
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

DESIGN AND IMPLEMENTATION OF DISTRIBUTED
SYSTEM FOR ALGORITHMIC TRADING
NÁVRH A IMPLEMENTACE DISTRIBUOVANÉHO SYSTÉMU PRO ALGORITMICKÉ OBCHODOVÁNÍ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. MICHAL HORNICKÝ
AUTOR PRÁCE

SUPERVISOR RNDr. MAREK RYCHLÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2018

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2018/2019

Master's Thesis Specification
22171

Student:
Programme:
Title:

Hornicky Michal, Be.
Information Technology Field of study: Information Systems
Design and Implementation of Distributed System for Algorithmic Trading

Category: Information Systems
Assignment:

1. Research programming models and paradigms used to create scalable distributed applications. Study
existing approaches to high-frequency algorithmic trading.

2. Select suitable programming model and propose a set of technologies for implementation of distributed
system for algorithmic trading using this model. Analyse requirements and design the system.

3. After consulting with the supervisor, implement the system using the proposed technologies. Measure
performance and scalability of the resulting system and evaluate the impact of selected technologies on
the system.

4. Describe, evaluate and publish the results as an open source.
Recommended literature:

• Arden Agopyan, Emrah Sener, AN Beklen. Financial business cloud for high-frequency trading. Cloud
Computing 2010, IARIA, 2010. ISBN978-1-61208-106-9.

• Camilo Rostoker, Alan Wagner, and Holger Hoos. A parallel workflow for real-time correlation and
clustering of high-frequency stock market data. Parallel and Distributed Processing Symposium 2007,
IEEE International, 2007.

• Maarten Van Steen, Stefan Van der Zijden, Henk J. Sips. Software engineering for the scalable distributed
applications. Computer Software and Applications Conference, IEEE, 1998.

Requirements for the semestral defence:
• Items 1 and 2.

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Rychlý Marek, RNDr., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 22, 2019
Approval date: October 23, 2018

Master's Thesis Specification/22171 /2018/xhorni14 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Abstract
Innovation i n financial markets provides new opportunities. Usage of algori thmic t rading
is a perfect way to capitalize on them. This thesis deals w i t h design and development of
a system that would allow its users to create their own t rading strategies and apply them
on real financial markets. The emphasis is put on designing a scalable and reliable system
using cloud computing technologies.

Abstrakt
Inovácia na f inančných t rhoch poskytuje nové pr í lež i tos t i . Algor i tmické obchodovanie je
v h o d n ý spôsob využ i t i a t ý c h t o pr í lež i tos t í . T á t o p r á c a sa z a o b e r á n á v r h o m a i m p l e m e n t á
ciou sys t ému , k t o r ý by dovoľoval svoj ím užívateľom vy tvá rať v l a s t n é obchodovacie s t r a t ég ie ,
a pomocou nich obchodovať na b u r z á c h . P r á c a kladie dô raz na n á v r h d i s t r i buovaného sys
t é m u , k t o r ý bude škálovatelný, pomocou technológi í c loud computingu.

Keywords
Trading, Algor i thmic trading, C l o u d , Dis t r ibuted system, Rust , Kubernetes,

Klíčová slova
O b c h o d o v a n i e , B u r z a , D i s t r i b u o v a n ý sys t ém, Rust , Kubernetes

Reference
H O R N I C K Ý , M i c h a l . Design and Implementation of Distributed System for Algorithmic
Trading. Brno , 2018. Master 's thesis. Brno Univers i ty of Technology, Facul ty of Informa
t ion Technology. Supervisor R N D r . Marek Rychlý , P h . D .

Rozšířený abstrakt
Inovácia na f inančných t rhoch poskytuje nové pr í lež i tos t i . Algor i tmické obchodovanie je
v h o d n ý s p ô s o b využ i t i a t ý c h t o pr í lež i tos t í . T á t o d ip lomová p r á c a sa z a o b e r á n á v r h o m
a vývo jom s y s t é m u pre a lgor i tmické obchodovanie na burze. H l a v n ý m cieľom p r á c e je
nav rhnúť a vyvinúť sy s t ém, k t o r ý by dovoli l obchodovať na burze viac používa teľom, a
teda by bo l škálovaťelný.

Pre dosiahnutie t ý c h t o cieľov, bolo p o t r e b n é založiť s y s t é m na distribuovanej architek
t ú r e , a použiť m o d e r n é technológie z oblasti d i s t r i buovaných s y s t é m o v a C l o u d Comput ingu .
P r i vyp racovan í tejto p ráce , bo l i t ak t i ež p o u ž i t é n e t r a d i č n é technológie ako n a p r í k l a d použi
tie Z e r o M Q pre komun ikác iu , a použ i t i e j a zyku Rust pre i m p l e m e n t á c i u .

Použ i t i e t ývch to technológi i pre splnenie pož i adavkov na výs ledný s y s t é m so sebou
prinieslo v l a s t n ú sadu p rob lémov , k t o r ý c h r iešenie je p o p í s a n é v texte p ráce .

Text pracie je rozde lený do niekoľkých kapi to l . K a p i t o l a 2 sa v k r á t k o s t i z a o b e r á ex
is tu júcimi p roduktmi , k t o r é t ak t i e ž p o s k u t u j ú n á s t r o j e pre a lgor i tmické obchodovanie na
b u r z á c h s kryptomenami.

K a p i t o l a 3 sa z a o b e r á t eo re t i ckými z á k l a d m i p o u ž i t ý c h technológi i . A s i na jdôlež i te jšou
časťou je popis d i s t r i buovaných sys t émov . Z faktu že v y t v á r a m e d i s t r i buovaný s y s t é m
vyp lýva potreba použ i t i a programovacej paradigmy, k t o r á by tento p r í s t u p z jednoduš i la .
P r e s k ú m a l i sme viaceré , ale nakoniec sme použi l i p r í s t u p z n a á m y ako Ac to r model.

K a p i t o l a 4 sa z a o b e r á n á v r h o m výs l edného s y s t é m u , a jeho j edno t l i vých čas t í . S y s t é m
sme navrhl i ako kolekciu d i s t r ibuovaných komponentov, k t o r é komun iku jú pomocou Ze
r o M Q , a bež ia vo v ý p o č e t n o m p r o s t r e d í Docker kontajnerov, k t o r é sú sp ravované n á s t r o j o m
Kubernetes. Rozhranie s y s t é m u je n a v r h n u t é ako Single-page ap l ikác ia v y t v o r e n á pomocou
knižnice React, k t o r á komunikuje s R E S T A P I p o s k y t o v a n ý m servrovou apl ikác iou .

K a p i t o l a 5 sa z a o b e r á popisom samotnej i m p l e m e n t á c i e j edno t l i vých komponentov,
k to ré bol i n a v r h n u t é v p redchádza júce j kapitole. Tak t iež sa z a o b e r á popisom knižníc
act ix_comm a c t i x _ a r c h k t o r é obsahu jú n á s t r o j e pre i m p l e m e n t á c i u k o m u n i k a č n ý c h kaná lov
medzi j e d n o t l i v ý m i komponentami v distr ibuovanom p r o s t r e d í . K a p i t o l a sa dalej z a o b e r á
p o u ž i t ý m i t echno lóg iami , a d ô v o d m i pre ich použ i t i e .

K a p i t o l a 6 obsahuje popis v l a s t n o s t í v y v v i n u t é h o sys t ému , a ce lkovými výs l edkami tejto
p ráce . Hlavnou súčasťou je popis p r á c e s v y t v o r e n ý m s y s t é m o m , me todo lóg ie merania
výkonu , a s a m o t n é n a m e r a n é v ý k o n n o s t n é hodnoty. T á t o kapi tola sa t ak t i e ž z a o b e r á popi
som p r o b l é m o v so s y s t é m o m , a m o ž n ý m i r iešen iami t ý c h t o p rob lémov .

H l a v n ý m i výs l edkami p r á c e sú: s a m o t n ý i m p l e m e n t o v a n ý s y s t é m s n á s t r o j m i pre jeho
sp rávu a nasadzovanie, knižnice pre i m p l e m e n t á c i u komunikác ie v distr ibuovanom p r o s t r e d í
pomocou Z e r o M Q .

Design and Implementation of Distributed Sys
tem for Algorithmic Trading

Declaration
Hereby I declare that this term project was prepared as an original author's work under
the supervision of R N D r . Marek Rychlý, P h . D . A l l the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

M i c h a l Horn ický
M a y 20, 2019

Acknowledgements
I would like to thank R N D r . Marek Rychlý, P h . D , the supervisor of this thesis, for extremely
valuable feedback provided during consultations I would also like to thank attendees of
E x c e l @ F I T student conference for supportive, and valuable feedback provided about the
result of this thesis.

Contents

1 Introduction 4
1.1 Objectives 4

2 Current state Sz existing solutions 6
2.1 Examples 6

2.1.1 Gekko 6
2.1.2 CryptoTrader 6

3 Theory 7
3.1 Trading & Exchanges 7

3.1.1 Algor i thmic t rading 7
3.2 Dis t r ibuted systems 9

3.2.1 Add i t i ona l properties 9
3.3 Ac to r model 10

3.3.1 Al ternat ive models 10
3.3.2 Implementations 11

3.4 Rust 11
3.4.1 Language basics 12
3.4.2 Features 12
3.4.3 Generic programming, traits 12
3.4.4 Traits 13
3.4.5 Marker traits 14
3.4.6 M e m o r y management 14
3.4.7 Concurrency primitives 15
3.4.8 Asynchronous programming 15
3.4.9 B u i l d system and package manager 16

3.5 A c t i x 16
3.5.1 A c t o r i n ac t ix 17
3.5.2 Networked actors i n act ix 18

3.6 C l o u d environment 18
3.6.1 V i r t u a l machine model 18
3.6.2 Container model 18
3.6.3 Kubernetes 19

3.7 Web applications 19

4 Design 21
4.1 General system design 21
4.2 Component design 21

L

4.2.1 Individual component architecture 23
4.3 Communica t ion , ac t ix-comm and actix-arch 23

4.3.1 Under ly ing protocol 23
4.3.2 L ib ra ry interface 23
4.3.3 Communica t ion protocol 24
4.3.4 Message format, actor state 25
4.3.5 Act ix -a rch 25

4.4 D a t a storage 27
4.4.1 System data 27
4.4.2 Asset data 28
4.4.3 Evaluated storage architectures 29
4.4.4 Evaluated solutions 29

4.5 Web 30
4.5.1 Backend 30
4.5.2 Frontend 30
4.5.3 Frontend applicat ion 32

4.6 Exchange adapters 32
4.7 Strategies 32

4.7.1 Language choice 32
4.7.2 L u a 33
4.7.3 Safety 33
4.7.4 Access to information 34
4.7.5 Technical analysis l ibrary 34

4.8 Evaluat ion 34

5 Implementation 36
5.1 Project structure 36
5.2 Bu i ld ing and deploying 36

5.2.1 Makefile meta-build management 37
5.2.2 Kubernetes configuration templat ing 37
5.2.3 B u i l d targets 37

5.3 Component implementat ion 38
5.3.1 Core component 38
5.3.2 E v a l component 39
5.3.3 Bitf inex adapter 40
5.3.4 Persistence 40
5.3.5 Web component 42

5.4 Web applicat ion frontend 43
5.4.1 React 44
5.4.2 Components & Rout ing 44
5.4.3 Redux 44
5.4.4 Mate r i a l -UI 46

6 Testing and evaluation 48
6.1 Testing 48

6.1.1 Debugging 49
6.1.2 Moni to r ing 49

6.2 Implementation evaluation 49

2

6.2.1 Measurement methodology 50
6.3 Performance measurements 50

6.3.1 Collected information 50
6.4 Results 52

6.4.1 Measurement stages 52
6.4.2 Further scaling 55
6.4.3 Automat ic scaling 55

6.5 Problems 55
6.5.1 Database bottlenecks 55
6.5.2 Readabi l i ty problems 55
6.5.3 Deployment updates - Disconnects 56

6.6 Impact of selected technologies 56

7 Conclusion &c Future work 58

Bibl iography 59

3

Chapter 1

Introduction

Financ ia l markets are complex systems, i n which, market players interact w i th each other
to determine price of an asset. Advances in financial technologies, like the advent of
blockchain technology, and corresponding proliferation of cryptoccurencies , like Bitcoin[16]
have changed nature of trading.

A s a result of these advances, financial markets are now more approachable than ever,
and thus present a significant opportunity. One example of services that successfully exploit
this opportuni ty are cryptocurrency exchanges. They are a whole new k ind of marketplace,
that provides several advantages to its users. These exchanges usually provide approachable
Web based user interface for everyone and, H T T P / W e b S o c k e t A P I for advanced users.

In order to capitalize on these advances, we must use advanced trading techniques. One
of these is algori thmic trading. Basis of algori thmic trading, is u t i l iza t ion of some k ind
of algori thm, along wi th market data, i n order to determine most profitable actions, that
should be performed on the market.

This approach, has several requirements. One of them is large amount of computing
power, since used algorithms might be extremely complex. Latency is also a big concern,
since this space is extremely competitive, and a party, which is able to perform opt imal
actions sooner than a l l other parties, w i l l net a larger profit. Thanks to these requirements,
usage of this technique is not easy, or cheap.

However, advances in development and usage of distr ibuted systems, might be an easy
solution to these problems. C l o u d computing[22] is now more widespread, and easy to use
than ever. Thanks to new technologies like docker 1 and kubernetes[5], the creation and
management of distr ibuted systems is easy, and systems created w i t h these technologies
can be easily secured, are scalable and provide other benefits for developers creating them
compared to more monoli thic architectures.

1.1 Objectives

This thesis is concerned wi th creation of a system for algori thmic trading. This system was
conceived as a distr ibuted applicat ion. Usage of dis tr ibuted was chosen in order to minimize
cost of approach should help wi th performance requirements, and the difficulty of imple
menting such complex system. The system should be designed wi th latest technological
advances i n mind , and should uti l ize cloud computing environment.

1https://www.docker.com/

4

https://www.docker.com/

The system itself should be extensible and scalable. The extendabil i ty requirement
deals w i th abi l i ty to integrate new markets, w i th types of assets, or add new functionality
to existing ones. The scalabili ty of the system deals pr imar i ly w i th the system's abi l i ty to
automatical ly scale based on amount of users and resulting load on the system.

F rom users' perspective, the system should be a easy to use web applicat ion. The user
should be able to define custom algorithms and strategies, and apply them to different
markets.

5

Chapter 2

Current state & existing solutions

Exis t ing solutions for algori thmic t rading that are aimed to regular users instead of spe
cialized investment companies have been available for some time. These solutions range
from simple command-line applications that connect to single exchange to large distr ibuted
deployments w i th web interface that connect to largest stock exchanges [6].

2.1 Examples

We chose to look at a few solutions from different part of this spectrum i n order to better
understand the requirements that w i l l be placed upon the designed system. A l l evaluated
solutions perform algori thmic t rading of cryptocurrencies. W h i l e restricting our research
to this smal l part of global markets might affect our findings, the pr imary market in which
the designed system w i l l operate also is a cryptocurrency market.

2.1.1 G e k k o

O n the lower end of the spectrum, there is a simple appl icat ion wri t ten in javascript called
G e k k o 1 . Th is appl icat ion is open source and runs on top of the Node.js. The applicat ion
can import historical data, and use this historical data to backtest 2 created strategies.
The strategies are wr i t ten in Javascript, w i th the support of a simple l ibrary that contains
implementations of financial indicators, that are commonly used wi th these types of t rading
strategies.

It also provides simple web interface, but can only connect to one exchange at a t ime,
and only supports one user at a t ime.

Therefore, it lacks the scalabili ty of a distr ibuted approach.

2.1.2 C r y p t o T r a d e r

O n the higher end of the scale spectrum, we have Cryp toTrade r 3 . Th is solution is imple
mented as a web applicat ion, that supports mult iple users at the same time. Each user
can define mult iple strategies, and each strategy can uti l ize mult iple data sources. The
strategies are wri t ten i n language called CoffeeScript, w i th sl ightly inconvenient but very
powerful A P I . This system serves as a good benchmark for our system.

1https://gekko. wizb.it/
2https://en. wikipedia.org/wiki/Backtesting
3https://cryptotrader.org/

G

https://gekko
http://wizb.it/
https://en
http://wikipedia.org/wiki/Backtesting
https://cryptotrader.org/

Chapter 3

Theory

This chapter describes theoretical approach to different parts of target system.

3.1 Trading &; Exchanges

In order to define algori thmic trading, we must first define what t rading is, and how it
is performed. Trading is performed on exchanges. K e y aspect of exchange t rading is the
price discovery mechanism. For a l l assets, traded on an exchange, the price is not dictated
by any single party. Instead, the price is „discovered" by interaction of buyers and sellers.
Buyers advertise the highest price they are wi l l ing to pay for an asset, and sellers advertise
the lowest price they are wi l l ing to accept. These 2 prices correspond to basic economic
principle of supply and demand. W h e n there are more sellers active on the exchange, the
price w i l l fall, since there are isn't enough buyers to buy an asset. Th is principle also
applies i n reverse, i f there are more buyers active on the market, the price w i l l rise. The
max imum price listed by a buyers known as b id price, and the min ima l price listed by a
seller is known as ask price

Since these exchanges are dynamic environments, w i th always fluctuating pressures on
either side, the price of an asset, varies over a t ime. The amount of this variance is called
volatility.

Historically, the exchanges were physical, main ly used for t rading stocks, and were
called stock exchanges. They were physical locations , where ind iv idua l traders met, and
traded one asset for another. P r imar i ly , these trades consisted of stocks or goods against
money. Another type of trade is when 2 parties trade one currency for another. Exchanges
specializing i n these types of trades are called F O R E X (Foreign exchange) markets.

Most recent of exchange types, is the cryptocurrency exchange. These exchanges are
almost always purely v i r tua l . A l l t rading is performed v i a web interface. The main ad
vantage for our purposes is the ease of use of these exchanges, and their modern features.
V i r t u a l l y a l l of them provide mult iple A P I s for different purposes. A real-time A P I for
low-latency streaming of updates to clients, and a R E S T A P I provided for executing trades
on the exchange.

3.1.1 A l g o r i t h m i c t r a d i n g

Firs t financial markets w i th electronic execution and connection to communicat ion networks
appeared i n late 1980s and 1990s. Th is allowed some degree of automation, but weren't
yet used for fully automated trading. In 2001 a paper published by IBM[18] , encouraged

7

adoption of algori thmic trading. In this paper, fully automated t rading strategies consis
tently outperformed human counterparts. Since then, the amount of t rading performed by
automated systems has steadily risen.

A s algori thmic t rading became more common, new trading strategies started popping
up, and an arms race was started. In this arms race, the parties were consistently intro
ducing new, more effective ways of performing trading decisions, and executing resulting
trades. The H F T (H i g h frequency trading) is a culminat ion of the automated t rading arms
race.

H i g h frequency trading

This form of t rading is characterized by high turnover and order-to-trade ratios(number
of created orders compared to executed trades). It utilizes highly specialized order types,
co-location of t rading equipment as close as possible to exchange. In 2010, only 2% of U S
based t rading firms specialized in H F T , but these 2% accounted for more than 73% of a l l
t rading volume[14].

There are four key categories of H F T strategies [21]:

• Order-flow based market making - Uti l izes data about amount & volume of newly
created orders to determine state of the market &; then creates orders on a regular
basis to capture bid-ask spread

• T i c k data based market making - Uti l izes tick data (current b id & ask prices) to
determine state of the market creates orders on a regular basis to capture bid-ask
spread

• Event arbitrage - Uti l izes external information, about events that might affect the
market to create specialized orders to profit from this event (Company mergers)

• Stat is t ical arbitrage - Uti l izes mult iple asset classes, to create complex transaction
chains, which allow for relatively risk free profit

Our system w i l l main ly support strategies, that would fall into T i c k data market
making category. This is due to s implic i ty of these strategies, and the fact that the
information provided by the cryptocurrency exchanges is best suited for these strategies.
However, we should clarify, that this system does not a im to achieve extremely low latencies.
The general goal is to achieve latency of one second. This latency is measured between the
moment the system receives update from an exchange to a moment at which the system
starts executing A P I calls related to order creation on said exchange.

The strategies w i l l be implemented i n a generic way. Tha t means that an ind iv idua l
strategy w i l l not be referencing any part icular asset, but w i l l be working wi th a general
representation of financial data wi th in the system. The selection of an asset, to which a
part icular strategy should be applied w i l l be performed by users. The system w i l l allow
application of a strategy to mult iple assets.

The users' capabil i ty to use mult iple strategies on mult iple assets, and the multi-user
nature of the system w i l l require large degree of scalabili ty in different parts of the system.
To satisfy these constraints, it w i l l have to be of dis tr ibuted nature.

8

3.2 Distributed systems

Dist r ibuted systems are systems, that are comprised of many loosely coupled components.
These components might be threads i n single process, processes on single computer, or
mult iple computers connected through shared memory or a network. These components
communicate by u t i l iz ing shared memory, or by passing messages to one another. Compo
nents interact w i t h one another in order to achieve shared goal. Dis t r ibu ted systems have
several key properties [9]:

• Concurrency - The computat ion i n one component is concurrent w i t h computations
performed by other components

• N o global clock - There is no single global clock, each component has only local clock

• Independent failures - Failure of one component does not imply failure of other com
ponents

We can use these properties to make a very loose definition of what a distr ibuted system
is. In order to better understand these types of systems, we w i l l have to analyze several
addi t ional properties.

3.2.1 A d d i t i o n a l propert ies

We can analyze whether a dis tr ibuted system uses homogeneous or heterogeneous compo
nents. The systems that only use homogeneous components are commonly used in open
environments. Systems like B i t Torrent or similar file dis t r ibut ion software are the perfect
example.

In order to find an example of heterogeneous system , we don't have to look further
than W o r l d W i d e Web. In this system, we have servers and clients, which are 2 different
types of system components.

Another property of distr ibuted system is the communicat ion method. There are 2
pr imary approaches to communicat ion between 2 components. Message passing or shared
memory.

Message passing is used more commonly, since it allows lower degree of coupling be
tween components, al lowing them to communicate over any communicat ion channel. We
can simulate former approach w i t h the latter and vice versa at the cost of performance.
Going further, this thesis w i l l only deal w i th systems that use message passing as the
communicat ion paradigm.

Another aspect of component communicat ion is the communicat ion protocol. This does
not mean the underlying technology that is used to send messages, but rather the protocol
that determines what messages w i l l be sent, and when.

Components might communicate using simple request - reply based protocol , like
H T T P . O r they might communicate using slightly different publ ish - subscribe model over
technologies like Z e r o M Q , or message buses like Kafka .

We can also examine the r igidi ty of the system. The number and types of compo
nents can be either dynamic, or static. This property influences the abi l i ty of a system to
independently resolve local failures (self-healing systems).

9

Designed system properties

Using these properties, we settled on a model of a distr ibuted system, that utilizes large
amount of heterogeneous components. E a c h of these components communicates pr imar i ly
using request-reply style of communicat ion ut i l iz ing message passing paradigm. This model
is called the Ac to r model.

3.3 Actor model

Actor model is a conceptual model of describing concurrent computat ion. It treats Actors as
primitives of concurrent computat ion. Each actor can: Create new actors, send messages,
modify its state and decide, how to respond to received messages. P r i m a r y constraint is the
restriction of modifying applicat ion state. E a c h actor can modify its local state however it
wants, but can only affect other actors by sending messages.

Thanks to this property of isolation, there are no necessary locks to ensure memory
safety. It originated i n 1973, and has been used for understanding distr ibuted computat ion,
and also as a basis of several implementations of concurrent systems.

According to Hewitt[10], the actor model is based on physics. Th is contrasts other
computat ional models, which are most commonly based on mathematical logic, set theory
or similar concepts. The pr imary takeaway from physics , that can be observed i n actor
model, is taken from quantum physics, and it is the idea of uncertainty. We cannot observe
precise state of a whole system, because at tempting to do so w i l l affect it , and therefore
invalidate measured results.

3.3.1 A l t e r n a t i v e mode l s

Actor model is very high level, and shares both goals and properties w i th other programming
paradigms. These include:

O O P

If we consider Small talk, and its message passing model of object oriented programming,
we observe several common properties.

• Encapsulat ion - B o t h actors and objects can only directly manipulate their local state

• Message passing - B o t h actors and objects can send messages to other actors and
objects respectively

• Po lymorph ism - B o t h actors and objects can decide, how w i l l they respond to specific
message

W h i l e these models are similar, Small ta lk was t ied to part icular implementation, and
it d id not provide tools for concurrent programming. B u t the s imilar i ty nonetheless s t i l l
stands, and actor model can be also understood as an extension of O O P paradigm.

Petr i nets

Pet r i nets have been widely used to model concurrent computat ion. However, while they
are extremely well suited for modeling control flow, They can't be used to model data flow
in their basic form. Another problem is simultaneous action. W h i l e we can easily simulate

10

simultaneous act ion of removing a marker from one place, performing a transi t ion and
placing a marker in output place, i n reality, these 3 actions w i l l not be simultaneous.

Communicat ing sequential processes

W h i l e C S P model has similar goals to actor model , there are several ways, in which these 2
models differ. Most important difference is that Ac to r model is inherently dynamic, while
C S P model i f based on a fixed number of sequential processes communicat ing i n a fixed
topology[12]. Usage of this model therefore is not par t icular ly suited for our purposes, since
designed system should be dynamical ly scalable, which is not possible i n C S P model.

3.3.2 Implementa t ions

W h i l e the actor model is almost 4 decades old, implementations of concurrent and dis
t r ibuted systems that are based on this model are more common than ever. One of the
oldest implementations of the actor model is in the Er lang language. Th is language was
originally developed for telecommunications, w i th the goal put upon high-availability. The
language was created in 1986, originally was implemented in Prolog, and thus extremely
slow. B u t in 1995 it gained custom V M (B E A M V M) , and Er iccson deployed more than a
mi l l ion lines of E r l ang code in production.

B u t the E r l ang is not the only implementat ion of this paradigm. There are several
libraries implementing Ac to r model in wide variety of languages, ranging from L i s p to C + + .
Today, one of the most commonly used libraries is Akka[4], which was originally developed
for Java and Scala, but was reimplemented using C # for the . N E T platform. W h i l e A k k a is
extremely easy to use, extensible, and performant, it is s t i l l only implemented for managed
languages, which require heavy runtime wi th tracing garbage collection.

This was one of the aspects , which influenced the decision to look for another library,
that would be implemented in non-managed language.

O n the other side of the equation, we evaluated C A F 1 framework for C + + , but u l t i
mately we decided against the use of this l ibrary and language. We decided against this
approach because of the complexity of this framework, and inherent unsafety in C + + .

In order to avoid these issues, we decided to use Rust [8] programming language along
wi th the Actix[3] library.

3.4 Rust

Rust is a new programming language developed by M o z i l l a . It was created as a response
to many shortcomings of existing low level languages such as C and C + + . W h i l e these
languages have crucial place in programming landscape, providing the highest performance
and degree of control over hardware, they are outdated, unergonomic and unsafe (par
t icular ly w i th respect to concurrency). O n opposite side of this equation , are managed
languages, that are highly ergonomie, and seem to contain most innovation i n this space.

Rust language aims to posit ion itself among the low level languages, bringing new and
excit ing features to this space. It was originally developed by Graydon Hoare[13] while
working at M o z i l l a , and was based on M L . Probab ly the most important step, was adoption
of the language by M o z i l l a for the purpose of creating new browser engine called Servo [7].

1https://actor-framework.org/

11

https://actor-framework.org/

G o a l of Servo was to experiment and innovate i n the web browser space, without the
depending on over 30 years of legacy code, that was Firefox.

3.4.1 L a n g u a g e basics

Basic concepts of the Rust language are very similar to other C based languages. Basic
structure is denoted by braces, It has functions, a module system, and other features, that
w i l l be uninteresting to intermediate programmer. However, some of the more advanced
concepts make this language part icular ly well suited for large concurrent systems, and w i l l
be explored later i n this chapter.

Language has 2 pr imary entities - types, and traits. For the types, language sup
ports product and sum types(structs and enums respectively), and references (which can
be mutable or immutable) . Trai ts are more interesting feature. They are similar to in
terfaces i n Java, but their closest analogy would be typeclasses from Haskell . Trai ts are
used to declare a set of constraints, types, constants, and functions, that an implementing
type(implementor) must provide. Each implementor, can implement any number of traits.

The language supports a l l the most common control flow constructs like conditionals
and loops. In addi t ion to that, it also supports expressive pattern matching using the match
expression. However, it does not support the goto control flow construct for unrestricted
jumps.

3.4.2 Features

The requirements influenced the design of the language i n a significant way. It started out
as general purpose programming language wi th functional features, very similar to M L , and
due to its use for the implemetat ion of the Servo browser, it acquired some features that
make it excellent systems programming language. These features are:

• Generic programming based on traits

• Memory model that allows safety without garbage collector

• Pr imi t ives to eliminate data races

• Integrated bu i ld system and package manager

3.4.3 G e n e r i c p r o g r a m m i n g , trai ts

Generic programming is a paradigm, i n which algorithms are wri t ten i n terms of unspec
ified types. The types are then specified upon instantiation. These types are called type
parameters, or generic types. B y using this tool , programmer can write common functions
or types only once, and use them w i t h mult iple types, thus reducing duplicat ion. This
paradigm was pioneered by M L , and is supported i n v i r tua l ly every modern language in
one shape or form.

Modern implementations follow 2 pr imary approaches for typing generic constructs:
structural , or protocol based.

Structural generic typing (also called Duck typing) is p r imar i ly used in C + + . W i t h
this approach, the type checking is performed after instantiat ion of generic construct. Th is
allows for greater flexibility. B u t v i r tua l ly a l l implementations of this approach suffer poor
diagnostic messages[19].

12

Protocol(Interface) generic typing is an approach , i n which the generic construct itself
undergoes type checking, and every instantiat ion requires min ima l amount of addi t ional
checks. Th is requires programmer to describe the required interface of each type parameter
explicit ly. These requirements take form of Interfaces (Java, C #) , Concepts (Future C + +) ,
Type classes (Haskell) or Trai ts (Rust) . Then , upon instantiat ion it is only necessary to
check whether each type parameter satisfies specified constraints.

3.4.4 T r a i t s

A s described earlier, traits are used to declare interface, that a type must provide. They
are used to support other language features, and must be understood in order to effectively
use the language. Below is an example of a simple trai t .

pub t r a i t Ord: Eq + PartialOrcKSelf> {
fn cmp(&self, other: &Self) -> Ordering;
fn max(self, other: Self) -> Self where S e l f : Sized {

i f other >= s e l f { other } else { s e l f }
}

}

Lis t ing 3.1: Trai t definition

Lis t ing 3.1 Shows definition of an O r d trait that defines complete ordering over im-
plementors type. Th i s trai t specifies A d d i t i o n a l constraints for implementing types (Also
called supertrait constraints). Every type that implements O r d , must also implement E q ,
and P a r t i a l O r d trait w i th generic argument of implementing type. The implementor, must
provide implementat ion for cmp method, that takes an one argument of implementors type,
and returns an ordering. The trait definition also specifies max method for types, that
implement Sized trait , and provides default implementat ion. The Self keyword is used to
refer to implementing type i n the trait definition. Traits can also be generic, accepting type
parameters, such as the P a r t i a l O r d trait used earlier.

1
2
3
4
5
6
7
8
9

10
11

impl Ord f o r bool {
fn cmp(&self, other : ftbool) -> Ordering {

i f s e l f & !other {
return Ordering::Greater;

}

i f s e l f == other {
return Ordering::Equal;

}

return Ordering::Less;

Lis t ing 3.2: Trai t implementat ion

Lis t ing 3.2 shows simple implementat ion of O r d trait specified earlier for boolean data
type. This sample uses an i m p l block, to implement a trait for specific type. Imp l block
can itself be generic, and have to provide implementations for a l l functions that do not have
default implementations specified i n trait definitions.

13

3.4.5 M a r k e r trai ts

The traits E q and P a r t i a l O r d used earlier are self-explanatory, they denote the availabil i ty
of equality comparison, and par t ia l order i n implementing types. However, the Sized trait
might not be so easy to comprehend.

This trait belongs to special category of traits, called marker traits. These include Send
, Sync, Sized and several others. The marker traits do not provide any functions and serve,
as their name implies, as markers. They are used for marking specific types. The Sized
trait marks types, which have their sizes defined at compile time, and is automatical ly
implemented for these types by compiler. The example of unsized type might be [u8] ,
which is an array of unsigned bytes w i th unknown length.

The Send and Sync traits are crucial for features support ing safe concurrent program
ming , and w i l l be explored later in this chapter.

3.4.6 M e m o r y management

M o d e r n programming languages pr imar i ly use one of 2 approaches to manage memory.
The garbage collection is an approach most commonly used i n High-level languages. 2 most
common variants of garbage collection are reference counting and tracing garbage collection.
B o t h of these approaches have drawbacks, pr imary ones being difficulty handling reference
cycles for reference counting and necessary program pauses for tracing garbage collection

Second common approach used is called R A I I , which stands for „Resource acquisit ion
is in i t ia l iza t ion" . It is most prominently associated wi th C + + , but is used in D , A d a , and
Rust . Th is approach was originally developed for exception safe resource management in
C++[17].

R A I I is more oriented for management of resources, but i f we consider dynamical ly
allocated objects a resource, it serves the same purpose as garbage collection.

The lifetime of a resource is t ied to object lifetime. The resource is acquired during
creation of the object, and released during destruction. The object can have unconstrained
lifetime (Al located on a heap), or scope constrained lifetime (Allocated on the stack).

In C + + the creation and destruction of object is performed by specific functions (Constructor
and destructor). Rust does not support object oriented programming i n a classical sense.
The data types are created structurally(enumerating a l l component values).

The destruction of values is performed wi th the help of a trait system. If a type,
implements the Drop trait , it must implement the drop method, which has similar semantics
to C + + destructor. Th is method w i l l be invoked when variable of this type goes out of
scope, and memory associated wi th it w i l l then be deallocated

Move semantics

Another important concept taken from C + + is move semantics. U n t i l C + + 1 1 , the only
approach was copy semantics, i n which assignment to a variable from another variable would
create copy of referenced object. The drawback of this approach, is inabi l i ty to express a
type, that should not be copyable, but should be movable.

The move semantics on the other hand, can express this concept easily. W i t h copy, the
assignment to a variable, invalidates the old variable. In C + + move semantics, the object
referenced by o ld variable is replaced by and „ E m p t y " object (an object that is safe to
destruct, and its destruction w i l l not invalidate copied object).

14

In rust, the invalidat ion of moved-from variables is enforced at compile time, and usage
of invalidated variable w i l l result in a compiler error. Rust provides only move semantics,
w i th copy semantics emulated by the Clone trait .

Ownership and borrowing

Conceptually, the move semantic are used to express the concept of ownership. If a variable,
contains an object, it „owns" that object , and is responsible for its destruction. However,
requiring programmer to transfer ownership of an object every t ime it is passed into a
function would be extremely tedious on programmer side, and copying of an object would
degrade performance.

Rust also provides a way to reference objects, without moving or copying them. B y using
& or &mut sigil , the programmer can create immutable and mutable reference respectively.
The reason for 2 different reference types is ensuring memory safety.

We can create any number of immutable references to an object, but these references
can't mutate referenced object, or we can create one mutable reference, and use this refer
ence to mutate the object. Creat ion of mult iple mutable references at the same t ime is not
allowed, and w i l l result i n compiler error. Compi le r uses the concept of a lifetime to ensure
that created references do not overlap.

3.4.7 C o n c u r r e n c y pr imi t ives

In addi t ion to ensuring memory safety, the concept of ownership and borrowing is also used
for preventing data races in concurrent programs.

D a t a race occurs when 2 or more threads concurrently access same locat ion of memory,
one of these accesses is a write, and accesses are unsychronized. These types of bugs are
extremely hard to discover, and have lead to death of several medical patients i n one extreme
case[15].

The ownership and borrowing system prevents these kinds of data races, but Rust also
provides tools for ensuring other constraints i n mult i threaded programs. P r i m a r y bui lding
blocks are 2 marker traits. The Send and Sync traits.

The Send trait denotes that the implementor can be safely transferred to a different
thread. This trait is automatical ly implemented by compiler, when appropriate. For ex
ample, objects that reference thread local storage do not implement Send.

The Sync trai t is implemented for types that can be safely shared between threads(eg.
immutable reference).

These 2 traits are then used by l ibrary abstractions like M u t e x and Rwlock to ensure
memory safety and data race free code. For example, the M u t e x abstraction is used to
protect an object w i th a mutex. The M u t e x struct is generic, w i th one type parameter,
that denotes contained value, which must implement Send trait . Th is ensures that the
contained value can be safely shared between threads. The mutex itself implements both
Send and Sync traits, meaning mutex can be safely shared between threads.

3.4.8 A s y n c h r o n o u s p r o g r a m m i n g

One of the most recent additions the Rust language is the addi t ion of primitives for
lightweight asynchronous programming. The key component of this feature is the Future
trai t . T h i s trai t denotes that the implementing type represents an asynchronous computa-

15

t ion that w i l l result in a value or an error at a later t ime. The types of resulting i tem of
error are represented as associated type on the Future trait .

1
2
3
4
5

pub t r a i t Future {
type Item;
type Error;
fn polK&mut s e l f) -> P o l K S e l f : : Item>, S e l f : :Error>;

}

Lis t ing 3.3: Future trai t

L i s t ing 3.3 shows the definition of the Future trait . A s you can see, in addi t ion to two
associated types, it also contains a method declaration for p o l l method. This method is
called when a runtime executing the future is interested whether the future has completed.
Implementations of this method should actively t ry to complete the work represented by
the Future.

This design means that Rust futures are pull-based, as opposed to push-based imple
mentations (eg. Javascripts promises). Our implementat ion heavily relies on this feature
of Rust due to the fact, that the A c t i x library, which provides basic architectural blocks of
our system, is based on futures.

3.4.9 B u i l d sys tem a n d package manager

One area that low level languages are extremely outdated compared more high-level lan
guages is modular i ty and code reuse. W h i l e these languages provide tools for creating
modules, that can be combined to form a larger program, they lack tools for supporting
this process. Because of this, the number of libraries, that a project uses is extremely low,
and each project ends up reimplementing existing functionality. Th is is a large problem
in C + + , where most common libraries used are extremely large (Q T , Boost) , and domain
specific libraries are v i r tua l ly nonexistent.

Rust aims to solve this problem wi th Cargo. Cargo is pr imar i ly a bu i ld too and package
manager, but it also provides testing and benchmarking support. Cargo operates on Crates.
A crate is the smallest compilat ion unit . E a c h crate contains mult iple source code files, and
a manifest file which specifies metadata information about this crate, and lists dependencies.

Crates can be published and uploaded to crates.io repository, which is closely integrated
wi th Cargo. E a c h crate can then also require dependencies from this repository.

This improvement encourages development and usage of small , domain specific libraries,
which i n tu rn allows for the standard l ibrary to be extremely small , on par w i th C + + ,
without reducing productivity.

One of pr imary reasons for choosing rust was the choice of A c t i x [3] l ibrary. A c t i x is a
l ibrary that provides abstractions for implementing applications wi th architecture based on
actor model . Internally it is based upon the Futures feature describe earlier.

Core A P I provided by the l ibrary is a set of traits, that are used to for introducing
semantics based on actor model to custom types. In addi t ion to that, the l ibrary also
provides several structs, that rely on these traits in order to provide communicat ion between
ind iv idua l actors.

3.5 Ac t ix

16

3.5.1 A c t o r i n act ix

Actors are types, that implement the Ac to r trait . The A c t o r trait has an associated type,
that defines the context i n which the actor w i l l be run, and several methods for dealing
wi th actor lifetime. The actor context defines how w i l l the actor receive messages, manages
actor mailbox, and several other support ing components, but its detailed description is out
of the scope of this thesis.

The programmer w i l l also have to implement Handler trait for every message that it
wants to handle.

pub t r a i t Handler<M> where S e l f : Actor, M: Message
{

type Result: IntoResponse<Self, M>;

/// Method i s called for every message received by t h i s Actor
in handle(&mut s e l f , msg: M, ctx: &mut Self::Context) -> Self::Result;

Lis t ing 3.4: Handler trait

The implemented handle method runs synchronously, but asynchronous computat ion
can be started by returning a value that implements a Future trait , from the handle method,
or by u t i l iz ing the spawn method on the ctxs argument to spawn a new asynchronous task
in same context.

After creating an actor, the actor must be started. This can be performed by several
functions, the Arbiter: :start function starts a new thread, runs an Arbiter actor inside
it, and then starts our custom actor wi th in this thread.

Or the Actor: :create starts an actor wi th in current thread.

1
2
3
4
5
6
7
8
9

10
11

impl Handler<IngestUpdate> f o r Ingest {
type Result = Box<Future<Item=usize,Error=()»;

fn handle(&mut s e l f , msg: IngestUpdate, ctx: &mut Context<Self>) {
Box::new(self.db.send(db::SaveOhlc{

i d : msg.spec.pair_id() .cloneO ,
ohlc : msg.ohlc

})
.then(|v| i f v . i s _ e r r () { panic!("DB E r r o r ") ! else { return Ok(v.count) }))

Lis t ing 3.5: Asynchronous message handling example

Lis t ing 3.5 shows implementat ion of the Handler trait w i th asynchronous message han
dl ing. The Ingest actor receives IngestUpdate message, and i n response then sends SaveOhlc
message to db actor. Then , using the then combinator, it verifies that the operation com
pleted successfully, and returns number of wri t ten rows to original message sender.

The actual computat ion is not started i n the handle method. Rather the computat ion
is described by creation of a value that implements the Future trait in this method, and
actual computat ion is started after returning the value from handle method, when the task
created is spawned on event loop in which the actor is running.

17

3.5.2 N e t w o r k e d actors i n act ix

W h i l e act ix provided extremely well designed base for implementing concurrent applications
based on actor model, it has one glaring flaw. It does not provide tools for running actors
on different computers, and thus can't really be used for distr ibuted applications by itself.

To reify this issue, part of this thesis was the design and implementat ion of actix-comm
library, which extends base actix l ibrary wi th primitives for communicat ion between actors
on different computers using Z e r o M Q technology. This l ibrary is described i n detail in
chapter 4.

3.6 Cloud environment

W h i l e usage of low level language, w i th the support for effective concurrent programming
should provide a large performance advantage, this does not solve the scalabili ty problem.
One of the requirements was for the resulting system to be able to scale according to number
of users, and resulting load on the system.

To solve the scalabili ty problem, we have decided to util ize a dynamic computing envi
ronment. Th is approach is called C l o u d Computing[22] This approach is characterized by
shared pools of configurable system resources and services, that can be rapidly provisioned
wi th low latency. C l o u d computing relies on sharing of resources, and economies of scale
to provide better cost to performance ratio than dedicated computing environments.

There are mult iple providers of cloud computing environments, w i th different Service
and deployment models. Most popular of these environments are A m a z o n web services,
Microsoft Azure , Google C l o u d Services, or D i g i t a l Ocean. For the purpose of this thesis,
the D i g i t a l Ocean was chosen to be pr imary provider, but modifying created system for
other environments should be relatively simple.

The basic component the necessary for function of cloud environment is v i r tual izat ion.
B y v i r tua l iz ing resources, the provider can ensure isolation of different customers, and
fine-grained allocation of resources.

3.6.1 V i r t u a l mach ine m o d e l

Conventional approach to v i r tua l iz ing computing resources is the usage of a V i r t u a l M a -
c h i n e (V M) . However, the problem wi th v i r tua l machines is that each v i r tua l machine runs
complete OS , that is running wi th in the confines of another operating system. T h i s redun
dancy creates unnecessary overhead. Another issue is the management of these V M s . Since
each V M is running a complete OS , this O S must be periodical ly updated.

3.6.2 C o n t a i n e r m o d e l

More fine-grained unit of isolation is a container. A container is a simple lightweight image,
that contains only an applicat ion, and libraries needed by this applicat ion. It does not
contain whole operating system. Conceptually, it provides isolation on a layer, that sits
between a process and a v i r tua l machine.

The issue wi th simple containers is that, the containers s t i l l need to be managed, and
as appl icat ion grows, this task becomes increasingly hard. To solve this problem, there
must be another layer, on top of containers, that w i l l manage them. This is called the
orchestration layer.

18

3.6.3 K u b e r n e t e s

Kubernetes[5] is an open-source orchestration system. It's used for automating deployment,
management and scaling of applications that run in containers. Th is system was in i t ia l ly
released in 2014, based on the Borg[20] system, that was used for similar purposes internally
in Google.

Kubernetes defines a set of primitives, which are used to describe a distr ibuted system.
The kubernetes runtime then dynamical ly modifies state of the system, to conform to
described model . The kubernetes runtime runs on a Cluster . A cluster is comprised of
mult iple nodes, that can be dynamical ly added or removed.

Basic used primitives are:

• Namespace - Is a tool used to par t i t ion resources into disjoint sets.

• P o d - A pod is a basic scheduling unit , it contains one or more containers, has assigned
unique I P address wi th ing a cluster,and can define a storage volume, that it exposes
to its containers.

• Service - Is a set of homogeneous pods, that work together. Its main goal is to expose
information about running pods to internal D N S .

• Deployment - Serves as a watchdog that automatical ly ensures there are pods in a
healthy state available to serve incoming requests

• Volume - Object representing a persistent storage.

3.7 Web applications

Another aspect of the designed system is user access to this system. Because the system
w i l l be distributed, and w i l l run i n cloud environment, there is only one usable approach
to implementat ion of the user-facing side of the system. We w i l l have to provide a web
interface. There are several possible approaches for implementing such interfaces. The
pr imary dis t inct ion between them is the location of the ma in applicat ion logic.

Server-side rendering & logic

We could implement the whole appl icat ion as a set of static h tml pages. We would in
troduce dynamic behavior into the server side by rendering these pages using some k ind
of templat ing language. A n d some dynamic behavior into client side by embedding some
javascript, while this approach could reduce development time, it would almost certainly
yield bad user experience, and thus we chose not to go this way.

Client side rendering & Logic

State of the art approach for creating web applications is so called „single-page applicat ion.
In this approach, the applicat ion consists of 2 parts, the frontend part runs in browser, and
it connects to the backed that is running on the server. The frontend is implemented in
javascript, and its pr imary functions include interpreting system data for user consumption,
accepting user inputs and communicat ing wi th the backend. The Backend then runs on the

19

server, connects to the database, and usually provides some k ind of a A P I , most commonly
in the form of R E S T 2 A P I .

2https: / / en.wikipedia.org/ wiki/Representational state transfer

20

http://en.wikipedia.org/

Chapter 4

Design

This chapter aims to outline a system, that satisfies the requirements listed in chapter 1,
ut i l iz ing concepts and technologies outl ined i n chapter 3.

4.1 General system design

System is designed as a collection of loosely coupled components, running inside vir tual ized
environment provided by kubernetes, which can be distr ibuted across many computing
nodes. Basic diagram of intended architecture can be found i n Figure 5.1.

Each component w i l l be implemented as a set of actors that run inside a single process
and communicate w i th other components over Z e r o M Q using both Request reply and Pub-
Sub communicat ion patterns. We w i l l uti l ize Kubernetes ' internal D N S for purposes of
service discovery. The actual communicat ion protocol w i l l be implemented in actix-comm
l ibrary that is described i n section 4.3.

The user facing part of the system w i l l be implemented as a web applicat ion. Th is
application w i l l uti l ize a simple A P I implemented using actix-web l ibrary. The actual web
application itself w i l l be i n a form of Single-page applicat ion.

< < c o m p o n e n t > > £ 1
< < s u b s y s t e m > >

Kubernetes

Ingest

Figure 4.1: Component diagram of basic architecture

4.2 Component design

B y using Kubernetes we vir tual ized the computing environment. The environment as per
ceived by ind iv idua l components w i l l just be a set of connected Docker containers w i th

21

access to D N S server, that contains information about other components. Kubernetes also
provides vir tual ized network environment, making it appear as if a l l containers were on a
same network.

This fact greatly simplifies architectural challenges. The only architectural challenge
remaining, is the definition of how w i l l the appl icat ion components be connected and com
municate. W h i l e the actual communicat ion protocol is defined later i n this chapter, here
we are interested i n more conceptual approach.

Appl i ca t ion is d ivided into several components:

• Web component - Provides a web interface for users' inetraction wi th the system, and
interacts w i th the database

• Core component - Accepts input from users, incoming data from exchanges, decides
when to evaluate strategies, and when to create orders on exchanges

• Evalua t ion component - Evaluates strategies based on requests from Core service

• Persistence component - Stores t ick data and user data upon provided by core service,
and provides this data to a l l services i f necessary

• Exchange components - Each of these components serves as an adapter, that connects
to external exchange A P I , and maps its specific A P I onto internal communicat ion
channels.

E x c h a n g e
< < s e r v i c e > >

E x c h a n g e

1: T ick da ta r e c e i v e d

1.10: E x e c u t e o rde rs
1.1: S to re da ta

< < s e r v i c e >
Core

1.9: E v a l u a t i o n resu l t s 1.2: S ta r t e v a l u a t i o n

^ 1.3: R e q u e s t e v a l u a t i o n iA: Requ< es t e v a l u a t i o n

< < s e r v i c e > >
E v a l u a t i o n L o a d B a l a n c e r

1.8: E v a l u a t i o n resu l t s 1.7: E v a l u a t i o n resu l t s
1.5: R e q u e s t h i s to r i ca l da ta

1.6: R e t u r n h i s to r i ca l da ta

< < s e r v i c e > >
Pe rs i s tence

Figure 4.2: Service communicat ion diagram

Figure 4.2 shows a communicat ion diagram that describes communicat ion between indi
v idua l services, that w i l l occur in response to receiving new financial data from an exchange.
The system w i l l store this information into persistent storage for later use, and i f the infor
mat ion is up to date, it w i l l init iate strategy evaluation for strategies applied to currency
of incoming data.

22

4.2.1 I n d i v i d u a l c o m p o n e n t archi tec ture

Each of these services w i l l be comprised of one or more kubernetes service-deployment
pairs. The service part w i l l ensure availabil i ty of information about ind iv idua l pods on
kubernetes' internal D N S server. The deployment part w i l l ensure the availabil i ty of actual
pods.

Each service w i l l be comprised of one ore more pods that w i l l be managed by deployment.
Each pod w i l l contain base communicat ion actor from actix-comm l ibrary, and several other
actors to support communicat ion w i t h other services. In addi t ion to these support ing actors,
it w i l l also contain varying number of actors, that w i l l collectively implement the desired
functionality of a part icular component.

4.3 Communication, actix-comm and actix-arch

A s described earlier the A c t i x l ibrary does not provide tools for communicat ion between
actors on different machines. One of the goals of this thesis was to design & implement a
l ibrary that would facilitate this functionality. The resulting l ibrary should be usable by
other projects.

4.3.1 U n d e r l y i n g p r o t o c o l

We chose to use Z e r o M Q [11] as an underlying protocol instead of T C P / U D P because of
several factors. The Z e r o M Q can be used over many different transport types, including
T C P , U D P , U n i x pipes, P G M or shared memory. Another benefit is the added flexibili ty:
W h i l e T C P requires establishing connection i n a part icular order (B ind then Connect) ,
Z e r o M Q does not have similar constraints.

Another possible approach would be usage of H T T P and/or Websockets. W h i l e these 2
communicat ion protocols would probably satisfy the requirements, Z e r o M Q was specifically
designed for low-latency, low-overhead applications and seemed like a better fit into the
global system architecture.

Z e r o M Q

Z e r o M Q is an asynchronous message-based communicat ion library. It is aimed at low-
latency distr ibuted systems, and does not require a centralized message broker. It provides
primitives for implementing different communicat ion patterns. Our l ibrary w i l l uti l ize 2 of
these communicat ion patterns.

The Router-Dealer socket types are used for asynchronous request-reply communicat ion
pattern, and our l ibrary uses them to implement Request and Reply actors respectively,
which collectively implement described communicat ion pattern. Th is type of communica
t ion is then used

The Pub-Sub socket types are used for publish-subscribe communicat ion pattern. This
communicat ion pattern is implemented by Publ i sh and Subscribe actors.

4.3.2 L i b r a r y interface

Because the l ibrary is intended to be used exclusively wi th the A c t i x framework, the only
provided interface w i l l be i n form of a several actors. These actors w i l l respond to a set of

23

messages that are also exported by the library. The implementat ion of addi t ional function
ality by creating a set of actors & messages is is very common wi th in the A c t i x ecosystem.
For example, the actix-web library, which is used to implement the web applicat ion, is also
buil t w i t h similar approach

U p o n Receiving SendRequest message, the Request actor sends actual message(which
is stored inside the SendRequest) to a remote machine, along w i t h an unique identifier. It
then stores this information along wi th notification token into its state, and returns other
half of the notification token. This token denotes future response to request that was just
send over the network.

The Reply actor responds to Register message, which is used for registering another
actor as a recipient of some message type. Then , whenever the Reply actor receives a
message of said type, the message is forwarded to registered actor.

The Publ i sh Subscribe actors operate s imilar ly to Request, Reply actors respec
tively, but they do not send or receive message responses.

4.3.3 C o m m u n i c a t i o n p r o t o c o l

Each of the defined communicat ion actors contains one pr imary Z e r o M Q socket that is
used for receiving and sending messages to other components. The actual communicat ion
protocols vary between ind iv idua l actor types

< < a c t o r > >
R e q u e s t

3: S e n d M e 5 s a g e (m)

< a c t o r > >
R e p l y

< < a c t o r > >
: U s e r A c t o r ^

2 : R e g i s t e r r e c i p i e n t (m , a }

1: C r e a t e a c t o r

3 . 1 : R e m o t e M e s s a g e (i d , m) 4 : R e m a t e M e s s a g e (i d , m)

>¥ f i H

5 . 1 : D e l i v e r R e p l y (m)

K

5: D e l i v e r R e p l y (i d , r

w
I 4 . 3 : D e l i v e r R e p l y (i d , m)

! 1

<-
4 . 2 : R e p l y (m)

C o m p o n e n t A

Figure 4.3: ac t ix-comm communicat ion

In Figure 4.3 you can see simple sequence diagram containing basic request-reply com
municat ion pattern. The diagram contains 2 component. The component A contains a
Request actor, that is used to send request to component B , which contains Reply actor
and another, programmer defined, custom actor. The user code i n component B first reg
isters the user actor as a recipient of message type M . T h e n , the user code in component

24

A sends a SendRequest to its Request actor. It then stores some information about the
message into its local state, and sends message data along w i t h its type to Z e r o M Q socket.

After the Reply actor in component B receives this message, it forwards the message
to actor registered earlier, and upon a response from this actor, it sends response along
wi th metadata received earlier back to Z e r o M Q socket.

Then, upon receiving the response, the Request actor uses provided metadata to get
appropriate notification token from its local state, and uses it to notify originating code
about the response.

4.3.4 Message format , actor state

Since we are using a language wi th extremely strong static type system, we decided to
leverage this type syystem i n much of the l ibrary implementation. This reliance on static
typing has made a whole class of errors impossible, but there are some drawbacks to this
approach. Since the data we send over the network is jsut a sequence of bytes, and our
system deals exclusively i n strongly typed messages, we must solve the problem of serializing
and deserializing messages into bytes.

Serialization

The serialization was very simple to solve. We ut i l ized the serde l ibrary, which is main
data serialization and deserialization l ibrary in rust, and supports many data formats. For
the development purposes, we uti l ize J S O N as a serialized data format, but for product ion
use, we a im to replace it w i t h MsgPack in order to reduce serialization overhead.

Deserialization

The main problem of deserialization was determining what datatype should a message be
deserialized into. We solved this by including unique type identifier w i th each message sent
over the network, This identifier relies on information provided by standard l ibrary intrinsic
function, which utilizes data provided by compiler. Us ing this information, and a clever
tr ick u t i l iz ing type erasure we were able to safely bridge typed and untyped parts of this
library.

Actor state

Each actor i n this l ibrary stores notification tokens representing running tasks inside its
state. E a c h request also has a unique numeric identifier associated wi th i t . Th is identifier
is sent over the network, and expected to be send along wi th the response. After receiving
the identifier, the local actor finds notification token associated wi th it , and uses it to notify
user code about request completion.

These notification tokens are implemented i n form of single-shot channels provided by
the futures l ibrary.

4.3.5 A c t i x - a r c h

Is a l ibrary that was buil t on top of actix-comm simplify development of ind iv idua l compo
nents. It contains implementations from common communicat ion patterns, and components
to support the development of communicat ing applications.

25

Service abstraction

Since most common communicat ion pattern is Request-Response, this component was cre
ated to support this type of communicat ion. It consists of 3 parts. The Servicelnfo trait ,
that is used for declaring crucial information about the service, like hostname, on which
the service is available, and types of request and response.

pub t r a i t S e r v i c e l n f o : ' s t a t i c + Debug {
type RequestType: Remotable + Debug;
type ResponseType: Remotable + Debug;
const ENDPOINT: &'static s t r ;

}

Lis t ing 4.1: Servicelnfo trait definition

Two other components are the ServiceHandler and ServiceConnection structs, which are
generic over type paramenter S, that must implement Servicelnfo trai t . The ServiceHandler
struct has a register method, which can be used to register a handler of service messages.
B o t h of these structs internally use Z e r o M Q actors defined in actix-comm l ibrary, namely
the Request and Reply actors.

Publ ish - subscribe abstraction

Is an abstraction for implementing Publish-Subscribe data flows. Is analogous to Service
abstraction, u t i l iz ing 3 parts. The Endpoint lnfo trait defines the hostname, on which
the binding endpoint can be found, its associated type FanType can be either FanOut or
Fan ln , and defines, which part of the communicat ion channels binds to an address, and
which connects to i t . W i t h F a n l n , the subscriber binds to a port, and mult iple publishers
connect to it (used for receiving data from mult iple exchange adapters), and wi th FanOut ,
the publisher binds to a socket, and subscribers connect to i t .

pub t r a i t Endpointlnfo {
type MsgType: RemoteMessage<Result=()> + Remotable;
type FanType: FanType = FanOut;
const ENDPOINT: &'static s t r ;

}

Lis t ing 4.2: Endpoint lnfo trait definition

The Publ isher and Subscriber actors are generic over type parameter E , that must
implement the Endpoint lnfo trait , and contain methods for publishing and subscribing to
updates respectively.

Service load balancing

Other component necessary for our designed system was a way to perform load balancing
for Service handlers. Th is w i l l be mainly used in the strategy evaluation component, since
this component w i l l probably result i n most of the computing load.

This component is implemented as 2 actors: the LoadBalancer and WorkerProxy ,
which both have one type parameter S that must implement Servicelnfo. The L o a d B a l
ancer binds 2 ServiceHandlers to single port. The first one is used for receiving service
requests from client, and the second one is used for receiving messages from workers.

The WorkerProxy internally contains a ServiceConnection, that connects to Load-
Balancer, and periodical ly subscribes for work. If LoadBalancer does not have any work

26

available, it sends an empty response to WorkerProxy , or, if available, it sends a work
unit to this worker. The WorkerProxy then sends received work to internal worker imple
mentation, and after finishing, sends result to LoadBalancer as a separate request, that
is also used for requesting more work units.

Therefore, the LoadBalancer therefore serves as a load balancing broker, which per
forms rendezvous between available workers and work units.

4.4 Data storage

Another crucial aspect of designed system is the storage of both the financial data and
general system data. These 2 types of data have different storage requirements.

4.4.1 S y s t e m d a t a

We use this term to describe data that denotes the system state. This means User accounts,
and data associated wi th these accounts. Th is set of data can bea easily mapped onto the
relational model, and therefore we chose to store it i n relational database.

There are several very popular relational databases, each w i t h their own advantages
and disadvantages. We elected to use P o s t g r e S Q L 1 because of its vibrant open source
community, custom extensions, and support of large part of modern S Q L standards [1].

The system data is described by following E R diagram:

1https://www.postgresql.org/

27

https://www.postgresql.org/

Strategy
name : String
body : String

0..*
~~ owner

User
-username : String
-passHash : String

Evaluation
-period : String
-time : Timestamp
-status : Boolean
-ok : String
-error : String
-duration : Integer

0.
0..1

owner
0.

TradeAccount
•name : String
apiKey : String
-apiSecret : String
exchange : String

0.

Pair
-exchange : String
-asset : String

0..*

Assignment'
period : String

0..1

0..*
Trade

isBuy : Boolean
-price : Float
status : Boolean
•ok : String
error : String

• iLic-r

Figure 4.4: Ent i ty-Rela t ionship diagram of system data

4.4.2 Asse t d a t a

A l o n g w i t h the system data, we also need to store information about ind iv idua l assets
that we receive from exchanges. This data has a part icular format. It consists of periodic
updates about an asset, w i th each update containing several prices and some addi t ional
information.

These prices are:

• Open - Price, that was used i n first transaction i n this t ime interval

• H i g h - Highest price that was used i n transaction in this t ime interval

• L o w - Lowest price that was used i n transaction in this interval

• Close - Pr ice , that was used i n last transaction i n this t ime interval

In adi t ion the these price, each interval is associated wi th its start ing t imestamp, and
cumulative volume of executed trades. We w i l l refer to this type of data as O H L C data,
based on the O H L C chart which is used for displaying these datasets 2 .

2https: / / www.investopedia.com/terms/o/ohlcchart.asp

28

http://www.investopedia.com/terms/o/ohlcchart.asp

There are several requirements put on storage solution that w i l l be used for storing the
O H L C data. Since this data is received periodically, every minute, and is received for each
asset, the chosen storage solution w i l l have to support large insert rates. For example, even
if we support only the B i t f inex 3 exchange, we w i l l have to store O H L C data for more than
200 assets, most of which are updated every 20 seconds. This puts a requirement of 10
inserted rows per second onto our storage solution.

Another aspect is retrieval of the data. We need to be able to retrieve several hundred
rows from last inserted data w i th low latency, and retrieve older data without hard latency
requirements. Also , we need to perform periodical maintenance of the data set for the
purpose of effective strategy execution (eg. fi l l ing missing data points). Th is task would be
much easier, i f we had full S Q L support.

4.4.3 E v a l u a t e d storage archi tectures

A s mentioned earlier, we chose to uti l ize Pos tgreSQL to store system data. Th is decision
was mainly influenced by the abi l i ty to use modern S Q L , and the abi l i ty to extend the
database wi th custom, and commercial extensions.

A s for the storage of asset data, i f we have to satisfy constraints outl ined earlier, we
have several choices. These choices w i l l have to support large insert rates, fast retrieval of
latest data, and preserve these properties even when amount of stored data grow to the
point when it can no longer be stored i n memory. These requirements are common among
applications that deal w i th a steady stream of t ime dependant data (also called time-series
data).

The conceptual architectures that satisfy these requirements are:

• C l o u d database - Uti l izes a database provided by external provider, that is opt imized
for large workloads.

• Dis t r ibuted database - This approach utilizes a distr ibuted - multi-master database,
that allows us to uti l ize several machines for storing and retrieving data

• Rela t ional database wi th shared tables - This approach utilizes relational database, in
which we store the data i n several sub-tables of l imi ted size. Insert rates are improved,
because indexes are smaller.

4.4.4 E v a l u a t e d solutions

We evaluated several technologies, each based on an architecture outl ined earlier.

C l o u d database

A s for external databases provided by cloud providers, we evaluated Google's and Amazon ' s
offering. Google provides their C l o u d Bigtable database, that potential ly could be used for
our purposes. It provides apache HBase A P I , and is basically a key-value store. Bu t , even
if it provides very impressive perofrmance, the pricing of this technology is very steep, and
thus we elected to not use this technology for now.

Last year amazon announced their Timestream database, that seems it could possibly
support our usecase, but this technology is t i l l in beta, and not available to public . In the
future, we might revisit this technology.

3https://www.bitfinex.com/

29

https://www.bitfinex.com/

Distr ibuted database

We evaluated Cassandra, and S c y l l a D B distr ibuted databases. B o t h of these technologies
provide same A P I , each of them provides impressive performance, and abi l i ty to scale to
mult iple nodes. However, S c y l l a D B has lower memory requirements and lower latencies,
thus it was preferred.

B o t h of these databases support only subset of S Q L , which we found lacking. However,
the performance achieved vas very impressive, and if, in the future, we need to achieve
better performance, the migrat ion to S c y l l a D B would be a great way to achieve it.

Relational database

Since we are using Pos tgreSQL for storing system data, we could also store the asset
data i n this database. This would greatly simplify the system. However, i n order to
achieve performance figures required, we need to uti l ize table part i t ioning. We evaluated
T imesca leDB extension, that implements table part i t ioning, and provides extensive suite
of support ing functions for working wi th time-series data.

Chosen technologies

The ease of use, and relatively satisfying performance made the Pos tg reSQL + Timesca leDB
combination the chosen technology for storing the asset data. If this solution does not pro
vide adequate peroformance i n the future, we w i l l probably migrate to using S c y l l a D B ,
along wi th separate component for data maintenance, that is currently performed by ut i
l iz ing andvanced S Q L queries w i th Pos tgreSQL.

4.5 Web

A s mentioned earlier, we elected to implement the web applicat ion wi th the single-page
approach. This requires d iv id ing the appl icat ion into 2 parts. The Backend part w i l l run
on the server, and provide information to the Frontend running on the clients web browser.

4.5.1 B a c k e n d

The backend part of the web applicat ion is implemented i n actix-web l ibrary, which, like
many other parts of this project, is buil t upon actix and its implementat ion of the actor
model. Th is component w i l l provide several R E S T endpoints for working wi th system re
sources like strategies, trader accounts, or strategy assignments. Internally, these endpoints
should perform val idat ion of input data, and execute database queries, which modify the
state of the system.

Other languages were not considered for this task, because u t i l iz ing them would mean
that definitions of stored entities would have to be duplicated, and the cost of dupl icat ion
would not be outweighed by the benefits provided, since the Backend part of the applicat ion
is relatively small .

4.5.2 F r o n t e n d

For implementat ion of the Frontend part of the applicat ion, we evaluated several popular
technologies.

30

Polymer

Is a l ibrary developed by Google. It utilizes custom webcomponents 4 , Shadow D O M and
H T M L Templat ing technologies to achieve remarkable set of functionality w i t h only a
small extension bui ld upon common web standards, that a l l major browsers implement.
Th is technology is based on the l i t - h t m l l ibrary, which can be used for creating H T M L
templates directly from javascript. However, using polymer requires custom command line
tool , in order to bu i ld applications made wi th this technology.

Angular

One of the most popular web frameworks, provides large amount of functionality. It does
not use webcomponents or shadow dom, due to the fact that these advances came after
it was created, since its predecessor was first of these kinds of libraries. It provides two-
way databinding, utilizes M V C architecture and should be considered to be a framework
instead of a l ibrary due to opinionated nature of this l ibrary. It uses Typescript instead of
Javascript as ma in applicat ion implementat ion language.

React

Is is component based user interface library, w i th one of its targets being the web browser
D O M . Other targets include A n d r o i d , i O S , U W P , and are implemented in React-native
branch of this l ibrary. React uses J S X indstead of p la in javascript. Th is language is
an extension to javascript, that allows programmer to write inline H T M L inside normal
javascript code, improving readability. React does not attempt to provide general applica
t ion framework, its only targeted at bui lding user interfaces.lt is based on its v i r t u a l - D O M
architecture. In this approach the entire applicat ion is rendered into memory representa
t ion of the resulting D O M , that is then compared to actual rendered D O M tree, and only
changes are applied. This reduces number of updates that must be performed, increasing
rendering performance at the cost of memory usage.

F l u x & Redux

One of most important concepts used in React is the uni-directional data flow. D a t a flows
from components to their children, and notifications from children to parents. To support
this paradigm, we uti l ize the F l u x architecture. In this architecture there are actions, that
flow through the central dispatcher to a store, and changes in the store are propagated
back to view. In react, this propagation is performed through component properties. This
approach is similar to observer pa t te rn 5 W i t h this architecture, the properties passed to
a components are immutable. O n l y way the applicat ion state can be affected is through
sending actions to dispatcher.

Redux is the most well known implementat ion of this pattern. It features a single
store, and dispatchers are called reducers. The reducers are pure functions, that respond
to actions, and based on them modify this single source of t ruth .

4https://www. webcomponents. org/
5https://en. wikipedia.org/wiki/Observer pattern

31

http://interfaces.lt
https://www
https://en
http://wikipedia.org/wiki/Observer

4.5.3 F r o n t e n d app l i ca t i on

After experimenting wi th each of these technologies, the React l ibrary wi th Redux was
chosen ast the most suited technology for creating the frontend part of the web applicat ion.
Another aspect of the frontend part of the applicat ion to consider is the user experience.
The user must be able to:

• Create an account

• Log in & L o g out

• Create & edit strategies and exchange t rading accounts

• Ass ign strategies and trading accounts to assets

• Visual ize the results of strategy evaluation and executed trades

4.6 Exchange adapters

W h i l e a l l cryptocurrency exchanges use similar technologies to implement their A P I s , each
of them is different. To reduce complexity of the system, these differences must be resolved
at the edge of our system, and should not permeate into other components. To bridge
the gap between external A P I s , and internal communicat ion, the system contains adapter
component for each exchange.

This component connects to real-time websocket A P I in order to receive notifications
about market updates, then translates this data into O H L C format, and sends it to the core
component. It also exposes a service endpoint for querying account state (wallet balances),
and executing trades, to which the core's trader actor connects.

4.7 Strategies

In chapter 2 we have described several implementations of automatic t rading systems. Each
one of them ut i l ized some k ind of programming language to define a t rading strategy. In
this regard, our system is very similar to others.

The system w i l l have to support execution of user-written code. This fact poses a se
curity concern. Because the user wri t ten code can perform arbi trary actions permit ted
by given programming language, we must carefully choose the programming language that
w i l l be used. Because implemented strategy w i l l be operating wi th large amount of finan
cial data, another concern is performance. A n d finally, since the intended users of this
application are not programmers, the chosen language should be easy to use for beginners.

4.7.1 L a n g u a g e choice

These requirements severely l imi t possible choices. We can't accept user-compiled code,
because of security concerns. Compi led languages like C / C + + are not acceptable because
of large amount of infrastructure needed to support on-demand compilat ion of user wri t ten
strategies.

Managed languages like Java or C # are a better choice, but they s t i l l require large
runtimes wi th long start up times, therefore are not well suited for running short-lived
scripts.

32

Script ing languages like L u a , P y t h o n or JavaScript seem like the best choice for this
goal, w i th the drawback of reduced performance.

4.7.2 L u a

Ultimately, the L u a language was chosen as a pr imary language for implementing user
defined strategies. There were several key properties, which caused this decision.

• Embeddabi l i ty - L u a runtime is smaller than 256Kb, has v i r tua l ly no start up t ime and
can be embedded i n application, as a simple library. In comparison, neither P y t h o n
nor JavaScript runtimes can be embedded i n the applicat ion, and both require large
standard libraries

• Extendabi l i ty - Basic lua standard l ibrary can be easily extended w i t h code wri t ten
in host language.

• Expressive power - W h i l e extremely simple, lua provides tools to model v i r tua l ly any
programming paradigm wi th ease

• Speed - W h i l e lua is a script ing language, that can't possibly compete wi th compiled
language i n this space, it is one of the fastest scripting languages available.

4.7.3 Safety

B y using an intepreted language for implementation of user strategies, we have successfully
eliminated a whole class of risks. B y using a safe language, the probabil i ty of user code
crashing the executing process is v i r tua l ly none. However, there s t i l l are several safety
issues, that have to be resolved, even w i t h using an interpreted language.

Sandbox

A s a basic strategy for ensuring the safety of strategy execution, we chose to uti l ize a
sandboxing mechanism. This mechanism is supported by L U A very well . The sandbox
mechanism consists of replacing the global environment table w i th a table, that contains
only functions deemed safe when executing user code. This simple replacement restricts
access to unsafe functions like read, removing the abi l i ty to of an malicious to to affect our
system

Execut ion control

Another attack vector considered was the abi l i ty of an attacker to perform A Denial-of-
Service(DOS) attack by submit t ing a strategy, that never terminates. U p o n the start of
evalauation, this strategy would lock currently evaluation actor, reducing the amount of
available actors for strategy evaluation. After sufficient amount of attempts, this would
leave no available actors, and then, the system would be unable to function.

To ensure this attack is not possible, we l imi t number of L U A instructions that a
part icular strategy can execute. Th is is done by u t i l iz ing the debug. sethook function.

33

4.7.4 Access to i n f o r m a t i o n

M e t h o d for strategy evaluation described so far should provide safe, and performant way
for users to write custom code, that can be run inside our system. However, we must allow
this code to access the financial data, and provide some k ind of l ibrary for support ing the
strategies.

We expose a vector of O H L C data items inside the ohlc global variable. E a c h i tem
in this vector has methods to access ind iv idua l prices described in the subsection 4.4.2.

We also expose a set of functions implementing indicators for Technical analysis 6 . These
are available inside the t a global table.

4.7.5 T e c h n i c a l analysis l i b r a r y

This l ibrary is contained i n a global variable named ta. It contains most common technical
indicators used in trading. These indicators are mathematical functions applied upon a se
quence of O H L C data, mostly denoting some statist ical property of the data. Implemented
indicators are:

• sma - Simple moving average

• ema - Exponent ia l moving average

• macd - M o v i n g average convergence-divergence

• r s i - Relat ive strength index

• t r - True range

• atr - Average true range

• min - M i n i m u m value

• max - M a x i m u m value

• f s - Fast stochastic oscillator

• ss - Slow stochastic oscillator

Each of these indicator has a precise mathematical definition, and aims to model an aspect
of the market, but explaining these details is outside the scope of this thesis.

These indicators can be accessed by cal l ing a function i n the t a global table w i t h
appropriate number of arguments. Returned object provides a ca l l operator, that can be
used for receiving the indicator value.

4.8 Evaluation

Since users can crate mult iple strategies, and then apply these strategies to mult iple different
assets on different exchanges, the amount of work associated w i t h a single user can vary
extremely. In addi t ion to that, the number of users of our system can vary. Th is variabil i ty
of computat ional load on the system was pr imary reason for designing the system as a
distr ibuted application.

6https: / / en.wikipedia.org/ wiki/Technical_analysis

34

http://en.wikipedia.org/

The service that is most affected by this variabi l i ty is the strategy evaluation service.
Th is service needs to dynamical ly change the amount of used resources.

To implement this component, we w i l l ut i l ize the LoadBalancer actor defined earlier.
Th is w i l l require specific architecture. The service w i l l be divided into 2 parts. The control
and the worker layers. The control layer w i l l be a single Kubernetes pod, that w i l l serve
as an endpoint to rest of the system. It w i l l receive strategy evaluation requests from Core
service, and w i l l pass them to ind iv idua l workers int the worker layer. E a c h worker w i l l
be a single pod wi th mult iple worker actors, each of which w i l l register itself w i th control
layer.

The control layer w i l l also perform load balancing, ensuring that no single worker is
over or underuti l ized.

35

Chapter 5

Implementation

In this chapter, we a i m to present current state of the implementation, outline the problems
faced when t ry ing to satisfy the requirements outl ined i n previous chapters, what method
ologies and approaches were taken to solve them, and also point out some interesting aspects
of the implementation. Another goal of this chapter is to present the "operations,, side of
this project, meaning the processes used for bui ld ing and deploying the system, since that
was another important part of the implementat ion

5.1 Project structure

Like any other larger project, this project is also structured into several subdirectories. The
main subdirectory is code, which contains the code for system components, the common
l ibrary and several other libraries in the deps directory. The common l ibrary groups de
pendencies that are shared by a l l components, and re-exports them for easier access and
centralized version selection. The deps subdirectory contains for actix-arch, actix-comm,
db libraries and other dependencies.

Then, the second core directory is the ops directory, that contains scripts and configu
rat ion files needed for deploying and managing the system.

The ma in directory contains Cargo.toml file, that is used by the cargo tool . Th is
root file defines a workspace, and some configuration profiles for rust compilat ion. Each
directory containing sub-project of a l ibrary or an executable also contains the Cargo .toml
file.

The target directory contains bu i ld artifacts created byu cargo, and is also used to
store intermediate files produced by our custom bui ld scripts, that w i l l be described i n the
following section.

5.2 Bui lding and deploying

Thanks to the dis tr ibuted architecture, the bui lding and deployment processes also had to
be modified w i t h this choice in mind .

The rust language utilizes custom tool named cargo for bui lding rust projects, and
managing their dependencies. Hav ing single tool manage both bu i ld process and depen
dency management is extremely useful, but its not without drawbacks. Cargo cannot be
used for bui ld ing anything else than rust projects, and while it allows to customization of

36

the bu i ld process by running pre-build custom scripts, it does not support customizing the
bui ld process w i th any k ind of post-build steps.

Therefore, to solve these drawbacks, we have to wrap cargo i n a meta-build system, that
would manage bui lding ind iv idua l rust projects using cargo, and perform any addi t ional
neccessary steps.

5.2.1 Makef i l e m e t a - b u i l d management

This meta-build system, does not have to do anything part icular ly complex, it only needs
to track what projects were changed, and depending on that information re-build, and
re-deploy them.

These requirements are perfectly satisfied by the ancient make unix tool . The project
root contains the root Makefile, which references support ing makefiles stored i n the ops/make/
directory. It contains the deploy target, that builds a l l custom components, creates new
docker images from them, re-evaluates the kubernetes configuration templates, and finally
applies this configuration to currently active kubernetes cluster.

Building a component

One bu i ld target roughly corresponds to a cargo project, that produces an executable, and
a docker container that contains this executable. Implementation of this bu i ld process is
in ops/make/App .mk makefile. This makefile invokes cargo in an appropriate subdirectory,
it then creates a docker container image according to ops/docker/app.Dockerfile, and
emits container name and container tag into a file i n target/docker/ directory. This
information is provided i n a format that w i l l later be loaded into an environment variable,
and used for substi tut ion when bui ld ing kubernetes configuration templates.

5.2.2 K u b e r n e t e s conf igurat ion t e m p l a t i n g

This is very well known drawback of kubernetes. It does not support any k ind of templat ing
out of the box. There are existing solutions, that solve this issue, but many of them do so
wi th opinionated approach that is coupled wi th some k ind of package management.

We elected to perform this templat ing manually, inside the makefiles implementing the
bui ld process. For this purpose, bu i ld of each component emits buil t docker image tag
in the format of {COMPONENT>_IMAGE={IMAGE TAG}. Then, for each file in the ops/k8s
directory the main makefile loads it , performs environment variable subst i tut ion using the
envsubst tool , and saves modified file to target /k8s directory. There are dependencies
between these steps, which are also listed i n the makefile, and therefore it does not re-build
components that were not modified.

Each image of a component is tagged wi th a special unique information identifying
application version. Currently, this is the first 10 characters of the sha256 hash of the
binary, but i n the future, this should be changed to current git commit hash.

5.2.3 B u i l d targets

Currently, the applicat ion is d ivided into 2 bu i ld targets. The web bu i ld target contains
the implementat ion of the web applicat ion(both frontend and backend), and the app bui ld
target contains the implementat ion of every other component that i n the system. This

37

grouping is an artifact of how the system was developed, and in the future should be
resolved by moving each system component into separate bu i ld target.

5.3 Component implementation

Most of the appl icat ion is wr i t ten i n pure rust, w i t h the exception of the frontend part
of the web application, which is wri t ten i n javascript. The project uses mult iple advanced
features of rust, that have not yet been stabilized, and therefore requires a nightly toolchain.
Currently, the project uses nightly toolchain from 2019-05-01. M a i n reason for using a
nightly toolchain wi th a specific version is the fact, that the implementat ion utilizes async-
await style programming, which has not yet been stabilized, recently had untergone several
changes. These features should be stabilized i n several months.

The usage of asynchronous code is prevalent throughout the codebase. Almos t every
actix actor is wri t ten in a way, that requires it to send and wait for message response when
responding to a message itself. W i t h synchronous code, this would mean, that the through
put of the system would be very low. W i t h asynchronous code, the actor w i l l perform some
synchronous actions, w i l l send messages other actors, and w i l l then asynchronously wait
for these messages. Dur ing this wait ing, the actor can respond to other messages, greatly
improving throughput.

5.3.1 C o r e c o m p o n e n t

Core component is comprised of 3 main actors. A s its name suggests, it implements the
core system logic, and other systems connect to i t .

Ingest

The Ingest actor binds a Subscriber to a known port, and waits for publishers to connect
to i t . The publishers are created by exchange adapters, and the ingest actor uses the
Subscriber to receive messages that contains newest O H L C data. The ingest actor then
discards old data, and publishes new, val id updates to a proxy actor, which sends them to
Rescaler actor

Rescaler

This actor is responsible for creating aggregate data streams, that are not provided by the
exchange adapter, but nonetheless are supported for t rading by our system. In order to
perform this task, the actor must have at least 12 hours of data available i n memory. This
data is loaded upon actor creation from the database, and the oldest data is periodical ly
discarded during the normal operation of the actor.

The incoming data is then published along wi th the v i r tua l aggregate data over proxy
actor to the Decision actor.

Decision

This actor is responsible for deciding when a strategy should be evaluated. It periodical ly
loads whole assignments table into memory. This table contains a l l assignments of strategies
and t rading accounts to ind iv idua l accounts. It stores this information into B-Tree map
wi th the asset as a key, and a vector of assignments as a value.

38

Then, upon receiving update from Rescaler actor, the Decider actor traverses its
internal assignment map, and request strategy evaluation for each applicable strategy. This
request is sent using the ServiceConnection to eval component. These requests are
asynchronous, and therefore this actor can spawn hundreds of them without blocking the
rest of the system.

Then, after receiving result from evaluation, the actor can send a request to Trader
actor, but this is only possible, i f the assignment used had a t rading account associated
wi th it.

Trader

This actor is responsible for executing trades on ind iv idua l exchanges. It receives posit ion
change requests from the Decision actor. Then, it sends a request to get account balances
to exchange adapter. After receiving a response, the Trader actor decides i f the t rading
account has any available funds that could be used to strengthen the selected posit ion, and
possibly executes a trade by sending a new request to the same exchange adapter.

Internally, the trader uses the anymap crate to store ServiceConnections to each
exchange adapter, since each adapter has its separate Servicelnfo. The anymap crate
allows this actor to store type-erased values, and then retrieve them on demand.

5.3.2 E v a l c o m p o n e n t

This component is responsible for evaluation of user strategies. A s mentioned earlier, this
component consists of load balancing broker and a dynamic set of workers.

Load balancing broker

This broker is implemented by the LoadBalancer component described i n previous chap
ter. In itself, it is not extremely interesting. It runs i n separate kubernetes deployment,
and is exposed by kubernetes service.

Workers

The evaluation workers are implemented by the EvalWorker actor. Th is actor uses a
WorkerProxy actor to connect to the load balancer. The proxy actor handles commu
nication wi th the balancer, and communicates w i th EvalWorker. The EvalWorker is
wri t ten as a service handler, that accepts requests for strategy evaluation. E a c h request
contains the identifier of the strategy used, an asset identifier, and some addi t ional infor
mat ion like the t imestamp that denotes the point in the data stream, on which the strategy
should be evaluated. The worker currently always reads the strategy, and the O H L C data
from the persistent storage. A d d i n g some k ind of cache could be an easy opt imizat ion.

After receiving the strategy and O H L C data from the database, the worker creates
a new L U A V M . It then initializes this V M by creating a technical analysis l ibrary and
attaching O H L C Data .

It then executes the strategy i n a sandbox, that removes any functions that could be
used to access or modify system information from the environment. The execution is also
t imed, and if the script executes for too long, it is automatical ly ki l led.

39

After the strategy evaluation, the EvalWorker returns the result to the load balancer,
and it i n t u r n returns it to the original request source, which was the Decision actor in
the core component.

Strat-Eval l ibrary

The actual strategy evaluation is implemented i n strat-eval l ibrary. Th is l ibrary could
be extended to support other types of strategies. It implements a l l concepts related to L U A
strategy evaluation outl ined in section 4.7.

The technical analysis l ibrary mentioned in that section is implemented i n Rust , and
exposed to lua through a global table t a that contains a set of UserData values(values
implemented in host language, and exposed to lua). Th is allows us to uti l ize rust for the
heavy computat ion, while al lowing users to buil t upon this l ibrary in L U A .

5.3.3 B i t f inex adapter

This component consists of single actor. Th is actor currently performs several tasks at
once, and should be divided into mult iple actors i n the future. D u r i n g creation, it con
nects to Bitf inex websocket A P I , requests a list of available assets, and then subscribes for
notifications for each asset.

After subscribing, the actor starts to receive notifications, that are then prompt ly trans
lated into O H L C data and published to the Ingest actor i n the core component.

Another task that is performed by this actor is the serving of wallet balance and trade
requests from the trader actor. These request are translated into R E S T A P I calls, that are
performed by the http client from actix-web l ibrary.

The bitfinex adapter actor is also implemented in an asynchronous way, increasing
throughput.

Future adapters w i l l follow similar design to the bitfinex adapter, therefore extending
the system to support addi t ional exchange should be extremely easy.

The bitfinex adapter is also managed ky kubernetes deployment and exposed by a
service.

A P I access implementation

Access to exchange A P I s is implemented i n the apis l ibrary i n the code/deps direc
tory. Th i s l ibrary implements primitives that could be shared between different exchange
adapters, and contains a b i t f i n e x submodule that contains definitions of types received
from A P I calls, and implementations of these A P I calls as asynchronous rust functions.

This pattern of implementat ion of specific A P I exchange i n a submodule w i l l be con
tinued when extending the system wi th other exchange adapters.

5.3.4 Pers is tence

This component is responsible for storing O H L C and user data. A s mentioned earlier, we
elected to use Pos tgreSQL wi th the T imesca leDB extension as the pr imary storage solution.
This currently runs i n a single large docker container, that is also managed by kubernetes
deployment and exposed by a service. Th is could pose a problem, since usage of only one
database instance provides a single point of failure. We could potential ly resolve this issue

40

by u t i l iz ing mult iple D B M S instances that would be synchronized using Postgres' streaming
replication.

However, this approach would only allow components to read data i n an event of a
unavailabil i ty of the master database. W r i t i n g new data ito the database would not be
possible, since Postgres does not provide multi-master solution to streaming replication.

However, if we used fully dis tr ibuted database like S c y l l a D B , we leverage its mul t i -
master capabilities, and along wi th increased performance obtain some data redundancy.

Dur ing the implementat ion of persistence component, we have evaluated both of these
approaches. For now, we have elected to uti l ize Pos tgreSQL wi th T imesca leDB as a pr imary
storage solution for both system and asset data. Th i s greatly simplified the development
and management of this component. However, i f at any point in the future this approach
does not fulfill our performance requirements, we have implemented min ima l connection to
S c y l l a D B , that can be swapped wi th Pos tgreSQL implementat ion for storing and retrieving
asset data wi th v i r tua l ly no downtime.

users

id

11 name text

. email text

J l password text

11 avatar text

!1 is_verified boolean

!1 has_verified_email boolean

!1 created timestamp with time zone

updated timestamp with t me zone

-rare

st rategies

. id integer

userjd

name

J body

, 1 created timestamp with time zone

updated cimescamp with time zone

Ľ stratég y_id:id

evaluations

id uuid

. exchange text

pair text

. 1 period text

. 3 userjd integer

, strategyjd integer

1 time timestamp with time zone

. 1 status boolean

, duration bigint

I I ok text

error text

stratég y i d: i d

traders

ic ic
.t

id integer

tradei id:id

userjd integer

name

exchange tex t

a pi key t e x t

api_secret cexc

•iTjt tradeifid:id

ic ic

H assignments

J3exchange text

pair text

. i userjd nteger

. 1 period text

. 3 strategyjd nteger

^trader jd nteger

Powered b y yFiles

H trades

id

. i t i m e timestar np with time zone

. i userjd integer

.^ t rader jd integer

. exchange varchar

pair varchar

buy boolean

J l amount double precision

. price double precision

J l status boolean

I I ok text

error text

o h l i

, time

, exchange

. pair

varchar

varchar

J l open double

J l high double

. 1 low double

J l close double

. i v o l double

precision

precision

precision

precision

precision

Figure 5.1: Database structure diagram

41

Database access

The access to the database, is implemented by the db l ibrary i n the code/deps subdirectory.
This l ibrary utilizes the d iese l l ibrary to access the database and generate queries. We
could ca l l this l ibrary an O R M (O b j e c t - R e l a t i o n a l Mapper) . However, it operates on a lower
level than most O R M solutions.

One drawback of diesel is the inherently synchronous nature of database adapters pro
vided by this l ibrary. In order for this component to effectively work wi th other components,
we first must provide an asynchronous interface to the database. There are 2 key techniques
we util ize.

Fi rs t of a l l , each component does not have only one connection to the database, We
util ize the r2d2 l ibrary to create a pool of reusable connections. Then , i n order to execute
queries concurrently, we run database queries i n dedicated actors. These actors util ize
Ac t ix ' s SyncContext instead of normal Context. The main difference is that when
using SyncContext , each actor runs i n separate thread, and runs synchronously, while
responding to messages wi th asynchronous Futures. Each component runs at least 4 of
these actors.

For ease of development, we created the Database struct, that encapsulates a l l this
behavior, and provides a set of asynchronous methods, which implement required actions.
Most of these method implement common actions from the C R U D pattern (Create-Read-
update-Delete), which creates a lot of redundancy. We a im to reduce this redundancy by
implementing generic Repository pattern. However, due to diesel's heavy use of complex
traits, we were unable to do so wi th in this thesis' t ime frame.

5.3.5 W e b c o m p o n e n t

This system component implements the R E S T A P I necessary to access the system. This
A P I is then i n tu rn used by the frontend web applicat ion. In theory, this A P I could be
published for consumption by other developers that wish to extend our system.

The A P I is implemented using the act ix-web l ibrary, that utilizes the actor model
to its fullest, being one of the fastest H T T P l ibrary in the world[2]. This l ibrary allows
programmer to attach ind iv idua l functions to H T T P URIs , and these functions are then
invoked by a set of worker actors, whenever they receive a request matching said U R L The
l ibrary also performs automatic parsing of path and query parameters and request bodies.
Another core part of the l ibrary interface is the programmer defined state, that can be
attached to a running web server. Th is state can be then retrieved inside every handler
function.

Our implementat ion uses it to store handle to database access actors, which are then
used for retrieving data. This is implemented using the Database wrapper struct, that
was described earlier.

Most of the implemented endpoints act as a simple interface to the database, that
performs some validation, but there are some custom logic.

This part of the system heavily relies upon the async-await style of programming, that
requires the nightly compiler. Every single handler method is implemented as an async
function which internally calls several other async functions.

42

1
2
3
4
5
6
7
8
9

10
11

async f n a p i _ d e t a i l ((r e q , i d) : (HttpRequest, Path<i32>)) -> Result<impl Responder> {
l e t db: Database = base.state.db.clone();
l e t base = await_compat!(BaseReqlnfo::from_request(&req))?;
require_login!(base);

l e t (s t r a t , user) = await_compat!(db.strategy_data(id.into_inner()))?;
l e t evals = await_compat!(db.get_evals(strat.id))?;
require_cond!(strat.user_id == base.auth.uid, "Not authorized");

Ok(Json(strat) .respond_to(&req) .unwrapO)
}

Lis t ing 5.1: Example web handler function

The L i s t ing 5.1 code sample shows an example of a handler method, that is used for
retrieving a strategy from the database. F i rs t important aspect is the method argument,
which is a tuple of the request and a path parameter, that is automatical ly extracted by
the library.

The function first clones a handle to the database wrapper, and then retrieves basic info
from the request. The BaseReqlnfo struct pr imar i ly contains the authorizat ion informa
t ion. This retrieval must be asynchronous, since it might require a database access. Th is
asynchronous operation is then wrapped i n a await_compat macro, which internally wraps
the await macro.

Then, the strategy is retrieved from database, and require_cond macro is used for
ensuring that user can only access strategies that he owns.

Final ly , the strategy is serialized wrapped in the Json struct, that performs serialization
into Json in the respond_to method.

5.4 Web application frontend

A s mentioned earlier, the frontend applicat ion is implemented as a react single page applica
t ion. This approach was chosen after a long series of experiments w i th mult iple approaches
to web applications.

The first t r ied approach was completely server-side rendered site that utilizes static
h tml forms for submit t ing data. W h i l e this approach d id work, the problem was extremely
poor U X , and very complex generated forms that ut i l ized hidden fields i n order to preserve
information for form submission.

The completely server-side generated site was then progressively rewrit ten into combined
application, that used forms for submit t ing data, but ut i l ized custom web components based
LitElement l ibrary to reduce complexity and provide some amount of dynamic behavior,
improving user experience. However, there were problems wi th this approach too. The user
experience s t i l l d id not meet the standards expected by modern users, and the applicat ion
logic was now in 2 languages dis tr ibuted acros 2 codebases, greatly complicat ing futher
development.

After bo th of these approaches failed, we elected to rewrite the web interface part of
the system from scratch. This time, the backend was rewrit ten to the form of a R E S T A P I
described earlier, and the frontend applicat ion was rewritten in React. We also decided
to use R e d u x 1 to manage applicat ion state, and Mate r i a l -UI l ibrary to provide set of base
components, foregoing any k ind of complex U I template.

1https://redux. js.org/

43

https://redux
http://js.org/

5.4.1 R e a c t

A s mentioned earlier, React is javascript l ibrary for wr i t ing user interfaces, that utilizes
custom J S X syntax. The web applciat ion code resides in code/web/app and during compi
lat ion of the web component, the compiled web applicat ion is bundled inside the web b inary
using includeddir l ibrary.

This web applicai ton is then provided on the /app prefixed U R I routes, while the api
prefix contains a l l the R E S T endoints. The web server provides the same index.html page
for every subroute under the app prefix, and this generated index file imports resources
from the / s t a t i c prefix, that refers to ind iv idua l files of compiled react application.

5.4.2 C o m p o n e n t s & R o u t i n g

The appl icat ion is d ivided into several root components, each root component roughly
corresponding to single 'page' of the applicat ion. Because the server provides index.html
for every U R I under the /app prefix, the routing between ind ivudual components that
reside under this prefix is performed in the browser using the react-router l ibrary. Th is
l ibrary switches rendered component based on current path. Fol lwoing example shows the
J S X for the root of the applicat ion.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

<div className="App">
<ConnectedRouter history={history}>

<Switch>
<Route exact path="/app/auth" component=-[Loginl/>
<Route path="/app" render=-[props => (

<Dashboard>
<Switch>

<Route exact path="/app/" component=-[Homel/>
<Route exact path="/app/strategies" component={StrategyList}/>
<Route exact path="/app/strategies/:id" component={StrategyDetail}/>
<Route exact path="/app/assignments" component={AssignmentList]-/>
<Route exact path="/app/traders" component=-[TraderListl/>

</Switch>
</Dashboard>

)}/>
</Switch>

</Conne ct edRout er>
</div>

Lis t ing 5.2: React appl icat ion routing J S X

Dashboard

This component contains the base layout of the web applicat ion, rendering the toolbar
w i th ti t le, navigation bar, and also rendering nested components. In our case, the nested
component is the react-router Switch, that ensures only one route from a set of route
elements is active at one t ime. This Switch component w i th the set of inner routes contains
the ind iv idua l pages.

5.4.3 R e d u x

Another important aspect of the web applicat ion was the storage, and management of state.
The earlier attempts failed because the management of state was untenable wi th growing

44

application complexity, the Redux l ibrary was developed precisely to solve this problem.
A s described earlier, the l ibrary is based on the Flow architecture pattern, which has 3
core concepts.

Figure 5.2: Redux general diagram

The redux store contains the appl icat ion state, and is only mutable inside reducers.
The redux reducers are used to modify state, based on the actions,that are published by
components, and the components then i n tu rn react to changes of state.

Our usage of redux creates the state upon applicat ion creation, along wi th a single
reducer which is responsible for storing data received from the R E S T A P I inside this state.
The access to the R E S T A P I is implemented in api/baseApi. j s file. Th is file contains a
metadata object for each entity exposed by the A P I , and a Api class that contains methods
for executing common methods.

However, this class is not used directly, its only used from the actions/apiActions. js
file, that provides methods for contacting the A P I and then dispatching the results as redux
actions. It utilizes the redux-thunk middleware.

These actions are then processed by the dataReducer, which is responsible for reflecting
the changes inside the data store. Fi rs t versions d id so manually, but the growing com
plexity forced us to adopt the Redux-ORM l ibrary. Th is l ibrary provided simple O R M - l i k e
experience, and definitely made the development easier.

45

5.4.4 M a t e r i a l - U I

This l ibrary was chosen as a base l ibrary of components, upon which our custom components
were bui l t . It implements commonly needed components that conform to Google's Mate r i a l
design guidelines 2 . These components are also wri t ten wi th first class support of mobile
devices, opening up the pathway for making our web applicat ion into a Progressive Web
A p p l i c a t i o n 3 .

Core component used i n our custom components is the Paper component, which creates
a surface wi th the appearance of an elevated piece of paper. Th is concept of an elevated
surface is also at the core of Ma te r i a l design guidelines.

Each custom component is implemented as a list of these Paper surfaces, each one
holding some k ind of information. Most commonly, these surfaces contains tables that
show existing entities of a given type, along wi th a but ton to add new entity.

Edi tDia log

The creation and editing of data entities is performed by edit ing a set of fields inside a
modal dialog containing a form. Dur ing development, this pattern of a moda l dialog wi th
form organically appeared at mult iple points, and therefore we decided to implement a
single component that would replace ind iv idua l forms.

This resulted i n the implementat ion of Ed i tDia log react component, which performs
editing of a javascript object according to properties passed into it.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<EditDialog
open={this. state, open}
data=-[this. state. newTrader}
title="New trader"
text="Create a new tradi n g account"
onData=-[(d) => {

t h i s . setState(-[newTrader: d})
}}

attrs=-[[
•[name: "name", t i t l e : "Name", type: "text"},
•[name: "api_key", t i t l e : "Api key", type: "text"},
•[name: "api_secret", t i t l e : "Api secret", type: "text"},
•[name: "exchange", t i t l e : "Exchange", type: " s e l e c t " , values: values, text: (e) => e}

]}
onDismiss=-[(save) => {

t h i s . setState (-[open: f a l s e }) ;
i f (save) {

dispatch(postOne(TYPE_TRADER, this.state.newTrader)).then(() => {
this.setState(-[open: f a l s e }) ;

})
}

}}

/>

Lis t ing 5.3: E d i t D i a l o g for creation of Trader account

The L i s t i ng 5.3 contains code for rendering an Edi tDia log , that performs creation of
new trader account. It uses data-binding to to pass properties, and callback functions into
the dialog.

2https://material, io/design/
3https: / / en.wikipedia.org/ wiki/Progressive web applications

46

https://material
http://en.wikipedia.org/

• open - Whether the dialog is shown or hidden

• data - D a t a object for editing

• t i t le - T i t l e of the dialog

• text - Information text of the dialog

• onData - Cal lback function that receives changed object

• attrs - A list of attributes, that should be mapped to editable fields

• onDismiss - Cal lback function invoked when dialog is dismissed, receives whether the
dismissal was performed by the O K but ton or otherwise.

47

Chapter 6

Testing and evaluation

This chapter aims to describe the methodology that was used for evaluating the imple
mented system, and project results as a whole. Another goal is to outline authors expe
rience w i t h the used technologies, and provide some guidelines for future projects of this
type.

6.1 Testing

W h i l e 2 pr imary implementat ion languages of this project (Rust + React Javascript) have
excellent support for unit testing, this approach for ensuring software correctness was used
in min ima l capacity.

To properly test the ind iv idua l components and ensure their correct behavior, another
approach was chosen, because of the fact, that the project uses kubernetes for management,
and deployment of the implemented system, allowed us to create separate testing environ
ment. The system was then pr imar i ly deployed into this environment, and was observed.
This approach allowed us to observe the system i n v i r tua l ly the same environment, in which
it w i l l be deployed. Several complex behaviors arisen from interaction of ind iv idua l compo
nents were observed, and subsequently fixed. We wouldn' t be able to observe these issues
without a l l the components integrated together, so subjectively, we feel that the chosen
approach was correct.

Example case - Silent disconnects

One of the observed complex interaction behaviors was the problem of long-lived connections
in the environment, in which components are removed and added dynamically. The Z e r o M Q
l ibrary has a complex internal networking layer, that utilizes several sockets, and a separate
thread for managing them.

Our actix_net uses Z e r o M Q , and uses several different v i r tua l socket types provided
by i t . These sockets are long-lived. They should stay open dur ing the whole t ime the
component runs. However, i n the kubernetes environment, components can be ki l led at
v i r tua l ly any time. This poses a problem. For Router and P U B socket types that were
used in ServiceHandler and Publisher actors respectively, the Z e r o M Q l ibrary does not
detect disconnects, or detects them after some time.

This durat ion between disconnect and detection of it caused an issue wi th a large amount
of missed messages, which destabilized the whole system. The component that was affected

18

the most, was the Ingest actor i n the core component, which could not detect missing
O H L C updates, since it was a binding S U B socket that created a S U B topology.

The approach, that we chose to fix this issue was to use features of the T C P protocol
implementation know as Keepalive. Th is feature is so called, because it can be usd to keep
a T C P connection alive and well, and determine when it was dropped from the other side.

The pr imary mechanism for performing this service is to periodical ly send empty T C P
packets, that must be acknowledged from the other side. If a sequence of packets is not
acknowledged in some pre-defined time, the connection is considered cloesd from the other
side, and is dropped. Usage of this feature required the modification of tokio-zmq l ibrary,
that provides asynchronous implementat ion of Z e r o M Q sockets. This change allowed setting
custom options on the underlying sockets.

6.1.1 D e b u g g i n g

However, sometimes it was necessary to observe the internal state of a part icular component
while it is integrated in the system. Initially, this provided to b quite a difficult challenge,
since kubernetes utilizes containers, and accessing the container internals is difficult.

B u t , after some research, we discovered the Telepresence 1 command line tool . Th is
tool is wr i t ten i n python, and it creates a v p n tunnel to a container that is running i n the
kubernetes cluster. A l l o w i n g local applications to run as i f the were ran inside the actual
kubernetes environment.

The fact that we could now run ind iv idua l components locally, w i th a debugger greatly
simplified the testing and bug fixing process.

6.1.2 M o n i t o r i n g

Another important aspect was the monitor ing of deployed system, wi th part icular emphasis
put upon the moni tor ing of system performance, and access to ind iv idua l container logs.

A t first, we only used the kubectl command line tool . B u t during during the develop
ment the system kept growing in size, and w i t h it the number of components that needed
to be monitored has grown too. We solved this issue by instal l ing

a Kubernetes Dashboard 2 into our cluster, and using this dashboard for monitoring,
visual izat ion and log access.

Currently, we use only the metrics provided by kubernetes dashboard out of the box,
but i n the future, we might export custom metrics specific to our applicat ion, that would
allow us to better understand the internal system status.

6.2 Implementation evaluation

The need for low latency, scalabili ty and predictable performance was one of the dr iv ing
forces for mult iple key decisions i n this project. The implementat ion language, communica
t ion technology, deployment strategy were a l l chosen i n order to achieve these goals. This
section aims to evaluate, whether we achieved these goals.

1https://www.telepresence.io/
2https://github.com/kubernetes/dashboard

49

https://www.telepresence.io/
https://github.com/kubernetes/dashboard

6.2.1 M e a s u r e m e n t m e t h o d o l o g y

In order to precisely measure key aspects of the implementation, the system had to be
modified, the pr imary change is addi t ion of a Measurement component in the system,
that receives data from other components and holds the "global, , clock. Because of the
distr ibuted nature, the true global clock does not exist, but using a component that w i l l
uti l ize its internal clock to annotate events in the system should provide enough precision
for our purposes, since we are measuring on the scale of milliseconds.

Latency measurements

Firs t step to allow for measuring latency is annotating a data update wi th unique identifier,
which w i l l be passed on throughout the system. The components w i l l the use this identifier
to uniquely identify a l l messages associated wi th a part icular update. Then, throughout
normal system function, each component i n the system w i l l send messages denoting the state
of a part icular message along wi th its identifier to measuring component. This approach
might add some latency, but considering that several of the processing steps take several
milliseconds, it should be precise enough for our purposes.

Scalability measurements

The scalabili ty measurement is closely associated wi th the latency measurement. We mea
sured the scalabili ty of the system by adding v i r tua l strategies and corresponding assign
ments to the system, increasing the load put upon it . T h e n , we measured, how the system
latency was affected. W i t h the increase i n computing requirements, the computing resources
available to the kubernetes cluster were also increased.

6.3 Performance measurements

The performance measurements were taken i n product ion environment. We ut i l ized cus
tom component described earlier. This component aggregated messages from a l l other
components, mark ing each event w i th the t imestamp, the moment it was received. Then ,
periodically, this data was processed in memory, and wri t ten into a C S V file, that was then
copied from the docker container this component was running inside. After obtaining the
measured data, some basic statist ical analysis was performed.

6.3.1 C o l l e c t e d i n f o r m a t i o n

Since the core metrics we are interested in are the ind iv idua l latencies. We collect latencies
of ind iv idua l steps locally, and aggregate the results on the Measure component. The data
was collected using several configurations and system loads. These configurations are:

Config
Nodes

Core Postgres Balancer
Workers

Pr ice Config
Type

Core Postgres Balancer
Type

Pr ice

C I 2
2 v C P U
2 G B R A M

100 m C P U
100 M B

500 m C P U
500 M B

200 m C P U
100 M B

3 300 m C P U
150 M B

$ 30

C2 4
2 v C P U
2 G B R A M

200 m C P U
100 M B

1.5 C P U
1.5 G B

400 m C P U
100 M B

8

300 m C P U
150 M B

$ 60

50

A s you can see, we started wi th a simple configuration u t i l iz ing 2 nodes, and l imi t ing
resources available to ind iv idua l components. Then, as we increased load put upon the
system, we increased the number of nodes, and increased resources available to ind iv idua l
components accordingly.

Strategy

The strategy used for testing is the following:

— Fast exponential moving average c l o s e l y follows price while smoothing out
— random swings
l o c a l ema_fast = ta.ema(3)
— Slow exponential moving average tracks longer term trend
l o c a l ema_slow = ta.ema(29)

— We use RSI to determine when an asset is overbought or oversold
l o c a l r s i = ta . r s i (1 4)

— Triggering signal for buying and s e l l i n g
l o c a l buy_signal = ema_fast() > ema_slow() * 1.001
l o c a l s e l l _ s i g n a l = ema_fast() < ema_slow() * 0.999

— RSA guards for overbought or oversold markets
l o c a l rsi_overbought = r s i () > 80
l o c a l r s i _ o v e r s o l d = r s i () < 20

i f buy_signal and not rsi_overbought then
return 1 long 1

e l s e i f s e l l _ s i g n a l and not r s i _ o v e r s o l d then
return 1 short'

else
return 1 neutral'

end

Lis t ing 6.1: Example strategy

This simple strategy utilizes 3 indicators from t a l ibrary, applied to different timeframes
of data, and performs some ari thmetic operations to determine the state of the market. For
measurement purposes, we removed foreign key constraints from the database, and used
this strategy for numerous v i r tua l users.

51

6.4 Results

After performing several test runs, we measured the latency of the some parts of the system,
and also the global system latency. These measurements were then performed for different
configurations and different amount of load put upon the system.

£ 0 0 0 -

4 7 9 0

Values

99th percentile

C l j k . c s v C1_2K.CSV C1_4'K.OSV C1_BK.OSV C 1 J 6 K . C S V C 2 J 6 K . C S V C2_32K.osv

Configuration & Count

Figure 6.1: Aggregate performance measurements

The Figure 6.1 shows measured latencies for data passing through whole system for
mult iple configurations and number of assignments. The x axis stands for specific mea
surement, and the Y axis shows latency of the system. The graph also contains values of
average and m a x i m u m latencies measured.

We tested 2 system configurations. In the first, configuration, the system was able
to preserve to ta l system latency below 1 second for 99 % of cases w i t h at most 4000
assignments. In second configuration, the system was able to preserve this latency when
serving at most 16 000 assignments. Considering the target audience, it is very unlikely,
this part icular system w i l l ever see ut i l iza t ion this high.

6.4.1 M e a s u r e m e n t stages

However, we were not able to achieve the necessary latency when system had insufficient
resources for a specific number of assignments. To determine which part of the system was
bottleneck i n which configuration, we measured different stages of the system separately.

These stages are:

• Save - Dura t ion of saving newly received data into the database

• Dispatch - Dura t ion between sending a evaluation request, and worker processing this
request

• L o a d - Dura t ion of lading historical data from database

• Exec - Dura t ion of actual strategy execution

52

Specific stage measurements

Graphs for these stages follow:

2 8 3 0

2100

Values

99th percentile

C - M ' K . C S V C1_2K.CS« C1_4k.csv C1_B'K.OSV C1_16K.CSV C2_16K.CSV C2_32K.CSV

Configuration & Count

Figure 6.2: Saving data performance measurements

3 0 0 0 -

Va lues

99th percentile

C I J K . c s v C1_2'K.CSV C1_4'K.CSV C1_BK.CSV C1_16K.CSV C2_16K.CSV C2_32K.CSV

Configuration & Count

Figure 6.3: D a t a dispatch performance measurements

53

http://C1_2K.cs�

400

Values

99th percentile

C 1 1 K.csv C1_2K.csv C 1 4K.csv C1_8K.csv C1_16K.CSV C 2 J 6 K . C S V C2_32K.csv

Configuration & Count

Figure 6.4: Load ing data performance measurements

90-

T

D
— I
m
Q

S0-

0-

6 6
63

Values

99th percentile

C1 _ 1 K.csv C1_2K.csv C1_4K.csv C1_8K.csv C1_1SK.csv C2_1SK.csv C2_32K.csv

Configuration & Count

Figure 6.5: Execut ion performance measurements

If we examine these graphs in detail , we can discern how configuration changes affected
the system. In each configuration, the load and execute stages latencies had stayed relatively
stable.

C I

In first configuration, the system was able to support at most 4000 assignments. W h e n
the system load exceeded this number, the t ime spent i n the dispatch stage had risen
considerably. This points to an issue wi th not enough workers evaluating strategies.

54

C2

In second configuration, the system was able to support 16000 assignments seamlessly
however, when system had to serve 32000 assignments, the database subsystem was unable
to handle the load, and the t ime required to save incoming data into the database has risen
considerably. Th is increase in latency was certainly a result of increased general database
load.

6.4.2 F u r t h e r scal ing

We performed some experimental testing w i t h even larger configurations and assignment
counts up to 128 thousand, but, due to l imi ted time, we were unable to get the system into
working state,since i n these configurations, the system had to service several thousand re
quests per second. Considering the expected system load, we abandoned this configuration.

6.4.3 A u t o m a t i c scal ing

Configurations shown were created manually. This resulted in some mismatch between
amount of resources available, and provided to specific components. In the future, we
plan to uti l ize both horizontal and vert ical pod autoscaling capabilities of kubernetes to
automatical ly scale ind iv idua l components. A l o n g wi th pod autoscaling, several kuber
netes implementations also provide automatic cluster scaling. B y combining these 2 tools,
we could make the system total ly independent, even in the event of sudden increased or
decreased load.

6.5 Problems

W h i l e we can point to many positive aspects of the system, we would be remiss, if we
wouldn' t take its problems into consideration as well . Some of these problems were observed
throughout the development, and some were only discovered upon testing.

6.5.1 D a t a b a s e bott lenecks

W h e n scaling the system to several thousand users, the chosen database solution seems to
perform inadequately. W h e n faced wi th high loads the database is no longer able to provide
historical data for ind iv idua l workers fast enough. This , in tu rn slows down dispatching
of new requests since existing workers are busy loading data from database, and therefore
the load balancing component must wait for new workers to become available. The actual
strategy execution stage has relatively stable latency.

To solve this problem, we w i l l have to increase the number of available workers even
further, and introduce some k ind of local cache for historical data that would reduce the
database pressure.

6.5.2 R e a d a b i l i t y p r o b l e m s

W h i l e most of the implementat ion benefited greatly from the use of Rust as pr imary imple
mentation language, the combinat ion of this language, w i th its very explicit asynchronous
style of coding resulted i n some sections of the code being very hard to read, and therefore
understand. We hope, that this drawback is resolved by full migrat ion to async-await style
programming upon its s tabil izat ion wi th in the language.

55

The system as a whole probably requires a refactoring pass, since it was developed over
the course of a year, and some decisions taken at the beginning proved to be wrong, and
the system had to be adapted.

6.5.3 D e p l o y m e n t updates - D i sconnec t s

A s mentioned i n our overview of system testing, the ind iv idua l components of the system
suffered from silent disconnects. W h i l e this issue was mostly resolved, it points to a much
deeper issue wi th the use of Z e r o M Q as a transport technology. It requires management.
If we have used simple H T T P based R E S T api to communicate between components, the
disconnections would have resulted in ind iv idua l cal l failures almost immediately, greatly
reducing the instabil i ty of the system during an upgrade.

However, we hope to fix this issue, by adding mult iple Z e r o M Q sockets to single commu
nication actor, w i th some of them being used for sending heartbeats and therefore detecting
network or component failures.

6.6 Impact of selected technologies

Due to design constraints, we have elected to use rather uncommon set of technologies.
Now, after measuring system performance, we can evaluate, how these choices affected our
results

Z e r o M Q

We elected to use Z e r o M Q instead of using raw T C P sockets or higher level approach of using
H T T P . This choice brought low latency messaging, which ul t imately was overshadowed by
general system latency. However, the different socket types proved useful for implementing
custom communicat ion patterns. Ul t imately , we believe, that the choice of Z e r o M Q was a
right one, and i n the future, when the system is more opt imized, its benefits w i l l overshadow
the in i t i a l difficulties encountered.

Rust

The choice of Rust for main implementat ion language was pr imar i ly influenced by availabil
i ty of very good l ibrary implementing The actor model (Ac t ix) , low overhead and primitives
for asynchronous programming. Thanks to the use of this language, a l l components of the
system require very low amounts of R A M , most of which is consumed by kubernetes. The
use of A c t i x somewhat reduced the readabili ty of code, but allowed us to create fully asyn
chronous components, which increased system throughput considerably.

Overal l , we regard this choice as a good one. W i t h some updates to the language which
should be available soon (Await syntax) we should be able to increase the readabil i ty of the
code, while preserving a l l the benefits.

L u a

Based on measurements we collected over large amount of strategy executions, we can
safely say, that the implementat ion of strategies i n L U A was a good choice. The evaluation
workers have shown very stable latency, and thanks to the use of this language, we were
able to create a sandbox, securing the system from this attack vector.

56

Postgres

A n d finally, the choice of Pos tgreSQL wi th T imesca leDB for storing asset data. In the
beginning of this project, this choice vas very attractive, since it allowed us to use single
database for System and asset data, greatly reducing complexity of the system. This choice
provided adequate performance throughout the development of the system.

However, when testing the system w i t h a significant load, the asset data storage solu
t ion proved to be inadequate, being one of the ma in bottlenecks, reducing system latency.
Through configuration changes, we were able to tune the database. These changes allowed
us to serve around than 16000 assignments w i th acceptable latency.

However, i f the system gains more users, we w i l l have to change the storage solution, or
provide some caching mechanisms, to reduce database pressure.

Overal l , we regard this choice as not very good one, and i n the future, we would generally
choose a different approach(probably scy l l aDB) for these kinds of storage requirements.

57

Chapter 7

Conclusion & Future work

The a im of this thesis was design and creation of a distr ibuted system w i t h w i th very
specific constraints. These constraints aimed our approach to the system, and affected our
choice of technologies.

The system was implemented as a distr ibuted applicat ion wi th a Single-page applicat ion
as web frontend. We ut i l ized Z e r o M Q for communicat ion, and based the general system
architecture on the actor model.

A s part of this thesis, we have designed and implemented 2 libraries (actix-comm and
actix-net), which w i l l released as open-source into the A c t i x l ibrary ecosystem.

We measured the performance achieved by the system depending on the load being put
on it , and its abi l i ty to scale to uti l ize more computat ional resources i n accordance wi th
the rise i n system load.

The system designed was submitted into the E x c e l @ F I T student conference. The feed
back provided by attendees of this conference was invaluable, and w i l l certainly influence
the future of the system.

W h i l e we feel we successfully satisfied a l l the requirements put forward in the in i t i a l
stages of this thesis, we feel that both the set of technologies chosen, and the implemented
system have bigger potential , than was realized. We a im to explore this unrealized potential
even after this thesis is finished by continued development, and eventual release of the
implemented system fully functional service.

Future Work

The system created during the course of this thesis is currently deployed, and available to
users. To fully realize capabilities of the system, we a i m to improve it in several ways.

Firs t , we w i l l focus on the usabil i ty of the system, improving the frontend applicat ion,
and creating some k ind of tutor ia l . Then after the system is ready to be released, we hope
to get some feedback from real users, and focus on areas determined by the feedback.

F rom the system side, we a im to clean up the code of the actix-net and actix-arch
libraries, and release them in the crates.io ecosystem.

58

Bibliography

[1] S Q L Feature Compar ison. [Online; accessed 05-May-2019].
Retrieved from: https: //www.sql-workbench.eu/dbms_comparison.html

[2] TechEmpower Framework Benchmarks. [Online; accessed 05-May-2019].
Retrieved from: https://www.techempower.com/benchmarks/

[3] A c t i x . January 2019. [Online; accessed 05-January-2019].
Retrieved from: https://actix.rs/

[4] A k k a . January 2019. [Online; accessed 05-January-2019].
Retrieved from: https://akka.io/

[5] Kubernetes. January 2019. [Online; accessed 05-January-2019].
Retrieved from: https://kubernetes.io/

[6] Agopyan , A . ; §ener , E . ; Beklen, A . : F inanc ia l Business C l o u d for High-Frequency
Trading A Research on F inanc ia l Trading Operations w i th C l o u d Comput ing . 2010.

[7] Anderson, B . ; Bergstrom, L . ; Goregaokar, M . ; et a l . : Engineering the Servo Web
Browser Engine Us ing Rust . In 2016 IEEE/ACM 38th International Conference on
Software Engineering Companion (ICSE-C). M a y 2016. pp. 81-89.

[8] Blandy, J . : The Rust Programming Language: Fast, Safe, and Beautiful. O ' R e i l l y
M e d i a , Inc.. 2015. I S B N 9781491925447.

[9] Coulouris , C ; Dol l imore, J . ; K indbe rg , T. ; et a l . : Distributed Systems: Concepts and
Design. U S A : Addison-Wesley Publ i sh ing Company, fifth edit ion. 2011. I S B N
0132143011, 9780132143011.

[10] Hewi t t , C : Ac to r M o d e l for Discretionary, Adapt ive Concurrency. CoRR. vol .
abs/1008.1459. 2010. 1008.1459.
Retrieved from: http://arxiv.org/abs /1008.1459

[11] Hintjens, P. : O M Q - The Guide . 2011. [Online; accessed 05-January-2019].
Retrieved from: http://zguide.zeromq.Org/page:all

[12] Hoare, C . A . R . : Communicating Sequential Processes. Upper Saddle River , N J ,
U S A : Prent ice-Hal l , Inc.. 1985. I S B N 0-13-153271-5.

[13] Hoare, G . : Rust Progress. 2010. [Online; accessed 05-January-2019].
Retr ieved from: https: //web.archive.org/web/20140815054745/http:
//blog.mozilla.org/graydon /2010/ 10 /02/rust-progress/

59

http://www.sql-workbench.eu/dbms_comparison.html
https://www.techempower.com/benchmarks/
https://actix.rs/
https://akka.io/
https://kubernetes.io/
http://arxiv.org/abs/1008.1459
http://zguide.zeromq.Org/page:all
http://archive.org/web/20140815054745/http

[14] J . M c G o w a n , M . : The Rise of Computer ized H i g h Frequency Trading: Use and
Controversy. Duke Law and Technology Review, vol . 16. 11 2010.

[15] Leveson, N . G . ; Turner, C . S.: A n investigation of the Therac-25 accidents. Computer.
vol . 26, no. 7. Ju ly 1993: pp. 18-41. I S S N 0018-9162. doi:10.1109/MC.1993.274940.

[16] Nakamoto, S.: B i t co in : A peer-to-peer electronic cash system. 2008. [Online; accessed
05-January-2019].
Retrieved from: http://bitcoin.org/bitcoin.pdf

[17] Stroustrup, B . ; Sutter, H . ; Dos Reis, G . : A brief introduct ion to C+-l-'s model for
type-and resource-safety. 2015.

[18] Tesauro, G . ; Das, R . : High-performance B i d d i n g Agents for the Continuous Double
Auc t ion . In Proceedings of the 3rd ACM Conference on Electronic Commerce. E C
'01. New York , N Y , U S A : A C M . 2001. I S B N 1-58113-387-1. pp. 206-209.
doi:10.1145/501158.501183.
Retrieved from: http://doi.acm.org/10.1145/501158.501183

[19] Traver, V . J . : O n Compi ler E r ro r Messages: W h a t They Say and W h a t They Mean.
Adv. in Hum.-Comp. Int.. vol . 2010. January 2010: pp. 3:1-3:26. I S S N 1687-5893.
doi:10.1155/2010/602570.
Retrieved from: http://dx.doi.org/10.1155/2010/602570

[20] Verma, A . ; Pedrosa, L . ; Korupo lu , M . R. ; et a l . : Large-scale cluster management at
Google w i th B o r g . In Proceedings of the European Conference on Computer
Systems (EuroSys). Bordeaux, France. 2015.

[21] W i k i p e d i a : A lgor i thmic t rading — W i k i p e d i a , The Free Encyclopedia . January 2019.
[Online; accessed 05-January-2019].
Retrieved from: https: //en.wikipedia.org/wiki/Algorithmic_trading

[22] W i k i p e d i a : C l o u d computing — W i k i p e d i a , The Free Encyclopedia . 2019. [Online;
accessed 05-January-2019].
Retrieved from: http://en.wikipedia.org/w/index.php?title=
Cloud°/020computing&oldid=871497546

60

http://bitcoin.org/bitcoin.pdf
http://doi.acm.org/10.1145/501158.501183
http://dx.doi.org/10.1155/2010/602570
http://en.wikipedia.org/
http://en.wikipedia.org/w/index.php?title=

