
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

3D OBJECT RENDERING INTO REAL ENVIRONMENTS
USING MOBILE DEVICES

BAKALÁŘSKÁ PRÁCE
B A C H E L O R ' S THESIS

AUTOR PRÁCE JÁN ŠVEHLA
A U T H O R

BRNO 2013

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

ZOBRAZOVÁNÍ 3D OBJEKTŮ DO OBRAZU REÁL
NÉHO SVĚTA NA MOBILNÍCH ZAŘÍZENÍCH
3D O B J E C T R E N D E R I N G INTO REAL E N V I R O N M E N T S USING MOBILE DEVICES

BAKALÁŘSKÁ PRÁCE
B A C H E L O R ' S THESIS

AUTOR PRÁCE JÁN ŠVEHLA
A U T H O R

VEDOUCÍ PRÁCE Prof. (FH) DI DR. REGINE BOLTER,
S U P E R V I S O R

BRNO 2013

Abstrakt
Tato b a k a l á ř s k á p r á c e je z a m ě ř e n á na p r o b l é m y vyskytuj íc í se př i t v o r b ě aplikace pro mo
bilní zař ízení využívaj íc í rozš í řenou realitu. Jako vyví jená aplikace byla zvolena j e d n o d u c h á
s t r a t eg ická hra. Tato p r á c e provede č t e n á ř e z á k l a d n í m i t é m a t a m i a p r o b l é m y rozší řené
reality, je j ího využ i t í a m o ž n o s t e c h na mobi ln ích zař ízeních a s a m o t n ý m n á v r h e m a imple
m e n t a c í vyví jené aplikace. Výs ledek t é t o p r á c e je m o ž n o využ í t pro vývoj mobi ln ích her
nebo obecních apl ikací využívaj íc ích rozš í řenou realitu.

Abstract
This bachelor's thesis is aimed at the problems and issues which are encountered over
development of application for mobile devices using augmented reality. A s a developed
application was chosen a simple tower-defense game. This thesis w i l l guide the reader
through general topics and issues of augmented reality, it 's usage and possibilities w i th
mobile devices and actual design and implementat ion of developed applicat ion. Results
of this work can be used for development of mobile games or general purpose augmented
reality applications.

Klíčová slova
rozš í řená realita, 3D objekt, vykres lování , A n d r o i d , A n d r o i d N D K , tower-defense, A R L a n d -
ing

Keywords
augmented reality, 3D object, rendering, A n d r o i d , A n d r o i d N D K , tower-defense, A R L a n d -
ing

Citace
J á n Švehla: 3D Object Rendering into R e a l Environments Us ing Mob i l e Devices, b a k a l á ř s k á
p ráce , Brno , F I T V U T v B r n ě , 2013

3D Object Rendering into Real Environments Us
ing Mobile Devices

Declaration
I hereby declare that this thesis and the project reported herein is my original authorial
work which I d id on my own, and that a l l sources, references and literature used or cited
in this thesis were properly acknowledged by complete reference to the source.

J á n Švehla
M a y 22, 2013

Acknowledgement
I would like to thank my supervisor, Prof. (FH) D l D R . Regine Bol te r for taking on my
thesis, inspir ing me and overall help.

I also extend my thanks to Ing. Vi tes lav Beran, P h . D . for supervising my thesis i n early
stages and helping me to gain knowledge about augmented reality.

Last but not least I would like to thank my family and my friends for support ing me
during work on this thesis.

© J á n Švehla , 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulte in

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Theoretical Introduction 3
2.1 Augmented Real i ty 3
2.2 A n d r o i d platform and 3D models 7

2.2.1 A n d r o i d Nat ive Environment 8
2.2.2 A n d r o i d Graphics Subsystem 9
2.2.3 O p e n G L E S and 3D models 10

2.3 Frameworks for augmented reality 12
2.3.1 Overview of existing frameworks 12
2.3.2 Junaio 13
2.3.3 Vufor ia 15

3 Appl icat ion Design 1 7
3.1 Game principles 17
3.2 Integration wi th augmented reality framework 18

3.2.1 User testing 19
3.2.2 Markers 19

3.3 Graphica l user interface 20

4 Realization 23
4.1 Implementation details 23

4.1.1 A n d r o i d N D K , J N I 24
4.1.2 Markers and global coordinate system 24
4.1.3 Drawing content 25
4.1.4 User touch handling 26

4.2 Eva lua t ion and assessments 27
4.2.1 Startup t ime 27
4.2.2 User experience testing 27

4.2.3 Possibili t ies of future development 30

5 Conclusion 32

A Contents of the provided C D 35

1

Chapter 1

Introduction

Since the beginning of advanced computer graphics and v i r tua l reality it was possible to
display it only on monitor screens or similar equipment. However, people wanted to bring
the technology closer. Augmenta t ion of real world w i th v i r tua l objects has always been
very desired, but it was possible only i n sci-fi.

W i t h technological advancement came also the first mobile augmented reality devices.
At t r ibu te "mobile" might not be on the right place. To achieve enough processing power
and required accessories these devices were sizeable and heavy. They used mainly head-
mounted displays and the user had to carry the computer w i th h im . The price was also
unaffordable so it was used only i n specific industry or academic circles.

Nowadays, almost everybody has a device capable of augmented reality. Smartphones
provide a l l resources needed for it - sufficient performance, camera and also displaying unit .
In addi t ion they have sensors as G P S or accelerometer, which extends possibilities of usage.

This thesis w i l l be aimed at possibilities of current tools for development of augmented
reality application on A n d r o i d platform and development itself. For this purpose a simple
game using augmented reality w i l l be developed. Principles of game are described i n the
th i rd chapter.

The theoretical part w i l l introduce issues of augmented reality and mobile devices. A t
first some history of augmented reality, basic principles and also examples of current usage
w i l l be described. The Second part w i l l be about 3D models and how they work at A n d r o i d
platform. It w i l l cover graphical subsystem on A n d r o i d , most important graphics l ibrary
- O p e n G L E S and also general overview of 3D modell ing. The end of the chapter w i l l
describe and analyze current frameworks for augmented reality applications.

The next chapter w i l l be about design of developed application. It w i l l state applica
t ion goals and expected properties. It w i l l also describe the integration wi th the chosen
framework. A l so , graphical user interface design and 3D models for applicat ion w i l l be
described.

There w i l l be also described design of graphical user interface and 3D models used for
the application.

In implementat ion you w i l l be able to read about the main problems and the most
important parts of implementation. It w i l l cover processing of output received from frame
work, connection between A n d r o i d S D K and native code.

Eva lua t ion w i l l cover fulfillment of expected attributes of application and used frame
work. It w i l l discuss imperfections, deficiencies, and possible solutions.

2

Chapter 2

Theoretical Introduction

2.1 Augmented Reality
The term Augmented reality describes technologies allowing the user to see and interact
w i th v i r tua l computer-generated content overlapping the real world . It extends the user's
perception of the world by mix ing the view of the real world w i th v i r tua l objects that
contextually belong there. A l l this must work i n real-time and i n 3 dimensions. Augmented
reality is not bond only to vision. It can be applied even to other senses - hearing, touch,
smell.

Figure 2.1 shows real i ty-vir tual i ty cont inuum from article [11]. O n the one extreme
there is the real environment, on the other the v i r tua l environment. Every th ing in between
belongs to mixed reality. P a u l M i l g r a m and colective [] distinguishes between augmented
reality and augmented vir tual i ty. The first one is based on the real environment augmented
on objects from the v i r tua l environment. The other one does the exact opposite. The
example could be a v i r tua l landscape augmented wi th real persons.

Mixed Reality (MR)

I — — 1
p e a i Augmented Augmented Virtual

Environment Reality (AR) Virtuality (AV) Environment

Reality-Virtuality (RV) Continuum

Figure 2.1: R V cont inuum Source: [11]

A few years ago augmented reality was known only i n academic circles or in specific fields
such as medicine, the automotive industry, etc. Very sizeable computers and specialized
equipment were required for its operation. W i t h the onset of smartphones, augmented
reality quickly got i n touch wi th the public.

Appl ica t ions that provide augmented reality on smartphones use input data, which can
be divided i n 3 categories:

• Camera data
Images from the camera are used as R e a l Environment from figure 2.1 in which aug
mented v i r tua l objects w i l l be blended. Addi t iona l ly , they are used for recognition of

3

objects i n the real environment.

• Loca t ion data
These data are gained from G P S sensor or other locat ion services as finding nearby
W i F i access points. They are used main ly for posit ioning relevant objects. Recogni
t ion of objects from camera, especially i n large areas, is not always adequate. If it is,
it is very computat ional ly expensive.

• Other sensor data
They are required for specifying the orientation of v i r tua l object i n space. These data
can be gained from gyroscope or compass. B y using these data it is easier to correctly
display an object at different angles.

Approaches to augmented reality

Devices which are capable of augmenting reality are nowadays accessible very easy [3]. The
most common types are listed below.

• Head-mounted displays
There are two different head-mounted display technologies to br ing graphics onto
the user's view of the real world. The first type is video see-through head-mounted
displays that mix the v i r tua l content w i th video background from attached camera
device. Second approach is opt ical see-through head-mounted display that uses optical
combiners as for example transparent L C D display. These two methods are the most
comfortable but they also have many disadvantages. Op t i ca l see-through display
requires difficult cal ibrat ion and precise head-tracking to ensure correct graphical
overlay. G o o d example of opt ical see-through display is Google Glass 2.2.

Figure 2.2: Op t i ca l see-through head-mounted augmented reality device Google Glass.
Source: 1

• Stationary, Screen-Based displays
A n augmented reality system can easily be set up wi th a stationary computer, a
monitor and a webcam. These systems make use of video-mixing (video see-through)
and display the merged images on a regular monitor. It can be used for magic mirror

1 Source: http: / / www.foxnews.com/tech/2013/03/10/no-joke-guy-cant-walk-into-seattle-bar-wearing-
google-glasses/

4

http://www.foxnews.com/tech

[] metaphor which is a concept that instead of making the user see through the
display, makes the user see h i m or herself in the display, as i f it was a mirror . Th is
can for example be achieved by put t ing the webcam on the top of the monitor and
pointing it at the user. Example of this approach is again from Google - Google
Hangout 2.3.

I ? Google + tmoM * .. o n * <•

Figure 2.3: Example of magic mirror metaphor - Google Hangout . Source: 2

• Handheld

Nowadays almost every mobile device, e.g. smartphone or tablet, has bui l t - in camera
and rather large screen, which is exactly what is needed for an augmented reality
system. The camera is mostly placed at the back of device, point ing away from
the user. Th is makes it suitable for video see-through display technology. Device's
camera captures the real environment, which is used as a background. V i r t u a l content
is added as an overlay and the result is displayed on device's screen. Th is approach
is used also i n this thesis.

Figure 2.4: Handheld device used for augmented reality. Source: 3

2Source: https://plus.google.com/+googleplus/posts/NrGoAZKpyTx

5

https://plus.google.com/+googleplus/posts/NrGoAZKpyTx

Smartphones and tablets have standardly useful bui l t - in equipment such as G P S units,
digi ta l compasses and six degrees of freedom (2.1) acelerometer-gyroscope. Another ad
vantage is the portable nature of these devices. Disadvantage is the physical constraint of
the user having to hold the handheld device out i n front of h i m at a l l times. This l imits the
possibilities of interaction wi th real environment. O n figure 2.4 you can see a smartphone
which is used as handheld A R device.

Appl icat ion examples

The first possibil i ty of use for the public is use of interior design. Users use their A R device
to see the real environment of their rooms augmented wi th their desired pieces of furniture.
The result is almost authentic.

Al ternat ive use of A R , for example is a tourist guide. The user aims his device at the
street and the application adds labels of interesting places. B y using locat ion and sensor
data v i r tua l objects w i l l be positioned right at the real world objects.

Essential possibilities are offered i n entertainment. A d d i n g game objects into the real
environment have always been a dream. W i t h the new possibil i ty of easy and effective
interactivi ty the gap between the real world and gaming w i l l become min imal .

Mobi le phones now have sufficient processing power for simple computer vision, video de
coding and interactive 3D graphics. M a n y device manufacturers are also fitt ing graphics
processing units (G P U s) into mobile phones, providing faster graphic and hardware floating
point support. This enables a very wide range of use.

C a m e r a registration problem

Using locat ion data to determine the location of the viewer (camera) is not precise enough.
Thus, when using such sensors, it is necessary to employ a hybr id system that combines
vision-based methods and sensor data. Vision-based registration relies on the identification
of features in the images. In a simple example artificial markers are placed i n the real world,
model-based, a n d / or natural features are used for the registration. Markers are designed
to be easily detectable; however, arranging the markers takes extra efforts and it also l imits
the user's moving range.

Most of the previous work on natural feature t racking i n A R has only attempted to track
two-dimensional (2D) features across a sequence of images. This is considerably simpler
than the full 3D problem and it can readily be achieved in real t ime. The recovered 2D
motion field can be used to estimate the change i n positions of labels for 2D geographic
labeling applications: A possible approach is to measure the opt ical flow [12] between
adjacent image frames. For the special case, i n which the camera mot ion is pure rotat ion
or the viewed scene is planar, the 2D positions of corresponding features in two different
camera views are related by a homography.

Six Degrees of Freedom

It refers to the abi l i ty of the t racking system to mainta in alignment of a real world object in
three dimensional space. For a typica l smartphone A R application, 6 degrees of freedom are
possible. Loca t ion sensors are able to provide forward/back and left/right, up /down (G P S)

3Source: http://archive.picnicnetwork.org/page/22322/en

6

http://archive.picnicnetwork.org/page/22322/en

and yaw (compass) and the accelerometer can indicate pi tch and ro l l of the device. S imi lar ly
image recognition techniques can calculate angles from a known reference orientation.

2.2 Android platform and 3D models

A n d r o i d is an open source platform based on l inux kernel. It is pr imary intended for devices
wi th touch screen as smartphones or tablets. A n d r o i d software stack includes operating
system, middleware, user interface and user applications. Users can download thousands
of applications through online market.

Brie f history of A n d r o i d

The first mention about A n d r o i d platform comes from 2005 when Google bought a li t t le
start-up called A n d r o i d . They were developing a simple and flexible operating system for
wide range of devices. One of the pr imary goals was an easy and comfortable downloading
of new actualizations. Three years later, i n 2008 the first version of A n d r o i d was released.

F rom the introduct ion of the first version, un t i l the t ime of wr i t ing this thesis, Google
released 10 major updates. Each of this releases carries a codename of a dessert.

Architecture of A n d r o i d system

The A n d r o i d software stack consists of five sections ordered i n four layers as seen on figure
2.5.

APPLICATIONS

Home Contacts

Activity Manager

Package Manager

APPLICATION FRAMEWORK

Window Content
Manaeer Providers

Resource Location Notification
Manager Manager Manager

Figure 2.5: A n d r o i d architecture. 4

4Source: http://developer.android.com/images/system-architecture.jpg

http://developer.android.com/images/system-architecture.jpg

Linux kernel - takes care about essential system services like security, management of pro
cesses, memory, networks and drivers. Ke rne l acts as abstract layer between hardware
and software.

Libraries - A n d r o i d contains set of libraries wri t ten i n C and C + + language which ac
cess various components of system. They are accessible for developers through the
Appl i ca t ion framework.

A n d r o i d runtime - every applicat ion for A n d r o i d runs i n its own process and own in
stance of v i r tua l machine Da lv ik . V i r t u a l machine D a l v i k transforms application
from Java code to navite code.

Appl icat ion framework - it is a layer containing other libraries, this t ime in Java, which
form their own system A P I . It is a set of functions which enable the developer to work
wi th parts of operating system.

Applications - bui ld- in applications which provide the basic functionality for user. User
can also download applications from online market.

2.2 .1 Andro id Native Environment

The N D K (Native Development K i t) [] is an adjunct to the Andro id ' s S D K (Software
Development K i t) . The A n d r o i d V M allows application's source code to ca l l methods
implemented in native code through the J N I . Nat ive code runs on the native device instead
of i n Java on the D a l v i k v i r tua l machine. Since communicat ion between the v i r tua l machine
and the native machine is costly, normally it is best to develop applications completely in
the S D K for the v i r tua l machine.

The A n d r o i d framework provides two ways of using native code:

• Wr i te application using the A n d r o i d framework and use J N I to access the A P I s pro
vided by the A n d r o i d N D K . It covers declaring one or more methods wi th the native
keyword to indicate that they are implemented through native code, providing a na
tive shared l ibrary named according to U n i x convention, which w i l l be packaged into
the .apk archive and stat ically loading the libraries at startup.

• Use native act ivi ty which w i l l be implemented purely i n native code. A n d r o i d lifecycle
events as onCreateQ, onPauseQ, onResumeQ, w i l l be forwarded to native environment
where the developer can handle them. This method requires A n d r o i d 2.3 or higher.

Very good example of usage is the Unrea l Engine. It's a game engine - libraries for game
physics, graphics libraries and other complex parts of computer video game. It's wri t ten
wi th very complex commands and algorithms that just aren't possible or pract ical to code
in Java and run under Andro id ' s Da lv ik machine. The N D K allows developers to use the
Unrea l Engine, almost as wri t ten, to bu i ld intense 3D games.

In this thesis A n d r o i d N D K w i l l be used for major part of the implementat ion. It
provides very good performance, even w i t h older device. Development was though more
difficult and not so comfortable that i n Java. App l i ca t ion was developed using Ec l ip se 5

I D E and for A n d r o i d N D K it missed many features that were available for Java delopment.

5See: http://www.eclipse.org/

8

http://www.eclipse.org/

2.2.2 Andro id Graphics Subsystem

A n d r o i d provides a variety of powerful A P I s for applying animation to U I elements and
drawing custom 2D and 3D graphics. Ar t i c l e [] describes the software components i n the
A n d r o i d operating system responsible for graphics.

Application

RerderScripi Canvas

OpenGL
HWUI

OpenGL

SKIA
libagl GPU Driver

SKIA

pixelflinger GPU

Surface

Figure 2.6: Approx imate relationship between various graphics components i n a typical
A n d r o i d applicat ion. Source: []

• G P U
Graphica l processing units (G P U s) are specialized processors w i th dedicated memory
that conventionally perform floating point operations required for rendering graphics.
Current generation of G P U s has evolved into many-core processors that are specifi
cally designed to perform data-parallel computat ion.

• H W U I
The H W U I l ibrary enables U I components to be accelerated using the G P U . H W U I
was introduced i n Honeycomb to make the user interface fast, responsive and smooth.
Since tablets had very high resolutions, using Skia for effects like animation would have
been too intensive and slow for C P U . H W U I requires an O p e n G L E S 2.0 compliant
G P U which cannot be emulated by software on A n d r o i d .

• Canvas
Canvas is the A n d r o i d class that applicat ion developers would use to draw widgets,
pictures etc. In A n d r o i d versions Froyo and Gingerbread Canvas would do the drawing
using Skia . In A n d r o i d Honeycomb and onward, H W U I was added as an alternate
GPU-accelera ted option. F r o m A n d r o i d Ice Cream Sandwich (ICS) H W U I is the
default.

• Sk ia
Skia Graphics Engine is a compact open source 2D graphics library. For performance
reasons Skia is slowly being replaced by H W U I .

• Renderscript
Renderscript was a new A P I introduced i n Honeycomb to address por tabi l i ty and

9

performance at the same t ime. The application developer writes the code in the Ren-
derscript language (which is based on C99) , and an L L V M cross compiler on the host
converts it to machine-independent I R called bit code, the developer then packages
the bitcode files into the A n d r o i d applicat ion (A P K) . W h e n the user downloads the
A P K , an on-device compiler (L L V M based, located in / sys tem/ l ib / l ibbcc .so) compiles
it from bit code to the actual machine instructions for the target platform.

• Surface
A Surface in A n d r o i d corresponds to an off screen buffer into which an application
renders the contents. The applicat ion might be a game which uses O p e n G L to draw
3D objects directly into a surface or a normal applicat ion which uses Skia to draw
widgets, text, etc. It could even use H W U I l ibrary to enable a G P U accelerated
user interface. F r o m A n d r o i d I C S , surfaces are implemented wi th a SurfaceTexture
backend which means instead of a buffer a texture is used.

• O p e n G L E S O p e n G L is the most widely adopted standard for real-time computer
graphics, covering most operating systems. It is used for visual izing 2D and 3D data.
It is more described i n the following text.

2.2.3 O p e n G L E S and 3D models

O p e n G L 6 , the Open Graphics Library , is a standard specification defining a cross-language,
mult iplatform A P I for wr i t ing applications and simulat ing physics, that produce 2D and 3D
computer graphics. E S i n the name stands for Embedded Systems, and O p e n G L E S 7 is a
modified version of O p e n G L for smaller, less powerful devices such as A n d r o i d devices. The
interface consists of over 250 different function calls, which can be used to draw complex
three-dimensional scenes from simple primitives. O p e n G L works around 3 basic concepts:

• Pr imi t ives

O p e n G L ' s primitives is l imi ted to 3 types of objects:

3D Point i n space (x,y,z) - can be used as a particle i n the space.

3D L ine in space (composed by two 3D Points) - can be used as a 3D vector.

3D Triangle i n space (composed by three 3D Points) - it is a type of polygon

• Buffers
In simple words, the term buffer refers to a temporary opt imized storage space.
O p e n G L works wi th 3 k i nd of buffers: Frame Buffer is represented as a special array on
the video card. It has several components: colour buffer for R G B A , depth buffer
for z-depth in space, s t e n c i l buffer for determining the visible part of objects and
accumulation buffer for the intersection of objects.

Render Buffer is a temporary storage of one single image. It has also a few compo
nents: Color Render Buffer stores the final colored image generated by O p e n G L ' s
render. Color Render Buffer is a colored (R G B) image. Depth Render Buffer stores
the final Z depth information of the objects. It's a grey scale image about the Z posi
t ion of the objects i n 3D space. Stencil Render Buffer is aware about the visible
part of the object. It is a black and white image.

6OpenGL, Khronos Group, http://www.opengl.org/
7OpenGL ES, Khronos Group, http://www.khronos.org/opengles/

10

http://www.opengl.org/
http://www.khronos.org/opengles/

Buffer Objects is the general term for unformatted linear memory allocated by the
O p e n G L context. These can be used to store information about 3D objects in an opti
mized format such as vertex data, p ixel data retrieved from images or the framebuffer,
and a variety of other things.

• Rasterize
Rasterizat ion is the process which a pr imi t ive is converted to a two-dimensional image.
Rasterizing a pr imit ive consists of two parts. The first is to determine which squares
of an integer gr id in window coordinates are occupied by the pr imit ive. The second
is assigning a color and a depth value to each such square.

3D modelling

A 3D M o d e l [] is a mathematical representation of any three-dimensional object (real or
imagined) in a 3D software environment. Unl ike a 2D image, 3D models can be viewed in
specialized software suites from any angle, and can be scaled, rotated, or freely modified.
The process of creating and shaping a 3D model is known as 3D modell ing.

There are many concepts and representations of 3D models of which the most interesting
are:

• N U R B S models allows a curve to be created wi th the use of two control points. These
points are generated in multiples to create the skeletal system of the model . Th is form
of modell ing is the best one for objects that are not going to be animated, as they
require a lot of modifications to be suitable for the animat ion process. One of the
main advantages of curve-based model l ing in comparison w i t h polygonal modell ing
is that it is resolution-independent. The software application interpolates the space
between curves and creates a smooth mesh between them. N U R B S surfaces have the
highest level of mathematical precision, and therefore they are the most frequently
used i n model l ing for engineering and automotive design.

• Polygonal model l ing is the oldest type of 3D modell ing. It is an approach for modell ing
objects by representing or approximating their surfaces using polygons. 3D polygonal
models are composed of

— Face stands for each element consisting of more than 2 vertices. Normal ly poly
gons are either four sided (character/organic modelling) or three sided (com
monly i n game modelling).

— Edge is any point on the surface of a 3D model where two polygonal faces meet.

— Vertes is a point of intersection between three or more edges in three dimensional
space

• Constructive solid geometry uses simple objects called solids, constructed according
to geometric rules. The special properties of C S G solids allow mathematical oper
ations that are not possible w i th an arbi trary polygon mesh. The standard C S G
primitives consist of the block, tr iangular pr ism, sphere, cylinder, cone and torus.
The pr imi t ive may require transformations such as scaling, translation, and rotat ion
to be positioned at the desired place. A C S G procedure can be represented by a
tree structure. The root of the tree defines the object of interest, and the leaf nodes
are geometric primitives. In between the root and the leaves lie operator nodes. A l
lowable operations are typical ly Boolean operations on sets: union, intersection and
difference. Example of C S G tree is on figure 2.7.

11

Figure 2.7: A simple C S G model as a result of boolean operations. Source:

2.3 Frameworks for augmented reality

Thanks to general purpose and big appeal of users Augmented Real i ty attracted even many
developers. Issues of augmented reality are perceived to be complex and difficult. Th is and
the demand of developers for simple accessibility of augmented reality functionality allowed
creation of many A R frameworks.

2.3.1 Overview of existing frameworks

In this subsection smaller projects are shortly described wi th interesting ideas. Some of
them are standalone applicat ion or just libraries.

A n d A R

A n d A r [] is simple marker-based augmented reality framework. Its architecture is shown at
figure 2.8. Developer has to extend the abstract class AndARActivity which already handles
everything Augmented Real i ty related, like opening the camera, detecting the markers and
displaying the video stream. To detect markers developer has to register ARObjects to
an instance of ARToolkit. This instance can be retrieved from the AndARActivity. The
constructor requires filename of a pattern which can be created by a tool called mk_patt.
The class ARRenderer is responsible for everything O p e n G L related. In OpenGLRenderer
interface there are three methods defined. One of them is setupEnv which is called once
before the augmented objects are drawn. It can be used to issue O p e n G L commands that
shall effect a l l ARObjects, like in i t ia l iz ing the l ighting.

Source: http://www.fit.vutbr.cz/study/courses/IZG/private/lecture/izg_slide_3d_objekty_present.pdf

12

http://www.fit.vutbr.cz/study/courses/IZG/private/lecture/izg_slide_3d_objekty_present.pdf

A n d A R A c t ivity

s e t M o n A R R e n d e r e r (r : O p e n G L R e n d e r e r) : •void —

g e t A r t o o l k i t [) : ARToo l k i t

reg i s te rAROb jec t [c : A R O b j e c t) : vo id

C Listom Act rvrty

o n C r e a t e O : vo id

AKübiscL

i n i tQ : vo id

d r a w () : vo id

C u s t o m Object

i n i t [) : vo id

drav_() : v o i d

O p e n G L R e n d e r e r

d r a w () : vo id

se tup En v [) : vo id

i n i t G L () : vo id

Üu_;l ur i Rende rer

d rs iw () : vo id

se tup En v [) : vo id

i n i t G L I } : vo id

Figure 2.8: Simplified class diagram of an applicat ion that makes use of A n d A R . Source:

[]

D r o i d A R

Droidar [] is open-source Augmented Real i ty framework for A n d r o i d developed by Simon
Heinen, a computer science student from R W T H Aachen in Germany. It provides location-
based or marker-based Augmented Real i ty functionality. D r o i d A R has great 3D model
support using l i b g d x 9 framework. App l i ca t i on works wi th 3 display layers - image from
device's camera, O p e n G L layer w i th transparent background and default android overlay
wi th U I .

The start ing point is Setup class where developer configures the applicat ion. Developer
can create G U I , add actions to events, create v i r tua l world w i th objects, and camera. There
is also method for updat ing v i r tua l objects - providing animat ion and rotat ion of objects.

M i x a r e

Mixare [] is a free open source augmented reality browser that works as a completely
autonomous application and is available for the development of own implementations as
well . M i x a r e is pure location-based. App l i ca t i on can read a list of markers i n X M L or
J S O N format, giving the latitude, longitude, and also altitude. For example, you can get
an X M L list from O S M (a map location provider) saying the nearby metro stations, loading
it into M i x a r e apps. Accord ing to device's location from G P S it can show correct direction
to targets or calculate the distance in A R view.

Target's posi t ion can be specified also wi th altitude. However, G P S altitude is rather
inaccurate, so the posit ion is calculated from the actual latitude-l-longitude by setting the
alti tude to a certain height. Targets w i l l span only across +20 and +45 degrees above the
horizon.

2.3.2 Junaio

Junaio [10] is an Augmented Real i ty platform for A n d r o i d and i O S . It provides open web
A P I for developers. Developer develops only content which w i l l be delivered to user through

'libgdx - Android/HTML5/desktop game development framework, http://code.google.com/p/libgdx/

13

http://code.google.com/p/libgdx/

Junaio applicat ion i n user's smartphone. User subscribes to developer's channel using
applicat ion. There are 2 types of channels:

• Location-based channels

• G L U E channels (image recognition)

Junaio application sends sensor data (corresponding to channel's type) to Junaio servers.
They w i l l t ry to find appropriate P O I (Point O f Interest) belonging to subscribed channel.
If they are successful, they w i l l send a request w i th P O I ID , User I D , etc to developer's
web server. There is a response wi th related content created - images, 3D models, videos
and sent back to Junaio server. Junaio server checks the message and forwards to user's
smartphone where it is displayed. This whole process is shown on figure 2.9.

Image recognition-based channels - Junaio G L U E

Junaio G L U E is service for image recognition wi th no markers are required. Besides classic
2D image recognition, it allows also 3D object recognition comparing to 3D model target.
Recognit ion is processed at Junaio servers where the application sends the images captured
from the device's camera. After successful recognition Junaio servers send request to chan
nel owner's web server which returns relevant content. Junaio server forwards it along wi th
camera registration data back to the user's device.

Junaio also offers a tool for creating 3D object targets. 3D object is placed on a flat
surface. Next to it a special marker (printed on paper sheet) is placed. 3D object is
captured by using device's camera and by application Creator Mob i l e . App l i ca t i on creates
approximate 3D model which is sent to developer's email , ready for further editing.

Location-based Channels

Every smartphone that Junaio supports has a G P S sensor, gyroscope, and compass. These
sensors must be enabled when using Junaio applicat ion. After successful local izat ion of
device, coordinates are sent to Junaio servers. They determine the nearest Points O f Interest

10Source: http://dev.junaio.com/publisherDownload/junaio_LocationBased.pdf

14

http://dev.junaio.com/publisherDownload/junaio_LocationBased.pdf

belonging to subscribed channel and send requests to developer's web server. Response
wi th relevant content is created and forwarded to the user's device. Camera posit ion is
determined by using sensors data. P O I s are displayed as v i r tua l objects - signs wi th text,
image or video.

Junaio also allows location-based content inside bui ld ing where G P S signal is not avail
able - using L L A markers. A n L L A marker is s imilar to Q R code but contains only geo
graphical coordinates. They are used i n the same way as i f gained from G P S sensor.

2.3.3 Vuforia

Vuforia [] is vision-based A R platform. It is available for A n d r o i d , i O S and Uni ty . For
A n d r o i d it offers whole S D K wi th libraries for complete A R application. It includes com
puter vision algorithms, target creation tools, target management, cloud database tools,
object rendering etc. Overview of S D K is on figure 2.10. Information about framework is
available i n developer guide [8].

This framework was chosen for this thesis. We used only marker targets which proved
their functionality very well . Vuforia framework contained also sample applications from
which one was used as a reference for our developed applicat ion. It contained good example
of in i t ia l iza t ion of framework as well as processing data gained from framework's computer
vision. Vuforia has also extensive forum for developers where a wide range of application
development topics are discussed.

Virtual
on

V h i l l i Image Frame Developer
Target Target Marker Application

Android

Figure 2.10: High-level system overview of Vuforia S D K Source: []

Targets

Targets are representations of real-world objects that can be detected and tracked. Vufor ia
works wi th 4 basic types of recognized targets:

• Image targets
They do not require any black and white regions or codes to be recognized. Vufor ia
recognizes image target by comparing features (acquired from image analyzer) w i th
a known target resource database. Once it is detected, S D K w i l l track the image.

• Frame markers
It is a special type of fiducial marker. Unique ID of a frame marker is encoded into

15

a binary pattern along the border of the marker image. W h e n the ID is i n range of
[0. .511]. Markers the Markers are manual ly added to the target image. Then they are
distr ibuted i n Vuforia S D K and the developer has to scale them to an appropriate size.
Frame and binary pattern must be entirely visible in camera image for recognition.

• Mult i - targets
A multi-target consists of mult iple image targets that have a fixed spatial relationship.
They are created by defining a relationship between mult iple existing image targets
using the Target Manager or by the direct manipulat ion of the Dataset Configuration
X M L file. The spatial relationship of the ind iv idua l parts is stored in the X M L file
using simple transformations.

• V i r t u a l buttons
V i r t u a l buttons are developer-defined rectangular regions on image targets which,
when touched or occluded i n the camera view, can trigger an event. Eva lua t ion of
v i r tua l buttons is possible i f the but ton area is i n the camera view and the camera is
not moving quickly.

Vufor ia S D K uses right-handed coordinate systems. E a c h image target and frame marker
defines a local coordinate system wi th (0,0,0) i n the center (middle) of the target.

Image rating

Vuforia offers the possibil i ty of creating user-defined targets during runtime. After analysis
of the captured image it is rated. The rat ing depends on the count and dis t r ibut ion of shared
edges. Even if image contains enough sharp edges and good distr ibut ion, repetitive patterns
hinder detection performance. Images must be i n J P G or P N G format w i th max ima l size
of 2 M B and in grayscale or R G B .

Database of targets

Vuforia offers an online G U I - Target Manager that supports creating device databases and
cloud databases, adding targets to these databases, and managing targets. Targets can be
stored in :

• Device database Due to mobile device performance it is l imi ted to 100 targets per
database.

• C l o u d database It is possible to use only clouds hosted by Vuforia . Besides Tar
get Manager it can be managed through Vufor ia Web Services A P I . After creating
database, server access key is generated. A server access key is required for use of the
Vuforia Web Services A P I and for accessing targets from application.

16

Chapter 3

Application Design

The goal of this thesis was to create an experimental application which uses augmented
reality and interactive 3D models. For this purpose a simple tower-defense game named
A R L a n d i n g was chosen.

The game w i l l use markers printed on paper. These markers w i l l be used for camera
registration and for game objects posit ioning. The user w i l l be able to interact w i th these
game object by touching their v i r tua l objects on the device's screen.

For augmented reality functionality the Vufor ia A R framework w i l l be used. The code
w i l l be based on a sample application from Vufor ia - Dominno for easier integration wi th
framework.

3.1 Game principles

The rules of the game are as i n the most of other tower-defense games. The user needs to
defend his base against enemy units coming from their base. There are 3 types of enemies -
light vehicle, tank and flying vehicle. Every enemy has health points which are reduced by
every hit received. W h e n it drops to zero, the enemy is terminated. Enemies are coming
in waves according to the level of game. W h e n the enemy reaches the user's base, it is
terminated and their base loses health points. The user can use two sentry towers for
defense by placing them into the battlefield. They are bound to their markers and w i l l
shoot at enemy units which are passing by. Towers also have health points and enemies w i l l
shoot at them as well . If a tower's health is below zero, the tower is deactivated. It can
be revived by being repaired i n exchange for game currency. The tower's attributes can be
upgraded for game money. Money can be gained by k i l l ing enemies.

The main element of the game for the user is a big v i r tua l tower placed at the user's
base. It has a transparent top wi th sight of the battlefield. The user is able to shoot at
the battlefield only if the camera is located in the top of the tower. Shooting is done by
touching the enemy object on screen. Weapons and other attributes of the tower can also
be upgraded for game currency.

Every active object has l imi ted health points. For enemies it depends on the enemy
type, for user objects on the level of upgrade. W i t h every hit the object loses health points
according to attacker's damage value. Every active object has a health-bar located above
its v i r tua l model.

At t r ibutes which can be upgraded are: max ima l health of object, damage done to
enemies, speed by which object can shoot enemies, range where the shots of the object can

17

reach and angle which determines the segment i n front of the object where it can shoot. The
user can upgrade attributes of main tower and two sentry towers for game currency. There
are 5 levels of each upgrade. Every level improves the value of the attr ibute so it is more
effective. W i t h every new upgrade, the price for the next one rises. Prices for ind iv idua l
levels of upgrade are the same for main tower and sentry towers. Values of attributes are
enhanced for the main tower.

Game objects behavior

The behavior of active game objects is simple. Enemy units need to move from their base to
user's base. For s imulat ion of authentic movement, units move i n curved trajectory. W i t h
each step units do, vector direction is set to enemy base. Then , it is turned by deviat ion
angle which is modified by 5 degrees every step. W h e n it reaches the m a x i m u m l imi t , a
new m a x i m u m in opposite positiveness is randomly generated and the deviation angle w i l l
proceed to it.

Enemy units (A) also need to avoid obstacles (B) . It is done by checking for the in
tersection of two lines. The first line is the vector direction of A mul t ip l ied by constant
- distance for which this is to be tested. The second line is each side of a square created
around obstacle object B . The single direction line leads from the center of the object A .
Therefore, the bounding square around the object B is bigger than its real size so it also
covers the size of object A . If the intersection occurs, it keeps creating new deviat ion angles
for object A unt i l a clear path is found. If no deviat ion angle is found after 100 tries, the
direction vector is turned by 180° and it makes a step back. In the next step this procedure
repeats.

The logic of the sentry towers is even simpler. They t ry to find the nearest target in
their range and shoot at i t . If no suitable object is found, no action is done. This repeats
for every shot.

3.2 Integration with augmented reality framework

In standard tower-defense games the main occupation for user is to bu i ld new towers or to
upgrade them using only device's screen (or desktop's monitor and mouse). In A R L a n d i n g
we want to use augmented reality to enhance the user experience by mix ing the game world
w i th real world. Users w i l l be able to interact w i th game world not only by touching the
screen or keys, but also by moving the camera i n real world as it was a window through
which they can look at the game world. To bring users even deeper into the game world, the
important part of the game is posit ioning the camera at the top of a v i r tua l tower. Users
w i l l be able to look from there to the battlefield as if they were standing there themselves.

Another enhancement of interaction w i l l be posit ioning of game world elements using
markers. Norma l ly users would have to use only game-generated worlds or to use some
k ind of editor to posit ion the game objects. In A R L a n d i n g this w i l l be done by moving the
markers i n real world. M a i n

To m i x the game world w i th the real world we w i l l use Vuforia framework. Framework
takes a frame from the device's camera and finds the positions of markers as well as the
posit ion of the camera itself. W i t h this we can orientate i n the game world and draw it
as i f it was set i n the real world. Coordinates of markers gained from the framework are
processed by the game logic to provide gameplay as well as by graphics to correctly posit ion
and draw game objects.

18

3.2.1 User testing

The main user's occupation i n A R L a n d i n g ' s gameplay is posit ioning of the camera into the
top of the main tower and shooting at enemies from there. To provide proper use for this
action, it is required to have adequate strength and number of enemies. These three issues
are very important and w i l l be tested wi th users and adjusted to improve the gameplay
and overall user experience.

Testing w i l l be done direct ly during playing the game. Posi t ioning of the camera w i l l
be tested by measuring the ratio of t ime when camera is positioned inside the top of the
tower to overall gameplay time. User can shoot from the main tower only i f the camera
is positioned there so reliable registration of camera is very important . F r o m the result
we w i l l be able to adjust the size and posit ion of a bounding box around the top of the
tower so it is not difficult to posi t ion it correctly and not too easy so user could shoot from
anywhere around the tower.

For shooting at enemies user needs to touch the v i r tua l object on device's screen. We w i l l
test this action by counting the attempts when touch was handled properly and attempts
when the invoked action was incorrect or wasn't invoked at a l l . Result of this test w i l l help
us to adjust the bounding boxes around enemies and towers.

Strength and number of enemies needs to be set properly so the sentry towers can take
care of significal part. Weaken or a smal l amount of enemies need to pass by sentry towers
so user can shoot at them from the main tower. To destroy the rest of the enemies should be
challenging for user and also not very difficult. Th is complex issue w i l l be tested by playing
and counting the rate of successfully finished games and games when enemies destroyed
the user's base. W i t h result we w i l l be able to adjust the strength so average users can
successfully finish the game i n a few attempts.

3.2.2 Markers

Figure 3.1: Image of frame marker used by Vuforia.

The vuforia framework pr imar i ly works wi th image targets. Recognit ion works very
well, but w i th a larger amount of targets the performance lags behind. A R L a n d i n g uses

19

5 targets - enemy base, user base and two sentry towers. The last marker is used as an
obstacle object but it is also the center of the game world and coordinate system. Because
of performance reason, A R L a n d i n g uses frame markers 3.1. Vuforia comes wi th 256 pre-
made frame markers. Recognized patterns are located only at the edges of a square marker
(O R square markers), therefore there is a free space in the middle. It can be used for easier
distinguishing of markers by the user as well as determining the direction that the markers
are heading.

3.3 Graphical user interface

A R L a n d i n g is situated in a sci-fi environment, therefore the menu and other non-game
screens are based on a background appearing as metall ic material .

M a i n menu

The main menu 3.2 contains only 4 buttons - New Game, How To, Credi ts and E x i t .
But tons are positioned i n the middle w i t h no dis turbing elements.

Figure 3.2: M a i n menu of application.

G a m e screen

The game screen 3.3 is very simple. It can be used only in landscape mode. The major part
of the screen is taken by the camera view. This part is used for a l l of the user's interaction
wi th the game world and the objects. A t the right edge of the screen there is a quick access
panel. It contains buttons for pausing the game and returning to ma in menu. In the left
top corner there is textual information about the game state - current health of main tower,
available money and current wave. This text changes to "Pause" if the game is paused or
to "Markers not visible" when markers are not visible.

In the middle of the screen there is an information box which appears i f there is a
problem wi th the location of markers. Cent ra l marker is the crucial and game objects are
rendered using its coordinates. Therefore i f it is not recognized i n captured frame, the
game is paused immediately and an information box wi th a warning message appears on
the screen. The same also happens if some of the other markers are not visible for more
than 100 frames. If the marker is not found for 50 frames, a toast message appears in the
bot tom of screen.

20

Figure 3.3: Gameplay screen wi th warning displayed.

Upgrades screen

Upgrades screen 3.4 serves to upgrade the user's towers. It is invoked when the user
touches the game object in paused mode. Before showing this screen, it is required to
bring the current attributes of bui ld ing from native environment to Java, as mentioned in
implementation (4.1.1). The screen contains labels w i th current values of attributes and
buttons to upgrade. If the user does not have enough game currency to buy the upgrade or
the upgrade is at m a x i m u m level, the corresponding but ton changes to non-clickable. After
the user clicks the back button, the game screen is shown again. Then the game stays in
paused mode.

M o n e y : 140$

Max health: 60 1
^ ^ ^ ^ ^ ^ ^ ^

Damage: 15
• T l 4 i .

Speed: 20 B U B

Range: 1 5

Angle: 70

:)

Figure 3.4: Screen where user can upgrade attributes of towers.

3D models

A R L a n d i n g ' s environment has a sci-fi theme. This theme allows relatively simple-shaped
models w i th narrow edges. Mos t of the models were downloaded from the internet and
slightly edited. Models were highly detailed and contained many vertices, which were not
needed for this applicat ion. For the reduction of details we used Decimate modifier in
Blender []. O p e n G L E S uses a specific format for loading 3D models. It is a C header file
w i th arrays of vertices, normals and texture coordinates. To convert exported 3D models in
.obj model to these arrays the obj2opengl 1 u t i l i ty was used. Textures are loaded separately
as a .png images and are later associated wi th the models. A R L a n d i n g uses only 2 general

1obj2opengl, Heiko Behrens, http://github.com/HBehrens/obj2opengl

21

http://github.com/HBehrens/obj2opengl

textures which are applied for mult iple objects. Y o u can see examples of models used in
A R L a n d i n g at figure 3.5

Figure 3.5: Models of game towers. O n the left is the sentry tower, on the right is the main
tower.

22

Chapter 4

Realization

4.1 Implementation details
Implementation is based on a sample application which came wi th the Vuforia framework
- Dominoes. It contains a very good example of multi-threaded in i t ia l iza t ion of framework
wi th respect to A n d r o i d platform lifecycle events. The application uses only one activity.
Screens are changed dynamical ly using setContentProvider method.

The Vufor ia A P I for the A n d r o i d platform is wri t ten i n A n d r o i d native code - C + + . This
lets A n d r o i d developers bu i ld performance-critical parts of the applications i n native code.
The S D K and N D K communicate over the Java Nat ive Interface (JNI) . In A R L a n d i n g
native code is used for the most of the features - including framework data processing,
graphics rendering, and the whole game logics. A n d r o i d S D K is used only for the graphical
user interface, handling application lifecycle events and the main applicat ion workflow.

To make the behavior of application clearer, the game operates in 4 states - running,
paused, no marker and finished. The game is i n state paused when the user pauses the
game by touching the pause but ton or when the user is not on game screen - for example,
the upgrades screen, no marker state occurs when one of the markers is not positioned.
The game switches to finished state when the level is ended (both win or lose) and the
application is wait ing for the user's action.

O n figure 4.1 you can see a simplified structure of A R L a n d i n g . The first operation of
the application loop is capturing the camera frame. The image is drawn i n O p e n G L as a
background and then processed by framework to recognize markers. If the marker is found,
its pose mat r ix is used to compute the new game world coordinates. M a t r i x is also stored,
for posit ioning of the drawing content for O p e n G L . If the game is i n state running, these
new coordinates are passed to game logic which invokes every active game object to make
a new step. W h e n this is done, game objects which are s t i l l active are drawn at their new
positions.

W h e n a graphical user interface action is done and needs to be handled i n native envi
ronment, a message is sent from the M a i n Ac t iv i ty . The same but in reversed way happens
when a G U I action is required from native code. User touches are served by their own
method. G U I Manager takes care of switching screens and layouts. For displaying a game
itself, it uses GLSurf aceView, which is used from native environment.

23

Camera

Frames

Vuforia
framework

Renderer

Tracker

Pose
matrix

video
background

ARLanding
core

Game
messages

User
touch

Model-view matrix

World
coordinates

>

World
coordinate;

Game logic

GUI event
messages

Main
Activity

GUI
manager

ARtanding
graphics

Camera
coordinates

OpenGL ES

Drawing
content

GLSurfaceView
Tenderer

Native
environment

View _i
Android SDK

Figure 4.1: Structure of A R L a n d i n g implementation.

4 . 1 . 1 Andro id N D K , J N I

A s mentioned, Vuforia framework uses A n d r o i d native code - C + + because of performance
efficiency. The main application loop is called by onDrawFrame method inherited from
GLSurfaceView.Renderer. In A R L a n d i n g ' s Java code this method is implemented only to
cal l the native rendering function.

Dur ing the in i t ia l iza t ion process the main act ivi ty calls several native methods. These
methods uses the Java environment variable to obtain the references to Java methods from
it. References w i l l be used and stored for the communicat ion. J N I offers a possibil i ty to
share the variables between the environments. This was found performance-inefficient so
A R L a n d i n g uses mechanism of two methods for sending messages wi th integer or string
argument.

4.1.2 Markers and global coordinate system

The Vuforia framework returns for every visible marker the 3D pose of the target as seen
from the camera. It is a 3x4 row-major matr ix . The 3x3 sub-matrix of the left three
columns is a pure rotat ion mat r ix (ortho-normal), whereas the rightmost column is the
translat ion vector. The difference between coordinate systems is shown at figure 4.2.

Right after this pose matr ix is obtained from framework, it is converted converted from
Vuforia 's 3x4 row-major pose mat r ix to O p e n G L ' s 4x4 col-major model-view matr ix . It is
done by a method provided by the toolset i n the framework. These coordinates in model-
view mat r ix are exactly what is needed for augmentation, but are not suitable for game

1Frédéric Ntawiniga, Universitě Laval, http://archimede.bibl.ulaval.ca/archimede/fichiers/25229/ch05.html

24

http://archimede.bibl.ulaval.ca/archimede/fichiers/25229/ch05.html

world orientation.

One marker is chosen to act as the game world center. For this purpose, a central
marker is devoted. In gameplay it acts only as an obstacle so the user does not have to
interact w i th it and therefore worsen the conditions for computer vision. Coordinates of
the other markers, as well as game objects w i th no marker, are relative to this center. We
can get these coordinates by mul t ip ly ing the inverse pose of the world center target (A) by
the pose of other targets (B) . This creates an offset mat r ix that can be used to br ing points
on B into A ' s coordinate system.

4.1.3 Drawing content

Drawing of augmented content is done by O p e n G L E S 2.0. There are two types of posi
t ioning game objects.

• B o n d wi th a marker
Game objects of the ma in tower, sentry towers and the enemy base are bound to
corresponding markers. The best way for posit ioning their 3D models is by directly
using model-view mat r ix of the marker provided by the Vuforia framework. However,
this mat r ix is not i n the O p e n G L coordinate system, so the last step is to mul t ip ly
this mat r ix wi th the projection matr ix , which switches the coordinate system around
the x-axis.

W i t h every frame captured and new pose mat r ix gained, a new game world posit ion
is computed. It is used i n case the marker is not recognized by Vuforia . A 3D model
is then drawn in relation to the central marker whose vis ibi l i ty is condit ional .

• Relat ive to the world center
Game objects can be positioned by coordinates relative to central marker. Th is is
the case of game objects of enemies and objects w i th currently non-visible markers.
Posi t ioning of these objects is based on the modelview mat r ix of central marker.
A t first, it is required to compute the transformation mat r ix for the current frame.
It can include translation (in game world coordinates), rotat ing and scaling. Now
we can apply this transformation to modelview mat r ix of the central marker, by
mult ipl icat ion. The result is that the modelview matr ix is ready for O p e n G L .

25

Health-bars 4.3 are drawn for every game object w i th health points. Posi t ion of health-
bar is relative to the corresponding object. Two 2D rectangles next to each other i n a ratio
of maxHeal th /hea l th are created. The Health-bar is drawn using the same model-view
matr ix as it 's game object. It uses coordinates of corners of the health bar instead of 3D
model's vertices. Cent ra l model-view matr ix is transformed by the transformation matr ix
of its game object so it is heading i n the direction of object.

Shots are drawn separately from game objects, as a single line between objects. Every
type of 3D model has it 's own offset of the shot origin. Th is 3D offset is added to game
object's posi t ion (in game world coordinates). L ine end is direct ly i n the second objects'
origin. The line is drawn using central model-view matr ix . Therefore it is required to rotate
offset vector by the angle which the game object heading to. Every shot has a durat ion
which is measured i n frames. Standardly it is set to 5 frames.

The user's base and sentry towers have a l imi ted range and angle of where they can
shoot. To determine it we need to know which way the corresponding marker is heading.
The direction of the marker is extracted from the model-view matr ix . Th is vector is used
wi th the game world coordinates to determine points of triangle which specifies the area
where the object can shoot. W h e n the game is paused, these points are used for drawing
lines around borders of the triangle so the user can adjust the posit ion of sentry towers.

Figure 4.3: Detai led view at health bars and shots.

4.1.4 User touch handling

The only input of user's touch are two-dimensional coordinates i n the coordinate system of
the device's screen. It is captured by the onTouchEvent method of the main activity. Here
it is pre-processed and sent to the native environment.

Bounding boxes around the game objects are registred in game world coordinates, even
though the first step is to convert received window coordinates to normalized device coordi
nates. The next step is to project this point into a line i n camera view. We create near and
far planes and transfer this point to them. To get game world's coordinates the last step
would be to mul t ip ly camera coordinates w i th inversed modelview mat r ix of central target.

26

Now we can check for intersections wi th bounding boxes around active objects. If they
intersect, the action depends on the selected object and current state of the application.

4.2 Evaluation and assessments

A R L a n d i n g was successfully implemented. For debugging and testing dur ing the develop
ment we used new device Google Nexus 4 wi th A n d r o i d 4.2.2 and older device H T C H D 2
w i t h A n d r o i d 2.3.7.

4.2.1 Startup time

Startup t ime was tested on Google Nexus 4 and H T C H D 2 . Measur ing was done by
comparing t ime values gained from method SystemClock.elapsedRealtimeO. T ime of
act ivi ty displayed was gained from t ime of debugging messages i n L o g C a t because this event
does not come from the application. W i t h the debugger attached the overall performance
is slightly worse, but for this test it wasn't crucial . Before the measurements, the process
was properly ki l led .

Google Nexus 4 H T C H D 2
1. 2. 3. Average 1. 2. 3. Average

Start 0 0 0 0 0 0 0 0
Nat ive libraries loaded 210 150 100 153 170 150 150 156

onCreate finished 1101 1161 981 1081 1750 1690 1653 1698
Q C A R ini t ia l ized 1111 1171 1031 1104 2060 1940 1970 2323
A c t i v i t y displayed 1311 1446 1272 1343 1780 1720 1860 1787

Ini t ia l izat ion finished 1422 1561 1292 1425 2920 2739 2396 2685

Table 4.1: Measured startup times on two different devices. Times are in milliseconds.

Fi rs t measured t ime is the loading of native libraries. It is executed by the Java Runt ime
before the class is loaded so there is no difference between devices. A s mentioned in design,
the ini t ia l izat ion process is executed i n mult iple threads. Therefore the onCreate method
of A n d r o i d application lifecycle is finished in the middle of in i t ia l izat ion. Q C A R - Vufor ia
framework is loading in asynchronous task and on older device it finishes after the main
act ivi ty is displayed.

The last value is t ime when a l l in i t ia l izat ion stages are done and applicat ion is ready to
use. O n Nexus 4 this t ime is about 1.5 seconds. If compared wi th other s imilar application,
this t ime is short and from the user's view ordinary.

The sample applicat ion on which A R L a n d i n g is based, by default displayed a splash
screen while it was loading. M i n i m u m t ime for the splash screen was set to 2 seconds.
Because of faster startup time on current devices we reduced this l imi t to 1 second. Shorter
start-up time may be due to using frame marker targets. It is not required to load image
targets into Vufor ia tracker.

4.2.2 User experience testing

User testing began right when the implementat ion was done. Development continued also
after it and major defects were corrected. In testing, 6 people representing general audience
were involved. To improve user experience we performed al l tests described i n 3.2.1. The

27

results helped us to adjust attributes of tested aspects so the gameplay is more interesting
and challenging. In every test the results of mult iple users were averaged for every attempt.

Positioning of camera in top of main tower

In standard tower-defense games the ma in occupation is to bu i ld new towers or to upgrade
them using only devices' screens (or desktops' monitors and mouses). A R L a n d i n g adds to
this an opportuni ty to posit ion the device into the top of the v i r tua l model of the main
tower. Th is action, together w i th interacting wi th the game world, is challenging and
requires good concentration.

This test was to measure the t ime during gameplay when the camera was positioned
at the top of the tower. T i m e was measured only when the game was running and user
was interacting wi th the game world. The resulting value was the ratio of t ime spent in
the top of the tower to the total t ime of the game running. Measurement was done i n the
application's code by counting "positioned" frames.

Rate when the camera was registred at the top of the tower to overall gameplay time

Figure 4.4: Average ratio of t ime when camera was registered at the top of the tower to
overall gameplay time.

O n figure 4.4 you can see that the resulting values are not satisfying. Average time
when camera was registered i n the top of the ma in tower is about 70%. Th i s was caused
mainly because of the unstable posit ion and rotat ion of the main tower. W h e n the user
touches the screen, he unwil l ingly moves or rotates the device which can result in losing the
posit ion. This imperfection was corrected by extending the bounding box around the top
of tower and adding countdown of 10 frames before camera is claimed as not positioned.
Y o u can also see that the times improve w i t h new attempts.

Interactivity with game world

Interactivity w i th game world is realized by the simplest way - touching the game screen.
A touch is handled and its coordinates are processed to game world coordinates to find out
which object was selected. Dur ing this test we measured the successful rate if a touch event
brought the desired action. Touches were targeted at enemies (shooting) or at buildings
(upgrading). We measured 100 touches and asked if reaction was as expected.

Figure 4.5 shows that touches mostly brought the desired action and does not represent
an obstruction in gameplay. After this test we adjusted the size of bounding boxes to better

28

enclose the game objects.

0 10 20 30 40 50 60 70 80 90 100

Figure 4.5: Average successful rate of selecting game object by touching the game screen.

Difficulty of gameplay

0 1 2 3 4 6 6 7 8 9 1G

Figure 4.6: Levels i n which users finished the game - both win or loss.

A s mentioned, the gameplay requires significant concentration to correctly posit ion the
camera and interact w i th game world at the same t ime. Enemy units t ry to get to the
main tower and sentry towers can't beat them by themselves so the user has to also shoot
them. In this test we measured the rate of finishing the game successfully. W i t h in i t i a l
attributes of enemies and towers we achieved these values. Values represent the level where
user finished the game (successfully or unsuccessfully).

O n figure 4.6 you can see that in i t i a l attributes were set too difficult and users could
very rarely finish the game. To optimize the game difficulty, we adjusted the quantity
and spawning rate of enemies and key attributes of game objects like health points, speed,
shooting speed, etc. A s a result, gameplay is easier and the game can be finished wi th less
problems.

29

Gameplay, performance

Gameplay was tested on both devices and on both of them it was very smooth. Registrat ion
of markers of course works better w i t h the newer device, which has better camera. Vufor ia
framework has minor problems wi th in i t i a l recognition of patterns under low angle. This ,
however, gets better when once it recognizes the marker. It remembers its properties and
later recognizes it in even worse conditions.

F rom t ime to t ime it occurs that the marker is not recognized for a few frames. This
has been solved by tolerated l imi t for missing markers. In this case, the application remem
bers its last posi t ion and renders it there. W h e n the loss of marker occurs, the user can
register a smal l hop i n posit ion of the marker. It happens because of switching from using
corresponding marker's pose mat r ix to using translated pose mat r ix of the central marker.

Overal l assessment

Figure 4.7: F i n a l state of application.

A l l tests brought interesting results and findings which were used to improve user ex
perience and gameplay. Before the testing, the first versions of game were not very nice to
play and user had to make a big effort to actually play the game. After applying the im
provements the game became much more smooth and attractive to play although there are
many aspects to optimize and refine. The game was developed using only basic tools and
framework for computer vision functionality. These resources were sufficient for creating
application wi th credible posit ioning and rendering of v i r tua l objects into real environ
ment. The final applicat ion showed interesting approaches how to use augmented reality
for improving human-computer interaction. Technological advance in mobile devices w i l l
open new possibilities i n this area and findings from this application could be used to bring
v i r tua l objects even closer to real world.

4.2.3 Possibilities of future development

The main problem of comfortable gameplay is the unstable posit ion of v i r tua l objects, es
pecially the main tower. A R L a n d i n g uses new pose mat r ix for every camera frame. Vufor ia
framework finds the targets very satisfactory but the rotat ion coordinates are sl ightly dif
ferent. W i t h normal-sized model this is no problem and the posit ioning looks stable. The

30

model of the ma in tower is bigger though (in real world measurement about 60cm high
wi th standard-sized markers). For drawing this model we used the model-view mat r ix of
the central marker so that the marker of the main tower does not have to be visible. Trans
formation matr ix of the main tower stays the same while the marker is out of captured
region. After applying it to central model-view matr ix , the resultant posit ion and rotat ion
of the main tower is variable. W i t h regards to tower size, the differences i n posit ion wi th
every frame are significant and disturbing.

A possible solution would be to store previous model-view projections and use them to
average big deviations. Th is can however lead to slower reactions if the bigger deviat ion
was intentional. It could be solved by specifying l imi t of deviat ion for averaging.

Another possible solution is to use model-view matrices from other visible markers and
average them. Compar ing deviations between mult iple markers could estimate the correct
translation.

Another inconvenience i n gameplay is requisite of visible central marker. W h e n the
Vufor ia framework can't find the target for the central marker, the game pauses and waits
un t i l it is found again. Th is is not necessary because drawing of content which is not bond
to its marker can also be done i n relation to other markers. For easier conversion to the new
relative coordinates a game object map can be created. Th is would also open possibilities
for path-finding algorithms for moving game objects.

31

Chapter 5

Conclusion

The goal of this thesis was to design and develop an applicat ion for mobile devices which
renders 3D v i r tua l models into a real world environment, using augmented reality. For this
purpose we chose a simple tower-defense game.

Standard tower-defense games use only the device's screen or keyboard and mouse to
interact w i th the game world. We wanted to enhance it by placing the game world into
the real world. Users could interact w i t h it not only by pressing keys but also by moving
the camera around and look at game objects as i f they were really placed i n real world. To
register the posit ion of the camera i n this v i r tua l world we used several markers. Users could
move these markers to posit ion the game objects and change the gameplay. The posit ion
of the camera was also used for enhancing the gameplay. Users could only properly play
the game i f the camera was positioned at the top of a v i r tua l tower, so they could look at
the battlefield like they themselves were standing there.

For the realization we chose Vuforia framework which is provides computer vision func
tionality. F r o m the framework we gained coordinates of markers and camera i n every
captured camera frame. Coordinates were used for game logic to create gameplay and also
for graphics to posit ion and render the game object correctly. Framework's A P I is writ
ten in A n d r o i d native code so the whole game logic and graphics is implemented i n C + + .
A n d r o i d S D K is used only for interaction wi th user.

Dur ing the development and for the evaluation of results we used two A n d r o i d devices.
New Google Nexus 4 running on A n d r o i d 4.2.2 and older device H T C H D 2 wi th installed
A n d r o i d 2.2.3. The application works on both devices without problems. The application
was also tested by users. We tested registration camera posit ion at the top of a v i r tua l tower,
user touch handling and difficulty of game. The results helped us to adjust attributes of
game to improve the user experience even more. Tests also showed that user's progress
improves i n time. The final game is interesting, challenging and shows a new ways and
concepts how can be augmented reality used in this area.

A l l goals were fulfilled and the game is working. D u r i n g the development we also focused
on expandabil i ty of game features so it is ready for future improvements and new features.
The applicat ion w i l l be published i n the Google P l a y store and w i l l also be improved by
users demands.

Researching for this thesis gave me a very detailed overview about augmented reality
and A n d r o i d programming. I found these to be interesting and also perspective for future.
Advances i n mobile technologies w i l l extend possibilities of augmented reality applications
and thus I ' l l be able to use my newly gained knowledge very well .

32

Bibliography

[1] A n d A R . A n d a r - android augmented reality - google project hosting,
h t t p s : / / c o d e . g o o g l e . c o m / p / a n d a r / , 2012.

[2] M I P S Technologies B h a n u Chet lapal l i , Software Engineer. Learning about android
graphics subsystem — mips developers, h t t p : / / d e v e l o p e r . m i p s . c o m / 2 0 1 2 / 0 4 / l l /
l e a r n i n g - a b o u t - a n d r o i d - g r a p h i c s - s u b s y s t e m / , 2012.

[3] Ol iver B imber . Spatial augmented reality : merging real and virtual worlds. A K
Peters, Wellesley, Mass, 2005.

[4] John B l a i n . The complete guide to Blender graphics : computer modeling and
animation. C R C Press, B o c a Ra ton , F l a . London , 2012.

[5] Stephen Cawood. Augmented reality : a practical guide. Pragmat ic Bookshelf,
Raleigh, N . C , 2007.

[6] D r o i d A R . Droidar . h t t p : / / d r o i d a r . b l o g s p o t . c o . a t / , 2013.

[7] Qua lcomm A u s t r i a Research Center G m b H . Vufor ia — augmented reality unleashed.
https://www .vuforia.com/, 2011.

[8] Qua lcomm A u s t r i a Research Center G m b H . Developing wi th vuforia — vuforia
developer portal .
h t t p : / / d e v e l o p e r . v u f o r i a . c o m / r e s o u r c e s / d e v - g u i d e / g e t t i n g - s t a r t e d , 2013.

[9] Peer Sr i (Peer internet solutions), mixare — free open source augmented reality
engine, http://www .mixare.org/, 2013.

[10] Inc. Meta io . Home — augmented reality - j u n a i o . . . your mobile companion.
http://www.junaio.com/, 2013.

[11] P a u l M i l g r a m , Haruo Takemura, A k i r a U t s u m i , and Fumio Ki sh ino . Augmented
reality: A class of displays on the real i ty-vir tual i ty continuum, pages 282-292, 1994.

[12] J . Mooser, S. Y o u , and U . Neumann. Real- t ime object t racking for augmented reality
combining graph cuts and opt ical flow. In Mixed and Augmented Reality, 2007.
ISMAR 2007. 6th IEEE and ACM International Symposium on, pages 145-152, 2007.

[13] Sylva in Ra tabou i l . Android NDK beginner's guide discover the native side of Android
and inject the power of C/C++ in your applications. Packt P u b , B i rmingham, U . K ,
2012.

33

https://code.google.com/p/andar/
http://developer.mips.com/2012/04/ll/
http://droidar.blogspot.co.at/
https://www.vuforia.com/
http://developer.vuforia.com/resources/dev-guide/getting-started
http://www.mixare.org/
http://www.junaio.com/

[14] tdomhan. Howtobuildapplicationsbasedonandar - andar.
http:/ /code.google.com/p/andar/wiki/HowToBuildApplicationsBasedOnAndAR,
2013.

34

http://code.google.com/p/andar/wiki/HowToBuildApplicationsBasedOnAndAR

Appendix A

Contents of the provided CD

• The source codes of developed applicat ion

• The .apk archive of developed application

• Vuforia Framework required for compi l ing the application

• The M p X s o u r c e files for this document

• Poster

• Video

35

