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Abstrakt

Diplomová práce se zabývá problematikou obyčejných stochastických diferenciálńıch rovnic.
Po souhrnu teorie stochastických proces̊u, zejména tzv. Brownova pohybu je zaveden
stochastický Itô̊uv integrál, diferenciál a tzv. Itôova formule. Poté je definováno řešeńı
počátečńı úlohy stochastické diferenciálńı rovnice a uvedena věta o existenci a jednozna-
čnosti řešeńı. Pro př́ıpad lineárńı rovnice je odvozen tvar řešeńı a rovnice pro jeho středńı
hodnotu a rozptzyl. Závěr tvoř́ı rozbor vybraných rovnic.

Abstract

This thesis deals with the issue of stochastic ordinary differential equations. After the
summary of the theory of stochastic processes, namely the Brownian motion, the stochas-
tic Itô’s integral, differential and so called Itô’s formula are introduced. Thereafter the
solution of the initial value problem for the stochastic equation is defined and the theorem
of its existence and uniqueness is stated. For the case of the linear equation the explicit
formula for the solution is derived as well as the equations for its expected value and
variance. The last part is the analysis of selected equations.
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4.2 Itô’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Stochastic differential equations 18
5.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Existence and uniqueness of the solution . . . . . . . . . . . . . . . . . . . 18

6 Linear stochastic differential equations - Theoretical results 22
6.1 First example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 General form of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Integral theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.5 Expected value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.6 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Linear stochastic differential equations - Examples 31
7.1 The Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Geometric Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3 Oscillating process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4 Brownian bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Conclusion 45





1 Introduction

Let us consider an initial value problem for ordinary differential equation{
dx(t) = f(x(t), t) dt,

x(0) = x0 .

the solution to this problem is a smooth function whose trajectory is similar to the one
in the following figure

x0

x(t)

Figure 1.1: Solution trajectory for ODE

However, many times we have to model a phenomenont that is influenced by random
”noise” and that is why it does not behave in the way that is predictable using the
ordinary differential equations:

x0

x(t)

Figure 1.2: Sample path of the SDE

Therefore we need to add a ”noise” term to the equation, that will model the random
nature of such phenomenon.{

dx(t) = f(x(t), t) dt+ ”noise”,

x(0) = x0 .

The question that rises up now is how can we describe the ”noise”. The standard way to
do it is to use a Brownian motion.{

dx(t) = f(x(t), t) dt+ g(x(t), t) dBt,

x(0) = x0,

where

(1) x(t) is an unknown function,

(2) Bt is a Brownian motion.

1



In this thesis we will deal with the issue of Ordinary stochastic differential equations.
They are applied in many brands of science such as physics, mathematical science, optimal
control, etc. Before we can do it, we have to summarize the probability theory and then
the theory of stochastic integral and differential. It will turn out that the stochastic
integral can be defined in more than one way. The two basic definitions were given by
Kiyoshi Itô and Ruslan Stratonovich. To make the text more simple and accessible, we
will restrict ourselves to the case of Itô’s integral. Another reason of doing it is that the
Itô’s definition is more suitable for treating the initial value problems. Moreover there
exists a powerful tool that can be used in this case. After that we will state the general
properties of the stochastic differential equations, derive the formula for the solution in
the case of linear equations and finally we will solve the specific linear equations with and
we will do the analysis of their solutions.

The basic sources for this thesis were [1] and [2] where authors present the stochastic
differential equations in a very understandable way. Even simpler is the book [4] that
was helpful to understood some more complex concepts since it gives simple examples of
them. The preliminary part about probability theory and stochastic processes is based on
[3], but this theory is included more or less in the first chapters of any book on stochastic
differential equations. The additional sources were [5] and [6] as they both were used
occasionally in order to confirm some ideas.

The thesis itself is divided as follows. In the sections 2 and 3 we summarize the basic
probability theory and theory of stochastic processes that the whole thesis is based on. The
most important here is the introduction of the Brownian motion with its properties that
we are using throughout the whole thesis. In the section 4 we introduce the important
concept of Itô’s integral and the most important tool in stochastic analysis, the Itô’s
formula. The fifth section contains the basic facts about stochastic differential equations
and it states also the existence and uniqueness theorem for stochastic equations. The sixth
section is the most important section of this thesis where we occupy ourselves with the
linear equations, we derive the explicit formula for the solution of general linear equation
and also the ordinary differential equations for the expected value and variance of the
solution. In the section 7 we analyse in details the solutions to specific linear equations,
namely the Geometric Brownian motion, the Brownian bridge, oscillating process and the
Langevin equation.
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2 Basic probability theory

Before we can actually start dealing with stochastic differential equations, it is necessary
to introduce the theory that we will use throughout the whole text. This section is based
on [3], but the concepts are very basic, therefore they can be found in any textbook about
probability.

2.1 Probability and probability space

In this subsection we will recall the important basic terms.

Definition 2.1 (The σ-algebra). Let Ω be a set (in our case the set of elementary
events), the family F of subsets of the set Ω is called a σ - algebra if

(1) ∅ ∈ F ,

(2) A ∈ F ⇒ AC ∈ F AC = Ω \ A,

(3) {Ai}i≥0 ⊂ F ⇒
∞⋃
i=0

Ai ∈ F .

The couple (Ω,F ) is called a measurable space and the elements of F are called events.
Taking C ⊂ Ω = R and all the possible σ -algebras containing only open sets on Ω that
contain also C, there always exists the smallest one of them. We denote it by σ(C) and
call it the Borel σ - algebra and its elements are called Borel sets.

Now we will introduce a measure on (Ω,F ) called probability or probability measure.

Definition 2.2 (The probability measure). A probability measure P on a measurable
space (Ω,F ) is a function P : F → [0, 1] such that

(1) P (Ω) = 1,

(2) P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai).

The triple (Ω,F , P ) is called a probability space. The following theorem shows some
of the basic properties of the probability measure.

Theorem 2.1 (Properties of probability). Let (Ω,F , P ) be a probability space and
let A,B ∈ Ω. Then

(1) P (AC) = 1− P (A)

(2) if A ⊆ B then P (B) = P (A) + P (B \ A) ≥ P (A)

(3) P (A ∪B) = P (A) + P (B)− P (A ∩B)

(4) more generally, if Ai (i = 1, . . . , n) are events, then

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩ Aj) +
∑
i<j<k

P (Ai ∩ Aj ∩ Ak)− · · ·+ (−1)n+1P

(
n⋂
i=1

Ai

)
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The following definition shows the concept of conditional probability.

Definition 2.3 (Conditional probability). Let A,B ∈ Ω, P (B) > 0 then the condi-
tional probability of A under condition B is given by

P (A|B) =
P (A ∩B)

P (B)
.

2.2 Random variables

Let us Imagine that we are about to make a random experiment and we can evaluate its
result with a number. Unfortunately, we cannot know the result in advance. Therefore
the variable that assigns a certain value to the result of a random experiment is called a
random variable.

Definition 2.4 (Random variable). A real-valued function X : Ω → R is said to be
F -measurable if

{ω : X(ω) ≤ a} ∈ F for all a ∈ R.

The function X is called a (real-valued) random variable.

Any random variable is given by its distribution function which describes the likelihood
that the random variable takes a certain value. There are two basic classes of random
variables, discrete and continuous. The discrete random variables are far less important
for our purposes so we will focus on the continuous ones. The definitions for the discrete
case can be however found e.g. in [3].

Definition 2.5 (Distribution function). Let X be a random variable. The distribution
function of X is a function F : R→ [0, 1], such that

F (x) = P (X ≤ x).

As is stated above, in this text we will use only the continuous random variables,
therefore we will now define them.

Definition 2.6 (Continuous random variable). A random variable X is said to be
continuous if its distribution function F is continuous and if it can be expressed as

F (x) =

x∫
−∞

f(t) dt

for some function f : R → [0,∞). The function f is called the probability density of the
random variable X.

The important property that is studied in random variables is whether or not they are
independent of each other.

Definition 2.7 (Independence of random variables). The random variablesX1, . . . , Xn

are independent if

FX1,...,Xn(x1, . . . , xn) =
n∏
i=1

FXi(xi),
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where FX1,...,Xn(x1, . . . , xn) is the cumulative distribution function of X1, . . . , Xn given by

FX1,...,Xn(x1, . . . , xn) =

x1∫
−∞

. . .

xn∫
−∞

fX1,...,Xn(s1, . . . , sn) ds1 . . . dsn.

The function fX1,...,Xn(x1, . . . , xn) is called the cumulative density of X1, . . . , Xn.

As a consequence of previous definition we have that

fX1,...,Xn(x1, . . . , xn) =
n∏
i=1

fXi(xi),

The most important distribution is the Normal distribution. We will need this distri-
bution to define the Brownian motion.

Definition 2.8 (Normal distribution). We say that random variable X has the normal
distribution with parameters µ and σ2 and we writeX ∼ N(µ, σ2), if its probability density
function is defined by

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

The parameter µ is the expected value of X and σ2 is its variance. The normal distribution
is sometimes called Gaussian.

x

f (x)

µ µ + σµ− σ

Figure 2.1: The density of the normal distribution

In the definition of the normal distribution we used the terms expected value and
variance, so we should clarify their meaning.

Definition 2.9 (Expected value, variance and standard deviation). Let (Ω,F , P )
be a probability space and let X, a random variable, be an integrable function with respect
to the measure P . Then if Ω = R, the number

EX =

∫
Ω

X(ω) dP (ω) =

∞∫
−∞

xf(x) dx

5



is called the expected value or shortly the expectation, the number

VX = E(X − EX)2 = EX2 − (EX)2

is called the variance of random variable X and

σD =
√

VX,

is called its standard deviation.

More generally, if g is a real-valued measurable function of the random variable X,
the Eg(X) is given by the formula (2.1).

E (g(X)) =

∞∫
−∞

g(x)f(x)dx, (2.1)

so there is no need to anyhow transform the probability density of X in order to compute
the expectation of a function of X. The usefulness of (2.1) can be demonstrated on
computing the variance of X, since

EX2 =

∞∫
−∞

x2f(x)dx.

For p ∈ (0,∞) we denote Lp the family of random variables X such that E|X|p <∞.
The theorem 2.2 summarizes some properties of expected value and variance

Theorem 2.2. Let X,X1, . . . Xn be random variables, then

(1) E(aX + b) = aEX + b for all a, b ∈ R,

(2) E

(
n∑
i=1

Xi

)
=

n∑
i=1

EXi,

(3) E

(
n∏
i=1

Xi

)
=

n∏
i=1

EXi if Xi are independent,

(4) Va = 0 for any a ∈ R,

(5) V(aX + b) = a2 VX for all a, b ∈ R,

(6) V

(
n∑
i=1

Xi

)
=

n∑
i=1

VXi if Xi are independent,

(7) VX ≥ 0.

Moreover, the following lemma is very useful.

Lemma 2.1 (Hölder’s inequality). Let X, Y be two random variables such that X ∈ Lp

and Y ∈ Lq. if p, q > 1 and 1
p

+ 1
q

= 1 Then

|E(XY )| ≤ (E|X|p) 1
p · (E|Y |q) 1

q .
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2.3 Conditional expectation

Despite we have already defined the expectation and also the conditional probability,
sometimes we encounter not just one, but a family of conditions. This is the reason why
we need a more general concept of conditional expectation.

Let X be a random variable on a probability space (Ω,F , P ) such that EX <∞. Let
G ⊂ F be a sub σ-algebra of F so that (Ω,G ) is a measurable space. In general, X is
not a random variable on (Ω,G , P ), i.e.

{ω : X(ω) ≤ a} 6∈ G for all a ∈ R.

What we are looking for is such Y that is a random variable on (Ω,G ), that takes the
same values as X in the sense that∫

G

Y (ω) dP (ω) =

∫
G

X(ω) dP (ω) for all G ∈ G .

It has been proven that such Y exists almost surely unique. We call it the conditional
expectation of X under the condition G and we write

Y = E (X|G ) .

If G is a σ-algebra generated by Y we also write

E (X|G ) = E (X|Y ) .

. The following theorem states some properties of the conditional expectation.

Theorem 2.3. The conditional expectation has these properties

(1) E(E(X|G )) = EX,

(2) G = {∅,Ω} ⇒ E(X|G ) = EX,

(3) X ≥ 0⇒ E(X|G ) ≥ 0,

(4) X is G -measurable ⇒ E(X|G ) = X,

(5) a, b ∈ R⇒ E(aX + bY |G ) = a E(X|G ) + b E(Y |G ),

(6) X ≤ Y ⇒ E(X|G ) ≤ E(Y |G ),

(7) if σ(X),G are independent ⇒ E(X|G ) = EX,
particularly, if X, Y are independent ⇒ E(X|Y ) = EX.

All of these properties hold almost surely.
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3 Stochastic processses

In the previous section we defined what a random variable is. But sometimes we are
interested in modelling something that cannot be interpreted as a single random variable,
but rather as a sequence of random variables in time. We call this sequence a stochastic
process. In general there are two basic classes of processes with respect to images, discrete-
time and continuous-time and we can find everything about both of them in [3]. We shall
deal with the processes with continuous time and continuous image.

The example in the subsection 3.1 shows such a process in an intuitive way. Despite
the fact that we will focus on the continuous stochastic processes, for the sake of giving
a simple example, we will show a discrete one. In the subsections after 3.1 we however
introduce the stochastic processes in the precise mathematical sense.

3.1 Simple symmetric random walk

Take a sequence {Xn}n≥1 of independent and identically distributed (i.i.d.) random vari-
ables, that can only take values from {−1, 1} and such that

P (Xn = 1) = P (Xn = −1) =
1

2
,

so they can be interpreted as flips of a coin. Let us say, that we are standing at position
S0 = 0 at time n = 0 and let

Sn =
n∑
i=1

Xi (3.1)

be our position at time n, assuming that we go forth if Xn = 1, which corresponds to the
tails of the coin, and we go back if Xn = −1 corresponding to the heads of the coin. Let
us fix ω and let

T T H T H T T H T T H

be a random sequence of heads and tails for our ω. So using (3.1) we can compute S11 = 3.
The figure 3.1 shows a sample path of this process

S

n1197531

4

2

0

S11

Figure 3.1: Simple symmetric random walk
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3.2 Basic facts about stochastic processes

Definition 3.1 (Stochastic process). A stochastic process is a family of random vari-
ables

{Xt(ω)}t∈T ,

defined on (Ω,F , P ). The t is a parameter belonging to a parameter space T .

(1) For fixed t = t0 we get Xt0(ω) : Ω→ R a single random variable.

(2) For fixed ω = ω0 we get a random function Xt(ω0) : T → R which is called a
trajectory or sample path of Xt(ω).

In the following text we will frequently use the identification Xt = Xt(ω) in order to
make the text more simple. But we shall not forget, that Xt(ω) = X(t, ω) is not just a
function of t but a function of ω as well.

The parameter space can be discrete (we talk about discrete time stochastic process)
or continuous. Since the main aim of this text is the studying of stochastic differential
equations, we will omit the discrete case and focus more on the continuous one. For our
needs through this text we will assume that the parameter space is either the interval the
whole R+

0 or we will consider even a bounded interval [0, t], 0 < t <∞.

3.3 Brownian motion

Browninan motion is the name that was originally given to the movement of grains sus-
pended in water by the Scottish botanist Robert Brown. In mathematics, this process is
often called the Wiener process, but we will remain with the term Brownian motion. For
the mathematical description we will consider that it is a stochastic process Bt(ω), which
we interpret as the position of the grain ω at given time t.

Let us show now the standard definition of Brownian motion.

Definition 3.2 (One-dimensional Brownian motion). A one-dimensional Brownian
motion on a probability space (Ω,F , P ) is a real-valued continuous process with following
properties

(1) B0 = 0 almost surely;

(2) Increments Bt1 , Bt2 − Bt1 , . . . , Btk − Btk−1
are independent for all 0 ≤ t1 < t2 <

. . . < tk <∞,

(3) for 0 ≤ s < t < ∞ the increment Bt − Bs has the Normal distribution with mean
equal to zero and variance t− s.

Sometimes we have to talk about the Brownian motion {B}0≤t<T on some interval
[0, T ], where T > 0. The definition for such process remains the same, but in 2. and 3.
we have to replace the ∞ with T .

The previous definition is sometimes written in different way. Before we show the
equivalent definition, we have to clarify what is the past and future of the Brownian
motion, because we need this notions to define the term Filtration that is used in the
other definition.

9



Definition 3.3 (History and future of the Brownian motion). Let {Bt}t≥0 be a
one-dimensional Brownian motion defined on (Ω,F , P ).

(a) The σ-algebra B−(t) := F (B(s)|0 ≤ s ≤ t) is called the history of {Bt}t≥0 up to
the time t.

(b) The σ-algebra B+(t) := F (B(s)−B(t)|s ≥ t) is called the future of {Bt}t≥0 beyond
the time t.

Definition 3.4 (Filtration). A family F(t) of σ-algebras ⊆ F is called a filtration if

(1) F(t) ⊇ F(s), ∀t ≥ s ≥ 0,

(2) F(t) ⊇ B−(t), ∀t ≥ 0,

(3) F(t) is independent of B+(t), ∀t ≥ 0.

A process {Xt}t≥0 is said to be adapted, if for all t, Xt is Ft measurable.

Definition 3.5 (One-dimensional Brownian motion 2). Let (Ω,F , P ) be a proba-
bility space with a filtration {Ft}t≥0. A one-dimensional Brownian motion is a real-valued
continuous process with following properties

(1) B0 = 0 almost surely;

(2) for 0 ≤ s < t <∞ the increment Bt −Bs is independent of Fs,

(3) for 0 ≤ s < t < ∞ the increment Bt − Bs has the Normal distribution with mean
equal to zero and variance t− s.

In what follows we will assume that we work on (Ω,F , P ) a complete probability
space with the Brownian motion Bt defined on it. Now we will present some properties
of Brownian motion.

(1) The trajectory of Brownian motion has almost surely infinite variation on every
interval [a, b], i.e.

sup
k∑
i=1

|Bti(ω)−Bti−1
(ω)| =∞. (3.2)

The supremum in (3.2) is taken over every partition a = t1 ≤ t2 ≤ · · · ≤ tk = b of
the interval [a, b].

(2) It has however a finite quadratic variation on every [a, b].

〈B,B〉t = sup
k∑
i=1

|Bti(ω)−Bti−1
(ω)|2 = b− a, (3.3)

In particular, if [a, b] = [0, t]

〈B,B〉t = t.

The supremum in (3.3) is again taken over every partition a = t1 ≤ t2 ≤ · · · ≤ tk = b
of the interval [a, b].
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(3) For almost every ω the sample path Bt(ω) is nowhere differentiable.

(4) {−Bt} is a Brownian motion with respect to the same filtration Ft.

(5) Bt is a continuous square-integrable Martingale

The stochastic process Xt is said to be square-integrable if EX2
t <∞ for all t ≥ 0.

We should also give the definition of the Martingale.

Definition 3.6 (Martingale). A real valued {Ft}-adapted process Mt is called a mar-
tingale with respect to the filtration {Ft} or simply a Martingale if

E(Mt|Fs) = Ms almost surely for all 0 ≤ s < t <∞.

Before we state the next property, we need the theorem.

Theorem 3.1 (Strong law of large numbers). Let Mt = M be a real valued martingale
vanishing at t = 0 and let 〈M,M〉t be its quadratic variation. Then

lim
t→∞
〈M,M〉t =∞ a.s. ⇒ lim

t→∞

Mt

〈M,M〉t
= 0 a.s.

and also

lim sup
t→∞

〈M,M〉t
t

<∞ a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s.

(6) According to the theorem 3.1,

lim
t→∞

Bt

t
= 0 a.s.

(7) The law of iterated logarithm holds for Bt

lim sup
t→∞

Bt√
2t ln(ln t)

= 1 a.s. lim inf
t→∞

Bt√
2t ln(ln t)

= −1 a.s.

lim sup
t→0

Bt√
2t ln(ln 1

t
)

= 1 a.s. lim inf
t→0

Bt√
2t ln(ln 1

t
)

= −1 a.s.

Our list of properties is a summary of most important ones of them from [1], [2], [3],
[4],[8] and [7].

The existence of such a process is assured by the next theorem

Theorem 3.2. Let (Ω,F , P ) be a probability space on which countably many random
variables {Xn}∞n=1 ∼ N(0, 1) are defined. Then there exists a one-dimensional Brownian
motion B(t, ω) defined for all ω ∈ Ω, t ≥ 0.

The proof of theorem 3.2 is based on the construction of mentioned process. It can be
found in [4].
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4 Stochastic integrals and Itô’s formula

If we look at an integral form of a stochastic differential equation

Xt = X0 +

t∫
0

f(Xs, s) ds+

t∫
0

g(Xs, s) dBs,

we know exactly the meaning of the first integral

t∫
0

f(Xs, s) ds,

because it is a classical Lebesgue integral the definition of which can be found in any book
on functional analysis (e.g in [9]). The second integral

t∫
0

g (Xs, s) dBs, (4.1)

on the other hand, cannot be interpreted in that way. We could think of defining it in
the Stieltjes sense as the integral of function f with respect to function g

b∫
a

f(t) dg(t) = lim
|π|→0

n∑
i=1

f(τi) (g(ti+1)− g(ti)) ,

where τi is an arbitrary point of the interval [ti, ti+1] and π is the partition of [a, b]. The
existence of the limit requires g to have a finite variation. In our case, when we would like
to define an integral with respect to a Brownian motion Bt, this property is not satisfied,
as has been already said. Therefore we cannot define it like that. In this section we will
show the precise procedure of defining the stochastic integral.

It turns out that here, unlike the case of Stieltjes integral, it matters which point τi
we choose. Essentially there are two approaches. The first one is called the Itô’s integral
and it is the first definition of stochastic integral ever. The choice here is the left side
point of the interval [ti, ti+1]. It is usually denoted normally as (4.1).

Stratonovich gave an alternative definition and his integral is denoted adding ◦ to
(4.1).

t∫
0

g (Xs, s) ◦ dBs,

for the sake of making a clear distinction between the two cases. This time we let τ i
2

be

the middle point of [ti, ti+1]. However, in this text we will reduce ourselves to the Itô’s
case, because it is more suitable for the initial value problems for stochastic differential
equations. We will show not only the definition, but also an important rule of computing
it which is a key tool in stochastic analysis, so-called Itô’s formula.
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4.1 Itô’s integral

In this section we will define the Itô type stochastic integral

t∫
0

f(Xs, s) dBs, (4.2)

with respect to a Brownian motion {Bt}t≥0. The construction will be made according
to [1] As we already said, the Brownian motion is nowhere differentiable, therefore (4.2)
cannot be defined in the usual way and there is a lot of stochastic processes that are not
integrable even in this way. But still we can define a stochastic integral for a large class
of processes.

We will define (4.2) step by step. First we will define it for the simplest class of
processes, so-called simple processes and then we will extend this definition to a larger
class of processes.

Definition 4.1 (Simple process). A real valued stochastic process g = {g(t)}a≤t≤b is
said to be a simple process if there exists a partition a = t0 < t1 < · · · < tk = b of [a,b],
and bounded random variables ξi, 0 ≤ i ≤ k − 1 such that ξi is Fti-measurable and

g(t) = ξ0I[t0,t1](t) +
k−1∑
i=1

ξiI(ti,ti+1](t). (4.3)

where I(ti,ti+1](t) is the characteristic function of the interval (ti, ti+1] defined as follows

I(ti,ti+1](t) =

{
1 for t ∈ (ti, ti+1],

0 otherwise .

We denote M0([a, b];R) the family of all such processes. For a simple process, the
Itô’s integral is built as follows.

Definition 4.2. For a simple process g(t) ∈M0([a, b];R) of the form (4.3) we define

b∫
a

g(t) dBt =
k−1∑
i=0

ξi(Bti+1
−Bti) (4.4)

and we call it the Itô’s integral of g with respect to Brownian motion {Bt}t≥0.

The next lemma states a useful property of the Itô’s integral of a simple process.

Lemma 4.1 (Itô’s isometry). Let φ(t) be bounded simple process, then

E

 b∫
a

φ(t) dBt

2

= E

b∫
a

φ2(t) dt

We have shown the construction of the stochastic integral for a simple process. Our
aim in this moment is to extend this definition to a larger class of processes that satisfy
the definition 4.3.
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Definition 4.3. Let 0 ≤ a < b <∞. Denote byM2([a, b],R) the space of all real-valued
measurable Ft-adapted processes f = {f(t)}a≤t≤b such that

‖f‖2
a,b = E

b∫
a

|f(t)|2dt <∞.

We identify f and f in M2([a, b],R) if ‖f − f‖2
a,b = 0. In this case we say that they are

equivalent and write f = f .

The result that will enable us to extend the definition is the following lemma whose
proof can be found in [1].

Lemma 4.1. for any f ∈ M2([a, b],R) there exists a sequence {gn} of simple processes
such that

lim
n→∞

E

b∫
a

|f(t)− gn(t)|2dt = 0. (4.5)

Using the previous lemma we can define the stochastic integral of the of the process
f(t) belonging to the M2([a, b],R).

Definition 4.4. Let f ∈ M2([a, b],R). The Itô’s integral of f with respect to {Bt}t≥0 is
defined by

b∫
a

f(t) dBt = lim
n→∞

b∫
a

gn(t) dBt,

where {gn} is a sequence of simple processes that have stochastic integral (4.4) and that
satisfy (4.5).

The next theorem summarizes the properties of Itô’s integral.

Theorem 4.1 (Properties of the Itô’s integral). Let Xt, Yt ∈ M2[0, T ] and let 0 ≤
S < U < T and c a constant, then

(1)
T∫
S

Xs dBs =
U∫
S

Xs dBs +
T∫
U

Xs dBs,

(2)
T∫
0

(c ·Xs + Ys) dBs = c
T∫
0

Xs dBs +
T∫
0

Ys dBs,

(3) E
T∫
0

Xs dBs = 0,

(4)
T∫
0

Xs dBs is FT measurable.

14



(5) the extension of Itô’s isometry to M2[0, T ]:

E

 t∫
0

Xs dBs

2

= E

t∫
0

X2
s ds

(6) the Itô’s integral of Xt is normally distributed with expected value given by (3) and
variance given by (5)

The Itô’s integral that we defined is actually a definite integral. For the application
to the stochastic differential equations we will need the indefinite Itô’s integral.

Definition 4.5 (Indefinite Itô’s integral). Let f(t) ∈M2([0, T ];R). Define

I(t) =

t∫
0

f(s) dBs for 0 ≤ t ≤ T, (4.6)

where I(0) =
0∫
0

f(s) dBs = 0. We call (4.6) the indefinite Itô’s integral of f(t).

Since the indefinite integral is defined using the definition of definite integral, it has
the same properties given by theorem 4.1.

Now we will show a theorem which states that the indefinite integral can be chosen to
be continuous.

Theorem 4.2. Let Xt ∈M2[0, T ] then there exist a t-continuous version of

I(t) =

∫
Xt(ω) dBs(ω), 0 ≤ t ≤ T,

it means that there exists a t-continuous stochastic process J(t) on (Ω,F , P ) such that

P (I(t) = J(t)) = 1.

We could stop here the process of extension the definition and build all the following
theory on the class ofM2(Ω) processes. As a matter of fact, it is done in this way in [4].
But according to some other books such as [1] or [2] we can extend the integral into even
larger class of functions.

Let {Bt}t≥0 be a one-dimensional Brownian motion on a probability space (Ω,F , P ).
We denote L1(R+;R) resp. L2(R+;R) the spaces of all real valued measurable Ft-adapted
processes {f(t)}t≥0 such that

T∫
0

|f(t)|dt <∞, resp.

 T∫
0

|f(t)|2dt


1
2

<∞ a.s. for every T > 0.

The extension is similar to the one that has been carried out for the case of M2

processes therefore we will omit it and refer to [1], where it is shown in a detailed way.
What is important for us is that the integral exists for all the f(t) ∈ L2(R+;R). We
should also mention the fact that some of the properties given by theorem 4.1 does not
hold here.
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4.2 Itô’s formula

In previous section we defined the Itô’s integral. However, the definition is not very useful
to evaluate an actual integral. We will formulate an important rule that will enable us to
compute the Itô’s integral more easily and quickly. This rule is called the Itô’s formula.

Definition 4.6 (Itô’s process). A one-dimensional Itô’s process is a continuous adapted
process Xt on t ≥ 0, that has the form

Xt = X0 +

t∫
0

f(s,Xs) ds+

t∫
0

g(s,Xs) dBs, (4.7)

where f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd). We can also say that Xt has the stochastic
differential dXt given by

dXt = f(t,Xt) dt+ g(t,Xt) dBt. (4.8)

Now we can proceed to the actual Itô’s formula.

Theorem 4.3 (Itô’s formula in one dimension). Let Xt be an Itô’s process satisfying
(4.7) and let it have a stochastic differential (4.8). Let V ∈ C2(R×R+) and let it also be
in C1(R), then V = V (Xt, t) is also an Itô’s process with stochastic differential given by

dV =

[
∂V

∂t
+
∂V

∂x
f(t,Xt) +

1

2

∂2V

∂x2
g2(t,Xt)

]
dt+

∂V

∂x
g(t,Xt) dBt a.s., (4.9)

The relation (4.9) is called the One-dimensional Itô’s formula. The proof is rather
technical and long, so we will show just the basic ideas of it (see [1] for details).

Ideas of the proof:

(1)(2) The first two ideas are to assume that Xt is bounded by some constant K. So we
do not have to pay attention to the values of V (Xt, t) for Xt /∈ [−K,K] and also
that V (Xt, t) is continuously twice differentiable in both Xt and t.

(3) The third step is to show the (4.9) for the case of simple processes.

(4) Now we fix t > 0 arbitrarily assuming that V (Xt, t) and all its derivatives up to the
order 2 are bounded and we take f(t), g(t) two simple processes. It can be shown
that all the V, ∂V

∂t
, ∂V
∂x
, ∂

2V
∂t2
, ∂

2V
∂xt

, ∂
2V
∂x2

can be approximated by simple processes.

The following rules are used when one has to use the Itô’s formula

dtdt = 0, dtdBt = 0, dBtdBt = dt. (4.10)

Theorem 4.4 (Itô’s formula - alternative form). Under the assumptions of theorem
4.3, the stochastic differential of V = V (Xt, t) can be written as

dV =
∂V

∂t
dt+

∂V

∂x
dXt +

1

2

∂2V

∂x2
(dXt)

2 (4.11)

16



The (4.9) can be obtained from (4.11) substituting (4.8) and using (4.10), so they are
equivalent. Some authors, such as Oksendal [2], speak only about the form given by the
theorem 4.4. The reason might be the greater straightforwardness of (4.11).

Let us also state the Itô’s formula for the case of product of two stochastic processes.

Theorem 4.5 (Product Itô’s formula). Let Xt and X̂t be two Ito processes satisfying
(4.7) and let them have the Ito differential (4.8). Let V ∈ C2(R2×R+) and let it also be in
C1(R). Then V = V (Xt, X̂t, t) = XtX̂t is also an Itô’s process with stochastic differential
given by

d(XtX̂t) = X̂tdXt +XtdX̂t + g(Xt, t)ĝ(X̂t, t)dt (4.12)

We will show now an example of use of Itô’s formula. Let Bt be a Brownian motion
and we would like to compute the integral

t∫
0

Bs dBs.

Note that the Brownian motion has the simplest Itô’s differential

dBt = 0 · dt+ 1 · dBt,

so in this case f(t,Xt) = 0 and g(t,Xt) = 1. In order to compute the given integral, we
apply the Ito formula to V (Bt, t) = B2

t and get

dV (Bt, t) =

[
0 + 0 · 2Bt +

1

2
· 2 · 12

]
dt+ 1 · 2BtdBt,

d(B2
t ) = 2Bt dBt + dt,

we integrate the both sides and end up with

B2
t = 2

t∫
0

Bs dBs + t,

from which we deduce

t∫
0

Bs dBs =
B2
t − t
2

.
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5 Stochastic differential equations

5.1 Basic notions

Let (Ω,F , P ) be a complete probability space and let us consider an Itô type stochastic
differential equation with initial condition X0 = η:{

dXt = f(Xt, t)dt+ g(Xt, t)dBt,

X0 = η.
(5.1)

By the definition of stochastic differential, the previous equation can be rewritten to its
integral version

Xt = η +

t∫
0

f(Xs, s) ds+

t∫
0

g(Xs, s) dBs. (5.2)

Let us now define what is the solution to (5.1).

Definition 5.1 (Solution of SDE). A stochastic process {Xt}0≤t≤T is called a solution
of (5.1) if

(1) it is continuous and Ft-adapted,

(2) f(Xt, t) ∈ L1([0, T ];R) and g(Xt, t) ∈ L2([0, T ];R)

(3) equation (5.2) holds for every t ∈ [0, T ]

5.2 Existence and uniqueness of the solution

Now we defined what the solution of a stochastic differential equation is, we can turn to
the important question of it’s existence and uniqueness. The following theorem tells us,
what conditions have to be satisfied to ensure both of them.

Theorem 5.1 (Existence and uniqueness). Let T > 0 and f : [0, T ] × Rd → Rd,
g : [0, T ]× Rd×m → Rd×m be measurable functions satisfying

|f(t, x)|+ |g(t, x)| ≤ C(1 + |x|)
for some constant C and

|f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ D|x− y|
for some constant D. Let η be a random variable independent of sigma algebra Ft gener-
ated by Bs, s ≥ 0 and such that

E|η|2 <∞.
Then the stochastic differential equation (5.1) has a unique t-continuos solution Xt which
is adapted to the filtration FZt generated by Bs, s ≤ t and η and has the property that

E

 T∫
0

|Xt|2dt

 <∞.
In other words, the solution Xt is unique in M2[0, T ].
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The theorem 5.1 is the formulation that can be found in [2] also with its proof. Other
formulations, which are equivalent to this one, can be found in [1] or [4]. This theorem is
very important, so it feels natural to state also its proof. But first we will state a lemma
that will enable us to prove it.

Lemma 5.1 (Gronnwall’s inequality). Let T > 0 and c ≥ 0. Let u(·) be a Borel mea-
surable bounded non-negative function on [0, T ], and let v(·) be a non-negative integrable
function on [0, T ]. If

u(t) ≤ c+

t∫
0

v(s)u(s)ds for all 0 ≤ t ≤ T,

then

u(t) ≤ c · exp

 t∫
0

v(s)ds

 for all 0 ≤ t ≤ T.

Now we can proceed to the proof of the existence and uniqueness theorem, that has
two steps. First we will prove the uniqueness. Let X1(t, ω) = Xt(ω) and X2(t, ω) = X̂t(ω)

be solutions with initial values Z and Ẑ.
Put a(s, ω) = f(s,Xs) − f(s, X̂s) and γ(s, ω) = g(s,Xs) − g(s, X̂s). Then using the

elementary inequality

|a+ b+ c|2 ≤ 3
(
|a|2 + |b|2 + |c|2

)
we obtain

E|Xt − X̂t|2 = E

Z − Ẑ +

t∫
0

a ds+

t∫
0

γ dBs

2

≤ 3E|Z − Ẑ|2 + 3E

 t∫
0

a ds

2

+ 3E

 t∫
0

γ dBs

2

≤ 3E|Z − Ẑ|2 + 3tE

 t∫
0

a2 ds

+ 3E

 t∫
0

γ2 ds


≤ 3E|Z − Ẑ|2 + 3(1 + t)D2

t∫
0

E|Xs − X̂s|2 ds. (5.3)

So the function v(t) = E|Xt − X̂t|2 satisfies

v(t) ≤ F + A

t∫
0

v(s) ds,

where F = E|Z − Ẑ|2 and A = 3(1 + T )D2. By the Gronnwall’s inequality we deduce
that

v(t) ≤ F exp(At).
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Now since Z = Ẑ and F = 0 then v(t) = 0 for all t ≥ 0. Hence

P
[
|Xt − X̂t| = 0 for all t ∈ Q ∩ [0, T ]

]
= 1,

where Q denotes the rational numbers. By continuity of t→ |Xt − X̂t| it follows that

P [|X1(t, ω)−X2(t, ω)| = 0 for all t ∈ [0, T ]] = 1

and the uniqueness is proved.
The second step of the proof is showing that the solution to (5.1) exists. The proof

is similar to the proof of existence of solution to the IVP for an ordinary differential
equation. The idea is to define the Picard iterations and show that they converge to our
solution. First we define the Y

(0)
t = X0 and Y

(k)
t in this way:

Y
(k+1)
t = X0 +

t∫
0

f(Y (k)
s , s) ds+

t∫
0

g(Y (k)
s , s) dBs

Then we carry out a computation similar to (5.3) and we end up with

E|Y (k+1)
t − Y (k)

t |2 ≤ 3(1 + T)D2

t∫
0

E|Y (k)
s − Y (k−1)

s |2ds,

for k ≥ 1 and t ≤ T and

E|Y (1)
t − Y (0)

t |2 ≤ 2t2C2
(
1 + E|X0|2

)
+ 2tC2

(
1 + E|X0|2

)
≤ A1t,

Where A1 is a constant, that depends only on C, E|X0|2 and T. Therefore by induction
we can get

E|Y (k+1)
t − Y (k)

t |2 ≤
Ak+1

2 tk+1

(k + 1)!

for t ∈ [0,T], k ≥ 0 and a constant A2, which depends on C, D, E|X0|2 and T.
Let us now denote λ a Lebesgue measure on [0,T] and we take m > n ≥ 0 we get

‖Y (m)
t − Y (n)

t ‖L2(λ×P ) = ‖
m−1∑
k=n

(
Y

(k+1)
t − Y (k)

t

)
‖L2(λ×P ) ≤

m−1∑
k=n

‖Y (k+1)
t − Y (k)

t ‖L2(λ×P )

=
m−1∑
k=n

E

 T∫
0

|Y (k+1)
t Y

(k)
t |2dt


1
2

≤
m−1∑
k=n

 T∫
0

Ak+1
2 tk+1

(k + 1)!


1
2

=
m−1∑
k=n

(
Ak+1

2 Tk+2

(k + 2)!

) 1
2

.

Now we take the last term and we compute the following limit

lim
n,m→∞

m−1∑
k=n

(
Ak+1

2 Tk+2

(k + 2)!

) 1
2

= 0,

20



so {Y (n)
t }∞n=0 is a Cauchy sequence in L2 (λ× P ) and since it is a complete space, this

sequence is also convergent. Let us define

Xt := lim
n→∞

Y
(n)
t .

Then Xt is FZ
t -measurable, because Y

(n)
t is for all n. Now we have to prove that Xt

satisfies (5.1).
For all n and all t ∈ [0,T] we have

Y
(n)
t = X0 +

t∫
0

f(s, Y (n)
s ) ds+

t∫
0

g(s, Y (n)
s ) dBs

If we let n → ∞ and use the Hölder inequality in the first case and the Ito isometry in
the second, we show that

t∫
0

f(s, Y (n)
s ) ds→

t∫
0

f(s,Xs) ds,

t∫
0

g(s, Y (n)
s ) dBs →

t∫
0

g(s,Xs) dBs.

Using the expressions above, we can write

Xt = X0 +

t∫
0

f(s,Xs) ds+

t∫
0

g(s,Xs) dBs for all t ∈ [0,T].

We proved that Xt satisfies the (5.1). The final step is to show that the integral can
be chosen continuously, but that is a direct consequence of theorem 4.2. The proof is
complete.
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6 Linear stochastic differential equations - Theoreti-

cal results

We have already cleared up what the solution to a stochastic differential equation is and
under which conditions it exists and it is unique. Now we would like to find a way to
obtain the solution. For the most of the stochastic equations the explicit formula for
the solution does not exist. In such cases we have to use the approximate solutions
such as Euler-Maruyama numerical scheme that is described in details in [1], but we will
not discuss them in this text. We will concentrate on the case of the linear stochastic
differential equations for which the explicit solution can be found.

In addition to finding the explicit formula for the solution, we will derive the equations
to obtain its expected value and variance. These equations will be ordinary differential
equations, so they will be much more easy to solve.

Let us now state how we classify the linear equations.

(1) The general form of linear Stochastic differential equation is the following one{
dXt = [a(t)Xt + b(t)] dt+ [c(t)Xt + d(t)] dBt,

X0 = η,
(6.1)

where a(t), b(t), c(t), d(t) are real-valued functions of time t and to satisfy the
assumptions of the existence and uniqueness theorem, we assume that they are
bounded. We also assume, for the same reason, Eη2 < ∞. Xt is the unknown
stochastic process.

(2) The linear equation is said to be homogeneous if b(t) = d(t) = 0, so (6.1) yields{
dXt = a(t)Xt dt+ c(t)Xt dBt,

X0 = η.
(6.2)

(3) The linear equation is said to be Stochastic differential equation in narrow sense if
c(t) = 0, so (6.1) transforms into{

dXt = [a(t)Xt + b(t)] dt+ d(t) dBt,

X0 = η.
(6.3)

6.1 First example

We will show now an easy example of such an equation. Let us consider following initial
value problem for the stochastic differential equation with constant coefficients λ and σ.

{
dXt = λXt dt+ σXt dBt,

X0 = η.
(6.4)

We can rewrite the equation from (6.4) as follows

dXt

Xt

= λ dt+ σ dBt,
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and integrate both sides over [0, t] and get the expression

t∫
0

dXt

Xt

= λt+ σBt. (6.5)

We would like to evaluate the left-hand side. In order to do that, we have to use the Ito
formula of the function V (Xt, t) = lnXt.

d (lnXt) =

[
0 +

1

Xt

λXt +
1

2

−1

X2
t

σ2X2
t

]
dt+

1

Xt

σXt dBt,

d (lnXt) =

[
λ− 1

2
σ2

]
dt+ σ dBt,

d (lnXt) =
dXt

Xt

− 1

2
σ2 dt.

Now using (6.5) we compute

λt+ σBt = ln
Xt

X0

+
1

2
σ2t,

therefore

Xt = ηe(λ− 1
2
σ2)t+σBt (6.6)

The expression (6.6) is the explicit solution to the IVP (6.4). We can go further now and
we can compute its expected value.

EXt = E
[
ηe(λ− 1

2
σ2)t+σBt

]
= η

∞∫
−∞

1√
2πt

e−
x2t
2t e(λ− 1

2
σ2)t+σxt dxt,

=
η√
2πt

e(λ− 1
2
σ2)t

∞∫
−∞

e−
x2t
2t eσxt dxt =

η√
2πt

e(λ− 1
2
σ2)t
√

2πt e
σ2

2
t,

EXt = ηeλt.

Now we can compute also its variance. First we evaluate the second moment EX2
t

EX2
t = E

[
η2e2(λ− 1

2
σ2)t+2σBt

]
= η2

∞∫
−∞

1√
2πt

e−
x2t
2t e2(λ− 1

2
σ2)t+2σxt dxt,

=
η2

√
2πt

e2(λ− 1
2
σ2)t

∞∫
−∞

e−
x2t
2t e2σxt dxt =

η2

√
2πt

e2(λ− 1
2
σ2)t
√

2πt e2σ2t,

EX2
t = η2e(2λ+σ2)t.

Now we use both quantities that we have reached and substitute them into the definition
formula of the variance

VXt = E (Xt − EXt)
2 = EX2

t − E2Xt,

VXt = η2e2λt
(
eσ

2t − 1
)
.
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We computed the expected value and variance directly from the solution. There is
however another way to do it. In the following text we will derive a method, how to
obtain both these characteristics without knowing the explicit solution.

6.2 General form of solution

Now that we have seen that the equation from previous example could be solved analyt-
ically, we would like to find a way of solving all the linear equations.

Solution to homogeneous linear equation

First we will derive the explicit formula of solution to the homogeneous case (6.2). We will
perform a similar procedure as we did in the first example, but this time the coefficients
are not constant. The initial step is to divide both sides of equation by Xt

dXt

Xt

= a(t)dt+ c(t)dBt.

Integrating both sides over the interval [0, t] we yield

t∫
0

dXt

Xt

=

t∫
0

a(s) ds+

t∫
0

c(s) dBs. (6.7)

Now to evaluate the integral on the left-hand side, we use the Ito formula of the function
V (Xt, t) = lnXt.

d (lnXt) =

[
1

Xt

a(t)Xt −
1

2

1

X2
t

c2(t)X2
t

]
dt+

1

Xt

c(t)XtdBt,

d (lnXt) =

[
a(t)− 1

2
c2(t)

]
dt+ c(t)dBt,

d (lnXt) =
dXt

Xt

− 1

2
c2(t)dt.

Now using (6.7) we compute

ln
Xt

X0

=

t∫
0

a(s) ds+

t∫
0

c(s) dBs −
t∫

0

1

2
c2(s)ds,

e
ln

Xt
X0 = e

t∫
0
(a(s)− 1

2
c2(s)) ds+

t∫
0

c(s) dBs
.

Which we can rewrite and obtain the explicit solution to the initial value problem (6.2).

Xt = η · e
t∫
0
(a(s)− 1

2
c2(s)) ds+

t∫
0

c(s) dBs
. (6.8)
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Solution to non-homogeneous linear equation

Now that we know how the solution to homogeneous equation looks like, we can turn
to the non-homogeneous one. To solve the initial value problem (6.1), we can use the
solution to the corresponding homogeneous problem{

dYt = a(t)Ytdt+ c(t)YtdBt,

Y0 = 1,

which is

Yt = e

t∫
0
(a(s)− 1

2
c2(s)) ds+

t∫
0

c(s) dBs
, (6.9)

according to the (6.8). Let us now compute dY −1
t using the Ito formula

dY −1
t = − 1

Y 2
t

dYt +
1

2

2

Y 3
t

(c(t)Xt)
2 dt,

= −Y −2
t (a(t)Yt dt+ c(t)Yt dBt) + Y −1

t c2(t) dt,

= −
(
a(t)Y −1

t dt+ c(t)Y −1
t dBt

)
+ Y −1

t c2(t) dt.

Now we apply the product version of Ito formula (4.12) to XtY
−1
t .

d
(
XtY

−1
t

)
= (dXt)Y

−1
t +

(
dY −1

t

)
Xt − (c(t)Xt + d(t)) c(t)Y −1

t dt

Substituting (6.1) and (6.2) into it we obtain

d
(
XtY

−1
t

)
= [(a(t)Xt + b(t)) dt+ (c(t)Xt + d(t)) dBt]Y

−1
t

+
[
−
(
a(t)Y −1

t dt+ c(t)Y −1
t dBt

)
+ Y −1

t c2(t) dt
]
Xt

− (c(t)Xt + d(t)) c(t)Y −1
t dt,

d
(
XtY

−1
t

)
= (b(t)− c(t)d(t))Y −1

t dt+ d(t)Y −1
t dBt.

Taking integral form of the expression above we get

XtY
−1
t = X0Y

−1
0 +

t∫
0

(b(s)− c(s)d(s))Y −1
s ds+

t∫
0

d(s)Y −1
s dBs.

Reminding that Y0 = 1 we can drop Y −1
0

XtY
−1
t = X0 +

t∫
0

(b(s)− c(s)d(s))Y −1
s ds+

t∫
0

d(s)Y −1
s dBs,

and multiplying both sides by Yt we yield

Xt = X0Yt + Yt

t∫
0

(b(s)− c(s)d(s))Y −1
s ds+ Yt

t∫
0

d(s)Y −1
s dBs. (6.10)

The only thing that is left to do is to substitute (6.9) into (6.10).
In the following text we will deal with the question of properties and characteristics,

such as expected value and variance, of the solution that we just obtained.
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6.3 Integral theorems

Before we can start deriving the formulas for the expected value and variance, we have
to state some theorems that we will need in order to do some important steps. These are
the well known Fubini and Tonelli theorems that both plays key role in integration on
Lp spaces in the functional analysis. First we will introduce the general versions of both
theorems and then we will show how can we interpret them for our purposes.

Theorem 6.1 (Tonelli). Let F (x, y) : Ω1 × Ω2 → R be a measurable function satisfying

(1)
∫
Ω2

|F (x, y)|dµ2 <∞ for almost every x ∈ Ω1 and

(2)
∫
Ω1

(∫
Ω2

|F (x, y)|dµ2

)
dµ1 <∞,

then ∫∫
Ω1×Ω2

|F (x, y)| dµ1dµ2 <∞. (6.11)

Theorem 6.2 (Fubini). Assume that (6.11) holds. Then∫∫
Ω1×Ω2

F (x, y) dµ1dµ2 =

∫
Ω1

∫
Ω2

F (x, y)dµ2

 dµ1 =

∫
Ω2

∫
Ω1

F (x, y)dµ1

 dµ2.

Now we will show how to obtain the stochastic versions of these theorems. If we
identify

F (x, y) = X(t, ω), Ω1 = Ω, Ω2 = [0, t],

then the Tonelli theorem yields the following form

Theorem 6.3 (Tonelli - Stochastic version). Let F (x, y) : Ω × [0, t] → R be a mea-
surable function satisfying

(1)
t∫

0

|X(s, ω)|ds <∞ for almost every ω ∈ Ω and

(2) E
t∫

0

|X(s, ω)|ds <∞,

then ∫∫
Ω×[0,t]

f(xs)|X(s, ω)| ds dx <∞, (6.12)

where f(xs) is the probability density function of Xt for fixed t = s.

And we also transform the Fubini’s theorem

Theorem 6.4 (Fubini - Stochastic version). Assume that (6.12) holds. Then∫∫
Ω×[0,t]

f(xs)X(s, ω) ds dx =

t∫
0

EXs ds = E

t∫
0

Xs ds.
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6.4 Observation

In this section we will make an observation about the linear stochastic differential equa-
tions. We will show that both f(Xt, t) = a(t)Xt + b(t) and g(Xt, t) = c(t)Xt + d(t) not
only belongs to L2[0, t] but also to M2[0, t]. Namely we want to show that

E

t∫
0

|a(s)Xs + b(s)|2ds <∞ and E

t∫
0

|c(s)Xs + d(s)|2ds <∞.

Let us begin with simple evaluation of the square of our function

E

t∫
0

[
c2(s)X2

s + 2c(s)d(s)Xs + d2(s)
]

ds =

= E

t∫
0

[c2(s)X2
s ]ds+ E

t∫
0

[2d(s)c(s)Xs]ds+ E

t∫
0

d2(s)ds.

We know from the existence and uniqueness theorem that Xt ∈M2[0, t]. By the assump-
tions on coefficients of the linear equation we also now that c(t) and d(t) are bounded
with some constants ĉ and d̂.

Therefore

E

t∫
0

[c2(s)X2
s ]ds =

t∫
0

[c2(s)EX2
s ] ≤

t∫
0

[ĉ2EX2
s ]ds ≤ ĉ2E

t∫
0

X2
sds <∞

and

E

t∫
0

d2(s)ds =

t∫
0

d2(s)ds ≤
t∫

0

d̂2ds <∞.

In the case of the middle term, the following computation is required

E

t∫
0

[2d(s)c(s)Xs]ds =

t∫
0

[2d(s)c(s)EXs]ds ≤
t∫

0

[2d̂ĉEXs]ds = 2d̂ĉ

t∫
0

EXsds.

Now using the Hölder inequality it follows that

EXs ≤
(
EX2

s

) 1
2 .

Using the previous expression and the monotonicity property of the Lebesgue integral we
can proceed (without losing of generality we put 2d̂ĉ = 1)

t∫
0

EXsds ≤
t∫

0

(
EX2

s

) 1
2 ds.
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If EX2
s < 1, then

t∫
0

(
EX2

s

) 1
2 ds <

t∫
0

ds = t <∞.

If EX2
s ≥ 1, then

t∫
0

(
EX2

s

) 1
2 ds ≤

t∫
0

(
EX2

s

)
ds = E

t∫
0

X2
sds <∞.

We have proved that g(Xt, t) = [c(t)Xt + d(t)] belongs to M2[0, t] Since f(Xt, t) has
the same form, the computation would be exactly the same, so f(Xt, t) belongs toM2[0, t]
as well.

6.5 Expected value

We have already shown the way to obtain the general solution to a linear stochastic
differential equation, but the solution itself does not tell us everything about the process.
In this subsection we would like to derive an equation, that will enable us to compute the
expected value of a process that solves the given SDE, without solving the equation and
computing it directly from the solution as we did in the introductory example.

Let us consider an initial value problem for a linear stochastic differential equation,{
dXt = [a(t)Xt + b(t)] dt+ [c(t)Xt + d(t)] dBt,

X0 = η,

which can be rewritten to its integral form

Xt = η +

t∫
0

[a(s)Xs + b(s)] ds+

t∫
0

[c(s)Xs + d(s)] dBs.

Taking the expected value of both sides we obtain

EXt = Eη + E

t∫
0

[a(s)Xs + b(s)] ds+ E

t∫
0

[c(s)Xs + d(s)] dBs.

Now we can apply the Fubini theorem and continue in treating the expression for
expectation.

EXt = Eη +

t∫
0

[a(s)EXs + b(s)] ds+ E

t∫
0

[c(s)Xs + d(s)] dBs.

As we have already proved, [c(s)Xs + d(s)] ∈M2[0, t]. Therefore by the theorem 4.1

28



E

t∫
0

[c(s)Xs + d(s)] dBs = 0.

Denoting m(t) = EXt we obtain

m(t) = Eη +

t∫
0

[a(s)m(s) + b(s)] ds,

which has a differential form {
ṁ(t) = a(t)m(t) + b(t),

m(0) = Eη.
(6.13)

The solution to the initial value problem (6.13) is the expected value of the solution
Xt of the original problem. Realizing that (6.13) only contains the coefficients from the
deterministic part of (6.1), we can deduce that the expected value behaves in the same
way as the solution to the deterministic analogue of (6.1), namely

{
ẋ(t) = a(t)x(t) + b(t)dt,

x(0) = η.

6.6 Variance

In the previous subsection we derived the formula for the expected value of the solution
of given stochastic differential equation. In this section we will derive a formula for its
variance.

First we recall that the variance of a random variable is defined as follows

VXt = E (Xt − EXt)
2 = EX2

t − (EXt)
2 . (6.14)

In order to derive the variance formula, we can use the fact that we have already computed
the expected value, so we know that

(EXt)
2 = m2(t),

where m(t) solves (6.13). In the remainder of this subsection we will derive an ordinary
differential equation in order to evaluate the second term of the variance

EX2
t =

∫
Ω

x2(t) f(x(t)) dx,

which is called the second moment of Xt. Let us apply the Itô’s formula to the X2
t

dX2
t = 2Xt dXt + g(Xt, t)

2dt,

dX2
t = 2Xt dXt + (c(t)Xt + d(t))2 dt.
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Substituting (5.1) into it we get

dX2
t = 2Xt [(a(t)Xt + b(t)) dt+ (c(t)Xt + d(t)) dBt]

+
(
c2(t)X2

t + 2c(t)d(t)Xt + d2(t)
)

dt,

dX2
t =

[(
2a(t) + c2(t)

)
X2
t + (2b(t) + 2c(t)d(t))Xt + d2(t)

]
dt

+
(
2c(t)X2

t + 2d(t)Xt

)
dBt.

The integral form of expression above is

X2
t = η2 +

t∫
0

[(
2a(s) + c2(s)

)
X2
s + (2b(s) + 2c(s)d(s))Xs + d2(s)

]
ds

+

t∫
0

(
2c(s)X2

s + 2d(s)Xs

)
dBs (6.15)

Taking the expected value of (6.15) and denoting P (t) = EX2
t we obtain

P (t) = Eη2 +

t∫
0

[(
2a(s) + c2(s)

)
P (s) + (2b(s) + 2c(s)d(s))m(s) + d2(s)

]
ds,

which we rewrite to the differential form and get the final equation for the second
moment of Xt

{
Ṗ (t) = (2a(t) + c2(t))P (t) + (2b(t) + 2c(t)d(t))m(t) + d2(t),

P (0) = Eη2,
(6.16)

where a(t), b(t), c(t), d(t) are the coefficients from (5.1) and m(t) is a solution to (6.13).
The final formula for the variance is then

VX = P (t)−m2(t). (6.17)

In this section we reached the final expressions for the solution, expected value and
variance. We will use all these results in the next section, where we will apply them to
the concrete examples.
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7 Linear stochastic differential equations - Examples

In this section we will give some examples of linear stochastic differential with a detailed
analysis of their solutions together with the visualization of their sample paths.

To visualize the sample path of the solution, we have to make a partition of the
time interval and display only values in the given points, because otherwise it would be
impossible to display it, since it is a nowhere differentiable function. Unless otherwise
specified, we will display the trajectory over the interval [0,3] and we will take 500 points
from that interval and display the values in them. The visualization will be performed by
the software MATLAB.

If possible, we will also make the comparison with corresponding non-stochastic ana-
logues.

7.1 The Langevin equation

As our first example we take the historically oldest stochastic differential equation. Langevin
wrote down the equation of motion for a particle according to the Newton’s law of motion.
He assumed, that two forces affect the particle

(1) A systematic force −ζẋ(t), which represents a dynamical friction experienced by the
particle

(2) A rapidly fluctuating force F (t) = σḂt, which is caused by the impacts of the
molecules of the liquid on the particle.

If we let S(t) = ẋ(t) be the velocity of the particle and S(0) = η be the initial value
of velocity, the initial value problem for the motion is then{

mṠ(t) = −ζS(t) + σḂt,

S(0) = η,

where ζ is the constant coefficient of friction. Without losing of generality (since all the
m, ζ and σ are constants) we put m = 1. The equation then yields the following form

Ṡ(t) = −ζS(t) + σḂt

and the corresponding Itô’s problem is{
dSt = −ζSt dt+ σ dBt,

S0 = η.
(7.1)

The initial value problem (7.1) is a stochastic differential equation in narrow sense
(6.3). According to the theory from the subsection 6.2, in order to obtain the solution,
we first have to solve the corresponding homogeneous problem{

dWt = −ζWt dt,

W0 = 1.

This problem is easy to solve because it is an ordinary differential equation and its solution
is

Wt = e−ζt. (7.2)
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And now we will use the formula (6.10)

St = ηWt +Wt

t∫
0

σW−1
s dBs. (7.3)

Substituting (7.2) into (7.3) we get the solution

St = ηe−ζt +

t∫
0

σe−ζ(t−s) dBs, (7.4)

where
t∫

0

σe−ζ(t−s) dBs is according to the theorem 4.1 normally distributed with expecta-

tion equal to 0 and variance equal to

t∫
0

σ2e−2ζ(t−s) ds = σ2 1− e−2ζt

2ζ
. (7.5)

The solution (7.4) is called the Ornstein-Uhlenbeck process. We can use the theorem
4.1 because the function σe−ζ(t−s) is deterministic and does not explode in final time,
therefore it belongs toM2[0, t]. In the figure 7.1 we can see two sample paths of (7.4) for
the following values

t = 3, η = 3, σ = 0.5, ζ = ±1.
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Figure 7.1: The sample path of (7.4) for ζ = 1 on the left and for ζ = −1 on the right

As we can see from the figures, the parameter ζ plays the key role with respect to the
property of the solution to tend to zero or infinity as times approaches ∞. So we can
summarize as follows

ζ > 0⇒ lim
t→∞

St = S and ζ < 0⇒ lim
t→∞

St =∞ ,

where S is normally distributed, as we will verify at the end of this example, with
expectation 0 and variance σ2

2ζ
. The final question is how the solution would behave when
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ζ = 0. Our first guess shall be that it would tend to the value of the initial condition, but
looking at (7.5) we see that the stochastic part of the solution would have infinite variance.
Therefore our conclusion is that for ζ = 0 the ST will fluctuate between arbitrary values
as t→∞.

However, realizing the physical meaning of ζ, i.e. that it is a friction coefficient, it
does not make a physical sense taking ζ ≤ 0.

Let us focus now on the parameter σ. From (7.5) we can deduce that it affects the
variance of the stochastic part and taking the values

σ1 = 0.1 σ2 = 0.8

we can confirm it in the figure 7.2.
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Figure 7.2: The sample path of (7.4) for σ = 0.1 on the left and for σ = 0.8 on the right

Taking negative values of σ does not make any difference, because in (7.5) we have σ2

and if we let σ = 0 we would lose the stochastic behaviour of the solution, since it would
have a zero variance.

We will go forward now and compute the expectation of St. As for this example the
equation (6.13) reaches {

ṁ(t) = −ζm(t),

m(0) = η,

which has the explicit solution

m(t) = ηe−ζt. (7.6)

We can easily deduce, that (7.4) reaches (7.6) as σ tends to zero. The figure 7.4 displays
the (7.6) for the values η = 3 and ζ = 1.

The variance of St should be given by (7.5). Let us now verify it using the method
derived in the subsection 6.6.

{
Ṗ (t) = −2ζP (t) + σ2,

P (0) = η2.
(7.7)
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The solution to (7.7) is

P (t) =

(
η2 − σ2

2ζ

)
e−2ζt +

σ2

2ζ
.

Taking the (6.17)

VSt = P (t)−m2(t) =

(
η2 − σ2

2ζ

)
e−2ζt +

σ2

2ζ
− η2e−2ζt,

VSt = σ2 1− e−2ζt

2ζ
,

which is exactly the same as (7.5). The figures 7.3 and 7.4 shows the expected value and
variance of St.
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Figure 7.3: The expectation of St
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Figure 7.4: The variance of St

Before we turn ourselves to another example, we will make a final observation.
Letting the t→∞ we can deduce

lim
t→∞

VSt =
σ2

2ζ
, and lim

t→∞
m(t) = 0,

therefore

lim
t→∞

St =S ∼ N(0,
σ2

2ζ
),

as we have already expected. There are a lot of books dealing with the issue of this exam-
ple, such as [10], which is dedicated entirely to the Langevin equation and its applications.
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7.2 Geometric Brownian motion

The second example that we will deal with is the Geometric Brownian motion. It is a
stochastic process that follows the homogeneous linear equation with constant coefficients
discussed in the subsection 6.1 in an introductory way. Now that we are equipped with
the formulas from the further part of section 6, we can analyse this problem in a more
sophisticated way.

First we will show how the specific terms of the equation can be interpreted and then
we will do the analysis of the solution in the mathematical point of view.

The Geometric Brownian motion is a stochastic process that satisfies this Itô’s equa-
tion {

dSt = λSt dt+ σSt dBt,

S0 = η.
(7.8)

This model was frequently used in economics to model the asset prices. The St represents
the price of an asset at time t and both λ and σ are both positive constants. We define
as dSt

St
the return of the asset price at time t. The question that rises up is how can we

model the returns. The classical model decomposes the returns into two parts. The first
one is predictable and deterministic. It gives contribution

λ dt,

where λ measures the average rate of growth of an asset price. Usually we call it the drift
of dSt

St
. The second contribution models the stochastic change in asset price due to the

unexpected external effects and we are taking it into account by adding the term

σ dBt,

where the number σ measures the standard deviation of the returns and we call it the
volatility of dSt

St
. By putting all this together we obtain the stochastic differential equation

(7.8). More about the economical meaning of this problem can be found in [1], we will
turn to the question of its mathematical properties.

As has been said in the beginning, (7.8) is homogeneous, therefore we can use directly
the formula (6.8) to solve it.

St = η e

t∫
0

(λ−σ
2

2
) ds+

t∫
0

σ dBs
= η e(λ−σ

2

2
)t+σBt .

We obtained exactly the same solution as in the example in section 6. Let us now turn
to the sample properties of St. By the consequence of the strong law of large numbers
(theorem 3.1, property of the Brownian motion (6)),

lim
t→∞

1

t
lnSt = lim

t→∞

1

t

((
λ− σ2

2

)
t+ σBt

)
= λ− σ2

2
a.s. if λ 6= σ2

2
.

And if λ = σ2

2
we show by the law of iterated logarithm (property (7) of the Brownian

motion) that

lim sup
t→∞

lnSt√
2t ln(ln t)

= σ a.s. lim inf
t→∞

lnSt√
2t ln(ln t)

= −σ a.s.
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Hence we can make the conclusion, that as t→∞
(1) St →∞ almost surely if λ > σ2

2
,

(2) St → 0 almost surely if λ < σ2

2
,

(3) St can take arbitrary values from [0,∞) for every t if λ = σ2

2
.

We will demonstrate our conclusion on a concrete values of σ and λ. We set η = 3,
σ = 0.1 and λ = 1 to obtain the solution in the figure 7.5.
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Figure 7.5: The solution trajectory for λ = 1 and σ = 0.1

In order to show the exponential decrease to 0 of St in the second case we had to
extend the time interval t into [0, 106], because the decrease is really slow. The solution
for η = 3, σ = 0.001 and λ = 10−8 is shown in the figure 7.6.
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Figure 7.6: The solution trajectory for λ = 10−8 and σ = 0.001

To be complete, we add the solution for the last case, i.e. λ = σ2

2
, as well. We set

λ = 0.005 and σ = 0.1 and display the solution over the interval [0, 100] in the figure 7.7.
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Figure 7.7: The solution trajectory for λ = 0.005 and σ = 0.1

We can advance now to the question of the expected value and variance of St. Let us
take the equation (6.13) and use it to compute the expected value of St. Considering the
original problem (7.8), the (6.13) gets the following form{

ṁ(t) = λm(t)

m(0) = η,

that is easy enough to solve and we obtain

m(t) = ηeλt,

which is the expression for the expectation of St and it is exactly the same result that we
computed in 6.1 directly from the solution.

The figures 7.8 and 7.9 show the expected value of St for the values of σ and λ written
in their descriptions.
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Figure 7.8: Expected value of St for λ = 1 and σ = 0.1
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Figure 7.9: Expected value of St for λ = 10−8 and σ = 0.001

Interesting fact about the behaviour of the expectation is that even if the solution
tends to 0 (second case), its expectation still approaches infinity as t→∞.

Now we will focus on the variance of St. The equation for the second moment (6.16)
can be modified to {

Ṗ (t) = (2λ+ σ2)P (t),

P (0) = η2,

which has explicit solution

P (t) = η2e(2λ+σ2)t.

The variance is then by (6.17)

VSt = P (t)−m2(t) = η2e(2λ+σ2)t − η2e2λt,

VSt = η2e2λt
(

eσ
2t − 1

)
.

and the standard deviation is given by

σd = η eλt
√

eσ2t − 1.

The VSt is always increasing, because both λ and σ are greater than zero. The figure 7.10
shows the variance of St for the values specified in its description. For completeness we
are also adding the figure 7.11 where we display a sample path of the solution together
with its expectation ESt and ESt ± σd.
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Figure 7.10: Variance of St for λ = 1 and σ = 0.2

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

V
al

ue
s 

of
 g

iv
en

 q
ua

nt
iti

es

time t

 

 
Solution St

Expectation  ESt

ESt +− σd

Figure 7.11: The solution St together with its characteristics for λ = 1 and σ = 0.2

We have seen two examples of equations with constant coefficients when the solution
basically either went to infinity or to zero, depending on the values of the coefficients.
The next example will present some sort of oscillation in the solution.
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7.3 Oscillating process

Let us consider the following initial value problem for stochastic differential equation

{
dXt = λ cos(t)Xt dt+ σXtdBt,

X0 = η.
(7.9)

The assumptions of existence and uniqueness are satisfied since cos(t) is a bounded
function and λ, σ are bounded constants. (7.9) is a homogeneous equation so we can use
directly (6.8) to obtain the solution. It is

Xt = ηeλ sin(t)−σ
2

2
t+σBt . (7.10)

The figure 7.12 visualizes a sample paths of the solution (7.10) over the time interval
[0, 10] for the η = 3, σ = 0.1 and for three values of λ given in the legend.
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Figure 7.12: Oscillating process

We can guess now the influence of parameter λ. It drives the deterministic part of
(7.10) and therefore the higher is the |λ| the higher are the peaks in (7.10). We can also
observe that the fluctuations due to the stochastic part are the highest at those peaks.
Taking the negative value of λ generates the phase shift of size π.

Let us now focus on the parameter σ, since it drives the stochastic part of (7.10), it
affects the size of fluctuations, as we can see in the figure 7.13.

We can advance and compute the expected value of (7.10). The equation (6.13) reaches

{
ṁ(t) = λ cos(t)m(t),

m(0) = η,

which has solution

m(t) = ηeλ cos(t). (7.11)

We can see, that Xt approaches m(t) as σ → 0. The expectation for λ = 1 is displayed
in the figure 7.14.
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Figure 7.13: The sample paths of the solution Xt for σ = 0.1 and σ = 0.02
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Figure 7.14: The expectation of Xt

Now we will compute the variance. The equation for the second moment is

{
Ṗ (t) = (2λ cos(t) + σ2)P (t),

P (0) = η2,

so that its solution is

P (t) = η2e2λ sin(t)+σ2t. (7.12)

Taking (7.12) and (7.11) we compute the variance of Xt

VXt = P (t)−m2(t) = η2e2λ sin(t)
(
eσ

2t − 1
)
.

The behaviour of VXt is shown in the figure 7.15.
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Figure 7.15: The variance of the oscillating process for λ = 1 and σ = 0.1

The standard deviation is

σd =
√

VXt = ηeλ sin(t)
√
eσ2t − 1.

The last figure 7.16 puts together the solution, the expected value and EXt ± σd for
λ = 1, σ = 0.1 and η = 3.
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Figure 7.16: The sample path of the solution Xt fitted with its expectation and EXt± σd
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7.4 Brownian bridge

The last example that we are giving is the so called Brownian bridge. It is the stochastic
process that satisfies the initial value problem (7.13) on the interval [0, 1).{

dXt = b−Xt
1−t dt+ dBt,

X0 = a.
(7.13)

We have to work only on the interval [0, 1) because for t = 1 the f(Xt, t) = b−Xt
1−t increases

over every bound, which violates the existence and uniqueness theorem. Since (7.13) is
not homogeneous, we first have to solve the corresponding homogeneous problem.

{
dYt = −Yt

1−t dt,

Y0 = 1,

which is an initial value problem for an ordinary differential equation and its solution is

Yt = 1− t.

Taking the formula (6.10) we obtain

Xt = (1− t)

a+

t∫
0

b

(1− s)2
ds+

t∫
0

1

1− s dBs

 ,

Xt = a(1− t) + b(1− t)
[

1

1− s

]t
0

+ (1− t)
t∫

0

1

1− s dBs,

so the final expression for the solution of 7.13 is

Xt = a(1− t) + bt+ I(t), (7.14)

where

I(t) = (1− t)
t∫

0

1

1− s dBs

is normally distributed with expectation

EI(t) = 0 (7.15)

and variance given by

VI(t) = E(1− t)2

 t∫
0

1

1− s dBs

2

= (1− t)2

t∫
0

1

(1− s)2
ds,

VI(t) = t(1− t). (7.16)
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Since the variances of a(1− t) and bt are equal to zero because they are deterministic
functions, the (7.16) is also the variance of Xt. and the standard deviation of Xt is

σd =
√
t(1− t);

When we look at (7.14), we can easily deduce that in this case we don’t need the equation
(6.13) to obtain the expectation of Xt. It is straightforward that

EXt = a(1− t) + bt+ E

(1− t)
t∫

0

1

1− s dBs

 .

and since (7.15) holds,

EXt = a(1− t) + bt.

In the figure 7.17 we can see a trajectory of the Brownian bridge from a = 1 to b = 2
together with its expected value.
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Figure 7.17: Brownian bridge

At the end we will make a remark about the name of this process. It is obvious that
the value of Xt at t = 0 is a and its value at t = 1 is b and the process in between creates
some sort of bridge from a to b. Since this ”bridge” is normally distributed, it got the
name Brownian bridge.
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8 Conclusion

The goal of the thesis was to deal with the issue of stochastic differential equations.
We devoted sections 2 and 3 to summarizing the probability theory and the theory of
stochastic processes. Then we showed the construction of Itô’s Integral and we stated
its useful properties. We also established the most important formula in the stochastic
analysis, so called Itô’s formula, that we used to obtain important results. After that we
actually started to deal with the stochastic differential equations. We defined what the
solution is and we stated the theorem of existence and uniqueness of it. Then we focused
on the special case of linear equations. We derived the general formula for the solution
of linear stochastic differential equation. We also obtained the equations for the first and
second moment of the solution as well. In order to do that, we had to transform the
integral theorems of Fubini and Tonelli into their stochastic versions and use them in the
process of deriving these equations. These results enabled us to compute the expected
value and variance of the solution without the need of computing them directly from the
it.

In the last section we used the results from the previous text and treated the specific
problems. We also visualized our results in order to make them more clear. The first
of them was the Langevin equation. It turned out that its solution tends to normally
distributed random variable. The second example was the Geometric brownian motion.
Also in this case we did a detailed analysis of its solution and we found out an interesting
property of it, i.e. that for specific values of the coefficients of the equation, the solution
tends to 0 as time tends to infinity while its expected value grows to infinity. We showed
also an example with an oscillation in the solution. The last example was the Brownian
bridge between a and b.
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