
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

3D OBJECT RENDERING INTO REAL ENVIRONMENTS
USING MOBILE DEVICES

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE JÁN ŠVEHLA
AUTHOR

BRNO 2013

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

ZOBRAZOVÁNÍ 3D OBJEKTŮ DO OBRAZU REÁL-
NÉHO SVĚTA NA MOBILNÍCH ZAŘÍZENÍCH
3D OBJECT RENDERING INTO REAL ENVIRONMENTS USING MOBILE DEVICES

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE JÁN ŠVEHLA
AUTHOR

VEDOUCÍ PRÁCE Prof. (FH) Dl DR. REGINE BOLTER,
SUPERVISOR

BRNO 2013

Abstrakt
Tato bakalářská práce je zaměřená na problémy vyskytující se při tvorbě aplikace pro mo-
bilní zařízení využívající rozšířenou realitu. Jako vyvíjená aplikace byla zvolena jednoduchá
strategická hra. Tato práce provede čtenáře základními tématami a problémy rozšířené
reality, jejího využití a možnostech na mobilních zařízeních a samotným návrhem a imple-
mentací vyvíjené aplikace. Výsledek této práce je možno využít pro vývoj mobilních her
nebo obecních aplikací využívajících rozšířenou realitu.

Abstract
This bachelor’s thesis is aimed at the problems and issues which are encountered over
development of application for mobile devices using augmented reality. As a developed
application was chosen a simple tower-defense game. This thesis will guide the reader
through general topics and issues of augmented reality, it’s usage and possibilities with
mobile devices and actual design and implementation of developed application. Results
of this work can be used for development of mobile games or general purpose augmented
reality applications.

Klíčová slova
rozšířená realita, 3D objekt, vykreslování, Android, Android NDK, tower-defense, ARLand-
ing

Keywords
augmented reality, 3D object, rendering, Android, Android NDK, tower-defense, ARLand-
ing

Citace
Ján Švehla: 3D Object Rendering into Real Environments Using Mobile Devices, bakalářská
práce, Brno, FIT VUT v Brně, 2013

3D Object Rendering into Real Environments Us-
ing Mobile Devices

Declaration
I hereby declare that this thesis and the project reported herein is my original authorial
work which I did on my own, and that all sources, references and literature used or cited
in this thesis were properly acknowledged by complete reference to the source.

. .
Ján Švehla

May 22, 2013

Acknowledgement
I would like to thank my supervisor, Prof. (FH) Dl DR. Regine Bolter for taking on my
thesis, inspiring me and overall help.

I also extend my thanks to Ing. Vítěslav Beran, Ph.D. for supervising my thesis in early
stages and helping me to gain knowledge about augmented reality.

Last but not least I would like to thank my family and my friends for supporting me
during work on this thesis.

c© Ján Švehla, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Theoretical Introduction 3
2.1 Augmented Reality . 3
2.2 Android platform and 3D models . 7

2.2.1 Android Native Environment . 8
2.2.2 Android Graphics Subsystem . 9
2.2.3 OpenGL ES and 3D models . 10

2.3 Frameworks for augmented reality . 12
2.3.1 Overview of existing frameworks . 12
2.3.2 Junaio . 13
2.3.3 Vuforia . 15

3 Application Design 17
3.1 Game principles . 17
3.2 Integration with augmented reality framework 18

3.2.1 User testing . 19
3.2.2 Markers . 19

3.3 Graphical user interface . 20

4 Realization 23
4.1 Implementation details . 23

4.1.1 Android NDK, JNI . 24
4.1.2 Markers and global coordinate system 24
4.1.3 Drawing content . 25
4.1.4 User touch handling . 26

4.2 Evaluation and assessments . 27
4.2.1 Startup time . 27
4.2.2 User experience testing . 27
4.2.3 Possibilities of future development 30

5 Conclusion 32

A Contents of the provided CD 35

1

Chapter 1

Introduction

Since the beginning of advanced computer graphics and virtual reality it was possible to
display it only on monitor screens or similar equipment. However, people wanted to bring
the technology closer. Augmentation of real world with virtual objects has always been
very desired, but it was possible only in sci-fi.

With technological advancement came also the first mobile augmented reality devices.
Attribute “mobile” might not be on the right place. To achieve enough processing power
and required accessories these devices were sizeable and heavy. They used mainly head-
mounted displays and the user had to carry the computer with him. The price was also
unaffordable so it was used only in specific industry or academic circles.

Nowadays, almost everybody has a device capable of augmented reality. Smartphones
provide all resources needed for it - sufficient performance, camera and also displaying unit.
In addition they have sensors as GPS or accelerometer, which extends possibilities of usage.

This thesis will be aimed at possibilities of current tools for development of augmented
reality application on Android platform and development itself. For this purpose a simple
game using augmented reality will be developed. Principles of game are described in the
third chapter.

The theoretical part will introduce issues of augmented reality and mobile devices. At
first some history of augmented reality, basic principles and also examples of current usage
will be described. The Second part will be about 3D models and how they work at Android
platform. It will cover graphical subsystem on Android, most important graphics library
- OpenGL ES and also general overview of 3D modelling. The end of the chapter will
describe and analyze current frameworks for augmented reality applications.

The next chapter will be about design of developed application. It will state applica-
tion goals and expected properties. It will also describe the integration with the chosen
framework. Also, graphical user interface design and 3D models for application will be
described.

There will be also described design of graphical user interface and 3D models used for
the application.

In implementation you will be able to read about the main problems and the most
important parts of implementation. It will cover processing of output received from frame-
work, connection between Android SDK and native code.

Evaluation will cover fulfillment of expected attributes of application and used frame-
work. It will discuss imperfections, deficiencies, and possible solutions.

2

Chapter 2

Theoretical Introduction

2.1 Augmented Reality

The term Augmented reality describes technologies allowing the user to see and interact
with virtual computer-generated content overlapping the real world. It extends the user’s
perception of the world by mixing the view of the real world with virtual objects that
contextually belong there. All this must work in real-time and in 3 dimensions. Augmented
reality is not bond only to vision. It can be applied even to other senses - hearing, touch,
smell.

Figure 2.1 shows reality-virtuality continuum from article [11]. On the one extreme
there is the real environment, on the other the virtual environment. Everything in between
belongs to mixed reality. Paul Milgram and colective [11] distinguishes between augmented
reality and augmented virtuality. The first one is based on the real environment augmented
on objects from the virtual environment. The other one does the exact opposite. The
example could be a virtual landscape augmented with real persons.

Figure 2.1: RV continuum Source: [11]

A few years ago augmented reality was known only in academic circles or in specific fields
such as medicine, the automotive industry, etc. Very sizeable computers and specialized
equipment were required for its operation. With the onset of smartphones, augmented
reality quickly got in touch with the public.

Applications that provide augmented reality on smartphones use input data, which can
be divided in 3 categories:

• Camera data
Images from the camera are used as Real Environment from figure 2.1 in which aug-
mented virtual objects will be blended. Additionally, they are used for recognition of

3

objects in the real environment.

• Location data
These data are gained from GPS sensor or other location services as finding nearby
WiFi access points. They are used mainly for positioning relevant objects. Recogni-
tion of objects from camera, especially in large areas, is not always adequate. If it is,
it is very computationally expensive.

• Other sensor data
They are required for specifying the orientation of virtual object in space. These data
can be gained from gyroscope or compass. By using these data it is easier to correctly
display an object at different angles.

Approaches to augmented reality

Devices which are capable of augmenting reality are nowadays accessible very easy [3]. The
most common types are listed below.

• Head-mounted displays
There are two different head-mounted display technologies to bring graphics onto
the user’s view of the real world. The first type is video see-through head-mounted
displays that mix the virtual content with video background from attached camera
device. Second approach is optical see-through head-mounted display that uses optical
combiners as for example transparent LCD display. These two methods are the most
comfortable but they also have many disadvantages. Optical see-through display
requires difficult calibration and precise head-tracking to ensure correct graphical
overlay. Good example of optical see-through display is Google Glass 2.2.

Figure 2.2: Optical see-through head-mounted augmented reality device Google Glass.
Source:1

• Stationary, Screen-Based displays
An augmented reality system can easily be set up with a stationary computer, a
monitor and a webcam. These systems make use of video-mixing (video see-through)
and display the merged images on a regular monitor. It can be used for magic mirror

1Source: http://www.foxnews.com/tech/2013/03/10/no-joke-guy-cant-walk-into-seattle-bar-wearing-
google-glasses/

4

[5] metaphor which is a concept that instead of making the user see through the
display, makes the user see him or herself in the display, as if it was a mirror. This
can for example be achieved by putting the webcam on the top of the monitor and
pointing it at the user. Example of this approach is again from Google - Google
Hangout 2.3.

Figure 2.3: Example of magic mirror metaphor - Google Hangout. Source:2

• Handheld
Nowadays almost every mobile device, e.g. smartphone or tablet, has built-in camera
and rather large screen, which is exactly what is needed for an augmented reality
system. The camera is mostly placed at the back of device, pointing away from
the user. This makes it suitable for video see-through display technology. Device’s
camera captures the real environment, which is used as a background. Virtual content
is added as an overlay and the result is displayed on device’s screen. This approach
is used also in this thesis.

Figure 2.4: Handheld device used for augmented reality. Source:3

2Source: https://plus.google.com/+googleplus/posts/NrGoAZKpyTx

5

Smartphones and tablets have standardly useful built-in equipment such as GPS units,
digital compasses and six degrees of freedom (2.1) acelerometer–gyroscope. Another ad-
vantage is the portable nature of these devices. Disadvantage is the physical constraint of
the user having to hold the handheld device out in front of him at all times. This limits the
possibilities of interaction with real environment. On figure 2.4 you can see a smartphone
which is used as handheld AR device.

Application examples

The first possibility of use for the public is use of interior design. Users use their AR device
to see the real environment of their rooms augmented with their desired pieces of furniture.
The result is almost authentic.

Alternative use of AR, for example is a tourist guide. The user aims his device at the
street and the application adds labels of interesting places. By using location and sensor
data virtual objects will be positioned right at the real world objects.

Essential possibilities are offered in entertainment. Adding game objects into the real
environment have always been a dream. With the new possibility of easy and effective
interactivity the gap between the real world and gaming will become minimal.

Mobile phones now have sufficient processing power for simple computer vision, video de-
coding and interactive 3D graphics. Many device manufacturers are also fitting graphics
processing units (GPUs) into mobile phones, providing faster graphic and hardware floating-
point support. This enables a very wide range of use.

Camera registration problem

Using location data to determine the location of the viewer (camera) is not precise enough.
Thus, when using such sensors, it is necessary to employ a hybrid system that combines
vision-based methods and sensor data. Vision-based registration relies on the identification
of features in the images. In a simple example artificial markers are placed in the real world,
model-based, and/ or natural features are used for the registration. Markers are designed
to be easily detectable; however, arranging the markers takes extra efforts and it also limits
the user’s moving range.

Most of the previous work on natural feature tracking in AR has only attempted to track
two-dimensional (2D) features across a sequence of images. This is considerably simpler
than the full 3D problem and it can readily be achieved in real time. The recovered 2D
motion field can be used to estimate the change in positions of labels for 2D geographic
labeling applications: A possible approach is to measure the optical flow [12] between
adjacent image frames. For the special case, in which the camera motion is pure rotation
or the viewed scene is planar, the 2D positions of corresponding features in two different
camera views are related by a homography.

Six Degrees of Freedom

It refers to the ability of the tracking system to maintain alignment of a real world object in
three dimensional space. For a typical smartphone AR application, 6 degrees of freedom are
possible. Location sensors are able to provide forward/back and left/right, up/down (GPS)

3Source: http://archive.picnicnetwork.org/page/22322/en

6

and yaw (compass) and the accelerometer can indicate pitch and roll of the device. Similarly
image recognition techniques can calculate angles from a known reference orientation.

2.2 Android platform and 3D models

Android is an open source platform based on linux kernel. It is primary intended for devices
with touch screen as smartphones or tablets. Android software stack includes operating
system, middleware, user interface and user applications. Users can download thousands
of applications through online market.

Brief history of Android

The first mention about Android platform comes from 2005 when Google bought a little
start-up called Android. They were developing a simple and flexible operating system for
wide range of devices. One of the primary goals was an easy and comfortable downloading
of new actualizations. Three years later, in 2008 the first version of Android was released.

From the introduction of the first version, until the time of writing this thesis, Google
released 10 major updates. Each of this releases carries a codename of a dessert.

Architecture of Android system

The Android software stack consists of five sections ordered in four layers as seen on figure
2.5.

Figure 2.5: Android architecture.4

4Source: http://developer.android.com/images/system-architecture.jpg

7

Linux kernel - takes care about essential system services like security, management of pro-
cesses, memory, networks and drivers. Kernel acts as abstract layer between hardware
and software.

Libraries - Android contains set of libraries written in C and C++ language which ac-
cess various components of system. They are accessible for developers through the
Application framework.

Android runtime - every application for Android runs in its own process and own in-
stance of virtual machine Dalvik. Virtual machine Dalvik transforms application
from Java code to navite code.

Application framework - it is a layer containing other libraries, this time in Java, which
form their own system API. It is a set of functions which enable the developer to work
with parts of operating system.

Applications - build-in applications which provide the basic functionality for user. User
can also download applications from online market.

2.2.1 Android Native Environment

The NDK (Native Development Kit) [13] is an adjunct to the Android’s SDK (Software
Development Kit). The Android VM allows application’s source code to call methods
implemented in native code through the JNI. Native code runs on the native device instead
of in Java on the Dalvik virtual machine. Since communication between the virtual machine
and the native machine is costly, normally it is best to develop applications completely in
the SDK for the virtual machine.

The Android framework provides two ways of using native code:

• Write application using the Android framework and use JNI to access the APIs pro-
vided by the Android NDK. It covers declaring one or more methods with the native
keyword to indicate that they are implemented through native code, providing a na-
tive shared library named according to Unix convention, which will be packaged into
the .apk archive and statically loading the libraries at startup.

• Use native activity which will be implemented purely in native code. Android lifecycle
events as onCreate(), onPause(), onResume(), will be forwarded to native environment
where the developer can handle them. This method requires Android 2.3 or higher.

Very good example of usage is the Unreal Engine. It’s a game engine - libraries for game
physics, graphics libraries and other complex parts of computer video game. It’s written
with very complex commands and algorithms that just aren’t possible or practical to code
in Java and run under Android’s Dalvik machine. The NDK allows developers to use the
Unreal Engine, almost as written, to build intense 3D games.

In this thesis Android NDK will be used for major part of the implementation. It
provides very good performance, even with older device. Development was though more
difficult and not so comfortable that in Java. Application was developed using Eclipse5

IDE and for Android NDK it missed many features that were available for Java delopment.

5See: http://www.eclipse.org/

8

2.2.2 Android Graphics Subsystem

Android provides a variety of powerful APIs for applying animation to UI elements and
drawing custom 2D and 3D graphics. Article [2] describes the software components in the
Android operating system responsible for graphics.

Figure 2.6: Approximate relationship between various graphics components in a typical
Android application. Source: [2]

• GPU
Graphical processing units (GPUs) are specialized processors with dedicated memory
that conventionally perform floating point operations required for rendering graphics.
Current generation of GPUs has evolved into many-core processors that are specifi-
cally designed to perform data-parallel computation.

• HWUI
The HWUI library enables UI components to be accelerated using the GPU. HWUI
was introduced in Honeycomb to make the user interface fast, responsive and smooth.
Since tablets had very high resolutions, using Skia for effects like animation would have
been too intensive and slow for CPU. HWUI requires an OpenGL ES 2.0 compliant
GPU which cannot be emulated by software on Android.

• Canvas
Canvas is the Android class that application developers would use to draw widgets,
pictures etc. In Android versions Froyo and Gingerbread Canvas would do the drawing
using Skia. In Android Honeycomb and onward, HWUI was added as an alternate
GPU-accelerated option. From Android Ice Cream Sandwich (ICS) HWUI is the
default.

• Skia
Skia Graphics Engine is a compact open source 2D graphics library. For performance
reasons Skia is slowly being replaced by HWUI.

• Renderscript
Renderscript was a new API introduced in Honeycomb to address portability and

9

performance at the same time. The application developer writes the code in the Ren-
derscript language (which is based on C99), and an LLVM cross compiler on the host
converts it to machine-independent IR called bit code, the developer then packages
the bitcode files into the Android application (APK). When the user downloads the
APK, an on-device compiler (LLVM based, located in /system/lib/libbcc.so) compiles
it from bit code to the actual machine instructions for the target platform.

• Surface
A Surface in Android corresponds to an off screen buffer into which an application
renders the contents. The application might be a game which uses OpenGL to draw
3D objects directly into a surface or a normal application which uses Skia to draw
widgets, text, etc. It could even use HWUI library to enable a GPU accelerated
user interface. From Android ICS, surfaces are implemented with a SurfaceTexture
backend which means instead of a buffer a texture is used.

• OpenGL ES OpenGL is the most widely adopted standard for real-time computer
graphics, covering most operating systems. It is used for visualizing 2D and 3D data.
It is more described in the following text.

2.2.3 OpenGL ES and 3D models

OpenGL 6, the Open Graphics Library, is a standard specification defining a cross-language,
multiplatform API for writing applications and simulating physics, that produce 2D and 3D
computer graphics. ES in the name stands for Embedded Systems, and OpenGL ES7 is a
modified version of OpenGL for smaller, less powerful devices such as Android devices. The
interface consists of over 250 different function calls, which can be used to draw complex
three-dimensional scenes from simple primitives. OpenGL works around 3 basic concepts:

• Primitives
OpenGL’s primitives is limited to 3 types of objects:

3D Point in space (x,y,z) - can be used as a particle in the space.

3D Line in space (composed by two 3D Points) - can be used as a 3D vector.

3D Triangle in space (composed by three 3D Points) - it is a type of polygon

• Buffers
In simple words, the term buffer refers to a temporary optimized storage space.
OpenGL works with 3 kind of buffers: Frame Buffer is represented as a special array on
the video card. It has several components: colour buffer for RGBA, depth buffer
for z-depth in space, stencil buffer for determining the visible part of objects and
accumulation buffer for the intersection of objects.

Render Buffer is a temporary storage of one single image. It has also a few compo-
nents: Color Render Buffer stores the final colored image generated by OpenGL’s
render. Color Render Buffer is a colored (RGB) image. Depth Render Buffer stores
the final Z depth information of the objects. It’s a grey scale image about the Z posi-
tion of the objects in 3D space. Stencil Render Buffer is aware about the visible
part of the object. It is a black and white image.

6OpenGL, Khronos Group, http://www.opengl.org/
7OpenGL ES, Khronos Group, http://www.khronos.org/opengles/

10

Buffer Objects is the general term for unformatted linear memory allocated by the
OpenGL context. These can be used to store information about 3D objects in an opti-
mized format such as vertex data, pixel data retrieved from images or the framebuffer,
and a variety of other things.

• Rasterize
Rasterization is the process which a primitive is converted to a two-dimensional image.
Rasterizing a primitive consists of two parts. The first is to determine which squares
of an integer grid in window coordinates are occupied by the primitive. The second
is assigning a color and a depth value to each such square.

3D modelling

A 3D Model [4] is a mathematical representation of any three-dimensional object (real or
imagined) in a 3D software environment. Unlike a 2D image, 3D models can be viewed in
specialized software suites from any angle, and can be scaled, rotated, or freely modified.
The process of creating and shaping a 3D model is known as 3D modelling.

There are many concepts and representations of 3D models of which the most interesting
are:

• NURBS models allows a curve to be created with the use of two control points. These
points are generated in multiples to create the skeletal system of the model. This form
of modelling is the best one for objects that are not going to be animated, as they
require a lot of modifications to be suitable for the animation process. One of the
main advantages of curve-based modelling in comparison with polygonal modelling
is that it is resolution-independent. The software application interpolates the space
between curves and creates a smooth mesh between them. NURBS surfaces have the
highest level of mathematical precision, and therefore they are the most frequently
used in modelling for engineering and automotive design.

• Polygonal modelling is the oldest type of 3D modelling. It is an approach for modelling
objects by representing or approximating their surfaces using polygons. 3D polygonal
models are composed of

– Face stands for each element consisting of more than 2 vertices. Normally poly-
gons are either four sided (character/organic modelling) or three sided (com-
monly in game modelling).

– Edge is any point on the surface of a 3D model where two polygonal faces meet.

– Vertes is a point of intersection between three or more edges in three dimensional
space

• Constructive solid geometry uses simple objects called solids, constructed according
to geometric rules. The special properties of CSG solids allow mathematical oper-
ations that are not possible with an arbitrary polygon mesh. The standard CSG
primitives consist of the block, triangular prism, sphere, cylinder, cone and torus.
The primitive may require transformations such as scaling, translation, and rotation
to be positioned at the desired place. A CSG procedure can be represented by a
tree structure. The root of the tree defines the object of interest, and the leaf nodes
are geometric primitives. In between the root and the leaves lie operator nodes. Al-
lowable operations are typically Boolean operations on sets: union, intersection and
difference. Example of CSG tree is on figure 2.7.

11

Figure 2.7: A simple CSG model as a result of boolean operations. Source:8

2.3 Frameworks for augmented reality

Thanks to general purpose and big appeal of users Augmented Reality attracted even many
developers. Issues of augmented reality are perceived to be complex and difficult. This and
the demand of developers for simple accessibility of augmented reality functionality allowed
creation of many AR frameworks.

2.3.1 Overview of existing frameworks

In this subsection smaller projects are shortly described with interesting ideas. Some of
them are standalone application or just libraries.

AndAR

AndAr [1] is simple marker-based augmented reality framework. Its architecture is shown at
figure 2.8. Developer has to extend the abstract class AndARActivity which already handles
everything Augmented Reality related, like opening the camera, detecting the markers and
displaying the video stream. To detect markers developer has to register ARObjects to
an instance of ARToolkit. This instance can be retrieved from the AndARActivity. The
constructor requires filename of a pattern which can be created by a tool called mk_patt.
The class ARRenderer is responsible for everything OpenGL related. In OpenGLRenderer
interface there are three methods defined. One of them is setupEnv which is called once
before the augmented objects are drawn. It can be used to issue OpenGL commands that
shall effect all ARObjects, like initializing the lighting.

8Source: http://www.fit.vutbr.cz/study/courses/IZG/private/lecture/izg slide 3d objekty present.pdf

12

Figure 2.8: Simplified class diagram of an application that makes use of AndAR. Source:
[14]

DroidAR

Droidar [6] is open-source Augmented Reality framework for Android developed by Simon
Heinen, a computer science student from RWTH Aachen in Germany. It provides location-
based or marker-based Augmented Reality functionality. DroidAR has great 3D model
support using libgdx9 framework. Application works with 3 display layers - image from
device’s camera, OpenGL layer with transparent background and default android overlay
with UI.

The starting point is Setup class where developer configures the application. Developer
can create GUI, add actions to events, create virtual world with objects, and camera. There
is also method for updating virtual objects - providing animation and rotation of objects.

Mixare

Mixare [9] is a free open source augmented reality browser that works as a completely
autonomous application and is available for the development of own implementations as
well. Mixare is pure location-based. Application can read a list of markers in XML or
JSON format, giving the latitude, longitude, and also altitude. For example, you can get
an XML list from OSM (a map location provider) saying the nearby metro stations, loading
it into Mixare apps. According to device’s location from GPS it can show correct direction
to targets or calculate the distance in AR view.

Target’s position can be specified also with altitude. However, GPS altitude is rather
inaccurate, so the position is calculated from the actual latitude+longitude by setting the
altitude to a certain height. Targets will span only across +20 and +45 degrees above the
horizon.

2.3.2 Junaio

Junaio [10] is an Augmented Reality platform for Android and iOS. It provides open web
API for developers. Developer develops only content which will be delivered to user through

9libgdx - Android/HTML5/desktop game development framework, http://code.google.com/p/libgdx/

13

Junaio application in user’s smartphone. User subscribes to developer’s channel using
application. There are 2 types of channels:

• Location-based channels

• GLUE channels (image recognition)

Junaio application sends sensor data (corresponding to channel’s type) to Junaio servers.
They will try to find appropriate POI (Point Of Interest) belonging to subscribed channel.
If they are successful, they will send a request with POI ID, User ID, etc to developer’s
web server. There is a response with related content created - images, 3D models, videos
and sent back to Junaio server. Junaio server checks the message and forwards to user’s
smartphone where it is displayed. This whole process is shown on figure 2.9.

Figure 2.9: Communication cycle of Junaio AR browser. Source: 10

Image recognition-based channels - Junaio GLUE

Junaio GLUE is service for image recognition with no markers are required. Besides classic
2D image recognition, it allows also 3D object recognition comparing to 3D model target.
Recognition is processed at Junaio servers where the application sends the images captured
from the device’s camera. After successful recognition Junaio servers send request to chan-
nel owner’s web server which returns relevant content. Junaio server forwards it along with
camera registration data back to the user’s device.

Junaio also offers a tool for creating 3D object targets. 3D object is placed on a flat
surface. Next to it a special marker (printed on paper sheet) is placed. 3D object is
captured by using device’s camera and by application Creator Mobile. Application creates
approximate 3D model which is sent to developer’s email, ready for further editing.

Location-based Channels

Every smartphone that Junaio supports has a GPS sensor, gyroscope, and compass. These
sensors must be enabled when using Junaio application. After successful localization of
device, coordinates are sent to Junaio servers. They determine the nearest Points Of Interest

10Source: http://dev.junaio.com/publisherDownload/junaio LocationBased.pdf

14

belonging to subscribed channel and send requests to developer’s web server. Response
with relevant content is created and forwarded to the user’s device. Camera position is
determined by using sensors data. POIs are displayed as virtual objects - signs with text,
image or video.

Junaio also allows location-based content inside building where GPS signal is not avail-
able - using LLA markers. An LLA marker is similar to QR code but contains only geo-
graphical coordinates. They are used in the same way as if gained from GPS sensor.

2.3.3 Vuforia

Vuforia [7] is vision-based AR platform. It is available for Android, iOS and Unity. For
Android it offers whole SDK with libraries for complete AR application. It includes com-
puter vision algorithms, target creation tools, target management, cloud database tools,
object rendering etc. Overview of SDK is on figure 2.10. Information about framework is
available in developer guide [8].

This framework was chosen for this thesis. We used only marker targets which proved
their functionality very well. Vuforia framework contained also sample applications from
which one was used as a reference for our developed application. It contained good example
of initialization of framework as well as processing data gained from framework’s computer
vision. Vuforia has also extensive forum for developers where a wide range of application
development topics are discussed.

Figure 2.10: High-level system overview of Vuforia SDK Source: [7]

Targets

Targets are representations of real-world objects that can be detected and tracked. Vuforia
works with 4 basic types of recognized targets:

• Image targets
They do not require any black and white regions or codes to be recognized. Vuforia
recognizes image target by comparing features (acquired from image analyzer) with
a known target resource database. Once it is detected, SDK will track the image.

• Frame markers
It is a special type of fiducial marker. Unique ID of a frame marker is encoded into

15

a binary pattern along the border of the marker image. When the ID is in range of
[0. .511]. Markers the Markers are manually added to the target image. Then they are
distributed in Vuforia SDK and the developer has to scale them to an appropriate size.
Frame and binary pattern must be entirely visible in camera image for recognition.

• Multi-targets
A multi-target consists of multiple image targets that have a fixed spatial relationship.
They are created by defining a relationship between multiple existing image targets
using the Target Manager or by the direct manipulation of the Dataset Configuration
XML file. The spatial relationship of the individual parts is stored in the XML file
using simple transformations.

• Virtual buttons
Virtual buttons are developer-defined rectangular regions on image targets which,
when touched or occluded in the camera view, can trigger an event. Evaluation of
virtual buttons is possible if the button area is in the camera view and the camera is
not moving quickly.

Vuforia SDK uses right-handed coordinate systems. Each image target and frame marker
defines a local coordinate system with (0,0,0) in the center (middle) of the target.

Image rating

Vuforia offers the possibility of creating user-defined targets during runtime. After analysis
of the captured image it is rated. The rating depends on the count and distribution of shared
edges. Even if image contains enough sharp edges and good distribution, repetitive patterns
hinder detection performance. Images must be in JPG or PNG format with maximal size
of 2MB and in grayscale or RGB.

Database of targets

Vuforia offers an online GUI - Target Manager that supports creating device databases and
cloud databases, adding targets to these databases, and managing targets. Targets can be
stored in:

• Device database Due to mobile device performance it is limited to 100 targets per
database.

• Cloud database It is possible to use only clouds hosted by Vuforia. Besides Tar-
get Manager it can be managed through Vuforia Web Services API. After creating
database, server access key is generated. A server access key is required for use of the
Vuforia Web Services API and for accessing targets from application.

16

Chapter 3

Application Design

The goal of this thesis was to create an experimental application which uses augmented
reality and interactive 3D models. For this purpose a simple tower-defense game named
ARLanding was chosen.

The game will use markers printed on paper. These markers will be used for camera
registration and for game objects positioning. The user will be able to interact with these
game object by touching their virtual objects on the device’s screen.

For augmented reality functionality the Vuforia AR framework will be used. The code
will be based on a sample application from Vuforia - Dominno for easier integration with
framework.

3.1 Game principles

The rules of the game are as in the most of other tower-defense games. The user needs to
defend his base against enemy units coming from their base. There are 3 types of enemies -
light vehicle, tank and flying vehicle. Every enemy has health points which are reduced by
every hit received. When it drops to zero, the enemy is terminated. Enemies are coming
in waves according to the level of game. When the enemy reaches the user’s base, it is
terminated and their base loses health points. The user can use two sentry towers for
defense by placing them into the battlefield. They are bound to their markers and will
shoot at enemy units which are passing by. Towers also have health points and enemies will
shoot at them as well. If a tower’s health is below zero, the tower is deactivated. It can
be revived by being repaired in exchange for game currency. The tower’s attributes can be
upgraded for game money. Money can be gained by killing enemies.

The main element of the game for the user is a big virtual tower placed at the user’s
base. It has a transparent top with sight of the battlefield. The user is able to shoot at
the battlefield only if the camera is located in the top of the tower. Shooting is done by
touching the enemy object on screen. Weapons and other attributes of the tower can also
be upgraded for game currency.

Every active object has limited health points. For enemies it depends on the enemy
type, for user objects on the level of upgrade. With every hit the object loses health points
according to attacker’s damage value. Every active object has a health-bar located above
its virtual model.

Attributes which can be upgraded are: maximal health of object, damage done to
enemies, speed by which object can shoot enemies, range where the shots of the object can

17

reach and angle which determines the segment in front of the object where it can shoot. The
user can upgrade attributes of main tower and two sentry towers for game currency. There
are 5 levels of each upgrade. Every level improves the value of the attribute so it is more
effective. With every new upgrade, the price for the next one rises. Prices for individual
levels of upgrade are the same for main tower and sentry towers. Values of attributes are
enhanced for the main tower.

Game objects behavior

The behavior of active game objects is simple. Enemy units need to move from their base to
user’s base. For simulation of authentic movement, units move in curved trajectory. With
each step units do, vector direction is set to enemy base. Then, it is turned by deviation
angle which is modified by 5 degrees every step. When it reaches the maximum limit, a
new maximum in opposite positiveness is randomly generated and the deviation angle will
proceed to it.

Enemy units (A) also need to avoid obstacles (B). It is done by checking for the in-
tersection of two lines. The first line is the vector direction of A multiplied by constant
- distance for which this is to be tested. The second line is each side of a square created
around obstacle object B. The single direction line leads from the center of the object A.
Therefore, the bounding square around the object B is bigger than its real size so it also
covers the size of object A. If the intersection occurs, it keeps creating new deviation angles
for object A until a clear path is found. If no deviation angle is found after 100 tries, the
direction vector is turned by 180◦ and it makes a step back. In the next step this procedure
repeats.

The logic of the sentry towers is even simpler. They try to find the nearest target in
their range and shoot at it. If no suitable object is found, no action is done. This repeats
for every shot.

3.2 Integration with augmented reality framework

In standard tower-defense games the main occupation for user is to build new towers or to
upgrade them using only device’s screen (or desktop’s monitor and mouse). In ARLanding
we want to use augmented reality to enhance the user experience by mixing the game world
with real world. Users will be able to interact with game world not only by touching the
screen or keys, but also by moving the camera in real world as it was a window through
which they can look at the game world. To bring users even deeper into the game world, the
important part of the game is positioning the camera at the top of a virtual tower. Users
will be able to look from there to the battlefield as if they were standing there themselves.

Another enhancement of interaction will be positioning of game world elements using
markers. Normally users would have to use only game-generated worlds or to use some
kind of editor to position the game objects. In ARLanding this will be done by moving the
markers in real world. Main

To mix the game world with the real world we will use Vuforia framework. Framework
takes a frame from the device’s camera and finds the positions of markers as well as the
position of the camera itself. With this we can orientate in the game world and draw it
as if it was set in the real world. Coordinates of markers gained from the framework are
processed by the game logic to provide gameplay as well as by graphics to correctly position
and draw game objects.

18

3.2.1 User testing

The main user’s occupation in ARLanding’s gameplay is positioning of the camera into the
top of the main tower and shooting at enemies from there. To provide proper use for this
action, it is required to have adequate strength and number of enemies. These three issues
are very important and will be tested with users and adjusted to improve the gameplay
and overall user experience.

Testing will be done directly during playing the game. Positioning of the camera will
be tested by measuring the ratio of time when camera is positioned inside the top of the
tower to overall gameplay time. User can shoot from the main tower only if the camera
is positioned there so reliable registration of camera is very important. From the result
we will be able to adjust the size and position of a bounding box around the top of the
tower so it is not difficult to position it correctly and not too easy so user could shoot from
anywhere around the tower.

For shooting at enemies user needs to touch the virtual object on device’s screen. We will
test this action by counting the attempts when touch was handled properly and attempts
when the invoked action was incorrect or wasn’t invoked at all. Result of this test will help
us to adjust the bounding boxes around enemies and towers.

Strength and number of enemies needs to be set properly so the sentry towers can take
care of significal part. Weaken or a small amount of enemies need to pass by sentry towers
so user can shoot at them from the main tower. To destroy the rest of the enemies should be
challenging for user and also not very difficult. This complex issue will be tested by playing
and counting the rate of successfully finished games and games when enemies destroyed
the user’s base. With result we will be able to adjust the strength so average users can
successfully finish the game in a few attempts.

3.2.2 Markers

Figure 3.1: Image of frame marker used by Vuforia.

The vuforia framework primarily works with image targets. Recognition works very
well, but with a larger amount of targets the performance lags behind. ARLanding uses

19

5 targets - enemy base, user base and two sentry towers. The last marker is used as an
obstacle object but it is also the center of the game world and coordinate system. Because
of performance reason, ARLanding uses frame markers 3.1. Vuforia comes with 256 pre-
made frame markers. Recognized patterns are located only at the edges of a square marker
(OR square markers), therefore there is a free space in the middle. It can be used for easier
distinguishing of markers by the user as well as determining the direction that the markers
are heading.

3.3 Graphical user interface

ARLanding is situated in a sci-fi environment, therefore the menu and other non-game
screens are based on a background appearing as metallic material.

Main menu

The main menu 3.2 contains only 4 buttons - New Game, How To, Credits and Exit.
Buttons are positioned in the middle with no disturbing elements.

Figure 3.2: Main menu of application.

Game screen

The game screen 3.3 is very simple. It can be used only in landscape mode. The major part
of the screen is taken by the camera view. This part is used for all of the user’s interaction
with the game world and the objects. At the right edge of the screen there is a quick access
panel. It contains buttons for pausing the game and returning to main menu. In the left
top corner there is textual information about the game state - current health of main tower,
available money and current wave. This text changes to “Pause” if the game is paused or
to “Markers not visible” when markers are not visible.

In the middle of the screen there is an information box which appears if there is a
problem with the location of markers. Central marker is the crucial and game objects are
rendered using its coordinates. Therefore if it is not recognized in captured frame, the
game is paused immediately and an information box with a warning message appears on
the screen. The same also happens if some of the other markers are not visible for more
than 100 frames. If the marker is not found for 50 frames, a toast message appears in the
bottom of screen.

20

Figure 3.3: Gameplay screen with warning displayed.

Upgrades screen

Upgrades screen 3.4 serves to upgrade the user’s towers. It is invoked when the user
touches the game object in paused mode. Before showing this screen, it is required to
bring the current attributes of building from native environment to Java, as mentioned in
implementation (4.1.1). The screen contains labels with current values of attributes and
buttons to upgrade. If the user does not have enough game currency to buy the upgrade or
the upgrade is at maximum level, the corresponding button changes to non-clickable. After
the user clicks the back button, the game screen is shown again. Then the game stays in
paused mode.

Figure 3.4: Screen where user can upgrade attributes of towers.

3D models

ARLanding’s environment has a sci-fi theme. This theme allows relatively simple-shaped
models with narrow edges. Most of the models were downloaded from the internet and
slightly edited. Models were highly detailed and contained many vertices, which were not
needed for this application. For the reduction of details we used Decimate modifier in
Blender [4]. OpenGL ES uses a specific format for loading 3D models. It is a C header file
with arrays of vertices, normals and texture coordinates. To convert exported 3D models in
.obj model to these arrays the obj2opengl1 utility was used. Textures are loaded separately
as a .png images and are later associated with the models. ARLanding uses only 2 general

1obj2opengl, Heiko Behrens, http://github.com/HBehrens/obj2opengl

21

textures which are applied for multiple objects. You can see examples of models used in
ARLanding at figure 3.5

Figure 3.5: Models of game towers. On the left is the sentry tower, on the right is the main
tower.

22

Chapter 4

Realization

4.1 Implementation details

Implementation is based on a sample application which came with the Vuforia framework
- Dominoes. It contains a very good example of multi-threaded initialization of framework
with respect to Android platform lifecycle events. The application uses only one activity.
Screens are changed dynamically using setContentProvider method.

The Vuforia API for the Android platform is written in Android native code - C++. This
lets Android developers build performance-critical parts of the applications in native code.
The SDK and NDK communicate over the Java Native Interface (JNI). In ARLanding
native code is used for the most of the features - including framework data processing,
graphics rendering, and the whole game logics. Android SDK is used only for the graphical
user interface, handling application lifecycle events and the main application workflow.

To make the behavior of application clearer, the game operates in 4 states - running,
paused, no marker and finished. The game is in state paused when the user pauses the
game by touching the pause button or when the user is not on game screen - for example,
the upgrades screen. no marker state occurs when one of the markers is not positioned.
The game switches to finished state when the level is ended (both win or lose) and the
application is waiting for the user’s action.

On figure 4.1 you can see a simplified structure of ARLanding. The first operation of
the application loop is capturing the camera frame. The image is drawn in OpenGL as a
background and then processed by framework to recognize markers. If the marker is found,
its pose matrix is used to compute the new game world coordinates. Matrix is also stored,
for positioning of the drawing content for OpenGL. If the game is in state running, these
new coordinates are passed to game logic which invokes every active game object to make
a new step. When this is done, game objects which are still active are drawn at their new
positions.

When a graphical user interface action is done and needs to be handled in native envi-
ronment, a message is sent from the Main Activity. The same but in reversed way happens
when a GUI action is required from native code. User touches are served by their own
method. GUI Manager takes care of switching screens and layouts. For displaying a game
itself, it uses GLSurfaceView, which is used from native environment.

23

Figure 4.1: Structure of ARLanding implementation.

4.1.1 Android NDK, JNI

As mentioned, Vuforia framework uses Android native code - C++ because of performance
efficiency. The main application loop is called by onDrawFrame method inherited from
GLSurfaceView.Renderer. In ARLanding’s Java code this method is implemented only to
call the native rendering function.

During the initialization process the main activity calls several native methods. These
methods uses the Java environment variable to obtain the references to Java methods from
it. References will be used and stored for the communication. JNI offers a possibility to
share the variables between the environments. This was found performance-inefficient so
ARLanding uses mechanism of two methods for sending messages with integer or string
argument.

4.1.2 Markers and global coordinate system

The Vuforia framework returns for every visible marker the 3D pose of the target as seen
from the camera. It is a 3x4 row-major matrix. The 3x3 sub-matrix of the left three
columns is a pure rotation matrix (ortho-normal), whereas the rightmost column is the
translation vector. The difference between coordinate systems is shown at figure 4.2.

Right after this pose matrix is obtained from framework, it is converted converted from
Vuforia’s 3x4 row-major pose matrix to OpenGL’s 4x4 col-major model-view matrix. It is
done by a method provided by the toolset in the framework. These coordinates in model-
view matrix are exactly what is needed for augmentation, but are not suitable for game

1Frédéric Ntawiniga, Université Laval, http://archimede.bibl.ulaval.ca/archimede/fichiers/25229/ch05.html

24

world orientation.

One marker is chosen to act as the game world center. For this purpose, a central
marker is devoted. In gameplay it acts only as an obstacle so the user does not have to
interact with it and therefore worsen the conditions for computer vision. Coordinates of
the other markers, as well as game objects with no marker, are relative to this center. We
can get these coordinates by multiplying the inverse pose of the world center target (A) by
the pose of other targets (B). This creates an offset matrix that can be used to bring points
on B into A’s coordinate system.

4.1.3 Drawing content

Drawing of augmented content is done by OpenGL ES 2.0. There are two types of posi-
tioning game objects.

• Bond with a marker
Game objects of the main tower, sentry towers and the enemy base are bound to
corresponding markers. The best way for positioning their 3D models is by directly
using model-view matrix of the marker provided by the Vuforia framework. However,
this matrix is not in the OpenGL coordinate system, so the last step is to multiply
this matrix with the projection matrix, which switches the coordinate system around
the x-axis.

With every frame captured and new pose matrix gained, a new game world position
is computed. It is used in case the marker is not recognized by Vuforia. A 3D model
is then drawn in relation to the central marker whose visibility is conditional.

• Relative to the world center
Game objects can be positioned by coordinates relative to central marker. This is
the case of game objects of enemies and objects with currently non-visible markers.
Positioning of these objects is based on the modelview matrix of central marker.
At first, it is required to compute the transformation matrix for the current frame.
It can include translation (in game world coordinates), rotating and scaling. Now
we can apply this transformation to modelview matrix of the central marker, by
multiplication. The result is that the modelview matrix is ready for OpenGL.

Figure 4.2: Camera and world coordinates. [Source: 1]

25

Health-bars 4.3 are drawn for every game object with health points. Position of health-
bar is relative to the corresponding object. Two 2D rectangles next to each other in a ratio
of maxHealth/health are created. The Health-bar is drawn using the same model-view
matrix as it’s game object. It uses coordinates of corners of the health bar instead of 3D
model’s vertices. Central model-view matrix is transformed by the transformation matrix
of its game object so it is heading in the direction of object.

Shots are drawn separately from game objects, as a single line between objects. Every
type of 3D model has it’s own offset of the shot origin. This 3D offset is added to game
object’s position (in game world coordinates). Line end is directly in the second objects’
origin. The line is drawn using central model-view matrix. Therefore it is required to rotate
offset vector by the angle which the game object heading to. Every shot has a duration
which is measured in frames. Standardly it is set to 5 frames.

The user’s base and sentry towers have a limited range and angle of where they can
shoot. To determine it we need to know which way the corresponding marker is heading.
The direction of the marker is extracted from the model-view matrix. This vector is used
with the game world coordinates to determine points of triangle which specifies the area
where the object can shoot. When the game is paused, these points are used for drawing
lines around borders of the triangle so the user can adjust the position of sentry towers.

Figure 4.3: Detailed view at health bars and shots.

4.1.4 User touch handling

The only input of user’s touch are two-dimensional coordinates in the coordinate system of
the device’s screen. It is captured by the onTouchEvent method of the main activity. Here
it is pre-processed and sent to the native environment.

Bounding boxes around the game objects are registred in game world coordinates, even
though the first step is to convert received window coordinates to normalized device coordi-
nates. The next step is to project this point into a line in camera view. We create near and
far planes and transfer this point to them. To get game world’s coordinates the last step
would be to multiply camera coordinates with inversed modelview matrix of central target.

26

Now we can check for intersections with bounding boxes around active objects. If they
intersect, the action depends on the selected object and current state of the application.

4.2 Evaluation and assessments

ARLanding was successfully implemented. For debugging and testing during the develop-
ment we used new device Google Nexus 4 with Android 4.2.2 and older device HTC HD2
with Android 2.3.7.

4.2.1 Startup time

Startup time was tested on Google Nexus 4 and HTC HD2. Measuring was done by
comparing time values gained from method SystemClock.elapsedRealtime(). Time of
activity displayed was gained from time of debugging messages in LogCat because this event
does not come from the application. With the debugger attached the overall performance
is slightly worse, but for this test it wasn’t crucial. Before the measurements, the process
was properly killed.

Google Nexus 4 HTC HD2
1. 2. 3. Average 1. 2. 3. Average

Start 0 0 0 0 0 0 0 0
Native libraries loaded 210 150 100 153 170 150 150 156

onCreate finished 1101 1161 981 1081 1750 1690 1653 1698
QCAR initialized 1111 1171 1031 1104 2060 1940 1970 2323
Activity displayed 1311 1446 1272 1343 1780 1720 1860 1787

Initialization finished 1422 1561 1292 1425 2920 2739 2396 2685

Table 4.1: Measured startup times on two different devices. Times are in milliseconds.

First measured time is the loading of native libraries. It is executed by the Java Runtime
before the class is loaded so there is no difference between devices. As mentioned in design,
the initialization process is executed in multiple threads. Therefore the onCreate method
of Android application lifecycle is finished in the middle of initialization. QCAR - Vuforia
framework is loading in asynchronous task and on older device it finishes after the main
activity is displayed.

The last value is time when all initialization stages are done and application is ready to
use. On Nexus 4 this time is about 1.5 seconds. If compared with other similar application,
this time is short and from the user’s view ordinary.

The sample application on which ARLanding is based, by default displayed a splash
screen while it was loading. Minimum time for the splash screen was set to 2 seconds.
Because of faster startup time on current devices we reduced this limit to 1 second. Shorter
start-up time may be due to using frame marker targets. It is not required to load image
targets into Vuforia tracker.

4.2.2 User experience testing

User testing began right when the implementation was done. Development continued also
after it and major defects were corrected. In testing, 6 people representing general audience
were involved. To improve user experience we performed all tests described in 3.2.1. The

27

results helped us to adjust attributes of tested aspects so the gameplay is more interesting
and challenging. In every test the results of multiple users were averaged for every attempt.

Positioning of camera in top of main tower

In standard tower-defense games the main occupation is to build new towers or to upgrade
them using only devices’ screens (or desktops’ monitors and mouses). ARLanding adds to
this an opportunity to position the device into the top of the virtual model of the main
tower. This action, together with interacting with the game world, is challenging and
requires good concentration.

This test was to measure the time during gameplay when the camera was positioned
at the top of the tower. Time was measured only when the game was running and user
was interacting with the game world. The resulting value was the ratio of time spent in
the top of the tower to the total time of the game running. Measurement was done in the
application’s code by counting “positioned” frames.

Figure 4.4: Average ratio of time when camera was registered at the top of the tower to
overall gameplay time.

On figure 4.4 you can see that the resulting values are not satisfying. Average time
when camera was registered in the top of the main tower is about 70%. This was caused
mainly because of the unstable position and rotation of the main tower. When the user
touches the screen, he unwillingly moves or rotates the device which can result in losing the
position. This imperfection was corrected by extending the bounding box around the top
of tower and adding countdown of 10 frames before camera is claimed as not positioned.
You can also see that the times improve with new attempts.

Interactivity with game world

Interactivity with game world is realized by the simplest way - touching the game screen.
A touch is handled and its coordinates are processed to game world coordinates to find out
which object was selected. During this test we measured the successful rate if a touch event
brought the desired action. Touches were targeted at enemies (shooting) or at buildings
(upgrading). We measured 100 touches and asked if reaction was as expected.

Figure 4.5 shows that touches mostly brought the desired action and does not represent
an obstruction in gameplay. After this test we adjusted the size of bounding boxes to better

28

enclose the game objects.

Figure 4.5: Average successful rate of selecting game object by touching the game screen.

Difficulty of gameplay

Figure 4.6: Levels in which users finished the game - both win or loss.

As mentioned, the gameplay requires significant concentration to correctly position the
camera and interact with game world at the same time. Enemy units try to get to the
main tower and sentry towers can’t beat them by themselves so the user has to also shoot
them. In this test we measured the rate of finishing the game successfully. With initial
attributes of enemies and towers we achieved these values. Values represent the level where
user finished the game (successfully or unsuccessfully).

On figure 4.6 you can see that initial attributes were set too difficult and users could
very rarely finish the game. To optimize the game difficulty, we adjusted the quantity
and spawning rate of enemies and key attributes of game objects like health points, speed,
shooting speed, etc. As a result, gameplay is easier and the game can be finished with less
problems.

29

Gameplay, performance

Gameplay was tested on both devices and on both of them it was very smooth. Registration
of markers of course works better with the newer device, which has better camera. Vuforia
framework has minor problems with initial recognition of patterns under low angle. This,
however, gets better when once it recognizes the marker. It remembers its properties and
later recognizes it in even worse conditions.

From time to time it occurs that the marker is not recognized for a few frames. This
has been solved by tolerated limit for missing markers. In this case, the application remem-
bers its last position and renders it there. When the loss of marker occurs, the user can
register a small hop in position of the marker. It happens because of switching from using
corresponding marker’s pose matrix to using translated pose matrix of the central marker.

Overall assessment

Figure 4.7: Final state of application.

All tests brought interesting results and findings which were used to improve user ex-
perience and gameplay. Before the testing, the first versions of game were not very nice to
play and user had to make a big effort to actually play the game. After applying the im-
provements the game became much more smooth and attractive to play although there are
many aspects to optimize and refine. The game was developed using only basic tools and
framework for computer vision functionality. These resources were sufficient for creating
application with credible positioning and rendering of virtual objects into real environ-
ment. The final application showed interesting approaches how to use augmented reality
for improving human-computer interaction. Technological advance in mobile devices will
open new possibilities in this area and findings from this application could be used to bring
virtual objects even closer to real world.

4.2.3 Possibilities of future development

The main problem of comfortable gameplay is the unstable position of virtual objects, es-
pecially the main tower. ARLanding uses new pose matrix for every camera frame. Vuforia
framework finds the targets very satisfactory but the rotation coordinates are slightly dif-
ferent. With normal-sized model this is no problem and the positioning looks stable. The

30

model of the main tower is bigger though (in real world measurement about 60cm high
with standard-sized markers). For drawing this model we used the model-view matrix of
the central marker so that the marker of the main tower does not have to be visible. Trans-
formation matrix of the main tower stays the same while the marker is out of captured
region. After applying it to central model-view matrix, the resultant position and rotation
of the main tower is variable. With regards to tower size, the differences in position with
every frame are significant and disturbing.

A possible solution would be to store previous model-view projections and use them to
average big deviations. This can however lead to slower reactions if the bigger deviation
was intentional. It could be solved by specifying limit of deviation for averaging.

Another possible solution is to use model-view matrices from other visible markers and
average them. Comparing deviations between multiple markers could estimate the correct
translation.

Another inconvenience in gameplay is requisite of visible central marker. When the
Vuforia framework can’t find the target for the central marker, the game pauses and waits
until it is found again. This is not necessary because drawing of content which is not bond
to its marker can also be done in relation to other markers. For easier conversion to the new
relative coordinates a game object map can be created. This would also open possibilities
for path-finding algorithms for moving game objects.

31

Chapter 5

Conclusion

The goal of this thesis was to design and develop an application for mobile devices which
renders 3D virtual models into a real world environment, using augmented reality. For this
purpose we chose a simple tower-defense game.

Standard tower-defense games use only the device’s screen or keyboard and mouse to
interact with the game world. We wanted to enhance it by placing the game world into
the real world. Users could interact with it not only by pressing keys but also by moving
the camera around and look at game objects as if they were really placed in real world. To
register the position of the camera in this virtual world we used several markers. Users could
move these markers to position the game objects and change the gameplay. The position
of the camera was also used for enhancing the gameplay. Users could only properly play
the game if the camera was positioned at the top of a virtual tower, so they could look at
the battlefield like they themselves were standing there.

For the realization we chose Vuforia framework which is provides computer vision func-
tionality. From the framework we gained coordinates of markers and camera in every
captured camera frame. Coordinates were used for game logic to create gameplay and also
for graphics to position and render the game object correctly. Framework’s API is writ-
ten in Android native code so the whole game logic and graphics is implemented in C++.
Android SDK is used only for interaction with user.

During the development and for the evaluation of results we used two Android devices.
New Google Nexus 4 running on Android 4.2.2 and older device HTC HD2 with installed
Android 2.2.3. The application works on both devices without problems. The application
was also tested by users. We tested registration camera position at the top of a virtual tower,
user touch handling and difficulty of game. The results helped us to adjust attributes of
game to improve the user experience even more. Tests also showed that user’s progress
improves in time. The final game is interesting, challenging and shows a new ways and
concepts how can be augmented reality used in this area.

All goals were fulfilled and the game is working. During the development we also focused
on expandability of game features so it is ready for future improvements and new features.
The application will be published in the Google Play store and will also be improved by
users demands.

Researching for this thesis gave me a very detailed overview about augmented reality
and Android programming. I found these to be interesting and also perspective for future.
Advances in mobile technologies will extend possibilities of augmented reality applications
and thus I’ll be able to use my newly gained knowledge very well.

32

Bibliography

[1] AndAR. Andar - android augmented reality - google project hosting.
https://code.google.com/p/andar/, 2012.

[2] MIPS Technologies Bhanu Chetlapalli, Software Engineer. Learning about android
graphics subsystem — mips developers. http://developer.mips.com/2012/04/11/
learning-about-android-graphics-subsystem/, 2012.

[3] Oliver Bimber. Spatial augmented reality : merging real and virtual worlds. A K
Peters, Wellesley, Mass, 2005.

[4] John Blain. The complete guide to Blender graphics : computer modeling and
animation. CRC Press, Boca Raton, Fla. London, 2012.

[5] Stephen Cawood. Augmented reality : a practical guide. Pragmatic Bookshelf,
Raleigh, N.C, 2007.

[6] DroidAR. Droidar. http://droidar.blogspot.co.at/, 2013.

[7] Qualcomm Austria Research Center GmbH. Vuforia — augmented reality unleashed.
https://www.vuforia.com/, 2011.

[8] Qualcomm Austria Research Center GmbH. Developing with vuforia — vuforia
developer portal.
http://developer.vuforia.com/resources/dev-guide/getting-started, 2013.

[9] Peer Srl (Peer internet solutions). mixare — free open source augmented reality
engine. http://www.mixare.org/, 2013.

[10] Inc. Metaio. Home — augmented reality - junaio. . . your mobile companion.
http://www.junaio.com/, 2013.

[11] Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino. Augmented
reality: A class of displays on the reality-virtuality continuum. pages 282–292, 1994.

[12] J. Mooser, S. You, and U. Neumann. Real-time object tracking for augmented reality
combining graph cuts and optical flow. In Mixed and Augmented Reality, 2007.
ISMAR 2007. 6th IEEE and ACM International Symposium on, pages 145–152, 2007.

[13] Sylvain Ratabouil. Android NDK beginner’s guide discover the native side of Android
and inject the power of C/C++ in your applications. Packt Pub, Birmingham, U.K,
2012.

33

https://code.google.com/p/andar/
http://developer.mips.com/2012/04/11/learning-about-android-graphics-subsystem/
http://developer.mips.com/2012/04/11/learning-about-android-graphics-subsystem/
http://droidar.blogspot.co.at/
https://www.vuforia.com/
http://developer.vuforia.com/resources/dev-guide/getting-started
http://www.mixare.org/
http://www.junaio.com/

[14] tdomhan. Howtobuildapplicationsbasedonandar - andar.
http://code.google.com/p/andar/wiki/HowToBuildApplicationsBasedOnAndAR,
2013.

34

http://code.google.com/p/andar/wiki/HowToBuildApplicationsBasedOnAndAR

Appendix A

Contents of the provided CD

• The source codes of developed application

• The .apk archive of developed application

• Vuforia Framework required for compiling the application

• The LATEXsource files for this document

• Poster

• Video

35

	Introduction
	Theoretical Introduction
	Augmented Reality
	Android platform and 3D models
	Android Native Environment
	Android Graphics Subsystem
	OpenGL ES and 3D models

	Frameworks for augmented reality
	Overview of existing frameworks
	Junaio
	Vuforia

	Application Design
	Game principles
	Integration with augmented reality framework
	User testing
	Markers

	Graphical user interface

	Realization
	Implementation details
	Android NDK, JNI
	Markers and global coordinate system
	Drawing content
	User touch handling

	Evaluation and assessments
	Startup time
	User experience testing
	Possibilities of future development

	Conclusion
	Contents of the provided CD

