
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INTELLIGENT S Y S T E M S

BOARD GAME FOCUSED ON EDUCATIONAL SUP­
PORT FOR GAMING ALGORITHMS

BAKALÁRSKA PRACE
BACHELOR'S THESIS

AUTOR PRÁCE MARTIN ČÁSLAVA
AUTHOR

BRNO 2015

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INTELLIGENT S Y S T E M S

DESKOVÁ HRA ZAMĚŘENA NA PODPORU VÝUKY
HERNÍCH ALGORITMŮ
BOARD GAME FOCUSED ON EDUCATIONAL SUPPORT FOR GAMING ALGORITHMS

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE MARTIN ČÁSLAVA
AUTHOR

VEDOUCÍ PRÁCE doc Ing. MARTIN DRAHANSKÝ, Ph.D.
SUPERVISOR

BRNO 2015

Abstrakt
Tato p r á c e se z a b ý v á ob las t í umě lé inteligence zvané jako " M e t o d y pro h r a n í her". C í lem
t é t o baka l á ř ské p r á c e je navrhnout a implementovat software, k t e r ý u m o ž n í už ivate l i snad­
něji pochopit pr incipy he rn ích a lg o r i tmů M i n i m a x a Alfa-beta p ro řezáván í . T y p i c k ý m i
uživate l i tohoto softwaru mohou bý t n a p ř í k l a d studenti oboru u m ě l á inteligence. P r á c i lze
rozděl i t do dvou h lavn ích čás t í . P r v n í , t eo re t i cká čás t , obsahuje popis nej různějš ích metod
pro řešení ú loh a deta i lně j i se zaměřu je na metody pro h r a n í her. C í l em t é t o čás t i p r á c e je
d á t č t e n á ř i t eo re t i cký zák lad pro bližší p o c h o p e n í problematiky he rn ích a lgo r i tmů . D r u h á
čás t p r á c e je věnována popisu n á v r h u , implementaci a t e s tován í i m p l e m e n t o v a n é h o soft­
waru. V závěru d r u h é čás t i p r á c e jsou shrnuty a d i s k u t o v á n y dosažené výs ledky a je zde
t a k é n a s t í n ě n n á v r h na m o ž n á b u d o u c í vylepšení .

Abstract
This work deals w i t h the part of field of artificial intelligence known as " Methods of playing
games". The goal of this bachelor's thesis is to design and implement software that allows
the user to more easily understand the principles of game algorithms M i n i m a x and A l p h a -
beta pruning. T y p i c a l users of this software can be, for example, students of artificial
intelligence. This work is d ivided into two main parts. The first theoretical part tries
to explain the " M e t h o d of playing games" concept and subsequently contains detailed
descriptions of software design and educational benefits. The second part of this work is
devoted to a description of software implementation, testing and discussion of the achieved
results.

Klíčová slova
U m ě l á inteligence, he rn í algoritmus, s t avový prostor, metoda pro řešení ú loh , M i n i m a x ,
Alfa-beta ořezávání , hra P i š k v o r k y

Keywords
Art i f i c i a l intelligence, game algori thm, state space, method for task solving methods, M i n ­
imax, Alpha-be ta pruning, Tic-tac-toe game

Citace
M a r t i n Cás lava : B o a r d game focused on educational support for gaming algorithms, b a k a l á ř s k á
p ráce , Brno , F I T V U T v B r n ě , 2015

Board game focused on educational support for gam­
ing algorithms

Prohlášení
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana doc.
Ing. M a r t i n a D r a h a n s k é h o P h . D . Dá le prohlašuj i , že jsem uvedl všechny l i t e rá rn í prameny
a publikace, ze k t e r ý c h jsem čerpal .

M a r t i n Čás lava
Ju ly 26, 2015

Poděkování
R á d bych touto cestou poděkova l m é m u vedouc ímu p r á c e panu doc. Ing. M a r t i n u Drahan-
skému P h . D . za d r a h o c e n n é rady a p ř ipomínky , bez k t e r ý c h by j i s t ě tvorba t é t o p r á c e byla
jen stěží m o ž n á . Dá le bych r á d poděkova l k a m a r á d o v i Štefanu Mar t í čkov i za jeho n á v r h y
na zlepšení aplikace a ze jména za k r i t i ku , k t e r á se podepsala na celkovém výs ledku p ráce .

© M a r t i n Čás lava , 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Task-solving methods 4
2.1 State space 4
2.2 Methods based on state space exploration 6

2.2.1 Uninformed (Bl ind) Search methods 6
2.2.2 Informed search methods 6
2.2.3 L o c a l search methods 6
2.2.4 Methods for decomposition to subtasks (A N D / O R graphs) 6

3 Methods of playing games - game algorithms 8
3.1 Pr imi t ive games 8

3.1.1 Tower of Hano i game 8
3.2 Difficult games 9

3.2.1 M i n i m a x 9
3.2.2 Alpha-be ta pruning 11

3.3 Games w i t h uncertainty 14

4 Appl icat ion design 16
4.1 Tic-tac-toe game 16
4.2 Graphics user interface 16
4.3 Appl i ca t ion object model 17
4.4 App l i ca t ion control system 18

4.4.1 App l i ca t i on user input 19
4.4.2 App l i ca t ion output 20

4.5 Educat ional benefits 22
4.5.1 Benefits 22
4.5.2 Similar existing applications 22

5 Appl icat ion implementation 24
5.1 Implementation of the object model 24

6 Appl icat ion testing 29
6.1 Testing of the applicat ion functionality 29
6.2 Testing of the real use 30
6.3 Eva lua t ion of the tests results 33

1

7 Conclusion 34
7.1 Proposal for the possible future improvements 34

7.2 Discussion of the achieved results 34

A C D content 37

B M a n u a l 38

C Appl icat ion Screenshots 39

2

Chapter 1

Introduction

This thesis deals w i th the issues of teaching and presenting the basic principles of methods
of playing games. The goal of this thesis is to design, implement and subsequently test
the application which, thanks to the game "Tic- tac- toe", allows the user to more easily
understand principles of game algorithms (M i n i m a x and Alpha-be ta pruning).

Fol lowing chapter is devoted to the "Task-solving methods" concept, which is basis
for understanding the methods of playing games. The th i r th chapter explains the notion
" M e t h o d of playing games", known as the " G a m e algori thm" concept, and describes the
various types of games on which this thesis is focused. The fourth chapter contains a
theoretical design of the applicat ion and its graphical user interface and also it is devoted to
the description of the educational benefits of the implemented applicat ion when compared
wi th similar existing applications. The fifth chapter deals w i th implementat ion of the
application, description of chosen developmental tools and programming languages. The
sixth chapter describes the test scenarios, methods of test execution and achieved tests
results. The last chapter is devoted to the discussion of achieved results and subsequently
mentions the proposal of possible future improvements.

3

Chapter 2

Task-solving methods

The a im of this chapter is to give the reader a theoretical base for understanding the
methods of playing games. It also tries to explain the notion of "Task-solving methods"
and subsequently how this notion is associated wi th the methods of playing games.

The notion "Task-solving methods" in area of artificial intelligence, is close related wi th
the notion "State space explorat ion". In essence, it is testing of possible states of the task
and identifying what happens i n next phases of the task. W h i l e playing games almost
everyone is considering, i n this way, how the opponent would react to his move. []
Task-solving methods are evaluated by following criteria:

• Completeness - w i l l the method find the solution (if exist)?

• T i m e demands - min imum/maximum/average t ime required to solve the task.

• M e m o r y demands - min imum/maximum/average amount of memory needed to
solve the task.

• Opt imal i ty - w i l l the method find the best solution? [14]

2.1 State space

We can imagine the state space as an oriented graph or tree. For simplifying the terminology
is therefore the notion "state space" in the next phases of work, considered as a "tree" (game
tree).

Each node of this tree represents a state of task and its edges represent the transitions
between them. The route from the in i t i a l node (root) to one of its final nodes (leafs) is the
solution of the task. M a n y tasks require a min imiza t ion of the route value, which is equal
to sum of values of each transi t ion. O n the other hand, for some tasks, the route is not
important at a l l and decisive is only the final node. [14]
The state space is defined as the pair:

• (S,0)

where:

• S - is a non-empty finite set of task states.

• O - is a non-empty finite set of operators, which allows to change the states of task.

[]

4

The task i n the state space is defined as the pair:

• (S 0 , G)

where:

• So - is an in i t i a l state of task.

• G - is a set of final states of task. [14]

The solution of the task is defined as a succession of operators:

• Si = OtiSo), S2 = 0 2 (5 i) , ...,Sn = On(Sn - 1), Sn e G [5, 14]

For description the state space (image 2.1) is used the following terminology:

• Node A - is the root.

• Nodes I, L , M , Z - are the leafs.

• Node C - is the immediate predecessor of H node, etc.

• Nodes A , D , J - are the predecessors of V node, etc.s

• Node K - is the immediate successor of D node, etc.

• Nodes H , I, S, T , U - are the successors of C node, etc.

• Node A - has a depth 0, nodes B , C , D have a depth 1, etc.

• Node A - is the in i t i a l state So.

• Node L - is the final state Sq.

• Expans ion od the tree node is the specifying a l l of its immediate successors.

• Generations of the tree node is its creation.

• Eva lua t ion of the tree node is equal to the sum of transitions from the root to this
node. [14]

A =So

M N O P Q R S T U V W X Y Z

Figure 2.1: State space example [14]

5

2.2 Methods based on state space exploration

One of the fundamental tasks of artificial intelligence are methods for solving mechanical
tasks. Despite high computing power of today's computers, it is for the vast majori ty of
problems unthinkable that a machine is looking for a solution by successive testing of a l l
possibilities. It was necessary to somehow manage the search for the solution.

For these reasons a various methods (algorithms) wi th different advantages and disad­
vantages, were invented i n recent decades, for exploring the state space. []
These algorithms are divided into these following groups:

2.2.1 Uninformed (Blind) Search methods

These methods do not have any information about final state and also do not have any
means how to evaluate the current state.

Even people sometimes have to use similar methods - for example when they are search­
ing for the route i n the map, from some in i t i a l place to some final place, and do not have
any clue where the final place is. [14]
A m o n g these methods belong for example:
B F S (Breadth-first search) algorithm
D F S (Depth-first) algorithm
Bidirectional search algorithm

2.2.2 Informed search methods

These methods have an information about the final state and also have the means how to
evaluate the current state. Back to the example wi th searching in the map - i f someone is
searching for the route i n the map from some in i t i a l place to some final place, he usually
has a rough idea, i n which direction from in i t i a l place the final place is.

It means if the idea about the location of the final place is more precise, less area of
map (state space) is needed to be explored. [14]
A m o n g these methods belong for example:
B e a m search algorithm
Greedy search algorithm
A * algorithm

2.2.3 Local search methods

There are some tasks whose solution is only to search for the final state and the route is
meaningless. For solving these tasks, methods which instead of searching for the opt imal
route search for the opt imal final state, are used.

These methods are only good for one specific thing, for example for the opt imal scatter
of the goods on the shelves i n the shops etc. []
A m o n g these methods belong for example:
Hil l -c l imbing algorithm.

2.2.4 Methods for decomposition to subtasks (A N D / O R graphs)

Decomposi t ion to subtasks is possible to typify by graph (tree) as i n other methods. The
difference is that the nodes do not represent the states of task, but subtask. Each following

6

node (subtask) can be expanded to easier subtask, un t i l the leafs (final nodes) do not
correspond to the elementary tasks, or unsolvable tasks. The other difference is that the
nodes can acquire only the boolean types " A N D " or " O R " . [11]

• O R problem - the task A (image 2.2) is soluble, if there is at least one of its subtasks
soluble (tasks A , C , D) . []

• A N D problem - the task E (image 2.2) is soluble, if there are a l l of its subtasks
soluble (tasks F , G , H). []

A m o n g these methods belong for example:
A O algorithm

Figure 2.2: A N D , O R problems []]

For more information about the algorithms mentioned in this chapter, you can use following link:
https://www.fit.vutbr.cz/study/courses/IZU/private/oporaizu-esf-5a.pdf

7

https://www.fit.vutbr.cz/study/courses/IZU/private/oporaizu-esf-5a.pdf

Chapter 3

Methods of playing games - game
algorithms

This work takes into account the games for two regularly alternating players. B o t h of these
players have a complete idea about the state of game and each player is t ry ing to win .
The problem lies i n finding the op t imal move for the player on tu rn (player A) . Because
the next move is the opponent's move (player B) , every move which leads to the vic tory of
the player A , has to be unsolvable for the player B , in different words, a l l of the player B
moves, have to be soluble for player A (A N D problem).

Searching for the move which leads to the victory, leads to the exploration of the
A N D / O R graph 2.2.4. After selection and execution of the opt imal move of the player
A „eve ry th ing is forgotten", in the next turn player B is playing, and player A chooses his
move from the new state of game again. [14].

Thus described games can be divided into following categories:

3.1 Primitive games

For this k ind of games, it is possible to explore the whole A N D / O R graph in real t ime.
In case of finding the solution of the game, it is not necessary to return the whole part of
graph, but only the move of player A , which leads to his victory. [14]

A s the example of pr imit ive game, serves the following example of the „Tower of H a n o i "
game. 3.1

3.1.1 Tower of Hanoi game

In the in i t i a l state of the task is the Tower of Hanoi consisting of N disks of different
diameters, situated on left p in (A pin) . The goal of task is to move the disks to the right
p in (pin C) using the p in i n the middle (pin B) .

it is only allowed to move the upper disk and the disk must not be placed on the disc
of smaller diameter. P ins are denoted by diameter as the integers 1, 2, N . [l l]

8

3l I I I I I 3\

A B C A B C

Figure 3.1: Tower of Hano i - game example [11]

Figure 3.2: Tower of Hano i - decomposition to subtasks [11]

3.2 Difficult games

In these games, the game tree is explored only to a predetermined depth. If at this depth
are not the nodes, for which is possible to decide about task solvabil i ty or insolvability, it
is necessary to evaluate the tree nodes somehow.

In these methods the evaluation function is used for valuat ing the tree nodes. The pos­
itive values indicate the favorable conditions for player A (the bigger, the more favorable),
the negative values indicate the positive status for player B (the the smaller, the more
favorable). W i n n i n g or losing is assessed as the m a x i m u m of these numerical values of the
considered interval (for example 1, 0, -1). It is obvious that player A selects the moves
leading to nodes wi th the m a x i m u m valuations, and player B chooses moves leading to the
nodes w i t h the m i n i m u m valuations. The basic game algori thm works on that principle
and is therefore called the M i n i m a x . [14]

3.2.1 Minimax

These methods work on the principle of exploration of the game tree wi th restrictions of its
depth. For this algori thm, the static evaluation function / , which evaluates each tree node
on the i level, is specific. This evaluation function works on the principle of the following
iterative algori thm: [13]

• Tree node is expanded and for a l l its successors is determined the value of / . [13]

• F r o m these determined values the best value is selected. This value is reversely used
as the evaluation of the parent node at the i level. [13]

M i n i m a x algori thm expects the restrictively allowed depth of exploration of the tree. For
the effectiveness of this algori thm is the "best" value of the evaluation function / , the
deciding factor.

A s mentioned in the chapter 3.2, if it is player A ' s turn, as the best value is considered
the max imum value of the function / at the closest lower level. Conversely i f it is player

9

B's turn, as the best value is considered the m i n i m u m value of the function / , at the the
closest lower level. It is therefore logical that player A is t ry ing to maximize the profit of
player B , and player B is t ry ing to minimize the profit of player A . [13]

Principle of the M i n i m a x

Suppose the si tuation at the image 3.3. If the tree is explored to the depth 1, the node A
is evaluated as the m a x i m u m value of the evaluation function / , of its successors (B , C , D) .
Dur ing the reverse evaluation process, the nodes B , C , D i n the second level, are evaluated
as the m i n i m u m value of the evaluation function / of its successors at the th i rd level. [13]

• f(B)=min{f(E),f(F),f(G)} [13]

• f(C) = min{f(H),f(I),f(J)} [13]

• f(D)=min{f(K),f(L)} [13]

A t the higher level is the node A evaluated as the m a x i m u m of its successors (B , C , D) .

• f(A) = max{f(B),f(C),f(D)} [13]

Figure 3.3: M i n i m a x algori thm principle

Pseudocode of the M i n i m a x

int score;

int optimal_opponent_move;

check the state of game and evaluate the tree node;

for a l l (empty game positions)

{

if(player == MIN_PLAYER)

{

take the game position;

score = minimax(MAX_PLAYER, depth-1, bestMaxScore, bestMinScore);

free the game position;

if(score < bestMinScore)

{

bestMinScore = score;

i f (depth == 0)
optimal_opponent_move = position;

}

10

}
else i f (player == MAX_PLAYER)

{

take the game position;

score = minimax(MIN_PLAYER, depth-1, bestMaxScore, bestMinScore);

free the game position;

if(score > bestMaxScore)

{

bestMaxScore = score;

}

}
}
i f (player == MAX)

return bestMaxScore;

else

return bestMinScore;

Complexity

The algori thm has very low memory demands, because it does not need to remember the
whole section of the tree, when calculating. O n l y the current path from the root to the leaf
and immediately following moves is saved in the memory.

The problem is the exponential t ime complexity. In case of the tree wi th constant
branching factor x and the depth y is the time complexity xv. The calculation of the time
complexity shows the weakness: for the games that have a large branching factor, this
algori thm can not be effectively deployed i n greater depth of exploration. In practice it is
therefore prefered to use the algorithms derived from Alpha-be ta pruning, which achieves,
compared w i t h the M i n i m a x , almost twice larger depth of exploration, in the same time.
[2]

3.2.2 Alpha-beta pruning

This algori thm is based on the principle M i n i m a x algori thm 3.2.1, but it is improved by
technique (branch-and-bound), which allows to decide, whether the next branch of the tree
is useless to explore, or not.

In case that exploration of some branch is useless, the branch is cut off and is not
explored. Th is technique allows i n the very early stages of the tree exploration, to reject
the solution which is evidently worse than already found solutions. Thanks to this technique
there is no need to explore the whole tree, but only its i n t e r e s t i n g " parts. [13]

Principle of the Alpha-beta pruning

Unlike the M i n i m a x , the Alpha-be ta pruning uses besides the integer value of the node,
other two values a and j3.

• a - this value represents the lower l imi t of the evaluation of the tree node, corre­
sponding to the move of the player A .

• (3 - this value represents the upper l imi t of the evaluation of the tree node, cor-
respinding to the move of the player B .

11

O n the basis of these values, the algori thm decides whether the branch of tree w i l l be cut
off or not. The a value is calculated on the level of player A , as the m a x i m u m value of
successors of the current node and the value of the a from the parent level. O n the level
of player B , the value of a does not change. Analogously, the j3 value is calculated on the
level of player B , as the m i n i m u m value of successors of the current node and the value of
the j5 from the parent level.

Values of a and (3 are not therefore global m i n i m u m or m a x i m u m values, but the
„ b u b b l i n g " values, between parts of the tree. The cut t ing of the branch may occur at any
level. A t the level of player A , the a cuts may occur and at the level of player B the j3 cuts
may occur. [10]

• a cuts - the cut t ing and stopping exploration of the next branch of the tree occurs,
when during the reverse evaluation process, as i n the M i n i m a x algori thm, is fulfilled
the condit ion: a > (3

• (3 cuts - the cut t ing and stopping exploration of the next branch of the tree occurs,
when during the reverse evaluation process, as i n the M i n i m a x algori thm, is fulfilled
the condit ion: (3 < a

A t the beginning of the algori thm the values alpha and beta are ini t ia l ized on:

• a = —oo

• (3 = oo

The image 3.4 shows the principle of Alpha-be ta pruning algori thm. The red nodes denotes
the parts of the tree which the algori thm d id not explore (cuts).

a - - c o , 4 , 5

3 - CO

Figure 3.4: Alpha-be ta pruning algori thm principle [14]

12

Pseudocode of the Alpha-beta pruning

int score;

int optimal_opponent_move;

check the state of game and evaluate the tree node;

for a l l (empty game positions)

{
if(player == MIN_PLAYER)

{

take the game position;

score = minimax(MAX_PLAYER, depth-1, alpha, beta);

free the game position;

if(score <= alpha)

cut the rest of the tree nodes i n this branch;

if(score < beta)

{

beta = score;

i f (depth == 0)
optimal_opponent_move = position;

}

}
else i f (player == MAX_PLAYER)

{

take the game position;

score = minimax(MIN_PLAYER, depth-1, alpha, beta);

free the game position;

if(score >= beta)

cut the rest of the tree nodes i n this branch;

if(score > alpha)

{
alpha = score;

}
}

}
i f (player == MAX)

return alpha;

else

return beta;

Complexi ty

For m a x i m u m efficiency of this algori thm it is suitable to use some heuristics for sorting
the game moves. The cut t ing of the nodes is more effective, when the exploration of the
moves is carried out i n the right order. W h e n the game moves are i n the opt imal order,
the t ime complexity of Alpha-be ta pruning is xy/2, which means, that in the opt imal case,
this algori thm can reach twice the depth of exploration, of the M i n i m a x , i n the same time.

It is possible to prove, that i n case of incorrect selection order of the game moves, the
algori thm can reach the time complexity xv, which is the time complexity of the M i n i m a x
algori thm. [9]

13

3.3 Games with uncertainty

There are many such games, for two regularly alternating players where both of them have
complete information about the state of the game. They play honestly and both of them
want to win .

Unl ike the above mentioned methods, when playing these games, the players need to
use a dice and thus the uncertainty enters the game. The basic principle of the games wi th
dice is described i n the image 3.5. The player A is on the tu rn and just threw the dice
(considered is the classic six-party dice). The result of the throw is N o . 4, however, this
fact is not important for further consideration. [14]

Figure 3.5: The principle of the games wi th uncertainty [14]

Player A knows, which game moves C j he can realize. O f course he can evaluate the
ind iv idua l states of game (immediate successors) and choose the move leading to the state
wi th the m a x i m u m value. W h i l e a lot of people use this approach, it is certainly not
interesting. Player A , w i l l therefore proceed wi th the evaluation of each state C j i n more
complicated way (the left part of the image 3.5).

Work ing on the assumption, that player B , would for the known result of the throw,
choose the move to the state Dj, w i th the m i n i m u m value. However player B does not know
the result of his throw, so he can work only w i t h the expected value, expectimin (expected
minimum). [14]

expectimin(Ci) = P(hk)* min (Djki)

The eaquation 3.1 is taken from [] and serves for calculat ing the expected minimum.
In this equation is:

• hk - the fc-th result of the throw (1, 2, 3, 4, 5, or 6).

• P{hk) - the probabil i ty of the fc-th result (for games w i t h one dice, the probabil i ty for
al l of the results is the same: P(hk) = 1/6, for the games wi th two dice, w i th the same
numbers at the dice, the probabilities of the results are 1/36 and the probabilities of
the results, w i th different numbers at the dice, are 1/18).

• Dj^ - the evaluation of the state Dj, which is reachable from the state C j i , after the
fc-th result of the throw of the dice.

The expectimin is therefore given by the sum of a l l the possible values of the results, after
the player has thrown the dice. E a c h value is given by the product of the probabil i ty of the
result of the throw and subsequent the m i n i m u m evaluation of the state, which is possible
to reach after the throw. Player A then chooses the move to the state C j w i th the max imum

14

value expectmin. A similar procedure is followed i n the investigation of the expected value
of the node (which is i n the right part of the picture 3.5, for s implic i ty referred as
the Dj). Because player A chooses the max imum of the possible values, this evaluation is
denoted as expectimax (expected maximum). [14]

expectimax(Dj) = P{hk)* max (Cjki) ,^ ^
k j

The eaquation 3.2 is taken from [1 1] and serves for calculating the expected maximum.
In this equation is:

• hk - the fc-th result of throw (1, 2, 3, 4, 5, or 6).

• P(hk) - the probabil i ty of the £;-th result . . .

• Cjki - the evaluation of the state C j , which is reachable from the state Dji, after the
k-th result of the throw of the dice.

15

Chapter 4

Application design

A s the name of the work suggests, the goal of this thesis is to create an application, which
thanks to the board game, allows to demonstrate the principles of game algorithms M i n i m a x
and Alpha-be ta pruning.

For this reason, I decided to implement the game called as " Tic-tac-toe". Th is game is
well known, has a simple rules and one game does not take a lot of t ime. Whole application is
conceived as the educational tool . The user has an option to choose one of two implemented
game algorithms as his opponent and watch step-by step how the algorithms work.

4.1 Tic-tac-toe game

The Tic-tac-toe is the strategy game for two regularly alternating players. Th is game is
played on the squared paper. B o t h players are alternating in the drawing the game marks
(crosses or wheels). The winner is the first player to place his five game marks in the
orthogonal or the diagonal direction.

For the applications purposes the game rules were a l i t t le bit changed. The game desk
has size 3 x 3 game squares and the winner is the first player to place his three game marks
in the orthogonal or the diagonal direction.

Figure 4.1: Tic-tac-toe example [6]

4.2 Graphics user interface

W h e n designing the graphics user interface (in next phases of the work this notion is
named as G U I) the emphasis was on m a x i m u m simplic i ty and intuitiveness of its use. The
application control system is desribed in chapter 4.4.

The G U I comprises of one main window, two buttons for controll ing the application
and the simple list menu on the top left of the main window. The main application window
is d ivided into several parts:

• G a m e board - this part of G U I represents the game board for the game "Tic- tac-
toe" . Thanks to the cl icking the right mouse but ton into the squares of game board,
the user can place his game marks, and play the game. If the user does not choose any

16

game algori thm as his opponent, it is possible to play the game against the another
human player. B u t this effect is rather secondary.

• W i n d o w for displaying the application output - this window serves for display­
ing the application output, which is represented as the corresponding game tree. Each
node of this tree represents the one state of the game. Thanks to the special next
step but ton, the user has an option to simulate the game algori thm act ivi ty step-by
step. In the image 4.2 you can see the application screenshot w i th fully explored game
tree.

• W i n d o w for reading the pdf files - i n this window, the user can read detailed infor­
mation about implemented game algorithms. This window also serves for displaying
the help.

• W i n d o w for listing the game algorithm details - this side panel serves for dis­
playing detailed information regarding the implementat ion of the chosen game algo­
r i thm. In each game step, the user is able to see, what is happening i n the background
of the selected game algori thm. For example: which conditions are evaluated, which
players is on the turn, which values is the algori thm selecting etc.

Figure 4.2: App l i ca t i on screenshot - G U I

4.3 Application object model

W h e n designing the application, it was more than clear that it is needed to use the object
oriented approach and design the application object model . The object model is d ivided to
seven main classes and one data structure:

• Class: Square - this class represents one square in the game board for the Tic-tac-toe
game.

17

• Class: B o a r d - this class is inherited of the Square class and represents the whole
game board for the Tic-tac-toe game.

• Class: Empty_node - represents one non-expanded tree node.

• Class: Tree_node - represents one expanded tree node.

• Class: Tree_node_data - contains the information about tree nodes.

• Class: Check_game_status - includes an auxi l iary methods for artificial intel l i­
gence.

• Class: ArtificiaLintelligence - contains the implementat ion of the game algorithms
M i n i m a x and Alpha-be ta pruning.

• Structure: Game_data - contains important control variables, pointers to the other
objects etc. E a c h object in this object system has permission to read the data from
this structure, some of them even to write.

The image 4.3 shows the application object model and the way the classes are communicat­
ing among themselves. The implementat ion of this object model is described i n the chapter
5.1.

Tree_ node

\
E > Game data Game data

ArtificiaLintelligence

^ C h e c k _ g a m e _ s t a t u s

Figure 4.3: App l i ca t ion object model

4.4 Application control system

The application control system was designed wi th respect to the m a x i m u m simplic i ty and
its intuitiveness. After start ing the application, the mandatory user input is expected, in
form of the start ing game si tuat ion and selection of the game algori thm. After entering the
va l id user input, the applicat ion generates the output in form of the coresponding empty
game tree. The application output can be further modified by cl icking the appropriate

18

next step but ton, and simulate the act ivi ty of the chosen game algori thm. The image 4.4
shows the model of application control system.

GRAPHICS LAYER

A P P L I C A T I O N INPU1

Prepare the
game
situation

Choose the
game
algorithm

Next algorithm
step

A P P L I C A T I O N O U T P U T

Display the
tree

DATA LAYER

Initial situation

Artificial
intelligence

Generate tree

Evaluated tree
node

Figure 4.4: App l i ca t i on control system

4.4.1 Application user input

The entering of the user input data, proceeds i n two mandatory steps i n this order:

• Preparing the starting game situation - the user, thanks to the cl icking the right
mouse but ton at the game fields, places the game marks and prepares the starting
game si tuation. This si tuation is the in i t i a l state for the game algori thm and concur­
rently is the root of the generated game tree. The condit ion is that the last placed
game mark must belong to the user (cross mark) , because the next player on the tu rn
must be the opponent (circle).

O

Figure 4.5: Example of the possible start ing game si tuation (the user plays the cross mark)

19

If the user prepared the incorrect start ing game situation, he is reminded by the spe­
cial warning window.

oo
X

Princip algoritmu Minimax

* Algoritmus Minimax určuje nejlepsí tah
prozkoumání herního stromu vycházejí<
pozice do předem dané hloubky.

Minímax nejprve ohodnotí listové pozice
heuristické c-hodnocovací funkce,

» Ohodnocení pozic blíže ke kořeni hernii
určí jako

a maximum z ohodnocen i jeho následok

warning!

W A R N I N G : The last placed mark n
mark, t o the game board.

jst be yours! Place at least one addi t ional cross

Figure 4.6: React ion for the incorrect user input.

• Choosing the game algorithm - after preparing the starting game situation, the
user is expected to choose one of two implemented game algorithms.

MENU

1 select game algorithm • minima*

alphabeta clear game board

minima*

alphabeta

about program

help
_ _

Figure 4.7: Choice of the game algori thm

4.4.2 Application output

After entering the correct input data, the user can run the generation of the application
output. The standard application output is represented as the empty unexplored game tree
(image 4.8). Th is tree is possible to be modified and simulate the act ivi ty of the chosen
game algori thm (images 4.9, 4.10).

The simulation of the game algori thm activity, proceeds i n the following manner. After
cl icking the next step but ton, one expanded tree node is displayed. Above each expanded
node is displayed its relevant value, and the b i tmap of the arrow. This arrow gives the user
accurate idea, in which part of the tree is the algori thm located. Thanks to the next step
but ton the user can see step-by step, the recursive plunging of the chosen game algori thm
and the process of evaluating of the tree nodes. After expanding al l tree nodes, the user
has an option using the place opponent move but ton to find out, which game move the
algori thm chose as its op t imal move.

20

Figure 4.8: E m p t y unexplored game tree

21

4.5 Educational benefits

Dur ing the software development process, every software developer should be able to answer
the question: " Why would the user want to use this software?". Th is question, should be
even more emphasized, when the similar software already exists.

In this chapter, the main advantages of the developed application are mentioned, as well
as the similar existing applications and their comparison. The disadvantages, and their
possible future improvements are mentioned in the chapter 7.1. Because the developed
application is conceived as the teaching tool , its advantages are to be the educational
benefits. Ment ioned benefits in this chapter, are considered the subjective benefits from
the developer's perspective. The chapter 6 contains the research, whether these proposed
benefits are real benefits for the users.

4.5.1 Benefits

It is hard to imagine, that the users w i l l want to use this software in a long t ime period.
In most cases, the a im of its users, w i l l be to run the application, understand the game
algori thm principles and not to run the applicat ion anymore.

For that reason, the proposed benefits are aimed at the m a x i m u m effectiveness of un­
derstanding the issue, in the shortest possible t ime. The main applicat ion benefits are:

• Connect ion between the algorithms principles and the game - majori ty of
the similar existing applications tries to explain the game algori thm principles on the
example w i t h game tree, where the tree nodes are represented as the empty circles,
and the user has only the option to watch, how the values of the tree nodes (circles)
are changing. Since as these algorithms are pr imary developed for playing the games,
I decided to implement the simple game Tic-tac-toe 4.1 and connect the playing of
this game, w i th the demonstration of the game algorithms principles. Th is connection
should give the user clearer idea how these algorithms work.

• Detailed description, of how the algorithms work, on the level of imple­
mentation - thanks to the special window, which is described in chapter 4.2, the user
can see, what is happening in the each algori thm step, on the level of the source code.
The advantage is, that the user not only understands the algori thm principles, but
also gets the idea how the algori thm is implemented, or eventually how to implement
it.

4.5.2 Similar existing applications

Vast majori ty of the similar applications run online. For running these applications, in most
cases, the user just needs an internet connection, which is nowadays negligible problem, and
the web browser w i th installed Java plugin. Indisputable advantage of these applications,
is that the user does not have to instal l any software on his hard drive.

O n the other hand, the problem is, that the creation of the user friendly G U I for the
web applications is a bit difficult, and most of these applications wi th slight differences,
look the same, as you can see in the following images 4.11, 4.12.

Links to similar web applications:
h t t p : / / h o m e p a g e . u f p . p t / j t o r r e s / e n s i n o / i a / a l f a b e t a . h t m l
h t t p : / / k r a . l c / p r o j e c t s / g a m e v i s u a l / l a u n c h . p h p

22

http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html
http://kra.lc/projects/gamevisual/launch.php

Demo: minimax game search algorithm with alpha-beta pruning (using htm 15, canvas, javascript, ess)

;ure 4.11: Example of similar existing application [12]

Game Visualization

jure 4.12: Example of similar existing applicat ion

23

Chapter 5

Application implementation

This chapter describes the implementat ion of the most important classes, presented in
the chapter 4.3. For implementat ion of the application, the programming language C++
version 10 was used. The QT framework version 3.2.0 was used for creation of the G U I .

5.1 Implementation of the object model

The applicat ion object model is d ivided into 7 main classes:

Class Square

The instance of this class, represents one field (square) of the game desk for the Tic-tac-
toe game. E a c h object of this class has an information, which game mark is placed on it ,
and also the information about its posi t ion on the game desk. For holding the information
about the game mark, serves the instance variable int type and for holding the information
about the square posit ion, serves the instance variable int position.

The instance variable type can reach the integer values 0 ,1 ,2 . The zero value means
that the square is empty, and the player is able to place his game mark at this square, the
value 1 means that at the square is already placed the circle mark and the value 2 means,
that square is already occupied by the cross mark. The instance variable position can
reach the integer values 1, 2, 3,4, 5, 6, 7, 8, 9. In the whole object system the instance of this
class exists 9 times.
Instance methods:

• void generateTree () - method for generating the empty, uexplored game tree, which
is displayed on the graphics output. E a c h node of this tree, is in the default si tuation
presented as the empty grid. Y o u can see the example of this tree in the image 4.8.

• s t a t i c void oponentMove (square *s) - this method shows the op t imal opponent
game move, after the end of run of the game algorithm.

• s t a t i c void insert_node_into_view(int x, int y, int id) - this method al­
lows to create and insert the one expanded tree node, i n the graphic form, into the

C++ is a general-purpose programming language. It has imperative, object-oriented and generic pro­
gramming features, while also providing the facilities for low-level memory manipulation. [4]

Software framework is an abstraction in which software providing generic functionality can be selectively
changed by additional user-written code, thus providing application-specific software. []

24

graphics output. The first two parameters x and y are the coordinates on which the
node w i l l be inserted. The last parameter i d is the identificator of the inserted node.
Each of these nodes is default set as the invisible. If the user wants to modify the
output, the node w i l l become visible. The pointers to these objects are stored i n the
array of pointers tree [] , which is saved i n the game_data structure.

• void paintEvent (QPaintEvent *) - this method serves for the displaying the game
marks, after the click, on the free game field in the game board. W h i c h mark w i l l be
shown, depends on the instance variable type.

• void mousePressEvent (QMouseEvent *e) - method for handling the action, after
the click on the square object. In case of click on the empty square, to the variable
type is assigned the value 0 or 1, according to, which player's tu rn it is. After
assigning the value to the variable type, the method paint event is invoked and
then the information about the mark is saved, on the currently clicked square. If
the user chose the artificial intelligence as his opponent, the method minimax, or
alphabeta is invoked from the class Art i f i c i a l _ i n t e l l i g e n c e and then the method
generateTree is invoked. In the end comes the other player's turn.

Class Board

This class is inherited of the Square class and represents the whole game board for the
Tic-tac-toe game. The current data configuration of this board, is saved in the array of 9
characters, game_desk [].

This array is saved in the data structure game_data. Each character i n this array can
reach values "_, X, O " . The value "_" means, that the game field is empty, the values "X,

O" mean, that the posit ion is already occupied by X, or O player. A t the beginning of
game, every character in this array is ini t ia l ized to the "_" value.
Instance methods:

• void minimax_selected() - after choosing the M i n i m a x algori thm from the appli­
cation menu, this method sets the ai_menu flag to the 1. W h e n the ai_menu is set
to the value 1, it means that the M i n i m a x algori thm was selected, value 2 means the
Alpha-beta-pruning was selected and 0 means that no game algori thm was selected.

• void alphabeta_selected() - after choosing the Alpha-be ta pruning algori thm from
the application menu, this method sets the ai_menu flag to the 2.

• void restart () - this method initializes a l l important variables to their in i t i a l values.
The values of the game_desk[] are also ini t ia l ized to the "_" values.

• s t a t i c void showNodeO - this method serves for showing the expanded tree nodes.
W h e n the user wants to modify the application graphics output and simulate the
act ivi ty of the chosen game algori thm, after each click on the next step but ton, the
expanded game node is set as visible. The pointers to these expanded nodes, are
saved i n the array tree [] . Th is array is also saved in the game_data structure. Th is
method also shows the bitmaps of arrows, above the every expanded node. Thanks
to this arrow, the user exactly knows, which node of the tree, the game algori thm
goes through. The pointers to these bitmaps are saved in the array bitmap_arrow [].
This array is also saved in the game_data structure.

25

• void helpO - method for displaying the applicat ion help.

• s t a t i c void printNodeDetail () - this method serves for displaying the detailed
information, about what is happening during the each game algori thm step. This
information is shown i n the window for l is t ing the game algorithms details, which is
described in the chapter 4.2.

• void onDetailItemClicked(QListWidgetItem *item) - this method handles the
act ivi ty when the user clicks on the l is t ing about the game algorithms details.

• void blickNodeO - when the user clicked on the l is t ing about the game algori thm
details, the node which is related to this l ist ing, the user clicked on, starts flickering.

Class Empty_node

This class represents one non-expanded tree node i n graphics form, which is displayed as
the standard graphic output, which is described i n the chapter 4.4.2
Instance methods:

• QRectF boundingRect () const) - method which returns the outline of the the tree
node.

• void mouseDoubleClickEvent(QGraphicsSceneMouseEvent *event) - this method
is invoked, when the user clicks twice on some non-expanded node i n the graphics
output. After double cl icking on the arbitrary non-expanded node, the part of the
tree is automatical ly explored, to the node which the user clicked.

• void paint(QPainter *painter.const QStyleOptionGraphicsItem *option,

Q Widget * widget) - this method creates the grid (miniature of the game desk for the
Tic-tac-toe game) from the outline, which returns the boundingRect method.

Class Tree_node

This class represents one expanded tree node in graphics form, which is displayed as the
modified graphic output, which is described i n the chapter 4.4.2
Instance methods:

• QRectF boundingRect () const - method which returns the outline of the the tree
node.

• void paint(QPainter *painter.const QStyleOptionGraphicsItem *option,

Q Widget * widget) - this method creates the grid (miniature of the game desk for the
Tic-tac-toe game) from the outline, which returns the boundingRect method.

• void drawCross (QPainter *painter) - method for drawing the cross mark into the
outline of the tree node.

• void drawCircle (QPainter *painter) - method for drawing the circle mark into
the outline of the tree node.

26

Class Tree_node_data

Instance of this class, represents one tree node i n its data form. Each instance of this class
contains following instance variables: char node_game_desk[] is the array, which holds
the information about the configuration of the node.

The int i d is the unique identificator of the node. The int father is the identifckator
of the predecessor of this node. The l e v e l is the depth of the node. The int end_of _game
is the value of this node (0, 1, -1). The int alpha and int beta are the values of a and
(3 i n case the user chose the Alpha-be ta pruning algori thm. The bool cut means that the
node is cut off.
Instance methods:

• s t a t i c void add_node_into_tree (int depth, int father) - this method creates
the node i n the data form and inserts it into the tree. The first parameter depth is
the depth, where the node is created, the second parameter father is the ident i f ikátor
of its predecessor.

Class Check_game_status

This class checks, whether in the tree node occured the end of game. In case the end of
game occurred, methods of this class return the value of the node.

The value 0 is returned i n case of draw, the value 1 is returned i n case of vic tory of
player X and the value -1 is returned i n case of vic tory of player O . In case, the end of game
does not occur, the in i t i a l values of the tree nodes are set to oo and — oo.
Instance Methods:

• s t a t i c int checkDrawO - method which checks whether dur ing the playing game
occurred the draw.

• s t a t i c int checkWinO - method which checks whether dur ing the playing game
occurred the victory of some player.

Class ArtificiaLintelligence

This class implements the game algorithms M i n i m a x and Alpha-be ta pruning.
Instance methods:

• s t a t i c int minimax(int player,int depth,int bestMaxScore,int bestMinScore)

- this method implements the M i n i m a x algori thm. The first parameter player is the
player on the turn, second parameter depth is the depth of the recursion and two last
parameters bestMaxScore and bestMinScore are the best score of players X and O.

• s t a t i c int alphabeta(int player, int depth, int alpha, int beta) - this method
implemets the Alpha-be ta pruning algori thm.

Structure Game_data

D a t a structure, which contains very important control variables, pointers to the other
objects etc. E a c h object i n this object system has permission to read the data from this
structure, some of them even to write.

The most important variables i n this structure are: node_data *tree [] which is the
array of pointers to the instances of the Tree_node_data class, which represents one tree

27

node in its data form. The tree_node *visible_node [] which is the array of pointers to
the instances of the Tree_node class, which represents one tree node i n its graphic form.
The char game_desk[], this array represents the game board for the Tic-tac-toe game in
the data form.

The last important variable i n this data structure is the QGraphicsScene *TreeViewScene,
which is the pointer to the graphic application output.

28

Chapter 6

Application testing

This chapter is dedicated to the application testing, describes the test scenarios and achieved
test results. The applicat ion was tested i n two independent phases. In each phase, played
the important role its potential users.

The first phase, is focused on testing the application functionality. The second phase,
is focused on testing the usabil i ty of the application for the real users. The application was
tested on the operational systems Windows 8.1 x 64 and Fedora linux 10.

6.1 Testing of the application functionality

In the first phase of testing, was tested, whether the implemented algorithms work cor­
rectly and whether the applicat ion submits the val id graphics outputs. The val idi ty of the
application output was tested i n following manner.

I implemented the algorithms M i n i m a x and Alpha-be ta pruning as the simple, inde­
pendent test application, which runs i n the command line. The input of this applicat ion is
the in i t i a l game si tuat ion i n the text form. The output of this applicat ion is the text file,
containing the informations about the generated tree 6.1. Then this output was compared
wi th the real graphic output of the main application.

W h e n the new application functionality was implemented, the applicat ion i n form of the
prototype, was submit ted to the real users. D u r i n g the implementat ion process, the users
already had a choice to t ry the application. The users were asked, to t ry the application in
various, unexpected situations, which came to their mind . This k ind of testing led to the
finding of many application glitches, which from the developer's perspective were difficult
to discover. Another important aspect is, that the release of these prototypes, allowed
to react to the users requirements, and improve the application functionality, dur ing the
implementation process.

29

minimaxjtest- Poznámkový bíofc - n ^^^B

Soubor Úpravy Formát Zobrazeni' Nápověda

[iode_id: 0
depth:0
J Í

0 0 X

X

be5triin : I N F

node_id:1
depth : -1
X 0 _
0 • X

X

bestmax:-INF

node_id:2
depth : -2
X • X

0 0 X

X

bestmin:INF

node_id:3
dep th : -3
X • X

0 • X

X 0 _
bestmax:-1

node i d : 2
depth : -2
X • X

0 • X

X

bestmin : -1
v

Figure 6.1: Example of the test application output

6.2 Testing of the real use

After finishing the implementat ion process, the aspects of the real use of the implemented
application were tested. The whole process of testing was divided into the four simple
sub-tests.

The reason I decided to divide the test into sub-tests, was that it might be demotivating
for the users, to solve the difficult tasks at start. These sub-tests were not so difficult to
solve and the completion of each sub-test was mot ivat ing for the users to learn, how the
game algorithms work. F i rs t test, was focused on controll ing the application. The next
three tests covered the learning process of the game algorithms principles.

This testing was executed on the sample of 7 real international users, each of these users
is the student of the I T university.

Sub-test 1 scenario: G U I control

The users were familiar w i th the G U I and their task was to prepare random in i t i a l game
situation, run the arbitrary game algori thm and then generate the game tree.

In the diagram 6.2 you can see the times, which the ind iv idua l users needed for solving
the task.

30

25

20

time needed for solving the task
(seconds)

Figure 6.2: Sub-test 1 - diagram

Sub-test2 scenario: time for learning the algorithm

The goal of this test, was to give a user t ime to learn the principles of M i n i m a x and A l p h a -
beta pruning algorithms. After the user said, that he understood these principles, he was
subsequently asked to solve two following independent tasks.

In the diagram 6.3 you can see the times that the ind iv idua l users needed for under­
standing the game algori thm principles. The columns marked as M i n mean the t ime taken
for learning the M i n i m a x algori thm and A l p h for Alpha-be ta pruning.

Sub-test2: time needed for learning the algorithms

t ime needed for solving the task
(minutes)

Figure 6.3: Sub-test2 - diagram

Sub-test3 scenario: solving the task without using of the application

In this sub-test, the users were asked to solve the simple game si tuation (for a l l users the
task was the same) by the M i n i m a x and Alpha-be ta pruning algorithms, on the paper,
without using the implemented applicat ion. The goal of this test was to find out, how

31

many errors the users w i l l make, and compare this result w i th the situation, when the users
use the application.

In the diagram 6.4 you can see the count of errors the users made while solving this
task. The colums marked as M i n mean the count of errors while solving the task by the
M i n i m a x method and A l p h by Alpha-be ta pruning.

Sub-test3: solving the task without the application

count of t he e r ro rs in t he task

Figure 6.4: Sub-test3 - diagram

Sub-test4 scenario: solving the task with using of the application

In this sub-test the users were also asked to solve the different, simple game si tuat ion (for
al l users the task was the same) on the paper, but they used the implemented application
while solving this task. The users could not solve the whole task by the application, they
could only review the status of their solution.

In the diagram 6.5 you can see the count of the errors the users made while solving of
this task.

count of the e r ro rs in t he task

Sub-test4: solving the task with the application

111 n i
1 1 1 1 1 1

„# J y ,# ,# / / • / / / / /
• 5 V ^ " S> NS* C i '

Figure 6.5: Sub-test4 - diagram

32

6.3 Evaluation of the tests results

Dur ing each test, I was physically present and I watched the user's behavior during his
application control activity. I focused on these two following aspects:

• time needed for understanding the application control - each user, after he
saw the application for the first time, d id not have a clue how the applicat ion works
and needed to read the application help. After reading the help, each user was able
to control the applicat ion more or less immediately. Based on this observation flows,
that the average t ime needed for understanding the application control system is 14,42
seconds.

• time needed for understanding and the level of understanding of the game
algorithms - it turned out, that for the users who d id not have any clue about the
artificial intelligence, the graphical demonstration of the algori thm principle, was not
enough. For that reason it turned out as a good idea, to implement the window, where
the user can read the basic information about the chosen game algori thm in pdf form.
Each user took this option, and after reading this information, i n combination w i t h
the graphical demonstration, understood how the implemented game algorithms work.
A t first, the appl icat ion seemed a bit confusing for the users, but after some time it
started to make sense for them. Based on this observation flows, that the average
t ime needed for understanding the M i n i m a x algori thm principle is 15,14 minutes and
t ime needed for understanding the Alpha-be ta pruning algori thm principle is 36,85
minutes. If we take into account the number of errors the users made, while solving
the test tasks, when the users could not use the applicat ion, the average count of the
errors was 2.57 per user i n the M i n i m a x and 6,28 i n the Alpha-be ta pruning. O n the
other hand, when the users could use the application, and could review the status of
their solution, the average count of the errors was 1 per user i n the M i n i m a x and 3,74
in the Alpha-be ta pruning.

Of course the testing on sample of 7 users can not provide completely relevant results. For
that reason it would be beneficial to distribute the applicat ion for the greater mass of the
users.

Since the applicat ion is focused on narrow group of the users, predominantly the students
of the artificial intelligence, it would be suitable to distribute the applicat ion for example
on the web pages of these courses etc. Nevertheless, it turned out, that on the base of this
application, it is possible to better understand the principles of M i n i m a x and Alpha-be ta
pruning algorithms, i n rather short t ime interval.

A l l of these users, on which the applicat ion was tested, agreed, that this application
represents the good learning "complement", which could save their time, dur ing the learning
of the game algori thm principles.

33

Chapter 7

Conclusion

This chapter discusses the achieved test result mentioned i n the chapter 6.3 and subse­
quently i n this chapter are mentioned the proposed future improvements of the application.

7.1 Proposal for the possible future improvements

Even thought the developed application is really usable and gives a fairly satisfactory results,
there are s t i l l many things that could be improved.

In terms of improving the applicat ion at the source code level, it would be wor th to
consider the opt imizat ion of algorithms, for generating the graphical output. For example,
i n case of the tree consisting of the units up to tens of nodes, the application response time
is almost instant. In case of the tree consisting of the hundreds up to thousands nodes, the
application response t ime reaches tens of seconds.

Regarding the new functions of the application, it would be good idea to implement
the addi t ional concept describing the principle of the methods for solving the tasks for one
player, for example the Tower of Hano i game 3.1.

7.2 Discussion of the achieved results

It turned out, that for the users who do not have any clue about the artificial intelligence,
the principle of the graphical demonstration of the game algori thm, is not enough and this
application w i l l hardly replace exclusively study materials or even the teachers.

O n the other hand, this application is the good learning „ c o m p l e m e n t " , which allows
the users to make sure, that they really understand the game algori thm principles and it
also allows to deepen their knowledge.

Since as the goal of this thesis was to develop the application for educational support,
the discovering that the developed software can not fully replace exclusively study materials,
is not unexpected.

34

Bibliography

[1] P r o h l e d á v á n í s tavového prostoru [online].
h t t p : / / c s . w i k i p e d i a . o r g / w i k i / P r o h l e d á v á n í _ s t a v o v é h o _ p r o s t o r u , 2013-10-15
[cit. 2015-05-27].

[2] M i n i m a x (algoritmus) [online].
h t t p s : //cs.wikipedia.org/wiki/Minimax_ (a l g o r i t m u s) , 2015-05-02 [cit.
2015-05-27].

[3] Software framework [online].
h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / S o f t w a r e _ f r a m e w o r k , 2015-05-20 [cit.
2015-05-27].

[4] C + + [online]. h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / C 7 . 2 B 7 . 2 B , 2015-06-11 [cit.
2015-05-27].

[5] S tavový prostor a jeho p roh l edáván í [online], h t t p s :
/ / c w . f e l . c v u t . c z / w i k i / _ m e d i a / c o u r s e s / y 3 3 z u i / 0 1 _ n e i n f o r m p r o h l e d _ v 2 . p d f ,
[cit. 2015-05-26].

[6] Traced by User:Stannered. A sample tic-tac-toe game, for en. [online].
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / F i l e : T i c - t a c - t o e - g a m e - l . svg , 2007-03-30 [cit.
2015-05-27].

[7] K r i s t i á n kraljic. Game visualizat ion [online].
h t t p : / / k r a . l c / p r o j e c t s / g a m e v i s u a l / l a u n c h . p h p , 2011 [cit. 2015-05-27].

[8] Vác lav M a t o u š e k . H r a n í her (teorie a algoritmy h r a n í her) [online].
h t t p : / / w w w . k i v . z c u . c z / s t u d i e s / p r e d m e t y / u i r / p r e d n / P 2 / F T h e m a 2 _ h r y . p d f ,
2015-03-04 [cit. 2015-05-21].

[9] J an N ě m e c . Složi tost alfabeta metody [online].
h t t p : / /www. l i n u x s o f t . c z / a r t i c l e . p h p ? i d _ a r t i c l e = 1 2 3 9 , 2006-07-17 [cit.
2015-05-27].

[10] O n d ř e j Popelka, a -/? p ro řezáván í [online].
h t t p s : / / a k e l a . m e n d e l u . c z / ~ x p o p e l k a / c s / u i / p r o r e z a v a n i / , 2015-01-08 [cit.
2015-05-27].

[11] T o m á š R i p e l . Řešen í ú loh rozkladem na p o d p r o b l é m y [online].
h t t p : / / l u r l . c z / V 5 o O , 2009-05-08 [cit. 2015-05-27].

35

http://cs.wikipedia.org/wiki/Prohled�v�n�_stavov�ho_prostoru
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/C7.2B7.2B
http://kra.lc/projects/gamevisual/launch.php
http://www.kiv.zcu.cz/studies/predmety/uir/predn/P2/FThema2_hry.pdf
https://akela.mendelu.cz/~xpopelka/cs/ui/prorezavani/
http://lurl.cz/V5oO

[12] Jo sé Manue l Torres. Demo: min imax game search algori thm wi th alpha-beta pruning
(using html5, canvas, javascript, ess) [online].
h t t p : / / h o m e p a g e . u f p . p t / j t o r r e s / e n s i n o / i a / a l f a b e t a . h t m l , 2011 [cit.
2015-05-27].

[13] V l a d i m í r Mař ík . Olga Š t ěpánková , J i ř í L a ž a n s k ý a kolektiv. Umělá inteligence (1).
Academia , 2000. I S B N 80-200-0496-3.

[14] F . Zboř i l and F . Zboři l m l . Z á k l a d y umě lé inteligence i zu s tud i jn í opora [online].
h t t p s : / / w w w . f i t . v u t b r . c z / s t u d y / c o u r s e s / I Z U / p r i v a t e / o p o r a i z u - e s f - 5 a . p d f ,
2013-04-30 [cit. 2015-05-21].

36

http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html
https://www.fit.vutbr.cz/study/courses/IZU/private/oporaizu-esf-5a.pdf

Appendix A

CD content

C D directory structure

• S R C - directory containing the source codes of the application.

• Thesis - directory containing the]MEXsource codes.

• V ideo - directory containing the short video presentation.

• R E A D M E . t x t - text file containing the information about compil ing the application.

• bachelor_thesis_xcasla03.pdf - text of the thesis.

37

Appendix B

Manual

Process of starting the application

• Compi lat ion - For compil ing the application you need installed QT framework ver­
sion 3.2.0 or higher and compiler of programming language C+ + version 10 or higher.
App l i ca t ion is possible to compile on platforms Microsoft Windows or Linux.

• Appl icat ion control - After starting the application, user must prepare his in i t i a l
game situation. B y cl icking the right mouse but ton on the game board squares, he
can place the game marks onto the game board. The only condit ion is, the last placed
game mark must be opponent's mark (circle). After preparing this in i t i a l s i tuation
the user can choose one of two implemented game algorithms (M i n i m a x and alpha-
beta pruning) from the menu and start generation of the applicat ion output. If the
application output is generated, the user can modify it by cl icking the next step
button and simulate the game algori thm activity. If the user wants to see, which
game move the game algori thm chose as the best one, he can click on the place
opponent move button, and the opponent's mark w i l l be shown in the game board
on its best posit ion. More detailed information about the applicat ion control system
you can read in the chapter 4.4.

38

Appendix C

Applicat ion Screenshots

I TEACHER - VUT FIT bachelor thesis

X o o
X o

nlace oponent move

nest step

X

Princip algoritmu Minimax

* Algorilmus Minimax určuje nejlepší tah na základě
prozkoumání herního stromu vycházejícího z aktuální
pozice do předem dané hloubky.

a Minimax nejprve ohodnotí listové pozice pomocí
heuristické ohodnocovacf funkce.

* Ohodnocení pozic blíže ke kořeni herního siromu se pak
určí jako

» maximum z ohodnocení jeho následovníků, pokud je
v dané pozicí na tahu aktuální hráč

i* nebo jako minimum z ohodnoceni následovníků, pokud je
v dané pozici na tahu souper.

» U kořenové pozice nás pak nezajímá její ohodnocení, ale
tah vadnutí k neiléne n h ň r t n n r e m f t r o i i náslfirtovoíbnvl

PLAYER: 0 - M A X
SCORE: 1
BEST MAX: -1

0 _ 0
X 0 X
IF (SCORE > BESTMAXj
BESTMAX _ SCORE

RESULT: BESTMAX = 1

PLAYER: X - MIN
SCORE: 1
ElESTMIN: -1

X O X
IF (SCORE < BESTMIN)

Figure C l : App l i ca t i on Screenshot - M i n i m a x algori thm

39

CS A l TEACHER - VUT FIT bachelor thesis

IXIOIX
D O

X
ID;Í:S oponent move

next step

Princip Alfa-beta ořezávání

« V některých situacích nemusí Minimax zkoumat další herní
pozice, protože je již zřejmé, že nebudou mít na volbu tahu
vliv.

* Typy ořezávání:
a alfa ořezávání - byla naíezena příliš malá hodnota, tuto

větev hráč na taliu nezvolí.
» beta ořezávání - nalezená hodnota je příliš velká, soupeř

tuto větev nezvolí.

* V algoritmu použité hodnoty alfa tedy tvoří dolní mez,
hodnoty beta pak horní mez při vyhledávání.

a Hodnoty alfa a beta se získají a upřesňují z ohodnocení
dříve prozkoumaných pozic.

* Alfa-beta ořezávání je nejúčinnější, pokud se nejprve
zkoumají najsilnejší lany. Někdy se používá heuristika

PLAYER: X - MIN
SCORE: -1
ALPHA: -INF
BETA: -1

X O X

IF (SCORE < BETA)
BETA = SCORE

RESULT: FALSE

IF ÍBETA<-ALPHA)
CUT REMAINING NODES

RESULT: FALSE

Figure C.2 : App l i ca t i on Screenshot - Alpha-be ta pruning algori thm

40

