages, where one speaks of out-of-scope variables, and use
it in the context of counters.

For a state q we define the set of non-zero counters, Nq, as the set of counters which
are in scope in q (and thus can have non-zero value): Nq = {c G C \ q G Sc}.

Example 2.4.3. In Fig. 2.1, the scope of c is {q}, as its value is always zero in p.

21

Chapter 3

Simulation in C A

In this chapter we present our main contribution. We first define the concepts of counter
liveness and counter mapping. Using on these, we give the definition of simulation in C A
parameterized by counter mapping, along with a proof sketch of its correctness with respect
to language inclusion. We further describe some of its properties which help us grasp this
novel concept.

3.1 Counter Liveness

This section presents the concept of liveness of a counter. It is a straightforward adaptation
of the liveness of a variable, known from conventional static program analysis.

Definition 3.1.1 (Counter liveness). A counter c G C is said to be live in state q G Q
iff the value of c is read in some state r reachable from q, and there exists at least one
path from q to r which does not reset c. Intuitively, liveness of a counter indicates that the
counter value may be required at a later point, and needs to be stored in memory.

In the formal definition of liveness, we define sets of states for a counter c, each having
certain property with respect to c. In order to do so, we introduce the following auxiliary
definition. Given a sequence or set of transitions, j3 G A * or j3 C A respectively, let Q[j3\
be the set of states occurring in (3, defined as Q[(3] = {q G Q \ p-(*}^q G (3 V q-(*)+r G (3}.

For a counter c, we define the following sets of states:

• The set of initializing states of counter c:

These are the states in which c has been reset on an incoming transition, and thus
has value either 0 or 1 in this state. This set includes the initial state qo, since in
the initial state all counters are implicitly initialized to zero.

• The set of utilizing states of counter c:

8Note that in the state i, c may possibly acquire other values besides 0 or 1 if another transition leads
to i, which performs another update (e.g. INCR or NOOP). If we are to be precise, we should say that i may
have value either 0 or 1 in i. The concrete values are not important however; the important fact is that c
is reset on some transition into i.

Ic = {qo} U {i € Q I q -(a,grd,upd}^i A upd(c) G {EXIT, EXITl} }. (3.1)

Uc = {u G Q | &nu{c) £ {true, false} V
u -{a, grd, upd>> q A upd(c) / NOOP }.

(3.2)

22

These are the states in which c is read; that is, in which c either occurs in the accep
tance condition, or is updated on some outgoing transition by a n o n - N O O P update.
We can safely ignore the N O O P update and its guard true, since neither of them re
quires the actual value of c for their evaluation - true is constant, and N O O P performs
no action.

• The set of resetting transitions of counter c:

Rc = {p ~(a,grd,upd}^ q | upd(c) G { E X I T , EXlTl}}. (3.3)

These are the transitions, on which c is reset, either to 0 or 1, and thus its previous
value is discarded.

• The set of live paths of counter c:

Pc = {(i, /?, u) G (Ic x A* x Uc) | i ^ u A 0 n Rc = 0}. (3.4)

These are triples (i,P,u), where i is an initializing state for counter c; u is a utilizing
state for c; and j3 is a sequence of transitions leading from i to u, such that no
transition in j5 resets c. Note that (3 can be empty, in which case i = u (this happens
e.g. if c is utilized in the initial state). Intuitively, these are the paths along which
c is live, since on each transition along the path, the new value of c depends on the
previous one, and it will eventually be used.9

• The set of states in which counter c is live:

Lc = {qeQ I 3(i,f3,u)ePc:qe{i,u}UQ[f3}}. (3.5)

These are simply all the states along each live path of c. Intuitively, these are the
states in which the value of c is still needed, since it may be read at some point in the
future, while not being reset prior to being read. If it were reset before being read,
we do not need to keep its value and can simply discard it immediately, since it would
be discarded by the inevitable reset anyway.

The set of live counters in state q is defined accordingly:

Cq = {ceC | q G Lc}. (3.6)

3.2 Counter Mapping

For our parameterized simulation in C A , we need to describe how the counters of weaker
and stronger state are related. For this purpose, we use the concept of counter mapping,
introduced in this section. Simply put, it determines which counter in the stronger state
simulates which counter in the weaker state.

To be exact, c will be used only if the sequence of transitions ft is executable. Thus, the set Uc generally
overapproximates the actual set of states in which c can be used. However, the derivative construction
described in [55] does not produce C A with non-executable transitions, according to footnote 5 in [55].

23

Definition 3.2.1 (Counter mapping). A counter mapping 7 * : Cs —>• Cq assigns to each
counter d live in the simulating state s a unique corresponding counter c live in the simulated
state q. In other words, 7* is total and injective, and is empty if Cs = 0. For a counter c,
we say c is mapped via 7* (or simply mapped if clear from context) iff c G i m 7 * ; otherwise c
is not mapped via 7* . Since 7^ is injective, we freely interchange the direction of mapping
and say c is mapped to d as well as d is mapped to c. We commonly omit the states and
use just 7 whenever clear from context; and we use the convention c = 7(d) unless specified
otherwise.

The identity mapping 7 I D maps each counter to itself: Vc G C: 7 r o (c) = c. If used in a
state q, we implicitly assume its domain and image to be restricted to Cq. As each counter
mapping 7 is injective, it has an inverse, denoted 7 _ 1 .

We lift the definition to counter memories in the following way:

7 (m) = {c i-> m (7 _ 1 (c)) | c G im 7 } U {c H - 0 | c ^ im 7 } - 1 0

That is, counters which are mapped via 7 are renamed; those which are not, have value 0.
Such memory 7 (m) is said to be remapped. Counters not mapped from s via 7 have the
value 0, but their value does not matter in most contexts. Such counters are dead in s and
thus their value will never be needed in s, whereas in q their value is, generally speaking,
not relevant (we will address this issue later in Chapter 4). Note that in such remapped
memory, the value of a counter may hypothetically exceed its upper bound. This is not a
concern, as it will never happen in practice.

Totality and injectivity. We require that each counter d live in the simulating state s
has precisely one unique corresponding counter c live in the simulated state q:

Every counter mapping 7 * : Cs —> Cq is total and injective. (3-7)

The reason behind this requirement is that a counter restricts the language of a state.
Specifically, the language of a state is in general made smaller by adding a counter and
larger by removing a counter. This is because counter guards may disable some transitions
and limit the conditions under the automaton accepts in the given state. In order to ensure
that q only accepts the words s accepts, we must apply the same restrictions on q which are
present in s. We overapproximate these restrictions by requiring that for each live counter
d in s, there must be a corresponding live counter c in q. Further, we require that there is
no more than one such c for each d (7 is a function, not an arbitrary relation), and no two
d, d' in s can correspond to the same c in q (the mapping is injective).

Example 3.2.1. Figure 3.1 shows a case when the totality requirement is too strict. The
reason for the injectivity requirement is illustrated in Figures fig. 3.2a and 3.2b. Albeit nei
ther of the examples presented therein arises in our C A constructed from regular expressions
[55; 54], there may be a different case which does occur in practice.

In fig. 3.2a, multiple counters (c, d) in the weaker state q are simulated by a single counter
(/) in the stronger state s. If the initial memory is the zero memory m 0 , then s and q have
the following languages respectively (recall n ~ c means n is within the bounds of c):

£ ((s , m 0)) = {w G S * I \w\x + \w\y ~ /},

£ ((g , m 0)) = {w G £ * | \w\x ~ c A \w\y ~ d}.

1 0 Let 7: 9JT —> 9JT be a mapping lifted to memories. By its inverse, denoted 7 - 1 , we understand not the
functional inverse of the lifted mapping 7, but the inverse of the base mapping, lifted to counter memories:
7 _ 1 (m) = {c n> m(7(c)) | c G i m 7 - 1 } U {c n> 0 | c ^ i m 7 - 1 } .

24

Assume maxc = max^ = maxj = k. Then for w G £*, such that \w\x = \w\y = k,
we have w G £((g ,0)) but w £ £((s,0)). Thus £((q,m0)) % £((s,m0)).

In fig. 3.2b, the principle is similar. Single counter (c) in the weaker state q is simulated
by multiple counters (/, g) in the stronger state s. Wi th zero memory m0, s and q have the
following languages respectively:

£((s,m 0)) = {w G £* | M a ~ / A |«; | 6 ~ g},

C((q,m0)) = {w G S* | |u; | a + |u;| 6 ~ c}.

Assume minc = mirij = mirig = k > 0. Then for u> G £*, s.t. | iu | a + \w\b = k, we
have w G C{(q,$)) but to G' £((S,0)). Thus £((g,m 0)) g £{(s,m0)).

Example 3.2.2. Condition 3.7 is overly strict, as illustrated in Figures 3.2c and 3.2d. In
the automata shown therein, multiple counters can simulate a single one, or vice versa, while
maintaining language inclusion. Although in such cases the Condition 3.7 is too prohibitive,
not including it would make the consequent reasoning about C A simulation more difficult.
Moreover, we expect that in practical use-cases it will not induce a significant penalty in
terms of C A size reduction.

25

Figure 3.1: Stronger state s has a live counter d, but this counter does not need to be
mapped in order for s to simulate q.

fin: can Exit (f)

f++

fin: canExit(f) && canExit(g)

'g++

X/C++

f f
I I
c d

y/d++ x/ C++

f g
i i
c c

fin: canExit(c) && canExit(d) fin: can Exit (c)

y/c++

(a) Invalid mapping in which multiple counters
are simulated by a single one.

(b) Invalid mapping in which one counter is sim
ulated by multiple ones.

fin: canExit(d)

(c) Valid mapping in which multiple counters
are simulated by a single one.

Figure 3.2: Counter mappings which simulate

a /d++

fin: can Exit (c)

(d) Valid mapping in which one counter is sim
ulated by multiple ones.

several counters by a single one, or vice versa.

26

3.3 Definition of C A Simulation
Before giving a formal definition of simulation in counting automata, we first build an
intuition which will help us understand the different aspects of simulation in C A . Let us
first recall simulation in classical finite automata. Its key property is that it implies language
inclusion. That is, if p =4 q, then C{jp) C £(q). As a result, if p and q are ^.-equivalent, we
can merge them while preserving language of the FA. In C A , we would like to do the same.
However, the language of a C A state is parametric - it depends on the specific counter
memory which the C A has in that state in a given moment during a run. We do not know
the specific memory (or memories) when merging two states, as it is only known during the
C A run. 1 1 Therefore, we have to require that the language of the weaker state is a subset of
the language of the stronger state with any memory, as will be explained later. This leads
us to the following informal definition of C A simulation (a formal definition is presented
further below).

C A simulation denned informally. State s simulates state q under counter mapping 7
(denoted q C/y s) if, given a fixed counter memory m s, state s can "do as much" with m s,
as q can do with the remapped memory 7(ms). In more detail:

1. Whenever the weaker state q accepts with some memory m, the stronger state s
accepts with that same memory remapped according to the mapping: 7 _ 1(m). (Note
that the mapping is directed from stronger to weaker state, so in order to transform
a memory from weaker to stronger, we have to use the inverse mapping 7 - 1 .)

2. Each transition from q is "simulated" by a transition from s. This "simulation" has
two aspects:

(a) Transition executability, given by input predicates and counter guards. Predi
cates and guards on the weaker transition must imply respective predicates and
guards on the stronger one.

(b) Updates on transitions and simulation of successors. The respective updates
on weaker and stronger transitions must result in such memories in the weaker
and stronger successor states, that the stronger memory m's = updTs (/y~1(mq))

This definition of simulation is inspired by our goal to merge simulation-equivalent
states. Assume states p and q are simulation-equivalent. Then given any memory m and
word w, either both states accept w with m, or both reject. More precisely, if 75 is the
mapping from p to q, then either the C A accepts w from both {p, m) and (q, 7g (tn)), or from

"Although we could compute the set of attainable memories for each state using static analysis, this
approach would be more complicated and presumably not very beneficial.

We ensure this by requiring that s' simulates q' under some successor mapping 7'.
But the simulation between q' and s' holds only for memories which are equal
under 7'. We thus also require that the successor memories are equal under
the successor mapping: m's = 'y~1(m'q). Note that the successor mapping 7' can
differ from 7, as long as the successor memories are equal under it. Example 3.3.1
illustrates this case.

27

a / f++1

f
Y = I

c

- ^ (7) >r)
/ exit(f) \ ~ y a/f++

f
Y' = I

d

a / exit(c) d++
a/c++(

Figure 3.3: Counter mapping is changed on transitions to successors.

neither configuration. Based on this, we can merge the states p and q under the mapping jq

(the mechanism of merging is described later, in chapter 4). The specific memories attain
able in p and q are irrelevant, as the simulation equivalence holds for all counter memories.

Example 3.3.1. Fig. 3.3 illustrates a simulation where the mapping changes on transitions
to successors. State s simulates state q under counter mapping 7, which maps counter /
to c. Both these counters are reset on transitions TS and TQ respectively. In the successor
states s' and q', the mapping changed - / now maps to d. In the example, we assume d
has zero value in q', allowing it to be mapped to / . Without this assumption, mapping /
to d in 7' would not be possible.

Relation of simulation and language inclusion. We now formalize the informal state
ment given above: language of the weaker state q is a subset of the language of the stronger
state s with any memory, under a counter mapping 7. More precisely, for any memory mq,
the language of q with mq is a subset of the language of s with 7 _ 1(m (?):

q E 7 s Vm 9 £ SDt: C((q,m)) C C((s,7_1(mg))). (3.8)

Relation to classical simulation in the configuration automaton. Observe that
there is a connection between our parameterized simulation in a C A A, and classical simu
lation in its configuration automaton SFA(A). Namely, if q is simulated by s under mapping
7, then every state (q,m) in SFA(A) is simulated by (s,7_ 1(m)):

q E 7 s Vm ? £ 071: (q,mq) 4 (s,7~1(m<Z)>- (3.9)

The converse of Eq. 3.9 does not hold, hence the simulation on the SFA(A) induced by
our simulation on A is an underapproximation of the actual simulation on SFA{A). This is
caused, among other limitations, by the following requirement: the respective operations on
the weaker and stronger transition must either be equal, or can differ but only if they result
in the same 1 2 successor memories, assuming the memories are the same 1 2 in the source
states. Besides allowing different updates on weaker and stronger transitions, we also allow
to use a different mapping between the successor states than between the current states,
under certain conditions. The specific conditions are formalized in the following definition.

Under the counter mapping, viz. mq = 7(m s).

28

Definition 3.3.1 (Simulation in counting automata). A simulation on a CA A,
fZ C Q x Q x (Cs —>• Cq), is a relation assigning to each pair of states (q, s) of 4̂ at most
one counter mapping between them, t | . We can thus think of C as a partial function
(Q x Q) — (C s —>• C 9) . We use the notation q C-y s = (q, s, 7) G C. Due to the element 7
which is not present in classical FA simulation, we say that C A simulation is parameterized
by counter mapping between each stronger-weaker pair of states. Now follows the definition
of C A simulation.

For states q,s G Q, q C ŷ s holds iff the following conditions hold:

(I) If q accepts, s must accept under the mapping 7 :

qGF^seF, (3.10)

V d G Cs: Gnq(j(d)) Gns(d). (3.11)

Note that in Condition 3.11, it suffices to consider live counters of s. This is because
the acceptance condition of all dead counters is true, per definition of C A . Hence
we can ignore them in f in s , as it is a conjunction. If no counter is live in s, the
Condition 3.11 implicitly holds.

(II) For each transition from q, TQ: q-(a,grdTq, updT }>q' G A there exists

(a) a simulating transition from s, Ts: s-((3,grdTs, updTs}$s' G A, and
(b) a successor counter mapping 7 ' = 7*,' between the successor states q' and s',

such that all the following conditions hold (in which case we say that r s simulates rq

under the (current) mapping 7 and successor mapping 7 ') :

1. Input predicate implication.

a^(3. (3.12)

2. Counter guard implication.

Vd G Cs : grdTq (7(0!)) grdTs (d). (3.13)

This is to ensure that the stronger transition TS is executable whenever the weaker
transition TQ is. By grdT (c) grdTg (d), we mean that for every value x G N , if
grdTq(c)(x) holds, then grdTg(d)(x) also holds.

3. Simulation of successors.

q' C y s'. (3.14)

As in classical F A simulation, simulation must hold between successors. However,
the mapping 7 ' between successors may differ from the current mapping 7 .

4. Counter update and successor counter mapping.

For each c £ C g mapped via 7 to some d G Cs, either of the following holds for
the successor mapping 7 ' = 7?, between the successor states (q',s '): 1 3

These conditions are based on our particular case of C A constructed from regular expressions according
to [55]. In different or more general cases, these conditions should be revised.

29

The mapping of c as well as d is dropped - neither c nor d is mapped
under 7 ' . This is to account for currently mapped counters that become dead
in the successor states, so we no longer want to map them. The following
conditions must hold when the mapping is to be dropped:

c ^ i m 7 ' , (3.15)

d ^ d o m 7 ' . (3.16)

It follows from Cond. 3.16 that updTs (d) G { N O O P , E X I T , E X I T I } ; otherwise d
would be live in s' and thus would be mapped via 7 ' . Its guard is thus either
T or C A N E X I T ^ . In the latter case, by Condition 3.13 updTq(c) is E X I T

or E X I T I - only guards of these updates can imply the guard C A N E X I T ^ .

However, we do not care about the particular updates; it is sufficient that
grdTq(c) implies grdTs(d).

The mapping is not dropped - c is mapped to d' via 7 ' , viz. 7'(a") = c,
and one of the following Conditions A - F holds. The (presumably) most
common case is A , in which the mapping stays the same. The remaining
conditions address particular "corner cases". They allow us to obtain a
larger simulation relation by changing the counter mapping on transitions
to successors (as seen in Example 3.3.1).

(A) The mapping is the same as in the previous pair of states (q, s), and the
updates on c and d! are equal:

d = d', (3.17)

updTq(c) = updTs(d). (3.18)

In this case, we say that the mapping of c is preserved.

(B) Both c and d' have been reset to the same value on rq and r s respectively:
uPdTq (c) = updTg (d') = u, (3.19)

u e { E X I T , EXITl}. (3.20)

Note that the mapping can be preserved also in this case: if the reset
on c and d is the same, then this case coincides with Cond. A . If the
mapping is not preserved, we say that c has been remapped.

The intuition behind this condition is that if both c and d' are reset on
TQ and TS respectively, then they have the same value after executing the
respective transitions. Therefore, we can change the original mapping
of c from d to d'. The motivation for such remapping is the case when
we cannot simulate c by d in the successor state pair (q1, s'), but we can
simulate it by d!.

(C) c has been reset to 1 while d! has entered the scope by being incremented:

updTq(c) = E X I T 1, (3.21)

d! £ Ns A updTs (d') = I N C R . (3.22)

Again, the intuition is that if d! is out of scope on s, then after the
increment on TS it has value 1 - same as c after its reset.

30

(D) c has entered the scope by being incremented while d! has been reset
to 1:

c ^ Nq A updTq (c) = INCR

updTs(d!) = EXITl .

(3.23)

(3.24)

(E) c has been reset to 0 and d' is out of scope:

(F) c is out of scope and d' has been reset to 0:

c£Nq/, (3.27)

updTs (d') = E X I T . (3.28)

Similarly as in the previous point, c
their respective transitions.

will have the same value as d' after

Validity of counter remapping. To see that the counter remapping is valid with respect
to transition executability, observe the following.

1. In Condition B, d' is live in s, since it is reset on TS. Thus there is some d G Cq,
s.t. grdT (d) =4> grdTs(d'). Then on rq, we have a conjunction of counter guards
grdT (d) A grdT (c) A (...). This conjunction implies grdTs(d'), since its first term
- grdT (d) - implies it. Therefore, we can reset d' on TS whenever we can reset c
on rq. More generally, we can perform TS whenever we can perform rq. The same
principle applies to Conditions C and D. Furthermore, in Condition C, d' can be
always incremented on TS, since it is out of scope in s.

2. In Condition E, as d! is out of scope in s', its update on r s must be either N O O P

or E X I T . In the former case, its guard is always true and thus its update can be
performed whenever we can reset c. In the latter case, d' must be live in s since it
is reset on TS. Therefore, as in Conditions B-D, there exists some d G Cq, such that
grdTq{c') grdTg(d'). Due to this, we can perform r s whenever we can perform rq.

3. In Condition F, d' is live in s. Analogously to the previous conditions, there must
exist some d G Cq, such that grdT (d) implies grdTs(d'). Due to this, we can perform
TS whenever we can perform rq.

31

3.4 Correctness of Parameterized Simulation
This section presents the basic idea of a proof showing that the definition of parameterized
simulation on C A is correct. Specifically this means that simulation on C A implies language
inclusion, as stated in Equation 3.8. This property will be important in the simulation-based
C A reduction presented in chapter 4.

Given a C A A, let A = SFA(A). To show correctness of simulation on A, we need to
prove Equation 3.8. If we recall Eq. 2.3, we can see that Eq. 3.9 implies 3.8. We thus adopt
Equation 3.9 as our induction hypothesis, from which Equation 3.8 will follow.

Acceptance condition. We need to show that Vm,: (q,xaq) G F ^ (s,j~1(mq)} G F j .
That is, whenever we can accept in q with some memory, we can remap this memory
according to 7 and accept with it in s. Recall that (q,mq) G F^ q G F A firig(mg).
Therefore, we need to show q G F A firig(mg) =>• s G F A f i n s (7 _ 1 (m g)) . Condition 3.10
states q G F =4> s G F. Now it remains to show

fin g(tn,)=>fin B(7- 1(m,)). (3.29)

Recall the acceptance condition f i n s is a conjunction of individual acceptance con
ditions over all counters: f i n s (m s) = f f \ d & c Gns(d)(ms(d)). Condition 3.11 states that
the implication holds for each mapped counter, and for each mapped counter separately:
Vc G i n i 7 : Gnq(c) =4> f m s (7 _ 1 (c)) . This, however, is sufficient for Eq. 3.29 to hold. Assume
the antecedent holds, viz. Vc G C: Gnq(c)(mq(c)). Then also fm s (7 _ 1 (c))(m g (c)) holds for
each c G i n i 7 , and so does their conjunction: /\ceim^fins('y~1(c))(mq(c)). From this, we
now obtain the desired result f i n s (7 _ 1 (m g)) .

We use the following fact which follows from the definition of counter mappings lifted
to counter memories: V d G Cs: (-f~1(mq))(d) = (mqo,y)(d). Here, 7 is the ordinary counter
mapping and 7 - 1 is its inverse lifted to counter memories.

A i :n s (7 - 1 (c))K(c))
c S i m 7

= f\ i 2 n s (7 _ 1 (c)) ((m g o 7 o 7 _ 1) (c)) (since c G im 7)
c S i m 7

= f\ i i n s (7 - 1 (c)) (K o 7) (7 - 1 (c)))
c S i m 7

= / \ f m s (d X (m g o 7 X d))
cf S d o m 7

= / \ fm s (dX(m g o7)(d))

= / \ i in s (d)(7 - 1 (m)(d))

= . fiin s (0 !)(7- 1 (m)(a!)) if d G C s

, „ I T otherwise

32

Now recall that every counter d £ Cs has the acceptance condition fins(d) = true, and its
value in 7" _1(m) is 0. Therefore, fins(d)('y-1(m)(d)) = true(0) = T for all c ^ Cs. From
this, we obtain

fins(d)(7-1(m)(d)) ifdeCs

Rns(d)('y~1(m)(d)) otherwise A
dec

- / \ fina(d)(7-1(m,)(c0)
dec

• fws(7 _ 1 (m g)) .

Compatibility of transitions; simulation of successors. We need to show that if
q C/y s in A, then in A for each mg and each transition fq: {q,mq)-{a)^{q',m'q), there is a
transition f s : (s, ms)-(/3)->-(s/, m's), such that

11̂ = 7 (> s) , (3.30)

a=>0, (3.31)

(g',m;) ^ (s',m's). (3.32)

For a fixed transition rq in 4̂ from q to there is by Def. 3.3.1(11) a transition TS in
yl from s to s', which simulates TQ for any memory pair mq, ms = 7 _ 1 (m g) . Specifically,
Conditions 3.12 and 3.13 ensure that for any such memory pair, a implies /?, and TS is
executable whenever rq is (the latter can be proven similarly as we did with acceptance
conditions). Thus there exists a fs, for which Conditions 3.30 and 3.31 hold. Now the only
thing left is to show that Condition 3.32 holds. The conditions specified in Def. 3.3.1(11)4
ensure that the successor memories and m's are equal under the successor mapping 7 ' :

m'q = 7 ' K) . (3.33)

By Condition 3.14 we have q' C / s'. V ia the induction hypothesis 3.9, we then obtain
m'q = 7'(m's) = ^ (q', m'q) =4 (s1, m's). The antecedent holds by 3.33, and thus the consequent
- Condition 3.32 - holds also. We have thereby shown that Equation 3.9 holds, which implies
that so does Equation 3.8.

3.5 Hypersimulation and its Properties
C A simulations are significantly more complex than classical F A simulations. For exam
ple, a C A can have several simulation preorders which may overlap. For this reason, we
introduce the concept of hypersimulation, which is a generalization of C A simulation al
lowing multiple counter mappings between two states. It will allow us to effectively reason
about all possible simulations of a C A . Following the definition, we then describe interest
ing closure properties of hypersimulations and simulations. We also introduce the concept
of consistent simulation. This concept is important for simulation-based C A reduction, as
a simulation which is not consistent generally cannot be used for reduction.

33

Definition 3.5.1 (Hypersimulation on C A) . A hypersimulation on a CA A is a union of
arbitrarily many simulations on A. It is a relation «S C Q x Q x {Cs —> Cq), such that there
exist n simulations 1 < % < n, for which S = | J V i Is assigns to each pair of states
(g, s) a (possibly empty) set of counter mappings between them, 5*. We can thus think of
S as a total function (Q x Q) —>• { C s —>• C 9 } . We use the notation g 5^ s = (g, s, 7) G 5.
By |5| we understand E (m) G q x q I 5 (^ <?)!•

Definition 3.5.2 (Ambiguity of hypersimulation). A hypersimulation S is ambiguous
iff 3 Sg G im5: jS^I > 1. A hypersimulation which is not ambiguous is unambiguous.

The set of unambiguous hypersimulations of a C A 4̂ is trivially isomorphic to the set
of simulations of A. The only difference is that a hypersimulation assigns to a pair of sates
a set of mappings, whereas a simulation assigns a single mapping. We may thus use the
terms "unambiguous hypersimulation" and "simulation" interchangeably whenever clear
from context.

Theorem 3.5.1. The set of hypersimulations of a C A A is closed under union; the set of
simulations of A is not.

Proof Hypersimulations - immediate from the definition. Simulations - consider {{p, q, 71)}
and {{p, q, 72)} where 72 7̂ 71 • Their union is ambiguous, hence not a simulation. •

Definition 3.5.3 (Maximal and largest hypersimulation). A hypersimulation S on
C A A is maximal iff it is not a subset of any other hypersimulation of A. S is largest
iff there is no other hypersimulation S' on A, such that |<S'| > |<S|. As shown below, the
maximal hypersimulation on A is unique; we denote it S(A), or simply S whenever clear
from context.

Theorem 3.5.2. Among all hypersimulations of a C A , there is only one maximal hyper
simulation, and thus only one largest hypersimulation.

Proof Immediate from closure of hypersimulations under union. •

Having two separate terms largest and maximal seems pointless if they always agree.
However, they will be used in restricted contexts, where we speak of maximal/largest hy
persimulations of a certain kind (e.g. transitive, defined further below). In these restricted
contexts, there may be several largest and maximal hypersimulations, and they may not
agree.

Definition 3.5.4 (Reflexivity). A hypersimulation S is reflexive iff Vg G Q: q iSy I D q.

Definition 3.5.5 (Reflexive closure). Given a hypersimulation S, its reflexive closure,
denoted 5 R , is its smallest superset which is a reflexive hypersimulation.

Lemma 3.5.1. The set of hypersimulations of a C A A is closed under reflexive closure;
the set of simulations of A is not.

Proof. First case is obvious, as each state can simulate itself under the identity mapping.
In the second case, the simulation C may contain a non-identity mapping for some (g,g);
adding 7 I D for this pair will cause C to become ambiguous. •

Definition 3.5.6 (Strong and weak symmetry). A hypersimulation S is weakly sym
metric iff V (p, q) G Q x Q: S(p,q) ^ 0 <̂=4> S(q,p) / 0. In a hypersimulation S, pair
(p,q) G Q x Q is strongly symmetric or simply symmetric iff S(p,q) = J 7 - 1 | 7 G S(q,p)}.
S is strongly symmetric iff all (p, q) G Q x Q are symmetric in <S.

34

Lemma 3.5.2. A hypersimulation has exactly one maximal weakly symmetric subset and
one maximal strongly symmetric subset.

Proof. Assume a hypersimulation S has two maximal weakly symmetric subsets, <Si and
52- Their union clearly is a weakly symmetric subset of S strictly greater than either of
Si, 1S2; hence, Si and S2 are not maximal - contradiction. Strongly symmetric case is
analogous. •

Note. Like classical FA simulations, C A (hyper)simulations are generally not closed under
symmetric closure. Hence we purposefully do not define the symmetric closure of a C A
(hyper)simulation, as it is of little practical utility.

Definition 3.5.7 (Transitivity). A hypersimulation S is transitive iff p S^ q A q Sj2

 r

implies p Sj3 r, where 73 = 71 o 72.

Definition 3.5.8 (Transitive fragment). Given a hypersimulation S, its transitive frag
ment is any subset of <S which is a transitive hypersimulation.

Lemma 3.5.3. The set of transitive hypersimulations is not closed under union. Therefore,
a hypersimulation can (possibly) have multiple maximal transitive fragments.

Proof. The union of transitive hypersimulations {{p, q, 71)} and {(g, r, 72)} is not transitive.
These are both maximal transitive fragments of their union. •

Definition 3.5.9 (Transitive closure). Given a hypersimulation S, its transitive closure,
denoted ST, is its smallest superset which is a transitive hypersimulation.

Theorem 3.5.3. The set of simulations of a C A A is not closed under transitive closure.

Proof. Consider a simulation {(p, q, 71), (q, r, 72) , (p, r, 73)} , s.t. 73 / 71 o 72. Its transitive
closure is ambiguous, as it contains both (p, r, 73) and (p, r, 71 o 72).

Theorem 3.5.4. Let S' be a simulation where the counter mapping does not change across
transitions, viz. q^js =4> yq-(...}^q'3s-(...}^s': q'^js'. The set of such simulations is closed
under transitive closure.

Proof. We proceed in two steps:

1. Each hypersimulation has a minimal transitive superset, which may not be a hyper
simulation.

We can construct this superset by a straightforward extension of any standard algo
rithm for computing transitive closure of a binary relation. This extension would,
apart from considering the pairs of states (p, q), also consider the mapping between
them. When adding a new element to the relation obtained from (p,q,ji) and
(q,r, 71), this element will be (p, r, 71 o 72). Observe that dom 71 C im 72, so such
composition is well-defined, and is still injective.

2. The transitive superset thus computed is indeed a hypersimulation <ST.

Assume S' where:
(a) Tq: q-{--.yrq' is simulated by r r : r-(—)}r' under mapping 71 (which is both the

current and successor mapping, as mappings do not change in S'),
(b) TR is simulated by Ts: s-(---}^s' under 72 (likewise, both current and successor

mapping).

35

To show that (S')T is indeed a simulation, we show the following: in (<S')T, rq can be
simulated by r s under 73 = 71 o 72 as the current and successor mapping.

First, consider Conditions 3.10-3.13 in the definition of C A simulation. It is easily
seen that if they all hold for both (1) rq and r r under 71, and (2) r r and r s under 72,
then they hold for rq and r s under 73.

The only applicable rule for successor counter mapping is A . The updates are the same
on d and 72(d) for all d G Cs, and in turn on 72(d) and 71 (72(d)). Hence they are
the same on d and 71 (72(d)). As a result, = (71 o 72)(m's), were is the memory
in q' after rq, and is the memory in s' after TS. This means TS can simulate TQ in
(S')T if there is the mapping 71 o 72 from s' to q' in (S')T. Now since the mappings
do not change on transitions, (q',r', 71) G S' and (r',s',72) G 5 ' hold. Therefore, in
the transitive closure (5 ') T , there indeed is 71 o 72 from s' to q'.

•
Conjecture 3.5.1. The set of hypersimulations of a C A is closed under transitive closure.

Proof (idea). We may proceed similarly as in the special case above, where counter map
pings do not change across transitions. We ought to to show that 73 = 7J o 7 2 is a valid
successor mapping for the simulation of TQ by r s . A full proof would essentially require
enumerating all the possible combinations of successor counter mappings (Conditions A-F)
for the two pairs - TQ simulated by r r , and r r simulated by TS. Each case may then be
examined separately. This proof will also require further assertions about the underlying
C A . We do not have such full proof, as it would be very complex. However, precisely due
to the complexity of the counter remapping conditions, a proof of their correctness (with
regard to transitivity) is highly desirable.

We do not assume Conjecture 3.5.1 to hold, as we have no convincing proof of closure
of hypersimulations under transitive closure.

Assumption 3.5.1. Conjecture 3.5.1 does not hold; that is, the set of hypersimulations of
a C A A is not closed under transitive closure.

We will return to this assumption shortly, after we present the concept of consistent
simulation. Essentially, a consistent simulation can be used for reduction of C A , whereas
an inconsistent simulation cannot.

Definition 3.5.10 (Consistency). A hypersimulation is consistent iff it is unambiguous,
reflexive and transitive. A hypersimulation which is not consistent is inconsistent.

Lemma 3.5.4. No ambiguous hypersimulation is consistent; unambiguous hypersimulation
may or may not be consistent.

Intuitively, consistency of a simulation assures that it is "well-behaved" for the purposes
of merging states of a C A . Namely, it does not require mapping a state to itself under a
non-identity mapping, there is at most one mapping between two states, and its mappings
all "agree" (by which we mean transitivity). Transitivity of a simulation would not be
necessary for merging states, had hypersimulations been closed under transitive closure.

One such assertion required for a full proof is that counters are used only in loops - if a counter is in
scope, it is in a counting loop in which it is incremented. This property holds in our particular case.

36

However, by Assumption 3.5.1 this is not the case, and therefore we require that a consistent
simulation is transitive.

We will concern ourselves only with computation and utilization of consistent C A sim
ulations. This restriction to consistent simulations is inspired by our primary application
of simulation in C A reduction. We want to merge states which are simulation-equivalent
under a counter mapping. When merging three or more states, we need the respective
mappings to "agree"; otherwise it would be very difficult to reason about the correctness
of such merging. This is also the reason why we require that in a reflexive simulation, the
mapping between each state and itself is the identity mapping. Allowing a non-identity
mapping would only make matters more complicated and bring no benefit, since it makes
no sense to merge a state with itself.

Lemma 3.5.5. In a consistent simulation C, there is at most one mapping between each
state and itself, and it is the identity mapping 7 I D .

Proof. Immediate from C being unambiguous and reflexive. •

Lemma 3.5.6. In a consistent simulation, if there is any (p, q) £ Q x Q, such that there is
a mapping from p to q and from q to p, then these mappings are the inverse of each other. 1 5

Proof. Let 71 = C (q,p) and 72 = E (p, q)- If the mapping 71 was not equal to (7 2) _ 1 , then
7 i ° 7 2 7̂ 7ro- By transitivity, C (q, q) = 71 072 7̂ 7 I D , which contradicts C being reflexive.

Corollary 3.5.1. In a consistent simulation, weak and strong symmetry are equivalent.

Definition 3.5.11 (Simulation preorder). A consistent simulation C on C A A is a maxi
mal consistent simulation iff it is maximal among consistent simulations on A. Analogously
is defined a largest consistent simulation. We refer to a maximal consistent simulation as a
simulation preorder.16 We do not consider any inconsistent simulation to be a simulation
preorder.

Theorem 3.5.5. Any simulation preorder is indeed a preorder relation; that is, reflexive
and transitive under the definition of these terms for C A simulations.

Proof. Immediate from the definition of simulation preorder and consistency. •

Non-uniqueness of simulation preorders. Non-closure of simulations under union hints
that there generally does not exist a single simulation preorder for a given C A A. This is
indeed the case, and there are two reasons. First, there can be multiple counter mappings
between a single pair of states, meaning the maximal hypersimulation <S is ambiguous.
Second, the maximal hypersimulation S may not be transitive.

Theorem 3.5.6. A counting automaton can have multiple simulation preorders. This
holds also if its maximal hypersimulation S is unambiguous.

5 Observe that this statement is not equivalent with "In a consistent simulation, weak symmetry implies
strong symmetry"; it is strictly stronger.

1 6Noting, as with classical FA simulation, that not all consistent simulation which are preorder relations
are also maximal. We use the term simulation preorder to refer only to the maximal ones.

•

37

Proof. Consider the following <S on a 2-state, 2-counter C A A:

{(p,q,{c^c, d^d}), (p,q,{c^d, d^c}), (p,p,jm), (q,q,lm)}-

It contains the following two simulation preorders:

{(p,q,{c^c, d^d}), (p,p,jm), (q,q,lm)},

{(p,q,{c^d, d^c}), (p,p,jm), (q,q,lm)}-

Now consider the following unambiguous S:

{(p,Q,li), (q,r,j2), (p,P,lm), (q,q,lm), (r , r , 7 I D) } .

It contains the following two simulation preorders:

{(p,Q,li), (p,P,lm), (<?,<?,7m), (r ,r ,7 I D)} ,

{(9,^,72), (p,P,lm), (q,q,lm), (r , r , 7 I D) } .

•
Using several simulation preorders. If possible, we would like to reduce a C A by
several simulation preorders, to obtain a better reduction. For example, we could merge
states according to the union of some or all simulation preorders. However, as the following
theorem tells us, that this is not possible.

Theorem 3.5.7. Given a C A A, the union of multiple simulation preorders of A is incon
sistent.

Proof. Consider a C A A with k > 1 distinct simulation preorders E(i)! 1 < i < k. Assume
their union C ' is consistent. Then C ' is a simulation preorder, and also a proper superset
of for some j. Thus this C^) is not maximal among consistent simulations; hence not
a simulation preorder. This contradicts the assumption that C ' is consistent. •

Simulation preorder in special cases. We now describe the properties of simulation
preorders under some special cases of S. These special cases are interesting because we
expect them to often arise in practice.

Theorem 3.5.8. If the maximal hypersimulation S of a C A A is unambiguous and tran
sitive, A has a single simulation preorder.

Proof. The simulation preorder is S, since it is reflexive, transitive, and unambiguous;
thereby consistent. •

We expect especially this first case, addressed in Theorem 3.5.8, to be often encountered
in practice. The following case will probably be less frequent; we include it nonetheless for
completeness.

Lemma 3.5.7. In a C A A with unambiguous S, the set of simulation preorders coincides
with the set of maximal transitive fragments (MTF) of S.

Where maximal transitive fragment is interpreted according to Def. 3.5.8.

38

Proof. M T F =4> simulation preorder: S is reflexive; thus each its M T F C is reflexive, since
reflexive pairs (e.g. q E 7 I D q) do not affect transitivity. As C is also transitive and un
ambiguous, it is consistent. Since consistency implies transitivity, it must be a maximal
consistent fragment; hence a simulation preorder. If it was not, then there would be a
greater consistent fragment than C, therefore a greater transitive fragment, contradicting
the premise that C is a maximal transitive fragment.

Simulation preorder =4> M T F : Assume a simulation preorder C is not a M T F . Then
there exists a M T F C ' which is a proper superset of C. This M T F C ' is consistent, since
each M T F is consistent (as shown above). This means C ' is a greater consistent simulation
than C, hence C is not a simulation preorder - contradiction. •

(Bi)simulation equivalences. We now define the concepts of bisimulation and simulation
equivalence in C A .

Definition 3.5.12 (Equivalence class). Given a consistent simulation C on a C A A
and a set of states R C Q, i? is an equivalence class of C iff V p , g G i? : 3 7 : p C-y g. In
other words, every two states p and q in R C-simulate each other. It follows from C being
consistent that the two mappings 7^ and yjj, under which they simulate each other, are
inverse of each other, viz. 7^ = (T ^) - 1 .

Definition 3.5.13 (Bisimulation on C A) . A bisimulation on a C A A is any strongly
symmetric consistent simulation on A.

Definition 3.5.14 (Hyperbisimulation on CA) . A hyperbisimulation on a CA A is a
union of arbitrarily many bisimulations on A. The maximal hyperbisimulation is the union
of all hyperbisimulations.

Definition 3.5.15 (Bisimulation equivalence). A bisimulation equivalence on a C A A
is any bisimulation which is maximal among bisimulations on A. We denote a bisimulation
equivalence by =.

Definition 3.5.16 (Simulation equivalence). A simulation equivalence on a C A A is
a maximal strongly symmetric subset of any consistent simulation on A. We denote a
simulation equivalence by =. By Qj = we understand the set of equivalence classes of Q
with respect to {{p,q) | 3 7 : (p,5,7) G =}. We may occasionally refer by this term to a
non-maximal equivalence if clear from the context.

Definition 3.5.17 (Optimal equivalence). A simulation equivalence = on a C A A is
optimal (with respect to A) iff there exists no other simulation equivalence =' on A, such
that \QI = J < \QI =|. Optimal bisimulation equivalence is defined analogously.

Intuitively, a simulation equivalence = is optimal iff it partitions Q into as few equiv
alence classes as any other simulation equivalence on A, or fewer. This means that after
merging states according to =, the number of states of the reduced automaton is as low as
with any other simulation equivalence, or lower.

Lemma 3.5.8. Every optimal simulation equivalence is maximal among simulation equiva
lences, but not vice versa. Not every optimal simulation equivalence is largest; the converse
case does not hold either. These statements also hold for bisimulation equivalences.

Proof. We only show a proof for simulation equivalences. For bisimulation equivalences,
the proof is analogous.

39

Optimal =4> maximal: assume an optimal equivalence = is not maximal. Then it is a
proper subset of some other equivalence, which relates two classes which are not related in
=. Therefore, = cannot be optimal - contradiction.

Maximal 7^ optimal: consider the following S (using simplified notation with counter
mappings omitted):

{ { P , g } , { g , r } , { r , s } , { s , g } } .

Assume it has the maximal simulation equivalences {{p, q}} and { {g , r } , { r , s}, {s, g}} . Only
the second one is optimal.

Largest: consider the largest simulation equivalence (again in simplified notation):

{a = b = c = d = e}.

It has 25 elements - {(a, a), (a, 6) , . . . (6, a), (6, 6), . . .}; and allows merging 5 states into one,
hence eliminating 4 states. On the other hand, the equivalence

{a = f, b = g, c = h, d = i, e = j}

has only 20 elements, but allows eliminating 5 states. •

Searching for simulation preorders and equivalences. Assume we have S computed
and wish to obtain from it simulation preorders and subsequently simulation equivalences,
which will be used for state merging. Because a C A can have multiple simulation preorders,
we need to search for them in <S, at least in the general case. For an ambiguous S, a basic
naive approach would be to examine each maximal transitive fragment of S and search
for simulation preorders within it (as these preorders are all transitive and thus must be
contained within a maximal transitive fragment). But since a simulation preorder must itself
be transitive, this approach requires to search for transitive fragments (i.e., the simulation
preorders) within a transitive fragment. This probably wouldn't be more efficient than
searching for simulation preorders directly in S.

In examples occurring in practice, 1 8 the number of possible mappings between two states
in the maximal hypersimulation almost never exceeds 1. In this case, <S is unambiguous and
we can employ a simpler naive approach. This simpler approach would merely enumerate
all maximal transitive fragments of S, without a need to choose from multiple possible
counter mappings between two states. This will give us all simulation preorders in S, per
Lemma 3.5.7. However, enumerating all maximal transitive fragments is not particularly
easier than searching for all simulation preorders within an ambiguous S. This is because we
cannot simply search for any maximal transitive subset; this subset has to be a simulation.

In Section 5.1 we present Algorithm Pseudosim, which for a given C A computes its
maximal hypersimulation S. More precisely, it computes a certain superset of S in general.
This is caused by the ambiguity of S, due to which the algorithm may not be able to
compute the actual S but only its overapproximation.

Section 5.2 then presents Algorithm Search. This algorithm takes the superset of S com
puted by Algorithm Pseudosim, and searches within it for consistent simulations (including
those which are simulation preorders).

18Specifically in the C A constructed from regular expressions, via the construction presented in [55], as
implemented in [54].

40

Chapter 4

Simulation-Based Reduction of C A

In this chapter, we present a method of reducing the size of a counting automaton based
on the parameterized simulation defined in section 3.3. This method operates by merging
states which are simulation-equivalent under a counter mapping. If we have a bisimulation
(or bisimulation equivalence) =, we can use it directly for merging, as it is always an
equivalence. For a simulation, we have to reduce it into a simulation equivalence.

Obtaining simulation equivalence from a simulation. Assume we have a consistent
simulation C. We obtain a simulation equivalence = from it by taking its maximal strongly-
symmetric subset. That means removing all p C/y q, such that q E (7 - i) V does not hold.
Formally, = = {(p,q,j) € C | (<?,p,7 _ 1) G E }•

Merging method. We now wish to merge several states, which are all equivalent under
the equivalence relation (either = or =). The method selects one of the equivalent states
as the representative of the equivalence class. The representative state stays unchanged,
and the other states are merged into it. This merging consists of redirecting incoming
and outgoing transitions of the merged state to go into / from the representative. On
redirected incoming transitions, we much change from the "context" of the merged state to
the "context" of the representative, and on outgoing transitions the other way. By changing
context we mean modifying the counter memory (retained during a C A run) according to
the mapping. Namely, if 7 is a mapping from the representative to the merged state, then
on incoming transitions we must change the C A memory from m to 7 _ 1 (m), and on outgoing
from 7 _ 1 (m) back to m = 7(7 _ 1 (m)) . To allow such dynamic remapping of counter memory
during a C A run, we introduce a counter rename operation on transitions. For this purpose,
we introduce a slightly modified version of C A , named renaming CA (RCA), which allows
renaming of counter on transitions according to a counter mapping.

Definition 4.0.1 (Renaming C A (RCA)). A renaming counting automaton (RCA) is a
tuple A = (I, C, Q, qo, F, fin, A), where all elements except A are defined equivalently as in
counting automata (Def. 2.4.1). The transition relation A is modified thus (added elements
underlined):

A C Q x * , x (£Pt —»£Pt) x (C -> U P D) X (C ->• G R D c) X (3ft -» 3tt) x Q,

T: p-(a,71, updT,grdT,72»g G A.

41

The newly added elements 71 and 72 are counter mappings (lifted to counter memories),
via which counter renaming is executed. Counter renaming on the transition r , given above,
works by modifying the counter memory m during a C A run. We say m is remapped during
a run; 71 is the pre-update remapping and 72 is the post-update remapping. The remapping
mechanism works as follows:

1. Initially, the C A is in configuration (p,m).

2. Before the guards on r are evaluated and updates are executed, m is remapped ac
cording to the mapping 71, resulting in the memory mi = 71 (m).

3. Counter guards grdT are evaluated on mi .

4. When (and if) r is executed, updates updT are applied to mi , obtaining the memory
m'x = upO T(mi).

5. After the update, m'x is remapped according to 72, obtaining the memory m' = 72(m'1).

6. The memory m' becomes the new counter memory of the C A , viz. the new configu
ration becomes (q, m').

Semantics of R C A . To formalize the above intuition, we again use the configuration
automaton SFA{A). As with the above definition of R C A , the only thing that changes is
the transition relation A S F A ^ . It is defined as

(p, m) - (a) » (q, m') G A g J ? A (^

iff

3p -(a,71, updT,grdT,72»^ G A : 0tf> r(7i(m)) A (72 (up9 r (71(01))) = m').

The language of a R C A A is defined analogously to C A via SFA(A). Observe that C A
are in fact a special kind of R C A , where on each transition, both 71 and 72 are the identity
mapping 7 I D .

Note that some properties of C A are not directly applicable to R C A . For example, the
definitions of counter scope and liveness would need to be modified to consider counter
remapping. However, we do not need these properties for an R C A and thus we do not
define them.

Now we can proceed to describe the method of merging simulation-equivalent states.

Definition 4.0.2 (Reduction of C A by simulation equivalence). Let C be a consistent
simulation on a C A A. We can reduce A by C by merging C-equivalent states, resulting in
the reduced RCA A. This reduction works as follows:

1. Convert the C A A to a R C A A by changing each transition p-(a, upd, grd}^-q to
p-(a,7iD, u p d , g r d , 7 r o » g .

2. Enumerate all maximal equivalence classes of C (that is, classes which are not con
tained in other classes). For each maximal equivalence class R of C:

(a) Select an arbitrary state r G f l a s its representative.

(b) For all the remaining states q G R\ { r } (in no particular order):

42

i . Let 7^ be the mapping from r to q and 7^ its inverse.

i i . Modify each incoming transition of q in A, rq: g'-(a, 71, upd,grd,72}>g:
A . Change the target state from g to r.
B. Change 72 to 7^ o 72.
The rename on an incoming transition r is added after all existing operations
and renames on r .

hi. Modify each outgoing transition of q in A, rq: g-(a,7i, upd,grd,72}+q':
A . Change the source state from q to r.
B. Change 71 to 71 o 7^.
The rename on an outgoing transition r is added before all existing opera
tions and renames on r.

3. Let A be the resulting reduced R C A .

Observe that counter updates and guards do not change at all. Instead, all necessary
changes are handled via the mappings 71 and 72. In particular, observe how self-loops on
q are processed. First, the target changes from q to r with the rename from q to r being
added to 72. Then, the source changes from q to r with the rename from r to q being
added to 71. The resulting transition will start in r with some memory m, then remap the
memory to the context of the original state q via 71, execute updates on 71 (m) within this
context, and then remap the updated memory back to the context of r via 72.

(a) Before merging q into r. (b) After merging q into r. (c) After merging qi into r\.

Figure 4.1: Two successive states are merged into their representatives.

Memory context and the pre-update and post-update remappings. Having defined
the semantics of memory remapping formally, we now give an illustrated intuitive overview
of the principles behind it. We explain why both the pre-update remapping 71 and the
post-update remapping 72 are necessary. This is best illustrated by thinking about a R C A
transition as consisting of three parts: (1) the source state and its context; (2) the input
predicate and counter guards and updates, which have their own context; and (3) the target
state and its context. Here, context could be roughly understood as counter memory;
namely it is the assignment of specific values to specific counters. This notion will become
more clear in the following paragraphs.

In an original transition which has not been redirected, the contexts of source state,
updates, and target state all agree. When we change the source state of a transition r from
q to r, we introduce a mismatch in r between its source-state context and update context.
We need to account for this mismatch on r . More precisely, before the updates (or guards)

43

are evaluated, we need to adapt from the new source context (which is the context of r) to
the context of updates (which is the context of q). This change of context consists simply
of counter renaming, alias memory remapping. A n obvious thought would be to simply
change the updates and guards present on r , but that is not enough. The counters still
need to be renamed. 1 9

Instead, we account for the context mismatch by executing the appropriate memory
remapping. This remapping is intended to change the context back to q, and is executed as
the first thing on r , before anything else (including other existing remappings on r) . After
we change context from r to q, we execute the rest of pre-update remappings on r (if there
are any), then the updates, and then the original post-update remappings. We do not need
to add a post-update remapping if we only change the source state of r , since the target
context of r stays the same as before. Similarly, if we change the target state (and thus
target context) of r , we need to add a new post-update remapping. This remapping will
be executed as the last thing on r , after all existing pre-update remappings, updates, and
existing post-update remappings. Figure 4.1 illustrates redirection of a transition between
two states, both of which are merged into their representative state.

Composition of memory remappings. Observe that in point 2(b)iiB of Def. 4.0.2, the
post-update remapping 7r is "appended" to the existing remappings 72 when changing the
target of a transition. On the other hand, in point 2(b)iiiB (when changing the source),
the pre-update remapping 7^ is "prepended" to the existing remappings 71. This is not
arbitrary: it allows for a "layered" changing of context. That means we can redirect a
transition multiple times and still obtain a valid, equivalent R C A (assuming the merged
states are language-equivalent). In a broader sense, it allows us to take an already-reduced
R C A and reduce it again, using the same merging mechanism.

Now we illustrate more closely how composition of remappings relates to the repeated
redirection of a transition. Imagine r was originally going into a state q, from which its
target state has been changed to r, and then again to s. Its target context thus has to be
changed twice after executing its updates - first from q to r, then from r to s. It should
be clear now that the second post-update mapping - 7 J - has to be executed after the first
one - 7r - Analogously in the case when changing the source state of r , as illustrated in
fig. 4.2. In fig. 4.2c, the newly added pre-update remapping e i-> d needs to be executed
before the original remapping d ^ c.

Simulation consistency. As we hinted in the beginning of section 3.5, we can only use
a consistent simulation for merging states. This is to avoid modifying the language of the
C A while merging states. For example, assume the following reflexive strongly symmetric
simulation C on C A A: {{p,9,71), (q,r,72)} (reflexive and symmetric elements omitted).
This simulation is not transitive and thus not consistent. As r and p are not equivalent in C,
it is not clear what would happen to the language of A if we merged them. Therefore, we do
not merge them, and require that a simulation must be transitive to be used for merging. As
a consequence of transitivity, we also have strong symmetry. Assume a reflexive simulation
E = {(p, q, 7 i) , (q,P, 72)} (reflexive pairs omitted), where 71 7̂ (7 2) _ 1 - Here, it is not only
difficult to see whether merging the states p and q is valid. It is also not clear how exactly
should we remap memory on redirected transitions. We therefore do not allow asymmetric

1 9 For example, assume = {d 1—> c} and r is a transition to q which is not a self-loop. Then it is
necessary to rename c to d when redirecting r into r, since c is dead in r (otherwise it would be mapped).

44

(a) Before merging q into r. (b) After merging q into r. (c) After merging r into s.

Figure 4.2: A transition is redirected multiple times.

mappings between two equivalent states, as it would likely bring no benefit and only make
matters more complicated.

4.1 Correctness of Merging

In this section we give a sketch of proof showing that the merging of language-equivalent
states preserves the language of a C A . We use the following assumption, which is true in
the C A from [55].

Assumption 4.1.1 (Dead counters have value zero). Let A be a C A , q its state, and
c a counter. If c is dead in q, then for every reachable configuration (q, m) in A, m(c) = 0.
Put simply, if a counter c is dead in state q, then its value is always zero in q.

Correctness of merging. Assume states p and q of C A A are language-equivalent under
a counter mapping 7p from q to p:

VmeQJt : £((g ,m)) = £ ((p , 7 | (m))) . (4.1)

In particular, this holds if p and q are are (bi)simulation-equivalent. Assume p is to be
merged into q in the reduced R C A A; denote the resulting merged state q' (to avoid confu
sion with the original q in C A A). Since the incoming transitions of p are redirected to q',
the left language of q' is (by Assumption 4.1.1):

<CL(q') = { (m, w) | w € JCL((q, m » U CL((p, 7«(m)» }. (4.2)

By that same assumption, the right language of q' is

£R{q) = { (m,«;) | w € £R((<7, m » U £ f l « p , 7 | (m))) }. (4.3)

Since p and g have equal right language under any memory, this is equivalent to

CR(q') = {(m,w) | w € £R((<7, m)) } = { (m,«;) | «; € ^(m))) }. (4.4)

The language via q' is then

Cv(q') = {wL -wR | 3 m : (m,wL) G £ L (g ') A (m , ^) G ̂ i?(?') }• (4.5)

45

Clearly, we need CV(Q') to be the precisely the union of Cvip) a n d Cyiq). Naturally
Cy(q') is a superset of Cvip) U £v(o), a s it contains WLWR for all WL,WR coming from the
same state:

We now need to ensure that also pairs WL,WR, where the left and right word come from
different states, are still in Cvip) U Cviq)'

By Equation 4.1, we can replace CRi{q, m)) by CRi{p, 7p(m))) in Eq. 4.8 and obtain Eq. 4.6.
Similarly, we can obtain Eq. 4.7 from 4.9. Therefore, the language via q' is indeed the union
of languages via p and q, and the languages of A and A are equal.

In a similar fashion, we could presumably show that the merging can also be used to
reduce a C A by left-language-equivalence. However, in that case Assumption 4.1.1 would
need to be revised, as we no longer care about "future" of counters (viz. liveness), but their
"past". For similar reasons, the definition of counter mapping would need to be revised, as
its current definition considers liveness of counters. See Appendix A for a brief discussion
of left simulation in C A .

{wL-wR | 3m: wL G £ L ((p , 7 « (m))) A wR G £R((p, 7p(™))) }>

{wL-wR | 3m: wL e CLi(q,m}) A wR G CRi(q,m)) }.

(4.6)

(4.7)

{wL-wR | 3m: wL G £i((p,7 | (m))) A G CRi(q,m)) },

{ » L - » f i | 3 m : r o L e £ L ((g , m)) A % G £ R ((P , 7 » (™))) }•

(4.8)

(4.9)

46

Chapter 5

Proposed Algorithm for
Computing Simulations in C A

In this chapter we propose an algorithm for computing simulation preorders, simulation
equivalences and bisimulation equivalences on counting automata, as described in Sec
tions 3.3 and 3.5. The algorithm consists of two sub-algorithms, Algorithm Pseudosim and
Algorithm Search, each respectively presented in the following sections.

1. Algorithm Pseudosim takes as input a simple C A A , and computes a certain
superset of the maximal hypersimulation S of A , which we call pseudosimulation
and denote it . This notation hints to the fact that the computed pseudosimulation
is generally greater than the simulation which we wish to compute - in a sense it is
"rounded up", as is explained later at the end of Section 5.1.

This algorithm performs the bulk of the work of computing the final simulation pre-
order. In many cases, the pseudosimulation computed by it is unambiguous - then it
is the simulation preorder itself. However, if the pseudosimulation is ambiguous, we
need to search for simulation preorders within it, using Algorithm Search.

The core of this algorithm is primarily inspired by the I N Y algorithm presented in
Sec. 2.3.3. However, the modifications are nontrivial, hence the similarities between
the two algorithms are minimal. This algorithm can optionally be modified to com
pute a strongly symmetric superset of the maximal hyperbisimulation of A , which we
call pseudobisimulation and denote it [=].

2. Algorithm Search takes as input computed by Algorithm Pseudosim, and
searches for simulation preorders within it. It is only necessary to use this algorithm
when is ambiguous, meaning it can contain several simulation preorders. From
the found simulation preorders, one can choose e.g. the maximal ones, or extract
simulation equivalences from them. A modification of this algorithm can take as
input the pseudobisimulation |~=] and find bisimulation equivalences within it.

The modifications of Algorithms Pseudosim and Search for computing bisimulations are
described in appendix C.

Used notations. In the descriptions of Algorithms Pseudosim and Search, we use the
following notations:

• [E] denotes the pseudosimulation computed by Algorithm Pseudosim. (q, s) is
the set of counter mappings from s to q in .

47

• r denotes the current overapproximation of [C] in Algorithm Pseudosim. Tq = T(q, s)
is the current overapproximation of [C] (q , s).

• r denotes the initial overapproximation of [C] in Algorithm Pseudosim. Tq = T(q, s)
is the initial overapproximation of [C] (g , s). For any state pair (q,s), Tq contains
only those counter mappings, which fully satisfy local conditions (explained later).

• r denotes the overapproximation of t in Algorithm Pseudosim, also called over-
overapproximation. Tq = T(q,s) is the overapproximation of Tq. Some mappings
in this set may not satisfy local conditions fully, but only partially (explained later).

5.1 Algor i thm Pseudosim: Computing the Pseudosimula-
tion

This section describes computation of the pseudosimulation for given C A . From this pseu-
dosimulation, we will then obtain simulation preorders using Algorithm Search, described
in the next section, 5.2.

Before we present the algorithm in its full extent, let us develop an understanding of the
underlying notions. We first describe informally, on a high level, the conditions which we
place on the algorithm computing the pseudosimulation, and how they will be established.
These conditions follow the definition of C A simulation (Def. 3.3.1). However, we will make
some simplifications based on the structure of our specific C A obtained from regexes via
the construction of [55].

Local and inductive conditions. For each pair of states (q,s), where q is simulated
by s, there must exist a counter mapping 7. The mapping needs to fulfill conditions
per Def. 3.3.1, which can be divided into two categories: local conditions and inductive
conditions.20 Local conditions can be observed by looking just at the states q and s, their
acceptance conditions and outgoing transitions, but without considering simulation between
their successors. Inductive conditions, on the other hand, are concerned with successors
and the mapping between them.

The definition of C A simulation does not make a clear separation between local and
inductive conditions, as this would be impractical. Therefore it is not easy to see, or
describe, which parts of which conditions are local and which are inductive. As a result,
some conditions in the definition are both local and inductive. For example, Conditions 3.10
and 3.11 are clearly local, but so are 3.12 and 3.13, albeit it does not appear so from the
definition. Condition 3.14 is inductive, while the conditions in point 3.3.1(11)4 have both
local and inductive character.

Let us briefly revisit the simulation in classical F A (Def. 2.3.1). There, in contrast
with C A , we do not need a counter mapping between q and s, we simply have (q, s) £ SR.
Condition 2.1 is local, as well as 2.2 without considering simulation of the successors (that is,
only concerning the symbols on the weaker and stronger transition). In its full extent,
Cond. 2.2 is the inductive condition. The algorithm INY (Alg. 1) first establishes the local
conditions (lines 3 and 4), then it iteratively establishes the inductive condition (loop on
lines 6-13).

We purposefully avoid the term invariant, since these conditions are not always true during the execu
tion of the algorithm.

18

Initialization phase and inductive phase. Now we will attempt to adapt this approach
to computing pseudosimulation in C A . Algorithm 2 shows the basic scheme for this com
putation. The output of this algorithm is the pseudosimulation . (It corresponds to the
Sim set of the I N Y algorithm.)

The algorithm starts with initialization phase, on lines 2-9. In the loop on line 4, we
establish the overapproximation T of . The overapproximation contains all mappings
fulfilling the local conditions. We make an exception for reflexive pairs, i.e., (q,q), as we
want to compute a consistent simulation. Recall that per Def. 3.5.10, a consistent simulation
must be reflexive (as defined in Def. 3.5.4). Therefore for reflexive pairs, we must only allow
the identity mapping 7 I D .

Then follows the inductive phase - lines 11-14. First, the overapproximation T of
is initialized with T computed in the initialization phase. Then, in the loop on lines 12-13,
mappings which do not fulfill the inductive conditions are iteratively removed from V.
Removal of a mapping may cause another mapping to become invalid, meaning it has to
be removed as well. At the end of the computation, T equals [C] . If the set Tq is empty,
then s cannot simulate q. If it contains multiple mappings, we need to choose one of them.
The problem of multiple possible mappings will be addressed later.

Algorithm 2: High-level computation of C A pseudosimulation
Input: Counting automaton A
Output: The pseudosimulation on A

1 Initialization phase:
2 for q G Q do
3 | compute the sets Cq and Nq;
4 for q, s G Q x Q do
5 if q = s then
6 | f * : = { 7 l o } :
7 else
8 f q := all total injective mappings from Cs to Cq

9 which fulfill local conditions:

1 0 Inductive phase:
n T := f;
1 2 while there is a mapping 7* which does not fulfill inductive conditions do
13 J remove the mapping 7* from Tq;
14 {assert F = }

15 return T:

49

5.1.1 Initialization Phase

In our algorithm for C A simulation, we proceed somewhat differently than outlined in
Alg. 2. For practical reasons, we split the initialization phase (lines 2-9 of Alg . 2) into two
parts.

• Part 1 computes a rough overapproximation of the pseudosimulation by applying
weaker local conditions. We refer to this first overapproximation as over-overapproxi
mation, and denote it T. The purpose of this part is to inexpensively prune the initial
pseudosimulation.

• Part 2 refines the output of the first part. Generally speaking, it removes from F
those mappings, which do not satisfy the full local conditions. The result is denoted
T and corresponds to the initial overapproximation t in Alg . 2. However, is not a
single set like T - for practical reasons we use several data structures, and the result
T is implicit in these structures. We then proceed to the the inductive phase, where
F is further refined until convergence, at which point it equals .

Initialization Phase, Part 1

In the first part of the initialization phase, we consider only a subset of conditions needed for
computing the initial overapproximation. As a result, we compute an overapproximation
of the initial overapproximation - the over-overapproximation F. We only use conditions
which are inexpensive to evaluate, and thus allow us to compute T quickly.

Initial pruning via classical simulation ^ . In a large automaton, computation of T*
for each pair (q, s) G Q x Q may be too expensive. Therefore, we want to first prune the set
of possible simulating state pairs to make it significantly smaller than Q x Q. Once we do
that, we compute T* for each pair (q, s) in the set. We realize this pruning via the so-called
structural SFA of the input C A A.

Definition 5.1.1 (Structural SFA). Given a C A A = (I, C, Q, qo, F, fin, A), its structural
SFA is the SFA A' = (I, Q, q0, F, A'), where 3p-(a, upd,grd}+q e A < ^ p<ot)^q e A ' .

Intuitively, the structural SFA is obtained from the C A by removing counters and their
guards and updates. By doing this, all conditionally final states become unconditionally
final, and the executability of each transition depends solely on its input predicate. This
can be seen as modifying A so that each acceptance condition as well as each guard on each
transition is T .

It should be clear that C(A) C C(A'). More importantly, p q in A implies p =4 q
in A' (where =̂ is the classical simulation preorder on A'). Therefore if p ^ q in A', they
cannot be in simulation in A, so we do not need to compute their F*. To obtain =<!, we can
use any algorithm for F A simulation, e.g. I N Y or some of the more sophisticated algorithms
[47; 17; 15].21 Let us now focus on those (q, s) for which we do need to compute T*.

2 1 Recall that the input CA A is simple, therefore mintermized, and therefore A' is also mintermized.
Since a mintermized SFA can be treated as a FA (in the context of simulation), we can use classical FA
simulation algorithms on A'.

50

Algorithm 3: Computation of the over-overapproximation T
Input: States (q, s) s.t. q ^ s in A'; sets Cq,Cs; C A A
Output: r*, an overapproximation of the initial mapping set T

1

2

3

4
5

6
7

8

9

10

11

r* == {};
for every total injective mapping 7* from Cs to Cq do

mappinglsValid := true;
for (d i-> c) G 7| do

subsumptionHolds : = (c C d) ;
uncondAcceptlmplied := ((fmq(c) = true) =>• (fins(d) = true));
if not (subsumptionHolds and uncondAcceptlmplied) then

mappinglsValid := false;
break;

if mappinglsValid then

9 r*u{7*};
12 return f

Subsumption of counters. As we have noted, our algorithm is tailored for the C A
obtained from regexes described in [55]. We thus make certain assumptions which are true
for these specific C A , but may not be true in the general case. One such assumption is
stated below. We use it to make the computation of counter mappings more efficient.

Assumption 5.1.1 (Stronger counter subsumes weaker). We assume that in the
input C A A, every counter d is always used in a loop. It is always incremented in this
loop, and the loop always contains an exit of d, either on a transition or in the acceptance
condition of some state. That means every live counter will eventually be both incremented
and exited. Therefore, if q C/y s holds in A, the mapping 7 must map every stronger counter
d to such a weaker counter c, that both C A N I N C R (C) implies C A N l N C R (d) , and C A N E X I T (C)

implies C A N E X I T (O Q . Equivalently, c is subsumed by d (written c C d); that is, the bounds
of the weaker counter are contained within the bounds of the stronger counter.

Weakening the local conditions. Obviously, Assumption 5.1.1 can reduce the num
ber of mappings between two states in [C] . However, it also opens the door to another
optimization. The idea is to weaken the local conditions to approximate [C] roughly and
inexpensively. Namely, we ignore outgoing transitions and only consider subsumption of
counters and acceptance conditions when computing the initial counter mappings. This way,
we obtain an overapproximation of T, denoted I , referred to as the over-overapproximation
(of [E]J- We use it in an additional pruning by discussed further below. The simplified
computation of T is illustrated by Algorithm 3.

This algorithm checks for each possible mapping T | that (1) each stronger counter
d subsumes its mapped weaker counter c, and (2) if q exits unconditionally w.r.t. some
c, then s exits unconditionally w.r.t. the mapped d. Notice we do not explicitly check
Condition 3.11. It is not necessary, as it is implied by the conjunction of (1) and (2).

Computing initial mappings efficiently. We now propose an optimization of Algo
rithm 3, as its approach is rather naive. It examines all possible total injections from Cs

to Cq, but can end up discarding most of them because they do not fulfill the necessary
conditions. For automata with many counters, the number of examined mappings (which

51

is 0(|C S | !)) may be significant. It would be more efficient to only generate those mappings
which will certainly be valid. We can accomplish this as follows.

First, we construct a bipartite graph Gs

q = (CsUCq, E), where (c, d) € E iff c and d fulfill
the conditions subsumptionHolds and uncondAcceptlmplied of Alg . 3. Then, we search for
all matchings in this graph which cover the set Cs. Each found matching corresponds to
a mapping 7* from Cs to Cq, and by construction it fulfills the conditions of Alg . 3. Hence
the set of all such matchings in Gs

q is the set Tq. If the set Cs is empty, then a single empty
matching is produced, instead of no matching. This is important, as the existence of a
mapping T | (albeit empty) is necessary for s to simulate q.

Additional pruning of F via ^ . We have computed the initial over-overapproximation
r for each q =<! s. However, for some (q, s) there may be no mappings, viz. Tq = 0. Based
on this, we can prune T further, by re-using the simulation =<! on SFA(A). Let F denote the
set of all pairs (q, s) with no mapping, viz. Tq = 0. If a pair (q, s) has no mapping, then it
cannot be in simulation. Due to this, we need to remove from T all predecessor pairs (p, r)
which depend on q C s.22 We can remove some of these pairs via the computed =̂ as follows.

First, we assert that q ^ s for all (q, s) G F. Then we run the inductive computation
of ^ again until convergence. The next paragraph describes this in more detail. The pairs
newly removed from =<! during the re-computation will then be removed also from F. This
way, we remove from T all pairs (p, r) without a simulating successor pair w.r.t. input
predicates. Per Cond. 3.12, such a successor pair is necessary for p C r to hold. Therefore,
all of the removed pairs should indeed be removed from V (i.e., we do not lose any pairs
which could actually be in simulation).

Let us now describe the technique of re-computing of ^ . The exact way of performing
this operation efficiently depends on the used algorithm. We use INY (Alg. 1) for illus
tration. The key principle is to resume computation with the existing precomputed data
structures. Firstly, we need to save the relevant internal state upon return from the first
invocation. In the case of I N Y we need to preserve the current values of Sim and Na (for
each a G £) . Secondly, we must be able to supply NotSimQueue externally, e.g. via a
parameter.

After computing F, we want to "assert" that q ^, s for each (q,s) in F . We do this
by invoking the I N Y algorithm again, using F as NotSimQueue. However, this time we
continue the execution from the loop on line 6. Let =̂ denote the result of this second
invocation. This is the maximal simulation on A' which does not contain any of the pairs
in F. After we obtain =<!, we remove from F all pairs in Q x Q \ ^ . (As an optimization, we
could modify the algorithm to return the newly removed pairs along with Sim. This would
simplify updating T, as we no longer have to iterate over all pairs in Q x Q.)

End of part 1. The first part of the initialization phase is now over. Its output is the over-
overapproximation r . In the second part, we prune it further to obtain T (albeit implicitly
stored in several data structures).

By removing (p, r) from f we mean removing all mappings from the set f r

v

52

Initialization Phase, Part 2

The second part of the initialization phase further refines the approximation T obtained in
the first part. Unlike in the first part, we now consider outgoing transitions in the original
C A A. By doing this, we are able to ensure local conditions in their full, strongest form.
The result is T - the initial approximation to be used in the inductive phase. It roughly
agrees with the initial approximation T computed by Algorithm 2 (lines 2-9). However, as
we applied multiple prunings in part 1, T is a subset of T.

Simulation of transitions. Now that we have sufficiently pruned the sets Tq, we are ready
to consider simulation of transitions. That allows us to ensure the full local conditions.
However, it is impractical to consider exclusively local conditions. We also want to consider
successor mappings, as the very definition of simulation requires it. We will thus do the
following for each 7 | in T: find for each weaker transition rq all the stronger transitions
TS, which simulate TQ per definition of simulation (Def. 3.3.1(H)). More precisely, for each
TQ, we find all simulating transitions TS and successor mappings 7*/ for TS. This follows
from the definition of C A simulation, which states that each weaker transition TQ needs a
stronger transition TS and a successor mapping 7*,.

Transition matches. Following the definition of C A simulation, we must ensure that if
s simulates q under a mapping 7*, then each weaker transition TQ has a stronger transition
TS and a successor mapping 7*,'. Thus we associate with each pair (7 | , T G) a set of pairs
(17,7*,). We call the pair (r s ,7*,) a transition match (or simply match) of TQ under the
(current) mapping 7*. It should be noted that the states s and q in upper and lower index
of 7* are important, as the same mapping can exist between two different pairs of states.
We thus need to distinguish e.g. (7 | , TQ) from (7 £, TQ), even if the mappings 7* and Yq differ
only by the stronger state and are otherwise equal.

Tmatches — data structure for transition matches. If under a mapping 7* there is
a TQ with no matches, then it has no simulating stronger transition. Therefore, s cannot
simulate q under the mapping 7 | , hence 7* is invalid and has to be removed from F.

We use the Tmatches structure to store and manipulate transition matches, in order to
detect that a mapping does not satisfy conditions and needs to be removed. This structure
is an associative array, where each pair (7 | , TQ) is mapped to a set of its transition matches
(T s , 7* , ') . Symbolically,

Tmatches: (jQ,TQ) i-> { (^ ,7* , ') } .

We denote by TmatchesY)s

q, rq] the set of matches associated with (7* , TQ). This structure is
dynamically updated during the execution of the algorithm, as we remove counter mappings
which violate inductive conditions. The next section (Sec. 5.1.2) discusses this in more
detail.

Computing initial transition matches. Algorithm 4 illustrates calculation of transi
tion matches for a single TQ under a counter mapping 7* . It is not listed in its entirety
as it straightforwardly corresponds with the (very lengthy) definition of C A simulation
(Def. 3.3.1(H)), to which we refer on line 4.

Algorithm 5 shows initialization of the Tmatches structure. It uses Alg . 4 to compute
transition matches for each weaker transition. If a weaker transition has no match under
some mapping, then this mapping is removed. This is not done directly, however, as

53

Algorithm 4: Find-Transitions-Matches
(Finding transition matches for a weaker transition)

Input: Mapping 7* from s to q; transition rq from q to q';
over-overapproximation T; C A A

Output: The set of transition matches (r s , 7*,) for rq under 7*
1 transitionMatches := {}:
2 for each transition 7% from s to s' do

for 7*, G Ts

ql do
if TS can simulate TQ under mapping 7* and successor mapping 7*,
according to Definition 3.3.1(11) then

transitionMatches := transitionMatches U {(rs, 7*,')};
6 return transitionMatches:

removing a mapping now induces some maintenance operations. It therefore has to be done
via the queue CmapRemoveQueue. This is a queue of mappings to be removed, principally
the same as NotSimQueue in the I N Y algorithm. This queue cannot contain duplicate
elements, and as with Tmatches, the states of a mapping are a part of the mapping itself
(e.g. two mappings which differ only by states are not considered equal). Note that although
it is possible to apply pruning by =̂ again, the improvement in efficiency would likely be
very limited; hence it is not done. The purpose of the data structure SuccCmapIndex is
explained in the following paragraph.

Removal of counter mappings via SuccCmapIndex. We will later present the in
ductive phase of the algorithm, where counter mappings are iteratively removed, until all
mappings fulfill the inductive conditions. As hinted above, removal of a mapping does
not simply consist of removing it from T (or T). We also need to maintain the Tmatches
structure. Intuitively, if we find out that a mapping 7*, is no longer valid (i.e., about to be
removed), we need to remove matches which use it as their successor mapping. In particu
lar, for each mapping 7*, removed from T, we need to remove (r s , 7*,) from Tmatches[yq, Tq]
for every 7 | , TQ and TS.

However, it would be inefficient if we were to search through the entire Tmatches struc
ture, looking for all those matches where 7*, is the successor mapping. We therefore employ
an index on 7*,', SuccCmapIndex, which will speed up this search. It is an associative array
which assigns to each successor counter mapping 7*,' the set of triples (lq,Tq,Ts) which
depend on it, viz. (rs,7*,) G Tmatches[jq,rq]. It is initialized in Algorithm 5 on lines 9-10.

End of part 2. The initialization phase is now concluded. Its output is the Tmatches
structure, as well as the pre-populated queue CmapRemoveQueue and index SuccCmapIn
dex. The initial overapproximation V is implicitly stored in T and CmapRemoveQueue:
T = T \ CmapRemoveQueue. Now we can proceed with the inductive phase, in which we
prune t to obtain the pseudosimulation .

54

Algorithm 5: Finding transition matches under all mappings

1
2
3

4
5

6
7

8

9

10
11
12

Input: Over-overapproximation F; C A A
Output: Initialized Tmatches, SuccCmapIndex, and CmapRemoveQueue; initial

overapproximation T (implicit in T and CmapRemoveQueue)
Tmatches := empty Tmatches data structure:
SuccCmapIndex := empty SuccCmapIndex data structure:
CmapRemoveQueue := empty queue of counter mappings not allowing duplicates:
for q, s G Q x Q do

for 7 | G do

fq,rq)
for each transition Tq from q do

Tmatches[jg, Tq] := Find-Transitions-Matches(7*
// add the matches to the successor mapping index
for (T s ,7*, ') G Tmatches[jg,Tq] do

SuccCmapIndex[7*,'] := SuccCmapIndex[y^,]L) {('jq,Tq,Ts)}:i

if TmatchesW then
CmapRemoveQueue := CmapRemoveQueue U J 7 | } :

13 {assert F \ CmapRemoveQueue = T}
14 return Tmatches, SuccCmapIndex, CmapRemoveQueue:

5.1.2 Inductive Phase

Now we have initialized the internal state of Algorithm Pseudosim and we are ready to
commence the inductive phase. First, we let the overapproximation T equal the F computed
in the initialization phase. Then we iteratively refine T until convergence, at which point
it equals the resulting pseudosimulation . In a nutshell, this phase repeats two steps:
removing a counter mapping, and removing all transition matches which depend on this
mapping.

The main loop. Algorithm 6 shows pseudocode of the inductive phase. The queue
CmapRemoveQueue contains mappings which do not fulfill the inductive conditions (so-
called invalid mappings). These mappings have to be removed from T. This is done in the
main loop starting on line 3. It is executed until the queue CmapRemoveQueue is empty,
at which point T equals the desired pseudosimulation .

Invariants. Let us now present invariants holds at the beginning and end of each itera
tion of the main loop. They help us grasp mutual relations between the individual data
structures. We will refer to these invariants later on. In the following, let

1. Tq = q-(a, updTq, grdTq yrq',

2. Ts = s-(/3, updTg , grdTg

3. 7 | be a mapping from s to q,

4. 7*,' be a mapping from s' to q'.

Invariant 1 (Tmatches). (r s , 7*,') G Tmatches[jg, TQ] iff TS can simulate TS under mapping
7*/' and successor mapping 7*,'. More precisely, in the current approximation F of the
pseudosimulation, r s is a simulating transition of Tq under current mapping 7* and successor

55

Algorithm 6: Inductive computation

Input: Over-overapproximation f; initialized Tmatches, SuccCmapIndex, and
CmapRemoveQueue; C A A

Output: Pseudosimulation

1 {assert T \ CmapRemoveQueue = T}
2 T : = f ;

3 while CmapRemoveQueue ^ 0 do
4 {assert Invariants 1, 2 and 3 hold}
5 remove some 7* from CmapRemoveQueue:
6 r * : = r * \ { 7 | } ;

// remove matches where jq is the current mapping
for each transition Tq from q do

for (T s ,7*,') G Tmatehes[7^,T0] do
Remove-Tmatch (7 * , rq, TS , 7*, ');

// remove matches where jq is the successor mapping
for ('Jqi,Tq,Ts) G SuccCmapIndex^^] do

{assert Invariant 2 holds}
Remove-Tmat ch (7*,', TQ, Ts , jq);

if Tmatches[7*,, Tq] = 0 then
// last match removed for weaker transition Tq - remove 7*,

CmapRemoveQueue := CmapRemoveQueue U {7*/};

18 {assert F = }
1 9 return T:

7

8

9

10

11
12
13
14

15
16

17

20 procedure Remove-Tmat ch (7 * rq, r s, 7*,)
21

22

23
24

{assert Invariant 2 holds}
Tmatches[^,Tq] := Tmatches[-fs

q, Tq] \ {(r s , 7*,')};

SuccCmapindex[7®/] := SuccCmapJndex[7*,] \ {(7^, T 0 , r s)}:
{assert Invariant 2 holds}

mapping 7*, per Def. 3.3.1(11). In such case, we say (r s ,7*,) is a wfo'd transition match of
(7 | , T G) . As a consequence, if (r s,7*,') G Tmatches^ ,T 0] , then 7^ G and 7*,' G T*',.

Invariant 2 (SuccCmapIndex). SuccCmapIndex contains precisely the currently valid
transition matches: (/yq,Tq,Ts) G SuccCmapIndex[yq,] iff (r s ,7* ,) G Tmatches^,T q].

Moreover, Invariant 2 holds before and after each execution of the Remove-Tmatch
procedure in Algorithm 6. (The purpose of this procedure is to ensure this invariant.)

Invariant 3 (CmapRemoveQueue). For all 7* in CmapRemoveQueue, s cannot sim
ulate s under 7 ® . In particular, there exists an outgoing transition Tq from q, such that
Tmatches[7*, rq] = 0.

Moreover, Invariant 3 holds at all times.

56

Loop body. In the body of the main loop, we remove a mapping jq from CmapRemove-
Queue. This mapping has been found to violate inductive conditions, and is thus removed
from r (line 6). This may invalidate Invariant 1. We then re-establish this invariant by
removing transition matches which depend on 7 ® . By doing so, we may invalidate other
mappings, which are then put into CmapRemoveQueue.

Let us give a more detailed description. Generally, the loop body consists of two aspects:
(1) maintenance, which ensures that all transition matches are valid (i.e., ensures Invari
ants 1 and 2); and (2) propagation, which ensures that newly-invalidated mappings are put
into the CmapRemoveQueue and eventually removed. We now elucidate these aspects in
more detail:

1. Maintenance.

For the removed mapping 7 ® , we remove from Tmatches all matches which depend
on it one way or another. That means we remove both (1) matches where 7* is the
current mapping - lines 8-10; and (2) matches where 7* is the successor mapping
- lines 12-17. This re-establishes Invariant 1, but may invalidate Invariant 2. We
therefore also need remove these matches from SuccCmapIndex, as they no longer
exist. That is why we use the procedure Remove-Tmatch for removing matches. This
procedure maintains Invariant 2 - it is both its precondition and postcondition. 2 3

This maintenance is not merely an optimization. It is essential for the correct working
of the algorithm. If we omitted it, the algorithm may never terminate.

2. Propagation.

Assume that during maintenance we removed the last match of a weaker transition rq

under a mapping 7*, . This means TQ no longer has a simulating stronger transition.
Therefore, 7*,' cannot be a valid mapping, so we add it to CmapRemoveQueue to
be removed (lines 15-17). By doing so, we ensure Invariant 3 and we do not affect
Invariants 1 and 2.

At the end of the inductive phase, we have removed all mappings which were found to
violate inductive conditions. Thus we obtain the resulting pseudosimulation . Let us
now address the problem of termination of the main loop.

Termination. The loop terminates once CmapRemoveQueue is empty. This will neces
sarily happen, as there are a finite number of mappings in V and no mapping will enter
CmapRemoveQueue twice. For the sake of contradiction, assume a mapping does enter the
queue twice. It is clear from CmapRemoveQueue being a set, that it cannot contain the
same mapping twice at the same time. Thus a mapping needs to be added, removed, and
then added again. To see why this cannot happen, consider the following.

A new mapping 7*, is added into CmapRemoveQueue only if we removed the last match
of some TQ under 7*,' (lines 15-17). Namely, if this match was already removed before (e.g.
in the previous loop iteration), we do not add 7*,' into CmapRemoveQueue. This is owing
to the fact that Invariant 2 holds in the loop on line 15. This means the loop is executed
only for matches which still exist (viz. have not been removed yet).

Assume now that 7*, is to be put into the queue for a second time. Since it has
already been removed from the queue before, it has no matches (we removed them during

2 3Meaning it holds before and after execution of this procedure.

57

T S 1

n = {YA, YB}

T S 2

Tq1

r2 = {Yx. YY> r i = {YA}

Tq2

T S 1

match

- > (S 2

T2 = (Yx. YYJ

-Hq2

(a) Initial pseudosimulation computed by Algo- (b) Step 1: disambiguating Ti by selecting 7^
rithm Pseudosim. as the mapping from si to q\.

* s 1

I~1 = {YA} match

— ^ S 2

(2)
> T2 = {YxJ

Tq1

S1 >*-
T S 2

n - (Y A)

|~1 = {YBJ

3 i
match T2 = {YxJ

Tq2

(c) Step 2: disambiguation of T i causes T2 to (d) Step 3: 7 ^ in I"̂ requires to contain 7 3 ,
contain only jx- but we already selected JA-

Figure 5.1: Pseudosimulation which is not a hypersimulation. It contains an invalid map
ping 7 ^ from s\ to <7i, which cannot exist in a hypersimulation.

maintenance). Thus the loop on line 15 will not be executed for any match under 7*,', and
therefore 7*,' will not be added into CmapRemoveQueue again - contradiction.

We have now shown that each mapping will enter the queue at most once, and as a
result, the algorithm will terminate after a finite number of iterations of the main loop.

Output of Algorithm Pseudosim. As we have stated before, Algorithm Pseudosim
may not compute the maximal hypersimulation S of the input C A . In general, it com
putes an overapproximation of <S - the pseudosimulation . Let us explain why this
pseudosimulation may not be a hypersimulation.

We compute the pseudosimulation by overapproximating the desired hypersimula
tion S, and then iteratively removing mappings found to be invalid. There may be cases,
however, when we cannot discover that a mapping is invalid. As a result, the pseudosimu
lation may contain invalid mappings, which are not present in S. This is illustrated in the
following example.

Example 5.1.1. Fig. 5.1a shows a pseudosimulation [C] computed by Algorithm Pseu
dosim. There, set T i of mappings from state s i to q\ contains multiple mappings, and so
does set T2 from state S2 to q2• This means [C] is ambiguous. In order to obtain a consis
tent simulation, we must disambiguate it, viz. select a single mapping in T i and T2. In step
1 (Fig. 5.1b) we disambiguate T\ by selecting 7^4. Under this mapping, TS\ simulates rq\
only with successor mapping 7 x in T2. In step 2 (Fig. 5.1c), we thus select 7 x in T2. But
under 7 x , TS2 simulates Tq2 only when the mapping in Y\ is 7 5 . Since we already selected
F i = {^A}, we cannot have T\ = { 7 5 } . Therefore, our premise that s\ can simulate q\

58

under 7̂ 4 is wrong. 7̂ 4 is thus an invalid mapping which cannot exist in a hypersimulation;
hence 7,4 ^ S, and hence S C . We note, however, that this example is contrived. It is
not known to us whether such situation could happen in practice.

End of inductive phase. This concludes the inductive phase, and the entire Algorithm
Pseudosim. The outputs are the following:

1. the pseudosimulation which contains all mappings fulfilling the inductive condi
tions (and possibly some which do not),

2. the Tmatches and SuccCmapIndex data structures, which will be used in further
processing.

The computed pseudosimulation is reflexive, as each state simulates itself under
the identity mapping 7 I D . However, may be ambiguous, meaning it allows multi
ple mappings between a single state pair (q,s). Further, it may not be transitive (recall
Lemma 3.5.3). For merging, we need a hypersimulation which unambiguous and transitive,
hence a consistent simulation (Del. 3.5.10). We can thus check whether is unambiguous
and transitive. If yes, then is the unique simulation preorder of the input C A , and we
can directly use it for reduction. If not, we need to search for consistent simulations within

. This is done by the Algorithm Search, presented in the following section.

5.2 Algor i thm Search: Searching for Consistent Simulations
in the Pseudosimulation

Using Algorithm Pseudosim, we computed the pseudosimulation of the input C A A.
Theorem 3.5.6 tells us that A may have several simulation preorders. These are all con
tained within , and we need to search for them. This is the purpose of Algorithm
Search. It finds within simulations which are consistent, viz. reflexive, transitive, and
unambiguous. The simulation preorders of A are then the maximal ones among these con
sistent simulations (per Def. 3.5.11). Since each state can simulate itself under the identity
mapping, is always reflexive. If it is also unambiguous and transitive, then it is the
unique simulation preorder of A. No further processing is needed; we can simply use [C]
for reduction of A. If it is not, we need to extract simulations from while ensuring their
unambiguity and transitivity. Let us consider the two cases separately: in the first case, we
only need to face the problem of ambiguity of ; in the second case, non-transitivity.

Case 1: Pseudosimulation is transitive but ambiguous.

Given an ambiguous pseudosimulation which is transitive, we must disambiguate it by
selecting a single mapping between each state pair (in one direction). For example, if
[E] (q, s) = {71 ,72} and (s, q) = {73 ,74} , a possible disambiguation is [C] (q, s) =
{71} and \Q(s,q) = {73}.

We can accomplish this by removing mappings which cause ambiguity. At the same
time, we need to ensure that the result is still a valid simulation. In particular,
after removing a mapping, we need to propagate its removal by removing other map
pings which depend on it, as is done in Algorithm 6 after line 6. Thus a possible
strategy would be to select an arbitrary pair (q,s) which has several mappings (i.e.,
|[E](g,s)\ > 1) and disambiguate it by selecting an arbitrary single mapping in
[E] (q, s) and removing all others. Unfortunately, this approach will not work in such

59

Cctses cts described in Example 5.1.1. In the disambiguation described therein, we
made a mistake by selecting a mapping between two states which turned out to be
invalid. We then need to return (backtrack) to the point where we made the invalid
choice, and make a different choice. Such a backtracking search will find all maxi
mal unambiguous simulations in [C~|. However, it is not guaranteed that they are
transitive. If a found simulation is not transitive, we need to search for maximal
transitive fragments2 1 within it. This means, even if we know [C] is transitive, we
still need to solve the problem of transitivity. This problem is addressed in the fol
lowing paragraphs. Albeit it is described for a pseudosimulation, it applies equally to
a simulation.

Case 2: Pseudosimulation is unambiguous but not transitive.

Given a pseudosimulation which is unambiguous but not transitive, we must search
for maximal transitive fragments (MTFs) within it. Lemma 3.5.7 tells us that these
are precisely the simulation preorders of the input C A . This problem is NP-hard, as
we will show in the following.

Assume a pseudosimulation [C] which contains at most one mapping between any
two states - the identity mapping 7 I D . This pseudosimulation can then be reduced to
a binary relation R C Q x Q, by considering only states and ignoring the mapping
7 I D which is always the same. Finding MTFs of [C] is at least as hard as finding
maximal transitive subrelations of R.25 This problem trivially reduces to finding
maximal transitive subgraphs of a directed graph: Q is the set of vertices and R is
the set of edges. This problem is known to be NP-hard [59]. We therefore do not
attempt to solve this problem efficiently for the following reasons. Firstly, we do not
expect to face this problem often. In other words, we expect the pseudosimulations
found by Algorithm Pseudosim (as well as the unambiguous simulations within it) to
be mostly transitive. Secondly, this problem has been already studied (e.g. [11; 10]).
Thirdly, even if we attempted an efficient solution, it would be quite complex and still
of exponential complexity the worst case.

Example 5.2.1 (Sketch of Algorithm Search). Algorithm 7 presents the general idea
of a backtracking search for consistent simulations within a pseudosimulation. We will not
be using Algorithm 7 as the actual Algorithm Search, but the principles are the same. We
present it merely as a sketch to illustrate the approach in a simplified way; it is therefore
unoptimized and described somewhat unrigorously (specifically on line 10 we refer to the
main loop of Alg . 6).

Essentially, the algorithm proceeds as follows. It tries all possible ways of disambiguating
the pseudosimulation. The result is several unambiguous simulations. In each of these, it
finds maximal transitive fragments.2 1 Lastly, it finds the maximal across all found transitive
fragments. These are the simulation preorders - the output of the algorithm.

Let us examine the algorithm in more detail. Its input is a pseudosimulation [C], as
well as the Tmatches and SuccCmapIndex data structures. These structures are in the
same state in which they were at the end of Algorithm Pseudosim, namely at the end of
Alg. 6. First, we check whether the input pseudosimulation is unambiguous (line 1). If so,
we return all its MTFs (these coincide with simulation preorders). If not, we disambiguate

2 4 Per Definition 3.5.8.
2 5Since we not only need to find maximal transitive subsets of [C] , we also need to ensure they are

simulations (refer to Def. 3.5.8).

60

Algorithm 7: ExampleSearch
(Illustrative search for simulation preorders in a pseudosimulation)

Input: Pseudosimulation initialized Tmatches and SuccCmapIndex from
Algorithm Pseudosim; C A A

Output: Consistent simulations of A
1 if is unambiguous then
2 J return all maximal transitive fragments2 4 of ;

3 consistentSimulations := {}:
4 for each (q, s), s.t. |[C](q, s)\ > 1 do
5 for T | G (q, s) do
6 CmapRemoveQueue := |~E~|(<7,-s) \ {7|};
T r ' : = [E l ;
8 Tmatches := Tmatches:
9 SuccCmapIndex := SuccCmapIndex:

10 perform lines 3-17 of Algorithm 6 with T', Tmatches', SuccCmapIndex'
until convergence; modifying the three structures in the process;

11 / / r ' may si*7Z 6e ambiguous - recursively invoke backtracking search
12 newSimulations := ExampleSearch(r'; Tmatches', SuccCmapIndex'):
13 consistentSimulations := consistentSimulations U newSimulations:

14 / / return only maximal consistent simulations
15 return { E G consistentSimulations \ $ C ' G consistentSimulations: E C E ' };

recursively. First, we choose a pair of states (q, s) which has multiple mappings, and for
this pair, we choose a single mapping (lines 4 and 5). We remove all other mappings of (g, s)
than the selected one (line 6). Then we propagate this change by inductively removing all
mappings which depend on the removed mappings, and so forth, until convergence (line 10).
We do this by executing the main loop of Alg . 6 with the primed variables (e.g. with T'
instead of T). This modifies the primed variables (that is why we use the primed copies -
to not modify the original ones). The result is a new pseudosimulation T', which may still
be ambiguous. We therefore invoke the search recursively, and all simulations found by the
recursive call are added to the set of found consistent simulations (lines 12, 13). We then
proceed to the next choice (e.g. next mapping of (q, s)) and repeat the above process. Once
we have exhausted all choices, we have found all simulations in [C] which are unambiguous
and transitive (and naturally also reflexive). However, it may happen that some of them
are subsets of others. We thus return only the maximal among them (line 15).

61

5.2.1 Reduction to S A T

Algorithm 7 would be rather difficult to implement, especially considering the search for
maximal transitive fragments. As previously mentioned, this problem is NP-hard. We do
not expect to be facing this problem often, however. Neither do we expect to frequently
encounter ambiguous pseudosimulations. Due to this, we do not need the search for simu
lation preorders to be particularly efficient. We will thus not use Algorithm 7 or a variation
thereof; we will use a more straightforward solution.

The solution relies on reduction to the Boolean satisfiability problem (SAT). This prob
lem is also known to be NP-hard [16], but is solved frequently, due to which there exist very
efficient solvers for this problem [44; 23]. Although a specialized solver for our particular
problem may be more efficient than a reduction to SAT, the inefficiency of the reduction
approach is compensated by its simplicity. A l l that needs to be done is to describe a consis
tent simulation using propositional formulae over Boolean variables, based on the computed
pseudosimulation and the transition matches Tmatches. The Boolean variables and
formulae form a SAT instance. We then use an existing SAT solver to find satisfying mod
els (variable assignments under which all formulae hold) for this instance. Each of these
models corresponds to a consistent simulation. If we find all models, we find all consistent
simulations. We construct the SAT instance followingly.

SAT formulation of consistent simulations. We now present the SAT formulation of
finding consistent simulations, that is, the reduction of the problem of finding consistent
simulations to the SAT problem. The input to this reduction is the pseudosimulation
[~C]; and the Tmatches structure, which is in the same state as at the end of Algorithm
Pseudosim. The output is an instance of the SAT problem which encodes all consistent
simulations in [~C]. In the SAT instance, we denote by Vars the set of all variables and by
$ the set of all formulae.

1. Variables.

First, we need to define what the variables are. This is in fact quite simple - each
mapping 7* between two states corresponds to a Boolean variable var (7p. We note
again that the states q and s specified in 7® are important, since we need to distinguish
equal mappings which differ only by the states. If the variable var (7®) is valued true,
then the mapping 7® exists in the simulation (meaning q s holds), otherwise it
does not. By encoding mappings as Boolean variables, we let the SAT solver do the
work of disambiguating and finding transitive fragments, which in Alg . 7 we had to do
"manually". The set of all variables is Vars = {var (7*) | 3 q, s G Q: 7^ G [C](g, s)}.

2. Formulae.

We must encode the following constraints, which are placed on a consistent simulation,
using formulae of propositional logic.

(a) Unambiguity - at most one mapping must exist between every state pair (g, s):
even if q = s. That is, existence of a mapping 7® from s to q implies non-existence
of any other mapping from s to q. Thus $ contains the following formula for all
q,s eQ and 7| G \Q(q,s):

v a r (7 p -. \/ var(7p; where X = \Q](q,s) \ {7^}-

62

(b) Reflexivity - each state must simulate itself under the identity mapping. Recall
is reflexive and only identity mappings are allowed from a state to itself.

This means that for any q G Q, (q, q) contains precisely the identity mapping
from q to q, denoted 7 r o ^ - Thus $ contains the following formula for each q G Q
and7iD (< ?) € \C](q,q)-

v a r (7 l D W) .

It is of course unnecessary to have such variables which are always true, but it
makes the reduction more straightforward and apparent.

(c) Transitivity - if q C - ^ r and r s i then g s where 73 = 71 o 72. However,
the mapping 73 may not exist from s to q in . Then it is not possible for
q r and r s to hold simultaneously. We need to consider that in the
SAT formulation. Transitivity constraints are quite complex, hence we present
them in the form of the following pseudocode. It modifies the set by adding
formulae of transitivity constraints:

for q,r,s G Q3 do
for 7 g , 7 r G \Q(Q,r) x [p (r , a) do

7 | : = 7$ ° 7 H

i f ls

q G r P ((Z , s) then
// composed mapping exists - ensure transitivity
4> := " v a r (7 p A v a r (7 *) v a r (7 p " ;

else
// composed mapping does not exist - transitivity not possible
4> := «-. (v a r (7 p A va r (7 r

s)) " ;
$:= $ U {(f)};

(d) Simulation - each transition r ? from the weaker state q is simulated by at least
one transition TS from the stronger state s, under at least one successor map
ping 7*,. For all q,s G Q and all T | G S) , the set $ must contain the
following formula:

(\
v a r (7 p / \ \ / v a r (7 J) .

\(TS,7*,') e Tmatche S[7J,r 9] /

That is, if there is a mapping T | from s to g (meaning s simulates g under 7*)
then each outgoing transition rq from g has at least one match. This match is a
simulating transition TS from s and a successor mapping 7*, . Therefore, if there
is at least one match, then there must be at least one successor mapping 7*,'.

F i n d i n g s imula t ion preorders v i a the S A T formulat ion. The SAT formulation pre
sented above represents a consistent simulation. Not all consistent simulations are simula
tion preorders, only the maximal ones. To find all simulation preorders, we may proceed as
follows: find all consistent simulations, and keep only the maximal ones.

63

Finding preorders for optimal equivalences. The number of consistent simulations
of a C A may be very large in some cases, especially when there are many "equal" counters
(with equal lower and upper bounds). Then, the above approach of finding all consistent
simulations is too impractical. Even the number of simulation preorders may be too large
in such cases.

Furthermore, our ultimate goal is to reduce the automaton by a simulation equivalence,
and preferably, by an optimal one. Recall that a simulation equivalence is optimal iff it
allows as good a reduction as any other simulation equivalence. Hence we do not really
need to find all simulation preorders, we only need to find those, which result in an optimal
simulation equivalence. For an example, refer to proof of Lemma 3.5.8, case Maximal =ft>
optimal. There, one of the simulation preorders leads to the equivalence {{p, q}}, which
is not optimal. In that example, the simulation preorder which does lead to the optimal
simulation equivalence is the largest simulation preorder. For a counterexample where this
is not the case (i.e., where the largest simulation preorder does not lead to an optimal
equivalence), refer again to the same proof, case Largest.

We expect that in most C A , any largest simulation preorder leads to an optimal equiv
alence. Even if it does not, the equivalence obtained from it should be comparable with
the optimal ones. We therefore propose the following simplification:

This approach is also motivated by the ability of SAT solvers (such as [44]) to efficiently
find models which maximize the number of true-valued variables.

End of Algorithm Search. Having created a SAT instance and found its model, we

Find only a single largest consistent simulation,

as it likely provides an optimal simulation equivalence.

64

Chapter 6

Experimental Evaluation

We performed an experimental evaluation of the algorithms presented in Chapter 5, using
C A obtained from real-world regexes. In this chapter, we first briefly discuss the evaluation
environment (the implementation and used hardware); then we describe the input data
and how they were processed; lastly, we discuss the performed experiments and obtained
results.

6.1 Environment

Implementation. We implemented the proposed Algorithms Pseudosim and Search in the
C # language, within the CountingAutomata library [54]. This library itself builds upon
the Symbolic Automata Toolkit [57], which it extends with an implementation of counting
automata (mostly in accordance with [55]). It allows compilation of regexes to C A , which
we used for the evaluation.

In Algorithm Pseudosim, we do not use the I N Y algorithm for computation of classical
simulation on the structural F A A'; we use the novel N O C O U N T algorithm [30] instead. The
main reason is its superior memory efficiency: on large automata (e.g. over 2,000 states),
the memory consumption of I N Y has proven prohibitive. Moreover, as a result of using
N O C O U N T , the running time on large inputs was improved, whereas on small inputs it
remains comparable. We use N O C O U N T instead of other simulation algorithms because
there is an existing implementation [49] within the Symbolic Automata Toolkit which is
easily modified to suit our purposes.

In Algorithm Search, the used SAT solver is the Z3 Theorem Prover [44]. We opted
for this solver due to its maturity, good efficiency, and ease of integration with our imple
mentation. Furthermore, it is able to maximize the number of true-valued variables when
searching for a satisfying model, which allows us to efficiently find a largest simulation
preorder (as discussed at the end of Sec. 5.2.1).

The C # source code was compiled with Microsoft Visual C # Compiler version 4.8.4084.0,
for x86-64 C P U , with optimizations enabled.

Hardware and OS. The experiments were performed on a P C with Lenovo 20LJS2EV0R
motherboard, Intel Core i5-8350U C P U (with base speed 1.90GHz and peak speed 2.9GHz),
equipped with 16GB of R A M ; running on OS Windows 10 Version 2004, under the .NET
framework version 4.0.30319.

65

6.2 Input Data
For the evaluation, we used regexes from the database of real-world regexes collected from
over 190,000 software projects [20].26 The initial set contained over 500,000 regexes. From
these, we removed those which could not be compiled; the main reasons were:

• the regex used features not supported by the Symbolic Automata Toolkit (such as
word boundaries);

• the structure of the regex was not compatible with the CountingAutomata library
(e.g. it does not support nested counting loops);

• the compilation time exceeded the allowed maximum of 120 seconds - this was possibly
caused by an error in the compilation, as we witnessed excessive memory usage in
such cases (all of the available R A M was used by the C A compilation process).

We further removed those regexes which resulted in C A without any counters. The remain
ing 28,700 regexes were used for evaluation.

When compiling C A into regexes, we used the following options of the CountingAutomata
library functions:

• RegexOptions.Singleline,
• keepAnchors=false, unwindLowerBounds=false,
• makeMonadic=false.

6.3 Experiments
We performed three experiments. In the first one, we ran the (bi)simulation algorithm on
each of the input regexes individually. Due to the method of RE- to -CA construction used in
the CountingAutomata library, the compiled automata did not exhibit much redundancy, as
we discuss later. For a better assessment of the capabilities of our reduction algorithm, we
performed two additional experiments involving disjunctions of a large number of regexes
to artificially increase the C A redundancy.

For each C A , we computed a single largest consistent simulation and largest consistent
bisimulation (hereafter referred to as S I M and B I S I M respectively). For S I M and B I S I M we
calculated the absolute reduction, and the percentual (relative) reduction (also referred to
simply as reduction and denoted | S I M | % or | B I S I M | %) . Absolute reduction is the number of
states removed by reducing the C A by the given B I S I M , or by the simulation equivalence
obtained from the given S I M . Percentual reduction is absolute reduction divided by the
number of C A states, in percent. Clearly, | S I M | % > | B I S I M | % , since every bisimulation is
also a strongly symmetric simulation. We did not perform the actual reduction of C A by
the computed S I M and B I S I M , as the number of removed states can be precisely calculated
from S I M and B I S I M alone.

^Available at
https : //github.com/ituronova/benchmarks-ca/raw/master/Uniq/uniq-regexes-8.modif ied.txt
(accessed 27 April 2021).

66

6.3.1 Experiment 1: Individual Regexes

In this experiment, we computed S I M and B I S I M for each regex individually. The charac
teristics of the obtained C A are listed in Table 6.1a.

The mean percentual reduction was 2.1% for S I M and 1.4% for B I S I M ; median was 0%
for both. This is caused by the following two facts. Firstly, the regexes we used are hand
made and small. Such regexes often exhibit less redundancy than e.g. machine-generated
regexes. Secondly, the CountingAutomata library implements construction of C A via the
so-called generalized Antimirov derivatives [55], which produces automata with very little
redundancy. As our experiments show, there is indeed not much room for reduction. Later,
we will present additional experiments targeting C A with higher redundancy.

Of the 28,700 C A in total, 24,557 (86%) have zero reduction (via S I M or B I S I M) . Let
us now discuss the remaining 4,143 C A , in which | S I M | % > 0%. Their characteristics are
listed in Table 6.1b. The mean S I M reduction is 14.6% (median 12.5%; maximum 82%).
Mean B I S I M reduction including values | B I S I M | % = 0% is 10.0% (median 7.7%); excluding
values | B I S I M | % = 0%, the mean is 13.8% (median 11.8%). Maximum | B I S I M | % is 52%. On
average, B I S I M reduction is 31.2% weaker than S I M reduction (median is 0% weaker). 2 7

Figure 6.1a shows the comparison of S I M and B I S I M reduction. Plotted are values for
the 4,143 C A which have non-zero S I M reduction. The red background color (heatmap)
indicates the density of values; viz. the more values there are at certain coordinates, the
more intense the color. Zero values of the B I S I M reduction are plotted at the bottom of the
graph, around the value 0.1 on the y-axis. 2 8

Of the 4,143 C A with non-zero S I M reduction, 2,671 have | S I M | % = | B I S I M | % . From
the remaining 1,472 which have | S I M | % > | B I S I M | % , 1,124 have | B I S I M | % — 0% and the
remaining 348 have B I S I M reduction 48.2% weaker on average than S I M reduction (median
50.0%). Notably, a majority of C A in this experiment have either zero S I M , or zero B I S I M ,

or S I M equal to B I S I M (as is evident from Fig. 6.1a). This is primarily because the reduction
mostly removes only 1 state; namely in 79% of the 4,143 non-zero S I M S , and 87% of the
3,018 non-zero B I S I M S . Unsurprisingly, the second most common absolute reduction is 2
states, and so on.

Figure 6.1b shows the absolute S I M reduction with respect to the number of states
of the C A . Plotted are again only values with | S I M | % > 0. The most frequent number
of removed states is 1, for every number of C A states up to 52 (inclusive). This further
confirms that the C A produced by the CountingAutomata library are quite reduced by
construction already.

Table 6.1: Statistics for C A compiled from individual regexes.

(a) Statistics for all CA. (b) Statistics for CA with | S I M | % > 0.

States Transitions Counters States Transitions Counters
Min
Max
Mean

1 1 1
6,605 41,536 248
18.1 53.9 1.8

7 22 1
3 10 1

M i n
Max
Mean

3 7 1
5,097 41,536 248
19.8 108 1.6
10 45 1
4 15 1

Median
Mode

Median
Mode

27 Meaning the reduction obtained by BISIM is |BISIM|% = (100% — 31.2%) * |SIM|%.

This is due to technical limitations of the software used to produce the figures. 28

67

100.0

.2 10.0
u
"a

o
4-1
_ro
E
!̂ in

0.1 -

100.0 0.1 1.0 10.0
Simulation reduction [%]

(a) Comparison of percentual simulation and
bisimulation reduction. Values where |SIM|% =
0 are omitted; values where |BISIM|% = 0 are
plotted at the bottom (around the value 0.1 on
the y-axis).

100 1000
Number of states

10000

(b) Absolute simulation reduction as a function
of the number of states. The most common case
is 4-state CA with 1-state reduction.

Figure 6.1: Results of Experiment 1, concerning individual regexes.

Additional figures. Appendix D presents additional figures for Experiment 1, which
show in more detail the dependence of simulation reduction (absolute and relative) on the
number of states.

6.3.2 Experiments 2 and 3: Disjunctions of Regexes

In our attempts to achieve a better reduction, we performed two additional experiments, in
which we used disjunctions of several regexes (we connected the regexes by the | operator,
described in Sec. 2.4.2). In each experiment, we selected 8 ,000 regexes from the original set
of 28 ,700 . The 8 ,000 regexes were then split into 80 batches of 100 regexes each. For each
batch, we computed S I M and B I S I M on the disjunction of all regexes in the batch.

We attempted to make the batches as large as possible; the size of 100 regexes per batch
was chosen since larger batches were resulting in too many errors or timeouts during com
pilation. In particular, we frequently witnessed excessive memory and time consumption
during RE- to -CA compilation; hence we limited the running time per each disjunction to
300 seconds for compilation and 900 seconds for computing simulation and bisimulation. We
also encountered some errors during compilation which were not present in Experiment 1.
These were caused by an unsupported combination of features present in the individual
regexes.29

Additional figures. Appendix D presents an additional figure for Experiments 2 and 3,
which shows the dependence of simulation running time on the number of states.

Specifically, the Symbolic Automata Toolkit does not support combination of greedy and non-greedy
matching.

68

Experiment 2: Disjunctions of Random Regexes

In this experiment, the 8,000 regexes were chosen randomly, and were randomly split into
batches of 100. Each batch thus contained regexes which were "independent" (as opposed to
Experiment 3). Of the 80 disjunctions, 47 did not pass compilation (ended with an error or
a timeout after 300s) and 1 timed out on computing S I M (after 900s). The characteristics
of C A obtained from the remaining 32 disjunctions are listed in Table 6.2a. The mean
running time of the simulation algorithm was 47.5 seconds; median was 20 seconds.

Figure 6.2a shows the comparison of S I M and B I S I M reduction on the 32 successfully
evaluated C A . A l l 32 C A have non-zero S I M (min. 0.5%) and B I S I M (min. 0.4%). Further
more, B I S I M reduction is always weaker than S I M , on average by 26.2% (median 27.2%).
The reason is much larger complexity of the analyzed C A , compared to Exp. 1. In this
experiment, the C A allow more room for difference between S I M and B I S I M , whereas in
Exp. 1, both S I M and B I S I M absolute reductions were mostly either 0 or 1 state.

The overall relative reduction is significantly worse than in Experiment 1. S I M reduction
achieves a maximum of 5.3% (cf. 82% in Exp. 1); mean 2.5% (vs. 14.6%), median 2.3%
(vs. 12.5%). B I S I M reduction is - naturally - no better, with max. 3.8%, mean 1.8% and
median 1.8%. This is primarily caused by the fact that in Exp. 1, most C A had few states
(median was 10 states per C A) , so the percentual reduction was quite high even with a very
modest absolute reduction. In this experiment, on the other hand, the C A are obviously
larger, with a median of 1,284.5 states per C A . Also, combining random, dissimilar regexes
did not particularly increase redundancy of the obtained automata, and this again does not
help improve reduction. Therefore, in Experiment 3 we combined regexes which are more
similar and obtained better results.

Figure 6.2b shows the dependence of absolute reduction on the number of states. Ob
serve that the number of reduced states does not seem to be particularly increasing with
the increasing number of C A states.

1 2 3 5
Simulation reduction [%]

(a) Comparison of percentual simulation and
bisimulation reduction.

1000 2000 3000 5000
Number of states

(b) Absolute simulation reduction as a function
of the number of states.

Figure 6.2: Results of Experiment 2, concerning disjunctions of random regexes.

69

Experiment 3: Disjunctions of Similar Regexes

In this experiment, we started with a lexicographically sorted sequence of the original 28,700
regexes, and selected a subsequence of 8,000 successive regexes, These were then split into
80 successive batches; each batch was kept sorted. Each batch thus contained regexes which
were "similar" (as opposed to Experiment 2), since they were lexicographically neighboring.
Of the 80 disjunctions, 23 did not pass compilation (ended with an error or a timeout after
300s) and 3 timed out on computing S I M (after 900s). The characteristics of C A obtained
from the remaining 54 disjunctions are listed in Table 6.2b. The mean running time of the
simulation algorithm was 44.2 seconds; median was 10.5 seconds.

Figure 6.3a shows the comparison of S I M and B I S I M reduction on the 54 successfully
evaluated C A . Yet again, all 54 C A have non-zero S I M (min. 0.9%) and B I S I M (min. 0.4%).
B I S I M reduction is weaker than S I M in all except 2 cases; on average (incl. the 2 cases)
by 26.7% (median 22.2%). The difference between S I M and B I S I M is comparable to that
observed in Exp. 2.

The overall relative reduction is now still worse than in Experiment 1, but considerably
better than in Exp. 2. S I M reduction achieves a maximum of 15.6% (cf. 5.3% in Exp. 2);
mean 6.3% (vs. 2.5%), median 6.3% (vs. 2.3%). B I S I M reduction is comparable, with
max. 12.3%, mean 4.7% and median 4.6%. The improvement against Exp. 2 is caused by
the increased similarity of regexes in disjunction, and as a result, increased redundancy of
the obtained automata.

Figure 6.3b shows the dependence of absolute reduction on the number of states. Inter
estingly, the number of reduced states is clearly increasing with the increasing total number
of C A states. This is unlike in Experiment 2, where such tendency was not present. Again,
it is caused by the redundancy of the C A - the higher the total number of states, the higher
the number of redundant states, since the regexes in disjunction are largely similar.

0 1 2 3 5 10 300 500 1000 20003000 5000
Simulation reduction [%] Number of states

(a) Comparison of percentual simulation and (b) Absolute simulation reduction as a function
bisimulation reduction. of the number of states.

Figure 6.3: Results of Experiment 3, concerning disjunctions of similar regexes.

70

Table 6.2: Statistics for C A compiled from disjunctions of regexes.

(a) Statistics for Exp. 2 (unrelated CA). (b) Statistics for Exp. 3 (similar CA).

States Transitions Counters States Transitions Counters
Min 886 23,081 138 Min 301 11,263 89
Max 4,984 34,467 217 Max 5,807 67,923 390
Mean 1,624.3 28,733.8 176.1 Mean 1,129.7 32,114.2 154.4
Median 1,284.5 29,112 176 Median 856 30,735 144.0
Mode 1,898 30,951 177 Mode 1,011 46,967 127

6.4 Discussion of Results
Here, we would like to make a few remarks about the preformed experimental evaluation
and the obtained results.

Reduction efficiency of the proposed algorithms. We extensively assessed the re
duction capabilities of our algorithm on C A constructed from real-world regexes. Albeit
the achieved results do not seem remarkable at a glance, we consider them satisfactory
at the very least, considering the circumstances. Firstly, the used regexes are hand
made and mostly small, and such regexes often result in automata with little redundancy
(even in the classical F A case). Furthermore, the RE- to -CA construction implemented by
the CountingAutomata library uses generalized Antimirov derivatives, which are known
for producing nearly optimal automata. Due to this, the C A we used are not particu
larly suitable for assessing the efficiency of our reduction algorithm. However, since the
CountingAutomata library is the only implementation of C A known to us, we had no other
choice than to perform the evaluation using this library.

In other areas than regex matching, the proposed algorithm may prove much more
useful. For example, the area of formal verification has a large potential for application of
counting automata. In this area, automata are used extensively, and frequently are machine-
made and exhibit much larger redundancy than those from regexes. In particular, redundant
automata are often encountered in regular model checking [7], where the reduction of the
used automata can be decisive for the overall performance of the algorithm [6]. Another
application is translation of logic formulae to C A [50] and subsequent manipulation, which
could also benefit from size reduction.

Comparison with other methods. In an evaluation like this, one would expect to see
a comparison between the proposed and existing methods. However, since no methods
for reduction of (or even computing simulation in) C A are known to us, possibilities of
such comparisons are highly limited. To alleviate this deficiency, we propose the following
comparison method relying on classical F A simulation. Unfortunately, we were not able to
implement and use this comparison method, but we may do so in future research.

The proposed method utilizes the configuration C A SFA(A) of an input C A A. We
reduce A by the proposed simulation-based reduction to obtain A', and from A', we obtain
the configuration automaton SFA(A'). We then reduce the original configuration automa
ton SFA(A) by classical means to obtain a reduced FA SFA(A)'. Finally, we compare the
sizes of SFA(A') and 5^4(^4)' to obtain relative efficiency of the proposed reduction method
on the input C A A.

71

Chapter 7

Conclusions and Future Work

In this work, we studied simulation on classical finite automata (FA) for the purpose of size
reduction. The aim of this work was to extend simulation-based reduction techniques to
counting automata (CA) introduced in [55]. The extension to C A is nontrivial, as the C A
formalism is much more complex than that of FA. Furthermore, to to our knowledge, such
adoption of reduction methods to C A or similar models has not been attempted before.

Our first main contribution is the novel notion of parameterized simulation on count
ing automata. We defined parameterized simulation, providing a rationale for the chosen
definition. In an analysis of its properties, we showed that a counting automaton can have
several simulation preorders, whereas a classical finite automaton has precisely one. More
over, we showed that a C A cannot be reduced by an arbitrary simulation; this simulation
has to satisfy certain conditions. This motivated us to develop the notion of consistent
simulation, which is a simulation that can be used for reduction.

We then proposed means of reducing a C A by a consistent simulation relation, and gave
a sketch of proof showing that this reduction preserves the language of the C A . Since the
proposed reduction cannot be applied under the original formalism of C A (as presented
in [55]), we extended this formalism by a new counter rename operation on transitions.

The second main contribution of this thesis is the algorithm for computing simulations
in C A . It consists of two sub-algorithms - Algorithm Pseudosim and Algorithm Search.
Algorithm Pseudosim finds a pseudosimulation, which is a structure containing all the
simulation preorders of the input C A . It employs various pruning and optimization methods,
which improve its performance and thus its potential of practical use. Algorithm Search is
then used to search for preorders in the pseudosimulation. These algorithms can also be
modified to compute the bisimulation instead of simulation.

We implemented the proposed algorithms and performed an extensive experimental eval
uation. The evaluation used over 28,000 real-world regular expressions (RE) with counting,
collected from thousands of software projects. These regexes were compiled into counting
automata, for which we computed the simulation and bisimulation using the implemented
algorithms. Unfortunately, we were not able to fully assess the reduction efficiency of our al
gorithms, as the used implementation of RE- to -CA construction produces automata which
are nearly optimal. For this reason, we performed additional evaluation on specially crafted
automata with higher redundancy. The results - under the circumstances - are promising,
and show the viability of the proposed reduction methods.

72

Future work. This work has opened numerous problems and opportunities yet to be
addressed. The first one is the correctness of the proposed reduction methods. We would
like to obtain a formal proof of the correctness, or at least a proof for some (commonly
occurring) restricted case. This would involve full proofs of correctness of the simulation
relation itself (i.e., that it implies language inclusion) as well as the merging method (i.e.,
that it preserves language of the automaton), perhaps based on the sketches presented in
this work.

The second desirable extension to this work is an experimental evaluation on other
automata than those obtained from regexes via the generalized Antimirov derivative con
struction of [55]. This would allow us to better assess the reduction capabilities of our
algorithm, as well as its performance. Additionally, it would be interesting to compare
the reduction efficiency of our C A reduction algorithm to that of classical F A simulation-
reduction. This involves comparing two F A - one obtained by first reducing the C A by our
algorithm and then converting it to FA; one obtained by converting the C A to F A and then
reducing it by classical simulation. The closer the former gets to the latter, the better the
efficiency of our proposed reduction.

The third problem is the extension of the proposed methods to other models of automata
similar to C A . One such model is their deterministic counterpart, counting-set automata
(also presented in [55]). Other models are variations of C A arising from different applica
tions than regexes; for example, verification and decision procedures of logics. In particular,
the work [50] presents an algorithm for translation of formulae of linear temporal logic [45]
with bounded repetition to a variation of C A based on Biichi automata [8]. This model
of automata is slightly different from the C A considered in this work, although the adop
tion of the proposed method seems very much possible. Besides the existing work [50],
there is a great potential for application of counting automata in verification, especially
in the areas of string solving (e.g. [2; 14]) and regular model checking [7]. In these areas,
nondeterministic automata with high redundancy arise often, and many algorithms rely on
their reduction to achieve competitive performance. This necessitates efficient means of
size reduction for counting automata, such as presented in this work.

73

Bibliography

[1] A B D U L L A , P. A . , A T I G , M . F. , C H E N , Y . - F . , D I E P , B . P., H O L Í K , L . et al. Flatten
and Conquer: A Framework for Efficient Analysis of String Constraints. In:
C O H E N M , A . and V E C H E V , M . , ed. Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. New York, N Y ,
USA: Association for Computing Machinery, 2017, p. 602-617. P L D I 2017. DOI:
10.1145/3062341.3062384. ISBN 9781450349888.

[2] A B D U L L A , P. A . , A T I G , M . F. , D I E P , B . P., H O L Í K , L . and J A N K Ů , P. Chain-Free
String Constraints. In: C H E N , Y . - F . , C H E N G , C . -H . and E S P A R Z A , J., ed. Automated
Technology for Verification and Analysis. Cham, Switzerland: Springer International
Publishing, 2019, p. 277-293. ISBN 978-3-030-31784-3.

[3] A B D U L L A , P. A . , C H E N , Y . - F . , H O L Í K , L . , M A Y R , R. and V O J N A R , T. When
Simulation Meets Antichains. In: E S P A R Z A E S T A U N , F . J . and M A J U M D A R , R.,
ed. Tools and Algorithms for the Construction and Analysis of Systems.
Berlin/Heidelberg, Germany: Springer Berlin Heidelberg, 2010, p. 158-174. ISBN
978-3-642-12002-2.

[4] A R N O L D , A . , D I C K Y , A . and N I V A T , M . A note about minimal non-deterministic
automata. Bulletin of the EATCS. European Association for Theoretical Computer
Science. June 1992, no. 47, p. 166-169.

[5] B O I G E L O T , B. , J O D O G N E , S. and W O L P E R , P. A n Effective Decision Procedure for
Linear Arithmetic over the Integers and Reals. ACM Trans. Comput. Logic. New
York, N Y , USA: Association for Computing Machinery. July 2005, vol. 6, no. 3,
p. 614-633. DOI: 10.1145/1071596.1071601. ISSN 1529-3785.

[6] B O U A J J A N I , A . , H A B E R M E H L , P., H O L Í K , L . , T O U I L I , T. and V O J N A R , T.

Antichain-Based Universality and Inclusion Testing over Nondeterministic Finite
Tree Automata. In: I B A R R A , O. H . and R A V I K U M A R , B. , ed. Implementation and
Applications of Automata. Berlin/Heidelberg, Germany: Springer Berlin Heidelberg,
2008, p. 57-67. ISBN 978-3-540-70844-5.

[7] B O U A J J A N I , A . , H A B E R M E H L , P., R O G A L E W I C Z , A . and V O J N A R , T. Abstract
regular (tree) model checking. International Journal on Software Tools for
Technology Transfer. Apr i l 2012, vol. 14, no. 2, p. 167-191. DOI:
10.1007/sl0009-011-0205-y. ISSN 1433-2787.

[8] B Ü C H I , J . R. On a Decision Method in Restricted Second Order Arithmetic. In:
M A C L A N E , S. and S I E F K E S , D. , ed. The Collected Works of J. Richard Biichi. New

74

York, N Y : Springer New York, 1990, p. 425-435. DOI:
10.1007/978-l-4613-8928-6_23. ISBN 978-1-4613-8928-6.

[9] B U S T A N , D . and G R U M B E R G , O. Simulation-Based Minimization. ACM Trans.
Comput. Logic. New York, N Y , USA: Association for Computing Machinery. 2003,
vol. 4, no. 2, p. 181-206. DOI: 10.1145/635499.635502. ISSN 1529-3785.

[10] C H A K R A B O R T Y , S., G H O S H , S., J H A , N . and R O Y , S. Maximal and Maximum
Transitive Relation Contained in a Given Binary Relation. In: X u , D., D u , D.
and D u , D., ed. Computing and Combinatorics. Cham, Switzerland: Springer
International Publishing, 2015, p. 587-600. ISBN 978-3-319-21398-9.

[11] C H A K R A B O R T Y , S. and J H A , N . Exact algorithms for maximum transitive subgraph
problem. In: R A N D E R A T H , B. , ed. Proceedings of 15th Cologne-Twente Workshop on
Graphs and Combinatorial Optimization, CTW 2017. Centrum Wiskunde &
Informatica, Amsterdam, The Netherlands, 2020, p. 47-51.

[12] C H A M P A R N A U D , J . - M . and C O U L O N , F . N F A reduction algorithms by means of
regular inequalities. Theoretical Computer Science. 2004, vol. 327, no. 3, p. 241 - 253.
DOI: 10.1016/j.tcs.2004.02.048. ISSN 0304-3975. Developments in Language Theory.

[13] C H A M P A R N A U D , J . - M . and C O U L O N , F . Erratum to " N F A Reduction Algorithms by
Means of Regular Inequalities" [Theoret. Comput. Sei. 327(2004) 241-253]. Theor.
Comput. Sei. Barking, Essex, U K : Elsevier Science Publishers Ltd . November 2005,
vol. 347, 1-2, p. 437-440. DOI: 10.1016/j.tcs.2005.07.001. ISSN 0304-3975.

[14] C H E N , T., H A G U E , M . , H E , J. , H u , D., L I N , A . W . et al. A Decision Procedure for
Path Feasibility of String Manipulating Programs with Integer Data Type. In:
H U N G , D . V . and S O K O L S K Y , O., ed. Automated Technology for Verification and
Analysis. Cham, Switzerland: Springer International Publishing, 2020, p. 325-342.
ISBN 978-3-030-59152-6.

[15] C L E M E N T E , L . and M A Y R , R. Efficient reduction of nondeterministic automata with
application to language inclusion testing. Logical Methods in Computer Science.
February 2019, vol. 15, no. 1. DOI: 10.23638/LMCS-15(1:12)2019.

[16] C O O K , S. A . The Complexity of Theorem-Proving Procedures. In: L E W I S , P. M . ,
ed. Proceedings of the Third Annual ACM Symposium on Theory of Computing. New
York, N Y , USA: Association for Computing Machinery, 1971, p. 151-158. S T O C '71.
DOI: 10.1145/800157.805047. ISBN 9781450374644. Available at:
https://doi.org/10.1145/800157.805047.

[17] C E C E , G . Foundation for a series of efficient simulation algorithms. In: O U A K N I N E ,

J., ed. 2017 32nd Annual ACM/LEEE Symposium on Logic in Computer Science
(LLCS). Los Alamitos, C A , USA: I E E E Computer Society, June 2017, p. 1-12. DOI:
10.1109/LICS.2017.8005069. ISBN 9781509030194.

[18] D ' A N T O N I , L . and V E A N E S , M . Minimization of Symbolic Automata. In:
J A G A N N A T H A N , S., ed. Proceedings of the 41st ACM SLGPLAN-SLGACT Symposium
on Principles of Programming Languages. New York, N Y , USA: Association for
Computing Machinery, 2014, p. 541-553. P O P L '14. DOI: 10.1145/2535838.2535849.
ISBN 9781450325448.

75

https://doi.org/10.1145/800157.805047

[19] D ' A N T O N I , L . and V E A N E S , M . Forward Bisimulations for Nondeterministic
Symbolic Finite Automata. In: L E G A Y , A . and M A R G A R I A , T., ed. Tools and
Algorithms for the Construction and Analysis of Systems. Berlin/Heidelberg,
Germany: Springer Berlin Heidelberg, 2017, p. 518-534. ISBN 978-3-662-54577-5.

[20] D A V I S , J . C. Rethinking Regex Engines to Address ReDoS. In: D U M A S , M . , P F A H L ,

D., A P E L , S. and A L E S S A N D R A , R., ed. Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. New York, N Y , USA: Association for
Computing Machinery, 2019, p. 1256-1258. E S E C / F S E 2019. DOI:
10.1145/3338906.3342509. ISBN 9781450355728.

[21] D E W U L F , M . , D O Y E N , L . , H E N Z I N G E R , T. A . and R A S K I N , J . F . Antichains: A New
Algorithm for Checking Universality of Finite Automata. In: B A L L , T. and J O N E S ,

R. B. , ed. Computer Aided Verification. Berlin/Heidelberg, Germany: Springer
Berlin Heidelberg, 2006, p. 17-30. ISBN 978-3-540-37411-4.

[22] E B E R L , M . Efficient and Verified Computation of Simulation Relations on NFAs.
Minga, Boarn, 2012. Bachelor's thesis. Technical University of Munich, Department
of Informatics. Supervisor Tobias Nipkow.

[23] EÉN, N . and S Ö R E N S S O N , N . A n Extensible SAT-solver. In: G I U N C H I G L I A , E .
and T A C C H E L L A , A . , ed. Theory and Applications of Satisfiability Testing.
Berlin/Heidelberg, Germany: Springer Berlin Heidelberg, 2004, p. 502-518. ISBN
978-3-540-24605-3.

[24] E L G A A R D , J . , K L A R L U N D , N . and M O L L E R , A . M O N A 1.x: New techniques for
WS1S and WS2S. In: H u , A . J . and V A R D I , M . Y . , ed. Computer Aided Verification.
Berlin/Heidelberg, Germany: Springer Berlin Heidelberg, 1998, p. 516-520. ISBN
978-3-540-69339-0.

[25] G E L A D E , W., G Y S S E N S , M . and M A R T E N S , W. Regular Expressions with Counting:
Weak versus Strong Determinism. In: K R Á L O V I C , R. and N I W I N S K I , D.,
ed. Mathematical Foundations of Computer Science 2009. Berlin/Heidelberg,
Germany: Springer Berlin Heidelberg, 2009, p. 369-381. DOI:
10.1007/978-3-642-03816-7_32. ISBN 978-3-642-03816-7.

[26] G R Ä M L I C H , G. and S C H N I T G E R , G . Minimizing nfa's and regular expressions.
Journal of Computer and System Sciences. 2007, vol. 73, no. 6, p. 908 - 923. DOI:
https://doi.Org/10.1016/j.jcss.2006.ll.002. ISSN 0022-0000.

[27] H A E R T E L , M . e. a. GNU grep. [n.d.]. Online; accessed 18 January 2021. Available at:
https://www.gnu.org/software/grep/.

[28] H E I Z M A N N , M . , H O E N I C K E , J . and P O D E L S K I , A . Software Model Checking for
People Who Love Automata. In: S H A R Y G I N A , N . and V E I T H , H . , ed. Computer
Aided Verification. Berlin/Heidelberg, Germany: Springer Berlin Heidelberg, 2013,
p. 36-52. ISBN 978-3-642-39799-8.

[29] H E N Z I N G E R , M . R., H E N Z I N G E R , T. A . and K O P K E , P. W . Computing Simulations
on Finite and Infinite Graphs. In: R A G H A V A N , P., ed. Proceedings of the 36th Annual

76

https://doi.Org/10.1016/j.jcss.2006.ll.002
https://www.gnu.org/software/grep/

Symposium on Foundations of Computer Science. Washington, D C , USA: I E E E
Computer Society, 1995, p. 453. F O C S '95. ISBN 0818671831.

[30] H O L Í K , L . , L E N G Á L , O., SÍČ, J . , V E A N E S , M . and V O J N A R , T. Simulation
Algorithms for Symbolic Automata. In: L A H I R I , S. K . and W A N G , C , ed. Automated
Technology for Verification and Analysis. Cham, Switzerland: Springer International
Publishing, 2018, p. 109-125. ISBN 978-3-030-01090-4.

[31] H O L Í K , L . , L E N G Á L , O., Síč, J . , V E A N E S , M . and V O J N A R , T. Simulation
Algorithms for Symbolic Automata (Technical Report). CoRR, 2018. Available at:
https: //arxiv.org/abs/1807.08487.

[32] H O P C R O F T , J . A n n log n algorithm for minimizing states in a finite automaton. In:
K O H A V I , Z . and P A Z , A . , ed. Theory of Machines and Computations. Academic
Press, 1971, p. 189 - 196. DOI: 10.1016/B978-0-12-417750-5.50022-1. ISBN
978-0-12-417750-5.

[33] H O P C R O F T , J . E. , M O T W A N I , R. and U L L M A N , J . D. Introduction to Automata
Theory, Languages, and Computation. 2nd ed. Boston, M A , USA: Addison Wesley,
2001. ISBN 0-201-44124-1.

[34] H O V L A N D , D . Regular Expressions with Numerical Constraints and Automata with
Counters. In: L E U C K E R , M . and M O R G A N , C , ed. Theoretical Aspects of Computing
- ICTAC 2009. Berlin/Heidelberg, Germany: Springer Berlin Heidelberg, 2009,
p. 231-245. ISBN 978-3-642-03466-4.

[35] H O V L A N D , D . The Membership Problem for Regular Expressions with Unordered
Concatenation and Numerical Constraints. In: D E D I U , A . - H . and M A R T Í N V I D E , C.,
ed. Language and Automata Theory and Applications. Berlin/Heidelberg, Germany:
Springer Berlin Heidelberg, 2012, p. 313-324. ISBN 978-3-642-28332-1.

[36] I L I E , L . , N A V A R R O , G. and Y u , S. On N F A Reductions. In: K A R H U M Á K I , J . ,

M A U R E R , H . , P Á U N , G . and R O Z E N B E R G , G. , ed. Theory Is Forever: Essays
Dedicated to Arto Salomaa on the Occasion of His 70th Birthday. Berlin/Heidelberg,
Germany: Springer Berlin Heidelberg, 2004, p. 112-124. DOI:
10.1007/978-3-540-27812-2_ll. ISBN 978-3-540-27812-2.

[37] I L I E , L . and Y u , S. Algorithms for Computing Small NFAs. In: D I K S , K .
and R Y T T E R , W. , ed. Mathematical Foundations of Computer Science 2002.
Berlin/Heidelberg, Germany: Springer Berlin Heidelberg, 2002, p. 328-340. ISBN
978-3-540-45687-2.

[38] I L I E , L . and Y u , S. Reducing NFAs by invariant equivalences. Theoretical Computer
Science. Barking, Essex, U K : Elsevier Science Publishers Ltd . 2003, vol. 306, no. 1,
p. 373 - 390. DOI: 10.1016/S0304-3975(03)00311-6. ISSN 0304-3975.

[39] J I A N G , T. and R A V I K U M A R , B . Minimal N F A Problems are Hard. SIAM Journal on
Computing. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics.
1993, vol. 22, no. 6, p. 1117-1141. DOI: 10.1137/0222067.

[40] K R I P K E , S. A . Semantical Considerations on Modal Logic. Acta Philosophica
Fennica. 1963, vol. 16, no. 1, p. 83-94.

77

[41] L O U D E N , K . C. Compiler Construction: Principles and Practice. 1st ed. Boston,
M A , USA: P W S Publishing Co., 1997. ISBN 978-0-534-93972-4.

[42] M I L N E R , R. Communication and Concurrency. 1st ed. Upper Saddle River, N J ,
USA: Prentice-Hall, Inc., 1989. ISBN 978-0-13-115007-2.

[43] M O O R E , F . R. On the Bounds for State-Set Size in the Proofs of Equivalence Between
Deterministic, Nondeterministic, and Two-Way Finite Automata. IEEE Transactions
on Computers. Los Alamitos, C A , USA: I E E E Computer Society. October 1971,
vol. 20, no. 10, p. 1211-1214. DOI: 10.1109/T-C. 1971.223108. ISSN 1557-9956.

[44] M O U R A , L . de and B J O R N E R , N . Z3: A n Efficient S M T Solver. In: R A M A K R I S H N A N ,

C. R. and R E H O F , J. , ed. Tools and Algorithms for the Construction and Analysis of
Systems. Berlin/Heidelberg, Germany: Springer Berlin Heidelberg, 2008, p. 337-340.
ISBN 978-3-540-78800-3.

[45] P N U E L I , A . The Temporal Logic of Programs. In: I E E E . Proceedings of the 18th
Annual Symposium on Foundations of Computer Science. Los Alamitos, C A , USA:
I E E E Computer Society, 1977, p. 46-57. SFCS '77. ISSN 0272-5428.

[46] R A B I N , M . O. and S C O T T , D . Finite Automata and Their Decision Problems. IBM
Journal of Research and Development. 1959, vol. 3, no. 2, p. 114-125. DOI:
10.1147/rd.32.0114.

[47] R A N Z A T O , F . and T A P P A R O , F . A n efficient simulation algorithm based on abstract
interpretation. Information and Computation. 2010, vol. 208, no. 1, p. 1 -22 . DOI:
https://doi.Org/10.1016/j.ic.2009.06.002. ISSN 0890-5401.

[48] S A N G I O R G I , D. On the Origins of Bisimulation and Coinduction. ACM Transactions
on Programming Languages and Systems. New York, N Y , USA: Association for
Computing Machinery. May 2009, vol. 31, no. 4. DOI: 10.1145/1516507.1516510.
ISSN 0164-0925.

[49] SÍČ, J . Symbolicsimulation. Bitbucket, [n.d.]. Online - Git repository; accessed 5
February 2021 (commit 55d32b4f0c4ecaf06a294aa4el711d91c8cc09ba). Available at:
https: //bitbucket.org/ j sic/symbolicsimulation.git.

[50] S L E Z Á K O V Á , A . Převod LTL formulí s omezenými operátory do automatů s čítači.
Brno, The Czech Republic, 2020. Bachelor's thesis. Brno University of Technology,
Faculty of Information Technology. Supervisor Lukáš Holík.

[51] S M I T H , R., E S T A N , C., J H A , S. and S I A H A A N , I. Fast Signature Matching Using
Extended Finite Automaton (XFA) . In: S E K A R , R. and P U J A R I , A . K . ,
ed. Information Systems Security. Berlin/Heidelberg, Germany: Springer Berlin
Heidelberg, 2008, p. 158-172. ISBN 978-3-540-89862-7.

[52] S P E N C E R , H . A Regular-Expression Matcher. In: S C H U M A C H E R , D. , ed. Software
Solutions in C. San Diego, C A , USA: Academic Press Professional, Inc., 1994,
p. 35-71. ISBN 978-0-12-632360-3.

[53] T H O M P S O N , K . Programming Techniques: Regular Expression Search Algorithm.
Commun. ACM. New York, N Y , USA: Association for Computing Machinery. June
1968, vol. 11, no. 6, p. 419-422. DOI: 10.1145/363347.363387. ISSN 0001-0782.

78

https://doi.Org/10.1016/j.ic.2009.06.002

[54] T U R O Ň O V Á , L . et al. Counting Automata. Brno University of Technology, [n.d.].
Online - Git repository; accessed 4 February 2021 (commit
C8e881c52959090f38453d0e2fb247ab0abd9309). Available at:
https: //paj da.fit.vutbr.cz/ituronova/ count ingautomata.git.

[55] T U R O Ň O V Á , L . , H O L Í K , L . , L E N G Á L , O., S A A R I K I V I , O., V E A N E S , M . et al. Regex
Matching with Counting-Set Automata. Proc. ACM Program. Lang. New York, N Y ,
USA: Association for Computing Machinery. November 2020, vol. 4, O O P S L A . DOI:
10.1145/3428286.

[56] T U R O Ň O V Á , L . , H O L Í K , L . , L E N G Á L , O., S A A R I K I V I , O., V E A N E S , M . et al. Regex
Matching with Counting-Set Automata. MSR-TR-2020-31. Microsoft, September
2020.

[57] V E A N E S , M . and B J O R N E R , N . Symbolic Automata: The Toolkit. In: F L A N A G A N , C.
and K Ö N I G , B. , ed. Tools and Algorithms for the Construction and Analysis of
Systems. Berlin/Heidelberg, Germany: Springer Berlin Heidelberg, 2012, p. 472-477.
ISBN 978-3-642-28756-5.

[58] W O L P E R , P. and B O I G E L O T , B . On the Construction of Automata from Linear
Arithmetic Constraints. In: G R A F , S. and S C H W A R T Z B A C H , M . , ed. Tools and
Algorithms for the Construction and Analysis of Systems. Berlin/Heidelberg,
Germany: Springer Berlin Heidelberg, 2000, p. 1-19. ISBN 978-3-540-46419-8.

[59] Y A N N A K A K I S , M . Node-and Edge-Deletion NP-Complete Problems. In: L I P T O N ,

R. J. , ed. Proceedings of the Tenth Annual ACM Symposium on Theory of
Computing. New York, N Y , USA: Association for Computing Machinery, 1978,
p. 253-264. S T O C '78. DOI: 10.1145/800133.804355. ISBN 9781450374378.

79

http://da.fit.vutbr.cz/

Appendices

80

Appendix A

Left Simulation in C A

In this appendix we attend to the left simulation in CA, denoted We discuss it
merely informally, without giving precise definitions. The main reason is that computing
left simulation in C A is intrinsically more complex than computing the right simulation.
Therefore, our main focus is on the latter; the following discussion of the former is included
only for completeness. In this appendix, we assume every counter mapping is total on C.
Otherwise, we would need to adapt the definition of counter mappings to left simulation.

Relation of left simulation to left language. Right simulation has no regard for
counter memories attainable in the respective weaker and stronger state. This is because
for any memory m, the right language of the weaker state is a subset of the right language
of the stronger state: £((</, m)) C £((q, 7 _ 1 (m))) , per Eq. 3.8.

However, when merging left-simulation-equivalent states, we must ensure that all mem
ories attainable in q are also attainable in s. This is to avoid introducing new words into
the language of the merged state. For example, assume w G £R((s,ms)) where m s is not
attainable in s; but w ^ Cji((q, 7(m s))) where 7(m s) is attainable in q. Then if we merged q
and s, the resulting state would accept the word w with memory m s , which was not possible
in the original automaton. Therefore, the following must hold for the left simulation:

q s M(q) C { 7 (m s) | m s G SDt(a) }. (A. l)

Moreover, each memory m s attainable in the stronger state must be attainable via at
least all the words as its corresponding memory mq = 7(m s) attainable in the weaker state.
This simply means:

quW s \fmqeTl(q): CL((q,mq)) C £L((s, j - 1 (mq))). (A.2)

Now let us examine what happens with the non-attainable memories. If some is not
attainable in q, it means m^)) = 0. Therefore, £L((q,m'q)) C CL((S, 'y~1(m'q))) holds
(more still, it holds for any s). In fact, we can do the obvious and adopt Equation 3.8 to
the left simulation, from which we obtain

q E ^ L) s ^ V m , £ 9Jt: CL({q,mq)) C CL({s, 7 _ 1 (m g))) . (A.3)

It is easy to see that Eq. A.3 is equivalent to the conjunction of Eq. A . l and A.2.
Further, it is rather trivially analogous to Equation 3.8 and that gives a strong impression
that this implication should indeed hold.

81

Chapter 4 presents a C A reduction technique based on right-language-equivalence. We
presume that the same technique can also be used for reducing a C A by left-language-
equivalence, and thus (by Eq. A.3) also left-simulation-equivalence. Although possible, such
reduction is not practical, as computing the left simulation in C A suffers from a significant
difficulty described below. This is also the reason why we do not develop the notion of left
simulation any further - it will not be useful anyway.

Computing left simulation. In right simulation, for q C 7 s we assume that the memories
mq and m s are equal under the counter mapping, viz. mq = 7(ms). After executing a
transition rq from q and its simulating transition r s from s, the respective memories become
m!q and m's. The definition of right C A simulation ensures that there exists a successor
counter mapping 7' under which the successor memories are again equal, viz. = 7/(m/

s).
In left simulation, we need to ensure the same for predecessor memories. If mq and m s

are equal in q and s under 7, then the memories in predecessor states p' and s' need to be
equal under some predecessor mapping 7'. (We leave out some details but the idea should
be clear.)

The essential problem lies in resetting updates - E X I T or E X I T I . By executing either
of these updates, we lose the previous value of the counter. We then cannot know the
value of a counter before a transition (i.e., in the predecessor states) if the counter is reset
on the transition. To be accurate, we could compute all the possible counter values in
the predecessor state. But such computation is much more complex than what we need
for right simulation. In left simulation, we would need to perform global static analysis
of the entire automaton to obtain the set of possible memories in the predecessor state.
In right simulation, on the other hand, to compute the value of a counter after executing
a transition, we simply look at the current value of the counter and its update on the
transition.

Due to this, we also cannot use the technique presented in section 2.3.3. There, it was
shown how we can compute the left simulation preorder in F A using the algorithm for the
right simulation preorder. This is done by using the reverse automaton of a FA. If we were
to apply the same principle and reuse the existing algorithm for right C A simulation, we
would first need to define a reverse C A . This reverse C A would require inverse counter
updates on its transitions, instead of the ordinary updates in the original C A . This is again
problematic because of the mentioned updates E X I T and E X I T I . Since these operations are
not injective, their inverse would be set-valued. Then we would need to redefine the entire
formalism of counter memories, counting automata, and its semantics. Naturally, all of
that would be of no use, since then we could not reuse the existing algorithm.

82

Appendix B

Upper Bounds of Complexity of
Algorithm Pseudosim and
Algorithm Search

This appendix presents an analysis of Algorithms Pseudosim and Search. For Algorithm
Pseudosim, we derive exact upper bounds of space complexity and approximate upper
bounds of time complexity. For Algorithm Search, we derive the upper bounds of number
and total size of formulae, and the number of variables.

B . l Time and Space Complexity of Algor i thm Pseudosim

We give a very simple and approximate analysis of Algorithm Pseudosim. We obtain upper
bounds of its space complexity, and rough upper bounds of the time complexity. These
bounds of time complexity are merely approximate, hence they are not merely non-tight,
but likely also inexact. In the following, let n = \Q\, m = |A| and c = \C\.

Space complexity. We establish the upper bound of the space complexity of Algorithm
Pseudosim by examining the used data structures:

1. F: we obtain the complexity as the sum of complexities of all Fq. Each such Fq

contains total injections from Cs to Cq, where Cs C C and Cq C C. The upper bound
for \Fq\ is thus the number of total injections from C to C. This is the number of
bijections on C , which is c!. The total space complexity of F is then 0(n 2 c!).

2. CmapRemoveQueue: the queue can contain at most all the mappings in F. Thus the
space complexity is again 0(n2c\).

3. Tmatch.es: each key ("fq,Tq) is associated with a number of values (T s ,7*, ') . There are
at most n 2c! • m keys - n 2c! possible 7* and m possible rq; and for each key at most
m • c! values - m possible r s and, since (q', s') are now fixed, c! possible 7*,. The total
space complexity is then 0(n 2 c! • m • m • c!) = 0(n2m2c\2).

4. SuccCmapIndex: contains precisely the same data as Tmatches, only in different
format. Space complexity is the same: 0(n2m2cl2).

83

http://Tmatch.es

In total, the space complexity is 0(n2m2c\2). The given space complexity bound is exact
(i.e., correct), albeit possibly not tight.

Time complexity. We show approximate upper bounds of time complexity. Although
these bounds may be inaccurate, we nonetheless consider them valuable, hence we present
them here. We assume operations on queues, sets and associative arrays to have amortized
constant time complexity, as well as line 1 of Alg . 1 which checks simulation between two
transitions according to the definition of C A simulation.

1. Initialization phase: computing the initial F takes approximately 0(n 2c!) time as this
is its space complexity (it is the same as of F). The actual bound may be higher. The
complexity of constructing A', computing its and performing pruning by ^ is sub
sumed by the remaining computations. Computing Tmatches and SuccCmapIndex
enumerates first all mappings in F (there is 0(n 2c!) of them), then for each map
ping all weaker transitions (O(m)), for each weaker transition all stronger transitions
(O(m)), and for each stronger transition all mappings between the successors (O(d)
of them). In total, it takes time 0(n 2 c! • m • m • c!) = 0(n2m2c\2).

2. Inductive phase: each counter mapping in F enters CmapRemoveQueue at most once;
hence it is removed from CmapRemoveQueue and F at most once. Each transition
match is also removed at most once from Tmatches and SuccCmapIndex. A l l other
operations are constant-time. Hence, the time complexity of this phase corresponds
to the size of F and Tmatches: 0(n2c\ + n 2 m 2 c! 2) = 0(n2m2c\2).

We obtain a total (approximate) upper bound of time complexity 0(n2m2c\2).

B.2 Size of S A T Formulation in Algor i thm Search

1. Variables. The number of variables is given by the maximum number of counter
mappings in which equals the number of mappings in F - 0{n2c\).

2. Formulae. The number and size of formulae for particular constraints is as follows:

(a) Unambiguity - given by the number of mappings. 0(n 2c!) formulae, each of size
0(d); total size 0(n 2 c! 2) .

(b) Reflexivity - these constraints can effectively be ignored, as they are entirely
excessive and serve only an "illustratory" purpose (along with the v a r (7 I D ^)
variables). The number of formulae is O(n), size is 0(1) per each; total size is
0(n).

(c) Transitivity - there are n 3 possible (q, r, s) tuples, and for each tuple, 0(c!)
possible mappings Yq

 a n d 0(c\) possible 7*. The total number of formulae is
0(n 3 c! 2) and size is 0(1) per each; total size is 0(n 3 c! 2) .

(d) Simulation - we have 0(n 2c!) possible 7*, hence 0(n 2c!) formulae. In each
formula, there are 0(m) possible rq in the conjunction; each rq has 0{m) simu
lating TS and, in the successor states (q',s'), there are 0(c!) possible mappings
7*/. Hence the size of each formula is 0(m2c\), and total size of all formulae is
0(n2m2c\2).

The total size of formulae is 0 (n 3 c! 2 + n2m2c\2); their total count is 0(n 3 c! 2) .

81

Appendix C

Computing Bisimulations

With slight modifications, Algorithm Pseudosim and Algorithm Search can be used to
compute consistent bisimulations instead of consistent simulations. In this appendix, we
describe in general terms these modifications. Our main aim is simplicity; hence the result
ing algorithms are not particularly efficient.

Note on inverse counter mappings. As we mentioned before, in the algorithms we use
a shortened notation to denote a mapping associated with a specific pair of states. Instead
of writing (q, s, 7), we simply write 7*. When taking the inverse of a mapping, e.g. (7 |) _ 1 ,
we must also switch the weaker and stronger state, so that - in the full notation - (q, s, 7)
becomes (s , g , 7 _ 1) instead of (g , s , 7 _ 1) .

C . l Algor i thm Pseudosim

We now describe a modification of Algorithm Pseudosim, which computes certain strongly-
symmetric superset of the maximal hyperbisimulation on the input C A . We call this superset
the pseudobisimulation and denote it |~=]. The structure of this section follows that of
Sec. 5.1, describing in each subsection the necessary modifications of the computations
presented in the original subsection.

C . l . l Initialization Phase

Initialization Phase, Part 1

• After we obtain the structural F A A', we compute the bisimulation equivalence on
A' instead of the simulation preorder =<!. Once again, we are free to use any suitable
algorithm for computing bisimulation equivalences on FA.

• When computing the initial overapproximation T in Alg . 3, we consider a mapping
valid only if it is "applicable in both directions". In particular, line 5 changes to

subsumptionHolds := (minc = min^ A maxc = max^):

and line 6 changes to

uncondAcceptlmplied := ((fmq(c) = true) -4=>- (fins(d) = true)).

(And these variables shall be renamed to reflect the change in their semantics.)

This modification applies equally to the proposed optimization of Alg . 3 by finding
matchings in a bipartite graph.

85

Initialization Phase, Part 2

After initializing the Tmatches and and SuccCmapIndex structures in Alg . 5, we must en
sure that the sets Tq and f f (for each q, s) are "inverse" of each other: Tq = J 7 _ 1 | 7 G f f } .
This means we have to remove mappings from either of these sets, such that their inverse
is not in the other set. As in Alg . 5, we cannot directly remove the mappings from F, as we
need to perform maintenance when doing so. We instead add them to CmapRemoveQueue
and they will be eventually removed during the inductive phase.

Algorithm 8 illustrates this operation. First, it adds to the queue all mappings such
that their inverse does not exist is F at all. Then it adds to the queue all mappings such
that their inverse is about to be removed from T (meaning it is in the queue).

Algorithm 8: Removing non-symmetric initial mappings before inductive phase
Input: CmapRemoveQueue, C A A
Effect: A l l non-symmetric mappings added to queue CmapRemoveQueue

1 for q, s G Q x Q do
2

3

4

for 7* G do

if (7*)- 1 i f f then
CmapRemoveQueue := CmapRemoveQueue U J7|}:

5 for 7* G CmapRemoveQueue do
7! := (7*) , / / mapping is inverted and states are switched
if 7I G f% then

CmapRemoveQueue := CmapRemoveQueue U {7I}:

C.1.2 Inductive Phase

We must ensure that every mapping in Ys

q has its inverse in Tq

s (for all q,s). This can be
achieved by quite a simple modification of Alg . 6 - when adding a mapping to the queue of
mappings to be removed, we also add its inverse (if it exists). Thus on line 17 we replace
the added mapping {7*/} by {7*/} U ({(7g') - 1} H T^,). Due to this, Invariant 3 no longer
holds in its original form on line 4. It holds, however, in a slightly modified form which we
omit for its triviality. The remainder of the inductive phase remains the same; in particular,
all remaining invariants still hold as before.

End of modified Algorithm Pseudosim. The result is the pseudobisimulation, which
is then used by the modified Algorithm Search to compute consistent simulations.

86

C.2 Algor i thm Search
The modification of Algorithm Search is a simple one. We extend the formulation with
symmetry constraints which ensure that if a mapping exists in the solution, then so does
its inverse. For each q,s £ Q and 7* € [~C](q, s), we add to $ the following formula:

var(7p var ((7*) _ 1) .

Again, we note that the stronger and weaker states are switched in the inverse mapping
(7 |) _ 1 (see the note on inverse counter mapping at the beginning of this appendix).

Observe that with these symmetry constraints alone, we are able to find bisimulations
within the pseudosimulation computed by the unmodified Algorithm Pseudosim (i.e., we
do not necessarily need the pseudobisimulation). However, that approach would be less
efficient; hence the above modification of Algorithm Pseudosim.

End of modified Algorithm Search. We can now use the obtained bisimulation(s) for
reduction of the input C A , as described in Chapter 4.

87

Appendix D

Additional Figures from
Experiments

Here, we present additional figures concerning the experimental evaluation presented in
Chapter 6, which display the obtained results in more detail.

Experiment 1: Figure D . l shows the dependence of absolute simulation reduction on the
number of states in the C A . The blue points are the mean of all y-values at the
specified x-value; the blue bars represent the standard deviation. Keep in mind the
y-scale is logarithmic, hence the deviation bars appear asymmetric but are in fact
symmetric (i.e., the mean is in the middle of the deviation bar). The red points are
medians. Observe that a clear majority of C A has an absolute reduction of 1 state,
and this tendency is present even in larger C A (e.g. over 100 states).

Figure D.2 shows the dependence of relative simulation reduction on the number of
states in the C A . Values (e.g. means, medians) are displayed precisely as in Fig. D . l .

Experiments 2 and 3: Figure D.3 shows the running time of the simulation algorithm
as a function of the number of states. Displayed are values for runs which finished
within the allotted time of 900 seconds (the 32 C A from Experiment 2 and 54 C A from
Experiment 3). We did not perform a measurement of running time in Experiment 1,
as the running time there was mostly negligible due to the small size of automata.

88

100.00

50.00

"w 30.00

tn 20.00
T3 01
4-»
| 10.00
a;
c
0

§ 5.00
T3
01
5 3.00

E 2.00

1.00

0.50

10 20 30 50
Number of states

100 200 300 500

Figure D . l : (Experiment 1) Absolute simulation reduction as a function of the number of states.

50.00

30.00

20.00

10.00

c 5.00
o
+J
a 3.00 -o
CD

c
o

1/1

2.00

1.00

0.50

0.30

0.20

0.10

I

10 20 30 50
Number of states

100 200 300 500

Figure D.2: (Experiment 1) Relative simulation reduction as a function of the number of states.

500

^ 300

£ 200

J? 100 ro
c o

50 ro
ZS

I 30
° 20

CT 10
c
'c c
£ 5

3

2

•• • •

• • •
• • • 4

• • • • • • • •

• Experiment 2 (random regexes)
• Experiment 3 (similar regexes)

300 500 1000 2000
Number of states

3000 5000

Figure D.3: (Experiments 2 and 3) Running time of the simulation algorithm as a function of the number of states.

