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Abstrakt 
Dizertační práce je obecně zaměřena na problematiku mikroskopie atomárních sil ( A F M ) , 
a to jak vývoje částí těchto mikroskopů, tak i jejich obecnému využití v oblasti výzkumu 
povrchů, ultratenkých vrstev a nanostruktur. N a Ústavu fyzikálního inženýrství jsou 
vyvíjena zařízení umožňující aplikovat uvedenou mikroskopickou metodu. V těchto 
mikroskopech jsou využívány piezoelektrické motory pro zajištění pohybu vzorku a ladicích 
zrcátek v optickém detekčním systému. Práce se v části věnované vývoji A F M zabývá 
studiem parametrů řídicích pulzů za účelem optimalizace funkce těchto komponent. 
Měřen ím vl ivu tvaru pulzů a opakovací frekvence byl jejich pohyb optimalizován z hlediska 
stability a rychlosti posuvu. 
V části věnované výzkumu povrchů byly experimentálně zkoumány morfologické změny 
ultratenkých vrstev zlata na povrchu oxidu křemičitého za zvýšených teplot. Bylo zjištěno, 
že vhodná povrchová modifikace způsobuje vznik preferenčních trhlin ve vrstvě zlata. 
Řízeným rozdělením polykrystalické vrstvy na oddělené oblasti je možné významně ovlivnit 
proces tvorby ostrůvků zlata vznikajících při žíhání. S využitím metod elektronové litografie 
je možná příprava uspořádaných polí zlatých ostrůvků o velikostech 50 - 400 nm. Dále bylo 
ukázáno, že zvýšením teploty žíhání na 1000 °C dochází k pos tupnému zanořování ostrůvků 
zlata do povrchu. Tento jev je pravděpodobně způsoben přesunem oxidu křemičitého 
z oblasti pod zlatým ostrůvkem do těsného okolí vzniklého kráteru, kde tvoří tzv. límec. 
V těchto studiích vedle metody A F M byla s výhodou používána rovněž elektronová 
mikroskopie (SEM) . 

Abstract 

The doctoral thesis is focused on the study of ultrathin layers and the utilization o f atomic 
force microscopy ( A F M ) for their characterization. Morphological changes of ultrathin layer 
of gold on silica substrates at elevated temperatures were experimentally investigated. It was 
found that surface modification influences the formation of the voids in the gold layer. B y 
the controlled dewetting of gold layer is possible to influence the formation of gold islands 
at elevated temperatures. Precise surface modification by electron beam lithography enabled 
preparation of ordered arrays of gold islands with the uniform size in range of 50 - 400 nm. 
It is also shown, that the increase o f annealing temperature to 1000 °C induces embedding 
of the gold islands into the substrate. This phenomenon is probably caused by the silica 
transfer from the area bellow the islands to the r im. A F M methods are suitable for 
characterization of above mentioned nanostructures. The A F M working under the ultra-high 
vacuum conditions was developed at the Institute of Physical Engineering. Piezoelectric 
actuators are utilized for the sample approach and adjustment of the mirror used in optical 
detection system. The optimization was achieved by the systematic study of the driving pulse 
parameters. High stability and operating speed was achieved by the experimental 
measurements o f the actuator response to the pulse shape and repetition frequency. 
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Introduction 

In the last decades atomic force microscopy ( A F M ) has become one of the basic techniques 
in nanotechnology. It enables surface analysis with a subnanometre resolution. Wide 
development of atomic force microscopy has been performed, driven by the research 
requirements focused on fabrication and characterization of the objects at nanoscale. 
Metall ic nanostructures prepared on insulating substrates have been demonstrated to play an 
important role for instance in microelectronics, plasmonics (biosensing), semiconductor 
industry, magnetic memory media, and growth of nanowires. The fabrication of metallic 
nanostructures can be carried out by employing top-down or bottom-up approaches. 
Commonly used top-down methods, belonging to the group of lithographic techniques, cover 
photolithography, electron beam lithography, nanosphere lithography, colloidal lithography 
or surface mil l ing by the focused ion beam. Bottom-up approaches utilize deposition 
procedures such chemical vapour deposition, molecular beam epitaxy or sol-gel synthesis. 
In the presented experimental work, the hybrid approaches have been utilized. Thermal 
evaporation is used for deposition of a gold thin layer on substrates patterned by electron 
beam lithography and the nanostructures have been fabricated by transformation of this layer 
at elevated temperatures into separated islands. Characterization of changes in surface 
morphology has been carried out by A F M accompanied by scanning electron microscopy 
( S E M ) . 

The PhD thesis has been aimed at two main thematic areas. The first one has been devoted 
to the development of components of an ultra-high vacuum atomic force microscope, which 
mainly covers the optimization of piezo-actuator motions. The second one has been aimed 
at the study of morphological transformations o f thin gold films during their annealing. Both 
development o f the instrumentation and study of the surface transformation are based on the 
long-term research in the Institute of Physical Engineering (IPE) at the Brno University of 
Technology. 

The theoretical description of the basic principles and commonly used measurement regimes 
are given in Part 1. A n ultra-high vacuum A F M previously developed in IPE has undergone 
a software and electronics upgrade. The concept, design of mechanical and electronic parts 
of the developed A F M , is presented here as well. M y personal contribution to A F M 
development issues can be mainly linked to the optimization of 3-axis rotary actuators used 
for laser beam alignment. The general procedure for characterization of properties and 
optimization of the piezoactuator motion is proposed in Part 2. Detailed analytical and 
numerical simulations are supported by experimental results and presented here. 

Development o f procedures for fabrication of nanostructures suitable for plasmonic 
applications is the main focus o f this study in Parts 3 - 5. The work is aimed at the processes 
taking place at elevated temperatures where the morphological changes of thin films are 
observed. The brief description of the related processes is presented in Part 3. The main 
attention is paid to surface diffusion, solid-state dewetting and Ostwald ripening. The 
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experimental work reported in Part 4 deals with the fabrication of ordered arrays of gold 
islands formed on the pre-patterned silica substrates. The control of the dewetting process 
by proper surface modification is discussed and experimentally confirmed. The experimental 
work shows that the size and shape of islands, and regularity o f their arrays are influenced 
by annealing temperature and surface modification. The last experimental study deals with 
the observed phenomena of embedding of gold islands into the silica substrate induced by 
annealing at high temperatures (1000 °C). Part 5 contains the characterization of embedded 
islands and formed craters. Unambiguous understanding of the embedding mechanism has 
not been previously reported and thus a detailed study of properties and dynamics of related 
phenomena is presented in this work. In this case an advanced data analysis of A F M and 
S E M images has been carried out to learn more details about the mechanism. 
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1. Scanning Probe Microscopy 

Scanning probe microscopy belongs to the commonly used techniques in the field of surface 
science and nanotechnology. The first microscope of the S P M type (Scanning Probe 
Microscope) was S T M (Scanning Tunneling Microscope) developed in 1981 by the group 
of Binnig and Rohrer in I B M laboratories [1,2]. This work was awarded by the Nobel Prize 
in 1986. The S P M techniques utilize the interaction between the sample surface and the 
probe (sharp tip). Basic categorization can be done according to the type of tip-sample 
interaction as follows: A F M (Atomic Force Microscopy), S T M (Scanning Tunneling 
Microscopy), M F M (Magnetic Force Microscopy), S N O M (Scanning Near-field Optical 
Microscopy), E F M (Electrostatic Force Microscopy) and others [3]. The interpretation of 
experimental results strongly depends on the applied techniques and generally are supported 
by ab-initio simulations, for example D F T (Density Function Theory) [4]. In the last three 
decades an extensive development of the S P M techniques has been achieved. The 
improvement of the measurements techniques, probes, design, electronics and software has 
been utilized based on the application requirement in the research or industry. 

A wide range of S P M instruments operating at ambient conditions are currently available on 
the commercial market. The operation under ultra-high vacuum ( U H V ) conditions at low 
temperatures (LT, 20 K ) requires an advanced technological approach and only a few 
producers such as Omicron, S P E C S or R H K are able to deliver such systems. Due to a high 
cost of these systems, own S P M instrument was developed and continuously improved at 
IPE in the last decade. The design was optimized for experiments in a complex ultra-high 
vacuum apparatus [5]. The complex system enables to fabricate and characterize samples in 
situ (inside the U H V environment). Analysis of the samples directly after their preparation 
is favorable and prevents surface contamination and modification at ambient conditions. The 
developed U H V S P M system, being the part of the complex system, has been mainly 
designed for S T M and A F M measurements. 

1.1 Principles of Scanning Tunneling Microscopy 

The first designed technique out of the S P M family was S T M [2]. The principle of the 

method achieving the atomic resolution is based on the quantum effect of electron tunneling 

through the gap between the sharp tip and the sample under an applied voltage bias. The 

exponential dependence of the tunneling current I, on the gap distanced determine the 

sensitivity of the methods for the topography imaging. The tip-sample distance d is 

typically in units of A . The tunneling current can be expressed as / ( = KU exp(-kd), where U 

is the bias voltage and K, k are the constants. In Fig . 1.1a basic experimental set up of S T M 

is schematically shown. It is composed o f a scanner, sharp tip and electronics. The imaging 

can be performed in two basic regimes, the constant height and the constant current. Using 

the constant current regime the distance between the tip and the sample is kept constant by 

the z approach of the scanner and corresponding feedback loop. The image is then 

represented by the voltage applied on the z piezoelement. The higher resolution can be 

achieved at the constant height regime when the z axis of the scanner is not moving and the 
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feedback is switched off. The image is then obtained from the value of the tunneling current 
during the scanning. 

a) macroscopic scale: b) atomic scale: 

Fig . 1.1: Schematic view o f a S T M setup with a scanner and tungsten tip (a). View of a tip 
and sample at atomic scale (b). 

1.2 Principles of Atomic Force Microscopy 

The A F M methods are based on the force interaction between the atoms on the tip and a 
surface. The force interaction is detected by cantilever (tip holder) deflection. The acting 
forces between the atoms have different distance ranges (0.5 - 50 ran) and magnitude, 
according to the utilized sample and probe. The methods are known as very sensitive to the 
sample topography, chemical composition, and electric and magnetic properties. One of the 
critical parameters determining the ability of the methods are mechanical properties of 
cantilevers, which are available in a wide range of modifications (stiffness, size, and surface 
coverage). A s for the sample and probe tip interaction, the five main forces can be identified: 

Van der Waals forces, 
capillary forces, 
chemical bonding forces, 
electrostatic forces, 
magnetic forces. 

The forces between two atoms can be divided according to different criteria, e.g. to the long-
range and short-range ones, or attractive and repulsive ones, etc. The total interaction can be 
approximated by the Lennard-Jones potential [6]: 

ff {1 f l 
I \.R. I 

Eq. 1.1 
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where Uu (/?) represents the interaction potential between two atoms (molecules) depending 
on their distance R and - e is the value of the interaction potential in the minimum. The 
coefficient a is determinated by the distance where the potential is zero. The Lennard-Jones 
potential is composed of a region where the repulsive forces expressed by the [a I R)n term 

are dominant and a region o f the attractive forces expressed by the [a I R)b term. In F ig . 1.2 

both regions are schematically shown. 

Lennard Jones 
Interatomic Potential 

separation at 
energy minimum 

12 , V6 

Fig . 1.2: Schematic interpretation of the Lennard-Jones potential, showing the main 
attractive and repulsive regions. 

The total force acting between two atoms is expressed as the negative derivative of UU(R) 

according to R and hence 

F(R) = - dUu(R) 
dR 

E q . 1.2 

The shape of the force F(R) has a significant minimum which determines the basic modes 

of operation (Fig. 1.3). The contact and non-contact modes performed in the repulsive and 

attractive regions, respectively, utilize the local linearity o f the F(R). The intermittent 

(tapping) mode operate in both attractive and repulsive regimes as shown in F ig . 1.3. The 

non-contact and intermittent modes are also called as a dynamic or oscillatory modes based 

on their operation, when the cantilever oscillates close to its resonant frequency. 
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Force 

Fig. 1.3: Schematic illustration of the A F M operational modes having different working tip 
- sample distances. 

1.3 AFM techniques 

Interaction of the tip atoms with the sample ones is detected by a deflection of the A F M 
cantilever or a shift of the cantilever resonant frequency. Scanning the tip or sample in the 
X Y direction enables the surface imaging. Hence, the basic set-up for all A F M techniques is 
composed of a X Y Z scanning stage, detection system unit of the cantilever deflection, and 
electronics enabling to control the deflection set point or cantilever oscillations at resonant 
frequency. A schematic view of the typical A F M setup is shown in F ig . 1.4. 

1.3.1 Contact mode 

The force interaction is detected by the cantilever deflection in the distance where the 
repulsive forces are dominant. The applied force between the tip and the sample is typically 
in the range of n N units and can be determined from Hook 's law reading F = -kz , where k 
is the cantilever stiffness and zis the displacement. One of the widely used methods of 
detection of the cantilever deflection is based on the shift of a laser beam reflected from the 
cantilever and detected by P S P D (Position Sensitive Photo-Diode). The contact-mode 
measurement can be operated in the regime of the constant height, where the signal 
representing the tip - sample interaction is proportional to the cantilever deflection during 
the X - Y scanning procedure. The second operating regime uses a PID 
(Proportional/Integral/Derivative) regulator and keep a constant deflection (force) by the 
movement of the scanner along the z -axis during X - Y scanning. The z-displacement then 
represents the topographical information about the sample. In Fig . 1.4 the contact mode is 
provided by the laser, photo diode, sample and cantilever. The control electronics for 
oscillation is not utilized. In the contact mode also Lateral Force Microscopy ( L F M ) can be 
carried out. The detected signal corresponds to lateral distortion of the cantilever. L F M mode 
provides the information about the surface adhesion between the tip and the sample, and, 
consequently, about various properties of the substrate itself. 
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Fig . 1.4: Schematic view of an A F M set up with an optical detection unit, and electronics 
for oscillation- and sample position control [7], 

1.3.2 Non-Contact mode 

The force interaction can be determined also by the detection of the cantilever resonant 
frequency changes. The distance between the tip and the sample is kept in the range of the 
attractive forces in this mode. The experimental setup requires additional electronics for 
cantilever-oscillation control, it usually contains a lock-in amplifier enabling to excite 
cantilever oscillations at the required frequency and amplitude (Fig. 1.4). The typical 
amplitudes of cantilever oscillations in the non-contact mode are smaller than 10 nm and the 
resonant frequencies range from 30 to 1000 kHz , according to the cantilever stiffness. The 
cantilever oscillating at the resonant frequency is approached to the sample. The force 
interaction between the tip and the sample causes changes in oscillation frequency and 
amplitude. The resonant frequency shift is given by the approximate formula 
Ao) ~ (o)01 k)(dF I dz), where co0 is the resonant frequency of a free cantilever, k is the 

cantilever stiffness and F is the interaction force between the tip and the sample [8]. Two 
different operating regimes can be set up: frequency modulation, where the PID regulator 
changes the scanner z axis to keep the frequency shift constant or the amplitude modulation, 
where the oscillation is set close to the resonant frequency and the change of the scanner z 
axis is to keep the oscillation amplitude the same. 

1.3.3 Intermittent mode 

The commonly used regime for the topographical imaging of surfaces is the intermittent 
(tapping) mode. In this mode the cantilever oscillates with a higher amplitude ( 1 0 - 1 0 0 nm) 
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than in the case of the non-contact mode. Here, both attractive and repulsive forces contribute 
to the tip-surface interaction. Information about the topography is acquired by the frequency 
or amplitude modulation, similarly to the non-contact mode [3]. 

1.3.4 Phase imaging 

Additional information about the tip - surface interaction can be obtained from the phase lag 
of the cantilever oscillations relative to the excitation signal which is monitored and recorded 
while the feedback keeps the amplitude at a fixed value. This technique is used to obtain 
additional information during the tapping mode imaging. Topography and phase imaging 
are acquired simultaneously [3]. 

1.3.5 Other techniques 

Both static and dynamic techniques can be also used for detection of magnetic and 
electrostatic forces between the tip and the sample. These methods are called M F M 
(Magnetic Force Microscopy) and E F M (Electrostatic Force Microscopy) [3]. They require 
special cantilevers coated with magnetic- and conductive layers, respectively. The principle 
is based on the long range effect of magnetic and electrostatic forces compared to the atomic 
ones. Hence, it is possible to isolate these long range interactions from the short range ones 
by enlargement of the distance between the tip and the sample. Another commonly used 
technique is K P F M (Kelvin Probe Force Microscopy) which enables to image the surface 
potential. The information about the potential is obtained by applying a special compensation 
bias voltage between the oscillating tip and the sample when the cantilever equilibrium 
deflection is kept constant during the scanning [3]. 

1 4 Development of UHV AFM at IPE BUT 

A s already mentioned above an U H V A F M / S T M system was developed at the IPE B U T 
more a decade ago [5]. The developed instrument was designed as a part of a complex U H V 
system. The whole microscope with the feedthroughs for electric cables is placed on the 
U H V C F flange D N 150 as can be seen in F ig . 1.5. The microscope is composed of a 
measuring platform and an anti-vibration stage (Fig. 1.5). 
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Fig . 1.5: U H V A F M / S T M setup composed o f a measuring head with a scanner and optical 
detection system (A) and anti-vibration stage with eddy current dumping (B). 

This stage consists of four vertical tubes - carriers each of them having a spring inside not 
touching the inner tube wall and attached to the tube top. To reduce the transfer of vibrations 
from the flange, the platform is suspended on these springs. The resonant frequency of the 
platform on the springs is approximately 1.8 Hz [5]. Dumping of platform vibrations is 
achieved by the effect of eddy currents induced in the copper plates attached to the platform 
and moving at platform oscillations in an outer magnetic field generated by permanent 
magnets attached to the tubes. When no measurement takes place, the platform is locked in 
a rest upper position. 

The measuring platform (Fig. 1.6) contains a macro-approach system, X Y Z scanner and an 
optical system for detection of the cantilever deflection. The sample is inserted into a sample 
holder attached to the end of the scanner. The cantilever holder is attached to the optical 
detection system. The exchange of the sample and cantilever is provided manually by a 
wobble stick without breaking U H V conditions. 

19 



Fig . 1.6: Top view of the measuring platform with the highlighted parts such as a macro-
approach system, scanner and optical detection system. 

Macro approach is maintained by a linear slip-stick actuator which transports the X Y Z piezo 
scanner. The macro approach works in the 1 cm-long range. The high voltage (300 V ) wires 
are separated from the low-level signal wires connected to the detection unit. Both the piezo 
actuator and scanner are controlled by a newly developed electronics unit. 

The optical detection system consists of a laser diode, two 3-axis rotary piezo actuators with 
glued mirrors and P S P D (Position Sensitive Photo-Diode). In F ig . 1.7a the optical path of 
the laser beam is marked. The beam is generated by the laser diode, than is reflected at the 
first adjustable mirror (glued to the rotary actuator) towards the cantilever. The beam is then 
reflected from the cantilever to the second adjustable mirror and from it continues to the 
P S P D . In such a configuration a deflection of the cantilever causes a movement of the laser 
spot on the P S P D . The 3-axis rotary actuator with the glued mirror is shown in F ig . 1.7b. A 
detailed description of the actuator and optimization o f its movement in U H V conditions 
w i l l be discussed in the separate part o f this work. 
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(a) (b) 

Fig . 1.7: Optical detection system with the marked laser-beam path (a). Adjustable mirror 
by the 3-axis rotary piezo actuator (b). 

Within this PhD thesis, the original U H V A F M / S T M instrument has been improved in 
several aspects. The original setup suffered from permanent problems connected with 
unreliable motion of the piezo actuators in U H V , stability of the laser diode, and old, not 
transferable electronics and software. The new electronic unit has been designed as a part of 
other PhD works by Z . Nováček, D . Sulc and P. Wertheimer and consists of the units for 
controlling the rotary piezo actuators, laser, P S P D and scanners. Macro approach originally 
provided by an inchworm motor was replaced by a linear slip-stick actuator designed by 
M . Paver a. 

The most significant upgrade has been achieved by the utilization of the open-source control 
software G X S M communicating with a commercial control unit developed by the Soft D B 
company. This control unit was supplemented by a home built preamplifier for S P M signal 
detection and high voltage amplifiers for the scanner and piezo actuators operation. The 
proposed concept presents a good compromise between the cost and performance. The Open 
Source enables an additional extension of the control software which is an important 
advantage. 
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2. Optimization of the slip-stick piezo actuator motion 

A n impressive development of different precise analytical tools for surface science and 
nanotechnology research has been made in the last decades. A significant contribution to 
these results has been also achieved due to a progress in the precise positioning and actuating 
of samples, probes, and other tool elements. Mic ro - and nano actuators working with high 
accuracy and wide range of displacement, their fast response to the control signal, tunable 
displacement step and simple operation are the main features of the requirements laid upon 
these systems. Mic ro - and nano actuators generally utilize piezoceramics as the central part 
of their design. These piezoelectric actuators can be categorized according to their basic 
working principles [9] into the stepping inertial (slip-stick) actuators (also called the quasi-
static actuators) [10-15] and the ultrasonic motors based on standing or propagating 
mechanical waves [16-18]. Special designs of actuators are also compatible with ultrahigh 
vacuum working conditions. 

The angular slip-stick actuators rely on a difference in the static and dynamic friction force 
acting between the rotor and the stator [19], the setup of which works in a stepping mode. 
Within each step there is a period of the slow deformation of a piezoceramic plate during 
which the rotor and stator are in the sticking regime, and a period of the fast piezoceramic 
deformation providing the slipping regime between the rotor and the stator [14]. The 
deformation of piezoceramics is done by driving pulses, typically in a voltage range of 
0.2 - 0.3 k V . This basic slip-stick principle is provided by simple and low cost designs and 
ensures relatively high-speed motion (~ 5mm/s), long-range displacement and the precise 
positioning with the accuracy below 5 nm [9]. To provide the stable and efficient operation 
of these actuators, it is crucial to find an adequate setup of optimum parameters such as the 
voltage, shape and frequency of driving pulses, load force and also materials ensuring 
appropriate friction coefficients, etc. [14]. 

The angular actuator tested in this paper is mounted in an U H V A F M setup and provides the 
alignment of a laser beam onto a cantilever and position sensitive photo detector (PSPD). To 
find the optimized parameters of this actuator, a simple testing system has been developed. 
It detects and records the angular motion of the actuator by P S P D in real time. The 
optimization is based on the measurement of the actuator response to driving pulses of 
various parameters being gradually changed by a computer software, at different load forces. 
To better understand and interpret the experimental results, supportive methods based on a 
simple analytical model and numerical simulations were used as well. Generally, this 
approach can be applied for testing and optimizing any linear or angular slip-stick actuator 
[20]. 

2.1 Optimization scheme 

Motion of a slip-stick piezo actuator is generally controlled by the parameters related to its 
mechanical design and characteristics of the driving pulses applied to piezoceramic shear 
plates. A n optimization of all parameters is necessary to reach the effective and stable 
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operation of the actuator. In the paper the procedure for the optimization of the actuator 
motion is proposed and tested on a rotary slip-stick piezo actuating system utilized in an 
atomic force microscope. 

The optimization is based on the measurement of the actuator response to driving pulses of 
different shapes and repetition frequencies at various load forces. To provide it, a simple 
computer controlled testing system generating the driving pulses, and detecting and 
recording the corresponding angular motion response of the actuator by a position sensitive 
photo detector (PSPD) in real time has been developed. To better understand and interpret 
the experimental results, supportive methods based on a simple analytical model and 
numerical simulations were used as well. 

In this way the shapes of the single driving pulses and values of the load force providing the 
biggest actuator steps were determined. Generally, the maximal steps were achieved for such 
a combination of the pulse shapes and load forces providing high velocities at the end of the 
sticking mode of the actuator motion and, at the same time, lower decelerations during the 
slipping mode. 

A s for the multiple driving pulses, the pulse shapes and values of repetition frequency 
ensuring the sticking mode of the actuator motion during the pulse rise time together with 
the maximum average angular rotor velocity were specified. In this way the effective and 
stable operation conditions of the actuator were provided. 

In principle, the presented method can be applied for the testing and optimization of any 
linear or angular slip-stick actuator. 

2.2 Actuator Setup 

The actuator, the properties of which were optimized, is a three-axis rotary slip-stick piezo 
system designed according to [21]. Its cross section is shown in Fig . 2.1b. A couple of these 
actuators are used in an optical detection system of a cantilever deflection being a part of a 
home-built U H V S T M / A F M unit. The unit provides the alignment of a laser beam with 
respect to an A F M cantilever and position sensitive photo detector (PSPD). The stator of the 
actuator is a right-angle 3D corner setup with three pairs of piezoceramic shear plates fixed 
to each corner wall with a U H V compatible glue (EpoTek H27D) . A steel ball of a diameter 
of 10 mm with a glued mirror on it (EpoTek H27D) acts as a rotor. A n A l - N i - C o magnet 
protruding through the corner of the stator is used to control the load force by which the rotor 
acts upon the plates. Different load forces were chosen by setting specific distances between 
the magnet and the rotor sphere. For clarity, the forces are assigned in the paper as Fioad 1 - 6. 
Only in the section devoted to the response to the multiple pulses the corresponding 
numerical values of the forces are specified as well , as they are needed in numerical 
simulations and fitting procedures. 
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Laser beam 

Fig . 2.1: A view of the optical detection system with a couple of the actuators used for the 
alignment of the laser beam with respect to the A F M cantilever and P S P D (a). Cross section 
of the three-axis rotary slip-stick actuator with the legend (b). For testing the actuator 
response the cantilever was replaced by a mirror. 

2.3 Measurement setup 

A l l the experiments for the optimization of the actuator operation were carried out with a 
measurement setup consisting of three basic parts as follows: an optical detection system, 
electronic system and control software. 

The optical detection system is used to measure the angular displacement of an actuator and 
is identical with that one mentioned above (Fig. 2.1a) and which the actuator is part of. To 
modify such a system primarily developed for the detection of cantilever deflections in an 
A F M setup to this purpose, the cantilever just has to be replaced by a mirror. 

Laser 
beam 

Fig . 2.2: Measurement setup for the optimization of the actuator motion. 

In such a modified detection unit the laser beam generated by a laser diode with a collimating 
lens is reflected by mirrors to the P S P D . If the actuator is in motion, the laser spot is 
proportionally moving over the P S P D and the corresponding signal is used to monitor the 
displacement. The advantages of this technique can be listed as follows: almost no additional 
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load to the actuator (a small mirror can be used), high resolution (time development of a 
piezo-shear displacement during one single step can be observed - see Fig . 2.7), and non-
contact remote measurements (e.g. through a view port of a vacuum chamber). 

Fig . 2.3: Driving pulse put upon the piezoceramic shear plate. Pulse parameters: exponent n, 
rise time T, pause 1 and period T. 

The central part of the electronic system is a data acquisition computer card ( D A Q ) . This 
card (NI6221) with 800 kHz D / A sampling frequency was used to generate and measure all 
the pulses and signals, respectively (Fig. 2.2). The driving pulses processed by a D / A 
converter are led through a high voltage amplifier to piezoceramic shear plates. The high 
voltage amplifier [6] operating in the voltage range 0 - 1000 V consists of a low noise and 
low voltage op-amp driving high voltage M O S F E T transistors to achieve the required 
amplification. The P S P D is a four segment photodiode. Two differential amplifiers provide 
output analogue signals giving information on the coordinates of the laser spot. These signals 
are consequently digitalized by D A Q . 

The measurement itself consists of three consequent steps - specification o f driving pulse 
parameters, measurement of actuator velocity, and saving the results. 

The driving pulse parameters are defined in F ig . 2.3. The shape of the pulse is determined 
by the exponent n of the time function f, its rise time T and the pause between two 
subsequent pulses 1. The period o f the whole pulse is T. The repetition f requency/of the 
driving pulses is given by the reciprocal value of T as follows 

T T'+r 
Eq. 2.1 

The power function of time was selected as it has two significant advantages. First, the 
mutual form of the equations of motion also has the form of a power function o f time, which 
provides an option to drive the motor with e. g. constant acceleration. Second, its shape could 
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be varied from a convex through linear to concave one using one parameter only 
(exponent n). 

At first approximation the displacement of the piezoceramic shear plate (Fig. 2.1) during its 
rise time (t < T') is proportional to the voltage U(t) supplied to it: 

s(t)ocU(t) E q . 2.2 

where t ^ i s the maximal voltage brought to the piezoceramics. The relative actuator 

angular velocity is obtained from the time of the laser spot motion across P S P D and the 
corresponding voltage difference upon it. 

^ Start ^ > 

initial parameters input: 
Frequency 

initial parameters input: 
Frequency Set actuator Start generation 

Pause 
Exponent i to initial position of pulses 

No 

Increment of 
parameters 

Stop generation Increment of 
parameters Save results 

Fig . 2.4: F low chart of the measuring software. 

The measurement is controlled by a computer software written in the Python programming 
language using the N I - D A Q m x driver [22]. The basic algorithm (Fig. 2.4) was improved by 
routines for controlling various situations that can occur (no actuator response to a selected 
pulse, backward motion, too slow motion, position correction along different axes, etc.). 
Therefore, a long term measurement cycle can be carried out automatically without 
operator's intervention. 

The output file contains the pulse parameters and the corresponding values of the actuator 
velocity. This file is processed afterwards in order to find the optimal pulse parameters with 
respect to the actuator speed. 

2.4 Simulation - numerical model 

2D numerical simulations of the actuator response were carried out in the Matlab 
programming environment to better understand the experimental results. A schematic of the 
actuator model configuration is shown in Fig . 2.5. The main aim of the presented simulations 
was to find a theoretical response of the rotor to driving pulses put upon the piezoceramic 
plates of the stator. 
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Fig. 2.5: Schematic of a 2D actuator model configuration in 4 phases during one single step: 
(a) initial piezo plate position, (b) piezo plate forward motion, (c) piezo plate backward 
motion and (d) piezoceramic plate final position (R - rotor radius, Fioad - load force, 
Ff- friction force, s(t) - piezoceramic displacement, and q>(t) - rotor angular displacement). 

The rectangle representing a stator piezoceramic plate in the actuator moves horizontally 
forward and backward according to the driving signal. The transfer of the piezo motion to 
the rotor (sphere rotating around a fixed axis) is provided by the torque M(t) caused by the 
friction force Ff between the spherical rotor and the piezoceramic plate. To calculate the 
response in form of the rotor angular displacement <p(t), two distinct situations must be 

considered as follows: 

2.4.1 Sticking mode 

In this mode the acceleration of the rotor equals to the acceleration of the stator: 

arotor(t)=astator(t) Eq.2 .3 

and so the rotor angular acceleration can be calculated as 

e ( t ) = m = ^ = m = M m , E q . 2 . 4 

it K 1 

where s(t) is the displacement of the stator (piezoceramic plate) and R is the rotor radius. 
Knowing e(t), the torque M (?) can be calculated from the basic relation 

M (0 = el, Eq . 2.5 
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where / is the rotor momentum of inertia. In the sticking mode the torque M (?) must meet 

the following condition: 

M{t)<M^ Eq .2 .6 

with 

M

m =Fioadfs

R, Eq . 2.7 

where Flaad and fs are the load force and static friction coefficient, respectively. 

2.4.2 Slipping mode 

In this mode the system is not able to transfer the torque M (?) from the stator to the rotor as 

M(t)>M^, Eq.2 .8 

and so 

Eq.2 .9 

One can calculate the rotor angular acceleration according to the formula 

M(t) 

e = —f^> Eq . 2.10 

where the torque is given by the time independent relation 

M{t)=FlmdfdR, Eq.2.11 

where fd is the dynamic friction coefficient. 

2.5 Analytical model 

To find an analytical formula for the actuator response (average rotor angular velocity 00 ) 
the repetition period T is divided into three time sections as shown in Fig . 2.6. In addition 
to the already specified symbols T and 7" (Fig. 2.3) there is also the symbol Td 
representing the right margin of a time interval Atd. Within this interval, defined by the 

relation T'< t <Td , the rotor is slipping and slowing down due to dynamic friction until 

stops. The analytical model is valid only for the case when the sticking mode during the rise 
time (t < T') takes place. 
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Fig. 2.6: Schematic view of the driving pulse (black) and actuator response (red) with three 
specific time sections defined by T', Td and T. 

The analytical description of the actuator angular displacement is given by the following 
equations for three distinct time intervals: 

0 ( o < f < n = — = — f — 1 
R R {T'J 

(sticking mode) 

(p{T'<t<Td) = (p{T') + aXT ')(t - n -1 ed (t - Tf, (slipping mode) 

<p(Td<t<T) = <p(Td), (resting mode) E q . 2.12 

where the exponent n meets the condition n > 2, is the maximal piezoceramic 

displacement and £ d is the actuator deceleration occurring within the time interval Atd and 

obtained from E q . 2.10 and E q . 2.11 as follows 

F f R 
r, load J d r- ^» 1 o 

£d ~ ~ • E q . 2.13 

The deceleration interval Atd defined by the relation T'< t<Td can be calculated by 

oXt) 
Eq. 2.14 

The analytical expression for the average angular velocity CO is defined as 

C0=T E q . 2.15 

and derived using additional Eqs. (resting mode) E q . 2.12, Eq . 2.13, and E q . 2.14 reads 
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Eq. 2.16 shows up the linear dependence of CO on the square of the actuator angular velocity 

at the time T', i.e OXT')2. The average angular velocity CO also depends on the set of 

parameters representing the actuator design and defining driving pulse as well. 

In the analytical model the sticking mode is supposed to be valid for all the times t <T\ 
which means the torque M related to the instantaneous angular acceleration eby Eq . 2.5 is 
not higher than the maximal torque Mmax (Eq. 2.6 and Eq. 2.7). In this mode the 

corresponding maximum angular acceleration is achieved att = T and can be calculated 

as 

£ ^ - £ ( T ) - ¥ ? ) - — — E q . 2 . 1 7 

and using E q . 1.1 it can be expressed by 

f 
<W =^n(n-\) 

1 
T 

\fc J 
Eq. 2.18 

where 7 V a n d / c i s the critical minimal rise time and maximal frequency, respectively, of 

the given actuator which can be used while keeping the sticking mode during the pulse rise 

time for a given driving pulse shape. One can get expression for the critical frequency fc 

from E q . 2.18 as follows: 

f c ( n ) = / „-! , 1 >' Eq .2 .19 

where A is given by the relation 

A - c

 R _ FloadfsR R 

A-£m* " E q . 2.20 
max 

and depends only on the actuator design. 

Similarly, the maximal angular velocity & w and so its maximal average value 

(see E q . 2.16) is achieved when the critical frequency fSFioad->n->'^) is chosen. 

2.6 Results and discussions 

The goal o f this work was to find the optimal parameters of the driving pulses to reach the 
stable actuator motion at a maximum speed. To do it, the results achieved from experiments, 
simulations and analytical model have been utilized. 
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2.6.1 Response to a single driving pulse 

The resolution of the optical detection system allows us to measure the actuator response to 
a single driving pulse. The response to a single pulse was measured by using a sequence of 
pulses with a relatively long pause between the pulses (T=10 ms) and repetition frequency 
/ = 94 Hz. Different load forces (Fioad) and pulse shapes (exponent n) were applied here. 
The temporal record of the actuator response to various single pulses measured for distinct 
load forces is shown in F ig . 2.7. The dependence of the actuator angular displacement at 
t-Td (actuator step) on load forces is depicted in Fig . 2.8. 

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 
t (ms) t (ms) 

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 
t (ms) t (ms) 

Fig. 2.7: Actuator response expressed by the P S P D signal (proportional to the angular rotor 
displacement) to the single driving pulses (black curves) w i t h / = 94 Hz and x = 10 ms for 
six incremental load forces ( Fioad 1 - the smallest force ) and four driving pulses of the 
shapes given by the exponents (a) n = 2 ; (b) n = 3 , c) n = 6 , and (d) n = 8. 

In case of the exponent 2 (Fig. 2.7a), the rotor response follows the driving pulse during the 
sticking phase (t < T') for all load forces. A significant difference in the actuator response 

is observed for distinct at t > T'. The higher load forces result in smaller displacements 

(Fig. 2.7a and Fig. 2.8) due to higher friction forces and thus more intense deceleration in 
the deceleration phase. Hence, the maximal displacement at T- Td for n - 2 is achieved for 
the smallest load force {Fioad 1). The actuator response to sharper pulses having the exponents 
3, 5, and 8 (Fig. 2.7b - d) differs for distinct load forces in the time phase t>T'as well . 
However, the maximum displacements for these pulses were obtained for bigger load forces 

(F^l and -^to/3) compared to the pulse with n - 2 (Fig. 2.8). The bigger forces allow us to 
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achieve higher instantaneous velocity at T' as they better provide the sticking mode of the 
actuator at t < T'. In addition to that, for the sharper pulses even the bigger load forces do 
not already protect the rotor from slipping at t > T' and, hence, its deceleration is not so 
efficient compared to the pulses with n - 2. It is obvious from Figs. 7 c, d that for the curves 
with n - 5 and 8 the rotor starts to slip for Fload 1 at t<T'. The biggest actuator steps were 

achieved for the driving pulse with n = 6 and load force Fk)ad 3 (Fig. 2.8). 

3 

2,6 ] 

2,2 

1,8 

1,4 ] 

1,0 

0,6 

F l o a d 1 
F load 2 
F l o a d 3 
F load 4 
F l o a d 5 
F l o a d 6 

0 6 8 10 

F ig . 2.8: Actuator angular displacement at t = Td obtained from the single pulse 
measurements as a function of the pulse shape (exponent n) for incremental load forces 
Fioad 1 - 6, the same pulse repetition frequency and pause between pulses as defined in 
Fig . 2.7. 

The analytical model predicts the linear relation between the average angular velocity G) 
and the second power of instantaneous angular velocity at T ' f o r a single pulse (Eq. 2.16). 
The experimental relationships between these two quantities for single pulses of various 

shapes (exponent n) and different load forces Fk)ad 1 - 6 are presented in Fig . 2.9. Here, each 
experimental point corresponds to the pulse with an exponent from the intervals = 1 -10 . 
The data were processed using the Savitzky-Golay high pass filtering [23]. In accordance 
with E q . 16 the data can be fitted by the linear relation 

a)=a+boj(T'f, Eq. 2.21 

where a and b are the constants. The constant b is determined from the individual 
experimental curves obtained for specific load forces Fioad. The higher load forces lead to 
smaller line slopes b, which is in agreement with the formula 

b = 
^loadfd^ ' 

Eq. 2.22 

resulting from Eq. 2.16. This analytic formula can be for instance used for the calculation of 
the dynamic friction coefficient. 
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0 1 2 3 4 5 6 7 
w(Tf) [1x10 arb.u.] 

Fig . 2.9: Experimental dependence of the average angular velocity CO on the second power 

of the instantaneous angular velocity of the actuator at T', i.e. GJ(T')2, for the pulses of 

various exponents ( n = 1 - 10) and different load f o r c e s ^ / . Repetition frequency of the 

pulse sequence was / =94 Hz and pause T=10 ms. 

2.6.2 Response to multiple driving pulses 

The actuator motion is provided by a sequence of individual pulses. Therefore, in addition 
to the single pulse response it also depends on the repetition frequency / o f the single pulse 

and the pause Tbetween two consequent pulses. Hence, all the relevant parameters have to 
be optimized simultaneously to reach the maximum average velocity. The experimental and 
simulated (numerical model) maps of the average angular rotor velocity as a function of 

pulse frequency and shape for three different load forces are presented in F ig . 2.10. In 

the simulations the friction coefficients fs = 0.3 and fd - 0.1 were chosen according to [24]. 
To avoid the direct influence of the neighboring pulses, the pause t between each pulse 
should be longer than the deceleration time Atd. The deceleration time Atd in the multiple-
pulse experiments was in the range 0.1 - 0.8 ms and, hence, the pause in the measurement 
and simulation of average angular velocity a{n, f) was chosen 1 ms. 
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A = (2.9±0.2)xlO s s-2 A = (7.9±0.5) xlO 8 s~2 A = (13±2)xl0 8 s~2 

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 
n n n 
(a) (b) ( C) 

Fig . 2.10: Experimental (upper row) and simulated (bottom row) f-n maps of the rotor 
average angular velocity (O (arb. u.) for the pause between the pulses T=l ms and load 

forces (a)Fhad 1 (=0.1 N) , (b) FLMD2 (=0.3 N) and (c) FLMD3 (=0.35 N) . The fitting parameter 

A (defined by E q . 2.20) is shown for each experimental and simulated map. Frequencies 
marked by dash-dotted lines: f\m - 655 H z , / 2 m - 763 Hz, and fam - 830 Hz. 

Both in the experimental and simulated maps the areas of the maximal values of the actuator 

average angular velocity 0^ are remarkable. A t the same time, there is a very good 

agreement between the experiment and simulations. In the maps, the maximal average 

velocities tfj^for the corresponding exponents n are represented by dots which are then 

fitted by the curves given by the relation for the critical frequencies obtained from the 
analytical model (Eq. 2.19). The resulting fitting parameters A both for the experimental 
and simulated maps are shown in Tab. 2.1. 

Flood 1 [0.1 N] i w 2 [ 0 . 3 N] FLOAD3 [0.35 N] 

A [ i o Y 2 ] 

Experiment 2.9 + 0.2 7.9 + 0.5 13.0+2.0 

Simulation 2.5 + 0.2 7.0+1.0 13.0 + 1.0 

Tab. 2.1: Fitting parameters A for the multiple pulse measurements and numerical 

simulations of tf^O^jOfor three different load forces Fioad. 

The fitting curve in each map separates two areas of different operational modes during the 
pulse rise time (t<T'). The parameters/and n determining the points below the curve 
provide the sticking mode, meanwhile those above the curve the slipping mode. From the 
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shape o f the curves it is obvious that to keep the sticking mode during the pulse rise time at 
higher repetition frequencies the lower coefficients n must be chosen. 

Comparison of the dependence of average velocity CO on the pulse shape (exponent n) 
obtained from the single-pulse experiments, multiple-pulse measurements (Fig. 2.10, upper 
row) and numerical simulations (Fig. 10, lower row) is presented in F i g . 2.11 for the applied 
load force Fioad 2 (-0.3 N) and different pulse frequencies. For the single pulses these 
frequencies were f\s - 95 Hz,fzs - 97 Hz , and f}S - 98 Hz , and for the multiple pulses (both 
experimental and simulated) f\m - 655 Hz, fim - 763 Hz, and fam - 830 Hz (marked in 
Fig . 10a by dash-dotted lines). Taking into account the pause r = 10 ms for the single pulses 
and r = 1 ms for the multiple ones, the shape and length of the pulses of the relevant 
frequencies fis and fim (where i = l , 2, 3) are identical. Hence, the actuator response to these 
pulses can be directly compared. The qualitatively same curve shapes possessing maxima at 
the same values of n have been obtained for all these three different repetition frequencies 
of pulses. 

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 
Exponent (n) Exponent (n) Exponent (n) 

0) (b) (C) 

Fig. 2.11: Average angular velocity of the actuator as a function of the pulse shape for a 
single-pulse experiment (f=l0 ms), and multiple-pulse measurements and numerical 
simulations ( T = l ms) for a)fis - 95 Hz, f\m - 655 Hz, b)f\s - 97 Hz, f\m - 763 Hz, and c) 

fu = 98 Hz, fi„ = 830 Hz. Applied load force FLOAD2 (=0.3 N) . 

The multiple-pulse curves obtained from cross sections of the maps in F ig . 2.11 at 
corresponding frequencies (see dash-dotted lines there). 

2.7 Conclusion 

The method for the optimization of slip-stick actuator motion has been proposed and 
successfully tested on the rotary slip-stick piezo actuating system being a part of the U H V 
S T M / A F M unit. The optimization is based on the measurement of the actuator response to 
driving pulses of different shapes and repetition frequencies at various load forces. To carry 
out this task, a simple computer controlled testing system has been developed. It consists of 
an electronic unit and control software making possible to gradually change the pulse 
parameters, and optical detection system based on P S P D providing real time detection of the 
angular motion o f the actuator. 
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Experimental measurements of the actuator response to single driving pulses showed the 
strong influence of the pulse shape given by exponent n and load force Fioad on the final 
actuator step size (angular deflection). The maximal steps were achieved for such a 
combination of the pulse shapes and load forces providing high instantaneous velocities at 
the end of the sticking mode of the actuator motion (t = 7") and , at the same time, lower 
decelerations during the slipping mode (t > 7 ' ) . These experiments also confirmed the linear 
relation between the average angular velocity CO and square of instantaneous angular 
velocity at t - T (time of maximal piezo displacement), as predicted by the theoretical model. 
This formula can be used for finding actuator material characteristics, for instance the 
dynamic friction coefficient. 

Actuator response to the multiple driving pulses, both experimental and simulated, was 
presented in the form of maps of the average angular rotor velocity Cd(n,f) as a function of 
the pulse shape and frequency. Both the experimental and simulated maps show a very good 
correspondence. B y fitting the maximal values of CO\n, f) in the maps by a curve meeting 
the theoretical relation for the critical frequency, the phase area (n, f) providing the sticking 
mode during the pulse rise time (t<T') can be separated from that one typical for the 
slipping mode. In addition, the parameters A typical for the actuator design were determined 
by this fitting procedure as well. 

Finally, the comparison of the dependence of average velocity CO on the pulse shape 
obtained from single-pulse experiments, multiple-pulse measurements and numerical 
simulations was presented. The qualitatively same curve shapes possessing maxima at the 
same values of n were obtained for equivalent repetition frequencies in case of all these three 
methods. 

Generally, the proposed method can be applied for testing and optimizing any linear or 
angular slip-stick actuators. 
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3. Morphological changes of metallic films at elevated 
temperatures 

Rapid development in the areas of nanotechnology and surface science achieved in the recent 
decades has led to number of procedures for preparation and characterization of 
nanostructures [25-30]. Utilization of gold nanoparticles on insulating or semiconducting 
supports lays in focus o f research interests of many groups pursuing different applications. 
In this work we have investigated the thermally induced changes of gold thin films 
evaporated on silica substrates. Before discussion of experimental results, the main process 
involved in the morphological changes at elevated temperatures is described and discussed. 

Thermal evaporation of gold on a chemically inert silica substrate leads to formation of 
a polycrystalline fi lm. The layers were prepared at room temperature at which motion of 
individual atoms is restricted and structures far from equilibrium are obtained. Annealing of 
these films below the melting temperature (1063 °C) induces spontaneous processes 
accompanied with morphological changes of the surface. The main involved processes are 
diffusion, solid state dewetting, island crystallization and the Ostwald ripening. 

The changes in morphology require the mass transfer, which can be described by 
thermodynamics. The motion o f gold atoms occurs either within the object (self-diffusion) 
or between the two separated objects (surface diffusion) [25]. Both diffusion processes 
significantly differ in the length and time scale. A s an example the fast atom diffusion at the 
island perimeter compared to the slow atom exchange between the islands can be given. In 
the other words, the islands are in thermodynamics equilibrium despite the fact that the 
surface is not in equilibrium at the large scale [31]. 

Let us define the chemical potential of the surface jil as the free energy change when one 
atom is add or remove from the system. The mass transfer observed during the annealing 
can be then described by the generalized form of F ick ' s first law, where the transform 
equation that relates the particle current J to the gradient in the chemical potential [31] jil 

can be written as 

where Lf) is t n e transport coefficient for diffusion. 

The driving force of the transformations is then a reduction of the free energy by moving the 
atoms. The relation between the local curvature and the chemical potential of a structure is 
described by the Gibbs - Thomson formula 

where, JUQIS the chemical potential of the flat surface, K is the local curvature ( 1 / R ) , /is 

the surface tension and £1 is the volume of an individual atom. The atom flux J can occur 

J = - L ^ ß , Eq. 3.1 

Eq . 3.2 
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in islands (self-diffusion) or can induce a mass transfer between the separated islands 
(Ostwald ripening). The flux o f the atoms during the self-diffusion within the single island 
is schematically shown in F ig . 3.1a. 

A s an application example of thermodynamics principles is the transformation of a gold thin 
film induced by elevated temperatures [32-36]. In the case of the gold film with the nominal 
thickness below 20 nm deposited on a silica substrate, the voids and holes are already present 
in the fi lm as it possesses the so called percolated structure. The process of surface 
transformation at elevated temperatures caused by the capillary forces and the gradient of 
the chemical potential is called wetting/dewetting and is schematically shown in F ig . 3.1. 
The capillary forces are induced at the interface between the gold and the silica surface, 
which have different surface energies. The conditions of equilibrium require a relation 
between the surface- and interface tensions and the corresponding angles Fig . 3.2. The 
transformation can be described as a process driving the surface evolution to equilibrium. 

(a) (b) 

Fig . 3.1: Schematic illustration showing the retraction o f an edge and development of a r im 
(a). Illustration of the dewetting process and islands formation (b). Both images taken from 
[37]. 

In the special case of a flat surface the equilibrium is described by the Young equation as 
follows 

ys=Yi+Yfms9, E q . 3.3 

where 6 is the equilibrium contact angle between three-phase boundary, Ys is the substrate 

surface tension, Yf is the fi lm surface tension and Yi is the film-substrate interface tension 

(Fig. 3.2a). In the case that substrate is not rigid, the equilibrium of the islands is given by 
the relations 

Ys=Yf(X&dl + Yi<X&d2 E q . 3.4 
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and 

yf sin6J =yism&2, Eq. 3.5 

where Ox and 62

 W Q angles shown in F ig . 3.2b. 

F ig . 3.2: Schematics of a metal island in an equilibrium shape on a rigid surface with the 

contact angle 0 and surface tensions Ys, Yf and Yi ( a X and on a not rigid substrate with the 

contact angles 6X and ^ ( b ) -

A detailed study of the dewetting process and especially behavior of thin metallic films on 
SiCh/Si substrates at elevated temperature was reported by Thompson [38, 39]. A similar 
observation on a glass substrate was also reported by Rubinstein and Vaskevich [40, 41]. 
They have shown that the dewetting temperature and the size o f the formed islands are 
strongly influenced by the initial f i lm thickness, as shown in F ig . 3.3. 
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Fig . 3.3: Dependence of dewetting temperature as a function of film thickness for four 
different metals (a). Average particle size as a function of f i lm thickness of fully dewetted 
A g films (b). Taken from [25]. 
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A t elevated temperatures the crystallization o f the metal f i lm has to be taken into account. 
For the crystalline material, the surface tension depends on the crystallographic surface 
planes - facets. The minimization of the Helmholtz surface free energy depending on the 
surface tension y is the main driving force of the formation of metallic crystals [31]. The 

shape of the crystal with the minimal surface free energy can be determined for the 
anisotropic surface by the W u l l f construction. [31]. 

The crystallization process of a gold thin fi lm evaporated onto a silica substrate is initiated 
at relatively low temperatures, slightly above 180 °C. The crystallization causes the 
formation o f faceted crystals, where the preferential orientation of the facets is (111). Even 
though the shape of the crystal influences the chemical potential (Eq. 4.2) and the diffusion 
process, the contribution of the crystallization is not assumed as a dominant effect. 

Additional significant changes caused by the Ostwald ripening process are observed during 
annealing of the gold layer at a temperature of 1000 °C. Compared with dewetting and 
crystallization the Ostwald ripening is a slow process. Description of this phenomenon was 
first made by Wi lhe lm Ostwald in 1896 and then the theory was significantly extended by 
Lifshitz, Slyozov and Wagner 1961, so called L S W theory [42]. The proposed and 
experimentally confirmed model is based on a non-equilibrium state of particles which is 
followed by a transfer of gold atoms from the smaller particles (bellow the critical radius Rc) 
to the bigger ones (bigger than Rc). The gold atom transfer is mediated by surface diffusion. 
The schematic illustration of the island size evolution is shown in F ig . 3.4. 

annealing time • 
Fig . 3.4: Schematic illustration of the time evolution of island sizes caused by the Ostwald 
ripening process. 

Using the classical approach L S W shows that the equilibrium concentration of atoms Cr at 

the grain boundary depends on the particle radius 

C r = C„ + - , E q . 3.6 
R M 

where c„Js the atomic concentration of the saturated solution, R is the particle radius, 

a = (2cr / kT)Q. C„ is the parameter containing interphase surface tension a, Boltzmann 

constant k, temperature T and volume of the single atom Q. The flux o f atoms j between 

the islands can be expressed as 
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, = - [ A - - j , E q . 3 . 7 

where D is the diffusion coefficient of atoms and A is c - C M [42]. 

The particle size distribution is characterized by f(R,t) defined as the number of particles 

of the size R per unit volume at time t and therefore, the time rate of a change of / is given 

by the continuity equation 

dt dR 

where the time evolution o f the radius corresponds to the flux of atoms and can be thus 
expressed according to E q . 4.5 by 

dR D( a a} 

Another approach for description of the Ostwald ripening is based on the rate of attachment 
and detachment of atoms to/from the islands. Utilization of the approach was done by 
Zhadov in [43], where he showed that the surface heterogeneity can induce a bimodal 
distribution o f the island sizes. The surface heterogeneity can be induced either 
spontaneously or prepared by a nanofabrication process. The influence o f the surface 
modification on the Ostwald ripening can be explained as follows. The number of atoms N 
in individual islands is evolving during the time and can be expressed by 

—=Wa-Wd, Eq .3 .10 

where Wa and Wd are the attachment and detachment rates. The activation energy AE for an 
atom detachment is given by the contribution of surface tension and curvature island and can 
be expressed as 

A E = — E q . 3.11 
R 

where y is the surface tension and Q is the atomic volume and R is the local radius of the 
surface. Thus the surface modification affect the activation energy required for the atom 
detachment which results in splitting the size distribution function into two parts. The time 
evolution of each size distribution sub-function is then independent. The impact of the 
surface modification is shown in Fig . 3.5 where the bimodal size distribution is formed. 
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Fig. 3.5: Time evolution of the average radius of islands with different activation energies 
resulting in the distinct size distribution sub-functions / , and f2. Taken from [43]. 
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4. Solid-state dewetting of gold layers on the pre-patterned 
substrates 

Metallic nanoparticles are of a great interest for a broad range of applications, e.g. in 
plasmonics (biosensing), for magnetic memory media, growth o f nanowires and nanotubes, 
and as a catalyst. Utilization of nanoparticles in these fields requires development of 
procedures enabling the full control of the fabrication process. The metallic nanoparticles 
can be also prepared on surfaces by solid-state dewetting of thin metallic layers. One o f the 
current challenges in the research is positioning of nanoparticles and precise control over 
their size. M y research has concentrated on the preparation of ordered arrays of gold 
nanoparticles (islands) with a definite shape and size using solid-state dewetting of thin 
layers on the pre-patterned surface. 

Recently, the groups of Car l V . Thompson [25-27,44] and Peter Schaaf [28,29,45,46] have 
made an impressive progress in this field. They have fabricated wel l separated ordered arrays 
of gold islands on patterned surfaces by thermal annealing. They have shown that 
topographical modification of a surface can be employed to control the solid-state dewetting 
process. The mechanism is based on differences in the chemical potential of the substrate, 
depending on the surface curvature given by the Gibbs-Thomson relation. Hence, gold 
islands were formed in the areas with the minimal chemical potential. 

According to the theory of solid-state dewetting, the transformation of the continuous metal 
layer into islands starts with the formation of holes and voids. The metallic f i lm of a 
thickness 5 - 2 0 nm [40,47,48] prepared by evaporation forms a percolated structure already 
during deposition. It has been shown that the density and size of the voids is directly related 
to the nominal thickness of the deposited metallic fi lm. Additionally, the formation of voids 
can be also controlled by the presence of an underlying topographical pattern. 

In this work I report the experimental study of the island formation on topographically 
modified substrates. First, we present the results obtained on a non-ordered surface pattern 
on glass and silicon dioxide substrates. Moreover, silica substrates with grid patterns 
prepared by electron beam lithography ( E B L , Tescan, M I R A F E G - S E M ) were fabricated 
and employed as substrates for dewetting of the thin (10 and 15 nm) gold layers [49]. The 
sample characterization were performed mainly by S E M (Carl Zeiss, U L T R A F E S E M and 
Tescan, L Y R A F I B - F E S E M ) and S P M ( N T - M D T , N T E G R A Prima). 

4.1 Gold island formation on patterned boron silicate glass- and 
silica substrates 

4.1.1 Preparation of glass and silica patterns 

Here, the patterning is understood as a specific modification of substrate topography. In the 
first set of experiments we used a simple approach for preparation of a random topographic 
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pattern of circular craters surrounded by a rim. The pattern was created by embedding the 
gold islands into glass and silica substrates [41]. The prepared systems were utilized to 
obtain basic information on the void formation during the thin gold layer dewetting on 
substrates patterned by Electron Beam Lithography ( E B L ) . 

The recent studies show that the embedding of gold islands into boron silicate glass 
substrates takes place during annealing above glass transition temperature (557 °C) [50]. The 
gold islands are the wel l separated single crystals and their embedding into the glass 
substrates creates pits with we l l determined geometry and almost an atomically flat bottom. 
Their lateral size and height depend mainly on the initial thickness of deposited gold layers 
[51] (usually 5 - 1 5 nm thick). A randomly patterned surface is obtained from gold islands 
(Fig. 4 . ia) and subsequent gold removal in iodine tincture or aqua regia (Fig. 4.1b). The 
depth of the prepared craters can be controlled by annealing time. The usual preparation 
procedure consists of a 104iour sample annealing at 600 °C which results in a mean crater 
depth of 13 nm. Annealing was performed in the laboratory oven with air atmosphere. 

(a) (b) 

Fig. 4.1: S E M images of islands prepared by thermal evaporation of a gold thin f i lm with a 
nominal thickness of 12 nm on a cover glass slide annealed at 600 °C for 10 hours (a), and 
subsequently dissolved in aqua regia (b). The scale bar is 300 nm. 

(a) (b) (c) 

Fig. 4.2: A F M images (a, b) of the pattern prepared by annealing of a 12nm-thick gold layer 
at 600 °C for 10 hours. The detailed view (b) and depth profile (c) of the crater. 

The previous experiments [40, 41, 50] were performed using borosilicate glass substrates. 
We have shown that similar pattern can be prepared by a high temperature annealing of a 
gold thin f i lm on thermally grown silica on silicon wafers (SiCh/Si substrate). The samples 
were cut from a S i (111) wafer covered with a 40nm- thick silica layer. 
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The thermally grown silica substrate was chosen according to the following criteria: (1) 
dewetting of the gold film on the silica substrate is wel l known and reported, (2) it is a 
suitable material for the E B L fabrication process, (3) substrates can be reproducibly prepared 
in house by thermal oxidation of silicon wafers, (4) thermally grown silica substrates are 
commercially available enabling thus scaling up technology. 

The gold islands formed after dewetting of the evaporated film showed embedding into the 
silica layer after annealing at 900 - 1000 °C. The annealing was performed in the laboratory 
oven in air atmosphere. After gold dissolution in aqua regia a random pattern of craters is 
obtained. A n example o f the patterned silica surface analyzed by S E M and A F M is shown 
in F ig . 4.3. The sample was prepared by the thermal evaporation of 10 nm of gold on to the 
thermally grown SiCh substrate and annealed for 24 hours at 1000 °C. 

(a) (b) (c) (d) 

F ig . 4.3: S E M (a) and 3D A F M images (b) of the patterned silica substrate. High 
magnification A F M images of formed craters (c, d). The pattern was prepared by the 
annealing of an A u thin fi lm with a nominal thickness of 10 nm at 1000 °C for 24 hours. 
The depth of the craters is in a range o f 2-15 nm. The scale bar in the S E M image (a) is 1 um. 

4.1.2 Voids formation in gold thin films induced by patterned substrates 

The dewetting process is initialized by the formation o f voids in evaporated gold thin films 
[52]. The gold films with a nominal thickness of 3 and 10 nm were evaporated on pre-
patterned glass substrates (Fig. 4.4). Density and size of the voids depends on the nominal 
thickness of the evaporated gold film. The A u island film of a nominal thickness 3 nm does 
not show any redistribution of islands caused by substrate patterning (Fig. 4.4a). A s can be 
seen in F ig . 4.4b, in case of the lOnm-thin fi lm, the crater perimeter is decorated with long-
void segments, while the void network outside this perimeter is random. Controlled voids 
formation can be achieved when the size of the pattern elements and voids are adjusted. 

F ig . 4.4: S E M images of as deposited 3nm- (a) and lOnm- (b) thick gold layer on the 
patterned glass substrate. 
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Further investigation of the void formation was then carried out on a system where the 
pattern and voids have comparable sizes. It can be achieved by using A u thin films of the 
same thickness (10 nm) as for pattern preparation and gold deposition. The formation of 
the voids on the crater perimeter can be observed by S E M and A F M as demonstrated in 
Fig . 4.5. The S E M image (Fig. 4.5a) shows the void structure and void opening along the 
crater perimeter. The A F M imaging (Fig. 4.5b, c) is a more topography sensitive method 
limited by the tip radius of typical size 10 - 20 nm. The A F M images show that the 
percolated gold layer is composed of separated, randomly distributed gold clusters covering 
the surface. The individual voids are not clearly visible. The void formation observed by 
S E M shows that an interaction between the gold clusters and substrate pattern has to be 
considered. It can be demonstrated on the voids formed around the craters in pattern visible 
by S E M . A F M shows that the clusters are arranged into a chain forming a regular wall . The 
voids are then created in the space between the wal l and gold clusters at the bottom of the 
crater (Fig. 4.5). 

(a) voids (b) (c) 

Fig . 4.5: S E M (a) and (b) A F M image of the 10 nm-thick gold layer evaporated on the 
patterned glass, (c) Detailed A F M image of the crater with the deposited gold. The pattern 
was prepared by annealing o f a 10 nm-Au thin f i lm at 600 °C for 10 hours. 

4.1.3 Low temperature annealing of gold on patterned substrates 

The solid-state dewetting process is driven by the capillary forces and occurs at elevated 
temperatures. The annealing temperature required for the initial stage o f dewetting was 
determined as a 0.2Tm [25], where Tm is the melting temperature of the material. The 
structural changes of the gold layer were then studied at 200 °C. A s can be seen in F ig . 4.6, 
the 15 nm-gold thin f i lm deposited on a patterned glass substrate and annealed for 2 hours 
at 200 °C possesses voids along the crater edges. 

Fig . 4.6: S E M images of the deposited 15nm- gold layer annealed at 200 °C for 2 hours on 
the pre-patterned glass substrate taken at different magnification. The scale bars are 300 nm. 

48 



The initial morphological changes are driven by a decrease of the chemical potential in the 
area with a high negative local curvature (see Eq . 4.2) shown in F ig . 4.7a. This mainly occurs 
at the crater perimeter where the initial voids appear after deposition. The annealing initiates 
a decrease of the local curvature which causes the edge retraction and void enlargement 
Fig . 4.7b). 

Au initial voids 
j] \ 

substrate 

voids enlargment 

(a) (b) 

Fig . 4.7 Schematic side view on the pre-patterned substrate with the deposited gold f i lm with 
the initial voids opening in the area with the negative curvature K (a) and further island 
formation after annealing (b). 

The low temperature annealing shows interesting results. The formation and enlargement of 
voids predetermine the further evolution of the annealed gold. The ability to control the void 
formation open the possibilities to fabricate regular arrays of precisely positioned gold 
islands. Another perspective is directly connected to annealing at low temperature, which 
allows us also to control the shape of detached gold areas. 

4.1.4 Gold annealing and island formation on patterned substrates 

The dewetting process at 500 °C causes formation of separated crystalline islands. The 
precise positioning of these islands into craters might be generally desirable and was the 
main task of this study. The random patterns with the wide range o f crater radius 60 + 40 nm 
were mainly utilized in this task. A s discussed previously, the nominal thickness of the 
evaporated gold thin film significantly influences the size of gold islands after dewetting. 
The films of different nominal thicknesses (5, 10 and 15 nm) were deposited and annealed 
(500 °C) on the patterned glass substrates shown in Fig . 4.8. Each nominal thickness result 
in the different size o f island size distribution. The annealing of a 5 nm-thick gold layer 
results in formation of small, roughly circular islands with the average radius 10 nm 
(Fig. 4.8a). The longitudinal size of the craters may exceed that of islands and even more 
islands can be formed at the crater bottom (Fig. 4.8a). On the other hand, in the case of the 
15 nm-thick layer the large gold islands span over several craters (Fig. 4.8c) as the size of 
the islands was 150 nm. In both cases the task of this study was not achieved. The best results 
were obtained using the 10 nm-thick gold layer (Fig. 4.8b). The size of the islands 
(50 + 40 nm) was roughly comparable to that one of the craters. It can be seen that in most 
cases the craters are occupied by single gold islands. However, the wide size distribution of 
the used random crater pattern makes further improvements impossible. 

It should be also pointed out, that at 500 °C the dewetting proceeds within the first minutes 
of annealing. Longer annealing times do not significantly influence the island shape and 
position. 
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(a) (b) (c) 

Fig . 4.8: S E M images of the gold thin fi lm with the nominal thickness 5 nm (a), 10 nm (b) 
and 15 (c) on the patterned surface annealed at 500 °C. The scale bars are 500 nm. 

4.1.5 Summary of the experiments 

The solid-state dewetting of gold films is influenced by substrate topography i f the voids 
formed in this f i lm follow a pattern motive, i.e. when the voids are preferentially formed at 
the crater perimeter. In the case that the size of craters and voids is, the dewetting and island 
formation follow the pattern. 

4.2 Fabrication of ordered arrays of gold islands 

The previous results have shown that the solid state dewetting of gold films is influenced by 
substrate topography. The preferential opening o f the voids was observed on the edges of 
the pattern elements. In this section we w i l l show that this can be used for directing of the 
dewetting process, i.e. for the precise positioning and size control of gold islands. The 
general strategy for achievement of this control is based on the replacement of a random 
pattern by regular one. Here, electron beam lithography ( E B L ) was used for fabrication of a 
pattern with regularly arranged topographical edges which define circumscribed areas. The 
preferential dewetting of an evaporated gold f i lm proceeds along a regular pattern of 
topographic edges and, consequently, results in producing individual islands. Their size is 
controlled by volume of gold trapped inside circumscribed areas. The islands are positioned 
in the vicinity of the center o f these areas. 

The ordered arrays of gold islands reported in this work have been achieved by annealing of 
a 15 nm- gold thin fi lm evaporated on a silica substrate with a pre-fabricated pattern. The 
employed pattern presents a regular grid of the square-shaped elementary units with the 
repeating size A ranging from 100 to 500 nm (Table 4.1). The complete range of distinct 
patterns was fabricated on each sample to study an influence of the pattern repeating size on 
the final f i lm morphology while keeping the gold layer thickness and other parameters the 
same. 

4.2.1 Design of the pattern 

In order to design the pattern suitable for fabrication of ordered arrays one has to consider 
several aspects: 
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The nominal thickness of the evaporated gold thin film strongly influences the 
island structure. The mean size o f gold islands formed after dewetting depends on 
the gold nominal thickness and void density. It has been already shown that the mean 
void length observed on the patterned substrate has to be of the similar size to the 
pattern units in order to obtain the desired results. Hence, the pattern size has to be 
chosen according to the selected gold nominal thickness. In this work the nominal 
thicknesses of the gold thin fi lm of 10 and 15 nm were used. 
The shape and size of the elementary units define the area from which the material 
is collected for a single island during dewetting. To avoid formation o f non-ordered 
islands and errors in the periodical structure, the gap between adjoining units should 
be as small as possible. 

- Sharpness (radius of curvature) of the topographical edges is related to the local 
chemical potential which is strongly affecting the void formation in the gold film. 
The depth profile of fabricated edges should be as sharp as possible to reach the 
maximum in the local curvature. 

The depth of the pattern is given mainly by the application requirements and do not 
directly affect the dewetting process. In this work the relatively shallow pattern 
(22 nm) was used. 

(a) (b) 

Fig . 4.9: S E M image of the 15 nm-thick gold layer after one-hour annealing at 600 °C (a) 
and the corresponding size (equivalent radius) distribution function (b). The scale bar is 
5 um. 

The size o f the islands formed on the flat substrate (i.e. outside the craters) obtained in the 
previous section was used to estimate the initial parameters for our study: thickness of the 
gold thin film and appropriate pattern design. The S E M image of gold islands formed after 
the dewetting of 15 nm-thick gold layer on a non-patterned substrate after annealing at 
600 °C for 1 hour is shown in F ig . 4.9a. Using the Gwyddion software [53] the particle size 
distribution (PSD) (Fig. 4.9b) and surface coverage were determined. Fitting the obtained 
island size distribution by the Gauss function gives the mean island radius 150 nm with a 
F W H M of 80 nm. The surface coverage a was 16 %. One can calculate the collection area 
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Sc of a single island as Sc =7trm I a, where rm is the mean equivalent radius. On the surface 

without patterning Sc is approximately 0.5 urn 2. It has been reported that patterned substrates 

cause a decrease in the islands size [45]. Therefore, to prepare a structure where each cell 

contains a single island collection area, Sc should be smaller than that for the non-patterned 

surface. The pattern collection area ^ i s determined by the parameter B shown in Tab. 4.1. 

The depression area (i.e. the area lowered by etching) is smaller due to the gap between two 
squares and can be defined by the groove size A , where A was 100,200,300,400 and 500 nm. 
The designed elementary units dimensions and parameters of islands formed on an 
unpatterned substrate are given in Tab. 4.1. The expected size rm of the islands formed on 

the proposed grids can be calculated as rm =^Scal n. 

Pattern Unit Shape 
B B B B B IB . No 

patter 
n 

Pattern Unit Shape • • • • • 
No 

patter 
n 

Pattern Unit Shape 
No 

patter 
n 

Groove area size A [nm] 100 200 300 400 500 600 

Elementary unit size B [nm] 200 300 400 500 600 700 670* 

Pattern collection area 

5 ^ = S 2 [ 1 0 W ] 
40 90 160 250 360 245 

Single island collection area s 
[103nm2] 

- - - - - - 448 

Estimated equivalent radius rm 

[nm] 
45 56 79 102 124 104 152 

Tab. 4.1: Parameters of elementary units. The equivalent radius was measured only on the 
surface with no patterning. *at flat surface without patterning calculated as B = ^SC . 

The triangular shape of the elementary unit was also implemented assuming that the 
crystallization at low temperatures (200 - 300 °C) w i l l allow the shape o f gold islands to 
follow the shape o f the pattern. The dewetting process at higher temperatures (> 300 °C) 
leads to the formation of crystalline islands the shape of which is defined by faceting. In 
such a case the relevant parameter is only the size o f the collection area Sc. 

A schematic view of the proposed elementary units and S E M - and A F M images of fabricated 
grids are displayed in F i g . 4.10. The difference in the designed and obtained shapes is given 
by the inaccuracies during the lithographic process used for the pattern fabrication and w i l l 
be discussed in detail later. 
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B B B B 

(a) (b) (c) (d) 

Fig . 4.10: Schematic view of different elementary units (upper row) and corresponding 
fabricated patterns imaged by S E M (middle row) and A F M (bottom row). The size A o f the 
square shaped units is 100 nm (a), 300 nm (b), and 500 nm (c). The characteristic size o f the 
right-triangle shape A is 600 nm (d). 

4.2.2 Fabrication of grid patterns by e-beam lithography 

Electron beam lithography ( E B L ) [19] is one of the fabrication techniques suitable for 
preparation of nanostructures. The complete procedure consists of several steps which are 
depicted in F ig . 4.11. The first step (Fig. 4.11a) is the removal of all organic impurities from 
the sample surface by the piranha solution (FhSO/uFbCh, 3:1) followed by ethanol cleaning 
and drying by nitrogen flow. The second step is the deposition of a P M M A (Poly (methyl 
methacrylate) thin film by spin coating (Fig. 4.11b). The positive P M M A A 2 950K resist 
was used; two step spin coating of 80 u l of solution was carried out: 5 seconds at 500 rpm 
and 55 seconds at 6000 rpm. The sample with P M M A was baked at 180 °C for 1.5 minute. 
The thickness of the P M M A fi lm was in the range of 80 - 100 nm. The electron exposure 
proceeded at three different electron doses (150,200 and 250 uC/cm 2 ) with the beam energy 
30 k e V (Fig. 4.11c). The exposed P M M A resist was developed in the 3:1 (IPA: M I B K ) 
solution for 1.5 minutes and in I P A stopper for 30 seconds (Fig. 4 . l i d ) . The bare silica 
surface (e-beam exposed area) was etched in the NFUF (40%):HF(40%) (5:1) solution for 
10 seconds (Fig. 4.1 le) , typical etching rate of the solvent for SiCh was 2 nm/second. 
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The mean depth of the etched 
was 22 nm (Fig. 4.13). 

Si02/Si substrate 
Surface cleanning by Piranha 

(a) 

la (after removal of the resist 

PMMA resist - spin coating 

(b) 

acetone) measured by A F M 

Electron beam exposed area 

PMMA resist development Etching in HF:NH4 solution Resist removal in aceton 

(d) (e) (f) 

Fig. 4.11: Schematic view of the pattern fabrication on SiCh/Si substrate by E B L . 

The set o f grid arrays fabricated on the sample surface is shown in F ig . 4.12. The gray 
squares represent an exposed area. The square size A varies from 100 nm to 500 nm with a 
constant gap between each unit of 100 nm. In addition, the right-triangle shape pattern with 
a unit side size of 600 nm and gap distance 100 nm was prepared. 

100nm 200nm 300nm 400nm 500nm triangle 

150D - - - - - - - - : 

200D 

250D ; ; ; ; ; ; ; ; j 

Fig. 4.12: E B L grid pattern matrices designed for electron beam lithography consisted of 
elementary square-like units of the size 100 - 500 nm and an elementary triangle unit. Three 
different exposure doses 150 - 250 u.C/cm 2 were used. 

The fabricated grids with the different unit size are shown in F ig . 4.13. 
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Fig . 4.13: S E M images (upper raw) and A F M images (middle raw) of the grid patterns made 
into a S i 0 2 layer using E B L . The square motive with the different cell sizes 100 - 500 nm 
(a - e) and a triangle one with the edge 600 nm (f). The bottom raw shows the topography 
profiles of different grids obtained from A F M images. The scale bar is 1 um. 

4.2.3 Void formation induced by the silica pattern 

As discussed previously, the nominal thickness o f the gold thin fi lm strongly influences the 
formation of voids. The films o f 10 and 15 nm nominal thicknesses were used to study the 
difference in the void formation. 

As evaporated, the A u films were studied using H R S E M . While secondary electrons (SE) 
are better for detection of surface topography, backscattered electrons (BSE) are more 
sensitive to the material contrast, allowing imaging the voids. The contrast between the silica 
and the gold film is noticeable. Observing the material contrast for seeing voids and surface 
topography was done by simultaneous utilization of S E and B S E (Fig. 4.14). 

The density of voids is higher for the 15 nm-thick gold layer compared to the 10 nm-thick 
one as can be seen from the B S E images in Fig . 4.14 (a, c) for the pattern with the square 
size A - 300 nm. In both cases the voids are preferentially formed at the pattern edges and 
so the motif can be recognized. For the 10 nm film the voids are wide enough to be clearly 
seen also using the S E detector (Fig. 4.13 d). However, the voids in this f i lm are also formed 
inside the square units as can be seen in F ig . 4.14 c, d. Hence, based on the designed pattern 
the void density in the gold f i lm with a nominal thickness of 15 nm is more suitable for 
fabrication of the ordered arrays of gold islands. 
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Fig. 4.14: S E M images of 15 nm (a, b)- and 10 nm (c, d)- A u thin f i lm with the pattern size 
A - 300 nm imaged by B S E (a, c) and S E (b, d) detectors. 

Generally, it can be concluded that the pattern design can be chosen according to the applied 
nominal thickness of the gold thin film and known density of voids. 

4.2.4 Low temperature annealing 

The evolution of the gold film morphology is strongly influenced by the annealing conditions 
(temperature and time). Transformation of the gold film into a regular array of fully 
separated gold islands was experimentally studied in several experimental series. Annealing 
temperatures were sequentially raised to 200 °C, 220 °C, 250 °C, 270 °C and 300 °C, and 
the transformation was monitored by S E M . 

Annealing at relatively low temperature 200 °C induces recrystallization and growth of gold 
grains followed by the voids opening [25]. A l l these processes occur after a short annealing 
time. Both effects are strongly influenced by the local curvature of the substrate and gold 
grains. The study of gold film evolution on the patterned surface was carried out with respect 
to temperature and duration of annealing, and size o f pattern units. 

The initial morphological changes at 200 °C occur in the areas with the high local substrate 
curvature which induces the void formation occurring already during evaporation, as shown 
in the study of randomly patterned substrates. After a decrease o f the local curvature by voids 
enlargement the island separation slow down [25]. Such a process saturation was 
experimentally confirmed by annealing at 200 °C for 1,9 and 20 hours as shown in Fig . 4.15. 
After the initial voids enlargement, additional changes include only recrystallization 
resulting in formation of a more uniform A u film in separated areas. 

(a) (b) (c) 

Fig . 4.15: S E M images of the 15nm-thick gold layer deposited on to the SiCh grid pattern 
with A - 300 nm and annealed at 200 °C for 1 hour (a), 9 hours (b) and 20 hours (c). The 
scale bar is 1 Lim. 
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The S E M images of the annealed fi lm evaporated on the SiCh patterns with different unit 
sizes show very similar morphology (Fig. 4.16). On each grid the visible voids follow the 
pattern edges of the underlying substrate. The fi lm morphology development saturation 
occurs for all the patterns. It can be concluded that at low annealing temperature the pattern 
size does not affect the f i lm evolution. 
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(b) (c) (d) 

Fig . 4.16: S E M images of the 15 nm-gold layer deposited on to the SiCh pattern grids and 
annealed at 200 °C. The square-like patterns with a unit size of 100 nm (a), 300 nm (b) and 
500 nm (c), and the triangular shape pattern (d). The scale bar is 1 um. 

Surprisingly, the void opening is not identical in al l directions. This is evident in F ig . 4.16a, b 
where the bottom parts of each square are not opened. This effect is most probably caused 
by a slight tilt of the sample during gold deposition. The tilted deposition causes a 
nonuniform distribution of gold, which is pronounced mainly on the grooves. To suppress 
it, a special attention was paid during the mounting and aligning of the samples before the 
gold evaporation. However, we were not able to completely eliminate film inhomogeneity. 

A n example of the transformation o f the A u thin f i lm into various patterns during annealing 
at 250 °C and 270 °C is shown in Fig . 4.17. Even though the voids have become enlarged 
the layer still shows a percolated structure. 

l i p f p p i mmm WRW máM I f t f t ř f f l f # f t # Éšmm wmm Wmm mém mmm 
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Fig . 4.17: S E M images of the 15 nm-gold thin fi lm deposited on the square-like patterns 
with a unit size of 100 nm (a), 300 nm (b), 500 nm (c), and triangles (d) annealed at 250 °C 
for 3 hours and, subsequently, at 270 °C for 3 hours). The scale bar is 1 um. 

The increase o f annealing temperature to 300 °C resulted in a qualitative change of the fi lm 
morphology (Fig. 4.18). After the first hour only an opening of the voids (Fig. 4.18a) was 
observed, similarly to the films annealed at lower temperatures (Fig. 4.15, F ig . 4.16). The 
void opening was not terminated after the initial stage and after 13 hours of annealing the 
A u film was completely dewetted, forming separated islands correlated with the topographic 
pattern o f the substrate (Fig. 4.18b). 
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(a) (b) 

Fig. 4.18: S E M images o f the 15 nm-gold thin fi lm deposited on to the square-like patterns 
with a unit size of 300 nm annealed at 300 °C for 1 hour (a) and 13 hours (b). The scale bars 
are 1 urn. 

The dewetting process and progress of the transformation can be characterized by the surface 
coverage which decreases with increasing annealing temperature. The surface coverage was 
determined from S E M images using the Gwyddion software. The typical annealing time 
leading to the formation of a stable structure ranges from a few minutes to several hours and 
rapidly decreases with increasing annealing temperature. The surface coverage comparison 
was done after a 3-hour annealing. The relation between annealing temperature and surface 
coverage is shown in F ig . 4.19. This relation can be divided into two parts representing 
different processes. A t annealing temperatures below 300 °C (critical temperature) the void 
enlargement is a dominant effect. The saturation of f i lm transformation takes place and 
separated islands are not formed. Above the critical temperature the dewetting fully takes 
place and islands are formed. Hence, determination of the critical temperature is an important 
parameter for the dewetting process. 
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Fig. 4.19: Dependence of the surface coverage on the annealing temperature. The data were 
obtained from the analysis of S E M images of the annealed 15 nm gold layer on the patterned 
substrate. 

A complete separation o f gold islands driven by the shape of the pattern could be a very 
promising method for the preparation of gold islands of various shapes. 
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4.2.5 Optimization of the annealing procedure 

Thermal annealing of gold thin films on patterned surfaces above the critical temperature 
(300 °C) results in the formation of an array of separated gold islands. However, 
irregularities and imperfections in a periodical structure, e.g vacant sites and merged islands, 
can be found. A n improved regularity was achieved by an optimization of the annealing 
process by a two-step annealing procedure. The purpose of the two-step annealing is to 
extend the annealing period below the critical temperature and, consequently, to enlarge the 
void size along the pattern edges which leads to well-defined collection areas. A n additional 
annealing above the critical temperature improves the separation o f the islands. Comparison 
of gold arrays prepared by the one- and two-step annealing process is shown in F ig . 4.20. 

(a) (b) (c) 

Fig . 4.20: S E M images of the 15 nm gold layer deposited on the square-like grid pattern with 
a unit size 100 nm (a), 300 nm (b) and 500 nm (c) annealed in the one step process at 500 °C 
for 1 hour (upper row) and in the two-step process at 200 °C for 1 hour and at 600 °C for 
1 hour (bottom row). The scale bars are 1 um. 

The optimized procedure consists of annealing at 200 °C for 1 hour followed by 1 hour 
annealing at 600 °C. Ordered arrays of gold islands were observed for the pattern with 
A = 200, 300, 400 and 500 nm as shown in F ig . 4.21. The size of the formed islands was 
determined by P S D (Particle Size Distribution) and fitting by the Gauss function. The 
obtained parameters are shown in Tab. 4.2. The size of the islands on the grids is reduced 
compared to the fiat substrate. The F W H M of island size distribution is significantly reduced 
on the grids (30 nm) with respect to the islands on the flat surface (80 nm). 
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Pattern Unit Shape 
B • B 

• 
|,B,| W No 

pattern 

Depression size A [nm] 100 200 300 400 500 

Mean equivalent radius [nm] 59 88 111 133 143 152 

F W H M [nm] 10 17 24 30 34 80 

Height [nm] NA 63 70 78 92 NA 

Tab. 4.2: Parameters o f the size distribution function of gold islands on different grids. N A 
- not available. 

Fig . 4.21: S E M images of the gold island arrays with a grid size 200 nm (a), 300 nm (b), 
400 nm (c) and 500 nm (d) prepared by dewetting of a 15 nm thick gold layer annealed in 
two steps: at 200 °C for 1 hour and at 600 °C for 1 hour. 

The presented results have shown a few defects such as vacancies and large islands 
originated from doubling of the collection areas. The latter type of defect occupies the 
adjacent cells forming a vacancy and large island pair as can be seen in S E M images 
(Fig. 4.21). Irregularities are most probably caused by inaccuracies in grid patterns and 
asymmetric void opening resulting from a previously discussed shadowing effect during 
gold evaporation. The formation of separated gold islands has been achieved on the 
maximum area 30x30 u m 2 , which is limited by the size of grid patterns. The size of these 
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patterns can be enlarged or adjusted according to the application requirements. It has been 
also demonstrated that it is possible to fabricate different patterns on one sample resulting in 
formation of islands o f different size and spacing. The island size distribution for different 
grids is shown in Fig . 4.22b. 

0 40 80 120 160 50 100 150 200 
Equivalent raidus (nm) Equivalent raidus (nm) 

(a) (b) 

Fig . 4.22: Size distribution of gold islands prepared by annealing of a 15 nm-thick gold 
layer on different grids with A = 100 nm (a), 200 nm, 300 nm, 400 nm and 500 nm (b) after 
a two steps annealing process at 200 °C for 1 hour and 600 °C for 6 hours. 

The array with A - 100 nm shows significant defects caused mainly by the merging of two 
adjacent islands and formation of a vacant cell in the pattern (Fig. 4.20a). The merged islands 
can be recognized in the size distribution function with two peaks shown in F ig . 4.22 a. The 
two Gauss functions were used for fitting, and as a result equivalent radiuses o f 59 nm and 
83 nm were determined. The larger islands with a 83 nm equivalent radius are formed by 
merging gold from two adjacent square units, which is in good agreement with the equivalent 
radius of islands formed from the double collection area w i t h A = 200 nm (Tab. 4.2). 

4.3 Conclusion 

It has been shown that topographical modification o f substrates can be used for fabrication 
of ordered arrays of gold islands. Dewetting of the just-percolated A u thin fi lm follows the 
topography of a pre-designed pattern. Preferential opening o f voids induced by morphology 
of a patterned substrate allows fabrication of an ordered array of gold islands. The film 
dewetting scenario depends on the nominal thickness of the gold layer, annealing 
temperature and parameters of the pattern. It has been found that for gold films with a 
nominal thickness of 15 nm an ordered array gold islands can be prepared using a square 
pattern with the cell unit in the range 200 - 500 nm and a two-step annealing process (1 hour 
at 200 °C and 1 hour at 600 °C). The representative 3D images o f ordered island films are 
shown in Fig . 4.23. The size of the gold islands in the range 59 - 149 nm can be controlled 
by the size of the square elementary unit (collection area). 
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(a) (b) (c) 
Fig . 4.23: Tilted (70°) S E M (a, b) and A F M (c) image of a gold island array formed by 
annealing of a 15 nm-thick gold layer on the grid pattern with the size A - 400 nm. The scale 
bar is 1 um. 

The proposed fabrication procedure is based on well-developed and easily scalable 
techniques (e-beam lithography, thermal evaporation, annealing) opening possibility of their 
commercial applications. The further studies should include the fabrication o f more 
sophisticated patterns and application o f topographically controlled dewetting o f materials 
different from gold. This w i l l extend the areas of possible practical applications. 
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5. High temperature annealing of gold thin films 

Preparation of semiconductor- or oxide supported metal particles is of a great importance 
due to their applications in catalysis [54, 55], nanowire growth [56], and plasmonic sensors 
[51,57]. Embedding metallic nanoparticles into an oxide substrate was reported for several 
systems such as P t / S i 0 2 [58, 59], A u / S i 0 2 [60-62], Au/glass [52], A u / T i 0 2 [63] and others. 
Previous investigations have shown that the embedding process can be induced by ion 
irradiation or annealing while the threshold temperature for the inset of this process depends 
strongly on a specific support material. 

A full understanding of the embedding process has not been achieved yet. In this work we 
report on the gold embedding into a silica thin fi lm thermally grown on (111) silicon wafers 
(denotes below as the "silica substrates") at the high temperature (1000 °C) close to the 
melting point of A u (1064 °C). The aim of this work was related to potential applications in 
plasmonics. 

5.1 Description of experimental results 

Gold thin films with a thickness of 10 nm were prepared by thermal evaporation of gold on 
silica substrates. The (111) silicon wafers pre-treated with the piranha solution were oxidized 
at 1000 °C under ambient atmosphere. The thermal growth was terminated at the silica 
thickness ~ 500 nm. The initial (as deposited) gold layers form percolated polycrystalline 
structures shown in F ig . 5.1a. Their annealing at 1000 °C under the oxidation atmosphere 
leads to a quick (minutes) layer dewetting and formation of separated gold islands. H R S E M 
images of the films annealed for a prolonged time reveal complex changes in the fi lm 
morphology. A representative S E M image of the fi lm after annealing for 6 hours presented 
in F ig . 5.1b shows gold islands and partly filled or empty pits. The morphology of modified 
silica surface after the etching of A u in aqua regia is shown in F ig . 5.1c. Comparison of 
images in F ig . 5.1b, c indicates that large faceted A u islands are also embedded in the silica. 

(a) (b) (c) 

Fig . 5.1: S E M image of as a deposited 10 nm-thick gold layer on silica (a), the sample after 
annealing at 1000 °C for 6 hours (b) and after gold dissolution in aqua regia (c). The scale 
bar is 500 nm. 

After prolonged annealing three characteristic morphological structures can be clearly 
distinguished: a) faceted single crystal islands with the diameter > 100 nm (Fig. 5.1b), b) 
rounded gold islands with the diameter < 60 nm enclosed by wide craters with the 
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surrounding silica r im (active craters) and having the different stage of embedding 
(see Fig . 5.2 b), and c) empty craters without any gold islands inside (Fig. 5.2c). Some 
apparently empty crates clearly showed the presence o f small A u nanoparticles (NP) after 
image contrast variation in F ig . 5.1b. Some craters contained deeply embedded small A u 
NPs which could be seen from images obtained by a S E detector (not shown). The depth of 
the craters was in the range of 1 - 15 nm and varied with their size: the small craters were 
deeper and the large ones shallower. 

18,8 nm 

10,0 

5,0 

0,0 

-7,5 

4,4 nm 

2,0 

0,0 

-2,0 
-2,8 

(C) 

Fig . 5.2: A F M images of the modified silica surface with empty- and partially immersed in 
craters (a), a crater with the surrounding r im and remaining gold island inside (b), an empty 
crater with the surrounding r im (c). 

5.2 Gold island transformation 

Morphological changes in the gold layers are driven by minimization of the total energy of 
the system. Here, two main processes are involved: dewetting and Ostwald ripening. 
Separated gold islands are relatively quickly formed by dewetting in the timescale o f minutes 
during sample heating. A n additional mass transfer between adjoining islands due to Ostwald 
ripening proceeds at a much longer timescale. A continuous macroscopic flux of gold atoms 
from the smaller to larger islands is driven by the curvature-dependent difference in the 
chemical potential (see E q . 3.2), [64]. A s a result, due to the Ostwald ripening the smaller 
islands slowly disappear while the A u is transferred to larger islands. This process occurs 
during the whole annealing treatment. 

A s shown in F ig . 5.3a, after a 5 minutes annealing no empty craters were detected. After 
3 hours of annealing (Fig. 5.3b) the concentration of the islands decreases and several craters 
can be identified. The annealing time prolonged to 24 hours (Fig. 5.3c) leads to a further 
decrease of the island concentration and an increase of the density and size of craters. A n 
Ostwald ripening-induced decrease of small islands is schematically shown in F ig . 5.3, 
where empty craters remain after a complete dissolution of small islands. 
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Fig . 5.3: Evolution of morphology of gold islands after annealing at 1000 °C for 5 minutes 
(a), 3 hours (b) and 24 hours (c) imaged by S E M (upper row) and its schematic representation 
in a top (middle row)- and cross section (bottom row) view. The scale bar is 1 um. 

5.2.1 Time evolution of particle size distribution 

The P S D (Particle Size Distribution) was determined by a processing and analysis of S E M 
images in the Gwyddion software [53]. A reasonable accuracy and reproducibility was 
achieved by analyzing hundreds of gold islands spread over an area of 20 u m 2 (Fig. 5.4). 

(a) (b) (c) 

Fig . 5.4: S E M images of gold islands after their annealing at 1000 °C for 5 minutes (a), 
6 hours (b) and 24 hours (c). The scale bar is 2 um. 

The obtained PSDs for different annealing times are shown in F ig . 5.5. The distributions 
were fitted by Gaussian-like curves in order to determine the peak positions. In the case, that 
a bimodal distribution is recognized, two Gaussian-like curves were used for fitting. 
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Fig. 5.5: Time evolution of the size distribution function of gold islands annealed at 1000 °C. 

After annealing for 5 minutes the gold f i lm is already dewetted and separated gold islands 
with the mean radius 42 nm are observed. A t the same time two populations of these islands 
distinct in the diameter can be observed. A study o f the mechanisms of formation of these 
two populations just after 5 minutes of annealing was out of the scope o f the current work. 
After additional annealing the population of islands with a small radius quickly diminishes 
due to the Ostwald ripening, and after 30 minutes o f annealing is no longer observed. After 
3 hours of annealing the bimodal distribution reappears. 

The evolution of P S D of A u islands during annealing can be described by the Ostwald 
ripening, which is, however, more complex in case o f formation of deeply embedded NPs. 
A s w i l l be discussed later, the digging rate is strongly dependent on the particle size, where 
small islands are being embedded faster. In the first period of annealing, defined as 
t < 180 min, the formed craters are relatively shallow. Hence, the presence of craters does 
not significantly affect the PSD. 
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Fig . 5.6: Schematic (upper row) and S E M images (bottom row) of the size distribution 
evolution influenced by the gold embedding and craters formation during annealing at 
1000 °C for the annealing times as 5 min (a), 60 min (b), 180 min (c) and 720 min (d). The 
scale bar is 1 urn. 

A transient state between the first and the second period (t > 180 min) occurs around 
t - 180 min when a bimodal distribution reappears (Fig. 5.5,180 min). The bimodal character 
of P S D can be explained by an increasing heterogeneous character of the surface. It has been 
already reported by Zhdanov [43], that the Ostwald ripening on heterogeneous surfaces can 
induce the bimodal PSD. In our case it is caused by the presence of localized craters. The 
embedding of islands causes changes of the local curvature which affects the activation 
energy for detaching the atoms. The flux rate of gold atoms leaving the embedded island is 
decreased which influences the Ostwald ripening process. 

A s it was already mentioned, the depth of the craters is inversely proportional to the particle 
size and increases with annealing time. When the embedding of islands reaches a critical 
depth (about 1/3 of the island height) the net flux of gold atoms from the islands is rapidly 
reduced due to the formed rim. These partially embedded gold islands are shown in F ig . 5.7 
and w i l l be further marked as "active craters". Due to the reduced flux of gold atoms their 
size is stagnating in time. The active crater can be then recognized in P S D by the appearance 
of the second peak as shown in F ig . 5.7c. A schematic drawing of the sample cross section 
shows their embedding into the silica (Fig. 5.7b). 

67 



(a) (b) (c) 

Fig. 5.7: Schematic drawing of the silica surface with A u islands, active and empty craters -
top (a) and side (b) view. Corresponding experimental P S D (c) with a characteristic bimodal 
distribution for gold annealed for 6 hours at 1000 °C. 

We have carried out further analysis by the manual labeling of different observed features 
(islands, craters and active craters) in S E M images. Each feature was marked with the 
corresponding size and color indicating its type. In Fig . 5.8 blue color represents the crystal 
islands, green the active craters and red the empty craters. It should be mentioned that the 
markers were also drawn on the area containing surrounding rims. A separate analysis of 
P S D was performed for each type of the features. 

(a) (b) (c) 

Fig . 5.8: S E M image of the gold islands formed after a 6-hour annealing (a) with manually 
colorized elements (b), where the islands are blue, the craters red and the active craters green. 
Extraction o f the masks of different colors from the S E M image for elements 
characterization (c). The scale bar is 300 nm. 

A s can be seen in F ig . 5.9a, the original S E M image with a bimodal P S D (black line) can be 
substituted by the P S D calculated only from islands (blue bars) and active craters (green 
bars). The contribution of the islands to the total P S D is shown in F ig . 5.9b, c. Direct 
compares o f S E M images and calculated P S D shows that specific peak (18 nm) for active 
islands causing bimodal distribution. Therefore appearance of bimodal distribution is 
directly related to the digging process. 
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(a) (b) (c) 

Fig . 5.9: P S D of gold islands obtained by analysis of original S E M images including islands 
and active craters. The same data analysis was done for an annealing time of 6 hours (a), 
12 hours (b) and 24 hours (c). 

5.2.2 Statistical analysis of surface features 

The proposed manual marking o f different features in S E M images enables an additional 
statistical evaluation. A sufficient statistical sample was obtained by analyzing the area of 
21.6 u m 2 which contains hundreds o f islands as shown in Fig . 5.4. The time evolution of 
counts (i.e. the number of features), surface coverage and the mean size for different features 
is shown in Fig . 5.10, where all the data were collected from the area of the same size. 
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Fig . 5.10: Time evolution of surface coverage (a), counts (b) and mean lateral size (c) o f the 
islands, craters and active craters during annealing at 1000 °C. The data were collected from 
the area 21.6 um 2 . 

In separated experiments we determined the mass thickness of a gold film after annealing 
for different times using a chemical analysis [65]. Based on these results the conservation of 
a gold volume (mass) on the surface w i l l be assumed in further discussions. A decrease of 
the mass thickness due to evaporation didn't exceed 3 %. The decrease of the surface 
coverage and number o f islands (counts) continues at the expense of the increasing mean 
size of gold islands. These expected results correlate well with the Ostwald ripening process 
on the flat substrate. 
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More interesting appeared the evolution of empty and active craters. The mean size and 
number o f empty craters is continuously growing (red lines in F ig . 5.10). This indicates that 
empty craters are formed continuously. The size of the craters is related to the life time of 
the islands, which is proportional to their size. Hence, the longer time necessary for 
disappearing the larger islands results in larger empty craters. The similar trends have been 
observed for the active craters with the gold remaining inside. The longer annealing times 
result in larger morphological changes enabling that the larger islands are trapped in the 
crater. The growing number of the active craters shows that the longer annealing times 
enable a deeper embedding at which the island size stagnates. 

It should be pointed out that the sum of the number of islands, active and empty craters 
remain the same as can be seen in F ig . 5.10b. These results indicate that all the islands formed 
after the initial dewetting are transformed into the larger islands, active craters or empty 
craters. Hence, it can be concluded that the active and empty craters are "fingerprints" of the 
original islands. 

5.3 Characterization of the digging process and crater formation 

Previously, we have shown that the time evolution of P S D is influenced by the surface 
heterogeneity and surface modification. This part is devoted to a detailed analysis of the 
digging phenomena. Embedding or digging phenomena can be described as a local 
modification o f the surface morphology leading to the formation of a crater with the 
surrounding rim, the morphology of which evolves simultaneously with the size changes of 
gold particles (islands) during annealing. The long-term annealing experiments were 
performed at 1000 °C, close to the melting point of the bulk gold (1064 °C) [66]. The samples 
were prepared by the thermal deposition of a 10 nm nominal thick gold film on a 300 nm 
thick thermally grown silica layer on a silicon wafer. 

5.3.1 Crater morphology and different stages of digging 

The craters formed in the silica substrates have a different shape and size. A F M images of 
the craters formed after annealing at 1000 °C for 24 hours and processed in aqua regia for 
gold dissolution are shown in F ig . 5.11. Imaging the surfaces with islands by A F M is 
complicated due to large differences in the height scale. Therefore, the imaging of larger 
areas is carried out mainly by S E M . A s can be seen, each crater is surrounded by an adjacent 
rim being formed suggesting that the r im is formed only on the island perimeter. The width 
of the r im depends on an evolution o f the island size during the Ostwald ripening and differs 
for increasing and shrinking islands. 
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Fig . 5.11: A F M images of a silica substrate with a gold layer after annealing at 1000 °C for 
24 hours and gold dissolution (a). Different types of the craters observed on the surface 
(b - g). 

F ig . 5.12: S E M (a) and A F M (b - g) images of the craters and gold islands formed after 
annealing at 1000 °C for 12 hours. Different stages of the gold embedding (d - g) with the 
corresponding height profiles. 
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The characterization of different types of craters is important for the understanding of the 
digging process. Based on the analysis of S E M and A F M images, three different types of 
craters have been identified as follows: 

Crater type I: the largest (side 200 - 300 nm) and relatively shallow ( 1 - 5 nm deep) craters 
are shown in F ig . 5.11b, e. They are typical for large faceted single crystal islands 
continuously growing during the Ostwald ripening process with the shaper following the 
island shape. Different shapes of the craters correspond to different crystallographic 
orientations of the islands. The height of the surrounding r im is small ( 2 - 5 nm) compared 
to the other types. The bottom of the crater is atomically flat. 

Crater type II: the size of the crater is of an intermediate range (100 - 200 nm) as shown in 
Fig . 5.11c, f and F ig . 5.12b - g. Here, the relatively wide r im (~ 50 nm) with the height 
5 - 1 5 nm can be identified. The height of the r im significantly changes along the island 
perimeter and forms a "rim decoration". The remaining gold islands are typically present 
inside this type of the craters as shown in F ig . 5.12d - f. The formation o f this type is 
associated with intermediate-sized islands, the size of which is reduced due to the Ostwald 
ripening. 

Crater type III: the smallest type of the craters (< 100 nm) is characteristic in a symmetrical 
rounded r im with no decoration and no gold inside the crater as shown in F ig . 5.1 Id, g and 
in F ig . 5.12a. In S E M images they appear as small pits. They are formed from the small gold 
islands observed mainly after the initial dewetting. The gold islands disappear during 
annealing and, consequently, the digging is terminated. 

In F ig . 5.11b, e the rimmed craters type I formed from faceted islands are shown. The similar 
faceting can be found for the most of the craters type II, where the width of the r im is bigger 
as shown in Fig . 5.11c, f and Fig . 5.12 d - g. It confirms a direct correspondence between 
the shape of crystal borders and the shape of the crater and rim. 

We assume that the formation of the r im and increase of the crater depth proceed 
simultaneously during the island shrinking caused by the Ostwald ripening. The relevance 
of this model is supported by experimental observations. The transformation of morphology 
can be explained by an analysis of a motion of the island-silica-air triple interface line. 

Let the volume of the silica r im constantly grow with annealing time. It means that a "linear 
source" continuously delivers a new material to the rim. The volume o f the r im depends on 
the annealing time and is proportional to the length of the triple line. The height of the r im 
around a triangle-shaped monocrystal island is different in the corners and along the facets 
as depicted in F ig . 5.13a. In F ig . 5.13b the segments of circular areas (orange) of the same 
diameter r located at the side o f the triangle and in the corner are schematically shown. The 
length of the linear source inside these areas is the same (2r ) , thus the volume of the released 
material inside the marked area in the corner and on the side is the same. Nevertheless, the 
segment area in the corner is larger compared to the side one (Fig. 5.13b). Consequently, the 
height of the r im is smaller in the corner than on the side. Hence, the shape of the triple phase 
line influences the r im height. 
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F ig . 5.13: A F M topography image of a smaller (a) and larger (c) r im after gold dissolution. 
A schematic view of the gold island and the effect of the "linear source" (b). 

The proposed mechanism can be used for explanation of the r im decoration observed in the 
case of the crater type II. A s can be seen in F ig . 5.13c, the r im decoration consists of the 
humps on each faceted side. The correlation between the shapes of the triple phase line and 
r im topography is evident. 

Experimental observations have shown a wide range of the rims as can be seen in F ig . 5.14a. 
Some of the rims are extremely wide compared to the others. This can be explained by the 
fact that the size of gold islands changes and the "linear source" of silica follows the triple 
phase line. The smaller islands which are shrinking during the annealing are surrounded by 
a wide r im shown in F ig . 5.14c, d. In this case the "linear source" is moving with the 
shrinking islands and the r im width grows. The original size o f the gold islands can be then 
estimated from the size of the outer perimeter of the rim. The process is terminated when the 
gold island disappears. The empty craters (Fig. 5.14e) are typically small and assigned as 
the type III. 

The size stagnation of gold islands during annealing was already discussed in part 5.2.1. The 
image in F ig . 5.14d shows that the islands assigned to the figures (c) and (d) have a similar 
radius but the width of the r im is significantly different. It indicates that when the gold 
islands o f initially different sizes reach the same size due to the size stagnation, the different 
size of the rims is observed. 

linear source of the silica 

Fig . 5.14: S E M image with the rims formed around the islands (a). A schematic view of the 
islands surrounded by the rims of different size (b, c, d). A n empty crater with the r im (e). 

73 



5.3.2 Mass transfer and depth analysis 

Characterization and classification of the crater types presented previously was mainly based 
on the analysis of the crater size and r im shape. Further information about the digging 
process can be obtained from the analysis of the crater and r im volume. Additionally, small 
islands are typically found in deeper regions than the bigger ones, which suggests that the 
small islands are being dug in faster. In order to investigate the mass transfer and correlation 
between the island size and the crater depth, a simple analytical model was proposed. 

Let 's assume the following: 

1) the silica r im is formed by the release o f a material provided by a "linear source" 
at the triple-phase line with the flux r, 

2) the released material is taken from the crater below the island, 

3) the volume of the material added to the r im Vrim is equal to the volume Vcr 

removed from the crater. 

The volume of the r im Vrim depends on the length of the triple-phase line and the annealing 

time (Fig. 5.15a, b). The r im volume can be then calculated as Vrim = tit = tlnrt, where / 

is the length of the gold island perimeter (triple-phase line), r is the equivalent island radius 
and t is the annealing time. The volume of silica removed from the bottom of the island Vcr 

can be calculated as Vcr = 7tr2h, where h is the depth of the crater (Fig. 5.15c). From the 

condition that Vrim = Vcr follows that the depth of the crater is inversely proportional to the 

island/crater radius: 

r 

The relation between the crater radius and depth can be experimentally determined by the 
analysis of A F M images shown in F ig . 5.15a. The measurements at a sufficiently low noise 
level were achieved only for the samples annealed for 2, 3, 6 and 24 hours. The data were 
analyzed by the Gwyddion software which allows us to select individual craters as shown in 
Fig . 5.15a. For each selected crater the area (represented by the equivalent radius) and 
maximal depth were determined. The correlation between the crater depth and the reciprocal 
value o f the equivalent radius for different annealing times is shown in F ig . 5.15c. The 
presented results confirm the linear dependence given by E q . 5.1, i.e. that the narrower 
craters are deeper. 
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Fig . 5.15: A schematic view of the sphere-linear source configuration (a). A F M image of 
selected craters in a silica substrate surface annealed for 6 hours and chemically processed 
afterwards to remove gold (b). Dependence o f the maximal depth of craters on their 
reciprocal radius for different annealing times (c). 

According to E q . 5.1 the slope of the linear dependence is given by the expression A = lit, 
which is proportional to the volume of the transferred silica per unit length of the perimeter. 
The fitted parameters A are given in Tab. 5.1. The rising parameters A (the volume of 
transferred silica) for increasing annealing times correspond to the growing volume of the 
craters and rims. The time evolution of the fitted parameter A is shown in F ig . 5.16a. Using 
the linear formula A = 2rt we can fit this dependence by the least mean squares method and 
get for T the value T = 0,0012 n m V 1 . 

Time (hours) 2 3 6 24 

A(nm 2 ) 63±1.7 109±2.6 122±3.7 277±11 

Tab. 5.1: Fitting of experimentally measured relations between the equivalent radius and the 
cater depth for different annealing times. 

The digging velocity v d i g g normal to the surface can be obtained from Eq . 5.1 as follows 
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Eq. 5.2 

The dependence of the digging velocity on the island radius is shown in Fig . 5.16b. The 
experimental results and the proposed model for silica mass transfer are in a good agreement. 

0,0 2,0x104 4,0x104 6,0x104 8,0x104 1,0x10s 40 80 120 160 200 
Annealing time (s) r (nm) 

(a) (b) 

Fig. 5.16: Time evolution of the volume transferred per the unit perimeter length A (a). 

Digging velocity vdigg as a function of the islands radius for theoretical (solid curve) and 

experimental (squares) data (b). 

The volume of the transferred silica can be also evaluated using 3D A F M images of the 
craters. A s previously mentioned, the proposed model assumes that the silica is transferred 
from the area bellow the island to the rim. Then the volume of the crater and the r im should 
be equal. The analysis o f A F M images enable direct estimation of the both volumes. The 
representative high quality A F M images used to such a volume determination are shown in 
Fig . 5.17. 

(a) (b) 

Fig. 5.17: A F M images o f two different craters with rims (a, b) used for the volume analysis 
after gold removal. 

The calculations were performed using the Gwyddion software which allows measuring the 
volume of objects under (craters) or above (rims) the selected area - see the mask selection 
of the plane for the crater and r im volume estimation in F ig . 5.18. To minimize the influence 
of the A F M tip, the larger craters were selected for the analysis where the image distortion 
caused by the tip can be neglected. 
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(a) (b) (d) 
[ 

(f) 

Fig . 5.18: A F M images of the craters with the selected plane of the craters (upper row) and 
rims (bottom row) used for the volume calculation. The estimated volumes of the relevant 
rims and craters were compared as shown in Fig . 5.19. The mean relative difference between 
the estimated volumes is 15 %, which can be caused by the A F M imaging- and data analyses 
inaccuracy. 

• Relative difference 

I I Rim 

Fig . 5.19: Comparison of the volumes of the selected craters and corresponding rims. The 
relative difference is indicated by the black squares. 

5.3.3 Digging into different types of silica substrate 

The A u island embedding has been observed on various oxide substrates. In this section we 
present the results of comparative studies o f the gold embedding into different silica 
substrates, i.e. quartz, fused silica glass and commercially available silicon wafers-with 
thermally grown silica. 

It should be mentioned that the previously reported observation of the gold embedding into 
the thermal silica layer on the silicon substrate was done by Bowker [60]. The suggested 
mechanism of the island digging into the substrate is related to the smaller growth rate o f the 
thermally grown silica layer under the gold islands compared to that at the bare surface. To 
verify this mechanism the high temperature annealing of a silica substrate such as quartz or 
fused silica glass, where silicon is not present, should be carried out. 

Four different silica substrates were chosen. The first two, crystalline (quartz) and non
crystalline (fused) silica, do not contain an underlying silicon substrate. Other two tested 
substrates were composed of a silica top layer on a silicon wafer. The first of the latter type 
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of the substrates was prepared by the thermal growth during the silicon wafer annealing at 
1000 °C for 12 hours. The thickness of the silica layer measured by ellipsometry was 380 nm. 
The second substrate with the silica layer was a commercially available sample with the 
270 nm-thick silica f i lm on the silicon (100) wafer (On-Semi). 

A l l the substrates were cleaned in I P A and covered by a 10 nm-thick gold layer. Annealing 
at 1000 °C for 12 hours was performed simultaneously for all the samples to avoid difference 
in annealing and cooling conditions. A s can be seen in F ig . 5.20 (upper row) the formation 
of gold islands is observed on all substrates. The embedding process and r im formation was 
clearly recognized after the gold removal in aqua regia as shown in F ig . 5.20 (bottom row). 
The presence of the formed craters is evident. 

It should be pointed out that in experiments with the silica substrates the crystallization of 
silica surfaces was observed. It might have been only caused by the fact that the experiments 
with the silica substrates were performed in a furnace which did not allow the fast cooling 
rate and so the cooling time to room temperature was ~ 6 minutes. Despite this 
crystallization, the formation o f the craters and rims was clearly identified. 

(a) (b) (c) (d) 

Fig . 5.20: Images of the different silica surfaces with a deposited 10 nm-thick A u layer 
annealed for 12 hours at 1000°C taken before (upper row) and after (bottom) gold removal: 
fused silica ( S E M ) , (a); quartz substrate ( A F M ) , (b); commercial silica layer (270 nm, S E M ) , 
(c); and thermally grown silica (380 nm, S E M ) , (d). The red scale bar is 5 um. 

The experimental results with quartz- and fused silica (Fig. 5.20 a, b) substrates show that 
embedding is not conditioned by the presence of silicon in the substrate. Further discussions 
about the digging mechanism can be thus focused only to the interface between silica and a 
gold island. It can be concluded that the silica mass transfer is observed at the interface of 
any type of the silica substrate and a gold island at high temperatures. 
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It should be mentioned that the unwanted silica surface crystallization was observed after 
slow cooling only in the case when gold islands were present on the surface The annealing 
of the bare fused silica surface (without deposited gold) did not lead to silica crystallization 
as shown in F ig . 5.21a. Therefore, the presented results indicate that the surface 
crystallization is catalyzed by the gold islands. 

(a) (b) 

Fig . 5.21: A F M images of the fused silica glass substrates annealed at 1000 °C for 12 hours 
a) without deposited gold and b) with a deposited 10 nm-gold layer. 

5.3.4 Depth of A u island immersion 

A deep immersion of small gold islands (particles) was observed by S E M imaging of a 
sample cross section (Fig. 5.22). The original gold islands are buried in the form of spherical 
particles in the silica bulk in the depth 40 - 80 nm (Fig. 5.22a - c). The particle radius is 
approximately 15 nm and correlates with the peak of active craters observed in P S D and 
described in part 5.2.1. This observation indicates that the most effective digging process is 
performed only by the islands inside of a narrow size window. 

(b) (c) 

Fig . 5.22: SEM-images of the cross section of a silica sample with embedded gold is particles 
of various sizes. 

There is a narrow channel above each particle so the gold particles are not fully encapsulated. 
A schematic of gold embedding evolution is shown in F ig . 5.23. The size of the 
island/particle is reduced until a critical depth is achieved. In such a case the further size 
reduction is stopped while the digging process continues (Fig. 5.23c, d). 
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(a) (b) (c) (d) 

Fig . 5.23: A schematic of the embedding process of a gold island into the silica substrate. 
The size of the island/particle gradually decreases during the digging process (a - c) until the 
specific depth is achieved. The particle is dug deeper into the substrate having a narrow 
channel above it (d). 

Deeply immersed gold particles are usually not visible by secondary electrons (SE) in S E M 
imaging. However, these embedded particles can be imaged by "chemically" more sensitive 
backscattered electrons (BSE) as shown in F ig . 5.24. The same area was imaged both by S E 
and B S E electrons. 

B S E images correlate with the cross section images showing that some of the gold islands 
are deeply embedded into to the substrate. This observation also confirm that long time 
annealing leads to formation of three different types of elements - islands, and empty and 
active (with gold island) craters as was previously mentioned in part 5.3.1. 

(a) (b) (c) 

Fig. 5.24: S E M images provided by secondary electrons (upper row) and backscattered 
electrons (bottom row) related to different sites (a, b) of the silica surface possessing gold 
islands, and empty and active craters. Details of the empty crater (c). The scale bars are 
100 nm. 

5.4 Discussion of the mechanism of the embedding process 

Several stages of the gold digging process on the silica substrate have been described in the 
previous sections. Although several authors have already reported on the digging process, 
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any satisfactory description of the digging mechanism has not been reported yet. 
Nevertheless, several different scenarios have been suggested by other groups and w i l l be 
discussed. It should be noted that annealing has been done in an oxidation atmosphere. This 
fact makes a major difference from the most similar investigation carried out under ultra
high vacuum ( U H V ) conditions [62]. In the oxidation atmosphere the reactive oxygen is 
involved in chemical reactions responsible for the silica formation. 

Our experimental results can be summarized as follows: During the digging process the 
craters and surrounding rims are formed simultaneously. Silica is transferred from the region 
below the islands to the rims (see part 5.3.2). The mass transfer o f silicon can be achieved 
through the bulk of gold islands or around the interface along the gold-silica substrate. The 
most probably the latter way of mass transfer was prevailing and so the concentration of 
silicon in the bulk was very small (deeply bellow the concentration corresponding to the 
eutectic point - 18.6 %). This is supported by the fact that the faceted shape o f the craters 
was performed when islands were crystalline. We assume that the chemical composition of 
the bulk gold before and after the experiments is not changed. 

Recently, Bowker et al. reported formation of craters in a silica substrate under the gold 
islands after annealing at 1100 °C and showed encapsulation of A u nanoparticles into this 
substrate [60]. They suggested that the digging process is caused by the upwards growth of 
a silica layer from the substrate silicon, when the growth is slower under the gold islands 
due to the lack o f oxygen. Another possible scenario was discussed by Powell [58], Hu [59], 
Ajayan [67], Spolenak [61] and Kl immer [68] on different metallic - oxide systems. In 
addition to thermal annealing, the digging process may be also induced by ion beam 
irradiation which leads to temperature enhancement and metallic f i lm dewetting as we l l [69]. 
The most researchers have suggested that the embedding of metallic particles is driven by 
the capillary forces and minimization of the surface energies. This scenario assumes a 
viscose substrate which can be formed at elevated temperatures provided by heating or ion 
bombardment. According to the Hu, the embedding driving force depends on the parameter a 

V + Y —Y 
a = h / p - s = l + c o s ^ , Eq .5 .3 

where ya is the surface energy of the viscous substrate, 7P is the surface energy of the particle 

(island), ^ i s the corresponding interface energy and & is the contact angle between the 

particle and the substrate. Different stages of embedding are shown in F ig . 5.25 with a 
corresponding value o f the parameter a. 
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Fig. 5.25: Schematics of the final equilibrium positions of solid spheres sunk into a viscous 
substrate depending on the wetting conditions as expressed by the parameter a, taken from 
[68]. 

In the presented work it has been shown that the craters are formed on any type of the silica 
substrate (see part 5.3.2) and their depth is strongly dependent on their size (see part 5.3.2). 
It can be deduced, that our experimental observations do not correlate with the digging 
mechanism proposed by Bowker, where the digging process is conditioned by the presence 
of bare silicon underneath. Hence, in our case this scenario can be ruled as the digging 
process was observed also for the quartz. The second scenario, proposed by Powell [58], 
requires the existence of a viscous substrate and at first look it does not explain the deep 
embedding shown by the S E M cross section images (Fig. 5.24). Nevertheless, the intention 
of this work is to demonstrate that viscosity of the gold/silica interface can decrease and also 
that capillary forces can cause deeper digging. 

It is wel l known that gold-silicon systems form gold silicide with the eutectic point at 363 °C 
and concentration 18.6 %, see the phase diagram in Fig . 5.26. The required silicon can be 
obtained from the silica decomposition catalyzed by the gold island without the access of 
oxidative atmosphere. Hence, annealing at 1000 °C may cause the formation of a thin 
interface layer between the gold and the bare silica composed of an A u - S i solution. The 
presence of the A u - S i layer would result in changes in the surface energy of silica and in 
decrease of its viscosity. On the triple phase line the A u - S i solution is exposed to oxidative 
atmosphere and thus silicon is released and forms the silica rim. It should be pointed out that 
the silica decomposition catalyzed by gold was reported by the group of Roldan [62] under 
ultra-high vacuum conditions (non-oxidative atmosphere) which does not lead to the 
formation of the silica rim. However, the proposed mechanism does not explain how 
oxygen, released into oxide after the formation of surface silicide, is accumulated in the 
substrate. Therefore, more experiments are necessary to fully prove this mechanism. 
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Fig . 5.26: Gold-sil icon phase diagram. If a thin viscous interface layer is formed, capillary 
forces become significant and influence the embedding. In the viscous interface the upward 
flux of silica is driven by the wetting, the contact angle is in the range 0° < t? < 90°. The 
flux is stopped on the triple phase line where silicon oxidizes and forms the r im. This 
mechanism causes a continual silica transfer from the area below the crater to the r im, until 
the thermodynamic equilibrium is reached. 
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Fig . 5.27: Schematic o f the time evolution of the islands with large (a), small (b) and medium 
(c) size during annealing followed by the formation of large single crystals (a), empty craters 
(b) and deeply embedded gold particles (c). 
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In F ig . 5.27 different scenarios according to the size of the initial islands are schematically 
shown. The dewetting process is relatively quick and separated islands are formed in the tens 
of second. On the other hand, the formation of craters is a slow process ongoing for hours 
(days). During the long annealing, the Ostwald ripening process causes significant changes 
in island sizes. Additionally, it has been shown that the small craters are dug faster. The 
interplay between the digging and the Ostwald ripening causes the formation of large gold 
islands (Fig. 5.27a), small empty craters (Fig. 5.27b) and deeply embedded gold particles 
(Fig. 5.27c). 

Experimental observation o f deeply embedded gold particles should be discussed and 
explained as a result of capillary forces. The typical radius of deeply embedded particles is 
in the range of 10 - 25 nm. It has been shown that size of these particles is not changing with 
the digging depth (see part 5.3.4). A continual digging can occur during the whole annealing. 
Termination of the digging process can appear when the thermodynamic equilibrium is 
established or when the full encapsulation of gold islands is achieved. In both cases the 
essential conditions for the digging process are not valid any more. It should be point out 
that the cross section S E M images did not show the full encapsulation and, hence, the 
digging process was not terminated. Embedding driven by the capillary forces proposed by 
Powell offer the explanation for the craters not deeper than islands diameter. To explain 
deeper embedding, the proposed theory should be extended by a possible crystallization of 
silica. It has been reported by Santos at al. [70] that amorphous silica initially covered by a 
gold layer undergoes crystallization during the annealing at 900 °C. The crystallization 
causes an increase of the silica density about 1 %. Thus the volume of the crystalline silica 
is reduced compare to the amorphous one. This scenario offers the explanation for the 
observed narrow chimney above the deeply embedded islands. Hence, the full encapsulation 
cannot be reached and then the capillary forces continuously drive the silica mass transfer 
from the below bottom of the crater to the upper rim. 

5.5 Conclusion 

We have demonstrated that high temperature annealing (1000 °C) of the gold islands on the 
silica substrate causes the embedding of the islands into the substrate. The depth of the 
majority of craters formed in the silica surface is in the range of 1 - 15 nm but also deeply 
embedded gold islands have been found to be in the depths of 40 - 80 nm. The perimeter of 
the craters is circumscribed by the silica r im. It has been demonstrated that faceted shape of 
the craters corresponds to the shape of the islands. The r im is therefore formed on the triple 
phase boundary by silica transfer from the crater bottom to the rim. According to the size of 
islands three different features - large islands with tight r im, middle size craters with 
remaining gold inside and small empty craters - were described. 

The size of the individual islands evolves during annealing due to the Ostwald ripening 
process. Time evolution of the particle size distribution (PSD) was monitored in time frame 
of 5 min - 24 hours. The statistical analysis has shown that the initial islands are transformed 
into the large growing islands, craters with gold remaining inside or empty craters. The 
evolution is driven by an interplay between the Ostwald ripening process and the embedding 
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process. The appearance of the secondary peak in P S D (radius 18 nm) observed after 3 hours 
of annealing is caused by surface heterogeneity induced by embedding. 

The data analysis of A F M images have shown that the size of the islands strongly influence 
the digging rate. The linear correlation between the reciprocal size and the depth of the 
craters shows that the small islands are digging faster. Also the volume of the r im and 
corresponding volume of the craters are very similar. The achieved results corresponds well 
to the proposed theory that the mass transfer is performed at the triple phase line. 

Based on the experimental observations a possible mechanism has been discussed. High 
temperature annealing can result in formation o f a viscous A u - S i solution at the interface 
between silica and gold islands. Therefore, the surface tension o f the silica - gold interface 
is changed and the capillary forces cause the wetting of the island. A t the triple phase line 
the delivered silicon is transformed to silica. The full encapsulation o f the islands has been 
never observed. The proposed explanation is related to a volume reduction between the 
originally amorphous and the crystalline silica. 

The presented results can find wide range of applications, e.g. in plasmonics and biosensing 
where the embedding of metal particles could be used for resonant frequency tuning. A 
relatively simple experimental procedure also opens possibilities for fabrication of 
nanostructures consisting of ordered arrays of embedded gold islands. 
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6. Summary 

The main objectives o f the work was to utilize the atomic force microscopy ( A F M ) for the 
study of ultrathin films and nanostructures. Both, the development of A F M instruments and 
fabrication of nanostructures with specific properties are of a long-term interest in the 
Institute of Physical Engineering (IPE) at the Brno University of Technology 

The atomic force microscope operating under ultrahigh vacuum conditions was previously 
developed at IPE and within this work have passed several upgrades regarding mainly the 
optical detection system, control electronics and optimization of the rotary slip-stick 
actuators. Optimization of motion of the piezo actuators having been quite unreliable before, 
required a detailed study and analysis. The significant improvement of the performance of 
the piezo actuator was achieved without the changes of their mechanical design. It was done 
by the modification of the driving pulses being used for controlling the displacement o f the 
piezoceramic plates. It has been demonstrated that the critical parameter of the one slip-stick 
cycle (step) is the instantaneous velocity at the end of the sticking phase of the motion. The 
extended experimental measurements of the actuator response to the single and multiple 
pulses shown, that instantaneous velocity at the end of the slip phase should be maximal. It 
can be achieved by the shape of the pulse determined by the exponent of the exponential 
function and by the repetition frequency of the individual pulses. The experimental results 
have been supported by the numerical and analytical modelling of the actuator behavior 
during single and multiple steps. The motion of the slip-stick actuators was optimized and 
their smooth operation achieved. 

Fabrication and characterization of metall nanostructures was carried out due to their wide 
range of applications in microelectronics, plasmonics (biosensing), semiconductor industry, 
magnetic memory media, and growth o f nanowires. The analytical techniques used for their 
characterization were A F M and scanning electron microscopy (SEM) , particularly. It has 
been demonstrated that the annealing o f gold thin films leads to morphological 
transformations and formation of separated gold islands. The size and position of the 
fabricated islands can be controlled by the substrate patterning. The mechanism is driven by 
changes in local morphology parameters of the fabricated pattern elements, where the local 
surface curvatures influence the opening of the voids in the originally continuous gold film. 
During the annealing the voids are enlarged and separate the elements of the gold films along 
the high steps of the pattern. Further annealing of the gold films up to 600 °C results in the 
formation of well separated gold islands following the grid pattern. The patterning of 
substrates was carried out by electron beam lithography using grid patterns with square 
widths of 100, 200, 300, 400 and 500 nm. It has been shown that proposed methods are 
suitable for fabrication of well-ordered arrays of gold islands. 

In the last part of the work the formation of craters during the annealing of gold films at 
1000 °C is described. It has been shown that gold islands formed after the initial dewetting 
modify the silica substrate. We have proposed the digging mechanism caused by the mass 
transfer of the silica from the area bellow the gold islands to their perimeter. It has been 
determined that the digging speed is inversely related to the size of the gold islands where 
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the smaller islands are digging faster. The presented phenomena and fabrication procedure 
can be utilized in plasmonics and biosensing applications, particularly. 
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